Science.gov

Sample records for ice making system

  1. Making an Ice Core.

    ERIC Educational Resources Information Center

    Kopaska-Merkel, David C.

    1995-01-01

    Explains an activity in which students construct a simulated ice core. Materials required include only a freezer, food coloring, a bottle, and water. This hands-on exercise demonstrates how a glacier is formed, how ice cores are studied, and the nature of precision and accuracy in measurement. Suitable for grades three through eight. (Author/PVD)

  2. Let's Make Metric Ice Cream

    ERIC Educational Resources Information Center

    Zimmerman, Marianna

    1975-01-01

    Describes a classroom activity which involved sixth grade students in a learning situation including making ice cream, safety procedures in a science laboratory, calibrating a thermometer, using metric units of volume and mass. (EB)

  3. Making sea ice Motion Data From RGPS More Accessible

    NASA Astrophysics Data System (ADS)

    Gens, R.; Barker, E.; Backstrom, L.

    2007-12-01

    The Radarsat Geophysical Processing System (RGPS) was designed to generate sea ice products providing information about sea ice motion, deformation and sea ice thickness. Radarsat-1 ScanSAR Wide B (SWB) imagery has been acquired over more than a decade for the Arctic Ocean with a spatial resolution of 100 m. At the beginning of each winter season a regular grid is initialized and the grid points are tracked over the season to monitor the sea ice motion. With the changing ice conditions the regular grid becomes distorted in shape and location. The distorted Lagrangian grid is used to generate the RGPS data products which reflect the ice condition for a three-day snapshot. These products are currently distributed in a custom designed binary format. They are only used for the long-term monitoring of sea ice on the Arctic basin scale, hence the data is vastly underutilized. The resolution also allows long-term monitoring studies on the regional scale as well as on a local scale. The goal of this prototype development is to make the RGPS data more accessible to allow the data to be used at the regional and local scale, e.g. to develop lead typologies or verify ice charting forecasts. A prototype has been developed that makes the RGPS data more accessible to the research community. A number of raster and vector products are generated for the nominal three-day snapshot. The image mosaics for the part of the Arctic basin that is covered in the snapshot have a 500 m spatial resolution. Basic metadata are provided that allow the user to identify features of interest in the mosaics and their corresponding image within an image data coverage layer. With this metadata the imagery of interest can be directly ordered. Additionally, a weather data layer is derived from model data. For RGPS data that has already been processed the sea ice monitoring information a sea ice layer is created that include all the relevant information from the RGPS database. These vector layers are now

  4. 21 CFR 1250.86 - Water for making ice.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Water for making ice. 1250.86 Section 1250.86 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... SANITATION Sanitation Facilities and Conditions on Vessels § 1250.86 Water for making ice. Only potable...

  5. 21 CFR 1250.86 - Water for making ice.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Water for making ice. 1250.86 Section 1250.86 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... SANITATION Sanitation Facilities and Conditions on Vessels § 1250.86 Water for making ice. Only potable...

  6. 21 CFR 1250.86 - Water for making ice.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Water for making ice. 1250.86 Section 1250.86 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... SANITATION Sanitation Facilities and Conditions on Vessels § 1250.86 Water for making ice. Only potable...

  7. 21 CFR 1250.86 - Water for making ice.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Water for making ice. 1250.86 Section 1250.86 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... SANITATION Sanitation Facilities and Conditions on Vessels § 1250.86 Water for making ice. Only potable...

  8. CO2 (dry ice) cleaning system

    NASA Technical Reports Server (NTRS)

    Barnett, Donald M.

    1995-01-01

    Tomco Equipment Company has participated in the dry ice (solid carbon dioxide, CO2) cleaning industry for over ten years as a pioneer in the manufacturer of high density, dry ice cleaning pellet production equipment. For over four years Tomco high density pelletizers have been available to the dry ice cleaning industry. Approximately one year ago Tomco introduced the DI-250, a new dry ice blast unit making Tomco a single source supplier for sublimable media, particle blast, cleaning systems. This new blast unit is an all pneumatic, single discharge hose device. It meters the insertion of 1/8 inch diameter (or smaller), high density, dry ice pellets into a high pressure, propellant gas stream. The dry ice and propellant streams are controlled and mixed from the blast cabinet. From there the mixture is transported to the nozzle where the pellets are accelerated to an appropriate blasting velocity. When directed to impact upon a target area, these dry ice pellets have sufficient energy to effectively remove most surface coatings through dry, abrasive contact. The meta-stable, dry ice pellets used for CO2 cleaning, while labeled 'high density,' are less dense than alternate, abrasive, particle blast media. In addition, after contacting the target surface, they return to their equilibrium condition: a superheated gas state. Most currently used grit blasting media are silicon dioxide based, which possess a sharp tetrahedral molecular structure. Silicon dioxide crystal structures will always produce smaller sharp-edged replicas of the original crystal upon fracture. Larger, softer dry ice pellets do not share the same sharp-edged crystalline structures as their non-sublimable counterparts when broken. In fact, upon contact with the target surface, dry ice pellets will plastically deform and break apart. As such, dry ice cleaning is less harmful to sensitive substrates, workers and the environment than chemical or abrasive cleaning systems. Dry ice cleaning system

  9. A Terminal Area Icing Remote Sensing System

    NASA Technical Reports Server (NTRS)

    Reehorst, Andrew L.; Serke, David J.

    2014-01-01

    NASA and the National Center for Atmospheric Research (NCAR) have developed an icing remote sensing technology that has demonstrated skill at detecting and classifying icing hazards in a vertical column above an instrumented ground station. This technology is now being extended to provide volumetric coverage surrounding an airport. With volumetric airport terminal area coverage, the resulting icing hazard information will be usable by aircrews, traffic control, and airline dispatch to make strategic and tactical decisions regarding routing when conditions are conducive to airframe icing. Building on the existing vertical pointing system, the new method for providing volumetric coverage will utilize cloud radar, microwave radiometry, and NEXRAD radar. This terminal area icing remote sensing system will use the data streams from these instruments to provide icing hazard classification along the defined approach paths into an airport. Strategies for comparison to in-situ instruments on aircraft and weather balloons for a planned NASA field test are discussed, as are possible future applications into the NextGen airspace system.

  10. The existence of memory effect on hydrogen ordering in ice: The effect makes ice attractive

    SciTech Connect

    Chakoumakos, Bryan C

    2011-01-01

    The existence of ferroelectric ice XI with ordered hydrogen in space becomes of interest in astronomy and physical chemistry because of the strong electrostatic force. However, the influence was believed to be limited because it forms in a narrow temperature range. From neutron diffraction experiments, we found that small hydrogen-ordered domains exist at significantly higher temperature and the domains induce the growth of 'bulk' ice XI. The small ordered domain is named 'memory' of hydrogen ordered ice because it is the residual structure of ice XI. Since the memory exists up to at least 111 K, most of ices in the solar system are hydrogen ordered and may have ferroelectricity. The small hydrogen-ordered domains govern the cosmochemical properties of ice and evolution of icy grains in the universe.

  11. Experimental investigation of static ice refrigeration air conditioning system driven by distributed photovoltaic energy system

    NASA Astrophysics Data System (ADS)

    Xu, Y. F.; Li, M.; Luo, X.; Wang, Y. F.; Yu, Q. F.; Hassanien, R. H. E.

    2016-08-01

    The static ice refrigeration air conditioning system (SIRACS) driven by distributed photovoltaic energy system (DPES) was proposed and the test experiment have been investigated in this paper. Results revealed that system energy utilization efficiency is low because energy losses were high in ice making process of ice slide maker. So the immersed evaporator and co-integrated exchanger were suggested in system structure optimization analysis and the system COP was improved nearly 40%. At the same time, we have researched that ice thickness and ice super-cooled temperature changed along with time and the relationship between system COP and ice thickness was obtained.

  12. 21 CFR 1250.86 - Water for making ice.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Water for making ice. 1250.86 Section 1250.86 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) REGULATIONS UNDER CERTAIN OTHER ACTS ADMINISTERED BY THE FOOD AND DRUG ADMINISTRATION INTERSTATE CONVEYANCE SANITATION Sanitation Facilities and...

  13. On the role of ice-nucleating aerosol in the formation of ice particles in tropical mesoscale convective systems

    NASA Astrophysics Data System (ADS)

    Ladino, Luis A.; Korolev, Alexei; Heckman, Ivan; Wolde, Mengistu; Fridlind, Ann M.; Ackerman, Andrew S.

    2017-02-01

    Over the decades, the cloud physics community has debated the nature and role of aerosol particles in ice initiation. The present study shows that the measured concentration of ice crystals in tropical mesoscale convective systems exceeds the concentration of ice nucleating particles (INPs) by several orders of magnitude. The concentration of INPs was assessed from the measured aerosol particle concentration in the size range of 0.5 to 1 µm. The observations from this study suggest that primary ice crystals formed on INPs make only a minor contribution to the total concentration of ice crystals in tropical mesoscale convective systems. This is found by comparing the predicted INP number concentrations with in situ ice particle number concentrations. The obtained measurements suggest that ice multiplication is the likely explanation for the observed high concentrations of ice crystals in this type of convective system.

  14. ISSM: Ice Sheet System Model

    NASA Technical Reports Server (NTRS)

    Larour, Eric; Schiermeier, John E.; Seroussi, Helene; Morlinghem, Mathieu

    2013-01-01

    In order to have the capability to use satellite data from its own missions to inform future sea-level rise projections, JPL needed a full-fledged ice-sheet/iceshelf flow model, capable of modeling the mass balance of Antarctica and Greenland into the near future. ISSM was developed with such a goal in mind, as a massively parallelized, multi-purpose finite-element framework dedicated to ice-sheet modeling. ISSM features unstructured meshes (Tria in 2D, and Penta in 3D) along with corresponding finite elements for both types of meshes. Each finite element can carry out diagnostic, prognostic, transient, thermal 3D, surface, and bed slope simulations. Anisotropic meshing enables adaptation of meshes to a certain metric, and the 2D Shelfy-Stream, 3D Blatter/Pattyn, and 3D Full-Stokes formulations capture the bulk of the ice-flow physics. These elements can be coupled together, based on the Arlequin method, so that on a large scale model such as Antarctica, each type of finite element is used in the most efficient manner. For each finite element referenced above, ISSM implements an adjoint. This adjoint can be used to carry out model inversions of unknown model parameters, typically ice rheology and basal drag at the ice/bedrock interface, using a metric such as the observed InSAR surface velocity. This data assimilation capability is crucial to allow spinning up of ice flow models using available satellite data. ISSM relies on the PETSc library for its vectors, matrices, and solvers. This allows ISSM to run efficiently on any parallel platform, whether shared or distrib- ISSM: Ice Sheet System Model NASA's Jet Propulsion Laboratory, Pasadena, California uted. It can run on the largest clusters, and is fully scalable. This allows ISSM to tackle models the size of continents. ISSM is embedded into MATLAB and Python, both open scientific platforms. This improves its outreach within the science community. It is entirely written in C/C++, which gives it flexibility in its

  15. Airborne Tomographic Swath Ice Sounding Processing System

    NASA Technical Reports Server (NTRS)

    Wu, Xiaoqing; Rodriquez, Ernesto; Freeman, Anthony; Jezek, Ken

    2013-01-01

    Glaciers and ice sheets modulate global sea level by storing water deposited as snow on the surface, and discharging water back into the ocean through melting. Their physical state can be characterized in terms of their mass balance and dynamics. To estimate the current ice mass balance, and to predict future changes in the motion of the Greenland and Antarctic ice sheets, it is necessary to know the ice sheet thickness and the physical conditions of the ice sheet surface and bed. This information is required at fine resolution and over extensive portions of the ice sheets. A tomographic algorithm has been developed to take raw data collected by a multiple-channel synthetic aperture sounding radar system over a polar ice sheet and convert those data into two-dimensional (2D) ice thickness measurements. Prior to this work, conventional processing techniques only provided one-dimensional ice thickness measurements along profiles.

  16. Energy Efficiency of an Integral Anti-Ice System Based on Fluoroplastic Films

    NASA Astrophysics Data System (ADS)

    Bogoslov, E. A.; Danilaev, M. P.; Mikhailov, S. A.; Pol‧skii, Yu. E.

    2016-07-01

    Results of theoretical and experimental investigations of the efficiency of an integral electrothermal anti-ice system based on fluoroplastic films are presented. It is shown that the use of this system makes it possible to decrease the energy expended for the de-icing by 30% as compared to the existing electrothermal anti-ice systems and that an integral electrothermal anti-ice system can be used in small and midget aircrafts including unmanned ones.

  17. Sea Ice Mapping using Unmanned Aerial Systems

    NASA Astrophysics Data System (ADS)

    Solbø, S.; Storvold, R.

    2011-12-01

    Mapping of sea ice extent and sea ice features is an important task in climate research. Since the arctic coastal and oceanic areas have a high probability of cloud coverage, aerial platforms are superior to satellite measurements for high-resolution optical measurements. However, routine observations of sea ice conditions present a variety of problems using conventional piloted aircrafts. Specially, the availability of suitable aircrafts for lease does not cover the demand in major parts of the arctic. With the recent advances in unmanned aerial systems (UAS), there is a high possibility of establishing routine, cost effective aerial observations of sea ice conditions in the near future. Unmanned aerial systems can carry a wide variety of sensors useful for characterizing sea-ice features. For instance, the CryoWing UAS, a system initially designed for measurements of the cryosphere, can be equipped with digital cameras, surface thermometers and laser altimeters for measuring freeboard of ice flows. In this work we will present results from recent CryoWing sea ice flights on Svalbard, Norway. The emphasis will be on data processing for stitching together images acquired with the non-stabilized camera payload, to form high-resolution mosaics covering large spatial areas. These data are being employed to map ice conditions; including ice and lead features and melt ponds. These high-resolution mosaics are also well suited for sea-ice mechanics, classification studies and for validation of satellite sea-ice products.

  18. Development and Performance Evaluation of an Ozone-Contained Ice Making Machine Employing Pressurized Air Tight Containers

    NASA Astrophysics Data System (ADS)

    Yoshimura, Kenji; Akiyama, Tomoaki; Hirofuji, Yushi; Koyama, Shigeru

    Ozone has the capability of sterilization and deodorization due to high oxidation power. It is also effective for the conservation of perishable foods and purification of water. However, ozone has a disadvantage, that is, conservation of ozone is difficult because it reacts to oxygen. Recently, ozone-contained ice is taken attention for the purpose of its conservation. The use of ozone-contained ice seems to keep food fresher when we conserve and transport perishable foods due to the effects of cooling and sterilization of ozone-contained ice. In the present study, we have developed an ozone-contained ice making machine employing pressurized air tight containers with commercially available size. And the performance evaluation of the system is also carried out. Furthermore, we investigated the sterilization effect of ozone-contained ice on conservation of fish. It was seen that ozone-contained ice is effective for sterilization of surface of fish.

  19. Electrons In Water-ices At Outer Solar System Temperatures

    NASA Astrophysics Data System (ADS)

    Gudipati, Murthy; Allamandola, L. J.

    2006-09-01

    Solid water-rich ice is an important constituent of our Solar System. The importance of both laboratory and in-situ observational work to make advances in this field cannot be overstated. Over the past several years, we have been studying VUV-radiation processing of organic impurities such as the extraterrestrially abundant polycyclic aromatic hydrocarbons (PAHs) embedded in water-ices between 20 K and 180 K. During these in-situ studies we discovered several counter-intuitive phenomena (See Gudipati and Allamandola, J. Phys. Chem. A 110, 9020, 2006 and references therein for details): 1) PAHs embedded in cryogenic water-ice are easily and efficiently ionized (>80%, i.e., near quantitative ion yields) to the cation form by VUV photons. 2) In water ice, PAH ionization energy is lowered by up to 2 eV compared to the gas-phase, in agreement with recent theoretical predictions. 3) PAH cations are stabilized in water ice to temperatures as high as 120 K. 4) Sequential photoionization leading to the formation and stabilization of doubly positively charged organic (PAH) species in water ice has also been found. Our recent laboratory studies have focused on the fate of electrons that are produced during PAH photoionization in the ice. Careful warm-up experiments suggest that indeed some electrons are stored over several hours in these ices. During warm-up of these ices between 20 K and 70 K, these stored electrons become mobilized and react with positively charged PAH ions in the ice. Taken together, these laboratory findings strongly suggest that ice rich trans-Saturnian icy objects including moons, comets, and KBOs, as well as some of Saturn's rings, can host ionized organic impurities and free electrons. These species have physical and chemical properties that can fundamentally alter ice properties such as color, strength, structure, energy-budget, reaction networks etc. Acknowledgments: Funded by NASA's Exobiology, Astrobiology, LTSA, and PG&G Programs

  20. Wave-Ice Interaction in the Marginal Ice Zone: Toward a Wave-Ocean-Ice Coupled Modeling System

    DTIC Science & Technology

    2014-09-30

    conference paper (Rogers and Zieger 2014). This hindcast used ice concentration and thickness from the NRL Arctic Cap Nowcast Forecast System, improved for...Wave- ice interaction...in the Marginal Ice Zone: toward a wave-ocean- ice coupled modeling system W. E. Rogers Naval Research Laboratory, Code 7322, Stennis Space Center

  1. Ice Storage System for School Complex.

    ERIC Educational Resources Information Center

    Montgomery, Ross D.

    1998-01-01

    Describes a project at the Manatee Education Center in Naples, Florida, which won an ASHRAE award. Project involved the implementation of ice-storage technology in 19 schools. Compares the performance of ice-storage systems with traditional chiller designs in two other schools. Tables illustrate costs for the campuses. Addresses the maintenance…

  2. Marginal Ice Zone Processes Observed from Unmanned Aerial Systems

    NASA Astrophysics Data System (ADS)

    Zappa, C. J.

    2015-12-01

    Recent years have seen extreme changes in the Arctic. Marginal ice zones (MIZ), or areas where the "ice-albedo feedback" driven by solar warming is highest and ice melt is extensive, may provide insights into the extent of these changes. Furthermore, MIZ play a central role in setting the air-sea CO2 balance making them a critical component of the global carbon cycle. Incomplete understanding of how the sea-ice modulates gas fluxes renders it difficult to estimate the carbon budget in MIZ. Here, we investigate the turbulent mechanisms driving mixing and gas exchange in leads, polynyas and in the presence of ice floes using both field and laboratory measurements. Measurements from unmanned aerial systems (UAS) in the marginal ice zone were made during 2 experiments: 1) North of Oliktok Point AK in the Beaufort Sea were made during the Marginal Ice Zone Ocean and Ice Observations and Processes EXperiment (MIZOPEX) in July-August 2013 and 2) Fram Strait and Greenland Sea northwest of Ny-Ålesund, Svalbard, Norway during the Air-Sea-Ice Physics and Biogeochemistry Experiment (ASIPBEX) April - May 2015. We developed a number of new payloads that include: i) hyperspectral imaging spectrometers to measure VNIR (400-1000 nm) and NIR (900-1700 nm) spectral radiance; ii) net longwave and net shortwave radiation for ice-ocean albedo studies; iii) air-sea-ice turbulent fluxes as well as wave height, ice freeboard, and surface roughness with a LIDAR; and iv) drone-deployed micro-drifters (DDµD) deployed from the UAS that telemeter temperature, pressure, and RH as it descends through the atmosphere and temperature and salinity of the upper meter of the ocean once it lands on the ocean's surface. Visible and IR imagery of melting ice floes clearly defines the scale of the ice floes. The IR imagery show distinct cooling of the skin sea surface temperature (SST) as well as an intricate circulation and mixing pattern that depends on the surface current, wind speed, and near

  3. A Systems-Level Perspective on Engine Ice Accretion

    NASA Technical Reports Server (NTRS)

    May, Ryan David; Guo, Ten-Huei; Simon, Donald L.

    2012-01-01

    Talk covers: (1) Problem of Engine Power Loss;(2) Modeling Engine Icing Effects; (3) Simulation of Engine Rollback; (4) Icing/Engine Control System Interaction; (5) Detection of Ice Accretion; (6) Potential Mitigation Strategies.

  4. Navy Sea Ice Prediction Systems

    DTIC Science & Technology

    2002-01-01

    ANSI Std Z39-18 45 Oceanography • Vol. 15 • No. 1/2002 part of the International Arctic Buoy Program ( IABP ). These data have been used to support...real-time opera- tions in the Arctic as well as meteorological and oceanographic research of the Arctic basin. More infor- mation on the IABP is...ice thickness. Figure 5a represents the observed ice motion derived from the available IABP drifting buoys. Figures 5a and 5b show the qualitative

  5. Ice sheet systems and sea level change.

    NASA Astrophysics Data System (ADS)

    Rignot, E. J.

    2015-12-01

    Modern views of ice sheets provided by satellites, airborne surveys, in situ data and paleoclimate records while transformative of glaciology have not fundamentally changed concerns about ice sheet stability and collapse that emerged in the 1970's. Motivated by the desire to learn more about ice sheets using new technologies, we stumbled on an unexplored field of science and witnessed surprising changes before realizing that most were coming too fast, soon and large. Ice sheets are integrant part of the Earth system; they interact vigorously with the atmosphere and the oceans, yet most of this interaction is not part of current global climate models. Since we have never witnessed the collapse of a marine ice sheet, observations and exploration remain critical sentinels. At present, these observations suggest that Antarctica and Greenland have been launched into a path of multi-meter sea level rise caused by rapid climate warming. While the current loss of ice sheet mass to the ocean remains a trickle, every mm of sea level change will take centuries of climate reversal to get back, several major marine-terminating sectors have been pushed out of equilibrium, and ice shelves are irremediably being lost. As glaciers retreat from their salty, warm, oceanic margins, they will melt away and retreat slower, but concerns remain about sea level change from vastly marine-based sectors: 2-m sea level equivalent in Greenland and 23-m in Antarctica. Significant changes affect 2/4 marine-based sectors in Greenland - Jakobshavn Isb. and the northeast stream - with Petermann Gl. not far behind. Major changes have affected the Amundsen Sea sector of West Antarctica since the 1980s. Smaller yet significant changes affect the marine-based Wilkes Land sector of East Antarctica, a reminder that not all marine-based ice is in West Antarctica. Major advances in reducing uncertainties in sea level projections will require massive, interdisciplinary efforts that are not currently in place

  6. Supporting decision making and action selection under time pressure and uncertainty: the case of in-flight icing.

    PubMed

    Sarter, N B; Schroeder, B

    2001-01-01

    Operators in high-risk domains such as aviation often need to make decisions under time pressure and uncertainty. One way to support them in this task is through the introduction of decision support systems (DSSs). The present study examined the effectiveness of two different DSS implementations: status and command displays. Twenty-seven pilots (9 pilots each in a baseline, status, and command group) flew 20 simulated approaches involving icing encounters. Accuracy of the decision aid (a smart icing system), familiarity with the icing condition, timing of icing onset, and autopilot usage were varied within subjects. Accurate information from either decision aid led to improved handling of the icing encounter. However, when inaccurate information was presented, performance dropped below that of the baseline condition. The cost of inaccurate information was particularly high for command displays and in the case of unfamiliar icing conditions. Our findings suggest that unless perfect reliability of a decision aid can be assumed, status displays may be preferable to command displays in high-risk domains (e.g., space flight, medicine, and process control), as the former yield more robust performance benefits and appear less vulnerable to automation biases.

  7. 14 CFR 33.68 - Induction system icing.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.68 Induction system icing. Each engine, with all icing protection systems operating, must— (a) Operate throughout its flight power... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Induction system icing. 33.68 Section...

  8. 14 CFR 121.283 - Induction system ice prevention.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Induction system ice prevention. 121.283... Induction system ice prevention. A means for preventing the malfunctioning of each engine due to ice accumulation in the engine air induction system must be provided for each airplane....

  9. 14 CFR 125.181 - Induction system ice prevention.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Induction system ice prevention. 125.181... Requirements § 125.181 Induction system ice prevention. A means for preventing the malfunctioning of each engine due to ice accumulation in the engine air induction system must be provided for each airplane....

  10. 14 CFR 121.283 - Induction system ice prevention.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Induction system ice prevention. 121.283... Induction system ice prevention. A means for preventing the malfunctioning of each engine due to ice accumulation in the engine air induction system must be provided for each airplane....

  11. 14 CFR 125.181 - Induction system ice prevention.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Induction system ice prevention. 125.181... Requirements § 125.181 Induction system ice prevention. A means for preventing the malfunctioning of each engine due to ice accumulation in the engine air induction system must be provided for each airplane....

  12. Improving Arctic sea ice edge forecasts by assimilating high horizontal resolution sea ice concentration data into the US Navy's ice forecast systems

    NASA Astrophysics Data System (ADS)

    Posey, P. G.; Metzger, E. J.; Wallcraft, A. J.; Hebert, D. A.; Allard, R. A.; Smedstad, O. M.; Phelps, M. W.; Fetterer, F.; Stewart, J. S.; Meier, W. N.; Helfrich, S. R.

    2015-08-01

    This study presents the improvement in ice edge error within the US Navy's operational sea ice forecast systems gained by assimilating high horizontal resolution satellite-derived ice concentration products. Since the late 1980's, the ice forecast systems have assimilated near real-time sea ice concentration derived from the Defense Meteorological Satellite Program (DMSP) Special Sensor Microwave/Imager (SSMI and then SSMIS). The resolution of the satellite-derived product was approximately the same as the previous operational ice forecast system (25 km). As the sea ice forecast model resolution increased over time, the need for higher horizontal resolution observational data grew. In 2013, a new Navy sea ice forecast system (Arctic Cap Nowcast/Forecast System - ACNFS) went into operations with a horizontal resolution of ~ 3.5 km at the North Pole. A method of blending ice concentration observations from the Advanced Microwave Scanning Radiometer (AMSR2) along with a sea ice mask produced by the National Ice Center (NIC) has been developed, resulting in an ice concentration product with very high spatial resolution. In this study, ACNFS was initialized with this newly developed high resolution blended ice concentration product. The daily ice edge locations from model hindcast simulations were compared against independent observed ice edge locations. ACNFS initialized using the high resolution blended ice concentration data product decreased predicted ice edge location error compared to the operational system that only assimilated SSMIS data. A second evaluation assimilating the new blended sea ice concentration product into the pre-operational Navy Global Ocean Forecast System 3.1 also showed a substantial improvement in ice edge location over a system using the SSMIS sea ice concentration product alone. This paper describes the technique used to create the blended sea ice concentration product and the significant improvements in ice edge forecasting in both of the

  13. Advanced ice protection systems test in the NASA Lewis icing research tunnel

    NASA Technical Reports Server (NTRS)

    Bond, Thomas H.; Shin, Jaiwon; Mesander, Geert A.

    1991-01-01

    Tests of eight different deicing systems based on variations of three different technologies were conducted in the NASA Lewis Research Center Icing Research Tunnel (IRT) in June and July 1990. The systems used pneumatic, eddy current repulsive, and electro-expulsive means to shed ice. The tests were conducted on a 1.83 m span, 0.53 m chord NACA 0012 airfoil operated at a 4 degree angle of attack. The models were tested at two temperatures: a glaze condition at minus 3.9 C and a rime condition at minus 17.2 C. The systems were tested through a range of icing spray times and cycling rates. Characterization of the deicers was accomplished by monitoring power consumption, ice shed particle size, and residual ice. High speed video motion analysis was performed to quantify ice particle size.

  14. Ice Sheet System Model as Educational Entertainment

    NASA Astrophysics Data System (ADS)

    Perez, G.

    2013-12-01

    Understanding the importance of polar ice sheets and their role in the evolution of Sea Level Rise (SLR), as well as Climate Change, is of paramount importance for policy makers as well as the public and schools at large. For example, polar ice sheets and glaciers currently account for 1/3 of the SLR signal, a ratio that will increase in the near to long-term future, which has tremendous societal ramifications. Consequently, it is important to increase awareness about our changing planet. In our increasingly digital society, mobile and web applications are burgeoning venues for such outreach. The Ice Sheet System Model (ISSM) is a software that was developed at the Jet Propulsion Laboratory/CalTech/NASA, in collaboration with University of California Irvine (UCI), with the goal of better understanding the evolution of polar ice sheets. It is a state-of-the-art framework, which relies on higher-end cluster-computing to address some of the aforementioned challenges. In addition, it is a flexible framework that can be deployed on any hardware; in particular, on mobile platforms such as Android or iOS smart phones. Here, we look at how the ISSM development team managed to port their model to these platforms, what the implications are for improving how scientists disseminate their results, and how a broader audience may familiarize themselves with running complex climate models in simplified scenarios which are highly educational and entertaining in content. We also look at the future plans toward a web portal fully integrated with mobile technologies to deliver the best content to the public, and to provide educational plans/lessons that can be used in grades K-12 as well as collegiate under-graduate and graduate programs.

  15. Validation Ice Crystal Icing Engine Test in the Propulsion Systems Laboratory at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Oliver, Michael J.

    2014-01-01

    The Propulsion Systems Laboratory (PSL) is an existing altitude simulation jet engine test facility located at NASA Glenn Research Center in Clevleand, OH. It was modified in 2012 with the integration of an ice crystal cloud generation system. This paper documents the inaugural ice crystal cloud test in PSLthe first ever full scale, high altitude ice crystal cloud turbofan engine test to be conducted in a ground based facility. The test article was a Lycoming ALF502-R5 high bypass turbofan engine, serial number LF01. The objectives of the test were to validate the PSL ice crystal cloud calibration and engine testing methodologies by demonstrating the capability to calibrate and duplicate known flight test events that occurred on the same LF01 engine and to generate engine data to support fundamental and computational research to investigate and better understand the physics of ice crystal icing in a turbofan engine environment while duplicating known revenue service events and conducting test points while varying facility and engine parameters. During PSL calibration testing it was discovered than heated probes installed through tunnel sidewalls experienced ice buildup aft of their location due to ice crystals impinging upon them, melting and running back. Filtered city water was used in the cloud generation nozzle system to provide ice crystal nucleation sites. This resulted in mineralization forming on flow path hardware that led to a chronic degradation of performance during the month long test. Lacking internal flow path cameras, the response of thermocouples along the flow path was interpreted as ice building up. Using this interpretation, a strong correlation between total water content (TWC) and a weaker correlation between median volumetric diameter (MVD) of the ice crystal cloud and the rate of ice buildup along the instrumented flow path was identified. For this test article the engine anti-ice system was required to be turned on before ice crystal icing

  16. Validation Ice Crystal Icing Engine Test in the Propulsion Systems Laboratory at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Oliver, Michael J.

    2014-01-01

    The Propulsion Systems Laboratory (PSL) is an existing altitude simulation jet engine test facility located at NASA Glenn Research Center in Cleveland, OH. It was modified in 2012 with the integration of an ice crystal cloud generation system. This paper documents the inaugural ice crystal cloud test in PSL--the first ever full scale, high altitude ice crystal cloud turbofan engine test to be conducted in a ground based facility. The test article was a Lycoming ALF502-R5 high bypass turbofan engine, serial number LF01. The objectives of the test were to validate the PSL ice crystal cloud calibration and engine testing methodologies by demonstrating the capability to calibrate and duplicate known flight test events that occurred on the same LF01 engine and to generate engine data to support fundamental and computational research to investigate and better understand the physics of ice crystal icing in a turbofan engine environment while duplicating known revenue service events and conducting test points while varying facility and engine parameters. During PSL calibration testing it was discovered than heated probes installed through tunnel sidewalls experienced ice buildup aft of their location due to ice crystals impinging upon them, melting and running back. Filtered city water was used in the cloud generation nozzle system to provide ice crystal nucleation sites. This resulted in mineralization forming on flow path hardware that led to a chronic degradation of performance during the month long test. Lacking internal flow path cameras, the response of thermocouples along the flow path was interpreted as ice building up. Using this interpretation, a strong correlation between total water content (TWC) and a weaker correlation between median volumetric diameter (MVD) of the ice crystal cloud and the rate of ice buildup along the instrumented flow path was identified. For this test article the engine anti-ice system was required to be turned on before ice crystal

  17. Review of Anti-Icing/Ice Release Systems

    DTIC Science & Technology

    2014-01-29

    nanoparticles, oil and water repellent functional groups Hang On Teflon Low Surface Energy Material Wearlon anti-grafiti Low Surface Energy...and water repellent functional groups. 6 Shuttle Ice Liberation Coating (SILC) Low Surface Energy, Ablative A mixture of commercial Rain-X and...spray comes from breaking waves, and mostly from the action of the ship plunging into waves. As the bow encounters a wave, water is lofted and air is

  18. Ice Crystal Icing Engine Testing in the NASA Glenn Research Center's Propulsion Systems Laboratory: Altitude Investigation

    NASA Technical Reports Server (NTRS)

    Oliver, Michael J.

    2014-01-01

    The National Aeronautics and Space Administration (NASA) conducted a full scale ice crystal icing turbofan engine test using an obsolete Allied Signal ALF502-R5 engine in the Propulsion Systems Laboratory (PSL) at NASA Glenn Research Center. The test article used was the exact engine that experienced a loss of power event after the ingestion of ice crystals while operating at high altitude during a 1997 Honeywell flight test campaign investigating the turbofan engine ice crystal icing phenomena. The test plan included test points conducted at the known flight test campaign field event pressure altitude and at various pressure altitudes ranging from low to high throughout the engine operating envelope. The test article experienced a loss of power event at each of the altitudes tested. For each pressure altitude test point conducted the ambient static temperature was predicted using a NASA engine icing risk computer model for the given ambient static pressure while maintaining the engine speed.

  19. New Icing Cloud Simulation System at the NASA Glenn Research Center Icing Research Tunnel

    NASA Technical Reports Server (NTRS)

    Irvine, Thomas B.; Oldenburg, John R.; Sheldon, David W.

    1999-01-01

    A new spray bar system was designed, fabricated, and installed in the NASA Glenn Research Center's Icing Research Tunnel (IRT). This system is key to the IRT's ability to do aircraft in-flight icing cloud simulation. The performance goals and requirements levied on the design of the new spray bar system included increased size of the uniform icing cloud in the IRT test section, faster system response time, and increased coverage of icing conditions as defined in Appendix C of the Federal Aviation Regulation (FAR), Part 25 and Part 29. Through significant changes to the mechanical and electrical designs of the previous-generation spray bar system, the performance goals and requirements were realized. Postinstallation aerodynamic and icing cloud calibrations were performed to quantify the changes and improvements made to the IRT test section flow quality and icing cloud characteristics. The new and improved capability to simulate aircraft encounters with in-flight icing clouds ensures that the 1RT will continue to provide a satisfactory icing ground-test simulation method to the aeronautics community.

  20. Monitoring System of Power Line Icing Based on GPRS

    NASA Astrophysics Data System (ADS)

    Wancheng, Xie

    GPRS-based power line monitoring system for ice. The system is based on the images to monitor the power line monitoring device for ice. System through the use of simplified Sobel algorithm and Hough transform to image edge detection, with DSP high-speed computing performance and optimization of DSP code, and realized the power line ice thickness of the terminal identification and automatic alarm function; using the terminal identification means, is intelligent Monitoring of a new attempt.

  1. Effects of Induction-System Icing on Aircraft-Engine Operating Characteristics

    NASA Technical Reports Server (NTRS)

    Stevens, Howard C., Jr.

    1947-01-01

    An investigation was conducted on a multicylinder aircraft engine on a dynamometer stand to determine the effect of induction-system icing on engine operating characteristics and to compare the results with those of a previous laboratory investigation in which only the carburetor and the engine-stage supercharger assembly from the engine were used. The experiments were conducted at simulated glide power, low cruise power, and normal rated power through a range of humidity ratios and air temperatures at approximately sea-level pressure. Induction-system icing was found to occur within approximately the same limits as those established by the previous laboratory investigation after making suitable allowances for the difference in fuel volatility and throttle angles. Rough operation of the engine was experienced when ice caused a marked reduction in the air flow. Photographs of typical ice formations from this investigation indicate close similarity to icing previously observed in the laboratory.

  2. IceVal DatAssistant: An Interactive, Automated Icing Data Management System

    NASA Technical Reports Server (NTRS)

    Levinson, Laurie H.; Wright, William B.

    2008-01-01

    As with any scientific endeavor, the foundation of icing research at the NASA Glenn Research Center (GRC) is the data acquired during experimental testing. In the case of the GRC Icing Branch, an important part of this data consists of ice tracings taken following tests carried out in the GRC Icing Research Tunnel (IRT), as well as the associated operational and environmental conditions documented during these tests. Over the years, the large number of experimental runs completed has served to emphasize the need for a consistent strategy for managing this data. To address the situation, the Icing Branch has recently elected to implement the IceVal DatAssistant automated data management system. With the release of this system, all publicly available IRT-generated experimental ice shapes with complete and verifiable conditions have now been compiled into one electronically-searchable database. Simulation software results for the equivalent conditions, generated using the latest version of the LEWICE ice shape prediction code, are likewise included and are linked to the corresponding experimental runs. In addition to this comprehensive database, the IceVal system also includes a graphically-oriented database access utility, which provides reliable and easy access to all data contained in the database. In this paper, the issues surrounding historical icing data management practices are discussed, as well as the anticipated benefits to be achieved as a result of migrating to the new system. A detailed description of the software system features and database content is also provided; and, finally, known issues and plans for future work are presented.

  3. IceVal DatAssistant: An Interactive, Automated Icing Data Management System

    NASA Technical Reports Server (NTRS)

    Levinson, Laurie H.; Wright, William B.

    2008-01-01

    As with any scientific endeavor, the foundation of icing research at the NASA Glenn Research Center (GRC) is the data acquired during experimental testing. In the case of the GRC Icing Branch, an important part of this data consists of ice tracings taken following tests carried out in the GRC Icing Research Tunnel (IRT), as well as the associated operational and environmental conditions during those tests. Over the years, the large number of experimental runs completed has served to emphasize the need for a consistent strategy to manage the resulting data. To address this situation, the Icing Branch has recently elected to implement the IceVal DatAssistant automated data management system. With the release of this system, all publicly available IRT-generated experimental ice shapes with complete and verifiable conditions have now been compiled into one electronically-searchable database; and simulation software results for the equivalent conditions, generated using the latest version of the LEWICE ice shape prediction code, are likewise included and linked to the corresponding experimental runs. In addition to this comprehensive database, the IceVal system also includes a graphically-oriented database access utility, which provides reliable and easy access to all data contained in the database. In this paper, the issues surrounding historical icing data management practices are discussed, as well as the anticipated benefits to be achieved as a result of migrating to the new system. A detailed description of the software system features and database content is also provided; and, finally, known issues and plans for future work are presented.

  4. Practical Use Study of the Direct Conveyance and Cooling System for Iced Water by the Propylene Glycol Solutio

    NASA Astrophysics Data System (ADS)

    Seki, Mitsuo; Ninomiya, Tohru; Matsubara, Kazuo; Aikawa, Keisuke; Ikoma, Kenji

    In a cold storage warehouse, by developing the thermal energy storage technique using cheap electric powerin the night, it is necessary to construct a high-efficient and energy-saving-type refrigeration system in which air conditioning is possible at 0 degrees c. We created a brine iced water (ice slurry) cooled under 0 degreesc by a closed supercooling ice making method. For a practical application, the brine iced water was directly sent to the load side, and it was utilized as the secondary refrigerant for the heat exchange. As a result, by replacing the pure water with a marketed propylene glycol solution, it was proven that the conventional closed supercooling ice making method could be similarly utilized for the ice making. However, it is necessary to control the evaporation temperature in the refrigerator, because the freezing temperature changes with the brine concentration. In the refrigerator entrance, it is necessary to heat at a constant temperature so that the inflow brine may not freeze. In case of the brine iced water, the fluidity of the brine iced water is high, and the ice particle is carried away by the flow. Therefore, it is necessary to prevent runoff of the ice particle from an intake of the thermal storage tank in case of thebrine water. This proposal system was confirmed that there was practically no problem by an operation of a 15kW refrigerator system.

  5. Structure of Water Ice in the Solar System

    NASA Technical Reports Server (NTRS)

    Blake, David; Jenniskens, Peter; Chang, Sherwood (Technical Monitor)

    1996-01-01

    Nearly all of the properties of solar system ices (chemical reaction rates, volatile retention and release, vaporization behavior, thermal conductivity, infrared spectral characteristics and the like) are a direct consequence of ice structure. However, the characterization of astrophysical ices and their laboratory analogs has typically utilized indirect measurements which yield phenomenological interpretations. When water ice is vapor-deposited at 14 K and warmed until it volatilizes in moderate vacuum, the ice undergoes a series of amorphous to amorphous and amorphous to crystalline structural transitions which we have characterized by diffraction methods. These structural transitions correlate with and underlie many phenomena observed in laboratory infrared and gas release experiments. The elucidation of the dynamic structural changes which occur in vapor-deposited water ice as a function of time, temperature and radiation history allows for the more complete interpretation of remote observations of astrophysical ices and their laboratory analogs.

  6. 14 CFR 25.1093 - Induction system icing protection.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Induction system icing protection. 25.1093... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Induction System § 25.1093 Induction system icing protection. (a) Reciprocating engines. Each reciprocating engine air induction...

  7. 14 CFR 25.1093 - Induction system icing protection.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Induction system icing protection. 25.1093... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Induction System § 25.1093 Induction system icing protection. (a) Reciprocating engines. Each reciprocating engine air induction...

  8. Interferometric System for Measuring Thickness of Sea Ice

    NASA Technical Reports Server (NTRS)

    Hussein, Ziad; Jordan, Rolando; McDonald, Kyle; Holt, Benjamin; Huang, John; Kugo, Yasuo; Ishimaru, Akira; Jaruwatanadilok, Semsak; Akins, Torry; Gogineni, Prasad

    2006-01-01

    The cryospheric advanced sensor (CAS) is a developmental airborne (and, potentially, spaceborne) radar-based instrumentation system for measuring and mapping the thickness of sea ice. A planned future version of the system would also provide data on the thickness of snow covering sea ice. Frequent measurements of the thickness of polar ocean sea ice and its snow cover on a synoptic scale are critical to understanding global climate change and ocean circulation.

  9. Energy-Efficient Systems Eliminate Icing Danger for UAVs

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Ames Research Center engineer Leonard Haslim invented an anti-icing t echnology called an electroexpulsive separation system, which uses m echanical force to shatter potentially dangerous ice buildup on an ai rcraft surface. Temecula, California-based Ice Management Systems (no w known as IMS-ESS) licensed the technology from Ames and has discov ered a niche market for the lightweight, energy-efficient technology: unmanned aerial vehicles (UAVs). IMS-ESS systems now prevent damagi ng ice accumulation on military UAVs, allowing the vehicles to carry out crucial missions year round.

  10. Investigation of Icing Characteristics of Typical Light Airplane Engine Induction Systems

    NASA Technical Reports Server (NTRS)

    Coles, W. D.

    1949-01-01

    The icing characteristics of two typical light-airplane engine induction systems were investigated using the carburetors and manifolds of engines in the horsepower ranges from 65 to 85 and 165 to 185. The smaller system consisted of a float-type carburetor with an unheated manifold and the larger system consisted of a single-barrel pressure-type carburetor with an oil-jacketed manifold. Carburetor-air temperature and humidity limits of visible and serious Icing were determined for various engine power conditions. Several.methods of achieving ice-free induction systems are discussed along with estimates of surface heating requirements of the various induct ion-system components. A study was also made of the icing characteristics of a typical light-airplane air scoop with an exposed filter and a modified system that provided a normal ram inlet with the filter located in a position to Induce inertia separation of the free water from the charge air. The principle of operation of float-type carburetors is proved to make them inherently more susceptible to icing at the throttle plate than pressure-type carburetors.. The results indicated that proper jacketing and heating of all parts exposed to the fuel spray can satisfactorily reduce or eliminate icing in the float-type carburetor and the manifold. Pressure-type carburetors can be protected from serious Icing by proper location of the fuel-discharge nozzle combined with suitable application of heat to critical parts.

  11. Systems Engineering Techniques for ALS Decision Making

    NASA Technical Reports Server (NTRS)

    Rodriquez, Luis F.; Drysdale, Alan E.; Jones, Harry; Levri, Julie A.

    2004-01-01

    The Advanced Life Support (ALS) Metric is the predominant tool for predicting the cost of ALS systems. Metric goals for the ALS Program are daunting, requiring a threefold increase in the ALS Metric by 2010. Confounding the problem, the rate new ALS technologies reach the maturity required for consideration in the ALS Metric and the rate at which new configurations are developed is slow, limiting the search space and potentially giving the perspective of a ALS technology, the ALS Metric may remain elusive. This paper is a sequel to a paper published in the proceedings of the 2003 ICES conference entitled, "Managing to the metric: an approach to optimizing life support costs." The conclusions of that paper state that the largest contributors to the ALS Metric should be targeted by ALS researchers and management for maximum metric reductions. Certainly, these areas potentially offer large potential benefits to future ALS missions; however, the ALS Metric is not the only decision-making tool available to the community. To facilitate decision-making within the ALS community a combination of metrics should be utilized, such as the Equivalent System Mass (ESM)-based ALS metric, but also those available through techniques such as life cycle costing and faithful consideration of the sensitivity of the assumed models and data. Often a lack of data is cited as the reason why these techniques are not considered for utilization. An existing database development effort within the ALS community, known as OPIS, may provide the opportunity to collect the necessary information to enable the proposed systems analyses. A review of these additional analysis techniques is provided, focusing on the data necessary to enable these. The discussion is concluded by proposing how the data may be utilized by analysts in the future.

  12. Radiative transfer in atmosphere-sea ice-ocean system

    SciTech Connect

    Jin, Z.; Stamnes, K.; Weeks, W.F.; Tsay, S.C.

    1996-04-01

    Radiative energy is critical in controlling the heat and mass balance of sea ice, which significantly affects the polar climate. In the polar oceans, light transmission through the atmosphere and sea ice is essential to the growth of plankton and algae and, consequently, to the microbial community both in the ice and in the ocean. Therefore, the study of radiative transfer in the polar atmosphere, sea ice, and ocean system is of particular importance. Lacking a properly coupled radiative transfer model for the atmosphere-sea ice-ocean system, a consistent study of the radiative transfer in the polar atmosphere, snow, sea ice, and ocean system has not been undertaken before. The radiative transfer processes in the atmosphere and in the ice and ocean have been treated separately. Because the radiation processes in the atmosphere, sea ice, and ocean depend on each other, this separate treatment is inconsistent. To study the radiative interaction between the atmosphere, clouds, snow, sea ice, and ocean, a radiative transfer model with consistent treatment of radiation in the coupled system is needed and is under development.

  13. Icing tunnel tests of a glycol-exuding porous leading edge ice protection system on a general aviation airfoil

    NASA Technical Reports Server (NTRS)

    Kohlman, D. L.; Schweikhard, W. G.; Albright, A. E.; Evanich, P.

    1981-01-01

    A glycol-exuding porous leading edge ice protection system was tested. Results show that the system is very effective in preventing ice accretion (anti-ice mode) or removing ice from an airfoil. Minimum glycol flow rates required for anti-icing are a function of velocity, liquid water content in the air, ambient temperature, and droplet size. Large ice caps were removed in only a few minutes using anti-ice flow rates. It was found that the shed time is a function of the type of ice, size of the ice cap, angle of attack, and glycol flow rate. Wake survey measurements show that there is no significant drag penalty for the installation or operation of the system tested.

  14. Field demonstration of the ICE 250[trademark] Cleaning System

    SciTech Connect

    Johnston, J.L.; Jackson, L.M.

    1999-10-05

    The ICE 250[trademark] Cleaning System was engineered to convert water into small ice particles for use in cleaning and decontamination applications. Ice crystals are produced in a special icemaker and pressured through a hose-nozzle onto the surface to be cleaned. The Rocky Mountain Oilfield Testing Center and Ice Cleaning Systems, Inc., conducted a test of this system at Naval Petroleum Reserve No. 3 to evaluate the system's cleaning capabilities in an oil field environment. Equipment cleaned included an oil storage tank, a rod pumping unit, a road grader, and a wellhead. Contaminants were unrefined sour crude oil, hydraulic fluid, paraffin, and dirt, occurring separately and as mixtures. In all four demonstration cleaning tasks, the ICE 250 System effectively removed surface contaminant mixtures in a timely manner and left no oily residue. A minimal amount of waste moistur2048s generated, thereby reducing cleanup and disposal costs.

  15. Field demonstration of the ICE 250{trademark} Cleaning System

    SciTech Connect

    Johnston, J.L.; Jackson, L.M.

    1999-10-05

    The ICE 250{trademark} Cleaning System was engineered to convert water into small ice particles for use in cleaning and decontamination applications. Ice crystals are produced in a special icemaker and pressured through a hose-nozzle onto the surface to be cleaned. The Rocky Mountain Oilfield Testing Center and Ice Cleaning Systems, Inc., conducted a test of this system at Naval Petroleum Reserve No. 3 to evaluate the system's cleaning capabilities in an oil field environment. Equipment cleaned included an oil storage tank, a rod pumping unit, a road grader, and a wellhead. Contaminants were unrefined sour crude oil, hydraulic fluid, paraffin, and dirt, occurring separately and as mixtures. In all four demonstration cleaning tasks, the ICE 250 System effectively removed surface contaminant mixtures in a timely manner and left no oily residue. A minimal amount of waste moisture was generated, thereby reducing cleanup and disposal costs.

  16. Icing-Protection Requirements for Reciprocating-Engine Induction System

    NASA Technical Reports Server (NTRS)

    Coles, Willard D; Rollin, Vern G; Mulholland, Donald R

    1950-01-01

    Despite the development of relatively ice-free fuel-metering systems, the widespread use of alternate and heated-air intakes, and the use of alcohol for emergency de-icing, icing of aircraft-engine induction systems is a serious problem. Investigations have been made to study and to combat all phases of this icing problem. From these investigations, criterions for safe operation and for design of new induction systems have been established. The results were obtained from laboratory investigations of carburetor-supercharger combinations, wind-tunnel investigations of air scoops, multicylinder-engine studies, and flight investigations. Characteristics of three forms of ice, impact, throttling, and fuel evaporation were studied. The effects of several factors on the icing characteristics were also studied and included: (1) atmospheric conditions, (2) engine and air-scoop configurations, including light-airplane system, (3) type fuel used, and (4) operating variables, such as power condition, use of a manifold pressure regulator, mixture setting, carburetor heat, and water-alcohol injection. In addition, ice-detection methods were investigated and methods of preventing and removing induction-system ice were studied. Recommendations are given for design and operation with regard to induction-system design.

  17. ADWICE - Advanced Diagnosis and Warning system for aircraft ICing Environments

    NASA Astrophysics Data System (ADS)

    Leifeld, C.; Hauf, T.; Tafferner, A.; Leykauf, H.

    2003-04-01

    Inflight icing is a serious hazard, as attested by recent crashes of aircraft. The number of world-wide known accidents and serious incidents in which icing played a major role exceeds 800. Obviously current protection systems and icing forecasting, the latter relying mostly on reported icing by pilots and the evaluation of radiosonde ascents, are inadequate to control the threat. Aircraft inflight icing occurs when areas of supercooled liquid cloud droplets or precipitation are traversed. Ice accumulation on aerodynamic surfaces causes modification of the aerodynamics of the aircraft up to the point of uncontrolled flight. The safest way and the recommended practise would be to avoid the icing conditions. This however requires the forecast of supercooled liquid water (SLWC) in clouds and complete ice microphysics model scheme. Since the forecast quality of SLWC still is insufficient to completely rely on that quality for forecasting aircraft icing, other methods are under development. They rely on algorithms which deduce the potential icing threat from measured (mainly radiosonde ascents) or forecast (numerical models) distributions of temperature and humidity. ADWICE, the Advanced Diagnosis and Warning System for aircraft ICing Environments, has been developed since 1998 in a joint cooperation between the Institut für Physik der Atmosphäre at DLR, the Deutscher Wetterdienst (DWD) and the Institut für Meteorologie und Klimatologie (IMUK) at the University of Hannover. To identify icing environments, ADWICE merges forecast model data of the Local Model of the DWD with SYNOP and radar data. Using a slightly modified version of the NCAR/RAP algorithm, which is based on temperature and humidity fields, a first guess icing volume is calculated. Under certain conditions radar and SYNOP data allow corrections of the icing volume. Other data e.g. from satellites may be used in future, too. Since January 2001 ADWICE is running in a testing phase at the DWD. Using PIREPs

  18. Icing research tunnel rotating bar calibration measurement system

    NASA Technical Reports Server (NTRS)

    Gibson, Theresa L.; Dearmon, John M.

    1993-01-01

    In order to measure icing patterns across a test section of the Icing Research Tunnel, an automated rotating bar measurement system was developed at the NASA Lewis Research Center. In comparison with the previously used manual measurement system, this system provides a number of improvements: increased accuracy and repeatability, increased number of data points, reduced tunnel operating time, and improved documentation. The automated system uses a linear variable differential transformer (LVDT) to measure ice accretion. This instrument is driven along the bar by means of an intelligent stepper motor which also controls data recording. This paper describes the rotating bar calibration measurement system.

  19. Air conditioning system with supplemental ice storing and cooling capacity

    DOEpatents

    Weng, Kuo-Lianq; Weng, Kuo-Liang

    1998-01-01

    The present air conditioning system with ice storing and cooling capacity can generate and store ice in its pipe assembly or in an ice storage tank particularly equipped for the system, depending on the type of the air conditioning system. The system is characterized in particular in that ice can be produced and stored in the air conditioning system whereby the time of supplying cooled air can be effectively extended with the merit that the operation cycle of the on and off of the compressor can be prolonged, extending the operation lifespan of the compressor in one aspect. In another aspect, ice production and storage in great amount can be performed in an off-peak period of the electrical power consumption and the stored ice can be utilized in the peak period of the power consumption so as to provide supplemental cooling capacity for the compressor of the air conditioning system whereby the shift of peak and off-peak power consumption can be effected with ease. The present air conditioning system can lower the installation expense for an ice-storing air conditioning system and can also be applied to an old conventional air conditioning system.

  20. Methods and systems for detection of ice formation on surfaces

    NASA Technical Reports Server (NTRS)

    Alfano, Robert R. (Inventor); Wang, Wubao (Inventor); Sztul, Henry (Inventor); Budansky, Yury (Inventor)

    2007-01-01

    A system for detecting ice formation on metal, painted metal and other material surfaces can include a transparent window having an exterior surface upon which ice can form; a light source and optics configured and arranged to illuminate the exterior surface of the window from behind the exterior surface; and a detector and optics configured and arranged to receive light backscattered by the exterior surface and any ice disposed on the exterior surface and determine the thickness of the ice layer. For example, the system can be used with aircraft by placing one or more windows in the wings of the aircraft. The system is used for a novel optical method for real-time on-board detection and warning of ice formation on surfaces of airplanes, unmanned aerial vehicles (UAVs), and other vehicles and stationary structures to improve their safety and operation.

  1. 14 CFR 33.68 - Induction system icing.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.68 Induction system icing... range (including idling) without the accumulation of ice on the engine components that adversely...

  2. 14 CFR 33.68 - Induction system icing.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.68 Induction system icing... range (including idling) without the accumulation of ice on the engine components that adversely...

  3. Predicting and evaluating the performance of ice harvesting thermal energy storage systems

    SciTech Connect

    Knebel, D.E.

    1995-05-01

    The author describes a model for predicting the net rated ice making capacity of thermal energy storage systems. Harvesting ice generators are a simple application of a direct expansion, flooded or pumped overfeed refrigeration system. Single refrigeration circuits over 300 tons (1,056 kW) have been predominantly pumped overfeed. The evaporator consists of a series of vertical plate heat exchangers mounted above a storage tank. Water is pumped from the storage tank at low head and distributed over the evaporator surface where it flows in a thin film down the surface and returns to the storage tank by gravity. If the water temperature is warm, the evaporator functions as a chiller. If the water temperature is low, some of the water is frozen into sheets of ice about 3/16 in. to 3/8 in. (5 to 9 mm) thick. Periodically, the ice is released from the evaporator surface by reversing the refrigerant flow to the evaporator.

  4. Aircraft Icing Weather Data Reporting and Dissemination System

    NASA Technical Reports Server (NTRS)

    Bass, Ellen J.; Minsk, Brian; Lindholm, Tenny; Politovich, Marcia; Reehorst, Andrew (Technical Monitor)

    2002-01-01

    The long-term operational concept of this research is to develop an onboard aircraft system that assesses and reports atmospheric icing conditions automatically and in a timely manner in order to improve aviation safety and the efficiency of aircraft operations via improved real-time and forecast weather products. The idea is to use current measurement capabilities on aircraft equipped with icing sensors and in-flight data communication technologies as a reporting source. Without requiring expensive avionics upgrades, aircraft data must be processed and available for downlink. Ideally, the data from multiple aircraft can then be integrated (along with other real-time and modeled data) on the ground such that aviation-centered icing hazard metrics for volumes of airspace can be assessed. As the effect of icing on different aircraft types can vary, the information should be displayed in meaningful ways such that multiple types of users can understand the information. That is, information must be presented in a manner to allow users to understand the icing conditions with respect to individual concerns and aircraft capabilities. This research provides progress toward this operational concept by: identifying an aircraft platform capable of digitally capturing, processing, and downlinking icing data; identifying the required in situ icing data processing; investigating the requirements for routing the icing data for use by weather products; developing an icing case study in order to gain insight into major air carrier needs; developing and prototyping icing display concepts based on the National Center for Atmospheric Research's existing diagnostic and forecast experimental icing products; and conducting a usability study for the prototyped icing display concepts.

  5. Short-term sea ice forecasting: An assessment of ice concentration and ice drift forecasts using the U.S. Navy's Arctic Cap Nowcast/Forecast System

    NASA Astrophysics Data System (ADS)

    Hebert, David A.; Allard, Richard A.; Metzger, E. Joseph; Posey, Pamela G.; Preller, Ruth H.; Wallcraft, Alan J.; Phelps, Michael W.; Smedstad, Ole Martin

    2015-12-01

    In this study the forecast skill of the U.S. Navy operational Arctic sea ice forecast system, the Arctic Cap Nowcast/Forecast System (ACNFS), is presented for the period February 2014 to June 2015. ACNFS is designed to provide short term, 1-7 day forecasts of Arctic sea ice and ocean conditions. Many quantities are forecast by ACNFS; the most commonly used include ice concentration, ice thickness, ice velocity, sea surface temperature, sea surface salinity, and sea surface velocities. Ice concentration forecast skill is compared to a persistent ice state and historical sea ice climatology. Skill scores are focused on areas where ice concentration changes by ±5% or more, and are therefore limited to primarily the marginal ice zone. We demonstrate that ACNFS forecasts are skilful compared to assuming a persistent ice state, especially beyond 24 h. ACNFS is also shown to be particularly skilful compared to a climatologic state for forecasts up to 102 h. Modeled ice drift velocity is compared to observed buoy data from the International Arctic Buoy Programme. A seasonal bias is shown where ACNFS is slower than IABP velocity in the summer months and faster in the winter months. In February 2015, ACNFS began to assimilate a blended ice concentration derived from Advanced Microwave Scanning Radiometer 2 (AMSR2) and the Interactive Multisensor Snow and Ice Mapping System (IMS). Preliminary results show that assimilating AMSR2 blended with IMS improves the short-term forecast skill and ice edge location compared to the independently derived National Ice Center Ice Edge product.

  6. ICE System: Interruptible control expert system. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Vezina, James M.

    1990-01-01

    The Interruptible Control Expert (ICE) System is based on an architecture designed to provide a strong foundation for real-time production rule expert systems. Three principles are adopted to guide the development of ICE. A practical delivery platform must be provided, no specialized hardware can be used to solve deficiencies in the software design. Knowledge of the environment and the rule-base is exploited to improve the performance of a delivered system. The third principle of ICE is to respond to the most critical event, at the expense of the more trivial tasks. Minimal time is spent on classifying the potential importance of environmental events with the majority of the time used for finding the responses. A feature of the system, derived from all three principles, is the lack of working memory. By using a priori information, a fixed amount of memory can be specified for the hardware platform. The absence of working memory removes the dangers of garbage collection during the continuous operation of the controller.

  7. An operational all-weather Great Lakes ice information system

    NASA Technical Reports Server (NTRS)

    Gedney, R. T.

    1975-01-01

    A description is given of the NASA developed all-weather ice information system for the Great Lakes winter navigation program. The system utilizes an X-band side looking airborne radar (SLAR) for determining type, location, and areal distribution of the ice cover in the Great Lakes and an airborne, S band, down looking short pulse radar for obtaining ice thickness. Digitized SLAR data are relayed in real time via the NOAA-GOES satellite in geosynchronous orbit. The SLAR images along with hand drawn interpretative ice charts for various Great Lakes winter shipping areas are broadcast to facsimile recorders aboard vessles is the area via the MARAD marine VHF-FM radio network. These data assist such vessels in navigating both through and around the ice.

  8. NASA Glenn Propulsion Systems Lab (PSL) Icing Facility Update

    NASA Technical Reports Server (NTRS)

    Thomas, Queito P.

    2015-01-01

    The NASA Glenn Research Center Propulsion Systems Lab (PSL) was recently upgraded to perform engine inlet ice crystal testing in an altitude environment. The system installed 10 spray bars in the inlet plenum for ice crystal generation using 222 spray nozzles. As an altitude test chamber, PSL is capable of simulation of in-flight icing events in a ground test facility. The system was designed to operate at altitudes from 4,000 ft. to 40,000 ft. at Mach numbers up to 0.8M and inlet total temperatures from -60F to +15F.

  9. All Systems Go for Engine Icing Test

    NASA Video Gallery

    All the pieces came together to recently produce a successful first run of a ground test investigating how ice can accumulate inside a hot jet engine. A full-size engine, spray bars to create the i...

  10. Monstrous Ice Cloud System in Titan's Present South Polar Stratosphere

    NASA Astrophysics Data System (ADS)

    Anderson, Carrie; Samuelson, Robert; McLain, Jason; Achterberg, Richard; Flasar, F. Michael; Milam, Stefanie

    2015-11-01

    During southern autumn when sunlight was still available, Cassini's Imaging Science Subsystem discovered a cloud around 300 km near Titan's south pole (West, R. A. et al., AAS/DPS Abstracts, 45, #305.03, 2013); the cloud was later determined by Cassini's Visible and InfraRed Mapping Spectrometer to contain HCN ice (de Kok et al., Nature, 514, pp 65-67, 2014). This cloud has proven to be only the tip of an extensive ice cloud system contained in Titan's south polar stratosphere, as seen through the night-vision goggles of Cassini's Composite InfraRed Spectrometer (CIRS). As the sun sets and the gloom of southern winter approaches, evidence is beginning to accumulate from CIRS far-IR spectra that a massive system of nitrile ice clouds is developing in Titan's south polar stratosphere. Even during the depths of northern winter, nothing like the strength of this southern system was evident in corresponding north polar regions.From the long slant paths that are available from limb-viewing CIRS far-IR spectra, we have the first definitive detection of the ν6 band of cyanoacetylene (HC3N) ice in Titan’s south polar stratosphere. In addition, we also see a strong blend of nitrile ice lattice vibration features around 160 cm-1. From these data we are able to derive ice abundances. The most prominent (and still chemically unidentified) ice emission feature, the Haystack, (at 220 cm-1) is also observed. We establish the vertical distributions of the ice cloud systems associated with both the 160 cm-1 feature and the Haystack. The ultimate aim is to refine the physical and possibly the chemical relationships between the two. Transmittance thin film spectra of nitrile ice mixtures obtained in our Spectroscopy for Planetary ICes Environments (SPICE) laboratory are used to support these analyses.

  11. Phase Relations and Properties of Salty ices VI and VII: Implications for Solar System Ices

    NASA Astrophysics Data System (ADS)

    Daniel, I.; Manning, C. E.

    2008-12-01

    Ice VI and ice VII may be important in the interiors of Europa, Ganymede, Callisto and Titan. Oceans and interior pore waters in these bodies likely contain dissolved salts. To address the role of salt on ice VI and ice VII, we investigated phase equilibria in the system H2O -NaCl at 1 molal (5.5 wt%) NaCl in an externally heated diamond-anvil cell. Phase identifications were made by optical microscopy combined with Raman spectroscopy. Experiments were conducted at 22-150°C and up to 5 GPa by allowing the cell to thermally equilibrate at a given temperature and then varying pressure isothermally while observing phase changes. The liquidus curves of ice VI and ice VII in a 5.5 wt% NaCl solution were determined. Melting was observed from 22 to 80°C (ice VI) and from 35 to 150°C (ice VII). Both melting curves are steeper than the respective NaCl-free curves, indicating that the freezing-point depression at this bulk composition increases with pressure. The intersection of the two liquidus curves indicates that VI-VII-liquid triple point is shifted toward lower T and higher P relative to pure H2O. The 5.5 wt% NaCl bulk composition crystallizes into a single solid phase of NaCl-bearing ice VI or ice VII solid solution over the investigated T range (the subscript 'ss' indicates solid solution). Large single crystals of ice VIss or ice VIIss can also be grown by slow compression of the cell from near-liquidus conditions to the solidus. Raman spectra of these crystals clearly show zoning in these crystals. The zoning persists for days at 22°C, indicating relatively slow Na+ and Cl- diffusivity. The large depression of the freezing point in a 1 molal NaCl solution has important implications for the oceans and interiors of the icy satellites of Jupiter and Saturn. Salty fluids may remain stable to much greater depth than expected. This would promote extensive hydrothermal metamorphism of the silicate interiors. If not limited to ice VI and VII, this behavior may suppress

  12. Ice Crystal Icing Engine Testing in the NASA Glenn Research Center's Propulsion Systems Laboratory (PSL): Altitude Investigation

    NASA Technical Reports Server (NTRS)

    Oliver, Michael J.

    2015-01-01

    The National Aeronautics and Space Administration conducted a full scale ice crystal icing turbofan engine test in the NASA Glenn Research Centers Propulsion Systems Laboratory (PSL) Facility in February 2013. Honeywell Engines supplied the test article, an obsolete, unmodified Lycoming ALF502-R5 turbofan engine serial number LF01 that experienced an un-commanded loss of thrust event while operating at certain high altitude ice crystal icing conditions. These known conditions were duplicated in the PSL for this testing.

  13. NASA Glenn Propulsion Systems Lab (PSL) Icing Facility Update

    NASA Technical Reports Server (NTRS)

    Griffin, Thomas A.

    2014-01-01

    This oral presentation is an update to the Propulsion Systems Lab (PSL) engine ice testing. It provides a summary of the modifications done to the facility and recently completed calibrations and test program.

  14. Manchester Ice Nucleus Counter (MINC) measurements from the 2007 International workshop on Comparing Ice nucleation Measuring Systems (ICIS-2007)

    NASA Astrophysics Data System (ADS)

    Jones, H. M.; Flynn, M. J.; Demott, P. J.; Möhler, O.

    2011-01-01

    An ice nucleus counter was developed and constructed to enable investigation of potential ice nucleating materials. The Manchester Ice Nucleus Chamber (MINC) is a concentric-cylinder continuous flow diffusion chamber (CFDC). A full explanation of the MINC instrument is given here, along with first results and a comparison to an established instrument of similar design (Colorado State University CFDC) during sampling of common ice nucleating aerosols at the 2007 International workshop on Comparing Ice nucleation Measuring Systems (ICIS-2007). MINC and CSU-CFDC detected the onset of ice nucleation under similar conditions of temperature and supersaturation for several different types of ice nuclei. Comparisons of the ratio of ice nuclei to total aerosol concentrations as a function of supersaturation with respect to water (SSw) showed agreement within one order of magnitude. Possible reasons for differences between the two instruments relating to differences in their design are discussed, along with suggestions to future improvements to the current design.

  15. Manchester Ice Nucleus Counter (MINC) measurements from the 2007 International workshop on Comparing Ice nucleation Measuring Systems (ICIS-2007)

    NASA Astrophysics Data System (ADS)

    Jones, H. M.; Flynn, M. J.; Demott, P. J.; Möhler, O.

    2010-08-01

    An ice nucleus counter was developed and constructed to enable investigation of potential ice nucleating materials. The Manchester Ice Nucleus Chamber (MINC) is a concentric-cylinder continuous flow diffusion chamber (CFDC). A full explanation of the MINC instrument is given here, along with first results and a comparison to an established instrument of similar design (Colorado State University CFDC) during sampling of common ice nucleating aerosols at the 2007 International workshop on Comparing Ice nucleation Measuring Systems (ICIS-2007). Both instruments detected the onset of ice nucleation under similar conditions of temperature and supersaturation for several different types of ice nuclei. Comparisons of the ratio of ice nuclei to total aerosol concentrations as a function of relative humidity (RH) showed agreement within one order of magnitude. Possible reasons for differences between the two instruments relating to differences in their design are discussed, along with suggestions to future improvements to the current design.

  16. A Systems-Level Perspective on Engine Ice Accretion

    NASA Technical Reports Server (NTRS)

    May, Ryan D.; Guo, Ten-Huei; Simon, Donald L.

    2013-01-01

    The accretion of ice in the compression system of commercial gas turbine engines operating in high ice water content conditions is a safety issue being studied by the aviation sector. While most of the research focuses on the underlying physics of ice accretion and the meteorological conditions in which accretion can occur, a systems-level perspective on the topic lends itself to potential near-term operational improvements. This work focuses on developing an accurate and reliable algorithm for detecting the accretion of ice in the low pressure compressor of a generic 40,000 lbf thrust class engine. The algorithm uses only the two shaft speed sensors and works regardless of engine age, operating condition, and power level. In a 10,000-case Monte Carlo simulation, the detection approach was found to have excellent capability at determining ice accretion from sensor noise with detection occurring when ice blocks an average of 6.8% of the low pressure compressor area. Finally, an initial study highlights a potential mitigation strategy that uses the existing engine actuators to raise the temperature in the low pressure compressor in an effort to reduce the rate at which ice accretes.

  17. The Effect of Icing with the Pro-Stim Edema Management System on Cutaneous Cooling

    PubMed Central

    Holcomb, William R.; Mangus, Brent C.; Tandy, Richard

    1996-01-01

    The simultaneous administration of ice, compression, and electrical stimulation is a technique sometimes used to control the magnitude and duration of edema. The Pro-Stim Edema Management System (TKO, Inc, Alameda, CA) was developed to make this simultaneous treatment both simplistic and more effective. The system is designed to be more effective because the stimulating electrodes are incorporated into the fabric of the ice pack thus providing little insulation to cold. The purpose of our study was to test the effectiveness of icing with Pro-Stim on cutaneous cooling by comparing it to ice bag application with conventional stimulator electrodes. Twelve subjects received the ice portion of the two experimental conditions for 30 minutes. Cutaneous temperatures were monitored at two sites: one under the electrode and one away from the electrode (centered between the stimulating electrodes). Temperatures were recorded via surface probes interfaced to digital thermometers each minute for 5 minutes before and after icing and during the 30 minutes of ice application. Temperature data were analyzed with three-way factorial analysis of variance with repeated measures. The administration of ice decreased the temperature for all conditions. However, the temperature under the electrode with Pro-Stim was significantly lower during the treatment period than the temperature under the electrode with the conventional system. Thus, Pro-Stim provides more cooling of the entire treatment area. Further research should include an investigation of the effect of the Pro-Stim Edema Management System on cooling while using electrical stimulation. ImagesFig 1.Fig 2. PMID:16558385

  18. Supercooled large drop detection with NASA's Icing Remote Sensing System

    NASA Astrophysics Data System (ADS)

    Serke, David J.; Reehorst, Andrew L.; Politovich, Marcia K.

    2010-10-01

    In-flight icing occurs when aircraft impact supercooled liquid drops. The supercooled liquid freezes on contact and the accreted ice changes a plane's aerodynamic characteristics, which can lead to dangerous loss of control. NASA's Icing Remote Sensing System consists of a multi-channel radiometer, a laser ceilometer and a vertically-pointing Kaband radar, whos fields are merged with internal software logic to arrive at a hazard classification for in-flight icing. The radiometer is used to derive atmospheric temperature soundings and integrated liquid water and the ceilometer and radar are used to define cloud boundaries. The integrated liquid is then distributed within the determined cloud boundaries and layers to arrive at liquid water content profiles, which if present below freezing are categorized as icing hazards. This work outlines how the derived liquid water content and measured Ka-band reflectivity factor profiles can be used to derive a vertical profile of radar-estimated particle size. This is only possible because NASA's system arrives at independent and non-correlated measures of liquid water and reflectivity factor for a given range volume. The size of the drops significantly effect the drop collection efficiency and the location that icing accretion occurs on the craft's superstructure and thus how a vehicle's performance is altered. Large drops, generally defined as over 50 μm in diameter, tend to accrete behind the normal ice protected areas of the leading edge of the wing and other control surfaces. The NASA Icing Remote Sensing System was operated near Montreal, Canada for the Alliance Icing Research Study II in 2003 and near Cleveland, Ohio from 2006 onward. In this study, we present case studies to show how NASA's Icing Remote Sensing System can detect and differentiate between no icing, small drop and large drop in-flight icing hazards to aircraft. This new product provides crucial realtime hazard detection capabilities which improve

  19. Global ice-sheet system interlocked by sea level

    NASA Astrophysics Data System (ADS)

    Denton, George H.; Hughes, Terence J.; Karlén, Wibjörn

    1986-07-01

    Denton and Hughes (1983, Quaternary Research20, 125-144) postulated that sea level linked a global ice-sheet system with both terrestrial and grounded marine components during late Quaternary ice ages. Summer temperature changes near Northern Hemisphere melting margins initiated sea-level fluctuations that controlled marine components in both polar hemispheres. It was further proposed that variations of this ice-sheet system amplified and transmitted Milankovitch summer half-year insolation changes between 45 and 75°N into global climatic changes. New tests of this hypothesis implicate sea level as a major control of the areal extent of grounded portions of the Antarctic Ice Sheet, thus fitting the concept of a globally interlocked ice-sheet system. But recent atmospheric modeling results ( Manabe and Broccoli, 1985, Journal of Geophysical Research90, 2167-2190) suggest that factors other than areal changes of the grounded Antarctic Ice Sheet strongly influenced Southern Hemisphere climate and terminated the last ice age simultaneously in both polar hemispheres. Atmospheric carbon dioxide linked to high-latitude oceans is the most likely candidate ( Shackleton and Pisias, 1985, Atmospheric carbon dioxide, orbital forcing, and climate. In "The Carbon Cycle and Atmospheric CO 2: Natural Variations Archean to Present" (E. T. Sundquest and W. S. Broecker, Eds.), pp. 303-318. Geophysical Monograph 32, American Geophysical Union, Washington, D.C.), but another potential influence was high-frequency climatic oscillations (2500 yr). It is postulated that variations in atmospheric carbon dioxide acted through an Antarctic ice shelf linked to the grounded ice sheet to produce and terminate Southern Hemisphere ice-age climate. It is further postulated that Milankovitch summer insolation combined with a warm high-frequency oscillation caused marked recession of Northern Hemisphere ice-sheet melting margins and the North Atlantic polar front about 14,000 14C yr B.P. This

  20. Great Lakes all-weather ice information system

    NASA Technical Reports Server (NTRS)

    Schertler, R. J.; Mueller, R. A.; Jirberg, R. J.; Cooper, D. W.; Heighway, J. E.; Holmes, A. D.; Gedney, R. T.; Mark, H.

    1975-01-01

    A system is described which utilizes an X-band Side-Looking-Airborne-Radar (SLAR) for determining type, location, and aerial distribution of the ice cover in the Great Lakes and an airborne, S-band, short pulse radar for obtaining ice thickness. The SLAR system is currently mounted aboard a U.S. Coast Guard C-130B aircraft. Digitized SLAR data are relayed in real-time via the NOAA-GOES-1 satellite in geosynchronous orbit to the U.S. Coast Guard Ice Center in Cleveland, Ohio. SLAR images along with hand-drawn interpretative ice charts for various winter shipping areas in the Great Lakes are broadcast to facsimile recorders aboard Great Lakes vessels. The operational aspects of this ice information system are being demonstrated by NASA, U.S. Coast Guard, and NOAA/National Weather Service. Results from the 1974-75 winter season demonstrated the ability of this system to provide all-weather ice information to shippers in a timely manner.

  1. Ice Cloud Properties in Ice-Over-Water Cloud Systems Using TRMM VIRS and TMI Data

    NASA Technical Reports Server (NTRS)

    Minnis, Patrick; Huang, Jianping; Lin, Bing; Yi, Yuhong; Arduini, Robert F.; Fan, Tai-Fang; Ayers, J. Kirk; Mace, Gerald G.

    2007-01-01

    A multi-layered cloud retrieval system (MCRS) is updated and used to estimate ice water path in maritime ice-over-water clouds using Visible and Infrared Scanner (VIRS) and TRMM Microwave Imager (TMI) measurements from the Tropical Rainfall Measuring Mission spacecraft between January and August 1998. Lookup tables of top-of-atmosphere 0.65- m reflectance are developed for ice-over-water cloud systems using radiative transfer calculations with various combinations of ice-over-water cloud layers. The liquid and ice water paths, LWP and IWP, respectively, are determined with the MCRS using these lookup tables with a combination of microwave (MW), visible (VIS), and infrared (IR) data. LWP, determined directly from the TMI MW data, is used to define the lower-level cloud properties to select the proper lookup table. The properties of the upper-level ice clouds, such as optical depth and effective size, are then derived using the Visible Infrared Solar-infrared Split-window Technique (VISST), which matches the VIRS IR, 3.9- m, and VIS data to the multilayer-cloud lookup table reflectances and a set of emittance parameterizations. Initial comparisons with surface-based radar retrievals suggest that this enhanced MCRS can significantly improve the accuracy and decrease the IWP in overlapped clouds by 42% and 13% compared to using the single-layer VISST and an earlier simplified MW-VIS-IR (MVI) differencing method, respectively, for ice-over-water cloud systems. The tropical distribution of ice-over-water clouds is the same as derived earlier from combined TMI and VIRS data, but the new values of IWP and optical depth are slightly larger than the older MVI values, and exceed those of single-layered layered clouds by 7% and 11%, respectively. The mean IWP from the MCRS is 8-14% greater than that retrieved from radar retrievals of overlapped clouds over two surface sites and the standard deviations of the differences are similar to those for single-layered clouds. Examples

  2. Bacterial study of Vostok drilling fluid: the tool to make ice core finding confident

    NASA Astrophysics Data System (ADS)

    Alekhina, I. A.; Petit, J. R.; Lukin, V. V.; Bulat, S. A.

    2003-04-01

    Decontamination of Vostok ice core is a critical issue in molecular biology studies. Core surface contains a film of hardly removable 'dirty' drilling fluid representing a mixture of polyhydrocarbons (PHC) including polyaromatic hydrocarbons (PAH) and freon. To make ice microbial finding more confident the original Vostok drilling fluid sampled from different depths (110m - 3600m) was analyzed for bacterial content by ribosomal DNA sequencing. Total, 33 clones of 16S ribosomal DNA were recovered from four samples of drilling fluid at 110, 2750, 3400, and 3600m leading to identification of 8 bacterial species. No overlapping was observed even for neighboring samples (3400m and 3600m). At present four major bacteria with the titer more than 103-104 cells per ml (as estimated from PCR results) are identified. Among them we found: unknown representative of Desulfobacteraceae which are able to oxidize sulphates and degrade benzenes (110m); PAH-degrading alpha-proteobacterium Sphingomonas natatoria (3400m); alpha-proteobacterium representing closely-related group of Sphingomonas sp. (e.g., S. aurantiaca) which are able to degrade PAH as well, and human pathogen closely related to Haloanella gallinarum of CFB group (3600m). Four additional species were revealed as single clones and showed relatedness to human pathogens and saprophytes as well as soil bacteria. These bacteria may represent drilling fluid contaminants introduced during its sampling or DNA extraction procedure. Of four major bacteria revealed, one species, Sphingomonas natatoria, has been met by us in the Vostok core from 3607 m depth (AF532054) whereas another Sphingomonas sp. which we refer to as S. aurantiaca was found in Antarctic microbial endolithic community (AF548567), hydrocarbon-containing soil near Scott Base in Antarctica (AF184221) and even isolated from 3593m Vostok accretion ice (AF324199) and Taylor Dome core (AF395031). The source for major human pathogen-related bacteria is rather uncertain

  3. A Real-Time Satellite-Based Icing Detection System

    NASA Technical Reports Server (NTRS)

    Minnis, Patrick; Smith, William L., Jr.; Nguyen, Louis; Khaiyer, Mandana M.; Spangenberg, Douglas A.; Heck, Patrick W.; Palikonda, Rabindra; Bernstein, Ben C.; McDonough, Frank

    2004-01-01

    Aircraft icing is one of the most dangerous weather conditions for general aviation. Currently, model forecasts and pilot reports (PIREPS) constitute much of the database available to pilots for assessing the icing conditions in a particular area. Such data are often uncertain or sparsely available. Improvements in the temporal and areal coverage of icing diagnoses and prognoses would mark a substantial enhancement of aircraft safety in regions susceptible to heavy supercooled liquid water clouds. The use of 3.9 microns data from meteorological satellite imagers for diagnosing icing conditions has long been recognized (e.g., Ellrod and Nelson, 1996) but to date, no explicit physically based methods have been implemented. Recent advances in cloud detection and cloud property retrievals using operational satellite imagery open the door for real-time objective applications of those satellite datasets for a variety of weather phenomena. Because aircraft icing is related to cloud macro- and microphysical properties (e.g., Cober et al. 1995), it is logical that the cloud properties from satellite data would be useful for diagnosing icing conditions. This paper describes the a prototype realtime system for detecting aircraft icing from space.

  4. Physical State of Ices in the Outer Solar System. Revised

    NASA Technical Reports Server (NTRS)

    Roush, Ted L.; DeVincenzi, Donald (Technical Monitor)

    2001-01-01

    Comparison of the identity and abundances of ices observed around protostars and those associated with comets clearly suggests that comets preserve the heritage of the interstellar materials that aggregated to form them. However, the ability to identify these same species on icy satellites in the outer solar system is a complex function of the composition of the original ices, their subsequent thermal histories, and their exposure to various radiation environments. Our ability to identify the ices currently present on objects in the outer solar system relies upon observational and laboratory, and theoretical efforts. To date there is ample observational evidence for crystalline water ice throughout the outer solar system. In addition, there is growing evidence that amorphous ice may be present on some bodies. More volatile ices, e.g. N2, CH4. CO, and other species, e.g. ammonia hydrate, are identified on objects lying at and beyond Uranus. Both photolysis and radiolysis play important roles in altering the original surfaces due to chemical reactions and erosion of the surface. Ultraviolet photolysis appears to dominate alteration of the upper few hundred Angstroms, although sputtering the surface can sometimes be a significantly competitative process; dominating on icy surfaces embedded in a strong planetary magnetospheric field. There is growing observational evidence that the by-products of photolysis and radiolysis, suggested on a theoretical basis, are present on icy surfaces.

  5. Sediment fluxes of an Antarctic palaeo-ice stream system

    NASA Astrophysics Data System (ADS)

    Hogan, Kelly; Larter, Robert; Smith, James; Hillenbrand, Claus-Dieter

    2016-04-01

    New marine-geophysical data (multibeam bathymetry, high-resolution acoustic profiles) acquired in 2014 have been integrated with heritage multichannel seismic-reflection and deep-tow boomer profiles from Anvers-Hugo Trough, western Antarctic Peninsula. From these datasets we have identified seismic facies relating to ice-stream advance and flow, ice-stream retreat, and post-glacial sedimentation processes. We identify multiple subglacial seismic units forming MSGL and other streamlined landforms at a variety of size scales. This may be indicative of multiple generations of ice-flow through the confluent ice-stream system. We also calculate the sediment volumes of a series of grounding-zone wedges (GZWs) located on the outer and mid-shelf that were produced during several stillstands in the trough as the grounded ice margin retreated through the system during deglaciation around c. 15-13 ka (from published core chronologies). Based on these volumes we consider the likely rates of subglacial sediment delivery by the Anvers Trough palaeo-ice stream and compare these to inferred flux rates from other palaeo- and modern Antarctic ice streams. In addition, we map the post-glacial glacimarine sediment package in the trough. Large mapped sediment thicknesses of this unit across the trough are consistent with high post-glacial sediment accumulation rates reported from cores acquired in the Anvers-Hugo Trough system. Previous authors have attributed this to exceptionally high primary productivity in a calving-bay re-entrant settings produced as ice retreated across the shelf on this part of the Antarctic margin.

  6. Anti-Icing Chitin Coating System Development

    DTIC Science & Technology

    1990-06-30

    DEVELOPMENT Authors Craig T. Miller, Gail Bowers-Irons, P.I. Performing Organization Sponsoring OganiaAtion Technical Research Associates, Inc. Office of...coverage. Evidence from new tests show that sieving is required to produce a more evenly dispersed and invariable chitin grain size. These tests indicate...thinner mixture. Polished and dipped samples have been produced and evaluated for anti-icing qualities. A series of icebox, icephobic tests have been

  7. Anti-Icing Chitin Coating System Development

    DTIC Science & Technology

    1990-10-30

    Biochemistry, Physical Properties and Applications , ed. by Skjak-Braek, G., Anthonsen, T. and Sandford, P., Elsevier Applied Science, London, 1989...Carbohydr. Res., 173: 285-291. Horton, D. and Just, E.K., (1973) Carbohydr Res. 29: 173-179. Ice and Snow: Properties, Processes, and Applications , ed. by...Enhancement, Specificity, Control and Applications , John Wiley and Sons, New York, 1982. Schweitzer, P.A., ed., Corrosion and Corrosion Protection

  8. Making Intelligent Systems Adaptive. (Revision)

    DTIC Science & Technology

    1988-10-01

    eventually produce solutions. BY contrast, human beinge and other intelligent animls continuously adapt to the demands and opportunities presented by a...such as monitoring critically ill medical patients or controlling a manufacturing process. Following the model set by human intelligence, we define...signs probabilistically, using a belief network, as well as from first principles, using explicit models of system structure and function. Concurrent

  9. The IceCube Neutrino Observatory: instrumentation and online systems

    NASA Astrophysics Data System (ADS)

    Aartsen, M. G.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Andeen, K.; Anderson, T.; Ansseau, I.; Anton, G.; Archinger, M.; Argüelles, C.; Auer, R.; Auffenberg, J.; Axani, S.; Baccus, J.; Bai, X.; Barnet, S.; Barwick, S. W.; Baum, V.; Bay, R.; Beattie, K.; Beatty, J. J.; Becker Tjus, J.; Becker, K.-H.; Bendfelt, T.; BenZvi, S.; Berley, D.; Bernardini, E.; Bernhard, A.; Besson, D. Z.; Binder, G.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blot, S.; Boersma, D.; Bohm, C.; Börner, M.; Bos, F.; Bose, D.; Böser, S.; Botner, O.; Bouchta, A.; Braun, J.; Brayeur, L.; Bretz, H.-P.; Bron, S.; Burgman, A.; Burreson, C.; Carver, T.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Clark, K.; Classen, L.; Coenders, S.; Collin, G. H.; Conrad, J. M.; Cowen, D. F.; Cross, R.; Day, C.; Day, M.; de André, J. P. A. M.; De Clercq, C.; del Pino Rosendo, E.; Dembinski, H.; De Ridder, S.; Descamps, F.; Desiati, P.; de Vries, K. D.; de Wasseige, G.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; di Lorenzo, V.; Dujmovic, H.; Dumm, J. P.; Dunkman, M.; Eberhardt, B.; Edwards, W. R.; Ehrhardt, T.; Eichmann, B.; Eller, P.; Euler, S.; Evenson, P. A.; Fahey, S.; Fazely, A. R.; Feintzeig, J.; Felde, J.; Filimonov, K.; Finley, C.; Flis, S.; Fösig, C.-C.; Franckowiak, A.; Frère, M.; Friedman, E.; Fuchs, T.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Ghorbani, K.; Giang, W.; Gladstone, L.; Glauch, T.; Glowacki, D.; Glüsenkamp, T.; Goldschmidt, A.; Gonzalez, J. G.; Grant, D.; Griffith, Z.; Gustafsson, L.; Haack, C.; Hallgren, A.; Halzen, F.; Hansen, E.; Hansmann, T.; Hanson, K.; Haugen, J.; Hebecker, D.; Heereman, D.; Helbing, K.; Hellauer, R.; Heller, R.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Hoshina, K.; Huang, F.; Huber, M.; Hulth, P. O.; Hultqvist, K.; In, S.; Inaba, M.; Ishihara, A.; Jacobi, E.; Jacobsen, J.; Japaridze, G. S.; Jeong, M.; Jero, K.; Jones, A.; Jones, B. J. P.; Joseph, J.; Kang, W.; Kappes, A.; Karg, T.; Karle, A.; Katz, U.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kemp, J.; Kheirandish, A.; Kim, J.; Kim, M.; Kintscher, T.; Kiryluk, J.; Kitamura, N.; Kittler, T.; Klein, S. R.; Kleinfelder, S.; Kleist, M.; Kohnen, G.; Koirala, R.; Kolanoski, H.; Konietz, R.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krasberg, M.; Krings, K.; Kroll, M.; Krückl, G.; Krüger, C.; Kunnen, J.; Kunwar, S.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Laihem, K.; Landsman, H.; Lanfranchi, J. L.; Larson, M. J.; Lauber, F.; Laundrie, A.; Lennarz, D.; Leich, H.; Lesiak-Bzdak, M.; Leuermann, M.; Lu, L.; Ludwig, J.; Lünemann, J.; Mackenzie, C.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Mancina, S.; Mandelartz, M.; Maruyama, R.; Mase, K.; Matis, H.; Maunu, R.; McNally, F.; McParland, C. P.; Meade, P.; Meagher, K.; Medici, M.; Meier, M.; Meli, A.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Minor, R. H.; Montaruli, T.; Moulai, M.; Murray, T.; Nahnhauer, R.; Naumann, U.; Neer, G.; Newcomb, M.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke Pollmann, A.; Olivas, A.; O'Murchadha, A.; Palczewski, T.; Pandya, H.; Pankova, D. V.; Patton, S.; Peiffer, P.; Penek, Ö.; Pepper, J. A.; Pérez de los Heros, C.; Pettersen, C.; Pieloth, D.; Pinat, E.; Price, P. B.; Przybylski, G. T.; Quinnan, M.; Raab, C.; Rädel, L.; Rameez, M.; Rawlins, K.; Reimann, R.; Relethford, B.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Riedel, B.; Robertson, S.; Rongen, M.; Roucelle, C.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Rysewyk, D.; Sabbatini, L.; Sanchez Herrera, S. E.; Sandrock, A.; Sandroos, J.; Sandstrom, P.; Sarkar, S.; Satalecka, K.; Schlunder, P.; Schmidt, T.; Schoenen, S.; Schöneberg, S.; Schukraft, A.; Schumacher, L.; Seckel, D.; Seunarine, S.; Solarz, M.; Soldin, D.; Song, M.; Spiczak, G. M.; Spiering, C.; Stanev, T.; Stasik, A.; Stettner, J.; Steuer, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Ström, R.; Strotjohann, N. L.; Sulanke, K.-H.; Sullivan, G. W.; Sutherland, M.; Taavola, H.; Taboada, I.; Tatar, J.; Tenholt, F.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Thollander, L.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Toscano, S.; Tosi, D.; Tselengidou, M.; Turcati, A.; Unger, E.; Usner, M.; Vandenbroucke, J.; van Eijndhoven, N.; Vanheule, S.; van Rossem, M.; van Santen, J.; Vehring, M.; Voge, M.; Vogel, E.; Vraeghe, M.; Wahl, D.; Walck, C.; Wallace, A.; Wallraff, M.; Wandkowsky, N.; Weaver, Ch.; Weiss, M. J.; Wendt, C.; Westerhoff, S.; Wharton, D.; Whelan, B. J.; Wickmann, S.; Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams, D. R.; Wills, L.; Wisniewski, P.; Wolf, M.; Wood, T. R.; Woolsey, E.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zoll, M.

    2017-03-01

    The IceCube Neutrino Observatory is a cubic-kilometer-scale high-energy neutrino detector built into the ice at the South Pole. Construction of IceCube, the largest neutrino detector built to date, was completed in 2011 and enabled the discovery of high-energy astrophysical neutrinos. We describe here the design, production, and calibration of the IceCube digital optical module (DOM), the cable systems, computing hardware, and our methodology for drilling and deployment. We also describe the online triggering and data filtering systems that select candidate neutrino and cosmic ray events for analysis. Due to a rigorous pre-deployment protocol, 98.4% of the DOMs in the deep ice are operating and collecting data. IceCube routinely achieves a detector uptime of 99% by emphasizing software stability and monitoring. Detector operations have been stable since construction was completed, and the detector is expected to operate at least until the end of the next decade.

  10. Investigation of Controls on Ice Dynamics in Northeast Greenland from Ice-Thickness Change Record Using Ice Sheet System Model (ISSM)

    NASA Astrophysics Data System (ADS)

    Csatho, B. M.; Larour, E. Y.; Schenk, A. F.; Schlegel, N.; Duncan, K.

    2015-12-01

    We present a new, complete ice thickness change reconstruction of the NE sector of the Greenland Ice Sheet for 1978-2014, partitioned into changes due to surface processes and ice dynamics. Elevation changes are computed from all available stereoscopic DEMs, and laser altimetry data (ICESat, ATM, LVIS). Surface Mass Balance and firn-compaction estimates are from RACMO2.3. Originating nearly at the divide of the Greenland Ice Sheet (GrIS), the dynamically active North East Ice Stream (NEGIS) is capable of rapidly transmitting ice-marginal forcing far inland. Thus, NEGIS provides a possible mechanism for a rapid drawdown of ice from the ice sheet interior as marginal warming, thinning and retreat continues. Our altimetry record shows accelerating dynamic thinning of Zachariæ Isstrom, initially limited to the deepest part of the fjord near the calving front (1978-2000) and then extending at least 75 km inland. At the same time, changes over the Nioghalvfjerdsfjorden (N79) Glacier are negligible. We also detect localized large dynamic changes at higher elevations on the ice sheet. These thickness changes, often occurring at the onset of fast flow, could indicate rapid variations of basal lubrication due to rerouting of subglacial drainage. We investigate the possible causes of the observed spatiotemporal pattern of ice sheet elevation changes using the Ice Sheet System Model (ISSM). This work build on our previous studies examining the sensitivity of ice flow within the Northeast Greenland Ice Stream (NEGIS) to key fields, including ice viscosity, basal drag. We assimilate the new altimetry record into ISSM to improve the reconstruction of basal friction and ice viscosity. Finally, airborne geophysical (gravity, magnetic) and ice-penetrating radar data is examined to identify the potential geologic controls on the ice thickness change pattern. Our study provides the first comprehensive reconstruction of ice thickness changes for the entire NEGIS drainage basin during

  11. Experimental study of fluid deicing system in the NASA Icing Research Tunnel

    NASA Technical Reports Server (NTRS)

    1983-01-01

    An investigation of the icing of horizontal control surfaces at the VFW in 1970 led them to select the NASA Icing Research Tunnel at LRC for their tests. Tests were performed for the VFW 614 aircraft. The TKS ice warning system, the Rosemont ice warning system and the liquid water content indicator were investigated and found to be appropriate for the aircraft.

  12. Process for making a multilayer interconnect system

    NASA Technical Reports Server (NTRS)

    Zachry, Clyde L. (Inventor); Niedzwiecke, Andrew J. (Inventor)

    1976-01-01

    A process for making an interconnect system for a multilayer circuit pattern. The interconnect system is formed having minimized through-hole space consumption so as to be suitable for high density, closely meshed circuit patterns.

  13. Study on Supercooling Release in Encapsulated Ice System

    NASA Astrophysics Data System (ADS)

    Tsuchiya, Yooko; Hasagawa, Hiromi; Iwatsubo, Tetsushiro

    As regards the super cooling phenomena which is important matter in encapsulated ice system, the system efficient suffering from the super cooling release of water was estimated and the performance of release reagent was determined. The following conclusions were reached. (1) It was clear that the COP of heat storing of the system fell by 3% with decreasing release temperature by 1 degree centigrade. (2) As a result of determinations about release reagents, Xanthomonas campestris (ice nuclei bacteria) was very effective in release the super cooling state, and the performance was maintained in continuous application of freezing and melting.

  14. Ice Detector and Deicing Fluid Effectiveness Monitoring System

    NASA Technical Reports Server (NTRS)

    Seegmiller, H. Lee B. (Inventor)

    1996-01-01

    An ice detector and deicing fluid effectiveness monitoring system for an aircraft is disclosed. The ice detection portion is particularly suited for use in flight to notify the flight crew of an accumulation of ice on an aircraft lifting and control surfaces, or helicopter rotors, whereas the deicing fluid effectiveness monitoring portion is particularly suited for use on the ground to notify the flight crew of the possible loss of the effectiveness of the deicing fluid. The ice detection portion comprises a temperature sensor and a parallel arrangement of electrodes whose coefficient of coupling is indicative of the formation of the ice, as well as the thickness of the formed ice. The fluid effectiveness monitoring portion comprises a temperature sensor and an ionic-conduction cell array that measures the conductivity of the deicing fluid which is indicative of its concentration and, thus, its freezing point. By measuring the temperature and having knowledge of the freezing point of the deicing fluid, the fluid effectiveness monitoring portion predicts when the deicing fluid may lose its effectiveness because its freezing point may correspond to the temperature of the ambient.

  15. Evolution of Planetary Ice-Ocean Systems: Effects of Salinity

    NASA Astrophysics Data System (ADS)

    Allu Peddinti, D.; McNamara, A. K.

    2015-12-01

    Planetary oceanography is enjoying renewed attention thanks to not only the detection of several exoplanetary ocean worlds but also due to the expanding family of ocean worlds within our own star system. Our solar system is now believed to host about nine ocean worlds including Earth, some dwarf planets and few moons of Jupiter and Saturn. Amongst them, Europa, like Earth is thought to have an ice Ih-liquid water system. However, the thickness of the Europan ice-ocean system is much larger than that of the Earth. The evolution of this system would determine the individual thicknesses of the ice shell and the ocean. In turn, these thicknesses can alter the course of evolution of the system. In a pure H2O system, the thickness of the ice shell would govern if heat loss occurs entirely by conduction or if the shell begins to convect as it attains a threshold thickness. This switch between conduction-convection regimes could determine the longevity of the subsurface ocean and hence define the astrobiological potential of the planetary body at any given time. In reality, however, the system is not pure water ice. The detected induced magnetic field infers a saline ocean layer. Salts are expected to act as an anti-freeze allowing a subsurface ocean to persist over long periods but the amount of salts would determine the extent of that effect. In our current study, we use geodynamic models to examine the effect of salinity on the evolution of ice-ocean system. An initial ocean with different salinities is allowed to evolve. The effect of salinity on thickness of the two layers at any time is examined. We also track how salinity controls the switch between conductive-convective modes. The study shows that for a given time period, larger salinities can maintain a thick vigorously convecting ocean while the smaller salinities behave similar to a pure H2O system leading to a thick convecting ice-shell. A range of salinities identified can potentially predict the current state

  16. Ice Processing System Software Support Documentation.

    DTIC Science & Technology

    1994-05-03

    Mckidig to tirm Ir reewing s earcin, sinhg data sourcm , gatoen and wisgfkaVt~me dabneded.d cmr, VI"gdlew igWieUoflOt iriiln.Send c enbrega• • ••r.igtb...to a binary file. b. Execute the Hough transform to determine the ice lead characteristics and orientations. I c . Display the lead information via a...Appendix B - Accumulator File Format .... ........... .. 2-27 Appendix C - Rose Plot File Format ..... ............ .. 2-27 Appendix D - Lead Summary

  17. Deep Ice Formation in Convecting Ice-Ocean Systems: Implications for Trace Element Transport from Europa's Ocean to its Surface

    NASA Astrophysics Data System (ADS)

    Allu Peddinti, D.; McNamara, A. K.

    2013-12-01

    Outer planetary missions and telescopic discoveries, together with theoretical predictions, have identified a plethora of potential astrobiological candidates that possess diverse signatures such as liquid water, chemical circulation, mineral assemblages and optimal temperatures that may have or still favor biological life. Europa with its deformed surface, an ice shell with a putative subsurface liquid water ocean and an induced magnetic signal still presents one of the accessible targets of astrobiological exploration. Of critical interest is whether chemistry of the subsurface liquid water ocean can be transported to the surface to be detected by future missions. We hypothesize that for a convecting ice shell, the ice-ocean boundary involves melting in downwelling regions and freezing in upwelling regions. New ice formed by freezing at the phase change boundary could reflect the capture of trace elements from the fluid layer below and thus the study of its propagation can provide interesting speculations on transport of trace species from the ocean to the surface. We have initiated a study of the two phase convective system in order to understand the effects of the phase boundary between the solid and liquid components. First, we have established a solid ice-proxy fluid system that is a convenient approximation of the real system. This is achieved by employing a proxy fluid whose viscosity is higher than that of liquid water yet remains orders of magnitude smaller than that of ice viscosity. We have demonstrated that this approximation sufficiently decouples the convective dynamics of the solid and fluid layers with little variation on further decrease of the fluid viscosity. The numerical models employ tracers to track the new ice and the fractional density of the new ice is mapped throughout the shell. We then proceed to analyze the formation of new ice at the transition interface and its transport by solid state convection in the ice shell. The tracer density

  18. Mass budget of the grounded ice in the Lambert Glacier-Amery Ice Shelf system

    NASA Astrophysics Data System (ADS)

    Jiahong, Wen; Yafeng, Wang; Jiying, Liu; Jezek, Kenneth C.; Huybrechts, Philippe; Csathó, Beata M.; Farness, Katy L.; Bo, Sun

    We used remote-sensing and in situ measurements of surface accumulation rate, ice surface velocity, thickness and elevation to evaluate the mass budgets of grounded ice-flow regimes that form the Lambert Glacier-Amery Ice Shelf system. Three distinct drainage regimes are considered: the western and eastern margins of the ice shelf, and the southern grounding line at the major outlet glacier confluence, which can be identified with drainage zones 9, 11 and 10 respectively of Giovinetto and Zwally (2000). Our findings show the entire grounded portion of the basin is approximately in balance, with a mass budget of -4.2±9.8 Gta-1. Drainages 9, 10 and 11 are within balance to the level of our measurement uncertainty, with mass budgets of -2.5±2.8 Gta-1, -2.6±7.8 Gta-1 and 0.9±2.3 Gta-1, respectively. The region upstream of the Australian Lambert Glacier basin (LGB) traverse has a net mass budget of 4.4±6.3 Gta-1, while the downstream region has -8.9±9.9 Gta-1. These results indicate that glacier drainages 9, 10 and 11, upstream and downstream of the Australian LGB traverse, are in balance to within our measurement error.

  19. The NASA Icing Remote Sensing System

    NASA Technical Reports Server (NTRS)

    Reehorst, Andrew L.; Brinker, David J.; Ratvasky, Thomas P.; Ryerson, Charles C.; Koenig, George G.

    2005-01-01

    NASA and the U.S. Army Cold Regions Research and Engineering Laboratory (CRREL) have an on-going activity to develop remote sensing technologies for the detection and measurement of icing conditions aloft. A multiple instrument approach is the current emphasis of this activity. Utilizing radar, radiometry, and lidar, a region of supercooled liquid is identified. If the liquid water content (LWC) is sufficiently high, then the region of supercooled liquid cloud is flagged as being an aviation hazard. The instruments utilized for the current effort are an X-band vertical staring radar, a radiometer that measures twelve frequencies between 22 and 59 GHz, and a lidar ceilometer. The radar data determine cloud boundaries, the radiometer determines the sub-freezing temperature heights and total liquid water content, and the ceilometer refines the lower cloud boundary. Data are post-processed with a LabVIEW program with a resultant supercooled LWC profile and aircraft hazard identification. Remotely sensed measurements gathered during the 2003-2004 Alliance Icing Research Study (AIRS II) were compared to aircraft in-situ measurements. Although the comparison data set is quite small, the cases examined indicate that the remote sensing technique appears to be an acceptable approach.

  20. 14 CFR 33.68 - Induction system icing.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Induction system icing. 33.68 Section 33.68 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.68 Induction system...

  1. 14 CFR 25.1093 - Induction system icing protection.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Induction system icing protection. (a) Reciprocating engines. Each reciprocating engine air induction system... that, in air free of visible moisture at a temperature of 30 F., each airplane with altitude engines... the engine at 60 percent of maximum continuous power; or (2) Carburetors tending to reduce...

  2. Ice banding as a response of the coupled ice-ocean system to temporally varying winds

    NASA Technical Reports Server (NTRS)

    Hakkinen, S.

    1986-01-01

    This study models formation of ice bands in the marginal ice zones. A one-dimensional coupled ice-ocean model is used in which the ice model is coupled to a reduced gravity ocean model through interfacial stresses. The internal ice stresses are important only at high ice concentrations (90-100 percent); otherwise, the main balance for the ice motion is between the air-ice stress and the ice-water stress, i.e., free drift. The drag coefficients were chosen so that the air-ice momentum flux is 3 times greater than the air-ocean momentum flux. Thus the Ekman transport is larger under the ice than in the open water, so that winds parallel to the ice edge, with the ice on the right, produce upwelling. The upwelling simulation was extended to include temporally varying forcing, which was chosen to vary sinusoidally with a 4-day period. This forcing resembles successive cyclone passings perpendicular to the ice edge. When the oceanic upper layer was thin, which means that the dynamics are strongly nonlinear, the ice bands were formed. The up/downwelling signals do not disappear in wind reversals because of nonlinear advection. This leads to convergences and divergences in oceanic and ice velocities that manifest themselves as ice banding. At least one wind reversal is needed to produce one ice band.

  3. Quantifying signal dispersion in a hybrid ice core melting system.

    PubMed

    Breton, Daniel J; Koffman, Bess G; Kurbatov, Andrei V; Kreutz, Karl J; Hamilton, Gordon S

    2012-11-06

    We describe a microcontroller-based ice core melting and data logging system allowing simultaneous depth coregistration of a continuous flow analysis (CFA) system (for microparticle and conductivity measurement) and a discrete sample analysis system (for geochemistry and microparticles), both supplied from the same melted ice core section. This hybrid melting system employs an ice parcel tracking algorithm which calculates real-time sample transport through all portions of the meltwater handling system, enabling accurate (1 mm) depth coregistration of all measurements. Signal dispersion is analyzed using residence time theory, experimental results of tracer injection tests and antiparallel melting of replicate cores to rigorously quantify the signal dispersion in our system. Our dispersion-limited resolution is 1.0 cm in ice and ~2 cm in firn. We experimentally observe the peak lead phenomenon, where signal dispersion causes the measured CFA peak associated with a given event to be depth assigned ~1 cm shallower than the true event depth. Dispersion effects on resolution and signal depth assignment are discussed in detail. Our results have implications for comparisons of chemistry and physical properties data recorded using multiple instruments and for deconvolution methods of enhancing CFA depth resolution.

  4. Ice-sheet sourced juxtaposed turbidite systems in Labrador Sea

    USGS Publications Warehouse

    Hesse, R.; Klaucke, I.; Ryan, William B. F.; Piper, D.J.W.

    1997-01-01

    Ice-sheet sourced Pleistocene turbidite systems of the Labrador Sea are different from non-glacially influenced systems in their facies distribution and depositional processes. Two large-scale sediment dispersal systems are juxtaposed, one mud-dominated and associated with the Northwest Atlantic Mid-Ocean Channel (NAMOC), the other sand-dominated and forming a huge submarine braided sandplain. Co-existence of the two systems reflects grain-size separation of the coarse and fine fractions on an enormous scale, caused by sediment winnowing at the entrance points of meltwater from the Laurentide Ice Sheet (LIS) to the sea (Hudson Strait, fiords) and involves a complex interplay of depositional and redepositional processes. The mud-rich NAMOC system is multisourced and represents a basinwide converging system of tributary canyons and channels. It focusses its sand load to the central trunk channel in basin centre, in the fashion of a "reverse" deep-sea fan. The sand plain received its sediment from the Hudson Strait by turbidity currents that were generated either by failure of glacial prodelta slopes at the ice margin, or by direct meltwater discharges with high bedload concentration. We speculate that the latter might have been related to subglacial-lake outburst flooding through the Hudson Strait, possibly associated with ice-rafting (Heinrich) events.

  5. High Resolution Continuous Flow Analysis System for Polar Ice Cores

    NASA Astrophysics Data System (ADS)

    Dallmayr, Remi; Azuma, Kumiko; Yamada, Hironobu; Kjær, Helle Astrid; Vallelonga, Paul; Azuma, Nobuhiko; Takata, Morimasa

    2014-05-01

    In the last decades, Continuous Flow Analysis (CFA) technology for ice core analyses has been developed to reconstruct the past changes of the climate system 1), 2). Compared with traditional analyses of discrete samples, a CFA system offers much faster and higher depth resolution analyses. It also generates a decontaminated sample stream without time-consuming sample processing procedure by using the inner area of an ice-core sample.. The CFA system that we have been developing is currently able to continuously measure stable water isotopes 3) and electrolytic conductivity, as well as to collect discrete samples for the both inner and outer areas with variable depth resolutions. Chemistry analyses4) and methane-gas analysis 5) are planned to be added using the continuous water stream system 5). In order to optimize the resolution of the current system with minimal sample volumes necessary for different analyses, our CFA system typically melts an ice core at 1.6 cm/min. Instead of using a wire position encoder with typical 1mm positioning resolution 6), we decided to use a high-accuracy CCD Laser displacement sensor (LKG-G505, Keyence). At the 1.6 cm/min melt rate, the positioning resolution was increased to 0.27mm. Also, the mixing volume that occurs in our open split debubbler is regulated using its weight. The overflow pumping rate is smoothly PID controlled to maintain the weight as low as possible, while keeping a safety buffer of water to avoid air bubbles downstream. To evaluate the system's depth-resolution, we will present the preliminary data of electrolytic conductivity obtained by melting 12 bags of the North Greenland Eemian Ice Drilling (NEEM) ice core. The samples correspond to different climate intervals (Greenland Stadial 21, 22, Greenland Stadial 5, Greenland Interstadial 5, Greenland Interstadial 7, Greenland Stadial 8). We will present results for the Greenland Stadial -8, whose depths and ages are between 1723.7 and 1724.8 meters, and 35.520 to

  6. A Study of the Effects of Altitude on Thermal Ice Protection System Performance

    NASA Technical Reports Server (NTRS)

    Addy, Harold E., Jr.; Oleskiw, Myron; Broeren, Andy P.; Orchard, Andy P.

    2013-01-01

    Thermal ice protection systems use heat energy to prevent a dangerous buildup of ice on an aircraft. As aircraft become more efficient, less heat energy is available to operate a thermal ice protections system. This requires that thermal ice protection systems be designed to more exacting standards so as to more efficiently prevent a dangerous ice buildup without adversely affecting aircraft safety. While the effects of altitude have always beeing taked into account in the design of thermal ice protection systems, a better understanding of these effects is needed so as to enable more exact design, testing, and evaluation of these systems.

  7. Ice-sheet influences on global Monsoon systems (Invited)

    NASA Astrophysics Data System (ADS)

    Timmermann, A.; Elison Timm, O.; Friedrich, T.; Abe-Ouchi, A.; Menviel, L.; Tigchelaar, M.

    2013-12-01

    The waxing and waning of the northern Hemisphere ice-sheets on orbital and millennial timescales and corresponding changes in atmospheric and oceanic circulation played an essential role in modulating monsoon systems globally. Here we review the mechanisms by which changes in ice-sheet orography, global sea-level and freshwater input into the North Atlantic can influence global wind patterns and tropical moisture convergence. Our analysis is based on a series of transient model simulations conducted with the newly developed 3-dimensional coupled ice-sheet-climate model iLOVE. Forced by orbital and greenhouse gas concentrations over the past 80 ka, this model realistically simulates the evolution of Northern Hemisphere ice volume. It is demonstrated that orbital-scale changes in ice-sheet orography influence the South American and African Monsoons, but leave Asian Monsoon systems relatively unaltered. On millennial timescales the situation is very different. Freshwater forcing from calving ice-sheets causes variations of the thermohaline circulation, North Atlantic sea surface temperatures and global wind patterns. Using an earth system model hindcast for the period 30-50 ka in combination with high-resolution hydroclimate proxies, we demonstrate that this mechanism can explain for the bulk of MIS3 global Monsoon variability on millennial-timescales. In addition to these remote influences, rainfall intensity in the dominant Monsoon regions is also modulated by precessional forcing and corresponding shifts of the meridional surface temperature gradients. This presentation will conclude with a brief discussion of gaps in our understanding of how orbital forcing affected Monsoons and Intertropical Convergence Zones during the Pleistocene.

  8. An Ice Protection and Detection Systems Manufacturer's Perspective

    NASA Technical Reports Server (NTRS)

    Sweet, Dave

    2009-01-01

    Accomplishments include: World Class Aircraft Icing Research Center and Facility. Primary Sponsor/Partner - Aircraft Icing Consortia/Meetings. Icing Research Tunnel. Icing Test Aircraft. Icing Codes - LEWICE/Scaling, et al. Development of New Technologies (SBIR, STTR, et al). Example: Look Ahead Ice Detection. Pilot Training Materials. Full Cooperation with Academia, Government and Industry.

  9. Determination of Ice Water Path in Ice-over-Water Cloud Systems Using Combined MODIS and AMSR-E Measurements

    NASA Technical Reports Server (NTRS)

    Huang, Jianping; Minnis, Patrick; Lin, Bing; Yi, Yuhong; Fan, T.-F.; Sun-Mack, Sunny; Ayers, J. K.

    2006-01-01

    To provide more accurate ice cloud properties for evaluating climate models, the updated version of multi-layered cloud retrieval system (MCRS) is used to retrieve ice water path (IWP) in ice-over-water cloud systems over global ocean using combined instrument data from the Aqua satellite. The liquid water path (LWP) of lower layer water clouds is estimated from the Advanced Microwave Scanning Radiometer for EOS (AMSR-E) measurements. With the lower layer LWP known, the properties of the upper-level ice clouds are then derived from Moderate Resolution Imaging Spectroradiometer measurements by matching simulated radiances from a two-cloud layer radiative transfer model. Comparisons with single-layer cirrus systems and surface-based radar retrievals show that the MCRS can significantly improve the accuracy and reduce the over-estimation of optical depth and ice water path retrievals for ice over-water cloud systems. During the period from December 2004 through February 2005, the mean daytime ice cloud optical depth and IWP for overlapped ice-over-water clouds over ocean from Aqua are 7.6 and 146.4 gm(sup -2), respectively, significantly less than the initial single layer retrievals of 17.3 and 322.3 gm(sup -2). The mean IWP for actual single-layer clouds was 128.2 gm(sup -2).

  10. A New Arctic Ice-Ocean Prediction System

    DTIC Science & Technology

    2016-06-07

    A New Arctic Ice-Ocean Prediction System Albert Semtner Oceanography Department Naval Postgraduate School Monterey, CA 93943 phone: (831) 656-3267...N0001499WR30136 http://www.oc.nps.navy.mil/~pips3 LONG-TERM GOALS The long term goal of the project is to produce a new operational Arctic ice...POP). What is new about the models is their higher resolution already with 18-km grid spacing, as well as their adaptation in advance to the new US

  11. Automatic control study of the icing research tunnel refrigeration system

    NASA Technical Reports Server (NTRS)

    Kieffer, Arthur W.; Soeder, Ronald H.

    1991-01-01

    The Icing Research Tunnel (IRT) at the NASA Lewis Research Center is a subsonic, closed-return atmospheric tunnel. The tunnel includes a heat exchanger and a refrigeration plant to achieve the desired air temperature and a spray system to generate the type of icing conditions that would be encountered by aircraft. At the present time, the tunnel air temperature is controlled by manual adjustment of freon refrigerant flow control valves. An upgrade of this facility calls for these control valves to be adjusted by an automatic controller. The digital computer simulation of the IRT refrigeration plant and the automatic controller that was used in the simulation are discussed.

  12. 14 CFR 23.1093 - Induction system icing protection.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... airplane with sea level engines using conventional venturi carburetors has a preheater that can provide a... sea level engine(s) using fuel metering device tending to prevent icing has a sheltered alternate... power; (5) Each airplane with sea level or altitude engine(s) using fuel injection systems...

  13. 14 CFR 23.1093 - Induction system icing protection.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... airplane with sea level engines using conventional venturi carburetors has a preheater that can provide a... sea level engine(s) using fuel metering device tending to prevent icing has a sheltered alternate... power; (5) Each airplane with sea level or altitude engine(s) using fuel injection systems...

  14. 14 CFR 23.1093 - Induction system icing protection.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... airplane with sea level engines using conventional venturi carburetors has a preheater that can provide a... sea level engine(s) using fuel metering device tending to prevent icing has a sheltered alternate... power; (5) Each airplane with sea level or altitude engine(s) using fuel injection systems...

  15. 14 CFR 23.1093 - Induction system icing protection.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... airplane with sea level engines using conventional venturi carburetors has a preheater that can provide a... sea level engine(s) using fuel metering device tending to prevent icing has a sheltered alternate... power; (5) Each airplane with sea level or altitude engine(s) using fuel injection systems...

  16. 14 CFR 23.1093 - Induction system icing protection.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... airplane with sea level engines using conventional venturi carburetors has a preheater that can provide a... sea level engine(s) using fuel metering device tending to prevent icing has a sheltered alternate... power; (5) Each airplane with sea level or altitude engine(s) using fuel injection systems...

  17. Ethane Ices in the Outer Solar System: Spectroscopy and Chemistry

    NASA Technical Reports Server (NTRS)

    Hudson, R. L.; Moore, M. H.; Raines, L. L.

    2009-01-01

    We report recent experiments on ethane ices made at temperatures applicable to the outer Solar System. New near- and mid-infrared data for crystalline and amorphous ethane, including new spectra for a seldom-studied solid phase that exists at 35-55 K, are presented along with radiation-chemical experiments showing the formation of more-complex hydrocarbons

  18. Evaluating an Ice-Storage System in a Deregulated Environment.

    ERIC Educational Resources Information Center

    Staniewicz, Theodore J.; Watson, Joseph J.

    2001-01-01

    Examines the difficulties the electric industry's deregulation created for St. Joseph's University's (Philadelphia) development of a thermal ice-storage system as part of its HVAC design and the school's solution. A monthly equipment summary sheet with year-to-date figures is provided. (GR)

  19. Space Shuttle ice suppression system validation, volume 1

    NASA Technical Reports Server (NTRS)

    Porteiro, J. L. F.; Norton, D. J.; Pollock, T. C.

    1984-01-01

    Preliminary analytical considerations and the experimental investigation of the flow field for the desired configurations in the absence of wind effects are discussed. A wind tunnel test program to determine the effect of different wind conditions on ice suppression system (ISS) performance is also discussed.

  20. Ethane Ices in the Outer Solar System: Spectroscopy and Chemistry

    NASA Technical Reports Server (NTRS)

    Hudson, R. L.; Moore, M. H.; Raines, L. L.

    2009-01-01

    We report recent experiments on ethane ices made at temperatures applicable to the outer Solar System. New near- and mid-infrared data for crystalline and amorphous ethane, including new spectra for a seldom-studied solid phase that exists at 35-55 K, are presented along with radiation-chemical experiments showing the formation of more-complex hydrocarbons,

  1. Decadal variability in coupled sea-ice-thermohaline circulation systems

    SciTech Connect

    Yang, J.; Neelin, J.D.

    1997-12-01

    An interdecadal oscillation in a coupled ocean-ice system was identified in a previous study. This paper extends that study to further examine the stability of the oscillation and the sensitivity of its frequency to various parameters and forcing fields. Three models are used: (i) an analytical box model; (ii) a two-dimensional model for the ocean thermohaline circulation (THC) coupled to a thermodynamic ice model, as in the authors` previous study; and (iii) a three-dimensional ocean general circulation model (OGCM) coupled to a similar ice model. The box model is used to elucidate the essential feedbacks that give rise to this oscillation and to identify the most important parameters and processes that determine the period. The counted model becomes more stable toward low coupling, greater diffusion, and weaker THC feedback. Nonlinear effects in the sea-ice model become important in the higher ocean-ice coupling regime where the effective sea-ice damping associated with this nonlinearity stabilizes the model. The 3D OGCM is used to test this coupled ocean-ice mechanism in a more realistic model setting. This model generates an interdecadal oscillation whose characteristics and phase relations among the model variables are similar to the oscillation obtained in the 2D models. The major difference is that the oscillation frequency is considerably lower. The difference can be explained in terms of the analytical box model solution in which the period of oscillation depends on the rate of anomalous density production by melting/cooling of sea ice per SST anomaly, times the rate of warming/cooling by anomalous THC heat advection per change in density anomaly. The 3D model has a smaller THC response to high-latitude density perturbations than the 2D model, and anomalous velocities in the 3D case tend to follow the mean isotherms so anomalous heat advection is reduced. This slows the ocean-ice feedback process, leading to the longer oscillation period. 36 refs., 27 figs.

  2. Temperature and Runback Ice Prediction Method for Three-Dimensional Hot Air Anti-Icing System

    NASA Astrophysics Data System (ADS)

    Zhou, Ying; Lin, Guiping; Bu, Xueqin; Mu, Zuodong; Pan, Rui; Ge, Qimo; Qiao, Xudong

    2017-03-01

    A prediction method of surface temperature and runback ice for a three-dimensional hot air anti-icing system was proposed. Computational approach to realize this method was introduced. Both the external and internal flows were separately calculated, results of which were set as boundary conditions of heat conduction computation in airfoil skin. The results of external and internal flow calculations show that the effect of surface temperature on convective heat transfer coefficients and local droplet collection efficiency is negligible and the calculations can be decoupled. The prediction method based on heat flux was used to calculate surface temperature and runback ice results. The results show that, the effects of LWC and Mach number are much more significant than the effect of external flow temperature. The surface temperature at impinging interaction point is more sensitive to the change of external conditions than that at stagnation point. The surface temperature changes significantly with changing Mach number because both the mass rate of droplet and the impact limit are changed.

  3. Surface roughness due to residual ice in the use of low power deicing systems

    NASA Technical Reports Server (NTRS)

    Shin, Jaiwon; Bond, Thomas H.

    1993-01-01

    Thicknesses of residual ice are presented to provide information on surface contamination and associated roughness during deicing events. Data was obtained from low power ice protection systems tests conducted in the Icing Research Tunnel at NASA Lewis Research Center (LeRC) with nine different deicing systems. Results show that roughness associated with residual ice is not characterized by uniformly distributed roughness. Results also show that deicing systems require a critical mass of ice to generate a sufficient expelling force to remove the ice.

  4. Sensitivity of the Ice Sheet System Model to direct surface mass balance forcing over the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Schlegel, N. J.; Seroussi, H. L.; Morlighem, M.; Larour, E. Y.; Box, J. E.

    2011-12-01

    The Greenland Ice Sheet, which extends south of the Arctic Circle, is vulnerable to temperature perturbations in the Northern Hemisphere, and its complete retreat would raise global sea level by about 7 meters. Models of the ice sheet's past behavior suggest that Greenland's severe retreat was largely responsible for sea-level rise during the last interglacial period. A clear understanding of exactly how the ice sheet responded to past climate change requires a high-degree of spatial resolution, especially within the ice sheet's large drainage basins, as they contain outlets capable of high-velocity flow. The newly developed Ice Sheet System Model (ISSM) is a finite-element model capable of simulating transient ice flow on an anisotropic mesh. The adaptable mesh can be refined to higher resolutions in the areas of enhanced ice flow. These features offer a distinct advantage over previous models of the Greenland Ice Sheet, specifically in terms of modeling fast-flowing outlet glaciers. With use of established ISSM capabilities, we examined the sensitivity of Greenland's outlet glaciers to the new Arctic System Reanalysis (ASR) reconstruction of yearly surface mass balance forcing of the last 150 years. This work was performed at the California Institute of Technology's Jet Propulsion Laboratory under a contract with the National Aeronautics and Space Administration's Modeling, Analysis and Prediction (MAP) Program.

  5. Making Technology Ready: Integrated Systems Health Management

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.; Oliver, Patrick J.

    2007-01-01

    This paper identifies work needed by developers to make integrated system health management (ISHM) technology ready and by programs to make mission infrastructure ready for this technology. This paper examines perceptions of ISHM technologies and experience in legacy programs. Study methods included literature review and interviews with representatives of stakeholder groups. Recommendations address 1) development of ISHM technology, 2) development of ISHM engineering processes and methods, and 3) program organization and infrastructure for ISHM technology evolution, infusion and migration.

  6. Flow of ices in the Ammonia-Water System

    NASA Technical Reports Server (NTRS)

    Durham, W. B.; Kirby, S. H.; Stern, L. A.

    1993-01-01

    We have fabricated in the laboratory and subsequently deformed crystalline hydrates and partial melts of the water-rich end of the NH3-H2O system, with the aim of improving our understanding of physical processes occurring in icy moons of the outer solar system. Deformation experiments were carried out at constant strain rate. The range of experimental variables are given. Phase relationships in the NH3-H2O system indicate that water ice and ammonia dihydrate, NH3-2H2O, are the stable phases under our experiment conditions. X-ray diffraction of our samples usually revealed these as the dominant phases, but we have also observed an amorphous phase (in unpressurized samples only) and occasionally significant ammonia monohydrate, NH3-H2O. The onset of partial melting at the peritectic temperature at about 176 K appeared as a sharp transition in strength observed in samples of x(sub NH3) = 0.05 and 0.01, the effect of melt was less pronounced. For any given water ice + dihydrate alloy in the subsolidus region, we observed one rheological law over the entire temperature range from 175 K to about 140 K. Below 140 K, a shear instability similar to that occurring in pure water ice under the same conditions limited our ability to measure ductile flow. The rheological laws for the several alloys vary systematically from that of pure ice to that of dihydrate. Pure dihydrate is about 4 orders of magnitude less viscous than water ice just below the peritectic temperature, but because of a very pronounced temperature dependence in dihydrate (100 kJ/mol versus 43 kJ/mol for water ice) the viscosity of dihydrate equals or exceeds that of water ice at T less than 140 K. The large variation in viscosity of dihydrate with relatively small changes in temperature may be helpful in explaining the rich variety of tectonic and volcanic features seen on the surfaces of icy moons in the outer solar system.

  7. Assimilating high horizontal resolution sea ice concentration data into the US Navy's ice forecast systems: Arctic Cap Nowcast/Forecast System (ACNFS) and the Global Ocean Forecast System (GOFS 3.1)

    NASA Astrophysics Data System (ADS)

    Posey, P. G.; Metzger, E. J.; Wallcraft, A. J.; Hebert, D. A.; Allard, R. A.; Smedstad, O. M.; Phelps, M. W.; Fetterer, F.; Stewart, J. S.; Meier, W. N.; Helfrich, S. R.

    2015-04-01

    This study presents the improvement in the US Navy's operational sea ice forecast systems gained by assimilating high horizontal resolution satellite-derived ice concentration products. Since the late 1980's, the ice forecast systems have assimilated near real-time sea ice concentration derived from the Defense Meteorological Satellite Program (DMSP) Special Sensor Microwave/Imager (SSMI and then SSMIS). The resolution of the satellite-derived product was approximately the same as the previous operational ice forecast system (25 km). As the sea ice forecast model resolution increased over time, the need for higher horizontal resolution observational data grew. In 2013, a new Navy sea ice forecast system (Arctic Cap Nowcast/Forecast System - ACNFS) went into operations with a horizontal resolution of ~3.5 km at the North Pole. A method of blending ice concentration observations from the Advanced Microwave Scanning Radiometer (AMSR2) along with a sea ice mask produced by the National Ice Center (NIC) has been developed resulting in an ice concentration product with very high spatial resolution. In this study, ACNFS was initialized with this newly developed high resolution blended ice concentration product. The daily ice edge locations from model hindcast simulations were compared against independent observed ice edge locations. ACNFS initialized using the high resolution blended ice concentration data product decreased predicted ice edge location error compared to the operational system that only assimilated SSMIS data. A second evaluation assimilating the new blended sea ice concentration product into the pre-operational Navy Global Ocean Forecast System 3.1 also showed a substantial improvement in ice edge location over a system using the SSMIS sea ice concentration product alone. This paper describes the technique used to create the blended sea ice concentration product and the significant improvements to both of the Navy's sea ice forecasting systems.

  8. High-resolution wave forecasting system for the seasonally ice-covered Baltic Sea

    NASA Astrophysics Data System (ADS)

    Tuomi, Laura; Lehtiranta, Jonni

    2016-04-01

    When forecasting surface waves in seasonally ice-covered seas, the inclusion of ice conditions in the modelling is important. The ice cover affects the propagation and also changes the fetch over which the waves grow. In wave models the ice conditions are often still given as a boundary condition and handled by excluding areas where the ice concentration exceeds a certain threshold value. The ice data used are typically based on satellite analysis or expert analysis of local Ice Services who combine data from different sources. This type of data is sufficiently accurate to evaluate the near-real time ice concentrations, but when making forecasts it is also important to account for the possible changes in ice conditions. For example in a case of a high wind situation, there can be rapid changes in the ice field, when the wind and waves may push the ice towards shores and cause fragmentation of ice field. To enhance handling of ice conditions in the Baltic Sea wave forecasts, utilisation of ice model data was studied. Ice concentration, thickness produced by FMI's operational ice model HELMI were used to provide ice data to wave model as follows: Wave model grid points where the ice concentration was more than or equal to 70% and the ice thickness more than1 cm, were excluded from calculations. Ice concentrations smaller than that were taken into account as additional grid obstructions by decreasing the wave energy passed from one grid cell to another. A challenge in evaluating wave forecast accuracy in partly ice covered areas it that there's typically no wave buoy data available, since the buoys have to be recovered well before the sea area freezes. To evaluate the accuracy of wave forecast in partially ice covered areas, significant wave heights from altimeter's ERS2, Envisat, Jason-1 and Jason-2 were extracted from Ifremer database. Results showed that the more frequent update of the ice data was found to improve the wave forecast especially during high wind

  9. Inferring unknow boundary conditions of the Greenland Ice Sheet by assimilating ICESat-1 and IceBridge altimetry intothe Ice Sheet System Model.

    NASA Astrophysics Data System (ADS)

    Larour, E. Y.; Khazendar, A.; Seroussi, H. L.; Schlegel, N.; Csatho, B. M.; Schenk, A. F.; Rignot, E. J.; Morlighem, M.

    2014-12-01

    Altimetry signals from missions such as ICESat-1, CryoSat, EnviSat, as well as altimeters onboard Operation IceBridge provide vital insights into processes such as surface mass balance, mass transport and ice-flow dynamics. Historically however, ice-flow models have been focused on assimilating surface velocities from satellite-based radar observations, to infer properties such as basal friction or the position of the bedrock. Here, we leverage a new methodology based on automatic differentation of the Ice Sheet System Model to assimilate surface altimetry data into a reconstruction of the past decade of ice flow on the North Greenland area. We infer corrections to boundary conditions such as basal friction and surface mass balance, as well as corrections to the ice hardness, to best-match the observed altimetry record. We compare these corrections between glaciers such as Petermann Glacier, 79 North and Zacchariae Isstrom. The altimetry signals exhibit very different patterns between East and West, which translate into very different signatures for the inverted boundary conditions. This study gives us greater insights into what differentiates different basins, both in terms of mass transport and ice-flow dynamics, and what could bethe controlling mechanisms behind the very different evolutions of these basins.

  10. Improving Arctic Sea Ice Edge Forecasts by Assimilating High Horizontal Resolution Sea Ice Concentration Data into the US Navy’s Ice Forecast Systems

    DTIC Science & Technology

    2016-06-13

    error within the US Navy’s operational sea ice forecast systems gained by assimilating high horizontal resolution satellite -derived ice concentration... Satellite Program (DMSP) Special Sensor Mi- crowave/Imager (SSMI and then SSMIS). The resolution of the satellite -derived product was approximately...effective execution of the US Navy’s daily operational missions (US Department of Navy, 2014). Since comprehensive records began with the satellite era

  11. Engine Icing Capability Enhancements for the Propulsion Systems Laboratory

    NASA Technical Reports Server (NTRS)

    Griffin, Tom

    2010-01-01

    The AC9C is holding their biannual committee meeting in Ottawa, Ontario on 18-20 October 2010. I have been asked to provide a short presentation of the status of the icing project upgrade to the PSL test facility. I will highlight the progress made during construction the past 6 months, our approach for checkout of the facility, and an overview of the system design and its capabilities. A copy of the presentation is attached.

  12. Icing Research Tunnel (IRT) Force Measurement System (FMS)

    NASA Technical Reports Server (NTRS)

    Roberts, Paul W.

    2012-01-01

    An Electronics Engineer at the Glenn Research Center (GRC), requested the NASA Engineering and Safety Center (NESC) provide technical support for an evaluation of the existing force measurement system (FMS) at the GRC's Icing Research Tunnel (IRT) with the intent of developing conceptual designs to improve the tunnel's force measurement capability in order to better meet test customer needs. This report contains the outcome of the NESC technical review.

  13. Cryosphere Science Outreach using the Ice Sheet System Model and a Virtual Ice Sheet Laboratory

    NASA Astrophysics Data System (ADS)

    Cheng, D. L. C.; Halkides, D. J.; Larour, E. Y.

    2015-12-01

    Understanding the role of Cryosphere Science within the larger context of Sea Level Rise is both a technical and educational challenge that needs to be addressed if the public at large is to trulyunderstand the implications and consequences of Climate Change. Within this context, we propose a new approach in which scientific tools are used directly inside a mobile/website platform geared towards Education/Outreach. Here, we apply this approach by using the Ice Sheet System Model, a state of the art Cryosphere model developed at NASA, and integrated within a Virtual Ice Sheet Laboratory, with the goal is to outreach Cryospherescience to K-12 and College level students. The approach mixes laboratory experiments, interactive classes/lessons on a website, and a simplified interface to a full-fledged instance of ISSM to validate the classes/lessons. This novel approach leverages new insights from the Outreach/Educational community and the interest of new generations in web based technologies and simulation tools, all of it delivered in a seamlessly integrated web platform. This work was performed at the California Institute of Technology's Jet Propulsion Laboratory undera contract with the National Aeronautics and Space Administration's Cryosphere Science Program.

  14. Use of Unmanned Aircraft Systems in Observations of Glaciers, Ice Sheets, Sea Ice and Snow Fields

    NASA Astrophysics Data System (ADS)

    Herzfeld Mayer, M. U.

    2015-12-01

    Unmanned Aircraft Systems (UAS) are being used increasingly in observations of the Earth, especially as such UAS become smaller, lighter and hence less expensive. In this paper, we present examples of observations of snow fields, glaciers and ice sheets and of sea ice in the Arctic that have been collected from UAS. We further examine possibilities for instrument miniaturization, using smaller UAS and smaller sensors for collecting data. The quality and type of data is compared to that of satellite observations, observations from manned aircraft and to measurements made during field experiments on the ground. For example, a small UAS can be sent out to observe a sudden event, such as a natural catastrophe, and provide high-resolution imagery, but a satellite has the advantage of providing the same type of data over much of the Earth's surface and for several years, but the data is generally of lower resolution. Data collected on the ground typically have the best control and quality, but the survey area is usually small. Here we compare micro-topographic measurements made on snow fields the Colorado Rocky Mountains with airborne and satellite data.

  15. Benefits of assimilating thin sea ice thickness from SMOS into the TOPAZ system

    NASA Astrophysics Data System (ADS)

    Xie, Jiping; Counillon, François; Bertino, Laurent; Tian-Kunze, Xiangshan; Kaleschke, Lars

    2016-11-01

    An observation product for thin sea ice thickness (SMOS-Ice) is derived from the brightness temperature data of the European Space Agency's (ESA) Soil Moisture and Ocean Salinity (SMOS) mission. This product is available in near-real time, at daily frequency, during the cold season. In this study, we investigate the benefit of assimilating SMOS-Ice into the TOPAZ coupled ocean and sea ice forecasting system, which is the Arctic component of the Copernicus marine environment monitoring services. The TOPAZ system assimilates sea surface temperature (SST), altimetry data, temperature and salinity profiles, ice concentration, and ice drift with the ensemble Kalman filter (EnKF). The conditions for assimilation of sea ice thickness thinner than 0.4 m are favorable, as observations are reliable below this threshold and their probability distribution is comparable to that of the model. Two parallel Observing System Experiments (OSE) have been performed in March and November 2014, in which the thicknesses from SMOS-Ice (thinner than 0.4 m) are assimilated in addition to the standard observational data sets. It is found that the root mean square difference (RMSD) of thin sea ice thickness is reduced by 11 % in March and 22 % in November compared to the daily thin ice thicknesses of SMOS-Ice, which suggests that SMOS-Ice has a larger impact during the beginning of the cold season. Validation against independent observations of ice thickness from buoys and ice draft from moorings indicates that there are no degradations in the pack ice but there are some improvements near the ice edge close to where the SMOS-Ice has been assimilated. Assimilation of SMOS-Ice yields a slight improvement for ice concentration and degrades neither SST nor sea level anomaly. Analysis of the degrees of freedom for signal (DFS) indicates that the SMOS-Ice has a comparatively small impact but it has a significant contribution in constraining the system (> 20 % of the impact of all ice and ocean

  16. Assessing the predictability of a coupled climate-ice sheet model system for the response of the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Adalgeirsdottir, G.; Stendel, M.; Bueler, E.; Christensen, J. H.; Drews, M.; Mottram, R.

    2009-04-01

    The wild card for reliable sea level rise prediction is the contribution of the Greenland Ice Sheet. There is an urgent need to determine the predictability of models that simulate the response of Greenland Ice Sheet to rising temperatures and the amount of freshwater flux that can be expected into the ocean. Modelling efforts have been limited by poorly known boundary and initial conditions, low resolution and lack of presentation of fast flowing ice streams. We address these limitations by building a model system consisting of a high resolution regional climate model (HIRHAM4), that has been run for the period 1950-2080 at 25 km, and Parallel Ice Sheet Model (PISM), which simulates spatially and temporally varying ice streams by combining the solutions of the Shallow Shelf and Shallow Ice Approximations. The surface mass balance is simulated with a positive-degree-day method. The important and poorly constrained model component is the past climate forcing, which serves the purpose of initializing the model by simulating the present ice sheet and observed rate of mass changes. Simulated gradients of mass loss due to warming trends of past decade and prediction for the future are presented as well as estimated sensitivities due to the various model component uncertainties.

  17. ICE Raids, Children, Media, and Making Sense of Latino Newcomers in Flyover Country

    ERIC Educational Resources Information Center

    Hamann, Edmund T.; Reeves, Jenelle

    2012-01-01

    Extant cultural models articulated in "Flyover Country" print media responses to ICE workplace raids showed a welcome of sorts of Latino newcomers. These models suggest a place for Latino students at school and more broadly for Latino children and parents in these communities. Thus, they index an unwillingness to see Latino newcomers in…

  18. IceBreaker: Mars Drill and Sample Delivery System

    NASA Astrophysics Data System (ADS)

    Mellerowicz, B. L.; Paulsen, G. L.; Zacny, K.; McKay, C.; Glass, B. J.; Dave, A.; Davila, A. F.; Marinova, M.

    2012-12-01

    We report on the development and testing of a one meter class prototype Mars drill and cuttings sample delivery system. The IceBreaker drill consists of a rotary-percussive drill head, a sampling auger with a bit at the end having an integrated temperature sensor, a Z-stage for advancing the auger into the ground, and a sam-pling station for moving the augered ice shavings or soil cuttings into a sample cup. The drill is deployed from a 3 Degree of Freedom (DOF) robotic arm. The drill demonstrated drilling in ice-cemented ground, ice, and rocks at the 1-1-100-100 level; that is the drill reached 1 meter in 1 hour with 100 Watts of power and 100 Newton Weight on Bit. This cor-responds to an average energy of 100 Whr. The drill has been extensively tested in the Mars chamber to a depth of 1 meter, as well as in the Antarctic and the Arctic Mars analog sites. We also tested three sample delivery systems: 1) 4 DOF arm with a custom soil scoop at the end; 2) Pneumatic based, and 3) Drill based enabled by the 3 (DOF) drill deployment boom. In all approaches there is an air-gap between the sterilized drill (which penetrates subsurface) and the sample transfer hardware (which is not going to be sterilized). The air gap satisfies the planetary protection requirements. The scoop acquires cuttings sample once they are augered to the surface, and drops them into an in-strument inlet port. The system has been tested in the Mars chamber and in the Arctic. The pneumatic sample delivery system uses compressed gas to move the sample captured inside a small chamber inte-grated with the auger, directly into the instrument. The system was tested in the Mars chamber. In the third approach the drill auger captures the sample on its flutes, the 3 DOF boom positions the tip of the auger above the instrument, and then the auger discharges the sample into an instrument. This approach was tested in the labolatory (at STP). The above drilling and sample delivery tests have shown that drilling

  19. Drainage beneath ice sheets: groundwater-channel coupling, and the origin of esker systems from former ice sheets

    NASA Astrophysics Data System (ADS)

    Boulton, G. S.; Hagdorn, M.; Maillot, P. B.; Zatsepin, S.

    2009-04-01

    The nature of the drainage system beneath ice sheets is crucial to their dynamic behaviour but remains problematic. An experimentally based theory of coupling between groundwater and major channel systems is applied to the esker systems in the area occupied the last ice sheet in Europe, which we regard as a fossil imprint of major longitudinal drainage channels. We conclude that the large-scale distribution and spacing of major eskers is consistent with the theory of groundwater control, in which esker spacing is partly controlled by the transmissivity of the bed. It is concluded that esker patterns reflect the large-scale organisation of the subglacial drainage pattern in which channel development is coupled to groundwater flow and to the ice sheet's dynamic regime. The theory is then used to deduce: basal meltwater recharge rates and their spatial variability from esker spacing in an area in which the ice sheet was actively streaming during its final retreat; patterns of palaeo-groundwater flow and head distribution; and the seasonally varying magnitude of discharge from stream tunnels at the retreating ice sheet margin. Major channel/esker systems appear to have been stable at least over several hundred of years during the retreat of the ice sheet, although major dynamic events are demonstrably associated with major shifts in the hydraulic regime. Modelling suggests: that glaciation can stimulate deep groundwater circulation cells that are spatially linked to channel locations, with groundwater flow predominantly transverse to ice flow; that the circulation pattern has the potential to create large-scale anomalies in groundwater chemistry; and that the spacing of channels will change through the glacial cycle, influencing water pressures in stream tunnels, subglacial hydraulic gradients and effective pressure. If the latter is reduced sufficiently, it could trigger enhanced bed deformation, thus coupling drainage to ice sheet movement. It suggests the

  20. Information Processing in Decision-Making Systems

    PubMed Central

    van der Meer, Matthijs; Kurth-Nelson, Zeb; Redish, A. David

    2015-01-01

    Decisions result from an interaction between multiple functional systems acting in parallel to process information in very different ways, each with strengths and weaknesses. In this review, the authors address three action-selection components of decision-making: The Pavlovian system releases an action from a limited repertoire of potential actions, such as approaching learned stimuli. Like the Pavlovian system, the habit system is computationally fast but, unlike the Pavlovian system permits arbitrary stimulus-action pairings. These associations are a “forward” mechanism; when a situation is recognized, the action is released. In contrast, the deliberative system is flexible but takes time to process. The deliberative system uses knowledge of the causal structure of the world to search into the future, planning actions to maximize expected rewards. Deliberation depends on the ability to imagine future possibilities, including novel situations, and it allows decisions to be taken without having previously experienced the options. Various anatomical structures have been identified that carry out the information processing of each of these systems: hippocampus constitutes a map of the world that can be used for searching/imagining the future; dorsal striatal neurons represent situation-action associations; and ventral striatum maintains value representations for all three systems. Each system presents vulnerabilities to pathologies that can manifest as psychiatric disorders. Understanding these systems and their relation to neuroanatomy opens up a deeper way to treat the structural problems underlying various disorders. PMID:22492194

  1. VAV systems -- What makes them succeed? What makes them fail?

    SciTech Connect

    Cappellin, T.E.

    1997-12-31

    When variable-air-volume (VAV) systems work right, they provide excellent temperature and humidity control and in addition deliver outside air to conditioned spaces in amounts sufficient to satisfy ASHRAE Standard 62 and meet all criteria required for acceptable indoor air quality. The final benefit is lower utility cost when compared to a comparable constant-air-volume system. However, the successful performance of VAV systems is often compromised by flawed conception, faulty design, defective installation, poor start-up, inaccurate operation, and inadequate maintenance. Field observations of underperforming VAV systems have uncovered problems due to mistakes that have been made through all the phases of system development. It is recommended that most VAV systems be designed, installed, started, and operated under a comprehensive commissioning process. Experience has shown that careful monitoring of all phases of development and operation will ensure that there are minimal problems to plague the building owner and operating personnel once the system is in use. This paper is written from the viewpoint of a former contractor who is now a professional engineer and who has designed, installed, started, and maintained VAV systems.

  2. US Navy Operational Global Ocean and Arctic Ice Prediction Systems

    DTIC Science & Technology

    2014-09-01

    Wallcraft, L. Zamudio, D.S. Franklin, P.G. Posey, M.W. Phelps, P.J. Hogan, F.L. Bub, and C.J. DeHaan. 2014. US Navy operational global ocean and...P E C I A L I S S U E O N N AV Y O P E R AT I O N A L M O D E L S US Navy Operational Global Ocean and Arctic Ice Prediction Systems B Y E...operational Global Ocean Forecast System that shows the proper placement of the Kuroshio (the strongly inertial western boundary current in the North

  3. Event triggering in the IceCube data acquisition system

    SciTech Connect

    Kelley, J. L.; Collaboration: IceCube Collaboration

    2014-11-18

    In order to detect cosmic ray air showers and neutrinos, the software data acquisition (DAQ) system of the IceCube Neutrino Observatory forms triggers on patterns of Cherenkov light deposition in the detector based on temporal and/or spatial coincidences. Here we describe the algorithms used for triggering, as well as the fast merging algorithm used to combine the time-ordered hit streams from the optical modules. We also present recently implemented and planned modifications of the DAQ that take advantage of our newly upgraded multi-core computer systems at the South Pole.

  4. Plans and Preliminary Results of Fundamental Studies of Ice Crystal Icing Physics in the NASA Propulsion Systems Laboratory

    NASA Technical Reports Server (NTRS)

    Struk, Peter; Tsao, Jen-Ching; Bartkus, Tadas

    2016-01-01

    This presentation accompanies the paper titled Plans and Preliminary Results of Fundamental Studies of Ice Crystal Icing Physics in the NASA Propulsion Systems Laboratory. NASA is evaluating whether PSL, in addition to full-engine and motor-driven-rig tests, can be used for more fundamental ice-accretion studies that simulate the different mixed-phase icing conditions along the core flow passage of a turbo-fan engine compressor. The data from such fundamental accretion tests will be used to help develop and validate models of the accretion process. This presentation (and accompanying paper) presents data from some preliminary testing performed in May 2015 which examined how a mixed-phase cloud could be generated at PSL using evaporative cooling in a warmer-than-freezing environment.

  5. Plans and Preliminary Results of Fundamental Studies of Ice Crystal Icing Physics in the NASA Propulsion Systems Laboratory

    NASA Technical Reports Server (NTRS)

    Struk, Peter; Tsao, Jen-Ching; Bartkus, Tadas

    2017-01-01

    This paper describes plans and preliminary results for using the NASA Propulsion Systems Lab (PSL) to experimentally study the fundamental physics of ice-crystal ice accretion. NASA is evaluating whether this facility, in addition to full-engine and motor-driven-rig tests, can be used for more fundamental ice-accretion studies that simulate the different mixed-phase icing conditions along the core flow passage of a turbo-fan engine compressor. The data from such fundamental accretion tests will be used to help develop and validate models of the accretion process. This paper presents data from some preliminary testing performed in May 2015 which examined how a mixed-phase cloud could be generated at PSL using evaporative cooling in a warmer-than-freezing environment.

  6. JBluIce-EPICS control system for macromolecular crystallography.

    PubMed

    Stepanov, Sergey; Makarov, Oleg; Hilgart, Mark; Pothineni, Sudhir Babu; Urakhchin, Alex; Devarapalli, Satish; Yoder, Derek; Becker, Michael; Ogata, Craig; Sanishvili, Ruslan; Venugopalan, Nagarajan; Smith, Janet L; Fischetti, Robert F

    2011-03-01

    The trio of macromolecular crystallography beamlines constructed by the General Medicine and Cancer Institutes Collaborative Access Team (GM/CA-CAT) in Sector 23 of the Advanced Photon Source (APS) have been in growing demand owing to their outstanding beam quality and capacity to measure data from crystals of only a few micrometres in size. To take full advantage of the state-of-the-art mechanical and optical design of these beamlines, a significant effort has been devoted to designing fast, convenient, intuitive and robust beamline controls that could easily accommodate new beamline developments. The GM/CA-CAT beamline controls are based on the power of EPICS for distributed hardware control, the rich Java graphical user interface of Eclipse RCP and the task-oriented philosophy as well as the look and feel of the successful SSRL BluIce graphical user interface for crystallography. These beamline controls feature a minimum number of software layers, the wide use of plug-ins that can be written in any language and unified motion controls that allow on-the-fly scanning and optimization of any beamline component. This paper describes the ways in which BluIce was combined with EPICS and converted into the Java-based JBluIce, discusses the solutions aimed at streamlining and speeding up operations and gives an overview of the tools that are provided by this new open-source control system for facilitating crystallographic experiments, especially in the field of microcrystallography.

  7. NASA Icing Remote Sensing System Comparisons From AIRS II

    NASA Technical Reports Server (NTRS)

    Reehorst, Andrew L.; Brinker, David J.; Ratvasky, Thomas P.

    2005-01-01

    NASA has an on-going activity to develop remote sensing technologies for the detection and measurement of icing conditions aloft. A multiple instrument approach is the current emphasis of this activity. Utilizing radar, radiometry, and lidar, a region of supercooled liquid is identified. If the liquid water content (LWC) is sufficiently high, then the region of supercooled liquid cloud is flagged as being an aviation hazard. The instruments utilized for the current effort are an X-band vertical staring radar, a radiometer that measures twelve frequencies between 22 and 59 GHz, and a lidar ceilometer. The radar data determine cloud boundaries, the radiometer determines the sub-freezing temperature heights and total liquid water content, and the ceilometer refines the lower cloud boundary. Data is post-processed with a LabVIEW program with a resultant supercooled LWC profile and aircraft hazard identification. Individual remotely sensed measurements gathered during the 2003-2004 Alliance Icing Research Study (AIRS II) were compared to aircraft in-situ measurements. Comparisons between the remote sensing system s fused icing product and in-situ measurements from the research aircraft are reviewed here. While there are areas where improvement can be made, the cases examined indicate that the fused sensor remote sensing technique appears to be a valid approach.

  8. JBluIce-EPICS control system for macromolecular crystallography.

    SciTech Connect

    Stepanov, S.; Makarov, O.; Hilgart, M.; Pothineni, S.; Urakhchin, A.; Devarapalli, S.; Yoder, D.; Becker, M.; Ogata, C.; Sanishvili, R.; Nagarajan, V.; Smith, J. L.; Fischetti, R. F.

    2011-01-01

    The trio of macromolecular crystallography beamlines constructed by the General Medicine and Cancer Institutes Collaborative Access Team (GM/CA-CAT) in Sector 23 of the Advanced Photon Source (APS) have been in growing demand owing to their outstanding beam quality and capacity to measure data from crystals of only a few micrometres in size. To take full advantage of the state-of-the-art mechanical and optical design of these beamlines, a significant effort has been devoted to designing fast, convenient, intuitive and robust beamline controls that could easily accommodate new beamline developments. The GM/CA-CAT beamline controls are based on the power of EPICS for distributed hardware control, the rich Java graphical user interface of Eclipse RCP and the task-oriented philosophy as well as the look and feel of the successful SSRL BluIce graphical user interface for crystallography. These beamline controls feature a minimum number of software layers, the wide use of plug-ins that can be written in any language and unified motion controls that allow on-the-fly scanning and optimization of any beamline component. This paper describes the ways in which BluIce was combined with EPICS and converted into the Java-based JBluIce, discusses the solutions aimed at streamlining and speeding up operations and gives an overview of the tools that are provided by this new open-source control system for facilitating crystallographic experiments, especially in the field of microcrystallography.

  9. Transport, hysteresis and avalanches in artificial spin ice systems

    SciTech Connect

    Reichhardt, Charles; Reichhardt, Cynthia J; Libal, A

    2010-01-01

    We examine the hopping dynamics of an artificial spin ice system constructed from colloids on a kagome optical trap array where each trap has two possible states. By applying an external drive from an electric field which is analogous to a biasing applied magnetic field for real spin systems, we can create polarized states that obey the spin-ice rules of two spins in and one spin out at each vertex. We demonstrate that when we sweep the external drive and measure the fraction of the system that has been polarized, we can generate a hysteresis loop analogous to the hysteretic magnetization versus external magnetic field curves for real spin systems. The disorder in our system can be readily controlled by changing the barrier that must be overcome before a colloid can hop from one side of a trap to the other. For systems with no disorder, the effective spins all flip simultaneously as the biasing field is changed, while for strong disorder the hysteresis curves show a series of discontinuous jumps or avalanches similar to Barkhausen noise.

  10. NACA Investigations of Icing-Protection Systems for Turbojet-Engine Installations

    NASA Technical Reports Server (NTRS)

    VonGlahn, Uwe; Callaghan, Edmund E.; Gray, Vernon H.

    1951-01-01

    Investigations have been made in flight and in wind tunnels to determine which components of turbojet installations are most critical in icing conditions, and to evaluate several methods of icing protection. From these studies, the requirements necessary for adequate icing protection and the consequent penalties on engine performance can be estimated. Because investigations have indicated that the compressor-inlet screen constitutes the greatest icing hazard and is difficult to protect, complete removal or retraction of the screen upon encountering an icing condition is recommended. In the absence of the screen, the inlet guide vanes of an axial-flow-type turbojet engine constitute the greatest danger to engine operation in an icing condition; a centrifugal-type engine, on the other hand, is relatively unsusceptible to icing once the screen has been removed. Of the three icing-protection systems investigated, surface heating, hot-gas bleedback, and inertia-separation inlets, only the first two offer an acceptable solution to the problem of engine icing protection. Surface heating, either by gas heating or electrical means, appears to be the most acceptable icing-protection method with regard to performance losses. Hot-gas bleedback, although causing undesirable thrust losses, offers an easy means of obtaining icing protection for some installations. The final choice of an icing-protection system depends, however, on the supply of heated gas and electrical power available and on the allowable performance and. weight penalties associated with each system.

  11. Icing tunnel tests of a composite porous leading edge for use with a liquid anti-ice system. [Lewis icing research tunnel

    NASA Technical Reports Server (NTRS)

    Kohlman, D. L.

    1981-01-01

    The efficacy of liquid ice protection systems which distribute a glycol-water solution onto leading edge surfaces through a porous skin was demonstrated in tests conducted in the NASA Lewis icing research tunnel using a composite porous leading edge panels. The data obtained were compared with the performance of previously tested stainless steel leading edge with the same geometry. Results show: (1) anti-ice protection of a composite leading edge is possible for all the simulated conditions tested; (2) the glycol flow rates required to achieve anti-ice protection were generally much higher than those required for a stainless steel panel; (3) the low reservoir pressures of the glycol during test runs indicates that more uniform distribution of glycol, and therefore lower glycol flow rates, can probably be achieved by decreasing the porosity of the panel; and (4) significant weight savings can be achieved in fluid ice protection systems with composite porous leading edges. The resistance of composite panels to abrasion and erosion must yet be determined before they can be incorporated in production systems.

  12. Ground-Based Icing Condition Remote Sensing System Definition

    NASA Technical Reports Server (NTRS)

    Reehorst, Andrew L.; Koenig, George G.

    2001-01-01

    This report documents the NASA Glenn Research Center activities to assess and down select remote sensing technologies for the purpose of developing a system capable of measuring icing condition hazards aloft. The information generated by such a remote sensing system is intended for use by the entire aviation community, including flight crews. air traffic controllers. airline dispatchers, and aviation weather forecasters. The remote sensing system must be capable of remotely measuring temperature and liquid water content (LWC), and indicating the presence of super-cooled large droplets (SLD). Technologies examined include Profiling Microwave Radiometer, Dual-Band Radar, Multi-Band Radar, Ka-Band Radar. Polarized Ka-Band Radar, and Multiple Field of View (MFOV) Lidar. The assessment of these systems took place primarily during the Mt. Washington Icing Sensors Project (MWISP) in April 1999 and the Alliance Icing Research Study (AIRS) from November 1999 to February 2000. A discussion of the various sensing technologies is included. The result of the assessment is that no one sensing technology can satisfy all of the stated project goals. Therefore a proposed system includes radiometry and Ka-band radar. A multilevel approach is proposed to allow the future selection of the fielded system based upon required capability and available funding. The most basic level system would be the least capable and least expensive. The next level would increase capability and cost, and the highest level would be the most capable and most expensive to field. The Level 1 system would consist of a Profiling Microwave Radiometer. The Level 2 system would add a Ka-Band Radar. The Level 3 system would add polarization to the Ka-Band Radar. All levels of the system would utilize hardware that is already under development by the U.S. Government. However, to meet the needs of the aviation community, all levels of the system will require further development. In addition to the proposed system

  13. The effect of sea ice on the solar energy budget in the astmosphere-sea ice-ocean system: A model study

    NASA Technical Reports Server (NTRS)

    Jin, Z.; Stamnes, Knut; Weeks, W. F.; Tsay, Si-Chee

    1994-01-01

    A coupled one-dimensional multilayer and multistream radiative transfer model has been developed and applied to the study of radiative interactions in the atmosphere, sea ice, and ocean system. The consistent solution of the radiative transfer equation in this coupled system automatically takes into account the refraction and reflection at the air-ice interface and allows flexibility in choice of stream numbers. The solar radiation spectrum (0.25 micron-4.0 micron) is divided into 24 spectral bands to account adequately for gaseous absorption in the atmosphere. The effects of ice property changes, including salinity and density variations, as well as of melt ponds and snow cover variations over the ice on the solar energy distribution in the entire system have been studied quantitatively. The results show that for bare ice it is the scattering, determined by air bubbles and brine pockets, in just a few centimeters of the top layer of ice that plays the most important role in the solar energy absorption and partitioning in the entire system. Ice thickness is important to the energy distribution only when the ice is thin, while the absorption in the atmosphere is not sensitive to ice thickness exceeds about 70 cm. The presence of clouds moderates all the sensitivities of the absorptive amounts in each layer to the variations in the ice properties and ice thickness. Comparisons with observational spectral albedo values for two simple ice types are also presented.

  14. Systems and Techniques for Identifying and Avoiding Ice

    NASA Technical Reports Server (NTRS)

    Hansman, R. John

    1995-01-01

    In-flight icing is one of the most difficult aviation weather hazards facing general aviation. Because most aircraft in the general aviation category are not certified for flight into known icing conditions, techniques for identifying and avoiding in-flight ice are important to maintain safety while increasing the utility and dispatch capability which is part of the AGATE vision. This report summarizes a brief study effort which: (1) Reviewed current ice identification, forecasting, and avoidance techniques; (2) Assessed feasibility of improved forecasting and ice avoidance procedures; and (3) Identified key issues for the development of improved capability with regard to in-flight icing.

  15. The Role of Snow and Ice in the Climate System

    SciTech Connect

    Barry, Roger

    2007-12-19

    Global snow and ice cover (the 'cryosphere') plays a major role in global climate and hydrology through a range of complex interactions and feedbacks, the best known of which is the ice - albedo feedback. Snow and ice cover undergo marked seasonal and long term changes in extent and thickness. The perennial elements - the major ice sheets and permafrost - play a role in present-day regional and local climate and hydrology, but the large seasonal variations in snow cover and sea ice are of importance on continental to hemispheric scales. The characteristics of these variations, especially in the Northern Hemisphere, and evidence for recent trends in snow and ice extent are discussed.

  16. The Role of Snow and Ice in the Climate System

    ScienceCinema

    Barry, Roger G.

    2016-07-12

    Global snow and ice cover (the 'cryosphere') plays a major role in global climate and hydrology through a range of complex interactions and feedbacks, the best known of which is the ice - albedo feedback. Snow and ice cover undergo marked seasonal and long term changes in extent and thickness. The perennial elements - the major ice sheets and permafrost - play a role in present-day regional and local climate and hydrology, but the large seasonal variations in snow cover and sea ice are of importance on continental to hemispheric scales. The characteristics of these variations, especially in the Northern Hemisphere, and evidence for recent trends in snow and ice extent are discussed.

  17. Ice Thermal Storage Systems for Nuclear Power Plant Supplemental Cooling and Peak Power Shifting

    SciTech Connect

    Haihua Zhao; Hongbin Zhang; Phil Sharpe; Blaise Hamanaka; Wei Yan; WoonSeong Jeong

    2013-03-01

    Availability of cooling water has been one of the major issues for the nuclear power plant site selection. Cooling water issues have frequently disrupted the normal operation at some nuclear power plants during heat waves and long draught. One potential solution is to use ice thermal storage (ITS) systems that reduce cooling water requirements and boost the plant’s thermal efficiency in hot hours. ITS uses cheap off-peak electricity to make ice and uses the ice for supplemental cooling during peak demand time. ITS also provides a way to shift a large amount of electricity from off peak time to peak time. For once-through cooling plants near a limited water body, adding ITS can bring significant economic benefits and avoid forced derating and shutdown during extremely hot weather. For the new plants using dry cooling towers, adding the ITS systems can effectively reduce the efficiency loss during hot weather so that new plants could be considered in regions lack of cooling water. This paper will review light water reactor cooling issues and present the feasibility study results.

  18. Lunar South Pole ice as heat sink for Lunar cryofuel production system

    SciTech Connect

    Zuppero, A.; Stanley, M.; Modro, S.M.; Whitman, P.

    1995-03-01

    Recent Clementine bistatic radar data suggest that water ice may be present in a {open_quotes}forever shaded{close_quotes} depression or crater at the South Pole of the Moon. The ice is a feedstock for the electrolysis production of cryogenic oxygen and hydrogen rocket fuels for a transportation system on the moon and for leaving and descending on to the moon. The ice also provides a convective heat sink critical to the practical implementation of high throughput electric power generators and refrigerators that liquefy and cool the oxygen and hydrogen into cryogenic rocket fuel. This brief analysis shows that about a hundred tonnes of hardware delivered to the lunar surface can produce tens of thousands of tonnes of rocket fuel per year, on the moon. And it makes the point that if convective cooling is used instead of radiative cooling, then power and processing systems can be used that exist and have been tested already. This shortens the time by an order of magnitude to develop lunar operations. Quick deployment of a chemical cryofuel energy source is a key factor in the economics of lunar development.

  19. International Workshop on Comparing Ice Nucleation Measuring Systems 2014

    SciTech Connect

    Cziczo, Daniel

    2016-04-30

    The relationship of ambient aerosol particles to the formation of ice-containing clouds is one of the largest uncertainties in understanding the Earth’s climate. The uncertainty is due to several poorly understood processes and measurements including, but not limited to: (1) the microphysics of how particles nucleate ice, (2) the number of ice forming particles as a function of atmospheric properties such as temperature and relative humidity, (3) the atmospheric distribution of ice forming particles and (4) the role of anthropogenic activities in producing or changing the behavior of ice forming particles. The ways in which ice forming particles can impact climate is also multi-faceted. More ice forming particles can lead to clouds with more ice crystals and different optical properties than clouds with less ice forming particles. More effective ice forming particles can lead to ice at higher temperature and/or lower saturation, resulting in clouds at lower altitude or latitude which also changes the Earth’s radiative balance. Ice nucleation also initiates most of the Earth’s precipitation, even in the mid- and low-latitudes, since cloud-top temperatures are often below freezing. The limited measurements and lack of understanding directly translates to restrictions in our ability to model atmospheric ice formation and project changes into the future. The importance of ice nucleation research is further exemplified by Figure 1 which shows the publications per decade and citations per year on the topic of ice nucleation [DeMott et al., 2011]. After a lull at the end of the last century, there has been a dramatic increase in both publications and citations related to ice nucleation; this directly corresponds to the importance of ice nucleation on the Earth’s climate and the uncertainty in this area noted by the Solomon [2007].

  20. The ancient heritage of water ice in the solar system.

    PubMed

    Cleeves, L Ilsedore; Bergin, Edwin A; Alexander, Conel M O'D; Du, Fujun; Graninger, Dawn; Öberg, Karin I; Harries, Tim J

    2014-09-26

    Identifying the source of Earth's water is central to understanding the origins of life-fostering environments and to assessing the prevalence of such environments in space. Water throughout the solar system exhibits deuterium-to-hydrogen enrichments, a fossil relic of low-temperature, ion-derived chemistry within either (i) the parent molecular cloud or (ii) the solar nebula protoplanetary disk. Using a comprehensive treatment of disk ionization, we find that ion-driven deuterium pathways are inefficient, which curtails the disk's deuterated water formation and its viability as the sole source for the solar system's water. This finding implies that, if the solar system's formation was typical, abundant interstellar ices are available to all nascent planetary systems.

  1. Using an Earth System Model to Better Understand Ice Sheet Variability Through the Pleistocene

    NASA Astrophysics Data System (ADS)

    Tabor, C. R.; Poulsen, C. J.; Pollard, D.

    2015-12-01

    We use an Earth System model with a dynamic land-ice component to explore several inconsistencies between traditional Milankovitch theory and δ18O sediment records of the Pleistocene. Our model results show that a combination of albedo feedbacks, seasonal offset of precession forcing, and orbital cycle duration differences can explain much of the 41-kyr glacial cycles that characterize the early Pleistocene. The obliquity-controlled changes in annual average high-latitude insolation produce large variations in arctic vegetation-type and sea-ice cover, which amplify the land-ice response. In contrast, the seasonal nature of the precession insolation signal dampens net ice-melt. For instance, when precession enhances ice melt in the spring, it reduces ice melt in the fall, and vice versa. The lower frequency of obliquity cycles in combination with amplified climate sensitivity due to albedo feedbacks help produce a larger ice-volume response to cycles of obliquity compared to precession, despite precession contributing more to variations in high-latitude summer insolation. In addition, we can simulate the appearance of a 100-kyr ice-volume signal by reducing basal sliding in the ice sheet model. Model experiments with enhanced basal drag have greater ice sheet elevation because the ice sheets are not able to flow as quickly, leading to increased ice thickness at the expense of ice extent. These thicker ice sheets have colder surface temperatures, receive more snowfall, and do not readily advance past the ice equilibrium line. Greater high-latitude summer insolation from the combination of high obliquity and precession/eccentricity is then necessary to cause complete ice sheet retreat. This research lends support to the regolith hypothesis, which proposes gradual erosion of high-latitude northern hemisphere regolith by multiple cycles of glaciation helped cause the mid-Pleistocene transition.

  2. On-ice vibroseis and snowstreamer systems for geoscientific research

    NASA Astrophysics Data System (ADS)

    Eisen, Olaf; Hofstede, Coen; Diez, Anja; Kristoffersen, Yngve; Lambrecht, Astrid; Mayer, Christoph; Blenkner, Rick; Hilmarsson, Sverrir

    2015-03-01

    We present implementations of vibroseis system configurations with a snowstreamer for over-ice long-distance seismic traverses (>100 km). The configurations have been evaluated in Antarctica on ice sheet and ice shelf areas in the period 2010-2014. We discuss results of two different vibroseis sources: Failing Y-1100 on skis with a peak force of 120 kN in the frequency range 10-110 Hz; IVI EnviroVibe with a nominal peak force of 66 kN in the nominal frequency range 10-300 Hz. All measurements used a well-established 60 channel 1.5 km snowstreamer for the recording. Employed forces during sweeps were limited to less than 80% of the peak force. Maximum sweep frequencies, with a typical duration of 10 s, were 100 and 250 Hz for the Failing and EnviroVibe, respectively. Three different concepts for source movement were employed: the Failing vibrator was mounted with wheels on skis and pulled by a Pistenbully snow tractor. The EnviroVibe was operated self-propelled on Mattracks on the Antarctic plateau. This lead to difficulties in soft snow. For later implementations the EnviroVibe with tracks was put on a polyethylene (PE) sled. The sled had a hole in the center to lower the vibrator baseplate directly onto the snow surface. With the latter setup, data production varied between 20 km/day for 6-fold and 40 km/day for single fold for 9 h/day of measurements. The combination of tracks with the PE-sled was especially advantageous on hard and rough surfaces because of the flexibility of each component and the relatively lose mounting. The systems presented here are suitable to obtain data of subglacial and sub-seabed sediment layers and englacial layering in comparable quality as obtained from marine geophysics and land-based explosive surveys. The large offset aperture of the streamer overcomes limitations of radar systems for imaging of steep along-track subglacial topography. With joint international scientific and logistic efforts, large-scale mapping of Antarctica

  3. Modeling the seasonal variability of a coupled Arctic ice-ocean system

    NASA Technical Reports Server (NTRS)

    Hakkinen, Sirpa; Mellor, George L.

    1992-01-01

    The seasonal variability of the ice-ocean system in the Arctic Basin and the Norwegian, Greenland, and Barents Seas was modeled using a three-dimensional coupled ice-ocean model developed at Princeton University. The snow-ice model uses a three-level thermodynamic scheme similar to Semtner's (1976), but is extended to include the effect of leads. It is shown that simulations using the climatological monthly forcing fields produce a realistic seasonal variability of the ice cover. The ice thickness had a considerable sensitivity to the choice of the long-wave back radiation scheme, but these effects can be reduced through dynamical factors.

  4. Altitude Effects on Thermal Ice Protection System Performance; A Study of an Alternative Simulation Approach

    NASA Technical Reports Server (NTRS)

    Addy, Gene; Wright, Bill; Orchard, David; Oleskiw, Myron

    2015-01-01

    The quest for more energy-efficient green aircraft, dictates that all systems, including the ice protection system (IPS), be closely examined for ways to reduce energy consumption and to increase efficiency. A thermal ice protection systems must protect the aircraft from the hazardous effects of icing, and yet it needs to do so as efficiently as possible. The system can no longer be afforded the degree of over-design in power usage they once were. To achieve these more exacting designs, a better understanding of the heat and mass transport phenomena involved during an icing encounter is needed.

  5. Design, fabrication, and testing of an ultrasonic de-icing system for helicopter rotor blades

    NASA Astrophysics Data System (ADS)

    Palacios, Jose Luis

    A low-power, non-thermal ultrasonic de-icing system is introduced as a possible substitute for current electro-thermal systems. The system generates delaminating ultrasonic transverse shear stresses at the interface of accreted ice. A PZT-4 disk driven at 28.5 KHz (radial resonance of the disk) instantaneously de-bonds 2 mm thick freezer ice layers. The ice layers are accreted to a 0.7 mm thick, 30.4 cm x 30.4 cm steel plate at an environment temperature of -20°C. A power input of 50 Watts is applied to the actuator (50 V, 19.6 KV/m), which translates to a de-icing power of 0.07 W/cm2. A finite element model of the actuator bonded to the isotropic plate is used to guide the design of the system, and predicts the transverse shear stresses at the ice interface. Wind tunnel icing tests were conducted to demonstrate the potential use of the proposed system under impact icing conditions. Both glaze ice and rime ice were generated on steel and composite plates by changing the cloud conditions of the wind tunnel. Continuous ultrasonic vibration prevented impact ice formation around the actuator location at an input power not exceeding 0.18 W/cm 2 (1.2 W/in2). As ice thickness reached a critical thickness of approximately 1.2 mm, shedding occurred on those locations where ultrasonic transverse shear stresses exceeded the shear adhesion strength of the ice. Finite element transverse shear stress predictions correlate with observed experimental impact ice de-bonding behavior. To increase the traveling distance of propagating ultrasonic waves, ultrasonic shear horizontal wave modes are studied. Wave modes providing large modal interface transverse shear stress concentration coefficients (ISCC) between the host structure (0.7 mm thick steel plate) and accreted ice (2.5 mm thick ice layer) are identified and investigated for a potential increase in the wave propagation distance. Ultrasonic actuators able to trigger these optimum wave modes are designed and fabricated. Despite

  6. The Ice Giant Systems of Uranus and Neptune

    NASA Astrophysics Data System (ADS)

    Hammel, Heidi B.

    The current state of knowledge of the Ice Giants, Uranus and Neptune, is presented. The changing appearance of the atmosphere of Uranus is discussed, and its current cloud patterns and zonal winds are reviewed. Highlights of recent uranian ring and satellite observations are presented, along with a brief discussion of the ionosphere as deduced from ground-based observations. For the Neptune system, the rapidly evolving atmosphere is assessed, with a discussion of the longterm record to put recent observations into context. Also discussed are advances in characterizing the clumpy ring system of Neptune. Remarkable changes in the atmosphere of Neptune's moon Triton are described, and the ever-growing number of smaller satellites is reported. Concluding remarks include a synopsis of future exploration of these dynamic planetary systems.

  7. N-ICE2015: Multi-disciplinary study of the young sea ice system north of Svalbard from winter to summer.

    NASA Astrophysics Data System (ADS)

    Steen, Harald; Granskog, Mats; Assmy, Philipp; Duarte, Pedro; Hudson, Stephen; Gerland, Sebastian; Spreen, Gunnar; Smedsrud, Lars H.

    2016-04-01

    The Arctic Ocean is shifting to a new regime with a thinner and smaller sea-ice area cover. Until now, winter sea ice extent has changed less than during summer, as the heat loss to the atmosphere during autumn and winter is large enough form an ice cover in most regions. The insulating snow cover also heavily influences the winter ice growth. Consequently, the older, thicker multi-year sea ice has been replace by a younger and thinner sea. These large changes in the sea ice cover may have dramatic consequences for ecosystems, energy fluxes and ultimately atmospheric circulation and the Northern Hemisphere climate. To study the effects of the changing Arctic the Norwegian Polar Institute, together with national and international partners, launched from January 11 to June 24, 2015 the Norwegian Young Sea ICE cruise 2015 (N-ICE2015). N-ICE2015 was a multi-disciplinary cruise aimed at simultaneously studying the effect of the Arctic Ocean changes in the sea ice, the atmosphere, in radiation, in ecosystems. as well as water chemistry. R/V Lance was frozen into the drift ice north of Svalbard at about N83 E25 and drifted passively southwards with the ice until she was broken loose. When she was loose, R/V Lance was brought back north to a similar starting position. While fast in the ice, she served as a living and working platform for 100 scientist and engineers from 11 countries. One aim of N-ICE2015 is to present a comprehensive data-set on the first year ice dominated system available for the scientific community describing the state and changes of the Arctic sea ice system from freezing to melt. Analyzing the data is progressing and some first results will be presented.

  8. Comparison of energy storage systems in the United States chilled water versus two types of ice storage systems

    NASA Astrophysics Data System (ADS)

    Fischer, H. C.

    1984-10-01

    Current U.S. production non-storage heat pumps are compared to heat pumps using stored hot water and stored chilled water and to heat pumps using ice-on-coils as a means of using latent heat of fusion of water as a heat source. This equipment is also used as a means of stored cooling for air conditioning during hot weather. An ice-making heat pump which harvests ice as sheets of ice 3 to 4 times per hour and stores the ice in a large inexpensive bin is discussed. The advantages of such an ice-making heat pump to heat in cold weather and cool in hot weather is discussed as it relates to electric utility load management in different parts of the United States.

  9. ICE: A Scalable, Low-Cost FPGA-Based Telescope Signal Processing and Networking System

    NASA Astrophysics Data System (ADS)

    Bandura, K.; Bender, A. N.; Cliche, J. F.; de Haan, T.; Dobbs, M. A.; Gilbert, A. J.; Griffin, S.; Hsyu, G.; Ittah, D.; Parra, J. Mena; Montgomery, J.; Pinsonneault-Marotte, T.; Siegel, S.; Smecher, G.; Tang, Q. Y.; Vanderlinde, K.; Whitehorn, N.

    We present an overview of the ‘ICE’ hardware and software framework that implements large arrays of interconnected field-programmable gate array (FPGA)-based data acquisition, signal processing and networking nodes economically. The system was conceived for application to radio, millimeter and sub-millimeter telescope readout systems that have requirements beyond typical off-the-shelf processing systems, such as careful control of interference signals produced by the digital electronics, and clocking of all elements in the system from a single precise observatory-derived oscillator. A new generation of telescopes operating at these frequency bands and designed with a vastly increased emphasis on digital signal processing to support their detector multiplexing technology or high-bandwidth correlators — data rates exceeding a terabyte per second — are becoming common. The ICE system is built around a custom FPGA motherboard that makes use of an Xilinx Kintex-7 FPGA and ARM-based co-processor. The system is specialized for specific applications through software, firmware and custom mezzanine daughter boards that interface to the FPGA through the industry-standard FPGA mezzanine card (FMC) specifications. For high density applications, the motherboards are packaged in 16-slot crates with ICE backplanes that implement a low-cost passive full-mesh network between the motherboards in a crate, allow high bandwidth interconnection between crates and enable data offload to a computer cluster. A Python-based control software library automatically detects and operates the hardware in the array. Examples of specific telescope applications of the ICE framework are presented, namely the frequency-multiplexed bolometer readout systems used for the South Pole Telescope (SPT) and Simons Array and the digitizer, F-engine, and networking engine for the Canadian Hydrogen Intensity Mapping Experiment (CHIME) and Hydrogen Intensity and Real-time Analysis eXperiment (HIRAX

  10. Design and Testing of an Erosion Resistant Ultrasonic De-Icing System for Rotorcraft Blades

    DTIC Science & Technology

    2013-08-01

    water pressure sent to the nozzles controls the MVD. Figure 73: AERTS photograph with de-icing blades SO 4.3.2. Ultrasonic Driving There are...Applied Research Laboratory Technical Report Design and Testing of an Erosion Resistant Ultrasonic De-Icing System for Rotorcraft Blades by...University The Applied Research Laboratory P.O. Box 30 State College, PA 16804 Design and Testing of an Erosion Resistant Ultrasonic De-Icing System

  11. A novel approach to making microstructure measurements in the ice-covered Arctic Ocean.

    NASA Astrophysics Data System (ADS)

    Guthrie, J.; Morison, J.; Fer, I.

    2014-12-01

    As part of the 2014 Field Season of the North Pole Environmental Observatory, a 7-day microstructure experiment was performed. A Rockland Scientific Microrider with 2 FP07 fast response thermistors and 2 SBE-7 micro-conductivity probes was attached to a Seabird 911+ Conductivity-Temperature-Depth unit to allow for calibration of the microstructure probes against the highly accurate Seabird temperature and conductivity sensors. From a heated hut, the instrument package was lowered through a 0.75-m hole in the sea ice down to 350 m depth using a lightweight winch powered with a 3-phase, frequency-controlled motor that produced a smooth, controlled lowering speed of 25 cm s-1. Focusing on temperature and conductivity microstructure and using the special winch removed many of the complications involved with the use of free-fall microstructure profilers under the ice. The slow profiling speed permits calculation of Χ, the dissipation of thermal variance, without relying on fits to theoretical spectra to account for the unresolved variance. The dissipation rate of turbulent kinetic energy, ɛ, can then be estimated using the temperature gradient spectrum and the Ruddick et al. [2001] maximum likelihood method. Outside of a few turbulent patches, thermal diffusivity ranged between O(10-7) and O(10-6) m2s-1, resulting in negligible turbulent heat fluxes. Estimated ɛ was often at or below the noise level of most shear-based microstructure profilers. The noise level of Χ is estimated at O(10-11) °C2s-1, revealing the utility and applicability of this technique in future Arctic field work.

  12. Discovery of water ice nearly everywhere in the solar system

    SciTech Connect

    Zuppero, A.

    1995-10-01

    During the last decade we have discovered sources of accessible water in some form nearly everywhere in the solar system. Water ice has been found on the planet Mercury; probably on the Earth`s Moon; on Mars; on near Earth objects; on comets whose orbits frequently come close to that of Earth`s orbit; probably on Ceres, the largest inner asteroid; and on comets previously and incorrectly considered to be out of practical reach. The comets also provide massive quantities of hydrocarbons, similar to oil shale. The masses of either water or hydrocarbons are measured in units of cubic kilometers. The water is key to space transportation because it can be used as a rocket propellant directly, and because thermal process alone can be used to convert it and hydrocarbons into hydrogen, the highest performing rocket propellant. This presentation outlines what is currently known about the locations of the water ice, and sketches the requirements and environments of missions to prospect for and assay the water sources.

  13. A PHOTOMETRIC SYSTEM FOR DETECTION OF WATER AND METHANE ICES ON KUIPER BELT OBJECTS

    SciTech Connect

    Trujillo, Chadwick A.; Sheppard, Scott S.; Schaller, Emily L. E-mail: sheppard@dtm.ciw.edu

    2011-04-01

    We present a new near-infrared photometric system for detection of water ice and methane ice in the solar system. The system consists of two medium-band filters in the K-band region of the near-infrared, which are sensitive to water ice and methane ice, plus continuum observations in the J band and Y band. The primary purpose of this system is to distinguish between three basic types of Kuiper Belt Objects (KBOs)-those rich in water ice, those rich in methane ice, and those with little absorbance. In this work, we present proof-of-concept observations of 51 KBOs using our filter system, 21 of which have never been observed in the near-infrared spectroscopically. We show that our custom photometric system is consistent with previous spectroscopic observations while reducing telescope observing time by a factor of {approx}3. We use our filters to identify Haumea collisional family members, which are thought to be collisional remnants of a much larger body and are characterized by large fractions of water ice on their surfaces. We add 2009 YE{sub 7} to the Haumea collisional family based on our water ice band observations (J - H{sub 2}O = -1.03 {+-} 0.27) which indicate a high amount of water ice absorption, our calculated proper orbital elements, and the neutral optical colors we measured, V - R = 0.38 {+-} 0.04, which are all consistent with the rest of the Haumea family. We identify several objects dynamically similar to Haumea as being distinct from the Haumea family as they do not have water ice on their surfaces. In addition, we find that only the largest KBOs have methane ice, and Haumea itself has significantly less water ice absorption than the smaller Haumea family members. We find no evidence for other families in the Kuiper Belt.

  14. The ice-like water monolayer near the wall makes inner water shells diffuse faster inside a charged nanotube.

    PubMed

    Zhou, Xiaoyan; Wang, Chunlei; Wu, Fengmin; Feng, Mei; Li, Jingyuan; Lu, Hangjun; Zhou, Ruhong

    2013-05-28

    Using molecular dynamics simulations, we have investigated the impact of the ice-like water monolayer inside the tube and nearest to the tube wall on the diffusion properties of other inner water shells confined within a charged nanotube. We find that the axial diffusion coefficient of the first water monolayer near the wall monotonously decreases with the charge size on the nanotube, indicating a tighter control of the first monolayer from the larger sized charge. However, for the other water shells, the diffusion coefficients increase when the charge is larger than a critical value qc (~1.0 e). This unexpected phenomenon is attributed to the decreased number of hydrogen bonds between the first monolayer and other inner water shells caused by the very unique hydrogen-bond network patterns in the first ice-like monolayer, which makes it behave like a "hydrophobic water layer." Our findings may have implications for water treatment, non-fouling surfaces, catalysis engine, and biological sensor.

  15. Update on the NASA Glenn Propulsion Systems Lab Ice Crystal Cloud Characterization (2015, 2016)

    NASA Technical Reports Server (NTRS)

    Van Zante, Judith; Bencic, Timothy; Ratvasky, Thomas

    2016-01-01

    NASA Glenn's Propulsion Systems Lab, an altitude engine test facility, was outfitted with a spray system to generate ice crystals in 2011. Turbine engines and driven rigs can experience ice crystal icing at flight altitudes, temperatures and Mach numbers. To support these tests, four ice crystal characterizations have been conducted in two different facility configurations. In addition, super-cooled liquid and mixed phase clouds have also been generated. This paper represents a work in progress. It will describe some of the 11-parameter calibration space, and how those parameters interact with each other, the instrumentation used to characterize the cloud and present a sample of the cloud characterization results.

  16. Mountain glaciers and ice caps around Antarctica make a large sea-level rise contribution

    NASA Astrophysics Data System (ADS)

    Hock, Regine; de Woul, Mattias; Radić, Valentina; Dyurgerov, Mark

    2009-04-01

    The Intergovernmental Panel on Climate Change (IPCC) estimates that the sum of all contributions to sea-level rise for the period 1961-2004 was 1.1 ± 0.5 mm a-1, leaving 0.7 ± 0.7 of the 1.8 ± 0.5 mm a-1 observed sea-level rise unexplained. Here, we compute the global surface mass balance of all mountain glaciers and ice caps (MG&IC), and find that part of this much-discussed gap can be attributed to a larger contribution than previously assumed from mass loss of MG&IC, especially those around the Antarctic Peninsula. We estimate global surface mass loss of all MG&IC as 0.79 ± 0.34 mm a-1 sea-level equivalent (SLE) compared to IPCC's 0.50 ± 0.18 mm a-1. The Antarctic MG&IC contributed 28% of the global estimate due to exceptional warming around the Antarctic Peninsula and high sensitivities to temperature similar to those we find in Iceland, Patagonia and Alaska.

  17. Automatic digital photo-book making system

    NASA Astrophysics Data System (ADS)

    Wang, Wiley; Teo, Patrick; Muzzolini, Russ

    2010-02-01

    The diversity of photo products has grown more than ever before. A group of photos are not only printed individually, but also can be arranged in specific order to tell a story, such as in a photo book, a calendar or a poster collage. Similar to making a traditional scrapbook, digital photo book tools allow the user to choose a book style/theme, layouts of pages, backgrounds and the way the pictures are arranged. This process is often time consuming to users, given the number of images and the choices of layout/background combinations. In this paper, we developed a system to automatically generate photo books with only a few initial selections required. The system utilizes time stamps, color indices, orientations and other image properties to best fit pictures into a final photo book. The common way of telling a story is to lay the pictures out in chronological order. If the pictures are proximate in time, they will coincide with each other and are often logically related. The pictures are naturally clustered along a time line. Breaks between clusters can be used as a guide to separate pages or spreads, thus, pictures that are logically related can stay close on the same page or spread. When people are making a photo book, it is helpful to start with chronologically grouped images, but time alone wont be enough to complete the process. Each page is limited by the number of layouts available. Many aesthetic rules also apply, such as, emphasis of preferred pictures, consistency of local image density throughout the whole book, matching a background to the content of the images, and the variety of adjacent page layouts. We developed an algorithm to group images onto pages under the constraints of aesthetic rules. We also apply content analysis based on the color and blurriness of each picture, to match backgrounds and to adjust page layouts. Some of our aesthetic rules are fixed and given by designers. Other aesthetic rules are statistic models trained by using

  18. Advancing plant phenology and reduced herbivore production in a terrestrial system associated with sea ice decline.

    PubMed

    Kerby, Jeffrey T; Post, Eric

    2013-01-01

    The contribution of declining Arctic sea ice to warming in the region through Arctic amplification suggests that sea ice decline has the potential to influence ecological dynamics in terrestrial Arctic systems. Empirical evidence for such effects is limited, however, particularly at the local population and community levels. Here we identify an Arctic sea ice signal in the annual timing of vegetation emergence at an inland tundra system in West Greenland. According to the time series analyses presented here, an ongoing advance in plant phenology at this site is attributable to the accelerating decline in Arctic sea ice, and contributes to declining large herbivore reproductive performance via trophic mismatch. Arctic-wide sea ice metrics consistently outperform other regional and local abiotic variables in models characterizing these dynamics, implicating large-scale Arctic sea ice decline as a potentially important, albeit indirect, contributor to local-scale ecological dynamics on land.

  19. Analysis and testing of the Diamond One wing anti-icing system

    NASA Astrophysics Data System (ADS)

    Yeoman, K. E.

    1985-01-01

    The Diamond One wing leading edge is protected against ice accretions by a bleed air anti-icing system. Three cross-sections selected for computer modeling considered the thermal mechanisms of convection, conduction, evaporation and sensible heating of impinged and runback water. With an instrumented aircraft, the model was refined using dry air and above freezing cloud flight test data. The refined model was exercised for wing surface temperature predictions for six critical icing conditions and found safe for natural icing flight testing. Measured natural icing test data was then inserted into the model to compare predicted vs. measured temperatures. Correlation was achieved and the system was accepted by FAA as safe for flight into known icing conditions.

  20. New Spray Bar System Installed in NASA Lewis' Icing Research Tunnel

    NASA Technical Reports Server (NTRS)

    Irvine, Thomas B.

    1998-01-01

    NASA Lewis Research Center's Icing Research Tunnel (IRT) is the world's largest refrigerated wind tunnel dedicated to the study of aircraft icing. In the IRT, natural icing conditions are duplicated to test the effects of in-flight icing on actual aircraft components and on scale models of airplanes and helicopters. The IRT's ability to reproduce a natural icing cloud was significantly improved with the recent installation of a new spray bar system. It is the spray bar system that transforms the low-speed wind tunnel into an icing wind tunnel by producing microscopic droplets of water and injecting them into the wind tunnel air stream in order to accurately simulate cloud moisture.

  1. The Spectral Classes of the Saturnian System Ices: Rings and Satellites Observations by Cassini-VIMS

    NASA Astrophysics Data System (ADS)

    Filacchione, G.; Capaccioni, F.; Tosi, F.; Coradini, A.; Cerroni, P.; Clark, R. N.; Cuzzi, J. N.; Nicholson, P. D.; Buratti, B. J.; Brown, R. H.; Cruikshank, D. P.; Jaumann, R.; Hedman, M. M.

    2008-12-01

    The entire population of the Saturnian system ices was investigated by VIMS (Visual and Infrared Mapping Spectrometer) experiment on board Cassini spacecraft. By the end of the nominal mission a very large dataset of hyperspectral data had been collected in the spectral range 0.35-5.0 micron, which includes the regular satellites (Mimas, Enceladus, Tethys, Dione, Rhea, Hyperion, Iapetus, Phoebe), minor moons (Atlas, Prometheus, Pandora, Janus, Epimetheus, Telesto, Calypso) and rings. In this work we present an analysis of spectrophotometric indicators selected to describe the properties of the ices (I/F continuum levels, visible spectral slopes, band depths and positions), and which were retrieved from about 1500 full-disk observations of satellites as well as from mosaics of the main rings (A, B, C, CD, F) sampled with a resolution of 125 km/pixel along the radial axis. This comparative method allows us to highlight the spectral differences in this population of objects orbiting in the Saturnian system. In particular we have retrieved the distribution of the water ice abundance, which varies between the almost pure icy surfaces of Enceladus and Calypso to the carbon dioxide- and organic-rich Hyperion, Iapetus and Phoebe. Noteworthy is that a significant dichotomy is observed between the two co-orbital moons Epimetheus and Janus, possibly indicating a different origin and evolutionary process: while the first shows a very red visible spectrum (similar to Hyperion), the second has more neutral visible colors, making it a very peculiar object in the Saturnian system. Rings have very peculiar spectral differences when compared with the icy satellites: in the visible range their spectra are characterized by a spectral knee at bluer wavelengths (at about 520 nm compared to 550 nm on satellites); in the infrared range the 1.5-2.0 micron water ice band depths are in general deeper across the A and B rings, indicative of a larger fraction of pure water ice in comparison to

  2. Helicopter Icing Spray System (HISS) Nozzle Improvement Evaluation

    DTIC Science & Technology

    1981-09-01

    tests, most ice accretion on the spray boom resulted from leakage of loose fittings between nozzles and water manifolds, and from spray impingement...iuininging on the uplocks. Some ice accretion developed around nozzles when flow blocki-ge was experienced, but this was not a regular occurrence in...outriggers the estimated width of the cloud was 36 ft. "While less than any test aircraft rotor diameter, full span ice accretion was demon- strated on all

  3. A simple video-based timing system for on-ice team testing in ice hockey: a technical report.

    PubMed

    Larson, David P; Noonan, Benjamin C

    2014-09-01

    The purpose of this study was to describe and evaluate a newly developed on-ice timing system for team evaluation in the sport of ice hockey. We hypothesized that this new, simple, inexpensive, timing system would prove to be highly accurate and reliable. Six adult subjects (age 30.4 ± 6.2 years) performed on ice tests of acceleration and conditioning. The performance times of the subjects were recorded using a handheld stopwatch, photocell, and high-speed (240 frames per second) video. These results were then compared to allow for accuracy calculations of the stopwatch and video as compared with filtered photocell timing that was used as the "gold standard." Accuracy was evaluated using maximal differences, typical error/coefficient of variation (CV), and intraclass correlation coefficients (ICCs) between the timing methods. The reliability of the video method was evaluated using the same variables in a test-retest analysis both within and between evaluators. The video timing method proved to be both highly accurate (ICC: 0.96-0.99 and CV: 0.1-0.6% as compared with the photocell method) and reliable (ICC and CV within and between evaluators: 0.99 and 0.08%, respectively). This video-based timing method provides a very rapid means of collecting a high volume of very accurate and reliable on-ice measures of skating speed and conditioning, and can easily be adapted to other testing surfaces and parameters.

  4. Tracking and responding to a changing Arctic sea-ice cover: How ice users can help the scientific community design better observing systems (Louis Agassiz Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Eicken, Hajo

    2010-05-01

    The Arctic sea-ice cover is undergoing a major transformation, with substantial reductions in summer ice extent reflecting changes in ice thickness, age, and circulation. These changes are impacting Arctic ecosystems and a range of human activities. Anticipating and responding to such impacts, exacerbated by increasing economic activity in parts of the Arctic, requires a foundation of environmental observations and model predictions. Recent increases in industrial activities such as shipping and resource development in parts of the Arctic have further highlighted the need for an integrated observing system. In the case of a changing sea-ice cover, how would one best design and optimize such a system? One of the challenges is to meet the information needs of the scientific community in furthering fundamental understanding of the Arctic system, as well as those of key stakeholders and society, helping them to prepare for and respond to Arctic change. This presentation focuses on how the concept of sea-ice system services, i.e., the uses and benefits (or harm) derived from sea ice, may help guide the implementation of an effective observing system. Principal service categories are (1) sea ice as climate regulator, marine hazard, and coastal buffer; (2) transportation and use of ice as a platform; (3) cultural services obtained from the "icescape"; and (4) support of food webs and biological diversity by sea ice. An analysis of the different ice services provided to different user groups can help prioritize different types of observations and determine optimal measurement strategies. Moreover, the focus on different uses of the ice cover may also help synthesize fundamental and applied research to help Arctic communities adapt in a changing environment. Alaska has experienced some of the most substantial changes in sea-ice conditions throughout the Arctic over the past three decades and is used to illustrate the concepts discussed above. Specifically, we have examined

  5. Basal drainage system response to increasing surface melt on the Greenland ice sheet.

    PubMed

    Meierbachtol, T; Harper, J; Humphrey, N

    2013-08-16

    Surface meltwater reaching the bed of the Greenland ice sheet imparts a fundamental control on basal motion. Sliding speed depends on ice/bed coupling, dictated by the configuration and pressure of the hydrologic drainage system. In situ observations in a four-site transect containing 23 boreholes drilled to Greenland's bed reveal basal water pressures unfavorable to water-draining conduit development extending inland beneath deep ice. This finding is supported by numerical analysis based on realistic ice sheet geometry. Slow meltback of ice walls limits conduit growth, inhibiting their capacity to transport increased discharge. Key aspects of current conceptual models for Greenland basal hydrology, derived primarily from the study of mountain glaciers, appear to be limited to a portion of the ablation zone near the ice sheet margin.

  6. Ice/berm interaction study using rotary sidescan sonar and acoustic profiling systems

    SciTech Connect

    Good, R.R.; Anderson, K.G.; Lanzier, H.H.

    1984-05-01

    Tarsiut Island, in the Canadian Beaufort Sea, was the first dredged caisson retained island built for exploration drilling operations in the Arctic offshore. Due to the island's configuration location, a large first-year ice rubble pile would result from the ice/structure interaction. This paper outlines how a rotary side-scan sonar and a mechanically scanning, narrow-beam acoustic profiling system were used to determine the geometry and the contact area of the underside of heavily rubbled first-year ice. The results of this study are to be used to further the understanding of the nature and mechanism of the ice/structure interaction in Arctic offshore structures.

  7. Impact of sea-ice processes on the carbonate system and ocean acidification at the ice-water interface of the Amundsen Gulf, Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Fransson, Agneta; Chierici, Melissa; Miller, Lisa A.; Carnat, Gauthier; Shadwick, Elizabeth; Thomas, Helmuth; Pineault, Simon; Papakyriakou, Tim N.

    2013-12-01

    From sea-ice formation in November 2007 to onset of ice melt in May 2008, we studied the carbonate system in first-year Arctic sea ice, focusing on the impact of calcium-carbonate (CaCO3) saturation states of aragonite (ΩAr) and calcite (ΩCa) at the ice-water interface (UIW). Based on total inorganic carbon (CT) and total alkalinity (AT), and derived pH, CO2, carbonate ion ([CO32-]) concentrations and Ω, we investigated the major drivers such as brine rejection, CaCO3 precipitation, bacterial respiration, primary production and CO2-gas flux in sea ice, brine, frost flowers and UIW. We estimated large variability in sea-ice CT at the top, mid, and bottom ice. Changes due to CaCO3 and CO2-gas flux had large impact on CT in the whole ice core from March to May, bacterial respiration was important at the bottom ice during all months, and primary production in May. It was evident that the sea-ice processes had large impact on UIW, resulting in a five times larger seasonal amplitude of the carbonate system, relative to the upper 20 m. During ice formation, [CO2] increased by 30 µmol kg-1, [CO32-] decreased by 50 µmol kg-1, and the ΩAr decreased by 0.8 in the UIW due to CO2-enriched brine from solid CaCO3. Conversely, during ice melt, [CO32-] increased by 90 µmol kg-1 in the UIW, and Ω increased by 1.4 between March and May, likely due to CaCO3 dissolution and primary production. We estimated that increased ice melt would lead to enhanced oceanic uptake of inorganic carbon to the surface layer.

  8. Topological defects from doping and quenched disorder in artificial ice systems

    SciTech Connect

    Reichhardt, Charles; Reichhardt, Cynthia J; Libal, A

    2010-01-01

    We examine the ice-rule obeying and ice-rule breaking vertices in an artificial spin ice system created using magnetic vortices in type-II superconductors with nanostructured pinning arrays. We show that this system can be doped by changing the external field to move the number of vortices away from commensurability and create sites that contain two or zero vortices. For a square ice, the doping leads to the formation of a grain boundary of vertices that do not obey the ice rules. In commensurate systems where the ice rules are obeyed, we can introduce random disorder at the individual pinning sites to create regions where vortices may not be able to flip from one side of the trap to another. For weak disorder, all of the vertices still obey the ice rules, while at intermediate levels of disorder we find grain boundaries of vertices which do not obey the ice rules. For strong disorder it is possible to create isolated paired vertices that do not obey the ice rules. In summary, we have shown that an artificial square ice can be created using vortices in a type-II superconductor interacting with a periodic array of pinning sites where each site has a double well potential. By defining the direction of the effective spin according to the side of the double well occupied by the vortex, we find that this system obeys the ice rules for square ice. We add disorder to the system in the form of randomness of the height of the potential barrier at the center of the well, and obtain vertex configurations using a rotating drive protocol which is similar to the shaking ac magnetic field used in nanomagnetic systems. For weak disorder the entire system still obeys the square ice rules. For intermediate disorder, ice-rule breaking vertices appear and form grain boundaries, while for strong disorder there are both gain boundaries and isolated paired defects. In a system with uniform potential barrier heights, we introduce disorder by moving away from commensurability and creating

  9. Laboratory Studies of Extraterrestrial Ices and PAHs: Making an Astrobiological Silk Purse Out of An Interstellar Sow's Ear

    NASA Technical Reports Server (NTRS)

    Hudgins, Douglas M.; DeVincenzi, Donald (Technical Monitor)

    2002-01-01

    Tremendous strides have been made in our understanding of interstellar material over the past twenty years thanks to significant, parallel developments in observational astronomy and laboratory astrophysics. Today, the composition of dust in the ISM is reasonably well constrained to cold, micron-sized particles of various refractory materials. Shrouded within the protective confines of cold, opaque molecular clouds--the birthplace of stars and planets--these particles secrete mantles of mixed molecular lees whose major components are also well constrained. Finally, amidst the molecular inventory of these ice mantles are likely to be found polycyclic aromatic hydrocarbons (PAHs), whose telltale infrared signature I is now recognized throughout the Universe. However, of what significance is this scenario to the origin of life in our solar system--or any other? The major components of the icy materials observed in interstellar clouds and in our own solar system are uniformly quite simple. In addition, despite the fact that PAHs likely represent the single largest molecular reservoir of organic carbon in evolving planetary systems, they are not what would be considered "biogenic" molecules. Although interesting from a chemical and astrophysical standpoint, in the absence of a mechanism by which these materials can be transformed into more biochemically significant structures, they are of little Astrobiological significance. In this talk, we will begin with a brief review of the nature and abundance of the "raw" population of PAHs and PAH-related materials in the ISM. From there, we will move on to explore our laboratory simulations of the photochemical evolution of realistic mixed molecular ices under conditions which simulate those encountered in the ISM and in evolving planetary systems. Particular attention will be paid to the surprisingly complex array of organic species that are produced in these ices from such a deceptively simple inventory of starting materials

  10. Sea Ice

    NASA Technical Reports Server (NTRS)

    Parkinson, Claire L.; Cavalieri, Donald J.

    2005-01-01

    Sea ice covers vast areas of the polar oceans, with ice extent in the Northern Hemisphere ranging from approximately 7 x 10(exp 6) sq km in September to approximately 15 x 10(exp 6) sq km in March and ice extent in the Southern Hemisphere ranging from approximately 3 x 10(exp 6) sq km in February to approximately 18 x 10(exp 6) sq km in September. These ice covers have major impacts on the atmosphere, oceans, and ecosystems of the polar regions, and so as changes occur in them there are potential widespread consequences. Satellite data reveal considerable interannual variability in both polar sea ice covers, and many studies suggest possible connections between the ice and various oscillations within the climate system, such as the Arctic Oscillation, North Atlantic Oscillation, and Antarctic Oscillation, or Southern Annular Mode. Nonetheless, statistically significant long-term trends are also apparent, including overall trends of decreased ice coverage in the Arctic and increased ice coverage in the Antarctic from late 1978 through the end of 2003, with the Antarctic ice increases following marked decreases in the Antarctic ice during the 1970s. For a detailed picture of the seasonally varying ice cover at the start of the 21st century, this chapter includes ice concentration maps for each month of 2001 for both the Arctic and the Antarctic, as well as an overview of what the satellite record has revealed about the two polar ice covers from the 1970s through 2003.

  11. AC Breakdown Properties of Bamboo-Ice Composite System at Cryogenic Region

    NASA Astrophysics Data System (ADS)

    Shiji, Yuhei; Muramoto, Yuji; Shimizu, Noriyuki

    In recent years biomaterials attract attention in various fields to solve environmental problems. Bamboo is naturally decomposed and characterized by its excellent elasticity, split and water absorption property. We consider that bamboo-ice composite system can be used as a substitute of GFRP (Glass Fiber Reinforced Plastics), which is not decomposed, in electrical insulation system at cryogenic region. In this paper we will report the effect of water absorption on ac breakdown of bamboo-ice composite system in liquid nitrogen. Ac breakdown properties of bamboo-ice composite system depend on water absorption and structure of bamboo.

  12. Ice Chemistry on Outer Solar System Bodies: Electron Radiolysis of N2-, CH4-, and CO-Containing Ices

    NASA Astrophysics Data System (ADS)

    Materese, Christopher K.; Cruikshank, Dale P.; Sandford, Scott A.; Imanaka, Hiroshi; Nuevo, Michel

    2015-10-01

    Radiation processing of the surface ices of outer Solar System bodies may be an important process for the production of complex chemical species. The refractory materials resulting from radiation processing of known ices are thought to impart to them a red or brown color, as perceived in the visible spectral region. In this work, we analyzed the refractory materials produced from the 1.2-keV electron bombardment of low-temperature N2-, CH4-, and CO-containing ices (100:1:1), which simulates the radiation from the secondary electrons produced by cosmic ray bombardment of the surface ices of Pluto. Despite starting with extremely simple ices dominated by N2, electron irradiation processing results in the production of refractory material with complex oxygen- and nitrogen-bearing organic molecules. These refractory materials were studied at room temperature using multiple analytical techniques including Fourier-transform infrared spectroscopy, X-ray absorption near-edge structure (XANES) spectroscopy, and gas chromatography coupled with mass spectrometry (GC-MS). Infrared spectra of the refractory material suggest the presence of alcohols, carboxylic acids, ketones, aldehydes, amines, and nitriles. XANES spectra of the material indicate the presence of carboxyl groups, amides, urea, and nitriles, and are thus consistent with the IR data. Atomic abundance ratios for the bulk composition of these residues from XANES analysis show that the organic residues are extremely N-rich, having ratios of N/C ∼ 0.9 and O/C ∼ 0.2. Finally, GC-MS data reveal that the residues contain urea as well as numerous carboxylic acids, some of which are of interest for prebiotic and biological chemistries.

  13. Effectiveness of Thermal-Pneumatic Airfoil-Ice-Protection System

    NASA Technical Reports Server (NTRS)

    Gowan, William H., Jr.; Mulholland, Donald R.

    1951-01-01

    Icing and drag investigations were conducted in the NACA Lewis icing research tunnel employing a combination thermal-pneumatic de-icer mounted on a 42-inch-chord NACA 0018 airfoil. The de-icer consisted of a 3-inch-wide electrically heated strip symmetrically located about the leading edge with inflatable tubes on the upper and lower airfoil surfaces aft of the heated area. The entire de-icer extended to approximately 25 percent of chord. A maximum power density of 9.25 watts per square inch was required for marginal ice protection on the airfoil leading edge at an air temperature of 00 F and an airspeed of 300 miles per hour. Drag measurements indicated, that without icing, the de-icer installation increased the section drag to approximately 140 percent of that of the bare airfoil; with the tubes inflated, this value increased to a maximum of approximately 620 percent. A 2-minute tube-inflation cycle prevented excessive ice formation on the inflatable area although small scattered residual Ice formations remained after inflation and were removed intermittently during later cycles. Effects of the time lag of heater temperatures after initial application of power and the insulating effect of ice formations on heater temperatures were also determined.

  14. An Ice Core Melter System for Continuous Major and Trace Chemical Analyses of a New Mt. Logan Summit Ice Core

    NASA Astrophysics Data System (ADS)

    Osterberg, E. C.; Handley, M. J.; Sneed, S. D.; Mayewski, P. A.; Kreutz, K. J.; Fisher, D. A.

    2004-12-01

    The ice core melter system at the University of Maine Climate Change Institute has been recently modified and updated to allow high-resolution (<1-2 cm ice/sample), continuous and coregistered sampling of ice cores, most notably the 2001 Mt. Logan summit ice core (187 m to bedrock), for analyses of 34 trace elements (Sr, Cd, Sb, Cs, Ba, Pb, Bi, U, As, Al, S, Ca, Ti, V, Cr, Mn, Fe, Co, Cu, Zn, REE suite) by inductively coupled plasma mass spectrometry (ICP-MS), 8 major ions (Na+, Ca2+, Mg2+, K+, Cl-, SO42-, NO3-, MSA) by ion chromatography (IC), stable water isotopes (δ 18O, δ D, d) and volcanic tephra. The UMaine continuous melter (UMCoM) system is housed in a dedicated clean room with HEPA filtered air. Standard clean room procedures are employed during melting. A Wagenbach-style continuous melter system has been modified to include a pure Nickel melthead that can be easily dismantled for thorough cleaning. The system allows melting of both ice and firn without wicking of the meltwater into unmelted core. Contrary to ice core melter systems in which the meltwater is directly channeled to online instruments for continuous flow analyses, the UMCoM system collects discrete samples for each chemical analysis under ultraclean conditions. Meltwater from the pristine innermost section of the ice core is split between one fraction collector that accumulates ICP-MS samples in acid pre-cleaned polypropylene vials under a class-100 HEPA clean bench, and a second fraction collector that accumulates IC samples. A third fraction collector accumulates isotope and tephra samples from the potentially contaminated outer portion of the core. This method is advantageous because an archive of each sample remains for subsequent analyses (including trace element isotope ratios), and ICP-MS analytes are scanned for longer intervals and in replicate. Method detection limits, calculated from de-ionized water blanks passed through the entire UMCoM system, are below 10% of average Mt

  15. Late Quaternary Advance and Retreat of an East Antarctic Ice Shelf System: Insights from Sedimentary Beryllium-10 Concentrations

    NASA Astrophysics Data System (ADS)

    Guitard, M. E.; Shevenell, A.; Domack, E. W.; Rosenheim, B. E.; Yokoyama, Y.

    2014-12-01

    Observed retreat of Antarctica's marine-based glaciers and the presence of warm (~2°C) modified Circumpolar Deep Water on Antarctica's continental shelves imply ocean temperatures may influence Antarctic cryosphere stability. A paucity of information regarding Late Quaternary East Antarctic cryosphere-ocean interactions makes assessing the variability, timing, and style of deglacial retreat difficult. Marine sediments from Prydz Bay, East Antarctica contain hemipelagic siliceous mud and ooze units (SMO) alternating with glacial marine sediments. The record suggests Late Quaternary variability of local outlet glacier systems, including the Lambert Glacier/Amery Ice Shelf system that drains 15% of the East Antarctic Ice Sheet. We present a refined radiocarbon chronology and beryllium-10 (10Be) record of Late Quaternary depositional history in Prydz Channel, seaward of the Amery Ice Shelf system, which provides insight into the timing and variability of this important outlet glacier system. We focus on three piston cores (NBP01-01, JPC 34, 35, 36; 750 m water depth) that contain alternating SMO and granulated units uninterrupted by glacial till; the record preserves a succession of glacial marine deposits that pre-date the Last Glacial Maximum. We utilize the ramped pyrolysis preparatory method to improve the bulk organic carbon 14C-based chronology for Prydz Channel. To determine if the SMO intervals reflect open water conditions or sub-ice shelf advection, we measured sedimentary 10Be concentrations. Because ice cover affects 10Be pathways through the water column, sedimentary concentrations should provide information on past depositional environments in Prydz Channel. In Prydz Channel sediments, 10Be concentrations are generally higher in SMO units and lower in glacial units, suggesting Late Quaternary fluctuations in the Amery Ice Shelf. Improved chronologic constraints indicate that these fluctuations occurred on millennial timescales during the Last Glacial

  16. Decision Making and Systems Thinking: Educational Issues

    ERIC Educational Resources Information Center

    Yurtseven, M. Kudret; Buchanan, Walter W.

    2016-01-01

    Decision making in most universities is taught within the conventional OR/MS (Operations Research/Management Science) paradigm. This paradigm is known to be "hard" since it is consisted of mathematical tools, and normally suitable for solving structured problems. In complex situations the conventional OR/MS paradigm proves to be…

  17. High-frequency microwave anti-/de-icing system for carbon-reinforced airfoil structures

    NASA Astrophysics Data System (ADS)

    Feher, Lambert; Thumm, Manfred

    2001-08-01

    An aircraft may be subjected to icing for a variety of meteorological reasons during the flight. Ice formation on the plane and in particular on the aerodynamically carrying structures adversely affects the flight behaviour. Conventional de-icing methods for aluminum wings are characterised by a high energy consumption during the flight and slow ice melting due to thermal diffusion of the heat in the wing material. In addition to advanced turbines, novel materials and composites have to be used in order to reduce the weight and, hence, the fuel consumption. These composite materials have a far worse thermal conductivity than metals and undergo delamination when hot air systems, resistance or ohmic heating mats are used. In the paper, the unique advantages of a novel High Frequency Microwave Anti-/De-icing System for large future aircraft with carbon reinforced leading edge structures are presented.

  18. Update on the NASA Glenn Propulsion Systems Lab Ice Crystal Cloud Characterization (2015)

    NASA Technical Reports Server (NTRS)

    Van Zante, Judith F.; Bencic, Timothy J.; Ratvasky, Thomas P.

    2016-01-01

    NASA Glenn's Propulsion Systems Lab (PSL), an altitude engine test facility, was outfitted with a spray system to generate ice crystals. The first ice crystal characterization test occurred in 2012. At PSL, turbine engines and driven rigs can experience ice crystal icing at flight altitudes, temperatures and Mach numbers. To support these tests, four ice crystal characterizations have been conducted in two different facility configurations. In addition, super-cooled liquid and mixed phase clouds have also been generated. This paper will discuss the recent learning from the previous two calibrations. It will describe some of the 12-parameter calibration space, and how those parameters interact with each other, the instrumentation used to characterize the cloud and present a sample of the cloud characterization results.

  19. An improved continuous flow analysis system for high-resolution field measurements on ice cores.

    PubMed

    Kaufmann, Patrik R; Federer, Urs; Hutterli, Manuel A; Bigler, Matthias; Schüpbach, Simon; Ruth, Urs; Schmitt, Jochen; Stocker, Thomas F

    2008-11-01

    Continuous flow analysis (CFA) is a well-established method to obtain information about impurity contents in ice cores as indicators of past changes in the climate system. A section of an ice core is continuously melted on a melter head supplying a sample water flow which is analyzed online. This provides high depth and time resolution of the ice core records and very efficient sample decontamination as only the inner part of the ice sample is analyzed. Here we present an improved CFA system which has been totally redesigned in view of a significantly enhanced overall efficiency and flexibility, signal quality, compactness, and ease of use. These are critical requirements especially for operations of CFA during field campaigns, e.g., in Antarctica or Greenland. Furthermore, a novel deviceto measure the total air content in the ice was developed. Subsequently, the air bubbles are now extracted continuously from the sample water flow for subsequent gas measurements.

  20. Use of the X-Band Radar to Support the Detection of In-Flight Icing Hazards by the NASA Icing Remote Sensing System

    NASA Technical Reports Server (NTRS)

    Serke, David J.; Politovich, Marcia K.; Reehorst, Andrew L.; Gaydos, Andrew

    2009-01-01

    The Alliance Icing Research Study-II (AIRS-II) field program was conducted near Montreal, Canada during the winter of 2003. The NASA Icing Remote Detection System (NIRSS) was deployed to detect in-flight icing hazards and consisted of a vertically pointing multichannel radiometer, a ceilometer and an x-band cloud radar. The radiometer was used to derive atmospheric temperature soundings and integrated liquid water, while the ceilometer and radar were used only to define cloud boundaries. The purpose of this study is to show that the radar reflectivity profiles from AIRS-II case studies could be used to provide a qualitative icing hazard.

  1. Measures Earth System Data Records (ESDR) of Ice Motion in Antarctica: Status, Impact and Future Products.

    NASA Astrophysics Data System (ADS)

    Scheuchl, B.; Rignot, E. J.; Mouginot, J.

    2014-12-01

    Spaceborne Synthetic Aperture Radar (SAR) data is an extremely useful tool for providing relevant information about the ice sheet ECV: ice vector velocity, grounding line position, and ice front location. Here, we provide an overview of the SAR Earth System Data Records (ESDR) for Antarctica part of MEaSUREs that includes: the first complete map of surface ice vector velocity in Antarctica, a map of grounding line positions around Antarctica, ice velocity time series for selected regions: Ross and Ronne-Filchner Ice Shelves and associated drainage basins, the Amundsen Sea Embayment of West Antarctica which is the largest contributor to sea level rise from Antarctica and the focus of rapid ice sheet retreat, and Larsen-B and -C ice shelves which is the second largest contribution to sea level rise from Antarctica. Other products include a database of ice shelf boundaries and drainage basins based on ice motion mapping and digital elevation models generated independently. Data continuity is a crucial aspect of this work and a fundamental challenge for the continuation of these products due to the lack of a dedicated interferometric mission on the cryosphere until the SAR mission under consideration between NASA and ISRO is approved. Four SAR missions ceased operations since IPY. CSA's RADARSAT-2 has provided important bridging data between these missions in Greenland and Antarctica. In 2014, ESA launched Sentinel-1a and JAXA launched ALOS-2 PALSAR, for which we will have limited data access. The Polar Space Task Group (PSTG) created by WMO has established a mandate to support cryospheric products from scientific research using international SARs which continues to play an active role in securing key data acquisitions over ice sheets. We will provide an overview of current efforts. This work was conducted at UC Irvine, Department of Earth System Science under a contract with NASA's MEaSUREs program.

  2. Semi-automated Digital Imaging and Processing System for Measuring Lake Ice Thickness

    NASA Astrophysics Data System (ADS)

    Singh, Preetpal

    Canada is home to thousands of freshwater lakes and rivers. Apart from being sources of infinite natural beauty, rivers and lakes are an important source of water, food and transportation. The northern hemisphere of Canada experiences extreme cold temperatures in the winter resulting in a freeze up of regional lakes and rivers. Frozen lakes and rivers tend to offer unique opportunities in terms of wildlife harvesting and winter transportation. Ice roads built on frozen rivers and lakes are vital supply lines for industrial operations in the remote north. Monitoring the ice freeze-up and break-up dates annually can help predict regional climatic changes. Lake ice impacts a variety of physical, ecological and economic processes. The construction and maintenance of a winter road can cost millions of dollars annually. A good understanding of ice mechanics is required to build and deem an ice road safe. A crucial factor in calculating load bearing capacity of ice sheets is the thickness of ice. Construction costs are mainly attributed to producing and maintaining a specific thickness and density of ice that can support different loads. Climate change is leading to warmer temperatures causing the ice to thin faster. At a certain point, a winter road may not be thick enough to support travel and transportation. There is considerable interest in monitoring winter road conditions given the high construction and maintenance costs involved. Remote sensing technologies such as Synthetic Aperture Radar have been successfully utilized to study the extent of ice covers and record freeze-up and break-up dates of ice on lakes and rivers across the north. Ice road builders often used Ultrasound equipment to measure ice thickness. However, an automated monitoring system, based on machine vision and image processing technology, which can measure ice thickness on lakes has not been thought of. Machine vision and image processing techniques have successfully been used in manufacturing

  3. Investigation of Aerodynamic and Icing Characteristics of a Flush Alternate Inlet Induction System Air Scoop

    NASA Technical Reports Server (NTRS)

    Lewis, James P.

    1953-01-01

    An investigation has been made in the NACA Lewis icing research tunnel to determine the aerodynamic and icing characteristics of a full-scale induction-system air-scoop assembly incorporating a flush alternate inlet. The flush inlet was located immediately downstream of the offset ram inlet and included a 180 deg reversal and a 90 deg elbow in the ducting between inlet and carburetor top deck. The model also had a preheat-air inlet. The investigation was made over a range of mass-air- flow ratios of 0 to 0.8, angles of attack of 0 and 4 deg airspeeds of 150 to 270 miles per hour, air temperatures of 0 and 25 F various liquid-water contents, and droplet sizes. The ram inlet gave good pressure recovery in both clear air and icing but rapid blockage of the top-deck screen occurred during icing. The flush alternate inlet had poor pressure recovery in both clear air and icing. The greatest decreases in the alternate-inlet pressure recovery were obtained at icing conditions of low air temperature and high liquid-water content. No serious screen icing was observed with the alternate inlet. Pressure and temperature distributions on the carburetor top deck were determined using the preheat-air supply with the preheat- and alternate-inlet doors in various positions. No screen icing occurred when the preheat-air system was operated in combination with alternate-inlet air flow.

  4. Dynamics of coupled ice-ocean system in the marginal ice zone: Study of the mesoscale processes and of constitutive equations for sea ice

    NASA Technical Reports Server (NTRS)

    Hakkinen, S.

    1984-01-01

    This study is aimed at the modelling of mesoscale processed such as up/downwelling and ice edge eddies in the marginal ice zones. A 2-dimensional coupled ice-ocean model is used for the study. The ice model is coupled to the reduced gravity ocean model (f-plane) through interfacial stresses. The constitutive equations of the sea ice are formulated on the basis of the Reiner-Rivlin theory. The internal ice stresses are important only at high ice concentrations (90-100%), otherwise the ice motion is essentially free drift, where the air-ice stress is balanced by the ice-water stress. The model was tested by studying the upwelling dynamics. Winds parallel to the ice edge with the ice on the right produce upwilling because the air-ice momentum flux is much greater that air-ocean momentum flux, and thus the Ekman transport is bigger under the ice than in the open water. The upwelling simulation was extended to include temporally varying forcing, which was chosen to vary sinusoidally with a 4 day period. This forcing resembles successive cyclone passings. In the model with a thin oceanic upper layer, ice bands were formed.

  5. Projections of Centennial-scale Sea Level Change in an Earth System Model Including Dynamic Ice Sheets

    NASA Astrophysics Data System (ADS)

    Wei, W.; Lohmann, G.

    2014-12-01

    The major contribution to global mean sea level (GMSL) change under contemporary climate conditions involves thermal expansion of the ocean and outflow from the land ice, with the latter increasing more rapidly in percentage as a form of ice sheets. Current earth system models (EMS) can constrain thermal expansion with high confidence in projections; however, few of them have been successfully coupled to an ice sheet model (ISM) to incorporate future evolution of ice sheets. In this study, a coupled EMS - ISM is applied to estimate potential range of their contribution to GMSL change over the next several centuries, by simulating the new emission scenarios from the Coupled Model Intercomparison Project Phase 5 (CMIP5). Our results indicate that the thermal contribution to GMSL rise still dominants within this century, with up to 0.4 m in the highest CO2 case, and continue to increase for many centuries even after stabilization of CO2. This increase can reach to almost 3.5 m GMSL rise by the end of 25th century in RCP8.5, when equivalent CO2 concentration exceeds 2500 ppm. Nevertheless, over longer time scales, GMSL contribution from ice sheets enhances more dramatically than linearly with increase in temperature and can eventually overweigh thermal contribution after 24th century. This contribution mainly results from a negative surface mass balance (SMB) of Greenland ice sheet and can exceed 4 m GMSL rise in RCP8.5. Projection of Antarctic SMB demonstrates a negative contribution to GMSL rise in all scenarios except RCP8.5, in which it can lead to more than 2 m GMSL rise. Moreover, we emphasize that sea level change contribution from these two effects exhibits substantial regional pattern, which requires more comprehensive attention from the policy makers to make their plan against this issue in the future.

  6. Low-frequency variability in the arctic atmosphere, sea ice, and upper-ocean climate system

    SciTech Connect

    Bitz, C.M.; Battisti, D.S.; Moritz, R.E.; Beesley, J.A.

    1996-02-01

    The low-frequency natural variability of the arctic climate system is modeled using a single-column, energy balance model of the atmosphere, sea ice, and upper-ocean system. Variability in the system is induced by forcing with realistic, random perturbations in the atmospheric energy transport and cloudiness. The model predicts that the volume of perennial sea ice varies predominantly on decadal timescales, while other arctic climate variables vary mostly on intraannual and interannual timescales. The variance of the simulated sea ice volume is most sensitive to perturbations of the atmospheric forcing in late spring, at the onset of melt. The variance of the simulated sea ice volume is most sensitive to perturbations of the atmospheric forcing in the late spring, at the onset of melt. The variance of sea ice volume increases with the mean sea ice thickness and with the number of layers resolved in the sea ice model. This suggests that much of the simulated variance develops when the surface temperature decouples from the sea ice interior during the late spring, when melting snow abruptly exposes the sea ice surface and decreases the surface albedo. The minimum model requirements to simulate the natural variability in the arctic climate are identified. The implications of the low-frequency, natural variability in sea ice volume for detecting a climate change are discussed. Finally, calculations suggest that the variability in the thermodynamic forcing of the polar cap could lead to a freshening in North Atlantic that is comparable to the freshening associated with the Great Salinity Anomaly. 28 refs., 14 figs., 5 tabs.

  7. Modelling the liquid-water vein system within polar ice sheets as a potential microbial habitat

    NASA Astrophysics Data System (ADS)

    Dani, K. G. Srikanta; Mader, Heidy M.; Wolff, Eric W.; Wadham, Jemma L.

    2012-06-01

    Based on the fundamental and distinctive physical properties of polycrystalline ice Ih, the chemical and temperature profiles within the polar ice sheets, and the observed selective partitioning of bacteria into liquid water filled veins in the ice, we consider the possibility that microbial life could survive and be sustained within glacial systems. Here, we present a set of modelled vertical profiles of vein diameter, vein chemical concentration, and vein water volume variability across a range of polar ice sheets using their ice core chemical profiles. A sensitivity analysis of VeinsInIce1.0, the numerical model used in this study shows that the ice grain size and the local borehole temperature are the most significant factors that influence the intergranular liquid vein size and the amount of freeze-concentrated impurities partitioned into the veins respectively. Model results estimate the concentration and characteristics of the chemical broth in the veins to be a potential extremophilic microbial medium. The vein sizes are estimated to vary between 0.3 μm to 8 μm across the vertical length of many polar ice sheets and they may contain up to 2 μL of liquid water per litre of solid ice. The results suggest that these veins in polar ice sheets could accommodate populations of psychrophilic and hyperacidophilic ultra-small bacteria and in some regions even support the habitation of unicellular eukaryotes. This highlights the importance of understanding the potential impact of englacial microbial metabolism on polar ice core chemical profiles and provides a model for similar extreme habitats elsewhere in the universe.

  8. SONARC: A Sea Ice Monitoring and Forecasting System to Support Safe Operations and Navigation in Arctic Seas

    NASA Astrophysics Data System (ADS)

    Stephenson, S. R.; Babiker, M.; Sandven, S.; Muckenhuber, S.; Korosov, A.; Bobylev, L.; Vesman, A.; Mushta, A.; Demchev, D.; Volkov, V.; Smirnov, K.; Hamre, T.

    2015-12-01

    Sea ice monitoring and forecasting systems are important tools for minimizing accident risk and environmental impacts of Arctic maritime operations. Satellite data such as synthetic aperture radar (SAR), combined with atmosphere-ice-ocean forecasting models, navigation models and automatic identification system (AIS) transponder data from ships are essential components of such systems. Here we present first results from the SONARC project (project term: 2015-2017), an international multidisciplinary effort to develop novel and complementary ice monitoring and forecasting systems for vessels and offshore platforms in the Arctic. Automated classification methods (Zakhvatkina et al., 2012) are applied to Sentinel-1 dual-polarization SAR images from the Barents and Kara Sea region to identify ice types (e.g. multi-year ice, level first-year ice, deformed first-year ice, new/young ice, open water) and ridges. Short-term (1-3 days) ice drift forecasts are computed from SAR images using feature tracking and pattern tracking methods (Berg & Eriksson, 2014). Ice classification and drift forecast products are combined with ship positions based on AIS data from a selected period of 3-4 weeks to determine optimal vessel speed and routing in ice. Results illustrate the potential of high-resolution SAR data for near-real-time monitoring and forecasting of Arctic ice conditions. Over the next 3 years, SONARC findings will contribute new knowledge about sea ice in the Arctic while promoting safe and cost-effective shipping, domain awareness, resource management, and environmental protection.

  9. Passenger comfort technology for system decision making

    NASA Technical Reports Server (NTRS)

    Conner, D. W.

    1980-01-01

    Decisions requiring passenger comfort technology were shown to depend on: the relationship between comfort and other factors (e.g., cost, urgency, alternate modes) in traveler acceptance of the systems, serving a selected market require technology to quantify effects of comfort versus offsetting factors in system acceptance. Public predict the maximum percentage of travelers who willingly accept the overall comfort of any trip ride. One or the other of these technology requirements apply to decisions on system design, operation and maintenance.

  10. Ice Thermal Storage Systems for LWR Supplemental Cooling and Peak Power Shifting

    SciTech Connect

    Haihua Zhao; Hongbin Zhang; Phil Sharpe; Blaise Hamanaka; Wei Yan; WoonSeong Jeong

    2010-06-01

    Availability of enough cooling water has been one of the major issues for the nuclear power plant site selection. Cooling water issues have frequently disrupted the normal operation at some nuclear power plants during heat waves and long draught. The issues become more severe due to the new round of nuclear power expansion and global warming. During hot summer days, cooling water leaving a power plant may become too hot to threaten aquatic life so that environmental regulations may force the plant to reduce power output or even temporarily to be shutdown. For new nuclear power plants to be built at areas without enough cooling water, dry cooling can be used to remove waste heat directly into the atmosphere. However, dry cooling will result in much lower thermal efficiency when the weather is hot. One potential solution for the above mentioned issues is to use ice thermal storage systems (ITS) that reduce cooling water requirements and boost the plant’s thermal efficiency in hot hours. ITS uses cheap off-peak electricity to make ice and uses those ice for supplemental cooling during peak demand time. ITS is suitable for supplemental cooling storage due to its very high energy storage density. ITS also provides a way to shift large amount of electricity from off peak time to peak time. Some gas turbine plants already use ITS to increase thermal efficiency during peak hours in summer. ITSs have also been widely used for building cooling to save energy cost. Among three cooling methods for LWR applications: once-through, wet cooling tower, and dry cooling tower, once-through cooling plants near a large water body like an ocean or a large lake and wet cooling plants can maintain the designed turbine backpressure (or condensation temperature) during 99% of the time; therefore, adding ITS to those plants will not generate large benefits. For once-through cooling plants near a limited water body like a river or a small lake, adding ITS can bring significant economic

  11. Flight and wind tunnel tests of an electro-impulse de-icing system

    NASA Technical Reports Server (NTRS)

    Zumwalt, G. W.; Mueller, A. A.

    1984-01-01

    A joint University-Industry project has been sponsored by NASA Lewis Research Center to develop the Electro-Impulse method for de-icing aircraft. The program has consisted of basic analyses, laboratory testing, icing tunnel tests, and flight tests. During the past two years, the EIDI system has been tested and refined, and has been shown to be a low-energy, highly reliable de-icing system for a wide range of conditions. This paper gives a brief review of conditions. This paper gives a brief review of the basic principles, the development history, and results of recent flight tests by NASA and by Cessna Aircraft Company.

  12. Results of a low power ice protection system test and a new method of imaging data analysis

    NASA Technical Reports Server (NTRS)

    Shin, Jaiwon; Bond, Thomas H.; Mesander, Geert A.

    1992-01-01

    Tests were conducted on a BF Goodrich De-Icing System's Pneumatic Impulse Ice Protection (PIIP) system in the NASA Lewis Icing Research Tunnel (IRT). Characterization studies were done on shed ice particle size by changing the input pressure and cycling time of the PIIP de-icer. The shed ice particle size was quantified using a newly developed image software package. The tests were conducted on a 1.83 m (6 ft) span, 0.53 m (221 in) chord NACA 0012 airfoil operated at a 4 degree angle of attack. The IRT test conditions were a -6.7 C (20 F) glaze ice, and a -20 C (-4 F) rime ice. The ice shedding events were recorded with a high speed video system. A detailed description of the image processing package and the results generated from this analytical tool are presented.

  13. Thermal design and de-icing system for the Antarctic Telescope ICE-T

    NASA Astrophysics Data System (ADS)

    Strassmeier, Klaus G.; Kärcher, Hans J.; Kühn, Jürgen; Divarano, Igor

    2010-07-01

    ICE-T, the International Concordia Explorer Telescope, is under final design by an international consortium led by the Astrophysical Institute Potsdam AIP, Germany, and is intended to be placed at the French-Italian Concordia Station on Dome C in Antarctica. Experience with smaller telescopes at Concordia has shown that under the weather conditions at this site - with mean outside temperatures of -60° to -80° C and temperature changes of 20° in short time intervals - the ice-accumulation on the optical components during observation is a major problem. Also, energy consumption at this site should be minimized because fuel transport to the site is very costly. The paper describes the thermal concept for the telescope where the waste energy of the instrument electronics is used for heating the front surfaces of the Schmidt optics. All other parts of the telescope are protected by an insulated smooth cladding against the harsh outside environment. The effectiveness of the thermal concept is verified by CFD (Computer Fluid Dynamics) calculations.

  14. A study of carburetor/induction system icing in general aviation accidents

    NASA Technical Reports Server (NTRS)

    Obermayer, R. W.; Roe, W. T.

    1975-01-01

    An assessment of the frequency and severity of carburetor/induction icing in general-aviation accidents was performed. The available literature and accident data from the National Transportation Safety Board were collected. A computer analysis of the accident data was performed. Between 65 and 90 accidents each year involve carburetor/induction system icing as a probable cause/factor. Under conditions conducive to carburetor/induction icing, between 50 and 70 percent of engine malfunction/failure accidents (exclusive of those due to fuel exhaustion) are due to carburetor/induction system icing. Since the evidence of such icing may not remain long after an accident, it is probable that the frequency of occurrence of such accidents is underestimated; therefore, some extrapolation of the data was conducted. The problem of carburetor/induction system icing is particularly acute for pilots with less than 1000 hours of total flying time. The severity of such accidents is about the same as any accident resulting from a forced landing or precautionary landing. About 144 persons, on the average, are exposed to death and injury each year in accidents involving carburetor/induction icing as a probable cause/factor.

  15. Young Solar System in the Making

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Click on image for larger annotated version

    This artist's diagram compares the Epsilon Eridani system to our own solar system. The two systems are structured similarly, and both host asteroids (brown), comets (blue) and planets (white dots).

    Epsilon Eridani is our closest known planetary system, located about 10 light-years away in the constellation Eridanus. Its central star is a younger, fainter version of our sun, and is about 800 million years old about the same age of our solar system when life first took root on Earth.

    Observations from NASA's Spitzer Space Telescope show that the system hosts two asteroid belts, in addition to previously identified candidate planets and an outer comet ring.

    Epsilon Eridani's inner asteroid belt is located at about the same position as ours, approximately three astronomical units from its star (an astronomical unit is the distance between Earth and the sun.). The system's second, denser belt lies at about the same place where Uranus orbits in our solar system, or 20 astronomical units from the star.

    In the same way that Jupiter lies just outside our asteroid belt, shepherding its rocky debris into a ring, Epsilon Eridani is thought to have planets orbiting near the rims of its two belts. The first of these planets was identified in 2000 via the radial velocity technique. Called Epsilon Eridani b, it orbits at an average distance of 3.4 astronomical units placing it just outside the system's inner asteroid belt.

    The second planet orbiting near the rim of the outer asteroid belt at 20 astronomical units was inferred when Spitzer discovered the belt.

    A third planet might orbit in Epsilon Eridani at the inner edge of its outermost comet ring, which lies between 35 and 90 astronomical units. This planet was first hinted at in 1998 due to observed lumpiness in the comet ring.

    The outer comet ring around Epsilon Eridani is denser than our

  16. Decision-making in healthcare as a complex adaptive system.

    PubMed

    Kuziemsky, Craig

    2016-01-01

    Healthcare transformation requires a change in how the business of healthcare is done. Traditional decision-making approaches based on stable and predictable systems are inappropriate in healthcare because of the complex nature of healthcare delivery. This article reviews challenges to using traditional decision-making approaches in healthcare and how insight from Complex Adaptive Systems (CAS) could support healthcare management. The article also provides a system model to guide decision-making in healthcare as a CAS.

  17. What makes closed ecological systems sustainable?

    NASA Astrophysics Data System (ADS)

    Gitelson, I.; Degermendzhy, A.; Rodicheva, E.

    A closed ecosystem has some properties that an open systems lacks. Let us consider the ones that increase the sustainability of an ecosystem. The common feature of biological and physicochemical life support systems is that basically they are both catalytic. There are two fundamental properties distinguishing biological systems: 1) they are auto-catalytic: their catalysts - enzymes of protein nature - are continuously reproduced when the system functions; 2) the program of every process performed by enzymes and the program of their reproduction are inherent in the biological system itself - in the totality of genomes of the species involved in the functioning of the ecosystem. Actually, one cell with the genome capable of the phenotypic realization is enough for the self- restoration of the function performed by the cells of this species in the ecosystem. The multi-cellular organisms with stem cells are constantly ready to repair themselves by intensifying the continuous process of regeneration. We (Gitelson) have made a quantitative investigation of this process by studying the regeneration and reparation of erythrocytes in mammals. The continuous microalgal culture of Chlorella vulgaris was taken to investigate quantitatively the similar functional process of self-restoration in unicellular algae (Rodicheva). Based on the data obtained, we proposed a mathematical model of the restoration process in the cell population that has suffered an acute radiation damage. Besides these general biological mechanisms responsible for their sustainability, closed systems also possess specific features enhancing their stability. They are as follows: 1. Nutrients cannot leave the system. 2. The metabolic pathways of the material cycling are closed. 3. The rates of interlink metabolism are in conformity with each other due to their mutual limitation. We present the data obtained in the Bios-3 experiments that prove the efficiency of this mechanism as a factor of the

  18. An Instructional System for Consumer Decision-Making: Teacher's Manual.

    ERIC Educational Resources Information Center

    Suchman, J. Richard; DiSario, Martha R.

    An instructional system is presented for building the competencies of adult basic education students in making consumer decisions, and offers a guide to teachers who wish to design their own decision-making problems for students. The first four chapters provide a brief introduction, discuss the rational consumer decision-making process and the…

  19. Skillful seasonal forecasts of Arctic sea ice retreat and advance dates in a dynamical forecast system

    NASA Astrophysics Data System (ADS)

    Sigmond, M.; Reader, M. C.; Flato, G. M.; Merryfield, W. J.; Tivy, A.

    2016-12-01

    The need for skillful seasonal forecasts of Arctic sea ice is rapidly increasing. Technology to perform such forecasts with coupled atmosphere-ocean-sea ice systems has only recently become available, with previous skill evaluations mainly limited to area-integrated quantities. Here we show, based on a large set of retrospective ensemble model forecasts, that a dynamical forecast system produces skillful seasonal forecasts of local sea ice retreat and advance dates - variables that are of great interest to a wide range of end users. Advance dates can generally be skillfully predicted at longer lead times ( 5 months on average) than retreat dates ( 3 months). The skill of retreat date forecasts mainly stems from persistence of initial sea ice anomalies, whereas advance date forecasts benefit from longer time scale and more predictable variability in ocean temperatures. These results suggest that further investments in the development of dynamical seasonal forecast systems may result in significant socioeconomic benefits.

  20. Numerical simulation of electrothermal de-icing systems

    NASA Technical Reports Server (NTRS)

    De Witt, K. J.; Keith, T. G.; Chao, D. F.; Masiulaniec, K. C.

    1983-01-01

    Transient simulations of de-icing of composite aircraft components by electrothermal heating have been computed for both one and two-dimensional rectangular geometries. The implicit Crank-Nicolson formulation is used to insure stability of the finite-differenced heat conduction equations and the phase change in the ice layer is simulated using the Enthalpy method. Numerical solutions illustrating de-icer performance for various composite aircraft blades and environmental conditions are presented. Comparisons are made with previous studies and with available experimental data. Initial results using a coordinate mapping technique to describe the actual blade geometry are discussed.

  1. Mobilization of cryogenic ice in outer solar system satellites

    NASA Technical Reports Server (NTRS)

    Stevenson, D. J.; Lunine, J. I.

    1986-01-01

    Mechanisms to explain the mobilization of ice on the Uranian satellites Miranda and Ariel at the very low temperatures prevailing on those bodies are considered. A form of pressure solution creep is proposed in which very fine-grained water ice or clathrate hydrate is mobilized by a small amount of intergranular cryogenic fluid (CH4, CO, or N2). Viscosities as low as 10 to the 12th P are possible for a limited time, sufficient to allow flooding of rift valleys and perhaps even substantial lateral flows (glaciers).

  2. The IceCube data acquisition system: Signal capture, digitization,and timestamping

    SciTech Connect

    The IceCube Collaboration; Matis, Howard

    2009-03-02

    IceCube is a km-scale neutrino observatory under construction at the South Pole with sensors both in the deep ice (InIce) and on the surface (IceTop). The sensors, called Digital Optical Modules (DOMs), detect, digitize and timestamp the signals from optical Cherenkov-radiation photons. The DOM Main Board (MB) data acquisition subsystem is connected to the central DAQ in the IceCube Laboratory (ICL) by a single twisted copper wire-pair and transmits packetized data on demand. Time calibration ismaintained throughout the array by regular transmission to the DOMs of precisely timed analog signals, synchronized to a central GPS-disciplined clock. The design goals and consequent features, functional capabilities, and initial performance of the DOM MB, and the operation of a combined array of DOMs as a system, are described here. Experience with the first InIce strings and the IceTop stations indicates that the system design and performance goals have been achieved.

  3. An Approach to Detect and Mitigate Ice Particle Accretion in Aircraft Engine Compression Systems

    NASA Technical Reports Server (NTRS)

    May, Ryan D.; Guo, Ten-Huei; Simon, Donald L.

    2013-01-01

    The accretion of ice in the compression system of commercial gas turbine engines operating in high ice water content conditions is a safety issue being studied by the aviation sector. While most of the research focuses on the underlying physics of ice accretion and the meteorological conditions in which accretion can occur, a systems-level perspective on the topic lends itself to potential near-term operational improvements. This work focuses on developing an accurate and reliable algorithm for detecting the accretion of ice in the low pressure compressor of a generic 40,000 lbf thrust class engine. The algorithm uses only the two shaft speed sensors and works regardless of engine age, operating condition, and power level. In a 10,000-case Monte Carlo simulation, the detection approach was found to have excellent capability at determining ice accretion from sensor noise with detection occurring when ice blocks an average of 6.8 percent of the low pressure compressor area. Finally, an initial study highlights a potential mitigation strategy that uses the existing engine actuators to raise the temperature in the low pressure compressor in an effort to reduce the rate at which ice accretes.

  4. An Approach to Detect and Mitigate Ice Particle Accretion in Aircraft Engine Compression Systems

    NASA Technical Reports Server (NTRS)

    May, Ryan D.; Guo, Ten-Huei; Simon, Donald L.

    2013-01-01

    The accretion of ice in the compression system of commercial gas turbine engines operating in high ice water content conditions is a safety issue being studied by the aviation sector. While most of the research focuses on the underlying physics of ice accretion and the meteorological conditions in which accretion can occur, a systems-level perspective on the topic lends itself to potential near-term operational improvements. This work focuses on developing an accurate and reliable algorithm for detecting the accretion of ice in the low pressure compressor of a generic 40,000 lbf thrust class engine. The algorithm uses only the two shaft speed sensors and works regardless of engine age, operating condition, and power level. In a 10,000-case Monte Carlo simulation, the detection approach was found to have excellent capability at determining ice accretion from sensor noise with detection occurring when ice blocks an average of 6.8% of the low pressure compressor area. Finally, an initial study highlights a potential mitigation strategy that uses the existing engine actuators to raise the temperature in the low pressure compressor in an effort to reduce the rate at which ice accretes.

  5. Analyses and tests for design of an electro-impulse de-icing system

    NASA Technical Reports Server (NTRS)

    Zumwalt, G. W.; Schrag, R. L.; Bernhart, W. D.; Friedberg, R. A.

    1985-01-01

    De-icing of aircraft by using the electro-magnetic impulse phenomenon was proposed and demonstrated in several European countries. However, it is not available as a developed system due to lack of research on the basic physical mechanisms and necessary design parameters. The de-icing is accomplished by rapidly discharging high voltage capacitors into a wire coil rigidly supported just inside the aircraft skin. Induced eddy currents in the skin create a repulsive force resulting in a hammer-like force which cracks, de-bonds, and expels ice on the skin surface. The promised advantages are very low energy, high reliability of de-icing, and low maintenance. Three years of Electo-Impulse De-icing (EIDI) research is summarized and the analytical studies and results of testing done in the laboratory, in the NASA Icing Research Tunnel, and in flight are presented. If properly designed, EIDI was demonstrated to be an effective and practical ice protection system for small aircraft, turbojet engine inlets, elements of transport aircraft, and shows promise for use on helicopter rotor blades. Included are practical techniques of fabrication of impulse coils and their mountings. The use of EIDI with nonmetallic surface materials is also described.

  6. Representation of Sea Ice Processes in State of the Art Earth System Models.

    NASA Astrophysics Data System (ADS)

    Bailey, D. A.; Holland, M. M.

    2015-12-01

    The majority of Earth System Models now include thermodynamic-dynamic sea ice models with a subgridscale representation of ice thickness. The current sea ice component of the Community Earth System Model is the Los Alamos sea ice model (CICE) version 5. This new version of the model includes prognostic salinity in the vertical thermodynamic calculation as well as a representation of melt pond drainage through the sea ice. The CICE5 also includes a melt pond parameterization that takes into account the deformed and non-deformed ice within a model grid cell. Snow on sea ice processes allow for an evolving effective snow grain radius as a function of temperature, which is used in the shortwave radiative transfer and surface albedo calculation. I will discuss the results from coupled climate model sensitivity simulations that consider the subgridscale representations of some of these processes. This will include analysis of mean state and feedbacks in both the Arctic and Antarctic. Additional discussion will be provided on how we have used observations to guide these efforts.

  7. Bulk heat transfer coefficient in the ice-upper ocean system in the ice melt season derived from concentration-temperature relationship

    NASA Astrophysics Data System (ADS)

    Nihashi, Sohey; Ohshima, Kay I.

    2008-06-01

    The bulk heat transfer coefficient in the ice-upper ocean system (Kb) in the ice melt season is estimated by a new method at 18 areas that cover much of the Antarctic seasonal ice zone. The method is based on a model in which ice melting is caused only by heat input through open water and is treated in a bulk fashion in the ice-upper ocean system. Kb is estimated by fitting a convergent curve derived from the model to an observed ice concentration-temperature plot (CT-plot). Estimated Kb is 1.15 ± 0.72 × 10-4 m s-1 on average. If Kb can be expressed by the product of the heat transfer coefficient (ch) and the friction velocity (uτ), ch is 0.0113 ± 0.0055. This value is about two times larger than that estimated at the ice bottom. The relationship between Kb and the geostrophic wind speed (Uw), which is roughly proportional to uτ, shows a significant positive correlation, as expected. Further, Kb seems more likely to be proportional to the square or cube of Uw rather than a linear relationship. Since Kb estimated from our method is associated with ice melting in a bulk fashion in the ice-upper ocean system, this relationship likely indicates both the mixing process of heat in the upper ocean (proportional to uτ3) and the local heat transfer process at the ice-ocean interface (proportional to uτ).

  8. Ice Streams as the Critical Link Between the Interior Ice Reservoir of the Antarctic Ice Sheet and the Global Climate System - a WISSARD Perspective (Invited)

    NASA Astrophysics Data System (ADS)

    Tulaczyk, S. M.; Beem, L.; Walter, J. I.; Hossainzadeh, S.; Mankoff, K. D.

    2010-12-01

    Fast flowing ice streams represent crucial features of the Antarctic ice sheet because they provide discharge ‘valves’ for the interior ice reservoir and because their grounding lines are exposed to ocean thermal forcing. Even with no/little topographic control ice flow near the perimeter of a polar ice sheet self-organizes into discrete, fast-flowing ice streams. Within these features basal melting (i.e. lubrication for ice sliding) is sustained through elevated basal shear heating in a region of thin ice that would otherwise be characterized by basal freezing and slow ice motion. Because faster basal ice motion is typically associated with faster subglacial erosion, ice streams tend to localize themselves over time by carving troughs into underlying rocks and sediments. Debris generated by this erosional activity is carried to the continental shelf and/or continental slope where it may be deposited at very high rates, rivaling these associated with deposition by some of the largest rivers on Earth. In terms of their hydrologic and geological functions, Antarctic ice streams play pretty much the same role as rivers do on non-glaciated continents. However, understanding of their dynamics is still quite rudimentary, largely because of the relative inaccessibility of the key basal and marine boundaries of ice streams where pertinent measurements need to be made. The present elevated interest in predicting future contribution of Antarctica to global sea level changes is driving ambitious research programs aimed at scientific exploration of these poorly investigated environments that will play a key role in defining the response of the ice sheet to near future climate changes. We will review one of these programs, the Whillans Ice Stream Subglacial Access Research Drilling (WISSARD) with particular focus on its planned contributions to understanding of ice stream dynamics.

  9. Interactive Software System Developed to Study How Icing Affects Airfoil Performance (Phase 1 Results)

    NASA Technical Reports Server (NTRS)

    Choo, Yung K.; Vickerman, Mary B.

    2000-01-01

    SmaggIce (Surface Modeling and Grid Generation for Iced Airfoils), which is being developed at the NASA Glenn Research Center at Lewis Field, is an interactive software system for data probing, boundary smoothing, domain decomposition, and structured grid generation and refinement. All these steps are required for aerodynamic performance prediction using structured, grid-based computational fluid dynamics (CFD), as illustrated in the following figure. SmaggIce provides the underlying computations to perform these functions, as well as a graphical user interface to control and interact with them, and graphics to display the results.

  10. Operating flexibility makes these firing systems popular

    SciTech Connect

    Schwieger, B.

    1980-02-01

    This article describes semisuspension and suspension firing of wood-fueled systems which are similar to methods applied in the combustion of fossil fuels, process wastes and shredded municipal refuse. Semisuspension burning such as pinhole grates of the flat air-cooled and slightly inclined water-cooled types are described, the former being more economical for boilers producing up to about 70,000 lb/hour of steam. Traveling-grate spreader stokers are used for boilers rated at 175,000 lb/hour and above on fuels with 55% moisture of less. The advantage of these grates is that they can burn both coal and wood and so avoid the use of expensive oil or gas for steam production when wood is unavailable. The paucity of research on wood combustion, the disagreement between engineers whether to use cold or hot ovenfire air and the use of reinjection systems are discussed. The two basic types of suspension burners, cyclonic and solid-fuel burners are described, both of which require clean dry, finely divided woodwaste - such as sanderdust.

  11. 14 CFR 29.1093 - Induction system icing protection.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... maximum continuous power— (1) Each rotorcraft with sea level engines using conventional venturi carburetors has a preheater that can provide a heat rise of 90 °F.; (2) Each rotorcraft with sea level engines using carburetors tending to prevent icing has a preheater that can provide a heat rise of 70 °F.;...

  12. 14 CFR 29.1093 - Induction system icing protection.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... maximum continuous power— (1) Each rotorcraft with sea level engines using conventional venturi carburetors has a preheater that can provide a heat rise of 90 °F.; (2) Each rotorcraft with sea level engines using carburetors tending to prevent icing has a preheater that can provide a heat rise of 70 °F.;...

  13. 14 CFR 29.1093 - Induction system icing protection.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... maximum continuous power— (1) Each rotorcraft with sea level engines using conventional venturi carburetors has a preheater that can provide a heat rise of 90 °F.; (2) Each rotorcraft with sea level engines using carburetors tending to prevent icing has a preheater that can provide a heat rise of 70 °F.;...

  14. 14 CFR 29.1093 - Induction system icing protection.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... maximum continuous power— (1) Each rotorcraft with sea level engines using conventional venturi carburetors has a preheater that can provide a heat rise of 90 °F.; (2) Each rotorcraft with sea level engines using carburetors tending to prevent icing has a preheater that can provide a heat rise of 70 °F.;...

  15. 14 CFR 29.1093 - Induction system icing protection.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... maximum continuous power— (1) Each rotorcraft with sea level engines using conventional venturi carburetors has a preheater that can provide a heat rise of 90 °F.; (2) Each rotorcraft with sea level engines using carburetors tending to prevent icing has a preheater that can provide a heat rise of 70 °F.;...

  16. De-Icing of an Aircraft-Engine Induction System

    DTIC Science & Technology

    1943-08-01

    standard Holley alcohol vent ring (Holley part Ho. 2383), a modified Holley vent ring (Holley part No. 3O89), a Bet of four standard Army nozzles (part HOB ...of poll shod brnss, copper, and 17&-T aluninun alloy wore suBpondod in the do-icing fluids which vero contained in tost tubes» Tho various

  17. Balance Mass Flux and Velocity Across the Equilibrium Line in Ice Drainage Systems of Greenland

    NASA Technical Reports Server (NTRS)

    Zwally, H. Jay; Giovinetto, Mario B.; Koblinsky, Chester J. (Technical Monitor)

    2001-01-01

    Estimates of balance mass flux and the depth-averaged ice velocity through the cross-section aligned with the equilibrium line are produced for each of six drainage systems in Greenland. (The equilibrium line, which lies at approximately 1200 m elevation on the ice sheet, is the boundary between the area of net snow accumulation at higher elevations and the areas of net melting at lower elevations around the ice sheet.) Ice drainage divides and six major drainage systems are delineated using surface topography from ERS (European Remote Sensing) radar altimeter data. The net accumulation rate in the accumulation zone bounded by the equilibrium line is 399 Gt/yr and net ablation rate in the remaining area is 231 Gt/yr. (1 GigaTon of ice is 1090 kM(exp 3). The mean balance mass flux and depth-averaged ice velocity at the cross-section aligned with the modeled equilibrium line are 0.1011 Gt kM(exp -2)/yr and 0.111 km/yr, respectively, with little variation in these values from system to system. The ratio of the ice mass above the equilibrium line to the rate of mass output implies an effective exchange time of approximately 6000 years for total mass exchange. The range of exchange times, from a low of 3 ka in the SE drainage system to 14 ka in the NE, suggests a rank as to which regions of the ice sheet may respond more rapidly to climate fluctuations.

  18. JBluIce-EPICS: a fast and flexible open-source beamline control system for macromolecular crystallography

    NASA Astrophysics Data System (ADS)

    Stepanov, S.; Hilgart, M.; Makarov, O.; Pothineni, S. B.; Yoder, D.; Ogata, C.; Sanishvili, R.; Venugopalan, N.; Becker, M.; Clift, M.; Smith, J. L.; Fischetti, R. F.

    2013-03-01

    This paper overviews recent advances in the JBluIce-EPICS open-source control system designed at the macromolecular crystallography beamlines of the National Institute of General Medical Sciences and National Cancer Institute at the Advanced Photon Source (GM/CA@APS). We discuss some technical highlights of this system distinguishing it from the competition, such as reduction of software layers to only two, possibility to operate JBluIce in parallel with other beamline controls, plugin-enabled architecture where the plugins can be written in any programming language, and utilization of the whole power of the Java integrated development environment in the Graphical User Interface. Then, we demonstrate how these highlights help to make JBluIce fast, easily adaptable to new beamline developments, and intuitive for users. In particular, we discuss several recent additions to the system including a bridge between crystal rastering and data collection, automatic detection of raster polygons from optical crystal centering, background data processing, and a pathway to a fully automated pipeline from crystal screening to solving crystal structure.

  19. Quantum criticality and fractional charge excitations in itinerant ice-rule systems

    NASA Astrophysics Data System (ADS)

    Udagawa, Masafumi; Ishizuka, Hiroaki; Motome, Yukitoshi

    2013-03-01

    ``Ice rule'' is a configurational constraint on Ising-type variables defined on tetrahedron-based lattices, such as a pyrochlore lattice, so that two out of the four sites on a tetrahedron are in the opposite state to the other two. This concept plays an important role in many systems, such as water ice Ih, magnetite Fe3O4, and spin ice materials Ho(Dy)2Ti2O7. Under the ice-rule constraint, the ground state is disordered and retains macroscopic degeneracy. Nevertheless, the ice-rule configuration is not completely random but has a peculiar spatial structure with quasi-long-range correlation. It is interesting to ask how itinerant electrons change their properties by coupling to this anomalous spatial structure. To answer this problem, we adopt an extended Falicov-Kimball model as a minimal model, in which itinerant electrons interact with localized charge degrees of freedom under the ice rule. We exactly solve this model on a loop-less variant of the tetrahedron-based lattices, a tetrahedron Husimi cactus and clarify the ground-state phase diagram. The exact solution reveals a quantum critical point separating two insulating phases, where a novel non-Fermi-liquid behavior emerges. We also discuss the nature of fractional excitations breaking the ice-rule manifold.

  20. A finite element study of the EIDI system. [Electro-Impulse De-Icing System

    NASA Technical Reports Server (NTRS)

    Khatkhate, A. A.; Scavuzzo, R. J.; Chu, M. L.

    1988-01-01

    This paper presents a method for modeling the structural dynamics of an Electro-Impulse De-Icing System, using finite element analyses procedures. A guideline for building a representative finite element model is discussed. Modeling was done initially using four noded cubic elements, four noded isoparametric plate elements and eight noded isoparametric shell elements. Due to the size of the problem and due to the underestimation of shear stress results when compared to previous analytical work an approximate model was created to predict possible areas of shedding of ice. There appears to be good agreement with the test data provided by The Boeing Commercial Airplane Company. Thus these initial results of this method were found to be encouraging. Additional analytical work and comparison with experiment is needed in order to completely evaluate this approach.

  1. Influence of Sea Ice on Arctic Marine Sulfur Biogeochemistry in the Community Climate System Model

    SciTech Connect

    Deal, Clara; Jin, Meibing

    2013-06-30

    Global climate models (GCMs) have not effectively considered how responses of arctic marine ecosystems to a warming climate will influence the global climate system. A key response of arctic marine ecosystems that may substantially influence energy exchange in the Arctic is a change in dimethylsulfide (DMS) emissions, because DMS emissions influence cloud albedo. This response is closely tied to sea ice through its impacts on marine ecosystem carbon and sulfur cycling, and the ice-albedo feedback implicated in accelerated arctic warming. To reduce the uncertainty in predictions from coupled climate simulations, important model components of the climate system, such as feedbacks between arctic marine biogeochemistry and climate, need to be reasonably and realistically modeled. This research first involved model development to improve the representation of marine sulfur biogeochemistry simulations to understand/diagnose the control of sea-ice-related processes on the variability of DMS dynamics. This study will help build GCM predictions that quantify the relative current and possible future influences of arctic marine ecosystems on the global climate system. Our overall research objective was to improve arctic marine biogeochemistry in the Community Climate System Model (CCSM, now CESM). Working closely with the Climate Ocean Sea Ice Model (COSIM) team at Los Alamos National Laboratory (LANL), we added 1 sea-ice algae and arctic DMS production and related biogeochemistry to the global Parallel Ocean Program model (POP) coupled to the LANL sea ice model (CICE). Both CICE and POP are core components of CESM. Our specific research objectives were: 1) Develop a state-of-the-art ice-ocean DMS model for application in climate models, using observations to constrain the most crucial parameters; 2) Improve the global marine sulfur model used in CESM by including DMS biogeochemistry in the Arctic; and 3) Assess how sea ice influences DMS dynamics in the arctic marine

  2. Experimental investigation on performance of ice storage air-conditioning system with separate heat pipe

    SciTech Connect

    Fang, Guiyin; Liu, Xu; Wu, Shuangmao

    2009-11-15

    An experimental study on operation performance of ice storage air-conditioning system with separate helical heat pipe is conducted in this paper. The experimental system of ice storage air-conditioning system with separate heat pipe is set up. The performance parameters such as the evaporation pressure and the condensation pressure of refrigeration system, the refrigeration capacity and the COP (coefficient of performance) of the system, the IPF (ice packing factor) and the cool storage capacity in the cool storage tank during charging period, and the cool discharge rate and the cool discharge capacity in the cool storage tank, the outlet water temperature in the cool storage tank and the outlet air temperature in room unit during discharging period are investigated. The experimental results show that the ice storage air-conditioning system with separate helical heat pipe can stably work during charging and discharging period. This indicates that the ice storage air-conditioning system with separate helical heat pipe is well adapted to cool storage air-conditioning systems in building. (author)

  3. Ice & Fire: Missions to the most difficult solar system destinations… on a budget

    NASA Astrophysics Data System (ADS)

    Staehle, Robert L.; Brewster, Stephen C.; Carraway, John B.; Chatterjee, Alok K.; Clark, Karla B.; Doyle, Richard J.; Henry, Paul K.; Johannesen, Jennie R.; Johnson, Torrence V.; Jorgensen, Edward J.; Kemski, Richard P.; Ludwinski, Jan M.; Maddock, Robert W.; Mondt, Jack F.; Randolph, James E.; Terrile, Richard J.; Tsurutani, Bruce T.

    1999-11-01

    Three radii from the surface of the Sun… more natural radiation around Jupiter than would be encountered immediately following a nuclear war… to the farthest planet and beyond… these challenges are faced by the three "Ice & Fire" missions: Solar Probe, Europa Orbiter, and PlutoKuiper Express. These three missions will be beneficiaries of the X2000 and related advanced technology development programs. Technology developments now in progress make these missions achievable at costs recently thought adequate only for missions of relatively short durations to "nearby" destinations. The next mission to Europa after Galileo will determine whether a global subsurface liquid water ocean is currently present, and will identify locations where the ocean, if it exists, may be most accessible to future missions. Pluto-Kuiper Express will complete the reconnaissance of the known planets in our Solar System with geological, compositional, and atmospheric mapping of Pluto and Charon while Pluto remains relatively near the Sun during its 248 year orbit. An extended mission to a Kuiper Disk object may be possible, depending on remaining sciencecraft resources. Using a unique combination of Sun shield/high gain antenna and quadrature encounter geometry, Solar Probe will deeply penetrate our nearest star's atmosphere to make local measurements of the birth of solar wind, and to remotely image features as small as 60 kilometers across on the Sun's surface. Avionics technology, leading to integration of functions among a set of multichip modules with standard interfaces, will enable lower production costs, lower power and mass, and the ability to package with modest shielding to enable survival in orbit around Europa inside Jupiter's intense radiation belts. The same avionics and software can be utilized on the other Ice & Fire missions. Each mission is characterized by a long cruise to its destination, facilitated by planetary flybys. The flight systems will represent a unique

  4. Balance mass flux and ice velocity across the equilibrium line in drainage systems of Greenland

    NASA Astrophysics Data System (ADS)

    Zwally, H. Jay; Giovinetto, Mario B.

    2001-12-01

    Estimates of balance mass flux and depth-averaged ice velocity through the cross section aligned with the equilibrium line are produced for each of six drainage systems in Greenland. The estimates are based on a model equilibrium line fitted to field data and on a revised distribution of surface mass balance for the conterminous ice sheet. Ice drainage divides and six major drainage systems are delineated using surface topography from ERS radar altimeter data. Ice thicknesses at the equilibrium line and throughout each drainage system are based on the latest compilation of airborne radar sounding data described elsewhere. The net accumulation rate in the area bounded by the equilibrium line is 399 Gt a-1, and net ablation rate in the remaining area is 231 Gt a-1. Excluding an east central coastal ridge reduces the net accumulation rate to 397 Gt a-1, with a range from 42 to 121 Gt a-1 for the individual drainage systems. The mean balance mass flux and depth-averaged ice velocity at the cross-section aligned with the modeled equilibrium line are 0.1011 Gt km-2 a-1 and 0.111 km a-1, respectively, with little variation in these values from system to system. In contrast, the mean mass discharge per unit length along the equilibrium line ranges from one half to double the overall mean rate of 0.0468 Gt km-1 a-1. The ratio of the ice mass in the area bounded by the equilibrium line to the rate of mass output implies an effective exchange time of approximately 6 ka for total mass exchange. The range of exchange times, from a low of 3 ka in the SE drainage system to 14 ka in the NE, suggests a rank as to which regions of the ice sheet may respond more rapidly to climate fluctuations.

  5. Rapid Access Ice Drill: A New Tool for Exploration of the Deep Antarctic Ice Sheets and Subglacial Geology

    NASA Astrophysics Data System (ADS)

    Goodge, J. W.; Severinghaus, J. P.

    2014-12-01

    The Rapid Access Ice Drill (RAID) will penetrate the Antarctic ice sheets in order to core through deep ice, the glacial bed, and into bedrock below. This new technology will provide a critical first look at the interface between major ice caps and their subglacial geology. Currently in construction, RAID is a mobile drilling system capable of making several long boreholes in a single field season in Antarctica. RAID is interdisciplinary and will allow access to polar paleoclimate records in ice >1 Ma, direct observation at the base of the ice sheets, and recovery of rock cores from the ice-covered East Antarctic craton. RAID uses a diamond rock-coring system as in mineral exploration. Threaded drill-pipe with hardened metal bits will cut through ice using reverse circulation of Estisol for pressure-compensation, maintenance of temperature, and removal of ice cuttings. Near the bottom of the ice sheet, a wireline bottom-hole assembly will enable diamond coring of ice, the glacial bed, and bedrock below. Once complete, boreholes will be kept open with fluid, capped, and made available for future down-hole measurement of thermal gradient, heat flow, ice chronology, and ice deformation. RAID will also sample for extremophile microorganisms. RAID is designed to penetrate up to 3,300 meters of ice and take sample cores in less than 200 hours. This rapid performance will allow completion of a borehole in about 10 days before moving to the next drilling site. RAID is unique because it can provide fast borehole access through thick ice; take short ice cores for paleoclimate study; sample the glacial bed to determine ice-flow conditions; take cores of subglacial bedrock for age dating and crustal history; and create boreholes for use as an observatory in the ice sheets. Together, the rapid drilling capability and mobility of the drilling system, along with ice-penetrating imaging methods, will provide a unique 3D picture of the interior Antarctic ice sheets.

  6. Permafrost and Subsurface Ice in the Solar System

    NASA Technical Reports Server (NTRS)

    Anderson, D. M.

    1985-01-01

    The properties and behavior of planetary permafrost are discussed with reference to the ability of such surfaces to sustain loads characteristics of spacecraft landing and planetary bases. In most occurrences, water ice is in close proximity to, or in contact with, finely divided silicate mineral matter. When ice contacts silicate mineral surfaces, a liquid-like, transition zone is created. Its thickness ranges from several hundred Angstron units at temperatures near 0 degrees C to about three Angstrom units at -150 degrees C. When soluble substances are present, the resulting brine enlarges the interfacial zone. When clays are involved, although the interfacial zone may be small, its extent is large. The unfrozen, interfacial water may amount to 100% or more weight at a temperature of -5 degrees C. The presence of this interfacial unfrozen water acts to confer plasticity to permafrost, enabling it to exhibit creep at all imposed levels of stress. Nucleation processes and load-bearing capacity are examined.

  7. An approach to computing discrete adjoints for MPI-parallelized models applied to Ice Sheet System Model 4.11

    NASA Astrophysics Data System (ADS)

    Larour, Eric; Utke, Jean; Bovin, Anton; Morlighem, Mathieu; Perez, Gilberto

    2016-11-01

    Within the framework of sea-level rise projections, there is a strong need for hindcast validation of the evolution of polar ice sheets in a way that tightly matches observational records (from radar, gravity, and altimetry observations mainly). However, the computational requirements for making hindcast reconstructions possible are severe and rely mainly on the evaluation of the adjoint state of transient ice-flow models. Here, we look at the computation of adjoints in the context of the NASA/JPL/UCI Ice Sheet System Model (ISSM), written in C++ and designed for parallel execution with MPI. We present the adaptations required in the way the software is designed and written, but also generic adaptations in the tools facilitating the adjoint computations. We concentrate on the use of operator overloading coupled with the AdjoinableMPI library to achieve the adjoint computation of the ISSM. We present a comprehensive approach to (1) carry out type changing through the ISSM, hence facilitating operator overloading, (2) bind to external solvers such as MUMPS and GSL-LU, and (3) handle MPI-based parallelism to scale the capability. We demonstrate the success of the approach by computing sensitivities of hindcast metrics such as the misfit to observed records of surface altimetry on the northeastern Greenland Ice Stream, or the misfit to observed records of surface velocities on Upernavik Glacier, central West Greenland. We also provide metrics for the scalability of the approach, and the expected performance. This approach has the potential to enable a new generation of hindcast-validated projections that make full use of the wealth of datasets currently being collected, or already collected, in Greenland and Antarctica.

  8. The microbubble mediated surface probe and the ice-antifreeze glycoprotein solution system

    NASA Astrophysics Data System (ADS)

    Vesenka, J. P.; Feeney, R. E.; Yeh, Y.

    1993-05-01

    Microbubble growth and its apparent "shrinkage" during the transient approach to steady-state crystal growth have been monitored by dynamic light scattering in the region immediately ahead of ice crystals growing into aqueous solutions containing dilute concentrations of macromolecules. This interfacial bubble growth occurs in the presence of a solution of globular macromolecules, and is independent of the crystal growth direction. In contrast, bubble growth becomes crystal-facet dependent when the solution contains a biological antifreeze molecule, the antifreeze glycoprotein (AFGP-4). This solution elicited an immediate, 100 x increase in bubble size above the prismatic surface of ice, followed by a gradual decrease in the averaged bubble size concomitant with a large increase in the size polydispersity. Furthermore, when the steady-state crystal growth condition is reached (in approximately one hour), the average bubble size was still ˜ 80x the size of those found in the pure ice-water system. However, when the same solution is above the basal facet, after the steady-state growth condition is attained, the microbubble diameter is unchanged from that found in the pure ice-water system. The difference in microbubble growth in the vicinity of the dynamic ice-solution interface between solutions of AFGP-4 samples and that of other molecules suggests facet-specific affinity of AFGP by ice, a condition necessary for facet-specific crystal growth inhibition.

  9. Design and deployment of a stationary ice-penetrating radar system

    NASA Astrophysics Data System (ADS)

    Flowers, G. E.; Mingo, L.; Saint-Jacques, D.

    2015-12-01

    Ice-penetrating radar (IPR) is a popular tool in glaciology, used most commonly for mapping ice depth. Dielectric contrasts between englacial materials, including ice, water, and impurities, allow the detection of internal stratigraphy and some characterization of englacial properties. Here we describe the design and the 2014-2015 deployments of an autonomous stationary ice-penetrating radar system that was tested on a large outlet glacier of the Icefield Ranges of southwest Yukon, Canada. The radar system was deployed within a kilometer of an ice-marginal lake that is dammed by the Kaskawulsh Glacier and drains annually in a subglacial jökulhlaup. It was programmed to perform a series of soundings every few hours and was left unattended over the course of 6 weeks in 2014 and 7 weeks in 2015, while the lake level was monitored with a pressure transducer and time-lapse imagery. The 2014 dataset is characterized by a marked decrease in englacial reflector strength and coherence during the drainage of the ice-dammed lake. We interpret these data as a significant change in englacial saturation associated with the flood. The 2015 dataset post-dates the flood and provides an opportunity to examine more subtle changes in englacial and subglacial properties. Radar mapping in the vicinity of the deployment locations provides context for the time-dependent measurements, also showing significant differences before and after lake drainage.

  10. Tightly integrated single- and multi-crystal data collection strategy calculation and parallelized data processing in JBluIce beamline control system

    SciTech Connect

    Pothineni, Sudhir Babu; Venugopalan, Nagarajan; Ogata, Craig M.; Hilgart, Mark C.; Stepanov, Sergey; Sanishvili, Ruslan; Becker, Michael; Winter, Graeme; Sauter, Nicholas K.; Smith, Janet L.; Fischetti, Robert F.

    2014-11-18

    The calculation of single- and multi-crystal data collection strategies and a data processing pipeline have been tightly integrated into the macromolecular crystallographic data acquisition and beamline control software JBluIce. Both tasks employ wrapper scripts around existing crystallographic software. JBluIce executes scripts through a distributed resource management system to make efficient use of all available computing resources through parallel processing. The JBluIce single-crystal data collection strategy feature uses a choice of strategy programs to help users rank sample crystals and collect data. The strategy results can be conveniently exported to a data collection run. The JBluIce multi-crystal strategy feature calculates a collection strategy to optimize coverage of reciprocal space in cases where incomplete data are available from previous samples. The JBluIce data processing runs simultaneously with data collection using a choice of data reduction wrappers for integration and scaling of newly collected data, with an option for merging with pre-existing data. Data are processed separately if collected from multiple sites on a crystal or from multiple crystals, then scaled and merged. Results from all strategy and processing calculations are displayed in relevant tabs of JBluIce.

  11. Tightly integrated single- and multi-crystal data collection strategy calculation and parallelized data processing in JBluIce beamline control system.

    PubMed

    Pothineni, Sudhir Babu; Venugopalan, Nagarajan; Ogata, Craig M; Hilgart, Mark C; Stepanov, Sergey; Sanishvili, Ruslan; Becker, Michael; Winter, Graeme; Sauter, Nicholas K; Smith, Janet L; Fischetti, Robert F

    2014-12-01

    The calculation of single- and multi-crystal data collection strategies and a data processing pipeline have been tightly integrated into the macromolecular crystallographic data acquisition and beamline control software JBluIce. Both tasks employ wrapper scripts around existing crystallographic software. JBluIce executes scripts through a distributed resource management system to make efficient use of all available computing resources through parallel processing. The JBluIce single-crystal data collection strategy feature uses a choice of strategy programs to help users rank sample crystals and collect data. The strategy results can be conveniently exported to a data collection run. The JBluIce multi-crystal strategy feature calculates a collection strategy to optimize coverage of reciprocal space in cases where incomplete data are available from previous samples. The JBluIce data processing runs simultaneously with data collection using a choice of data reduction wrappers for integration and scaling of newly collected data, with an option for merging with pre-existing data. Data are processed separately if collected from multiple sites on a crystal or from multiple crystals, then scaled and merged. Results from all strategy and processing calculations are displayed in relevant tabs of JBluIce.

  12. Tightly integrated single- and multi-crystal data collection strategy calculation and parallelized data processing in JBluIce beamline control system

    DOE PAGES

    Pothineni, Sudhir Babu; Venugopalan, Nagarajan; Ogata, Craig M.; ...

    2014-11-18

    The calculation of single- and multi-crystal data collection strategies and a data processing pipeline have been tightly integrated into the macromolecular crystallographic data acquisition and beamline control software JBluIce. Both tasks employ wrapper scripts around existing crystallographic software. JBluIce executes scripts through a distributed resource management system to make efficient use of all available computing resources through parallel processing. The JBluIce single-crystal data collection strategy feature uses a choice of strategy programs to help users rank sample crystals and collect data. The strategy results can be conveniently exported to a data collection run. The JBluIce multi-crystal strategy feature calculates amore » collection strategy to optimize coverage of reciprocal space in cases where incomplete data are available from previous samples. The JBluIce data processing runs simultaneously with data collection using a choice of data reduction wrappers for integration and scaling of newly collected data, with an option for merging with pre-existing data. Data are processed separately if collected from multiple sites on a crystal or from multiple crystals, then scaled and merged. Results from all strategy and processing calculations are displayed in relevant tabs of JBluIce.« less

  13. A coupled dynamic-thermodynamic model of an ice-ocean system in the marginal ice zone

    NASA Technical Reports Server (NTRS)

    Hakkinen, Sirpa

    1987-01-01

    Thermodynamics are incorporated into a coupled ice-ocean model in order to investigate wind-driven ice-ocean processes in the marginal zone. Upswelling at the ice edge which is generated by the difference in the ice-air and air-water surface stresses is found to give rise to a strong entrainment by drawing the pycnocline closer to the surface. Entrainment is shown to be negligible outside the areas affected by the ice edge upswelling. If cooling at the top is included in the model, the heat and salt exchanges are further enhanced in the upswelling areas. It is noted that new ice formation occurs in the region not affected by ice edge upswelling, and it is suggested that the high-salinity mixed layer regions (with a scale of a few Rossby radii of deformation) will overturn due to cooling, possibly contributing to the formation of deep water.

  14. An overview of laboratory studies on the energetic processes in water-rich ices containing organic impurities at outer Solar System temperatures.

    NASA Astrophysics Data System (ADS)

    Gudipati, M. S.; Allamandola, L. J.

    2006-12-01

    Solid water-rich ice is an important constituent in our Solar System. Planets such as Earth and Mars, Moons such as Europa and Enceladus, Comets, rings of Saturn, and KBOs are covered with solid water ices. Thus, understanding the intricate physics and chemistry of these ices is a non-trivial and non-negligible task that needs both laboratory and in-situ observational work to make advances in this field. Over the past several years, we have been systematically studying VUV-radiation processing of organic impurities embedded in water-ices in the temperature range between 20 K and 180 K. Since PAHs are abundant extraterrestrial species and their optical strong absorption occurs in the UV-VIS-NIR region (0.2 -- 0.9 μ m) where water-ice is transparent, we have focused on water rich ices containing PAHs. During these in-situ studies we discovered several counter-intuitive phenomena (see for example: Gudipati {&} Allamandola, 2006, Astrophys. J. 638, 286 {&} J. Phys. Chem. A 110, 9020 and references therein): \\begin{itemize} PAHs embedded in cryogenic water-ice are easily and efficiently ionized (>80{%}, i.e., near quantitative ion yields) to the cation form by VUV photons. In water ice, PAH ionization energy is lowered by up to 2 eV compared to the gas-phase, in agreement with recent theoretical predictions. PAH cations are stabilized in water ice to temperatures as high as 120 K. Sequential photoionization leading to the formation and stabilization of doubly positively charged organic (PAH) species in water ice has also been found. Electrons are stored in these energy processed water-ices doped with organic impurities. These findings have a range of applications to understanding the geology, chemistry, and physics of icy bodies in the outer Solar System such as coloration, energy budget, outbursts and atmospheres. These and other applications to outer Solar System will be discussed. Acknowledgments: This work was supported by grants from NASA's Exobiology

  15. Determination of the Minimum Use Level of Fuel System Icing Inhibitor (FSII) in JP-8 That Will Provide Adquate Icing Inhibition and Biostatic Protection for Air Force Aircraft

    DTIC Science & Technology

    2013-12-01

    additive in JP-8, is used to prevent solidification of free water in the fuel and to provide protection against microbial growth in fuel systems. The...A/C Use Limit, Icing Inhibition, Bacteria, Microbial Contamination, B-52, Icing Rig, Aqueous Solution, Partitioning Coefficient, Solubility, Fuel... cellulose filter used in the fuel strainer of the B-52 (nominal openings of ~ 40-50 µm) and a 50-mesh metal screen (320 µm square openings with 200 µm wire

  16. Non-linear feedbacks affecting sea ice deformation in the Regional Arctic System Model (RASM)

    NASA Astrophysics Data System (ADS)

    Roberts, A.; Maslowski, W.; Mills, T.; Hunke, E. C.; Craig, A.; Osinski, R.; Cassano, J. J.; Duvivier, A.; Hughes, M.; Zeng, X.; Brunke, M.; Gutowski, W. J., Jr.; Fisel, B. J.

    2014-12-01

    We present the latest results of high-resolution sea ice simulations from the fully coupled Regional Arctic System Model (RASM), including explicit melt ponds, form drag and anisotropic sea ice rheology. RASM is a pan-Arctic model composed of the Parallel Ocean Program (POP) and Los Alamos Sea ice Model (CICE5) at ~9km resolution, coupled to the Weather Research and Forecasting Model (WRF) and Variable Infiltration Capacity (VIC) model at 50km resolution using the Community Earth System Model (CESM) coupling framework. Using RASM, we have analyzed coupled feedbacks resulting from different sea ice mechanics formulations. Strong spatial and temporal scaling of sea ice deformation has been observed in the Arctic using the Radarsat Geophysical Processing System and Global Positioning System equipped buoys. Whereas previous results from stand-alone ice-ocean simulations suggest that the established Elastic Viscous Plastic (EVP) rheology is unable to replicate these features, RASM simulates the observed scaling using EVP, with a spatial scaling fractal dimension of around -0.23, as compared to the observed range of -0.18 to -0.20. Using this metric, we extend our analysis to test for spatial scaling in sea ice deformation using a recently revised EVP formulation, as well as the new Elastic Plastic Anistropic rheology in CICE5. Our results suggest that a fundamental source of scaling stems from feedbacks associated with frequent coupling between high resolution ocean and atmospheric models, and this result serves as an example of the broader utility of limited-area, fully coupled models in isolating coupled feedbacks and evaluating them using daily in-situ and satellite measurements.

  17. An Investigation of a Thermal Ice-Prevention System for a Twin-Engine Transport Airplane

    NASA Technical Reports Server (NTRS)

    Jones, Alun R

    1946-01-01

    Several previously published reports on a comprehensive investigation of a thermal ice-prevention system for a typical twin-engine transport airplane are correlated with some unpublished data to present the entire investigation in one publication. Several previously published reports on a comprehensive investigation of a thermal ice-prevention system for a typical twin-engine transport airplane are correlated with some unpublished data to present the entire investigation in one publication. The thermal system investigated was based upon the transfer of heat from the engine exhaust gas to air, which is then caused to flow along the inner surface of any portion of the airplane for which protection is desired.

  18. The sea level response to ice sheet freshwater forcing in the Community Earth System Model

    NASA Astrophysics Data System (ADS)

    Slangen, Aimée B. A.; Lenaerts, Jan T. M.

    2016-10-01

    We study the effect of a realistic ice sheet freshwater forcing on sea-level change in the fully coupled Community Earth System Model (CESM) showing not only the effect on the ocean density and dynamics, but also the gravitational response to mass redistribution between ice sheets and the ocean. We compare the ‘standard’ model simulation (NO-FW) to a simulation with a more realistic ice sheet freshwater forcing (FW) for two different forcing scenario’s (RCP2.6 and RCP8.5) for 1850-2100. The effect on the global mean thermosteric sea-level change is small compared to the total thermosteric change, but on a regional scale the ocean steric/dynamic change shows larger differences in the Southern Ocean, the North Atlantic and the Arctic Ocean (locally over 0.1 m). The gravitational fingerprints of the net sea-level contributions of the ice sheets are computed separately, showing a regional pattern with a magnitude that is similar to the difference between the NO-FW and FW simulations of the ocean steric/dynamic pattern. Our results demonstrate the importance of ice sheet mass loss for regional sea-level projections in light of the projected increasing contribution of ice sheets to future sea-level rise.

  19. Analysis of ice crystals occuring in the upper high levels of tropical mesoscale convective systems

    NASA Astrophysics Data System (ADS)

    Delplanque, Alexandre

    2015-04-01

    In 2010 several test flights were performed in tropical marine meso-scale convective systems at flight levels between 10.5 and 10.8 km. Ice crystals were observed with a high speed CDD camera (image pixel resolution: 15 μ m, time resolution 0.007 s) hereafter called the Airbus nephelometer. In-cloud observations were not restricted to the stratiform regions of the MCS but also convective cores were intensely sampled. High number concentrations of ice crystals (N > 1000 L-1) and IWC of more than 4 g.m-3 could be observed. The main objective of our study is the retrieval of the ice water mass from ice particle number distribution and crystal habits, both observed by the Airbus nephelometer. The shape of ice particles was supposed to correspond to the form of oblate spheroids. A statistical study of the aspect ratio of crystal images was performed comparing two different geometrical approaches for the aspect ratio of their semi axis. One uses the ratio of minimum to maximum length, the other is based on the aspect ratio which best fits the crystal image. Different regions of the MCS present different mean aspect ratios measured at small scale (200 m). Variations of the aspect ratio seem to be associated with different nucleation and growth histories for the crystals. For regions with 'young' ice crystals, an anti-correlation between the aspect ratio and ice number concentration was observed. This observation is compared with the results obtained from simple diffusional growth modeling. To better quantify the characteristics of high concentrations of small ice crystal MCS regions, we propose to use the size distribution of the mean aspect ratio (from 100 μ m to 1 mm), to distinguish quite different behaviors for 'young' and 'mature' convective regions.

  20. Helicopter Icing Spray System (HISS) Evaluation and Improvement

    DTIC Science & Technology

    1986-04-01

    reference If the disk-shaped water muwnifolds and associated plastic cubing to the nozz]_,ýs were replaced by stainless steel T-section manifolds, steel tubin ...b. Place: Icing test site, St. Paul, MI c. Date: 21-27 March 1982 d. Project No.: N/A e. Estimated Cost : Total $845. f. Other travelers: None 2...circulating air could be felt. The wind chill factor was the iain source of crew discomfort instead of actual temperature. The water pump, turbine

  1. HAIC/HIWC field campaign - investigating ice microphysics in high ice water content regions of mesoscale convective systems

    NASA Astrophysics Data System (ADS)

    Leroy, Delphine; Fontaine, Emmanuel; Schwarzenboeck, Alfons; Strapp, J. Walter; Lilie, Lyle; Dezitter, Fabien; Grandin, Alice

    2015-04-01

    Despite existing research programs focusing on tropical convection, high ice water content (IWC) regions in Mesoscale Convective Systems (MCS) - potentially encountered by commercial aircraft and related to reported in-service events - remain poorly documented either because investigation of such high IWC regions was not of highest priority or because utilized instrumentation was not capable of providing accurate cloud microphysical measurements. To gather quantitative data in high IWC regions, a multi-year international HAIC/HIWC (High Altitude Ice Crystals / High Ice Water Content) field project has been designed including a first field campaign conducted out of Darwin (Australia) in 2014. The French Falcon 20 research aircraft had been equipped among others with a state-of-the-art in situ microphysics package including the IKP (isokinetic evaporator probe which provides a reference measurement of IWC and TWC), the CDP (cloud droplet spectrometer probe measuring particles in the range 2-50 µm), the 2D-S (2D-Stereo, 10-1280 µm) and PIP (precipitation imaging probe, 100-6400 µm) optical array probes. Microphysical data collection has been performed mainly at -40°C and -30°C levels, whereas little data could be sampled at -50°C and at -15C/-10°C. The study presented here focuses on ice crystal size properties, thereby analyzing in detail the 2D image data from 2D-S and PIP optical array imaging probes. 2D images recorded with 2D-S and PIP were processed in order to extract a large variety of geometrical parameters, such as maximum diameter (Dmax), 2D surface equivalent diameter (Deq), and the corresponding number particle size distribution (PSD). Using the PSD information from both probes, a composite size distribution was then built, with sizes ranging from few tens of µm to roughly 10 mm. Finally, mass-size relationships for ice crystals in tropical convection were established in terms of power laws in order to compute median mass diameters MMDmax and

  2. Systems for measuring thickness of temperate and polar ice from the ground or from the air.

    USGS Publications Warehouse

    Watts, R.D.; Wright, D.L.

    1981-01-01

    Equipment has been designed and tested for ground-based and airborne sounding of temperate glaciers. Echoes have been obtained from ice depths of 550m using the airborne system and about 1000m using the ground-based system. -from Authors

  3. Improving Climate Literacy Using The Ice Sheet System Model (ISSM): A Prototype Virtual Ice Sheet Laboratory For Use In K-12 Classrooms

    NASA Astrophysics Data System (ADS)

    Halkides, D. J.; Larour, E. Y.; Perez, G.; Petrie, K.; Nguyen, L.

    2013-12-01

    Statistics indicate that most Americans learn what they will know about science within the confines of our public K-12 education system and the media. Next Generation Science Standards (NGSS) aim to remedy science illiteracy and provide guidelines to exceed the Common Core State Standards that most U.S. state governments have adopted, by integrating disciplinary cores with crosscutting ideas and real life practices. In this vein, we present a prototype ';Virtual Ice Sheet Laboratory' (I-Lab), geared to K-12 students, educators and interested members of the general public. I-Lab will allow users to perform experiments using a state-of-the-art dynamical ice sheet model and provide detailed downloadable lesson plans, which incorporate this model and are consistent with NGSS Physical Science criteria for different grade bands (K-2, 3-5, 6-8, and 9-12). The ultimate goal of this website is to improve public climate science literacy, especially in regards to the crucial role of the polar ice sheets in Earth's climate and sea level. The model used will be the Ice Sheet System Model (ISSM), an ice flow model developed at NASA's Jet Propulsion Laboratory and UC Irvine, that simulates the near-term evolution of polar ice sheets (Greenland and Antarctica) and includes high spatial resolution capabilities and data assimilation to produce realistic simulations of ice sheet dynamics at the continental scale. Open sourced since 2011, ISSM is used in cutting edge cryosphere research around the globe. Thru I-Lab, students will be able to access ISSM using a simple, online graphical interface that can be launched from a web browser on a computer, tablet or smart phone. The interface will allow users to select different climate conditions and watch how the polar ice sheets evolve in time under those conditions. Lesson contents will include links to background material and activities that teach observation recording, concept articulation, hypothesis formulation and testing, and

  4. Optimization via CFD of aircraft hot-air anti-icing systems

    NASA Astrophysics Data System (ADS)

    Pellissier, Mathieu Paul Constantin

    In-flight icing is a major concern in aircraft safety and a non-negligible source of incidents and accidents, and is still a serious hazard today. It remains consequently a design and certification challenge for aircraft manufacturers. The aerodynamic performance of an aircraft can indeed degrade rapidly when flying in icing conditions, leading to incidents or accidents. In-flight icing occurs when an aircraft passes through clouds containing supercooled water droplets at or below freezing temperature. Droplets impinge on its exposed surfaces and freeze, causing roughness and shape changes that increase drag, decrease lift and reduce the stall angle of attack, eventually inducing flow separation and stall. This hazardous ice accretion is prevented by the use of dedicated anti-icing systems, among which hot-air-types are the most common for turbofan aircraft. This work presents a methodology for the optimization of such aircraft hot-air-type anti-icing systems, known as Piccolo tubes. Having identified through 3D Computational Fluid Dynamics (CFD) the most critical in-flight icing conditions, as well as determined thermal power constraints, the objective is to optimize the heat distribution in such a way to minimize power requirements, while meeting or exceeding all safety regulation requirements. To accomplish this, an optimization method combining 3D CFD, Reduced-Order Models (ROM) and Genetic Algorithms (GA) is constructed to determine the optimal configuration of the Piccolo tube (angles of jets, spacing between holes, and position from leading edge). The methodology successfully results in increasingly optimal configurations from three up to five design variables.

  5. Diagnosing Snow and Sea Ice Radiative Forcing in the Community Earth System Model

    NASA Astrophysics Data System (ADS)

    Perket, J.; Flanner, M. G.

    2012-12-01

    Earth's albedo is evolving from changes in seasonal snow and sea-ice. Albedo feedback in climate models has been evaluated previously using the radiative kernel technique, where top-of-atmosphere (TOA) radiative fluxes associated with albedo change are calculated "offline" using pre-defined atmospheric states. This approach facilitates model intercomparisons, but can lead to inaccuracies associated with inconsistent surface and cloud states. We have incorporated a new diagnostic feature in the NCAR Community Earth System Model (CESM) that provides the instantaneous effect of land snow and sea ice on the TOA radiation budget at each time step. This diagnostic provides a precise measure of the radiative influence of model snow and sea ice, enables direct model comparison with observation-derived cryosphere radiative forcing (CrRF) estimates, and provides a means to evaluate the accuracy of the radiative kernel technique for diagnosing albedo feedback. Compared with observed northern hemisphere CrRF, we find that CESM produces a larger radiative effect for both land snow and sea ice. Preliminary analysis shows the snow radiative effect in the Northern Hemisphere to be higher in coupled ocean-land-atmosphere simulations compared to standalone land simulations forced with atmospheric reanalysis data. The same is true for ice when comparing the coupled system to offline ice simulations in the Southern Hemisphere. Differences are not as appreciable for sea ice in the North or snow in the South. Studies are planned to assess the accuracy of different radiative kernels, evaluate reasons for model-observation discrepancy in cryosphere radiative forcing, and quantify model changes in CrRF under different climate forcing scenarios.

  6. Ice Protection of Turbojet Engines by Inertia Separation of Water II : Single-offset-duct System

    NASA Technical Reports Server (NTRS)

    Von Glahn, Uwe

    1948-01-01

    Investigation of a single-offset-duct system designed to prevent entrance of water into a turbojet engine was conducted on a half-scale nacelle model. An investigation was made to determine ram-pressure recovery and radial velocity profiles at the compressor section and icing characteristics of such a duct system. At a design inlet velocity of 0.77, the maximum ram-pressure recovery attained with effective water-separating inlet was 77 percent, which is considerably less than attainable with a direct-ram inlet. Continuous heating of the accessory-housing surface would be required for inlets that have a small ice storage space.

  7. An Investigation of the Icing and Heated-air De-icing Characteristics of the R-2600-13 Induction System

    NASA Technical Reports Server (NTRS)

    Chapman, Gilbert E.

    1946-01-01

    A laboratory investigation was made on a Holley 1685-HB carburetor mounted on an R-2600-13 supercharger assembly to determine the icing characteristics and the heated-air de-icing requirements of this portion of the B-25D airplane induction system. Icing has been found to be most prevalent at relatively small throttle openings and, consequently, all runs were made at simulated 60-percent normal rated power condition. Icing characteristics were determined during a series of 15-minute runs over a range of inlet-air conditions. For the de-icing investigation severe impact ice was allowed to form in the induction system and the time required for the recovery of 95 percent of the maximum possible air flow at the original throttle setting was then determined for a range of wet-bulb temperatures. Results of these runs showed that ice on the walls of the carburetor adapter and on the rim of the impeller-shroud portion of the supercharger diffuser plate did not affect engine operation at 60-percent normal rated power. Ice that adversely affected the air flow and the fuel-air ratio was formed only on the central web of the carburetor and then only when the inlet air was saturated or contained free moisture in excess of saturation. No serious ice formations were observed at inlet-air temperatures above 66 0 F or with an inlet-air enthalpy greater than 34 Btu per pound. The maximum temperature at. which any trace of icing could be detected was 1110 F with a relative humidity of approximately 28 percent, The air-flow recovery time for emergency de-icing was 0.3 minute for.an enthalpy of 35 Btu per pound or wet-bulb temperature of 68 0 F. Further increase in enthalpy and wet-bulb temperature above these values resulted in very slight improvement in recovery time. The fuel-air ratio restored by a 5-Minute application of heated air was approximately 7 percent less than the initial value for cold-air conditions.

  8. Personal Ice Cooling System (PICS). Innovative technology summary report

    SciTech Connect

    1998-11-01

    The United States Department of Energy (DOE) continually seeks safer and more cost-effective remediation technologies for use in the decontamination and decommissioning (D and D) of nuclear facilities. To this end, the Deactivation and Decommissioning Focus Area (DDFA) of the DOE`s Office of Science and Technology sponsors Large-Scale Demonstration and Deployment Projects (LSDDPs) in which developers and vendors of improved or innovative technologies showcase products that are potentially beneficial to the DOE`s projects and to others in the D and D community. Benefits sought include decreased health and safety risks to personnel and the environment, increased productivity, and decreased cost of operation. As buildings are demolished as part of the DOE Fernald Environmental Management Project`s (FEMP`s) D and D Plan, many of the activities are performed in hot weather and usually require use of various types and layers of personal protective equipment (PPE). While PPE is designed to protect the worker from contamination, it also significantly compromises the body`s ability to cool itself, leading to potentially serious heat stress situations. This report describes a comparative demonstration between the methodology currently used for heat stress management (i.e., limited stay times and cool-down rooms) and an alternative personal ice cooling suit technology. The baseline methodology for heat stress management is limited stay times when working in hot conditions. The FEMP`s Safety Performance Requirements outline the procedures and stay times to be followed and consider the temperature of the working environment, work load, and the type and amount of PPE required for the job. While these common criteria for determining stay times, other sites may have different requirements. This demonstration investigates the feasibility of using the personal ice cooling suite as a tool for managing heat stress in workers at the FEMP. This report provides a comparative analysis of

  9. All-weather ice information system for Alaskan arctic coastal shipping

    NASA Technical Reports Server (NTRS)

    Gedney, R. T.; Jirberg, R. J.; Schertler, R. J.; Mueller, R. A.; Chase, T. L.; Kramarchuk, I.; Nagy, L. A.; Hanlon, R. A.; Mark, H.

    1977-01-01

    A near real-time ice information system designed to aid arctic coast shipping along the Alaskan North Slope is described. The system utilizes a X-band Side Looking Airborne Radar (SLAR) mounted aboard a U.S. Coast Guard HC-130B aircraft. Radar mapping procedures showing the type, areal distribution and concentration of ice cover were developed. In order to guide vessel operational movements, near real-time SLAR image data were transmitted directly from the SLAR aircraft to Barrow, Alaska and the U.S. Coast Guard icebreaker Glacier. In addition, SLAR image data were transmitted in real time to Cleveland, Ohio via the NOAA-GOES Satellite. Radar images developed in Cleveland were subsequently facsimile transmitted to the U.S. Navy's Fleet Weather Facility in Suitland, Maryland for use in ice forecasting and also as a demonstration back to Barrow via the Communications Technology Satellite.

  10. An Intercomparison of Predicted Sea Ice Concentration from Global Ocean Forecast System & Arctic Cap Nowcast/Forecast System

    NASA Astrophysics Data System (ADS)

    Rosemond, K.

    2015-12-01

    The objective of this research is to provide an evaluation of improvements in marginal ice zone (MIZ) and pack ice estimations from the Global Ocean Forecast System (GOFS) model compared to the current operational model, the Arctic Cap Nowcast/Forecast System (ACNFS). This will be determined by an intercomparison between the subjectively estimated operational ice concentration data from the National Ice Center (NIC) MIZ analysis and the ice concentration estimates from GOFS and ACNFS. This will help ascertain which nowcast from the models compares best to the NIC operational data stream needed for vessel support. It will also provide a quantitative assessment of GOFS and ACNFS performance and be used in the Operational Evaluation (OPEVAL) report from the NIC to NRL. The intercomparison results are based on statistical evaluations through a series of map overlays from both models ACNFS, GOFS with the NIC's MIZ data. All data was transformed to a common grid and difference maps were generated to determine which model had the greatest difference compared to the MIZ ice concentrations. This was provided daily for both the freeze-up and meltout seasons. Results indicated the GOFS model surpassed the ACNFS model, however both models were comparable. These results will help US Navy and NWS Anchorage ice forecasters understand model biases and know which model guidance is likely to provide the best estimate of future ice conditions.The objective of this research is to provide an evaluation of improvements in marginal ice zone (MIZ) and pack ice estimations from the Global Ocean Forecast System (GOFS) model compared to the current operational model, the Arctic Cap Nowcast/Forecast System (ACNFS). This will be determined by an intercomparison between the subjectively estimated operational ice concentration data from the National Ice Center (NIC) MIZ analysis and the ice concentration estimates from GOFS and ACNFS. This will help ascertain which nowcast from the models

  11. Ice-Ocean Interaction at Seasonal to Decadal Scales in the Regional Arctic System Model

    NASA Astrophysics Data System (ADS)

    Maslowski, W.; Osinski, R.; Clement Kinney, J. L.; Craig, A.; Roberts, A.

    2013-12-01

    Understanding of critical processes and feedbacks operating in the Arctic Climate System becomes increasingly critical as the perennial and total summer sea ice cover continues its accelerated decline since the late 1990s. At the same time, realistic representation of such processes in Earth System models (ESMs) is fundamental to increase their skill in simulating the past and predicting future climate change in the Arctic. With respect to sea ice, its drift, export, deformation, and thermodynamic response to atmospheric and oceanic forcing needs further investigation. In order to understand oceanic effects on the Arctic ice pack and climate, an advanced knowledge of the regional circulation patterns, spatial and temporal variability, mesoscale processes, freshwater and heat budgets in the Arctic Ocean and their fluxes to/from Atlantic/Pacific is required. To address some of the requirements for understanding arctic processes and interactions we examine new results from the Regional Arctic System Model (RASM), which is a fully coupled regional climate model developed following the framework of the Community Earth System Model (CESM). At present, RASM consists of the Parallel Ocean Program (POP), Community Ice Model (CICE), Variable Infiltration Capacity (VIC) land hydrology model and the Weather Research and Forecasting (WRF) model coupled through the flux coupler (CPL7). The horizontal resolution currently used in POP and CICE components is 1/12-degree (or ~9 km) whereas in WRF and VIC it is 50 km. Presented results are from a RASM compset, where the atmospheric and land hydrology components are replaced with the 1948-2009 reanalysis data from Version 2 of the Coordinated Ocean-ice Reference Experiment (CORE-II) dataset. In particular, we focus on the upper Arctic Ocean heat and freshwater content, their variability and potential impact on the sea ice thickness and area. Crucial processes to be realistically represented in future ESMs are also discussed.

  12. Extraction and characterization of gelatin from two edible Sudanese insects and its applications in ice cream making.

    PubMed

    Mariod, Abdalbasit Adam; Fadul, Hadia

    2015-07-01

    Three methods were used for extraction of gelatin from two insects, melon bug (Coridius viduatus) and sorghum bug (Agonoscelis versicoloratus versicoloratus). Extraction of insect gelatin using hot water gave higher yield reached up to 3.0%, followed by mild acid extraction which gave 1.5% and distilled water extraction which gave only 1.0%, respectively. The obtained gelatins were characterized by FTIR and the spectra of insect's gelatin seem to be similar when compared with commercial gelatin. Amide II bands of gelatins from melon and sorghum bug appeared around at 1542-1537 cm(-1). Slight differences in the amino acid composition of gelatin extracted from the two insects were observed. Ice cream was made by using 0.5% insect's gelatin and compared with that made using 0.5% commercial gelatin as stabilizing agent. The properties of the obtained ice cream produced using insects gelatin were significantly different when compared with that made using commercial gelatin.

  13. Mapping sea ice using reflected GNSS signals in a bistatic radar system

    NASA Astrophysics Data System (ADS)

    Chew, Clara; Zuffada, Cinzia; Shah, Rashmi; Mannucci, Anthony

    2016-04-01

    Global Navigation Satellite System (GNSS) signals can be used as a kind of bistatic radar, with receivers opportunistically recording ground-reflected signals transmitted by the GNSS satellites themselves. This technique, GNSS-Reflectometry (GNSS-R), has primarily been explored using receivers flown on aircraft or balloons, or in modeling studies. Last year's launch of the TechDemoSat-1 (TDS-1) satellite represents an enormous opportunity to investigate the potential of using spaceborne GNSS receivers to sense changes in the land and ocean surface. Here, we examine the ability of reflected GNSS signals to estimate sea ice extent and sea ice age, as well as comment on the possibility of using GNSS-R to detect leads and polynyas within the ice. In particular, we quantify how the peak power of Delay Doppler Maps (DDMs) generated within the GNSS receiver responds as the satellite flies over the Polar Regions. To compute the effective peak power of each DDM, we first normalize the peak power of the DDM by the noise floor. We also correct for antenna gain, range, and incidence angle. Once these corrections are made, the effective peak power across DDMs may be used as a proxy for changes in surface permittivity and surface roughness. We compare our calculations of reflected power to existing sea ice remote sensing products such as data from the SSMI/S as well as Landsat imagery. Our analysis shows that GNSS reflections are extremely sensitive to the sea ice edge, with increases in reflected power of more than 10 dB relative to reflected power over the open ocean. As the sea ice ages, it thickens and roughens, and reflected power decreases, though it does not decrease below the power over the open ocean. Given the observed sensitivity of GNSS reflections to small features over land and the sensitivity to the sea ice edge, we hypothesize that reflection data could help map the temporal evolution of leads and polynyas.

  14. 76 FR 7238 - Pipeline Safety: Dangers of Abnormal Snow and Ice Build-Up on Gas Distribution Systems

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-09

    ... distribution system facilities appear to have been related to either the stress of snow and ice or the... distribution system facilities that appear to have been related to either the stress of snow and ice or... greatest risk. Damage may result from the stresses imposed by the additional loading of the snow or...

  15. Replicating the Ice-Volume Signal of the Early Pleistocene with a Complex Earth System Model

    NASA Astrophysics Data System (ADS)

    Tabor, C. R.; Poulsen, C. J.; Pollard, D.

    2013-12-01

    Milankovitch theory proposes high-latitude summer insolation intensity paces the ice ages by controlling perennial snow cover amounts (Milankovitch, 1941). According to theory, the ~21 kyr cycle of precession should dominate the ice-volume records since it has the greatest influence on high-latitude summer insolation. Modeling experiments frequently support Milankovitch theory by attributing the majority of Northern Hemisphere high-latitude summer snowmelt to changes in the cycle of precession (e.g. Jackson and Broccoli, 2003). However, ice-volume proxy records, especially those of the Early Pleistocene (2.6-0.8 Ma), display variability with a period of ~41 kyr (Raymo and Lisiecki, 2005), indicative of insolation forcing from obliquity, which has a much smaller influence on summer insolation intensity than precession. Several hypotheses attempt to explain the discrepancies between Milkankovitch theory and the proxy records by invoking phenomena such as insolation gradients (Raymo and Nisancioglu, 2003), hemispheric offset (Raymo et al., 2006; Lee and Poulsen, 2009), and integrated summer energy (Huybers, 2006); however, all of these hypotheses contain caveats (Ruddiman, 2006) and have yet to be supported by modeling studies that use a complex GCM. To explore potential solutions to this '41 kyr problem,' we use an Earth system model composed of the GENESIS GCM and Land Surface model, the BIOME4 vegetation model, and the Pennsylvania State ice-sheet model. Using an asynchronous coupling technique, we run four idealized transient combinations of obliquity and precession, representing the orbital extremes of the Pleistocene (Berger and Loutre, 1991). Each experiment is run through several complete orbital cycles with a dynamic ice domain spanning North America and Greenland, and fixed preindustrial greenhouse-gas concentrations. For all orbital configurations, model results produce greater ice-volume spectral power at the frequency of obliquity despite significantly

  16. Sensitivity of the Regional Arctic System Model surface climate to ice-ocean state

    NASA Astrophysics Data System (ADS)

    Roberts, A.; Maslowski, W.; Osinski, R.; Cassano, J. J.; Craig, A.; Duvivier, A.; Fisel, B. J.; Gutowski, W. J.; Higgins, M.; Hughes, M. R.; Lettenmaier, D. P.; Nijssen, B.

    2012-12-01

    The Regional Arctic System Model (RASM) is a high-resolution Earth System model extending across the Arctic Ocean, its marginal seas, the Arctic drainage basin, and including the Coordinated Regional Downscaling Experiment (CORDEX) Arctic domain. RASM uses the flux coupler (CPL7) within the Community Earth System Model framework to couple regional configurations of the Weather Research and Forecasting model (WRF), Parallel Ocean Program (POP), Los Alamos sea ice model (CICE), and Variable Infiltration Capacity land hydrology model (VIC). Work is also underway to incorporate the Community Ice Sheet Model (CISM) as well as glacier, ice cap and dynamic vegetation models. As part of RASM development, coupled simulations are being prepared for the CORDEX Arctic domain, which is unique among CORDEX regions by being centered over the ocean. Up to this point, there has been uncertainty over how much initial and surface conditions in the ice-ocean boundary layer influence the surface climate of the Arctic in RASM, relative to regional atmospheric model constraints, such as spectral nudging and boundary conditions. We present results that suggest there is a significant dependency on the initial sea ice conditions on decadal timescales within RASM. This has important implications for (i) how results from different regional artic models may be combined and compared in CORDEX and (ii) appropriate methods for ensemble generation in regional polar models. We will also present results illustrating the influence of sub-hourly sea ice deformation on decadal climate in RASM, highlighting an important reason why fully coupled and high-resolution regional models are essential for regional Arctic downscaling.

  17. Experimental study of the NaCl-H 2O system up to 28 GPa: Implications for ice-rich planetary bodies

    NASA Astrophysics Data System (ADS)

    Frank, Mark R.; Runge, Claire E.; Scott, Henry P.; Maglio, Steven J.; Olson, Jessica; Prakapenka, Vitali B.; Shen, Guoyin

    2006-04-01

    Recent studies have hypothesized that high-pressure H 2O polymorphs, specifically Ice VI and Ice VII, make up a significant portion of the interiors of select outer planets and their moons; most notably the Galilean satellites, Saturn's Titan and possibly Neptune's moon Triton as well as potential H 2O-rich extra-solar bodies. Several of these bodies have been conjectured to contain subsurface salty H 2O waters; therefore, any potential ice phases in the interior of these satellites could have interacted extensively with the salty oceans. Raman spectroscopy and synchrotron radiation have been used previously to study the bonding structure and unit cell parameters of pure Ice VII. However, no data exist on the effect of salts on the unit cell parameters and volume of solid H 2O at high pressure. To obtain pertinent data for use in planetary physics, it is important to understand the effect of impurities on H 2O at high pressure. The NaCl-H 2O system was chosen as a first order approximation of H 2O-rich planetary bodies. The unit cell parameters and OH stretching frequencies of Ice VII formed from 5 and 10 wt.% NaCl-H 2O solutions were studied in detail up to 27 GPa at 298 K by using a diamond anvil cell, synchrotron X-ray radiation and Raman spectroscopy. The data indicate that, over the range in pressure and temperature of this study, the maximum solubility of solutes in Ice VII was not pressure dependent. Our data suggest that the maximum concentration of NaCl that can be incorporated into Ice VII at 298 K is 7.5 ± 2.5 wt.% (or 2.4 ± 0.8 mol% NaCl). Ice VII formed from a 5 wt.% NaCl-H 2O solution has a density that is up to 5% greater at any given pressure relative to the density of Ice VII formed from pure H 2O. Additionally, the bulk modulus, 26.2 ± 1.4 GPa, was found to be approximately 10-20% greater relative to Ice VII formed from pure H 2O. Relative OH stretching frequency shifts from Ice VII formed from the NaCl-H 2O solutions were compared to Ice VII

  18. Making intelligent systems team players: Overview for designers

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.; Schreckenghost, Debra L.

    1992-01-01

    This report is a guide and companion to the NASA Technical Memorandum 104738, 'Making Intelligent Systems Team Players,' Volumes 1 and 2. The first two volumes of this Technical Memorandum provide comprehensive guidance to designers of intelligent systems for real-time fault management of space systems, with the objective of achieving more effective human interaction. This report provides an analysis of the material discussed in the Technical Memorandum. It clarifies what it means for an intelligent system to be a team player, and how such systems are designed. It identifies significant intelligent system design problems and their impacts on reliability and usability. Where common design practice is not effective in solving these problems, we make recommendations for these situations. In this report, we summarize the main points in the Technical Memorandum and identify where to look for further information.

  19. Helicopter-borne measurements of sea ice thickness, using a small and lightweight, digital EM system

    NASA Astrophysics Data System (ADS)

    Haas, Christian; Lobach, John; Hendricks, Stefan; Rabenstein, Lasse; Pfaffling, Andreas

    2009-03-01

    Sea ice is an important climate variable and is also an obstacle for marine operations in polar regions. We have developed a small and lightweight, digitally operated frequency-domain electromagnetic-induction (EM) system, a so-called EM bird, dedicated for measurements of sea ice thickness. It is 3.5 m long and weighs only 105 kg, and can therefore easily be shipped to remote places and operated from icebreakers and small helicopters. Here, we describe the technical design of the bird operating at two frequencies of f1 = 3.68 kHz and f2 = 112 kHz, and study its technical performance. On average, noise amounts to ± 8.5 ppm and ± 17.5 ppm for f1 and f2, respectively. Electrical drift amounts to 200 ppm/h and 2000 ppm/h for f1 and f2, during the first 0.5 h of operation. It is reduced by 75% after 2 h. Calibration of the Inphase and Quadrature ppm signals varies by 2 to 3%. A sensitivity study shows that all these signal variations do affect the accuracy of the ice thickness retrieval, but that it remains better than ± 0.1 m over level ice in most cases. This accuracy is also confirmed by means of comparisons of the helicopter EM data with other thickness measurements. The paper also presents the ice thickness retrieval from single-component Inphase data of f1.

  20. NASA Glenn Propulsion Systems Lab: 2012 Inaugural Ice Crystal Cloud Calibration Procedure and Results

    NASA Technical Reports Server (NTRS)

    VanZante, Judith F.; Rosine, Bryan M.

    2014-01-01

    The inaugural calibration of the ice crystal and supercooled liquid water clouds generated in NASA Glenn's engine altitude test facility, the Propulsion Systems Lab (PSL) is reported herein. This calibration was in support of the inaugural engine ice crystal validation test. During the Fall of 2012 calibration effort, cloud uniformity was documented via an icing grid, laser sheet and cloud tomography. Water content was measured via multi-wire and robust probes, and particle sizes were measured with a Cloud Droplet Probe and Cloud Imaging Probe. The environmental conditions ranged from 5,000 to 35,000 ft, Mach 0.15 to 0.55, temperature from +50 to -35 F and relative humidities from less than 1 percent to 75 percent in the plenum.

  1. The IceBreaker3: One Meter Mars Drill and Triple Redundant Sample Delivery System

    NASA Astrophysics Data System (ADS)

    Zacny, K.; Paulsen, G.; McKay, C.; Glass, B.; Dave, A.; Davila, A.

    2014-07-01

    We present Mars Icebreaker3 drill for capturing samples of ice/icy-soil from ~1 m depth. An integral part of the sampling system is triple redundant sample transfer using 1. stand alone arm with a scoop, 2. pneumatic based, and 3. drill drop off.

  2. Artificial Icing Test, Utility Tactical Transport Aircraft System (UTTAS), Boeing Vertol YUH-61A Helicopter

    DTIC Science & Technology

    1977-01-01

    Tactical Transport Aircraft System," 10 November 1975. 2. Letter, AVSCOM, DRSAV-EQI, 25 May 1976, subject: Utility Tactical Tranport Aircraft System...Parts, Helicopter Icing Spray System (HISS). 12 November 1973, with Change 1, 15 July 1976. 8. Technical Report. Environmental Research and Technology ...and static air temperature was obtained from table 3. Relative humidity was then computed using the values obtained from table 2 and equation 1: PS

  3. A systems theory approach to career decision making.

    PubMed

    Zimmerman, Angela L; Kontosh, Larry G

    2007-01-01

    Many career development studies have linked career indecision, an inability to make a decision about the vocation one wishes to pursue, to interpersonal and intrapersonal processes. Systems theory can help to explain the processes behind these concepts in a way that other theories have not been able to explain. Systems Theory Framework, (STF, Patton and McMahon, 1997), incorporates both the contextual system, e.g., parents and peers, and the individual system (i.e., STF's content component). Process, the second component, identifies the presence of recursive interaction processes within the individual and the context, as well as, between the individual and the context. STF brings back the value of interdependence. Specific systemic constructs are useful in career decision-making and can add a practical dimension on to the counseling process.

  4. Creating future fit between ice and society: The institutionalization of a refuge in the Arctic to preserve sea ice system services in a changing North

    NASA Astrophysics Data System (ADS)

    Lovecraft, A. L.; Meek, C. L.

    2010-12-01

    The Arctic sea ice system can be holistically characterized as a social-ecological system that provides not only vital geophysical and biological services to climate and oceans but also provisioning services to people and industry. These services are under threat from the three major interconnected global forces of increasing traffic for shipping, security, and tourism; contaminant accumulation primarily from distant, but also related to some local marine activities, industrial production; and climatic changes, especially the warming at the poles which is diminishing the earth’s cryosphere. As the Arctic becomes more open due to sea ice loss the current strategies to preserve individual species or sea ice system functions may become obsolete in the next several decades. Concurrent to this will be the rise of traffic in areas currently not passable and an increase in exploitation of natural resources (biological and mineral) further north. This expansion of human activity does not have a suite of institutions in place that comprehensively address a future open Arctic Ocean and the coasts of the circumpolar north. Consequently, as the amount of space that can preserve a diversity of sea ice system services shrinks and the use of that space becomes crowded with interests, governments across scales need to be able to plan to balance the increase in use with preservation of services valuable both in terms of regulating and supporting planetary processes and the cultural and provisioning services more immediately tied to human flourishing. In short, it is a race between stressors and human capacity to manage them through rules minimizing their direct impact on the ice or preventing them from entering an eventual “ice shed” boundaries of a minimum summer sea ice cover. This poster explores the potential for the creation of a system of governance that would provide a refuge based on the projected summer sea ice to remain in the Arctic even as the climate shifts in

  5. Operational coupled atmosphere - ocean - ice forecast system for the Gulf of St. Lawrence, Canada

    NASA Astrophysics Data System (ADS)

    Faucher, M.; Roy, F.; Desjardins, S.; Fogarty, C.; Pellerin, P.; Ritchie, H.; Denis, B.

    2009-09-01

    A fully interactive coupled atmosphere-ocean-ice forecasting system for the Gulf of St. Lawrence (GSL) has been running in experimental mode at the Canadian Meteorological Centre (CMC) for the last two winter seasons. The goal of this project is to provide more accurate weather and sea ice forecasts over the GSL and adjacent coastal areas by including atmosphere-oceanice interactions in the CMC operational forecast system using a formal coupling strategy between two independent modeling components. The atmospheric component is the Canadian operational GEM model (Côté et al. 1998) and the oceanic component is the ocean-ice model for the Gulf of St. Lawrence developed at the Maurice Lamontagne Institute (IML) (Saucier et al. 2003, 2004). The coupling between those two models is achieved by exchanging surface fluxes and variables through MPI communication. The re-gridding of the variables is done with a package developed at the Recherche en Prevision Numerique centre (RPN, Canada). Coupled atmosphere - ocean - ice forecasts are issued once a day based on 00GMT data. Results for the past two years have demonstrated that the coupled system produces improved forecasts in and around the GSL during all seasons, proving that atmosphere-ocean-ice interactions are indeed important even for short-term Canadian weather forecasts. This has important implications for other coupled modeling and data assimilation partnerships that are in progress involving EC, the Department of Fisheries and Oceans (DFO) and the National Defense (DND). Following this experimental phase, it is anticipated that this GSL system will be the first fully interactive coupled system to be implemented at CMC.

  6. TOPAZ4: an ocean-sea ice data assimilation system for the North Atlantic and Arctic

    NASA Astrophysics Data System (ADS)

    Sakov, P.; Counillon, F.; Bertino, L.; Lisæter, K. A.; Oke, P. R.; Korablev, A.

    2012-08-01

    We present a detailed description of TOPAZ4, the latest version of TOPAZ - a coupled ocean-sea ice data assimilation system for the North Atlantic Ocean and Arctic. It is the only operational, large-scale ocean data assimilation system that uses the ensemble Kalman filter. This means that TOPAZ features a time-evolving, state-dependent estimate of the state error covariance. Based on results from the pilot MyOcean reanalysis for 2003-2008, we demonstrate that TOPAZ4 produces a realistic estimate of the ocean circulation in the North Atlantic and the sea-ice variability in the Arctic. We find that the ensemble spread for temperature and sea-level remains fairly constant throughout the reanalysis demonstrating that the data assimilation system is robust to ensemble collapse. Moreover, the ensemble spread for ice concentration is well correlated with the actual errors. This indicates that the ensemble statistics provide reliable state-dependent error estimates - a feature that is unique to ensemble-based data assimilation systems. We demonstrate that the quality of the reanalysis changes when different sea surface temperature products are assimilated, or when in-situ profiles below the ice in the Arctic Ocean are assimilated. We find that data assimilation improves the match to independent observations compared to a free model. Improvements are particularly noticeable for ice thickness, salinity in the Arctic, and temperature in the Fram Strait, but not for transport estimates or underwater temperature. At the same time, the pilot reanalysis has revealed several flaws in the system that have degraded its performance. Finally, we show that a simple bias estimation scheme can effectively detect the seasonal or constant bias in temperature and sea-level.

  7. TOPAZ4: an ocean-sea ice data assimilation system for the North Atlantic and Arctic

    NASA Astrophysics Data System (ADS)

    Sakov, P.; Counillon, F.; Bertino, L.; Lisæter, K. A.; Oke, P. R.; Korablev, A.

    2012-04-01

    We present a detailed description of TOPAZ4, the latest version of TOPAZ - a coupled ocean-sea ice data assimilation system for the North Atlantic Ocean and Arctic. It is the only operational, large-scale ocean data assimilation system that uses the ensemble Kalman filter. This means that TOPAZ features a time-evolving, state-dependent estimate of the state error covariance. Based on results from the pilot MyOcean reanalysis for 2003-2008, we demonstrate that TOPAZ4 produces a realistic estimate of the ocean circulation and the sea ice. We find that the ensemble spread for temperature and sea-level remains fairly constant throughout the reanalysis demonstrating that the data assimilation system is robust to ensemble collapse. Moreover, the ensemble spread for ice concentration is well correlated with the actual errors. This indicates that the ensemble statistics provide reliable state-dependent error estimates - a feature that is unique to ensemble-based data assimilation systems. We demonstrate that the quality of the reanalysis changes when different sea surface temperature products are assimilated, or when in situ profiles below the ice in the Arctic Ocean are assimilated. We find that data assimilation improves the match to independent observations compared to a free model. Improvements are particularly noticeable for ice thickness, salinity in the Arctic, and temperature in the Fram Strait, but not for transport estimates or underwater temperature. At the same time, the pilot reanalysis has revealed several flaws in the system that have degraded its performance. Finally, we show that a simple bias estimation scheme can effectively detect the seasonal or constant bias in temperature and sea-level.

  8. Functional evaluation of candidate ice structuring proteins using cell-free expression systems.

    PubMed

    Brödel, A K; Raymond, J A; Duman, J G; Bier, F F; Kubick, S

    2013-02-10

    Ice structuring proteins (ISPs) protect organisms from damage or death by freezing. They depress the non-equilibrium freezing point of water and prevent recrystallization, probably by binding to the surface of ice crystals. Many ISPs have been described and it is likely that many more exist in nature that have not yet been identified. ISPs come in many forms and thus cannot be reliably identified by their structure or consensus ice-binding motifs. Recombinant protein expression is the gold standard for proving the activity of a candidate ISP. Among existing expression systems, cell-free protein expression is the simplest and gives the fastest access to the protein of interest, but selection of the appropriate cell-free expression system is crucial for functionality. Here we describe cell-free expression methods for three ISPs that differ widely in structure and glycosylation status from three organisms: a fish (Macrozoarces americanus), an insect (Dendroides canadensis) and an alga (Chlamydomonas sp. CCMP681). We use both prokaryotic and eukaryotic expression systems for the production of ISPs. An ice recrystallization inhibition assay is used to test functionality. The techniques described here should improve the success of cell-free expression of ISPs in future applications.

  9. Ice Formation on Wings

    NASA Technical Reports Server (NTRS)

    Ritz, L

    1939-01-01

    This report makes use of the results obtained in the Gottingen ice tunnel in which the atmospheric conditions are simulated and the process of ice formation photographed. The effect of ice formation is threefold: 1) added weight to the airplane; 2) a change in the lift and drag forces; 3) a change in the stability characteristics.

  10. Monitoring and decision making by people in man machine systems

    NASA Technical Reports Server (NTRS)

    Johannsen, G.

    1979-01-01

    The analysis of human monitoring and decision making behavior as well as its modeling are described. Classic and optimal control theoretical, monitoring models are surveyed. The relationship between attention allocation and eye movements is discussed. As an example of applications, the evaluation of predictor displays by means of the optimal control model is explained. Fault detection involving continuous signals and decision making behavior of a human operator engaged in fault diagnosis during different operation and maintenance situations are illustrated. Computer aided decision making is considered as a queueing problem. It is shown to what extent computer aids can be based on the state of human activity as measured by psychophysiological quantities. Finally, management information systems for different application areas are mentioned. The possibilities of mathematical modeling of human behavior in complex man machine systems are also critically assessed.

  11. On the state of water ice on saturn's moon Titan and implications to icy bodies in the outer solar system.

    PubMed

    Zheng, Weijun; Jewitt, David; Kaiser, Ralf I

    2009-10-22

    The crystalline state of water ice in the Solar System depends on the temperature history of the ice and the influence of energetic particles to which it has been exposed. We measured the infrared absorption spectra of amorphous and crystalline water ice in the 10-50 K and 10-140 K temperature ranges, respectively, and conducted a systematic experimental study to investigate the amorphization of crystalline water ice via ionizing radiation irradiation at doses of up to 160 +/- 30 eV per molecule. We found that crystalline water ice can be converted only partially to amorphous ice by electron irradiation. The experiments showed that a fraction of the 1.65 microm band, which is characteristic for crystalline water ice, survived the irradiation, to a degree that strongly depends on the temperature. Quantitative kinetic fits of the temporal evolution of the 1.65 mum band clearly demonstrate that there is a balance between thermal recrystallization and irradiation-induced amorphization, with thermal recrystallizaton dominant at higher temperatures. Our experiments show the amorphization at 40 K was incomplete, in contradiction to Mastrapa and Brown's conclusion (Icarus 2006, 183, 207.). At 50 K, the recrystallization due to thermal effects is strong, and most of the crystalline ice survived. Temperatures of most icy objects in the Solar System, including Jovian satellites, Saturnian satellites (including Titan), and Kuiper Belt Objects, are equal to or above 50 K; this explains why water ice detected on those objects is mostly crystalline.

  12. Optimal numerical solvers for transient simulations of ice flow using the Ice Sheet System Model (ISSM versions 4.2.5 and 4.11)

    NASA Astrophysics Data System (ADS)

    Habbal, Feras; Larour, Eric; Morlighem, Mathieu; Seroussi, Helene; Borstad, Christopher P.; Rignot, Eric

    2017-01-01

    Identifying fast and robust numerical solvers is a critical issue that needs to be addressed in order to improve projections of polar ice sheets evolving in a changing climate. This work evaluates the impact of using advanced numerical solvers for transient ice-flow simulations conducted with the JPL-UCI Ice Sheet System Model (ISSM). We identify optimal numerical solvers by testing a broad suite of readily available solvers, ranging from direct sparse solvers to preconditioned iterative methods, on the commonly used Ice Sheet Model Intercomparison Project for Higher-Order ice sheet Models benchmark tests. Three types of analyses are considered: mass transport, horizontal stress balance, and incompressibility. The results of the fastest solvers for each analysis type are ranked based on their scalability across mesh size and basal boundary conditions. We find that the fastest iterative solvers are ˜ 1.5-100 times faster than the default direct solver used in ISSM, with speed-ups improving rapidly with increased mesh resolution. We provide a set of recommendations for users in search of efficient solvers to use for transient ice-flow simulations, enabling higher-resolution meshes and faster turnaround time. The end result will be improved transient simulations for short-term, highly resolved forward projections (10-100 year time scale) and also improved long-term paleo-reconstructions using higher-order representations of stresses in the ice. This analysis will also enable a new generation of comprehensive uncertainty quantification assessments of forward sea-level rise projections, which rely heavily on ensemble or sampling approaches that are inherently expensive.

  13. Pavlovian valuation systems in learning and decision making

    PubMed Central

    Clark, Jeremy J.; Hollon, Nick G.; Phillips, Paul E. M.

    2012-01-01

    Environmental stimuli guide value-based decision making, but can do so through cognitive representation of outcomes or through general-incentive properties attributed to the cues themselves. We assert that these differences are conferred through the use of alternative associative structures differing in computational intensity. Using this framework, we review scientific evidence to discern the neural substrates of these assumed separable processes. We suggest that the contribution of the mesolimbic dopamine system to Pavlovian valuation is restricted to an affective system that is only updated through experiential feedback of stimulus-outcome pairing, whereas the orbitofrontal cortex contributes to an alternative system capable of inferential reasoning. Finally we discuss the interactions and convergence of these systems and their implications for decision making and its pathology. PMID:22749132

  14. A safety-based decision making architecture for autonomous systems

    NASA Technical Reports Server (NTRS)

    Musto, Joseph C.; Lauderbaugh, L. K.

    1991-01-01

    Engineering systems designed specifically for space applications often exhibit a high level of autonomy in the control and decision-making architecture. As the level of autonomy increases, more emphasis must be placed on assimilating the safety functions normally executed at the hardware level or by human supervisors into the control architecture of the system. The development of a decision-making structure which utilizes information on system safety is detailed. A quantitative measure of system safety, called the safety self-information, is defined. This measure is analogous to the reliability self-information defined by McInroy and Saridis, but includes weighting of task constraints to provide a measure of both reliability and cost. An example is presented in which the safety self-information is used as a decision criterion in a mobile robot controller. The safety self-information is shown to be consistent with the entropy-based Theory of Intelligent Machines defined by Saridis.

  15. Near-Infrared Spectra of Icy Outer Solar System Surfaces: Remote Determination of H 2O Ice Temperatures

    NASA Astrophysics Data System (ADS)

    Grundy, W. M.; Buie, M. W.; Stansberry, J. A.; Spencer, J. R.; Schmitt, B.

    1999-12-01

    We present new 1.20 to 2.35 μm spectra of satellites of Jupiter, Saturn, and Uranus, and the rings of Saturn, obtained in 1995 and 1998 at Lowell Observatory. For most of the target objects, our data provide considerable improvement in spectral resolution and signal-to-noise over previously published data. Absorption bands with shapes characteristic of low-temperature, hexagonal crystalline H 2O ice dominate the spectra of most of our targets in this wavelength range. We make use of newly published temperature-dependent wavelengths and relative strengths of H 2O absorption bands to infer ice temperatures from our spectra. These ice temperatures are distinct from temperatures determined from thermal emission measurements or simulations of radiative balances. Unlike those methods, which average over all terrains including ice-free regions, our temperature-sensing method is only sensitive to the ice component. Our method offers a new constraint which, combined with other observations, can lead to better understanding of thermal properties and textures of remote, icy surfaces. Ice temperatures are generally lower than thermal emission brightness temperatures, indicative of the effects of thermal inertia and segregation between ice and warmer, darker materials. We also present the results of experiments to investigate possible changes of water ice temperature over time, including observations of Titania at two epochs, and of Ganymede and saturnian ring particles following emergence from the eclipse shadows of their primary planets. Finally, we discuss limitations of our temperature measurement method which can result from the presence of H 2O in phases other than hexagonal ice-I h, such as amorphous ice, hydrated mineral phases, or radiation-damaged crystalline ice. Our spectra of Europa and Enceladus exhibit peculiar spectral features which may result from effects such as these.

  16. Making the System Work for Your Child with ADHD

    ERIC Educational Resources Information Center

    Jensen, Peter S.

    2004-01-01

    Even for parents who "do everything right," the road to successful management of ADHD is seldom smooth. Now leading child psychiatrist Dr. Peter Jensen guides parents over the rough patches and around the hairpin curves in this empowering, highly informative book. Readers learn the "whats," "whys," and "how-tos" of making the system work-getting…

  17. Decision Making Methods in Space Economics and Systems Engineering

    NASA Technical Reports Server (NTRS)

    Shishko, Robert

    2006-01-01

    This viewgraph presentation reviews various methods of decision making and the impact that they have on space economics and systems engineering. Some of the methods discussed are: Present Value and Internal Rate of Return (IRR); Cost-Benefit Analysis; Real Options; Cost-Effectiveness Analysis; Cost-Utility Analysis; Multi-Attribute Utility Theory (MAUT); and Analytic Hierarchy Process (AHP).

  18. The Europa Imaging System (EIS): Investigating Europa's geology, ice shell, and current activity

    NASA Astrophysics Data System (ADS)

    Turtle, Elizabeth; Thomas, Nicolas; Fletcher, Leigh; Hayes, Alexander; Ernst, Carolyn; Collins, Geoffrey; Hansen, Candice; Kirk, Randolph L.; Nimmo, Francis; McEwen, Alfred; Hurford, Terry; Barr Mlinar, Amy; Quick, Lynnae; Patterson, Wes; Soderblom, Jason

    2016-07-01

    NASA's Europa Mission, planned for launch in 2022, will perform more than 40 flybys of Europa with altitudes at closest approach as low as 25 km. The instrument payload includes the Europa Imaging System (EIS), a camera suite designed to transform our understanding of Europa through global decameter-scale coverage, topographic and color mapping, and unprecedented sub- meter-scale imaging. EIS combines narrow-angle and wide-angle cameras to address these science goals: • Constrain the formation processes of surface features by characterizing endogenic geologic structures, surface units, global cross-cutting relationships, and relationships to Europa's subsurface structure and potential near-surface water. • Search for evidence of recent or current activity, including potential plumes. • Characterize the ice shell by constraining its thickness and correlating surface features with subsurface structures detected by ice penetrating radar. • Characterize scientifically compelling landing sites and hazards by determining the nature of the surface at scales relevant to a potential lander. EIS Narrow-angle Camera (NAC): The NAC, with a 2.3°° x 1.2°° field of view (FOV) and a 10-μμrad instantaneous FOV (IFOV), achieves 0.5-m pixel scale over a 2-km-wide swath from 50-km altitude. A 2-axis gimbal enables independent targeting, allowing very high-resolution stereo imaging to generate digital topographic models (DTMs) with 4-m spatial scale and 0.5-m vertical precision over the 2-km swath from 50-km altitude. The gimbal also makes near-global (>95%) mapping of Europa possible at ≤50-m pixel scale, as well as regional stereo imaging. The NAC will also perform high-phase-angle observations to search for potential plumes. EIS Wide-angle Camera (WAC): The WAC has a 48°° x 24°° FOV, with a 218-μμrad IFOV, and is designed to acquire pushbroom stereo swaths along flyby ground-tracks. From an altitude of 50 km, the WAC achieves 11-m pixel scale over a 44-km

  19. Microcomputer-Based Expert System for Clinical Decision-Making

    PubMed Central

    Hudson, Donna L.; Estrin, Thelma

    1981-01-01

    A computerized rule-based expert system for chest pain analysis in the emergency room has been developed as a medical decision-making tool. The rules are based on a previously established criteria mapping procedure developed for evaluating emergency room decisions. The system is implemented in PASCAL, a standardized language, and hence is machine-independent, and also has modest memory requirements. The overall design permits usage by those unfamiliar with computers.

  20. Numerical Investigation of Engine Inlet Vane Hot-Air Anti-Icing System with Surface Air Film

    NASA Astrophysics Data System (ADS)

    Ma, Hui; Chen, Weijian; Zhang, Dalin

    The inlet vane of aircraft engine needs to be equipped with anti-icing system to prevent ice accretion on the leading edge due to flight safety requirements, and the engine bleed hot-air is mostly used to heat the vane surface in anti-icing system. In order to save the energy consumption, a new anti-icing structure was developed and investigated with numerical simulation. Besides the use of small tunnels to enhance the heat transfer characteristics, a narrow gap was opened and assigned on the vane surface at the end of the anti-icing tunnels, and the exhaust hot-air was released from the gap to form an air film on the outside surface, which was supposed to prevent the droplets from impinging to the surface and sweep the droplets away. The droplets impingement on the vane surface was investigated by solving the 3D Eulerian air/droplets twophase model, and the impingement results were compared with the original system. Meanwhile, the thermodynamic analysis of the anti-icing system was presented in this paper. The results indicate that the air film is effective to decrease the droplets impingement area, and the new structure could provide more heat flux for anti-icing than the regular anti-icing structure.

  1. Use of a new high-speed digital data acquisition system in airborne ice-sounding

    USGS Publications Warehouse

    Wright, David L.; Bradley, Jerry A.; Hodge, Steven M.

    1989-01-01

    A high-speed digital data acquisition and signal averaging system for borehole, surface, and airborne radio-frequency geophysical measurements was designed and built by the US Geological Survey. The system permits signal averaging at rates high enough to achieve significant signal-to-noise enhancement in profiling, even in airborne applications. The first field use of the system took place in Greenland in 1987 for recording data on a 150 by 150-km grid centered on the summit of the Greenland ice sheet. About 6000-line km were flown and recorded using the new system. The data can be used to aid in siting a proposed scientific corehole through the ice sheet.

  2. Altitude Effects on Thermal Ice Protection System Performance; a Study of an Alternative Approach

    NASA Technical Reports Server (NTRS)

    Addy, Harold E., Jr.; Orchard, David; Wright, William B.; Oleskiw, Myron

    2016-01-01

    Research has been conducted to better understand the phenomena involved during operation of an aircraft's thermal ice protection system under running wet icing conditions. In such situations, supercooled water striking a thermally ice-protected surface does not fully evaporate but runs aft to a location where it freezes. The effects of altitude, in terms of air pressure and density, on the processes involved were of particular interest. Initial study results showed that the altitude effects on heat energy transfer were accurately modeled using existing methods, but water mass transport was not. Based upon those results, a new method to account for altitude effects on thermal ice protection system operation was proposed. The method employs a two-step process where heat energy and mass transport are sequentially matched, linked by matched surface temperatures. While not providing exact matching of heat and mass transport to reference conditions, the method produces a better simulation than other methods. Moreover, it does not rely on the application of empirical correction factors, but instead relies on the straightforward application of the primary physics involved. This report describes the method, shows results of testing the method, and discusses its limitations.

  3. A high velocity impact experiment of micro-scale ice particles using laser-driven system

    NASA Astrophysics Data System (ADS)

    Yu, Hyeonju; Kim, Jungwook; Yoh, Jack J.

    2014-11-01

    A jet engine for high speed air breathing propulsion is subject to continuous wear as a result of impacts of micro-scale ice particles during a flight in the atmosphere. The inlet duct and compressor blades are exposed to on-coming frozen moisture particles that may result in the surface damage and significantly shorten the designed lifetime of the aircraft. Under such prolonged high-speed impact loading, the performance parameters such as flight instability and power loss of a jet engine can be significantly degraded. In this work, a laser-driven system was designed to accelerate micro-scale ice particles to the velocity up to Mach 2 using a Q-switched Nd:YAG laser beam at 100-600 mJ with 1064 nm wavelength and 9 ns pulse duration. The high speed images (Phantom v711) and double exposure shadowgraphs were used to calculate the average velocity of ice particles and their deceleration. Velocity Interferometer System for Any Reflector measurements were also utilized for the analysis of free surface velocity of a metal foil in order to understand the interfacial dynamics between the impacting particles and accepting metal target. The velocity of our ice particles is sufficiently fast for studying the effect of moisture particle collision on an air-breathing duct of high speed aircraft, and thus the results can provide insight into how minute space debris or micrometeorites cause damage to the orbiting spacecraft at large.

  4. How do the physical properties of ice influence the habitability of outer solar system satellites? (Invited)

    NASA Astrophysics Data System (ADS)

    Nimmo, F.

    2009-12-01

    [11] might enhance downwards transportation rates. A less obvious issue is the extent to which the silicate portion of the satellites can be heated. This is because 1) hot silicates prolong the life of an overlying ocean and 2) hydrothermal circulation is a source of reactants. Europa [12] and Enceladus [13] may both possess hot, partially-molten silicate interiors. However, at least for Enceladus the temperatures inferred by [13] cannot be explained by conventional tidal heating [7]. One possibility is that the conventional Maxwell viscoelastic rheological model does not adequately describe dissipation in real geological materials [14], and that more complicated descriptions are required. [1] Gaidos EJ, Science 284, 1631-33, 1999. [2] Hand KP et al., Astrobiology 7, 1006-22, 2007. [3] Zolotov MY Shock EL, JGR 109, E06003, 2004. [4] Schulze-Makuch D, Irwin LN Astrobiology 2, 105-21, 2002. [5] Barr AC, McKinnon WB, JGR 112, E02012, 2007. [6] Ross RG, Kargel JS, in Solar System Ices, 33-62, 1998. [7] Roberts JH, Nimmo F, Icarus 194, 675-89, 2008. [8] Deschamps F, Sotin C, JGR 106, 5107-21, 2001. [9] Barr AC et al., LPSC 33, 1545, 2002. [10] Postberg F et al., Nature 459, 1098-1101, 2009. [11] Nimmo F, Gaidos E, JGR 107, 5021, 2002. [12] Greenberg R et al., Rev. Geophys. 40, 1004, 2002. [13] Matson DL et al., Icarus 187, 569-73, 2007. [14] McCarthy C et al., LPSC 39, 2512, 2008.

  5. Ice cloud properties in ice-over-water cloud systems using Tropical Rainfall Measuring Mission (TRMM) visible and infrared scanner and TRMM Microwave Imager data

    NASA Astrophysics Data System (ADS)

    Minnis, Patrick; Huang, Jianping; Lin, Bing; Yi, Yuhong; Arduini, Robert F.; Fan, Tai-Fang; Ayers, J. Kirk; Mace, Gerald G.

    2007-03-01

    A multilayered cloud retrieval system (MCRS) is updated and used to estimate ice water path in maritime ice-over-water clouds using Visible and Infrared Scanner (VIRS) and Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) measurements acquired over the Tropics between January and August 1998. Lookup tables of top-of-atmosphere 0.65-μm reflectance are developed for ice-over-water cloud systems using radiative transfer calculations for various combinations of ice-over-water cloud layers. The liquid and ice water paths, LWP and IWP, respectively, are determined with the MCRS using these lookup tables with a combination of microwave (MW), visible (VIS), and infrared (IR) data. LWP, determined directly from the TMI MW data, is used to define the lower-level cloud properties to select the proper lookup table. The properties of the upper-level ice clouds, such as optical depth and effective size, are then derived using the Visible-Infrared Solar-infrared Split-Window technique (VISST), which matches the VIRS IR, 3.9 μm, and VIS data to the multilayer cloud lookup table reflectances and a set of emittance parameterizations. Initial comparisons with surface-based radar retrievals suggest that this enhanced MCRS can significantly improve the accuracy and decrease the IWP in overlapped clouds by 42 and 13% compared to using the single-layer VISST and an earlier simplified MW-VIS-IR (MVI) differencing method, respectively, for ice-over-water cloud systems. The tropical distribution of ice-over-water clouds is the same as derived earlier from combined TMI and VIRS data, but the new values of IWP and optical depth are slightly larger than the older MVI values and exceed those of single-layered clouds by 7 and 11%, respectively. The mean IWP from the MCRS is 8-14% greater than that retrieved from radar retrievals of overlapped clouds over two surface sites, and the standard deviations of the differences are similar to those for single-layered clouds. Examples of

  6. Development of a direct contact ice storage system

    SciTech Connect

    Poirier, R.

    1989-03-01

    The program described involves the design, construction, and performance testing of a Direct Freeze Thermal Energy Storage System. Task 1 (Design) has been completed; and Task 2 (construction) is in progress, with equipment procurements presently underway. Once constructed, the system will undergo extensive laboratory performance testing and analysis, followed by an assessment of the system`s cost effectiveness. This study will advance the understanding and development of the direct freeze concept, which offers inherent benefits for thermal energy storage.

  7. Ice-Free Arctic Ocean?

    ERIC Educational Resources Information Center

    Science Teacher, 2005

    2005-01-01

    The current warming trends in the Arctic may shove the Arctic system into a seasonally ice-free state not seen for more than one million years, according to a new report. The melting is accelerating, and researchers were unable to identify any natural processes that might slow the deicing of the Arctic. "What really makes the Arctic different…

  8. Pilot interaction with automated airborne decision making systems

    NASA Technical Reports Server (NTRS)

    Rouse, W. B.; Chu, Y. Y.; Greenstein, J. S.; Walden, R. S.

    1976-01-01

    An investigation was made of interaction between a human pilot and automated on-board decision making systems. Research was initiated on the topic of pilot problem solving in automated and semi-automated flight management systems and attempts were made to develop a model of human decision making in a multi-task situation. A study was made of allocation of responsibility between human and computer, and discussed were various pilot performance parameters with varying degrees of automation. Optimal allocation of responsibility between human and computer was considered and some theoretical results found in the literature were presented. The pilot as a problem solver was discussed. Finally the design of displays, controls, procedures, and computer aids for problem solving tasks in automated and semi-automated systems was considered.

  9. Reconstruction of the Greenland ice sheet dynamics in a fully coupled Earth System Model

    NASA Astrophysics Data System (ADS)

    Rybak, Oleg; Volodin, Evgeny; Huybrechts, Philippe

    2016-04-01

    Earth system models (ESMs) are undoubtedly effective tools for studying climate dynamics. Incorporation of evolving ice sheets to ESMs is a challenging task because response times of the climate system and of ice sheets differ by several orders of magnitude. Besides, AO GCMs operate on spatial and temporal resolutions substantially differing from those of ice sheet models (ICMs). Therefore elaboration of an effective coupling methodology of an AO GCM and an ICM is the key problem of an ESM construction and utilization. Several downscaling strategies of varying complexity exist now of data exchange between modeled climate system and ice sheets. Application of a particular strategy depends on the research objectives. In our view, the optimum approach for model studying of significant environmental changes (e.g. glacial/interglacial transitions) when ice sheets undergo substantial evolution of geometry and volume would be an asynchronous coupling. The latter allows simulation in the interactive way of growth and decay of ice sheets in the changing climatic conditions. In the focus of the presentation, is the overview of coupling aspects of an AO GCM INMCM32 elaborated in the Institute of Numerical Mathematics (Moscow, Russia) to the Greenland ice sheet model (GrISM, Vrije Uninersiteit Brussel, Belgium). To provide interactive coupling of INMCM32 (spatial resolution 5°×4°, 21 vertical layers and temporal resolution 6 min. in the atmospheric block) and GrISM (spatial resolution 20×20 km, 51 vertical layers and 1 yr temporal resolution), we employ a special energy- and water balance model (EWBM-G), which serves as a buffer providing effective data exchange between INMCM32 and GrISM. EWBM-G operates in a rectangle domain including Greenland. Transfer of daily meanings of simulated climatic variables (air surface temperature and specific humidity) is provided on the lateral boundarias of the domain and inside the domain (sea level air pressure, wind speed and total

  10. Experimental and analytical investigation of a freezing point depressant fluid ice protection system. M.S. Thesis. Final Report

    NASA Technical Reports Server (NTRS)

    Albright, A. E.

    1984-01-01

    A glycol-exuding porous leading edge ice protection system was tested in the NASA Icing Research Tunnel. Stainless steel mesh, laser drilled titanium, and composite panels were tested on two general aviation wing sections. Two different glycol-water solutions were evaluated. Minimum glycol flow rates required for anti-icing were obtained as a function of angle of attack, liquid water content, volume median drop diameter, temperature, and velocity. Ice accretions formed after five minutes of icing were shed in three minutes or less using a glycol fluid flow equal to the anti-ice flow rate. Two methods of predicting anti-ice flow rates are presented and compared with a large experimental data base of anti-ice flow rates over a wide range of icing conditions. The first method presented in the ADS-4 document typically predicts flow rates lower than the experimental flow rates. The second method, originally published in 1983, typically predicts flow rates up to 25 percent higher than the experimental flow rates. This method proved to be more consistent between wing-panel configurations. Significant correlation coefficients between the predicted flow rates and the experimental flow rates ranged from .867 to .947.

  11. Intermediate-depth ice coring of high-altitude and polar glaciers with a lightweight drilling system

    NASA Astrophysics Data System (ADS)

    Zagorodnov, V.; Thompson, L. G.; Ginot, P.; Mikhalenko, V.

    A total of 11 ice cores to a maximum depth of 460 m have been obtained over the past 3 years from high-altitude glaciers on the saddle of Mount Bona and Mount Churchill in Alaska (designated B C), and on Quelccaya ice cap and Nevado Coropuna in Peru. Ice coring was conducted using an intermediate-depth drilling system. The system includes an electromechanical drill (EMD) and an ethanol thermal electric drill (ETED). The EMD permitted an average ice-core production rate (ICPR) of 7.0 m h-1 down to 150 m. An average ICPR of 2 m h-1 to 460 m depth was possible with the ETED. The quality of the B C ice cores is better than that of cores previously drilled with an EMD and ETED system. A new cutter design, drilling with a lubricant/cutting fluid and a new anti-torque assembly were tested in the laboratory and in glacier boreholes. We examine the performance of the drills in cold and temperate ice and in clean and particle-laden ice. The influence of the ethanol drilling fluid on ice-core isotopic, ionic and dust composition is discussed.

  12. The Fate of De-icing Salts in Stormwater Management Systems

    NASA Astrophysics Data System (ADS)

    Ballestero, T. P.; Roseen, R. M.; Houle, J. J.

    2005-05-01

    The traditional paradigm behind the design of stormwater management systems is to minimize the water quantity and water quality impacts resulting from land modification. The intent is to yield post-development hydrology similar to pre-development hydrology. The water quality aspect has been primarily focused on sediment removal, however, rarely are stormwater management systems designed for removal of de-icing salt. Chloride toxicity effects upon aquatic organisms resulting from snowmelt runoff are pronounced, routine, and problematic in northern climates. The capacity of current management strategies to treat chloride is in question. This paper explores the fate of de-icing salt through 13 different stormwater management systems. The systems include swales, retention pond, infiltration systems, bioretention systems, wetlands, manufactured devices, and porous asphalt. All systems exist at a field site and are delivered the same runoff (quantity and quality). The devices were designed and installed in accordance with existing drainage manual recommendations. None were designed for salt removal. As expected, devices with minimal water storage do not remove salt. Devices that do have significant amounts of storage do not remove salt, however the effluent concentrations are not as high as the influent concentrations: the peak influent salt concentration is attenuated similar to how the peak inflow discharge is attenuated by storage routing. The porous asphalt has displayed some remarkable characteristics. This surface has remained permeable throughout the winter, even though in addition to the de-icing chemicals, sand is applied. It appears that very little de-icing salt is needed on the surface, which has enormous economic and environmental implications.

  13. Pilot interaction with automated airborne decision making systems

    NASA Technical Reports Server (NTRS)

    Hammer, John M.

    1990-01-01

    Ways in which computers can aid the decision making of an human operator of an aerospace system are investigated. The approach taken is to aid rather than replace the human operator, because operational experience has shown that humans can enhance the effectiveness of systems. As systems become more automated, the role of the operator has shifted to that of a manager and problem solver. This shift has created the research area of how to aid the human in this role. Published research in four areas is described. A discussion is presented of the DC-8 flight simulator at Georgia Tech.

  14. Evaluation of a solar intermittent refrigeration system for ice production operating with ammonia/lithium nitrate

    SciTech Connect

    Rivera, W.; Moreno-Quintanar, G.; Best, R.; Rivera, C.O.; Martinez, F.

    2011-01-15

    A novel solar intermittent refrigeration system for ice production developed in the Centro de Investigacion en Energia of the Universidad Nacional Autonoma de Mexico is presented. The system operates with the ammonia/lithium nitrate mixture. The system developed has a nominal capacity of 8 kg of ice/day. It consists of a cylindrical parabolic collector acting as generator-absorber. Evaporator temperatures as low as -11 C were obtained for several hours with solar coefficients of performance up to 0.08. It was found that the coefficient of performance increases with the increment of solar radiation and the solution concentration. A dependency of the coefficient of performance was not founded against the cooling water temperature. Also it was found that the maximum operating pressure increases meanwhile the generation temperature decreases with an increase of the solution concentration. (author)

  15. Detection of the Impact of Ice Crystal Accretion in an Aircraft Engine Compression System During Dynamic Operation

    NASA Technical Reports Server (NTRS)

    May, Ryan D.; Simon, Donald L.; Guo, Ten-Huei

    2014-01-01

    The accretion of ice in the compression system of commercial gas turbine engines operating in high ice water content conditions is a safety issue being studied by the aviation community. While most of the research focuses on the underlying physics of ice accretion and the meteorological conditions in which accretion can occur, a systems-level perspective on the topic lends itself to potential near-term operational improvements. Here a detection algorithm is developed which has the capability to detect the impact of ice accretion in the Low Pressure Compressor of an aircraft engine during steady flight as well as during changes in altitude. Unfortunately, the algorithm as implemented was not able to distinguish throttle changes from ice accretion and thus more work remains to be done.

  16. Development and Implementation of a Model-Driven Envelope Protection System for In-Flight Ice Contamination

    NASA Technical Reports Server (NTRS)

    Gingras, David R.; Barnhart, Billy P.; Martos, Borja; Ratvasky, Thomas P.; Morelli, Eugene

    2011-01-01

    Fatal loss-of-control (LOC) accidents have been directly related to in-flight airframe icing. The prototype system presented in this paper directly addresses the need for real-time onboard envelope protection in icing conditions. The combinations of a-priori information and realtime aerodynamic estimations are shown to provide sufficient input for determining safe limits of the flight envelope during in-flight icing encounters. The Icing Contamination Envelope Protection (ICEPro) system has been designed and implemented to identify degradations in airplane performance and flying qualities resulting from ice contamination and provide safe flight-envelope cues to the pilot. Components of ICEPro are described and results from preliminary tests are presented.

  17. The IceCube data acquisition system for galactic core collapse supernova searches

    SciTech Connect

    Baum, Volker; Collaboration: IceCube Collaboration

    2014-11-18

    The IceCube Neutrino Observatory was designed to detect highly energetic neutrinos. The detector was built as a lattice of 5160 photomultiplier tubes monitoring one cubic kilometer of clear Antarctic ice. Due to low photomultiplier dark noise rates in the cold and radio-pure ice, IceCube is also able to detect bursts of O(10MeV) neutrinos expected to be emitted from core collapse supernovae. The detector will provide the world’s highest statistical precision for the lightcurves of galactic supernovae by observing an induced collective rise in all photomultiplier rates [1]. This paper presents the supernova data acquisition system, the search algorithms for galactic supernovae, as well as the recently implemented HitSpooling DAQ extension. HitSpooling will overcome the current limitation of transmitting photomultiplier rates in intervals of 1.6384 ms by storing all recorded time-stamped hits for supernova candidate triggers. From the corresponding event-based information, the average neutrino energy can be estimated and the background induced by detector noise and atmospheric muons can be reduced.

  18. Arctic ice islands

    SciTech Connect

    Sackinger, W.M.; Jeffries, M.O.; Lu, M.C.; Li, F.C.

    1988-01-01

    The development of offshore oil and gas resources in the Arctic waters of Alaska requires offshore structures which successfully resist the lateral forces due to moving, drifting ice. Ice islands are floating, a tabular icebergs, up to 60 meters thick, of solid ice throughout their thickness. The ice islands are thus regarded as the strongest ice features in the Arctic; fixed offshore structures which can directly withstand the impact of ice islands are possible but in some locations may be so expensive as to make oilfield development uneconomic. The resolution of the ice island problem requires two research steps: (1) calculation of the probability of interaction between an ice island and an offshore structure in a given region; and (2) if the probability if sufficiently large, then the study of possible interactions between ice island and structure, to discover mitigative measures to deal with the moving ice island. The ice island research conducted during the 1983-1988 interval, which is summarized in this report, was concerned with the first step. Monte Carlo simulations of ice island generation and movement suggest that ice island lifetimes range from 0 to 70 years, and that 85% of the lifetimes are less then 35 years. The simulation shows a mean value of 18 ice islands present at any time in the Arctic Ocean, with a 90% probability of less than 30 ice islands. At this time, approximately 34 ice islands are known, from observations, to exist in the Arctic Ocean, not including the 10-meter thick class of ice islands. Return interval plots from the simulation show that coastal zones of the Beaufort and Chukchi Seas, already leased for oil development, have ice island recurrences of 10 to 100 years. This implies that the ice island hazard must be considered thoroughly, and appropriate safety measures adopted, when offshore oil production plans are formulated for the Alaskan Arctic offshore. 132 refs., 161 figs., 17 tabs.

  19. Real-time monitoring of icebreaker propeller blades' ice load using underwater laser ranging system

    NASA Astrophysics Data System (ADS)

    Morin, Andre; Arsenault, Michel; Edgecombe, Merv H.; Radloff, Ernst A.

    1999-03-01

    Navigation in arctic waters presents a formidable challenge to the ships' propulsion systems as large ice pieces impinging on their propeller blades may result in stresses exceeding the strength of blade material. Damage to propellers is costly and can also spell disaster if a shop becomes disabled in a remote area. To prevent such situations, design practice must be improved and validated against experimental data. In this paper we present the design of a system that performs ice load measurements. This system is based on conventional triangulation and uses an array of laser beams aimed at the propeller blades to monitor in real time their deformations. As the propeller rotates, each point rage sensor describes an arc of a circle on the blades. Using template-matching techniques, the range values for these series of arcs can be used to infer the actual ice-induced blade deformations. The actual system provides range measurements at a rate of 2 kHz on three different channels. The system accuracy is 0.5 mm at distances in excess of 3 meters.

  20. Decentralised water systems: emotional influences on resource decision making.

    PubMed

    Mankad, Aditi

    2012-09-01

    The study of emotion has gathered momentum in the field of environmental science, specifically in the context of community resource decision-making. Of particular interest in this review is the potential influence of emotion, risk and threat perception on individuals' decisions to acceptance and adopt decentralised water systems, such as rainwater tanks and greywater systems. The role of message framing is also considered in detail, as well as the influences that different types of framing can have on decision making. These factors are considered as possible predictors for analysing community acceptance of decentralised water in urban environments. Concepts believed to be influenced by emotion, such as trust and framing, are also discussed as potentially meaningful contributors to an overall model of community acceptance of decentralised water. Recommendations are made for how emotion-based concepts, such as risk and threat, can be targeted to facilitate widespread adoption of decentralised systems and how researchers can explore different types of emotions that influence decision making in distinct ways. This review is an important theoretical step in advancing the psycho-social understanding of acceptance and adoption of on-site water sources. Avenues for future research are recommended, including the need for greater theoretical development to encourage future social science research on decentralised systems.

  1. Advanced Optical Diagnostics for Ice Crystal Cloud Measurements in the NASA Glenn Propulsion Systems Laboratory

    NASA Technical Reports Server (NTRS)

    Bencic, Timothy J.; Fagan, Amy; Van Zante, Judith F.; Kirkegaard, Jonathan P.; Rohler, David P.; Maniyedath, Arjun; Izen, Steven H.

    2013-01-01

    A light extinction tomography technique has been developed to monitor ice water clouds upstream of a direct connected engine in the Propulsion Systems Laboratory (PSL) at NASA Glenn Research Center (GRC). The system consists of 60 laser diodes with sheet generating optics and 120 detectors mounted around a 36-inch diameter ring. The sources are pulsed sequentially while the detectors acquire line-of-sight extinction data for each laser pulse. Using computed tomography algorithms, the extinction data are analyzed to produce a plot of the relative water content in the measurement plane. To target the low-spatial-frequency nature of ice water clouds, unique tomography algorithms were developed using filtered back-projection methods and direct inversion methods that use Gaussian basis functions. With the availability of a priori knowledge of the mean droplet size and the total water content at some point in the measurement plane, the tomography system can provide near real-time in-situ quantitative full-field total water content data at a measurement plane approximately 5 feet upstream of the engine inlet. Results from ice crystal clouds in the PSL are presented. In addition to the optical tomography technique, laser sheet imaging has also been applied in the PSL to provide planar ice cloud uniformity and relative water content data during facility calibration before the tomography system was available and also as validation data for the tomography system. A comparison between the laser sheet system and light extinction tomography resulting data are also presented. Very good agreement of imaged intensity and water content is demonstrated for both techniques. Also, comparative studies between the two techniques show excellent agreement in calculation of bulk total water content averaged over the center of the pipe.

  2. Saturn's system ices: a comparative spectral study by Cassini-VIMS

    NASA Astrophysics Data System (ADS)

    Filacchione, Gianrico; Capaccioni, Fabrizio; Clark, Roger N.; Cuzzi, Jeff N.; Cruikshank, Dale P.; Coradini, Angioletta; Cerroni, Priscilla; Tosi, Federico; Ciarniello, Mauro; Nicholson, Phil D.; McCord, Thomas B.; Brown, Robert H.; Buratti, Bonnie J.; Jaumann, Ralf; Stephan, Katrin

    2010-05-01

    The Visual and Infrared Mapping Spectrometer (VIMS) has observed the entire population of Saturnian icy objects, allowing a comparative analysis of the VIS-NIR spectral properties of the regular satellites (Mimas, Enceladus, Tethys, Dione, Rhea, Hyperion, Iapetus, Phoebe), minor moons (Atlas, Prometheus, Pandora, Janus, Epimetheus, Telesto, Calypso) and main rings (A, B, C and Cassini division). The results we present are derived from the entire dataset available after about 5 years of the Cassini mission, which consists of more than 2000 full-disk observations of the moons as well as several radial mosaics of the ring system. The spectra of Saturn's satellites are characterized by a step red slope in the 0.35-0.55 µm range, which is highly diagnostic of the presence of organic contaminants and darkening agents on icy surfaces; in the 0.55-0.95 µm range the spectra become more flat and featureless. In the IR range the water ice bands at 1.5-2.0-3.0 µm bands are evident everywhere, while the CO2 ice band at 4.26 µm is seen only on the three external satellites Hyperion, Iapetus and Phoebe. Some specific spectrophotometric indicators are chosen to retrieve the macroscopic properties of the ices: I/F continuum levels, 0.35-0.55 and 0.55-0.95 µm spectral slopes, H2O-CO2 ice band depths and band positions. By using these indicators the Saturn's satellites are grouped in distinct classes, noticeably between the almost pure water ice and blue surfaces of Enceladus and Calypso to the organic- and carbon dioxide-rich Hyperion, Iapetus and Phoebe. Hyperion and the leading hemisphere of Iapetus have the reddest VIS slopes of the group. Janus' visible colors are intermediate between these two classes having a slightly positive VIS spectral slope, while Epimetheus is more neutral and similar to Iapetus' bright terrains (trailing hemisphere), Mimas and Tethys. The two F ring's shepherd moons, Prometheus and Pandora, have similarities with Atlas, while Calypso and Telesto

  3. Designing an electro-impulse de-icing system

    NASA Technical Reports Server (NTRS)

    Zumwalt, G. W.; Friedberg, R. A.

    1986-01-01

    Basic principles and parameters for a system to deice aircraft with electromagnetic impulses are described. The physical basis for deicing by such impulses is explained, and the requirements involved in the electrodynamic design, structural dynamic design, and system design are discussed. Some manufacturing and testing problems and techniques are described.

  4. Thermal phase transition in artificial spin ice systems induces the formation and migration of monopole-like magnetic excitations

    NASA Astrophysics Data System (ADS)

    León, Alejandro

    2016-11-01

    Artificial spin ice systems exhibit monopole-like magnetic excitations. We develop here a theoretical study of the thermal phase transition of an artificial spin ice system, and we elucidate the role of the monopole excitations in the transition temperature. The dynamics of the spin ice is described by an efficient model based on cellular automata, which considers both thermal effects and dipolar interactions. We have established the critical temperature of the phase transition as function of the magnetic moment and the energy barrier of reversion. In addition, we predict that thermal gradients in the system induce the motion of elementary excitations, which could permit to manipulate monopole-like states.

  5. Modeling the Effects of Ice Accretion on the Low Pressure Compressor and the Overall Turbofan Engine System Performance

    NASA Technical Reports Server (NTRS)

    Veres, Joseph P.; Jorgenson, Philip C. E.; Wright, William B.

    2011-01-01

    The focus of this study is on utilizing a mean line compressor flow analysis code coupled to an engine system thermodynamic code, to estimate the effects of ice accretion on the low pressure compressor, and quantifying its effects on the engine system throughout a notional flight trajectory. In this paper a temperature range in which engine icing would occur was assumed. This provided a mechanism to locate potential component icing sites and allow the computational tools to add blockages due to ice accretion in a parametric fashion. Ultimately the location and level of blockage due to icing would be provided by an ice accretion code. To proceed, an engine system modeling code and a mean line compressor flow analysis code were utilized to calculate the flow conditions in the fan-core and low pressure compressor and to identify potential locations within the compressor where ice may accrete. In this study, an "additional blockage" due to the accretion of ice on the metal surfaces, has been added to the baseline aerodynamic blockage due to boundary layer, as well as the blade metal blockage. Once the potential locations of ice accretion are identified, the levels of additional blockage due to accretion were parametrically varied to estimate the effects on the low pressure compressor blade row performance operating within the engine system environment. This study includes detailed analysis of compressor and engine performance during cruise and descent operating conditions at several altitudes within the notional flight trajectory. The purpose of this effort is to develop the computer codes to provide a predictive capability to forecast the onset of engine icing events, such that they could ultimately help in the avoidance of these events.

  6. Making intelligent systems team players: Additional case studies

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.; Schreckenghost, Debra L.; Rhoads, Ron W.

    1993-01-01

    Observations from a case study of intelligent systems are reported as part of a multi-year interdisciplinary effort to provide guidance and assistance for designers of intelligent systems and their user interfaces. A series of studies were conducted to investigate issues in designing intelligent fault management systems in aerospace applications for effective human-computer interaction. The results of the initial study are documented in two NASA technical memoranda: TM 104738 Making Intelligent Systems Team Players: Case Studies and Design Issues, Volumes 1 and 2; and TM 104751, Making Intelligent Systems Team Players: Overview for Designers. The objective of this additional study was to broaden the investigation of human-computer interaction design issues beyond the focus on monitoring and fault detection in the initial study. The results of this second study are documented which is intended as a supplement to the original design guidance documents. These results should be of interest to designers of intelligent systems for use in real-time operations, and to researchers in the areas of human-computer interaction and artificial intelligence.

  7. Facts and fiction of learning systems. [decision making intelligent control

    NASA Technical Reports Server (NTRS)

    Saridis, G. N.

    1975-01-01

    The methodology that will provide the updated precision for the hardware control and the advanced decision making and planning in the software control is called learning systems and intelligent control. It was developed theoretically as an alternative for the nonsystematic heuristic approaches of artificial intelligence experiments and the inflexible formulation of modern optimal control methods. Its basic concepts are discussed and some feasibility studies of some practical applications are presented.

  8. JADAS: a customizable automated data acquisition system and its application to ice-embedded single particles.

    PubMed

    Zhang, Junjie; Nakamura, Natsuko; Shimizu, Yuko; Liang, Nathan; Liu, Xiangan; Jakana, Joanita; Marsh, Michael P; Booth, Christopher R; Shinkawa, Takao; Nakata, Munetaka; Chiu, Wah

    2009-01-01

    The JEOL Automated Data Acquisition System (JADAS) is a software system built for the latest generation of the JEOL Transmission Electron Microscopes. It is designed to partially or fully automate image acquisition for ice-embedded single particles under low dose conditions. Its built-in flexibility permits users to customize the order of various imaging operations. In this paper, we describe how JADAS is used to accurately locate and image suitable specimen areas on a grid of ice-embedded particles. We also demonstrate the utility of JADAS by imaging the epsilon 15 bacteriophage with the JEM3200FSC electron cryo-microscope, showing that sufficient images can be collected in a single 8h session to yield a subnanometer resolution structure which agrees with the previously determined structure.

  9. Stochastic ice stream dynamics

    NASA Astrophysics Data System (ADS)

    Mantelli, Elisa; Bertagni, Matteo Bernard; Ridolfi, Luca

    2016-08-01

    Ice streams are narrow corridors of fast-flowing ice that constitute the arterial drainage network of ice sheets. Therefore, changes in ice stream flow are key to understanding paleoclimate, sea level changes, and rapid disintegration of ice sheets during deglaciation. The dynamics of ice flow are tightly coupled to the climate system through atmospheric temperature and snow recharge, which are known exhibit stochastic variability. Here we focus on the interplay between stochastic climate forcing and ice stream temporal dynamics. Our work demonstrates that realistic climate fluctuations are able to (i) induce the coexistence of dynamic behaviors that would be incompatible in a purely deterministic system and (ii) drive ice stream flow away from the regime expected in a steady climate. We conclude that environmental noise appears to be crucial to interpreting the past behavior of ice sheets, as well as to predicting their future evolution.

  10. Stochastic ice stream dynamics

    PubMed Central

    Bertagni, Matteo Bernard; Ridolfi, Luca

    2016-01-01

    Ice streams are narrow corridors of fast-flowing ice that constitute the arterial drainage network of ice sheets. Therefore, changes in ice stream flow are key to understanding paleoclimate, sea level changes, and rapid disintegration of ice sheets during deglaciation. The dynamics of ice flow are tightly coupled to the climate system through atmospheric temperature and snow recharge, which are known exhibit stochastic variability. Here we focus on the interplay between stochastic climate forcing and ice stream temporal dynamics. Our work demonstrates that realistic climate fluctuations are able to (i) induce the coexistence of dynamic behaviors that would be incompatible in a purely deterministic system and (ii) drive ice stream flow away from the regime expected in a steady climate. We conclude that environmental noise appears to be crucial to interpreting the past behavior of ice sheets, as well as to predicting their future evolution. PMID:27457960

  11. Earth Observing System (EOS) Snow and Ice Products for Observation and Modeling

    NASA Technical Reports Server (NTRS)

    Hall, D.; Kaminski, M.; Cavalieri, D.; Dickinson, R.; Marquis, M.; Riggs, G.; Robinson, D.; VanWoert, M.; Wolfe, R.

    2005-01-01

    Snow and ice are the key components of the Earth's cryosphere, and their influence on the Earth's energy balance is very significant due at least in part to the large areal extent and high albedo characterizing these features. Large changes in the cryosphere have been measured over the last century and especially over the past decade, and remote sensing plays a pivotal role in documenting these changes. Many of NASA's Earth Observing System (EOS) products derived from instruments on the Terra, Aqua, and Ice, Cloud and land Elevation Satellite (ICESat) satellites are useful for measuring changes in features that are associated with climate change. The utility of the products is continually enhanced as the length of the time series increases. To gain a more coherent view of the cryosphere and its historical and recent changes, the EOS products may be employed together, in conjunction with other sources of data, and in models. To further this goal, the first EOS Snow and Ice Products Workshop was convened. The specific goals of the workshop were to provide current and prospective users of EOS snow and ice products up-to-date information on the products, their validation status and future enhancements, to help users utilize the data products through hands-on demonstrations, and to facilitate the integration of EOS products into models. Oral and poster sessions representing a wide variety of snow and ice topics were held; three panels were also convened to discuss workshop themes. Panel discussions focused on data fusion and assimilation of the products into models. Approximately 110 people attended, representing a wide array of interests and organizations in the cryospheric community.

  12. A high-resolution ocean and sea-ice modelling system for the Arctic and North Atlantic Oceans

    NASA Astrophysics Data System (ADS)

    Dupont, F.; Higginson, S.; Bourdallé-Badie, R.; Lu, Y.; Roy, F.; Smith, G. C.; Lemieux, J.-F.; Garric, G.; Davidson, F.

    2015-01-01

    As part of the CONCEPTS (Canadian Operational Network of Coupled Environmental PredicTion Systems) initiative, The Government of Canada is developing a high resolution (1/12°) ice-ocean regional model covering the North Atlantic and the Arctic oceans. The objective is to provide Canada with short-term ice-ocean predictions and hazard warnings in ice infested regions. To evaluate the modelling component (as opposed to the analysis - or data-assimilation - component), a series of hindcasts for the period 2003-2009 is carried out, forced at the surface by the Canadian Global Re-Forecasts. These hindcasts test how the model represent upper ocean characteristics and ice cover. Each hindcast implements a new aspect of the modelling or the ice-ocean coupling. Notably, the coupling to the multi-category ice model CICE is tested. The hindcast solutions are then assessed using a validation package under development, including in-situ and satellite ice and ocean observations. The conclusions are: (1) the model reproduces reasonably well the time mean, variance and skewness of sea surface height. (2) The model biases in temperature and salinity show that while the mean properties follow expectations, the Pacific Water signature in the Beaufort Sea is weaker than observed. (3) However, the modelled freshwater content of the Arctic agrees well with observational estimates. (4) The distribution and volume of the sea ice is shown to be improved in the latest hindcast thanks to modifications to the drag coefficients and to some degree as well to the ice thickness distribution available in CICE. (5) On the other hand, the model overestimates the ice drift and ice thickness in the Beaufort Gyre.

  13. Perfectionism and achievement goals in young Finnish ice-hockey players aspiring to make the Under-16 national team.

    PubMed

    Stoeber, Joachim; Stoll, Oliver; Salmi, Olli; Tiikkaja, Jukka

    2009-01-01

    Research on perfectionism suggests that is it useful to differentiate between perfectionistic strivings and perfectionistic concerns. Regarding the 2x2 achievement goal framework, the usefulness of this differentiation was recently demonstrated in a study with university student athletes (Stoeber, Stoll, Pescheck, & Otto, 2008, Study 2), in which it was found that perfectionistic strivings were associated with mastery-approach and performance-approach goals and perfectionistic concerns with mastery-avoidance, performance-approach, and performance-avoidance goals. Because the study was largely exploratory and only used non-elite athletes, the aim of the present research was to replicate and extend these findings by investigating a sample of 138 young, elite ice-hockey players, while adding further measures of perfectionism and using structural equation modelling (SEM) to confirm the relationships between perfectionistic strivings, perfectionistic concerns, and the 2x2 achievement goals. The SEM results showed that, in elite athletes also, perfectionistic strivings are associated with mastery-approach and performance-approach goals, whereas perfectionistic concerns are associated with mastery-avoidance, performance-approach, and performance-avoidance goals. Our findings corroborate the importance of differentiating between perfectionistic strivings and perfectionistic concerns when studying perfectionism in sports, because only perfectionistic concerns (and not perfectionistic strivings) are associated with maladaptive patterns of achievement goals.

  14. Synoptic Traveling Weather Systems on Mars: Effects of Radiatively-Active Water Ice Clouds

    NASA Astrophysics Data System (ADS)

    Hollingsworth, Jeffery L.; Kahre, Melinda A.; Haberle, Robert; Atsuki Urata, Richard

    2016-10-01

    Atmospheric aerosols on Mars are critical in determining the nature of its thermal structure, its large-scale circulation, and hence the overall climate of the planet. We conduct multi-annual simulations with the latest version of the NASA Ames Mars global climate model (GCM), gcm2.3+, that includes a modernized radiative-transfer package and complex water-ice cloud microphysics package which permit radiative effects and interactions of suspended atmospheric aerosols (e.g., water ice clouds, water vapor, dust, and mutual interactions) to influence the net diabatic heating. Results indicate that radiatively active water ice clouds profoundly affect the seasonal and annual mean climate. The mean thermal structure and balanced circulation patterns are strongly modified near the surface and aloft. Warming of the subtropical atmosphere at altitude and cooling of the high latitude atmosphere at low levels takes place, which increases the mean pole-to-equator temperature contrast (i.e., "baroclinicity"). With radiatively active water ice clouds (RAC) compared to radiatively inert water ice clouds (nonRAC), significant changes in the intensity of the mean state and forced stationary Rossby modes occur, both of which affect the vigor and intensity of traveling, synoptic period weather systems. Such weather systems not only act as key agents in the transport of heat and momentum beyond the extent of the Hadley circulation, but also the transport of trace species such as water vapor, water ice-clouds, dust and others. The northern hemisphere (NH) forced Rossby waves and resultant wave train are augmented in the RAC case: the modes are more intense and the wave train is shifted equatorward. Significant changes also occur within the subtropics and tropics. The Rossby wave train sets up, combined with the traveling synoptic-period weather systems (i.e., cyclones and anticyclones), the geographic extent of storm zones (or storm tracks) within the NH. A variety of circulation

  15. Synoptic Traveling Weather Systems on Mars: Effects of Radiatively-Active Water Ice Clouds

    NASA Technical Reports Server (NTRS)

    Hollingsworth, Jeffery; Kahre, Melinda; Haberle, Robert; Urata, Richard

    2017-01-01

    Atmospheric aerosols on Mars are critical in determining the nature of its thermal structure, its large-scale circulation, and hence the overall climate of the planet. We conduct multi-annual simulations with the latest version of the NASA Ames Mars global climate model (GCM), gcm2.3+, that includes a modernized radiative-transfer package and complex water-ice cloud microphysics package which permit radiative effects and interactions of suspended atmospheric aerosols (e.g., water ice clouds, water vapor, dust, and mutual interactions) to influence the net diabatic heating. Results indicate that radiatively active water ice clouds profoundly affect the seasonal and annual mean climate. The mean thermal structure and balanced circulation patterns are strongly modified near the surface and aloft. Warming of the subtropical atmosphere at altitude and cooling of the high latitude atmosphere at low levels takes place, which increases the mean pole-to-equator temperature contrast (i.e., "baroclinicity"). With radiatively active water ice clouds (RAC) compared to radiatively inert water ice clouds (nonRAC), significant changes in the intensity of the mean state and forced stationary Rossby modes occur, both of which affect the vigor and intensity of traveling, synoptic period weather systems. Such weather systems not only act as key agents in the transport of heat and momentum beyond the extent of the Hadley circulation, but also the transport of trace species such as water vapor, water ice-clouds, dust and others. The northern hemisphere (NH) forced Rossby waves and resultant wave train are augmented in the RAC case: the modes are more intense and the wave train is shifted equatorward. Significant changes also occur within the subtropics and tropics. The Rossby wave train sets up, combined with the traveling synoptic period weather systems (i.e., cyclones and anticyclones), the geographic extent of storm zones (or storm tracks) within the NH. A variety of circulation

  16. Artic ice and drilling structures

    SciTech Connect

    Sodhl, D.S.

    1985-04-01

    The sea ice in the southern Beaufort Sea is examined and subdivided into three zones: the fast ice zone, the seasonal pack-ice zone, an the polar pack ice zone. Each zone requires its own type of system. Existing floating drilling systems include ice-strengthened drill ships, conical drilling systems, and floating ice platforms in deep-water land-fast ice. The development of hydrocarbon resources in the Arctic presents great challenges to engineers, since the structures are required to operate safely under various conditions. Significant progress has yet to be made in understanding the behavior of ice.

  17. The human somatosensory system: from perception to decision making.

    PubMed

    Pleger, Burkhard; Villringer, Arno

    2013-04-01

    Pioneering human and animal research has yielded a better understanding of the brain networks involved in somatosensory perception and decision making. New methodical achievements in combination with computational formalization allow research questions to be addressed which increasingly reflect not only the complex sensory demands of real environments, but also the cognitive ones. Here, we review the latest research on somatosensory perception and decision making with a special focus on the recruitment of supplementary brain networks which are dependent on the situation-associated sensory and cognitive demands. We also refer to literature on sensory-motor integration processes during visual decision making to delineate the complexity and dynamics of how sensory information is relayed to the motor output system. Finally, we review the latest literature which provides novel evidence that other everyday life situations, such as semantic decision making or social interactions, appear to depend on tactile experiences; suggesting that the sense of touch, being the first sense to develop ontogenetically, may essentially support later development of other conceptual knowledge.

  18. Economic Decision Making: Application of the Theory of Complex Systems

    NASA Astrophysics Data System (ADS)

    Kitt, Robert

    In this chapter the complex systems are discussed in the context of economic and business policy and decision making. It will be showed and motivated that social systems are typically chaotic, non-linear and/or non-equilibrium and therefore complex systems. It is discussed that the rapid change in global consumer behaviour is underway, that further increases the complexity in business and management. For policy making under complexity, following principles are offered: openness and international competition, tolerance and variety of ideas, self-reliability and low dependence on external help. The chapter contains four applications that build on the theoretical motivation of complexity in social systems. The first application demonstrates that small economies have good prospects to gain from the global processes underway, if they can demonstrate production flexibility, reliable business ethics and good risk management. The second application elaborates on and discusses the opportunities and challenges in decision making under complexity from macro and micro economic perspective. In this environment, the challenges for corporate management are being also permanently changed: the balance between short term noise and long term chaos whose attractor includes customers, shareholders and employees must be found. The emergence of chaos in economic relationships is demonstrated by a simple system of differential equations that relate the stakeholders described above. The chapter concludes with two financial applications: about debt and risk management. The non-equilibrium economic establishment leads to additional problems by using excessive borrowing; unexpected downturns in economy can more easily kill companies. Finally, the demand for quantitative improvements in risk management is postulated. Development of the financial markets has triggered non-linearity to spike in prices of various production articles such as agricultural and other commodities that has added market

  19. Remote Pulsed Laser Raman Spectroscopy System for Detecting Qater, Ice, and Hydrous Minerals

    NASA Technical Reports Server (NTRS)

    Garcia, Christopher S.; Abedin, M. Nuraul; Sharma, Shiv K.; Misra, Anupam K.; Ismail, Syed; Singh, Upendra; Refaat, Tamer F.; Elsayed-Ali, Hani; Sandford, Steve

    2006-01-01

    For exploration of planetary surfaces, detection of water and ice is of great interest in supporting existence of life on other planets. Therefore, a remote Raman spectroscopy system was demonstrated at NASA Langley Research Center in collaboration with University of Hawaii for detecting ice-water and hydrous minerals on planetary surfaces. In this study, a 532 nm pulsed laser is utilized as an excitation source to allow detection in high background radiation conditions. The Raman scattered signal is collected by a 4-inch telescope positioned in front of a spectrograph. The Raman spectrum is analyzed using a spectrograph equipped with a holographic super notch filter to eliminate Rayleigh scattering, and a holographic transmission grating that simultaneously disperses two spectral tracks onto the detector for higher spectral range. To view the spectrum, the spectrograph is coupled to an intensified charge-coupled device (ICCD), which allows detection of very weak Stokes line. The ICCD is operated in gated mode to further suppress effects from background radiation and long-lived fluorescence. The sample is placed at 5.6 m from the telescope, and the laser is mounted on the telescope in a coaxial geometry to achieve maximum performance. The system was calibrated using the spectral lines of a Neon lamp source. To evaluate the system, Raman standard samples such as calcite, naphthalene, acetone, and isopropyl alcohol were analyzed. The Raman evaluation technique was used to analyze water, ice and other hydrous minerals and results from these species are presented.

  20. Remote pulsed laser Raman spectroscopy system for detecting water, ice, and hydrous minerals

    NASA Astrophysics Data System (ADS)

    Garcia, Christopher S.; Abedin, M. Nurul; Sharma, Shiv K.; Misra, Anupam K.; Ismail, Syed; Singh, Upendra N.; Refaat, Tamer F.; Elsayed-Ali, Hani E.; Sandford, Steve P.

    2006-08-01

    For exploration of planetary surfaces, detection of water and ice is of great interest in supporting existence of life on other planets. Therefore, a remote Raman spectroscopy system was demonstrated at NASA Langley Research Center in collaboration with the University of Hawaii for detecting ice-water and hydrous minerals on planetary surfaces. In this study, a 532 nm pulsed laser is utilized as an excitation source to allow detection in high background radiation conditions. The Raman scattered signal is collected by a 4-inch telescope positioned in front of a spectrograph. The Raman spectrum is analyzed using a spectrograph equipped with a holographic super notch filter to eliminate Rayleigh scattering, and a holographic transmission grating that simultaneously disperses two spectral tracks onto the detector for higher spectral range. To view the spectrum, the spectrograph is coupled to an intensified charge-coupled device (ICCD), which allows detection of very weak Stokes line. The ICCD is operated in gated mode to further suppress effects from background radiation and long-lived fluorescence. The sample is placed at 5.6 m from the telescope, and the laser is mounted on the telescope in a coaxial geometry to achieve maximum performance. The system was calibrated using the spectral lines of a Neon lamp source. To evaluate the system, Raman standard samples such as calcite, naphthalene, acetone, and isopropyl alcohol were analyzed. The Raman evaluation technique was used to analyze water, ice and other hydrous minerals and results from these species are presented.

  1. Autonomous perception and decision making in cyber-physical systems

    NASA Astrophysics Data System (ADS)

    Sarkar, Soumik

    2011-07-01

    The cyber-physical system (CPS) is a relatively new interdisciplinary technology area that includes the general class of embedded and hybrid systems. CPSs require integration of computation and physical processes that involves the aspects of physical quantities such as time, energy and space during information processing and control. The physical space is the source of information and the cyber space makes use of the generated information to make decisions. This dissertation proposes an overall architecture of autonomous perception-based decision & control of complex cyber-physical systems. Perception involves the recently developed framework of Symbolic Dynamic Filtering for abstraction of physical world in the cyber space. For example, under this framework, sensor observations from a physical entity are discretized temporally and spatially to generate blocks of symbols, also called words that form a language. A grammar of a language is the set of rules that determine the relationships among words to build sentences. Subsequently, a physical system is conjectured to be a linguistic source that is capable of generating a specific language. The proposed technology is validated on various (experimental and simulated) case studies that include health monitoring of aircraft gas turbine engines, detection and estimation of fatigue damage in polycrystalline alloys, and parameter identification. Control of complex cyber-physical systems involve distributed sensing, computation, control as well as complexity analysis. A novel statistical mechanics-inspired complexity analysis approach is proposed in this dissertation. In such a scenario of networked physical systems, the distribution of physical entities determines the underlying network topology and the interaction among the entities forms the abstract cyber space. It is envisioned that the general contributions, made in this dissertation, will be useful for potential application areas such as smart power grids and

  2. Ultraviolet photolysis of amino acids in a 100 K water ice matrix: Application to the outer Solar System bodies

    NASA Astrophysics Data System (ADS)

    Orzechowska, Grazyna E.; Goguen, Jay D.; Johnson, Paul V.; Tsapin, Alexandre; Kanik, Isik

    2007-04-01

    We report the rates of decomposition by ultraviolet (UV) photolysis of four amino acids in millimeter-thick crystalline water ice matrices at 100 K to constrain the survivability of these important organic molecules within ice lying near the surfaces of outer Solar System bodies. We UV-irradiated crystalline ice samples containing known concentrations of the amino acids glycine, aspartic acid, glutamic acid, and phenylalanine, then we measured the surviving concentrations using high performance liquid chromatography (HPLC) with fluorescence detection. From these experiments, we determine photolytic decomposition rates and half-lives. The half-life varies linearly with the ice thickness for all acids studied here. For example, glycine is the most resistant to photolytic destruction with a half-life of 50, 12, and 3.7 h in 1.6, 0.28, and 0.14 mm thick ices, respectively. We explain this linear variation of half-life with thickness as a consequence of extinction, mostly due to scattering, within these macroscopically thick ice samples. Applied to low latitude surface ice on Jupiter's satellite Europa, this analysis indicates that the concentration of any of these amino acids within the top meter of similar ice will be halved within a ˜10 year timescale.

  3. Tracer gauge: an automated dye dilution gauging system for ice-affected streams

    USGS Publications Warehouse

    Clow, D.W.; Fleming, A.C.

    2008-01-01

    In-stream flow protection programs require accurate, real-time streamflow data to aid in the protection of aquatic ecosystems during winter base flow periods. In cold regions, however, winter streamflow often can only be estimated because in-channel ice causes variable backwater conditions and alters the stage-discharge relation. In this study, an automated dye dilution gauging system, a tracer gauge, was developed for measuring discharge in ice-affected streams. Rhodamine WT is injected into the stream at a constant rate, and downstream concentrations are measured with a submersible fluorometer. Data loggers control system operations, monitor key variables, and perform discharge calculations. Comparison of discharge from the tracer gauge and from a Cipoletti weir during periods of extensive ice cover indicated that the root-mean-square error of the tracer gauge was 0.029 m3 s−1, or 6.3% of average discharge for the study period. The tracer gauge system can provide much more accurate data than is currently available for streams that are strongly ice affected and, thus, could substantially improve management of in-stream flow protection programs during winter in cold regions. Care must be taken, however, to test for the validity of key assumptions, including complete mixing and conservative behavior of dye, no changes in storage, and no gains or losses of water to or from the stream along the study reach. These assumptions may be tested by measuring flow-weighted dye concentrations across the stream, performing dye mass balance analyses, and evaluating breakthrough curve behavior.

  4. Leveraging Cloud Technology to Provide a Responsive, Reliable and Scalable Backend for the Virtual Ice Sheet Laboratory Using the Ice Sheet System Model and Amazon's Elastic Compute Cloud

    NASA Astrophysics Data System (ADS)

    Perez, G. L.; Larour, E. Y.; Halkides, D. J.; Cheng, D. L. C.

    2015-12-01

    The Virtual Ice Sheet Laboratory(VISL) is a Cryosphere outreach effort byscientists at the Jet Propulsion Laboratory(JPL) in Pasadena, CA, Earth and SpaceResearch(ESR) in Seattle, WA, and the University of California at Irvine (UCI), with the goal of providing interactive lessons for K-12 and college level students,while conforming to STEM guidelines. At the core of VISL is the Ice Sheet System Model(ISSM), an open-source project developed jointlyat JPL and UCI whose main purpose is to model the evolution of the polar ice caps in Greenland and Antarctica. By using ISSM, VISL students have access tostate-of-the-art modeling software that is being used to conduct scientificresearch by users all over the world. However, providing this functionality isby no means simple. The modeling of ice sheets in response to sea and atmospheric temperatures, among many other possible parameters, requiressignificant computational resources. Furthermore, this service needs to beresponsive and capable of handling burst requests produced by classrooms ofstudents. Cloud computing providers represent a burgeoning industry. With majorinvestments by tech giants like Amazon, Google and Microsoft, it has never beeneasier or more affordable to deploy computational elements on-demand. This isexactly what VISL needs and ISSM is capable of. Moreover, this is a promisingalternative to investing in expensive and rapidly devaluing hardware.

  5. Greenland Ice Sheet glacier motion and ice loss: New understanding of ice sheet behavior through remote sensing

    NASA Astrophysics Data System (ADS)

    Moon, T. A.; Fahnestock, M. A.; Scambos, T.; Joughin, I.

    2015-12-01

    Ice loss from the Greenland Ice Sheet makes up roughly a third of current sea level rise, also generating substantial local and regional freshwater fluxes. Containing more than 6 meters of sea level rise equivalent in ice, Greenland has the potential to contribute much more to rising ocean levels and freshening water in the future. Understanding the dynamics of the ice sheet, particularly the behavior of fast flowing coastal outlet glaciers, is critical to improving predictions of future ice sheet change and associated impacts. Combining velocity, glacier ice front, sea ice, and ice sheet surface melt data, we made several important advances in characterizing and understanding seasonal glacier behavior and the processes driving change: 1) seasonal velocity patterns fall into at least 3 distinct patterns, 2) these seasonal velocity patterns likely indicate differences in glacier responsiveness to ocean versus subglacial hydrologic processes, and 3) in some regions seasonal versus multi-year velocity changes appear most strongly influenced by different environmental factors. Further progress was previously hampered by limits in measurement resolution across space and time. To address this challenge, we are creating a new - and continuously growing - ice velocity dataset from Landsat 8 imagery. This data stream supports comprehensive global measurements of ice flow, providing a leap in our understanding of ice sheet motion across space and time. We offer a high-level discussion of our research findings and an introduction to the new Landsat 8-enabled data stream. Our results and measurement capabilities deliver critical new knowledge about ice sheet behavior and interaction with ocean and climate factors. These advances, in turn, have important implications for other elements of Earth system research, including climate, oceanography, and biology.

  6. Geospatial decision support systems for societal decision making

    USGS Publications Warehouse

    Bernknopf, R.L.

    2005-01-01

    While science provides reliable information to describe and understand the earth and its natural processes, it can contribute more. There are many important societal issues in which scientific information can play a critical role. Science can add greatly to policy and management decisions to minimize loss of life and property from natural and man-made disasters, to manage water, biological, energy, and mineral resources, and in general, to enhance and protect our quality of life. However, the link between science and decision-making is often complicated and imperfect. Technical language and methods surround scientific research and the dissemination of its results. Scientific investigations often are conducted under different conditions, with different spatial boundaries, and in different timeframes than those needed to support specific policy and societal decisions. Uncertainty is not uniformly reported in scientific investigations. If society does not know that data exist, what the data mean, where to use the data, or how to include uncertainty when a decision has to be made, then science gets left out -or misused- in a decision making process. This paper is about using Geospatial Decision Support Systems (GDSS) for quantitative policy analysis. Integrated natural -social science methods and tools in a Geographic Information System that respond to decision-making needs can be used to close the gap between science and society. The GDSS has been developed so that nonscientists can pose "what if" scenarios to evaluate hypothetical outcomes of policy and management choices. In this approach decision makers can evaluate the financial and geographic distribution of potential policy options and their societal implications. Actions, based on scientific information, can be taken to mitigate hazards, protect our air and water quality, preserve the planet's biodiversity, promote balanced land use planning, and judiciously exploit natural resources. Applications using the

  7. Numerical Analysis of Mixed-Phase Icing Cloud Simulations in the NASA Propulsion Systems Laboratory

    NASA Technical Reports Server (NTRS)

    Bartkus, Tadas; Tsao, Jen-Ching; Struk, Peter; Van Zante, Judith

    2017-01-01

    This presentation describes the development of a numerical model that couples the thermal interaction between ice particles, water droplets, and the flowing gas of an icing wind tunnel for simulation of NASA Glenn Research Centers Propulsion Systems Laboratory (PSL). The ultimate goal of the model is to better understand the complex interactions between the test parameters and have greater confidence in the conditions at the test section of the PSL tunnel. The model attempts to explain the observed changes in test conditions by coupling the conservation of mass and energy equations for both the cloud particles and flowing gas mass. Model predictions were compared to measurements taken during May 2015 testing at PSL, where test conditions varied gas temperature, pressure, velocity and humidity levels, as well as the cloud total water content, particle initial temperature, and particle size distribution.

  8. THE RADIAL DISTRIBUTION OF WATER ICE AND CHROMOPHORES ACROSS SATURN'S SYSTEM

    SciTech Connect

    Filacchione, G.; Capaccioni, F.; Cerroni, P.; Tosi, F.; Ciarniello, M.; Clark, R. N.; Nicholson, P. D.; Lunine, J. I.; Hedman, M. M.; Cruikshank, D. P.; Cuzzi, J. N.; Brown, R. H.; Buratti, B. J.; Flamini, E.

    2013-04-01

    Over the past eight years, the Visual and Infrared Mapping Spectrometer (VIMS) on board the Cassini orbiter has returned hyperspectral images in the 0.35-5.1 {mu}m range of the icy satellites and rings of Saturn. These very different objects show significant variations in surface composition, roughness, and regolith grain size as a result of their evolutionary histories, endogenic processes, and interactions with exogenic particles. The distributions of surface water ice and chromophores, i.e., organic and non-icy materials, across the Saturnian system, are traced using specific spectral indicators (spectral slopes and absorption band depths) obtained from rings mosaics and disk-integrated satellites observations by VIMS. Moving from the inner C ring to Iapetus, we found a marking uniformity in the distribution of abundance of water ice. On the other hand, the distribution of chromophores is much more concentrated in the rings particles and on the outermost satellites (Rhea, Hyperion, and Iapetus). A reduction of red material is observed on the satellites' surfaces orbiting within the E ring environment likely due to fine particles from Enceladus' plumes. Once the exogenous dark material covering the Iapetus' leading hemisphere is removed, the texture of the water ice-rich surfaces, inferred through the 2 {mu}m band depth, appears remarkably uniform across the entire system.

  9. An update on land-ice modeling in the CESM

    SciTech Connect

    Lipscomb, William H

    2011-01-18

    Mass loss from land ice, including the Greenland and Antarctic ice sheets as well as smaller glacier and ice caps, is making a large and growing contribution to global sea-level rise. Land ice is only beginning to be incorporated in climate models. The goal of the Land Ice Working Group (LIWG) is to develop improved land-ice models and incorporate them in CESM, in order to provide useful, physically-based sea-level predictions. LJWG efforts to date have led to the inclusion of a dynamic ice-sheet model (the Glimmer Community Ice Sheet Model, or Glimmer-CISM) in the Community Earth System Model (CESM), which was released in June 2010. CESM also includes a new surface-mass-balance scheme for ice sheets in the Community Land Model. Initial modeling efforts are focused on the Greenland ice sheet. Preliminary results are promising. In particular, the simulated surface mass balance for Greenland is in good agreement with observations and regional model results. The current model, however, has significant limitations: The land-ice coupling is one-way; we are using a serial version of Glimmer-CISM with the shallow-ice approximation; and there is no ice-ocean coupling. During the next year we plan to implement two-way coupling (including ice-ocean coupling with a dynamic Antarctic ice sheet) with a parallel , higher-order version of Glimmer-CISM. We will also add parameterizations of small glaciers and ice caps. With these model improvements, CESM will be able to simulate all the major contributors to 21st century global sea-level rise. Results of the first round of simulations should be available in time to be included in the Fifth Assessment Report (ARS) of the Intergovernmental Panel on Climate Change.

  10. Examination of Icing Induced Loss of Control and Its Mitigations

    NASA Technical Reports Server (NTRS)

    Reehorst, Andrew L.; Addy, Harold E., Jr.; Colantonio, Renato O.

    2010-01-01

    Factors external to the aircraft are often a significant causal factor in loss of control (LOC) accidents. In today s aviation world, very few accidents stem from a single cause and typically have a number of causal factors that culminate in a LOC accident. Very often the "trigger" that initiates an accident sequence is an external environment factor. In a recent NASA statistical analysis of LOC accidents, aircraft icing was shown to be the most common external environmental LOC causal factor for scheduled operations. When investigating LOC accident or incidents aircraft icing causal factors can be categorized into groups of 1) in-flight encounter with super-cooled liquid water clouds, 2) take-off with ice contamination, or 3) in-flight encounter with high concentrations of ice crystals. As with other flight hazards, icing induced LOC accidents can be prevented through avoidance, detection, and recovery mitigations. For icing hazards, avoidance can take the form of avoiding flight into icing conditions or avoiding the hazard of icing by making the aircraft tolerant to icing conditions. Icing detection mitigations can take the form of detecting icing conditions or detecting early performance degradation caused by icing. Recovery from icing induced LOC requires flight crew or automated systems capable of accounting for reduced aircraft performance and degraded control authority during the recovery maneuvers. In this report we review the icing induced LOC accident mitigations defined in a recent LOC study and for each mitigation describe a research topic required to enable or strengthen the mitigation. Many of these research topics are already included in ongoing or planned NASA icing research activities or are being addressed by members of the icing research community. These research activities are described and the status of the ongoing or planned research to address the technology needs is discussed

  11. Vibroseismic-Streamer Systems to Image Sub-Ice Properties and Englacial Layering on Large Scales

    NASA Astrophysics Data System (ADS)

    Diez, A.; Eisen, O.; Lambrecht, A.; Christoph, M.; Hofstede, C. M.; Kristoffersen, Y.; Blenkner, R.; Hilmarsson, S.

    2014-12-01

    After testing different vibroseismic systems on firn from small scale vibrators to heavy trucks we now established an operational vibroseis system, excellent to image englacial layering and sub-ice conditions below ice sheets and shelves. This allowed the longest vibroseismic traverse with continuous data acquisition in Antarctica, along a route from the Ekströmisen over the grounding line onto the ice sheet. We covered about 500 km distance within three weeks including 407 km seismic profile. 110 km of 6-fold data were acquired with 125 m shot spacing and 25 km of 3-fold data with 250 m shot spacing. The remaining distance was covered with 1-fold data. The operational vibroseismic system consists of a vibroseis Buggy 'EnviroVibe' in combination with a 1.5 km long snow streamer towed behind a Pistenbully. The vibroseis on Mattracks was set onto a polyethylene sled to distribute the load of the vibroseis on the surface and allow flexibility on rough surfaces. The highest production was reached for an operation speed of 6 km/h ensuring minimal damage to the 1.5 km streamer, consisting of 60 channels with 8 geophones each. Still the setup allowed for the measurement of 20 km of seismic 6-fold data per day or 40 km/day for 1-fold data. This survey allowed covering the bathymetry below the Ekströmisen, the bed topography within the catchment area of the Ekstömisen as well as englacial features. It was possible to map the ice shelf bottom and produce a clear image of the sea bed. The production speed allowed for high fold-coverage increasing image quality compared to 1-fold seismic data. Especially, the imaging of deepenings within the bed topography and their steep sidewalls shows the advantages and the additional information that can be gained from these seismic surveys compared to airborne or ground-penetrating radar data. We present the overall characteristics of the different vibroseis sources and mounting set-ups investigated over the last six years and provide

  12. Synchrotron X-ray Diffraction Investigation of the Anomalous Behavior of Ice During Freezing of Aqueous Systems

    SciTech Connect

    Varshney, Dushyant B.; Elliott, James A.; Gatlin, Larry A.; Kumar, Satyendra; Suryanarayanan, Raj; Shalaev, Evgenyi Y.

    2009-06-01

    Simple aqueous systems, i.e., phosphate-glycine buffers and pure water, were studied at subambient temperatures by X-ray difractometry using a high-intensity synchrotron radiation source at the Advanced Photon Source of Argonne National Laboratory. Complex X-ray diffraction (XRD) patterns, with two or more poorly resolved peaks in place of each of the four diagnostic peaks of hexagonal ice, 100, 002, 101, and 102, referred as 'splitting', were observed in the majority of cases. The splitting of up to 0.05 {angstrom} (d-spacing) was detected for 100, 002, and 101 peaks, whereas 102 peak was less affected. Deformation of the lattice of hexagonal ice, probably due to local stress created on the ice/ice or ice/container interface during water-to-ice transformation, is proposed as a possible mechanism for the observed splitting of XRD peaks. Using molecular modeling, it was estimated that the observed shifts in the peak positions are equivalent to applying a hydrostatic pressure of 2-3 kbars. The splitting can be used to quantify stresses during freezing, which could improve our understanding of the role of water-to-ice transformation on the destabilization of proteins and other biological systems.

  13. Synchrotron X-ray diffraction investigation of the anomalous behavior of ice during freezing of aqueous systems.

    PubMed

    Varshney, Dushyant B; Elliott, James A; Gatlin, Larry A; Kumar, Satyendra; Suryanarayanan, Raj; Shalaev, Evgenyi Y

    2009-05-07

    Simple aqueous systems, i.e., phosphate-glycine buffers and pure water, were studied at subambient temperatures by X-ray difractometry using a high-intensity synchrotron radiation source at the Advanced Photon Source of Argonne National Laboratory. Complex X-ray diffraction (XRD) patterns, with two or more poorly resolved peaks in place of each of the four diagnostic peaks of hexagonal ice, 100, 002, 101, and 102, referred as "splitting", were observed in the majority of cases. The splitting of up to 0.05 A (d-spacing) was detected for 100, 002, and 101 peaks, whereas 102 peak was less affected. Deformation of the lattice of hexagonal ice, probably due to local stress created on the ice/ice or ice/container interface during water-to-ice transformation, is proposed as a possible mechanism for the observed splitting of XRD peaks. Using molecular modeling, it was estimated that the observed shifts in the peak positions are equivalent to applying a hydrostatic pressure of 2-3 kbars. The splitting can be used to quantify stresses during freezing, which could improve our understanding of the role of water-to-ice transformation on the destabilization of proteins and other biological systems.

  14. ICE CHEMISTRY ON OUTER SOLAR SYSTEM BODIES: ELECTRON RADIOLYSIS OF N{sub 2}-, CH{sub 4}-, AND CO-CONTAINING ICES

    SciTech Connect

    Materese, Christopher K.; Cruikshank, Dale P.; Sandford, Scott A.; Imanaka, Hiroshi; Nuevo, Michel

    2015-10-20

    Radiation processing of the surface ices of outer Solar System bodies may be an important process for the production of complex chemical species. The refractory materials resulting from radiation processing of known ices are thought to impart to them a red or brown color, as perceived in the visible spectral region. In this work, we analyzed the refractory materials produced from the 1.2-keV electron bombardment of low-temperature N{sub 2}-, CH{sub 4}-, and CO-containing ices (100:1:1), which simulates the radiation from the secondary electrons produced by cosmic ray bombardment of the surface ices of Pluto. Despite starting with extremely simple ices dominated by N{sub 2}, electron irradiation processing results in the production of refractory material with complex oxygen- and nitrogen-bearing organic molecules. These refractory materials were studied at room temperature using multiple analytical techniques including Fourier-transform infrared spectroscopy, X-ray absorption near-edge structure (XANES) spectroscopy, and gas chromatography coupled with mass spectrometry (GC-MS). Infrared spectra of the refractory material suggest the presence of alcohols, carboxylic acids, ketones, aldehydes, amines, and nitriles. XANES spectra of the material indicate the presence of carboxyl groups, amides, urea, and nitriles, and are thus consistent with the IR data. Atomic abundance ratios for the bulk composition of these residues from XANES analysis show that the organic residues are extremely N-rich, having ratios of N/C ∼ 0.9 and O/C ∼ 0.2. Finally, GC-MS data reveal that the residues contain urea as well as numerous carboxylic acids, some of which are of interest for prebiotic and biological chemistries.

  15. Multi objective decision making in hybrid energy system design

    NASA Astrophysics Data System (ADS)

    Merino, Gabriel Guillermo

    The design of grid-connected photovoltaic wind generator system supplying a farmstead in Nebraska has been undertaken in this dissertation. The design process took into account competing criteria that motivate the use of different sources of energy for electric generation. The criteria considered were 'Financial', 'Environmental', and 'User/System compatibility'. A distance based multi-objective decision making methodology was developed to rank design alternatives. The method is based upon a precedence order imposed upon the design objectives and a distance metric describing the performance of each alternative. This methodology advances previous work by combining ambiguous information about the alternatives with a decision-maker imposed precedence order in the objectives. Design alternatives, defined by the photovoltaic array and wind generator installed capacities, were analyzed using the multi-objective decision making approach. The performance of the design alternatives was determined by simulating the system using hourly data for an electric load for a farmstead and hourly averages of solar irradiation, temperature and wind speed from eight wind-solar energy monitoring sites in Nebraska. The spatial variability of the solar energy resource within the region was assessed by determining semivariogram models to krige hourly and daily solar radiation data. No significant difference was found in the predicted performance of the system when using kriged solar radiation data, with the models generated vs. using actual data. The spatial variability of the combined wind and solar energy resources was included in the design analysis by using fuzzy numbers and arithmetic. The best alternative was dependent upon the precedence order assumed for the main criteria. Alternatives with no PV array or wind generator dominated when the 'Financial' criteria preceded the others. In contrast, alternatives with a nil component of PV array but a high wind generator component

  16. Laboratory Investigation of Ice Formation and Elimination in the Induction System of a Large Twin-engine Cargo Aircraft

    NASA Technical Reports Server (NTRS)

    Colis, William D

    1947-01-01

    The icing characteristics, the de-icing rate with hot air, and the effect of impact ice on fuel metering and mixture distribution have been determined in a laboratory investigation of that part of the engine induction system consisting of a three-barrel injection-type carburetor and a supercharger housing with spinner-type fuel injection from an 18-cylinder radial engine used on a large twin-engine cargo airplane. The induction system remained ice-free at carburetor-air temperatures above 36 F regardless of the moisture content of the air. Between carburetor-air temperatures of 32 F and 36 F with humidity ratios in excess of saturation, serious throttling ice formed in the carburetor because of expansion cooling of the air; at carburetor-air temperatures below 32 F with humidity ratios in excess of saturation, serious impact-ice formations occurred, Spinner-type fuel injection at the entrance to the supercharger and heating of the supercharger-inlet elbow and the guide vanes by the warn oil in the rear engine housing are design features that proved effective in eliminating fuel-evaporation icing and minimized the formation of throttling ice below the carburetor. Air-flow recovery time with fixed throttle was rapidly reduced as the inlet -air wet -bulb temperature was increased to 55 F; further temperature increase produced negligible improvement in recovery time. Larger ice formations and lower icing temperatures increased the time required to restore proper air flow at a given wet-bulb temperature. Impact-ice formations on the entrance screen and the top of the carburetor reduced the over-all fuel-air ratio and increased the spread between the over-all ratio and the fuel-air ratio of the individual cylinders. The normal spread of fuel-air ratio was increased from 0.020 to 0.028 when the left quarter of the entrance screen was blocked in a manner simulating the blocking resulting from ice formations released from upstream duct walls during hot-air de-icing.

  17. Commercial aviation icing research requirements

    NASA Technical Reports Server (NTRS)

    Koegeboehn, L. P.

    1981-01-01

    A short range and long range icing research program was proposed. A survey was made to various industry and goverment agencies to obtain their views of needs for commercial aviation ice protection. Through these responsed, other additional data, and Douglas Aircraft icing expertise; an assessment of the state-of-the-art of aircraft icing data and ice protection systems was made. The information was then used to formulate the icing research programs.

  18. Top Sounder Ice Penetration

    NASA Astrophysics Data System (ADS)

    Porter, D. L.; Goemmer, S. A.; Sweeney, J. H.

    2014-12-01

    Ice draft measurements are made as part of normal operations for all US Navy submarines operating in the Arctic Ocean. The submarine ice draft data are unique in providing high resolution measurements over long transects of the ice covered ocean. The data has been used to document a multidecadal drop in ice thickness, and for validating and improving numerical sea-ice models. A submarine upward-looking sonar draft measurement is made by a sonar transducer mounted in the sail or deck of the submarine. An acoustic beam is transmitted upward through the water column, reflecting off the bottom of the sea ice and returning to the transducer. Ice thickness is estimated as the difference between the ship's depth (measured by pressure) and the acoustic range to the bottom of the ice estimated from the travel time of the sonar pulse. Digital recording systems can provide the return off the water-ice interface as well as returns that have penetrated the ice. Typically, only the first return from the ice hull is analyzed. Information regarding ice flow interstitial layers provides ice age information and may possibly be derived with the entire return signal. The approach being investigated is similar to that used in measuring bottom sediment layers and will involve measuring the echo level from the first interface, solving the reflection loss from that transmission, and employing reflection loss versus impedance mismatch to ascertain ice structure information.

  19. Icing Research Tunnel

    NASA Technical Reports Server (NTRS)

    Chennault, Jonathan

    2004-01-01

    The Icing Research Tunnel in Building 11 at the NASA Glenn Research Center is committed to researching the effects of in flight icing on aircraft and testing ways to stop the formation of hazardous icing conditions on planes. During this summer, I worked here with Richard DelRosa, the lead engineer for this area. address one of the major concerns of aviation: icing conditions. During the war, many planes crashed (especially supply planes going over the.Himalayas) because ice built up in their wings and clogged the engines. To this day, it remains the largest ice tunnel in the world, with a test section that measures 6 feet high, 9 feet long, and 20 feet wide. It can simulate airspeeds from 50 to 300 miles per hour at temperatures as low as -50 Fahrenheit. Using these capabilities, IRT can simulate actual conditions at high altitudes. The first thing I did was creating a cross reference in Microsoft Excel. It lists commands for the DPU units that control the pressure and temperature variations in the tunnel, as well as the type of command (keyboard, multiplier, divide, etc). The cross reference also contains the algorithm for every command, and which page it is listed in on the control sheet (visual Auto-CAD graphs, which I helped to make). I actually spent most of the time on the computer using Auto-CAD. I drew a diagram of the entire icing tunnel and then drew diagrams of its various parts. Between my mentor and me, we have drawings of every part of it, from the spray bars to the thermocouples, power cabinets, input-output connectors for power systems, and layouts of various other machines. I was also responsible for drawing schematics for the Escort system (which controls the spray bars), the power system, DPUs, and other electrical systems. In my spare time, I am attempting to build and program the "toddler". Toddler is a walking robot that I have to program in PBASIC language. When complete, it should be able to walk on level terrain while avoiding obstacles in

  20. Clouds and Ice of the Lambert-Amery System, East Antarctica

    NASA Technical Reports Server (NTRS)

    2002-01-01

    These views from the Multi-angle Imaging SpectroRadiometer (MISR) illustrate ice surface textures and cloud-top heights over the Amery Ice Shelf/Lambert Glacier system in East Antarctica on October 25, 2002.

    The left-hand panel is a natural-color view from MISR's downward-looking (nadir) camera. The center panel is a multi-angular composite from three MISR cameras, in which color acts as a proxy for angular reflectance variations related to texture. Here, data from the red-band of MISR's 60o forward-viewing, nadir and 60o backward-viewing cameras are displayed as red, green and blue, respectively. With this display technique, surfaces which predominantly exhibit backward-scattering (generally rough surfaces) appear red/orange, while surfaces which predominantly exhibit forward-scattering (generally smooth surfaces) appear blue. Textural variation for both the grounded and sea ice are apparent. The red/orange pixels in the lower portion of the image correspond with a rough and crevassed region near the grounding zone, that is, the area where the Lambert and four other smaller glaciers merge and the ice starts to float as it forms the Amery Ice Shelf. In the natural-color view, this rough ice is spectrally blue in color.

    Clouds exhibit both forward and backward-scattering properties in the middle panel and thus appear purple, in distinct contrast with the underlying ice and snow. An additional multi-angular technique for differentiating clouds from ice is shown in the right-hand panel, which is a stereoscopically derived height field retrieved using automated pattern recognition involving data from multiple MISR cameras. Areas exhibiting insufficient spatial contrast for stereoscopic retrieval are shown in dark gray. Clouds are apparent as a result of their heights above the surface terrain. Polar clouds are an important factor in weather and climate. Inadequate characterization of cloud properties is currently responsible for large uncertainties in climate

  1. A Procedure for the Design of Air-Heated Ice-Prevention Systems

    NASA Technical Reports Server (NTRS)

    Neel, C. B.

    1954-01-01

    A procedure proposed for use in the design of air-heated systems for the continuous prevention of ice formation on airplane components is set forth. Required heat-transfer and air-pressure-loss equations are presented, and methods of selecting appropriate meteorological conditions for flight over specified geographical areas and for the calculation of water-drop-impingement characteristics are suggested. In order to facilitate the design, a simple electrical analogue was devised which solves the complex heat-transfer relationships existing in the thermal-system analysis. The analogue is described and an illustration of its application to design is given.

  2. Development of an Airborne Sea Ice Thickness Measurement System and Field Test Results

    DTIC Science & Technology

    1989-12-01

    Kovacs and J . Scott Holladay PJTIS CRA&I DTIC TAB Unannronced JustiCaton By Distribution I AvaIabilit Cordes AvjII d-dlc, Dist Prepared for U.S...Development of an Airborne Sea Ice Thickness Measurement System and Field Test Results 12. PERSONAL AUTHOR(S) Kovacs, Austin and Holladay, J . Scott 13a...Thickness Measurement System and Field Test Results AUSTIN KOVACS AND J . SCOTT HOLLADAY INTRODUCTION was determined to be desirable. The goals of the 1986-87

  3. Software Design Description for the Polar Ice Prediction System (PIPS) Version 3.0

    DTIC Science & Technology

    2008-11-05

    THICKNESS AND TEMPERATURE FOR THE TWO EXTREMA IN SNOW DEPTH. MAXIMUM SNOW DEPTH IS CALCULATED BASED ON ARCHIMEDES ’ PRINCIPLE FOR THE GIVEN ICE...have the ice concentration as a multiplicative factor to be consistent with the formal theory of free drift in low ice concentration areas. A...ice thickness and temperature for the two extrema in snow depth. Maximum snow depth is calculated based on Archimedes ’ Principle for the given ice

  4. Melt ponds and marginal ice zone from new algorithm of sea ice concentration retrieval

    NASA Astrophysics Data System (ADS)

    Repina, Irina; Tikhonov, Vasiliy; Komarova, Nataliia; Raev, Mikhail; Sharkov, Evgeniy

    2016-04-01

    Studies of spatial and temporal properties of sea ice distribution in polar regions help to monitor global environmental changes and reveal their natural and anthropogenic factors, as well as make forecasts of weather, marine transportation and fishing conditions, assess perspectives of mineral mining on the continental shelf, etc. Contact methods of observation are often insufficient to meet the goals, very complicated technically and organizationally and not always safe for people involved. Remote sensing techniques are believed to be the best alternative. Its include monitoring of polar regions by means of passive microwave sensing with the aim to determine spatial distribution, types, thickness and snow cover of ice. However, the algorithms employed today to retrieve sea ice characteristics from passive microwave sensing data for different reasons give significant errors, especially in summer period and also near ice edges and in cases of open ice. A new algorithm of sea ice concentration retrieval in polar regions from satellite microwave radiometry data is discussed. Beside estimating sea ice concentration, the algorithm makes it possible to indicate ice areas with melting snow and melt ponds. Melt ponds are an important element of the Arctic climate system. Covering up to 50% of the surface of drifting ice in summer, they are characterized by low albedo values and absorb several times more incident shortwave radiation than the rest of the snow and ice cover. The change of melt ponds area in summer period 1987-2015 is investigated. The marginal ice zone (MIZ) is defined as the area where open ocean processes, including specifically ocean waves, alter significantly the dynamical properties of the sea ice cover. Ocean wave fields comprise short waves generated locally and swell propagating from the large ocean basins. Depending on factors like wind direction and ocean currents, it may consist of anything from isolated, small and large ice floes drifting over a

  5. Mapping Ice with Airborne Lasers

    NASA Video Gallery

    Determining whether polar ice quantities are growing or shrinking requires accurate and detailed measurements, year over year. To help make those measurements, IceBridge mission aircraft fire 3,000...

  6. Power System Simulation for Policymaking and Making Policymakers

    NASA Astrophysics Data System (ADS)

    Cohen, Michael Ari

    Power system simulation is a vital tool for anticipating, planning for and ultimately addressing future conditions on the power grid, especially in light of contemporary shifts in power generation, transmission and use that are being driven by a desire to utilize more environmentally responsible energy sources. This dissertation leverages power system simulation and engineering-economic analysis to provide initial answers to one open question about future power systems: how will high penetrations of distributed (rooftop) solar power affect the physical and economic operation of distribution feeders? We find that the overall impacts of distributed solar power (both positive and negative) on the feeders we modeled are minor compared to the overall cost of energy, but that there is on average a small net benefit provided by distributed generation. We then describe an effort to make similar analyses more accessible to a non-engineering (high school) audience by developing an educational video game called "Griddle" that is based on the same power system simulation techniques used in the first study. We describe the design and evaluation of Griddle and find that it demonstrates potential to provide students with insights about key power system learning objectives.

  7. Using Multimodal Input for Autonomous Decision Making for Unmanned Systems

    NASA Technical Reports Server (NTRS)

    Neilan, James H.; Cross, Charles; Rothhaar, Paul; Tran, Loc; Motter, Mark; Qualls, Garry; Trujillo, Anna; Allen, B. Danette

    2016-01-01

    Autonomous decision making in the presence of uncertainly is a deeply studied problem space particularly in the area of autonomous systems operations for land, air, sea, and space vehicles. Various techniques ranging from single algorithm solutions to complex ensemble classifier systems have been utilized in a research context in solving mission critical flight decisions. Realized systems on actual autonomous hardware, however, is a difficult systems integration problem, constituting a majority of applied robotics development timelines. The ability to reliably and repeatedly classify objects during a vehicles mission execution is vital for the vehicle to mitigate both static and dynamic environmental concerns such that the mission may be completed successfully and have the vehicle operate and return safely. In this paper, the Autonomy Incubator proposes and discusses an ensemble learning and recognition system planned for our autonomous framework, AEON, in selected domains, which fuse decision criteria, using prior experience on both the individual classifier layer and the ensemble layer to mitigate environmental uncertainty during operation.

  8. Optimizing the performance of Ice-storage Systems in Electricity Load Management through a credit mechanism. An analytical work for Jiangsu, China

    SciTech Connect

    Han, Yafeng; Shen, Bo; Hu, Huajin; Fan, Fei

    2015-01-12

    Ice-storage air-conditioning is a technique that uses ice for thermal energy storage. Replacing existing air conditioning systems with ice storage has the advantage of shifting the load from on-peak times to off-peak times that often have excess generation. However, increasing the use of ice-storage faces significant challenges in China. One major barrier is the inefficiency in the current electricity tariff structure. There is a lack of effective incentive mechanism that induces ice-storage systems from achieving optimal load-shifting results. This study presents an analysis that compares the potential impacts of ice-storage systems on load-shifting under a new credit-based incentive scheme and the existing incentive arrangement in Jiangsu, China. The study indicates that by changing how ice-storage systems are incentivized in Jiangsu, load-shifting results can be improved.

  9. Optimizing the performance of Ice-storage Systems in Electricity Load Management through a credit mechanism. An analytical work for Jiangsu, China

    DOE PAGES

    Han, Yafeng; Shen, Bo; Hu, Huajin; ...

    2015-01-12

    Ice-storage air-conditioning is a technique that uses ice for thermal energy storage. Replacing existing air conditioning systems with ice storage has the advantage of shifting the load from on-peak times to off-peak times that often have excess generation. However, increasing the use of ice-storage faces significant challenges in China. One major barrier is the inefficiency in the current electricity tariff structure. There is a lack of effective incentive mechanism that induces ice-storage systems from achieving optimal load-shifting results. This study presents an analysis that compares the potential impacts of ice-storage systems on load-shifting under a new credit-based incentive scheme andmore » the existing incentive arrangement in Jiangsu, China. The study indicates that by changing how ice-storage systems are incentivized in Jiangsu, load-shifting results can be improved.« less

  10. Amazonian-aged fluvial system and associated ice-related features in Terra Cimmeria, Mars

    NASA Astrophysics Data System (ADS)

    Adeli, Solmaz; Hauber, Ernst; Kleinhans, Maarten; Le Deit, Laetitia; Platz, Thomas; Fawdon, Peter; Jaumann, Ralf

    2016-10-01

    The Martian climate throughout the Amazonian is widely believed to have been cold and hyper-arid, very similar to the current conditions. However, ubiquitous evidence of aqueous and glacial activity has been recently reported, including channels that can be tens to hundreds of kilometres long, alluvial and fluvial deposits, ice-rich mantles, and glacial and periglacial landforms. Here we study a ∼340 km-long fluvial system located in the Terra Cimmeria region, in the southern mid-latitudes of Mars. The fluvial system is composed of an upstream catchment system with narrow glaciofluvial valleys and remnants of ice-rich deposits. We observe depositional features including fan-shaped deposits, and erosional features such as scour marks and streamlined islands. At the downstream section of this fluvial system is an outflow channel named Kārūn Valles, which displays a unique braided alluvial fan and terminates on the floor of the Ariadnes Colles basin. Our observations point to surface runoff of ice/snow melt as the water source for this fluvial activity. According to our crater size-frequency distribution analysis the entire fluvial system formed during early to middle Amazonian, between ∼ 1.8-0.2+0.2 Ga to 510-40+40 Ma. Hydraulic modelling indicates that the Kārūn Valles and consequently the alluvial fan formation took place in geologically short-term event(s). We conclude that liquid water was present in Terra Cimmeria during the early to middle Amazonian, and that Mars during that time may have undergone several episodic glacial-related events.

  11. The effects of arctic stratus clouds on the solar energy budget in the atmosphere-sea ice-ocean system

    SciTech Connect

    Jin, Z.; Stamnes, K.; Zak, B.D.

    1995-04-01

    This article describes a comprehensive radiative transfer model pertinent to the atmosphere-sea ice-ocean system. The main features of the model include: The atmosphere, sea ice, and ocean each represented by a sufficient number of layers to resolve the change in the optical properties of each stratum; An appropriate quadrature structure to take into account the total reflection at the air-ice or air-water interface, as well as to solve the radiative transfer equation in the coupled system consistently; Provision for a different number of streams (quadrature points) in the atmosphere, ice, and ocean, chosen based on the optical properties in each stratum and the computational accuracy method.

  12. Continuous ice core melter system with discrete sampling for major ion, trace element and stable isotope analyses.

    PubMed

    Osterberg, Erich C; Handley, Michael J; Sneed, Sharon B; Mayewski, Paul A; Kreutz, Karl J

    2006-05-15

    We present a novel ice/firn core melter system that uses fraction collectors to collect discrete, high-resolution (<1 cm/sample possible), continuous, coregistered meltwater samples for analysis of eight major ions by ion chromatography (IC), >32 trace elements by inductively coupled plasma sectorfield mass spectrometry (ICP-SMS), and stable oxygen and hydrogen isotopes by isotope ratio mass spectrometry (IRMS). The new continuous melting with discrete sampling (CMDS) system preserves an archive of each sample, reduces the problem of incomplete particle dissolution in ICP-SMS samples, and provides more precise trace element data than previous ice melter models by using longer ICP-SMS scan times and washing the instrument between samples. CMDS detection limits are similar to or lower than those published for ice melter systems coupled directly to analytical instruments and are suitable for analyses of polar and mid-low-latitude ice cores. Analysis of total calcium and sulfur by ICP-SMS and calcium ion, sulfate, and methanesulfonate by IC from the Mt. Logan Prospector-Russell Col ice core confirms data accuracy and coregistration of the split fractions from each sample. The reproducibility of all data acquired by the CMDS system is confirmed by replicate analyses of parallel sections of the GISP2 D ice core.

  13. Development of Simulator Based on Stochastic Switched ARX Model for Refrigeration System with Ice Thermal Storage System

    NASA Astrophysics Data System (ADS)

    Shioya, Tsubasa; Fujimoto, Yasutaka

    In this paper, we introduce a simulator for ice thermal storage systems. Basically, the refrigeration system is modeled as a linear discrete-time system. For system identifications, the least square method is used. However, it is difficult to identify the switching time of the electromagnetic valve of brine pipes attached at showcases accurately by this method. In order to overcome this difficulty, a simulator based on the stochastic switched ARX model is developed. The data obtained from the simulator are compared with actual data. We verify the effectiveness of the proposed simulator.

  14. Technology for Ice Rinks

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Ron Urban's International Ice Shows set up portable ice rinks for touring troupes performing on temporary rinks at amusement parks, sports arenas, dinner theaters, shopping malls and civic centers. Key to enhanced rink portability, fast freezing and maintaining ice consistency is a mat of flexible tubing called ICEMAT, an offshoot of a solar heating system developed by Calmac, Mfg. under contract with Marshall.

  15. On the Predictability of Sea Ice

    NASA Astrophysics Data System (ADS)

    Blanchard-Wrigglesworth, Edward

    We investigate the persistence and predictability of sea ice in numerical models and observations. We first use the 3rd generation Community Climate System Model (CCSM3) General Circulation Model (GCM) to investigate the inherent persistence of sea-ice area and thickness. We find that sea-ice area anomalies have a seasonal decay timescale, exhibiting an initial decorrelation similar to a first order auto-regressive (AR1, or red noise) process. Beyond this initial loss of memory, there is a re-emergence of memory at certain times of the year. There are two distinct modes of re-emergence in the model, one driven by the seasonal coupling of area and thickness anomalies in the summer, the other by the persistence of upper ocean temperature anomalies that originate from ice anomalies in the melt season and then influence ice anomalies in the growth season. Comparison with satellite observations where available indicate these processes appear in nature. We then use the 4th generation CCSM (CCSM4) to investigate the partition of Arctic sea-ice predictability into its initial-value and boundary forced components under present day forcing conditions. We find that initial-value predictability lasts for 1-2 years for sea-ice area, and 3-4 years for sea-ice volume. Forced predictability arises after just 4-5 years for both area and volume. Initial-value predictability of sea-ice area during the summer hinges on the coupling between thickness and area anomalies during that season. We find that the loss of initial-value predictability with time is not uniform --- there is a rapid loss of predictability of sea-ice volume during the late spring early summer associated with snow melt and albedo feedbacks. At the same time, loss of predictability is not uniform across different regions. Given the usefulness of ice thickness as a predictor of summer sea-ice area, we obtain a hindcast of September sea-ice area initializing the GCM on May 1with an estimate of observed sea-ice thickness

  16. Ice Types in the Beaufort Sea, Alaska

    NASA Technical Reports Server (NTRS)

    2003-01-01

    the MISR cameras, whereas younger, smoother ice types are predominantly forward scattering. The MISR map at right was generated using a statistical classification routine (called ISODATA) and analyzed using ice charts from the National Ice Center. Five classes of sea ice were found based upon the classification of MISR angular data. These are described, based on interpretation of the SAR image, by the image key. Very smooth ice areas that are predominantly forward scattering are colored red. Frost flowers are largely smooth to the MISR visible band sensor and are mapped as forward scattering. Areas mapped as blue are predominantly backward scattering, and the other three classes have statistically distinct angular signatures and fall within the middle of the forward/backward scattering continuum. Some areas that may be first year or younger ice between the multi year ice floes are not discernible to SAR, illustrating how MISR potentially can make a unique contribution to sea ice mapping.

    The Multi-angle Imaging SpectroRadiometer observes the daylit Earth continuously and every 9 days views the entire globe between 82 degrees north and 82 degrees south latitude. This data product was generated from a portion of the imagery acquired during Terra orbit 6663. The MISR image has been cropped to include an area that is 200 kilometers wide, and utilizes data from blocks 30 to 33 within World Reference System-2 path 71.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory,Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

  17. Ice Giant Exploration

    NASA Astrophysics Data System (ADS)

    Rymer, A. M.; Arridge, C. S.; Masters, A.; Turtle, E. P.; Simon, A. A.; Hofstadter, M. D.; Turrini, D.; Politi, R.

    2015-12-01

    The Ice Giants in our solar system, Uranus and Neptune, are fundamentally different from their Gas Giant siblings Jupiter and Saturn, from the different proportions of rock and ice to the configuration of their planetary magnetic fields. Kepler space telescope discoveries of exo-planets indicate that planets of this type are among the most ubiquitous universally and therefore a future mission to explore the nature of the Ice Giants in our own solar system will provide insights into the nature of extra-solar system objects in general. Uranus has the smallest self- luminosity of all the planets, potentially related to catastrophic events early in the planet's history, which also may explain Uranus' large obliquity. Uranus' atmosphere is subject to extreme seasonal forcing making it unique in the Solar System. Neptune is also unique in a number of ways, notably its large moon Triton which is likely a captured Kuiper Belt Object and one of only two moons in the solar system with a robustly collisional atmosphere. Similar to Uranus, the angle between the solar wind and the magnetic dipole axis is subject to large-amplitude variations on both diurnal and seasonal timescales, but peculiarly it has one of the quietest magnetospheres of the solar system, at least according to Voyager 2, the only spacecraft to encounter Neptune to date. A comprehensive mission, as advocated in the Decadal Survey, would provide enormous science return but is also challenging and expensive. In this presentation we will discuss mission scenarios and suggest how collaboration between disciplines and internationally can help us to pursue a mission that includes Ice Giant exploration.

  18. Colour Tables and Sea-Ice Information Products and Forecasts: Flexibility Versus Consistency. Allowing Polar Mariners to Understand Multiple Ice Products Within a Common Visualisation System

    NASA Astrophysics Data System (ADS)

    Berglund, Robin; Seitsonen, Lauri; Walker, Nicolas P.

    2016-08-01

    In order to interpret ice information products correctly and efficiently, it is important to have the information presented in a consistent way. In a system where the user can access many kinds of Near-Real-Time sea-ice related products from different providers, this issue is critical. The challenge is how to present these products in a way that effectively communicates the information and which is consistent across the whole range of available products, thus fulfilling the requirement that the colour scheme should be harmonised per physical parameter. The principle adopted and implemented is to use a layered approach where the values in the raster products are mapped to either explicit categories or to ranges of physical values. The physical values are then mapped to colour ranges thus ensuring that the same physical value is shown in the same colour independent of the origin. The system implemented in the FP7 POLAR ICE project enables harmonisation of the products coming from different providers and also supports interactive changing of the colour scale.

  19. On the Role of Arctic Sea Ice Deformations: An Evaluation of the Regional Arctic System Model Results with Observations.

    NASA Astrophysics Data System (ADS)

    Osinski, Robert; Maslowski, Wieslaw; Roberts, Andrew

    2016-04-01

    The atmosphere - sea ice - ocean fluxes and their contribution to rapid changes in the Arctic system are not well understood and generally are not resolved by global climate models (GCMs). While many significant model refinements have been made in the recent past, including the representation of sea ice rheology, surface albedo and ice-albedo feedback, other processes such as sea ice deformations, still require further studies and model advancements. Of particular potential interest here are linear kinematic features (LKFs), which control winter air-sea heat exchange and affect buoyancy forces in the ocean. Their importance in Arctic climate change, especially under an increasing first-year ice cover, is yet to be determined and their simulation requires representation of processes currently at sub-grid scale of most GCMs. To address some of the GCM limitations and to better understand the role of LKFs in air-sea exchange we use the Regional Arctic System Model (RASM), which allows high spatio-temporal resolution and regional focus on the Arctic. RASM is a fully coupled regional climate model, developed to study dynamic and thermodynamic processes and their coupling across the atmosphere-sea ice-ocean interface. It consists of the Weather Research and Forecasting (WRF) atmospheric model, the Parallel Ocean Program (POP), the Community Ice Model (CICE) and the Variable Infiltration Capacity (VIC) land hydrology model. The sea ice component has been upgraded to the Los Alamos Community Ice Model version 5.1 (CICE5.1), which allows either Elastic-Viscous-Plastic (EVP) or a new anisotropic (EPA) rheology. RASM's domain is pan-Arctic, with the ocean and sea ice components configured at an eddy-permitting horizontal resolution of 1/12-degree as well as 1/48-degree, for limited simulations. The atmosphere and land model components are configured at 50-km grids. All the components are coupled at a 20-minute time step. Results from multiple RASM simulations are analyzed and

  20. Identification and Evaluation of Cryoprotective Peptides from Chicken Collagen: Ice-Growth Inhibition Activity Compared to That of Type I Antifreeze Proteins in Sucrose Model Systems.

    PubMed

    Du, Lihui; Betti, Mirko

    2016-06-29

    The ability of chicken collagen peptides to inhibit the growth of ice crystals was evaluated and compared to that of fish antifreeze proteins (AFPs). This ice inhibition activity was assessed using a polarized microscope by measuring ice crystal dimensions in a sucrose model system with and without collagen peptides after seven thermal cycles. The system was stabilized at -25 °C and cycled between -16 and -12 °C. Five candidate peptides with ice inhibition activity were identified using liquid chromatography and tandem mass spectrometry and were then synthesized. Their ice inhibition capacity was compared to that of type I AFPs in a 23% sucrose model system. Specific collagen peptides with certain amino acid sequences reduced the extent of ice growth by approximately 70% at a relatively low concentration (1 mg/mL). These results suggest that specific collagen peptides may act in a noncolligative manner, inhibiting ice crystal growth like type I AFPs, but less efficiently.

  1. EOS Aqua AMSR-E Arctic Sea Ice Validation Program

    NASA Technical Reports Server (NTRS)

    Cavalieri, D. J.; Markus, T.; Gasiewski, A.; Klein, M.; Maslanik, J.; Sturm, M.; Stroeve, J.; Heinrichs, J.

    2004-01-01

    A coordinated Arctic sea ice validation field campaign using the NASA Wallops P-3B aircraft was successfully completed in March 2003. This campaign was part of the program for validating the Earth Observing System (EOS) Aqua Advanced Microwave Scanning Radiometer (AMSR-E) sea ice products. The AMSR-E, designed and built by the Japanese National Space Development Agency for NASA, was launched May 4,2002 on the EOS Aqua spacecraft. The AMSR-E sea ice products include sea ice concentration, sea ice temperature, and snow depth on sea ice. The primary instrument on the P-3B aircraft was the NOAA ETL Polarimetric Scanning Radiometer (PSR) covering the same frequencies and polarizations as the AMSR-E. This paper describes the objectives of each of the seven flights, the Arctic regions overflown, and the coordination among satellite, aircraft, and surface-based measurements. Two of the seven aircraft flights were coordinated with scientists making surface measurements of snow and ice properties including sea ice temperature and snow depth on sea ice at a study area near Barrow, AK and at a Navy ice camp located in the Beaufort Sea. The remaining flights covered portions of the Bering Sea ice edge, the Chukchi Sea, and Norton Sound. Comparisons among the satellite and aircraft PSR data sets are presented.

  2. Vortex ice in nanostructured superconductors

    SciTech Connect

    Reichhardt, Charles; Reichhardt, Cynthia J; Libal, Andras J

    2008-01-01

    We demonstrate using numerical simulations of nanostructured superconductors that it is possible to realize vortex ice states that are analogous to square and kagome ice. The system can be brought into a state that obeys either global or local ice rules by applying an external current according to an annealing protocol. We explore the breakdown of the ice rules due to disorder in the nanostructure array and show that in square ice, topological defects appear along grain boundaries, while in kagome ice, individual defects appear. We argue that the vortex system offers significant advantages over other artificial ice systems.

  3. Development of Unmanned Airborne System (UAS) instrumentation for air-sea-ice interaction research

    NASA Astrophysics Data System (ADS)

    Reineman, B. D.; Lenain, L.; Melville, W. K.

    2011-12-01

    We have developed Unmanned Airborne System (UAS) instrumentation packages to directly measure air-sea momentum transfer, as well as latent, sensible, and radiative heat fluxes, topography, and surface wave kinematics. Two UAS (BAE Manta C1s) flying in vertical formation over the ocean will allow the direct measurement of air-sea fluxes within the marine atmospheric boundary layer, and, with onboard high-resolution video and laser altimetry, simultaneous observation of sea surface kinematics and sea-ice topography. The low altitude required for accurate air-sea or air-ice flux measurements is below the typical safety limit of manned research aircraft; however, with advancements in laser altimeters, small-aircraft flight control, and real-time Differential GPS, it now is within the capability of the UAS platform. Fast response turbulence, hygrometer, and temperature probes in the lower UAS permit surface layer flux measurements, and short and long wave radiometers in the upper UAS allow the determination of net radiation, surface temperature, and albedo. Engineering test flights of the two UAS over land were performed in January 2011 at Camp Roberts, CA. The tests demonstrated the capability of the systems to measure vertical profiles of georeferenced wind, temperature, and moisture content, as well as momentum flux and sensible, latent, and radiative heat fluxes. UAS-derived fluxes from low-altitude (20 -- 30 m) flights are in agreement with fluxes measured by a nearby tower-mounted sonic anemometer-based eddy covariance system. We present a description of the instrumentation, a summary of results from flight tests, and discuss potential applications of these instrumented platforms for air-sea-ice interaction studies.

  4. Retrievals of Ice Cloud Microphysical Properties of Deep Convective Systems using Radar Measurements

    NASA Astrophysics Data System (ADS)

    Tian, J.; Dong, X.; Xi, B.; Wang, J.; Homeyer, C. R.

    2015-12-01

    This study presents innovative algorithms for retrieving ice cloud microphysical properties of Deep Convective Systems (DCSs) using Next-Generation Radar (NEXRAD) reflectivity and newly derived empirical relationships from aircraft in situ measurements in Wang et al. (2015) during the Midlatitude Continental Convective Clouds Experiment (MC3E). With composite gridded NEXRAD radar reflectivity, four-dimensional (space-time) ice cloud microphysical properties of DCSs are retrieved, which is not possible from either in situ sampling at a single altitude or from vertical pointing radar measurements. For this study, aircraft in situ measurements provide the best-estimated ice cloud microphysical properties for validating the radar retrievals. Two statistical comparisons between retrieved and aircraft in situ measured ice microphysical properties are conducted from six selected cases during MC3E. For the temporal-averaged method, the averaged ice water content (IWC) and median mass diameter (Dm) from aircraft in situ measurements are 0.50 g m-3 and 1.51 mm, while the retrievals from radar reflectivity have negative biases of 0.12 g m-3 (24%) and 0.02 mm (1.3%) with correlations of 0.71 and 0.48, respectively. For the spatial-averaged method, the IWC retrievals are closer to the aircraft results (0.51 vs. 0.47 g m-3) with a positive bias of 8.5%, whereas the Dm retrievals are larger than the aircraft results (1.65 mm vs. 1.51 mm) with a positive bias of 9.3%. The retrieved IWCs decrease from ~0.6 g m-3 at 5 km to ~0.15 g m-3 at 13 km, and Dm values decrease from ~2 mm to ~0.7 mm at the same levels. In general, the aircraft in situ measured IWC and Dm values at each level are within one standard derivation of retrieved properties. Good agreements between microphysical properties measured from aircraft and retrieved from radar reflectivity measurements indicate the reasonable accuracy of our retrievals.

  5. The Regional Polar Ice Prediction System - Barents Sea (RPIPS-B): A technical Description

    DTIC Science & Technology

    1989-05-01

    two-level approach (Hibler, and ice thickness changes . The term Sh is the net 1979). This approach breaks ice into two categories, growth or melt of ice...S.. is the change in thick and thin, %\\ith the division between the two being compactness due to the growth or decay of ihc. 0.5 in. The compactness...hc’icrc arid the small increase in ice thickness at transect J - 5, the ocean. This problem could h td ,’iih these figures show little change in ice

  6. The Met Office Coupled Atmosphere/Land/Ocean/Sea-Ice Data Assimilation System

    NASA Astrophysics Data System (ADS)

    Lea, Daniel; Mirouze, Isabelle; King, Robert; Martin, Matthew; Hines, Adrian

    2015-04-01

    The Met Office has developed a weakly-coupled data assimilation (DA) system using the global coupled model HadGEM3 (Hadley Centre Global Environment Model, version 3). At present the analysis from separate ocean and atmosphere DA systems are combined to produced coupled forecasts. The aim of coupled DA is to produce a more consistent analysis for coupled forecasts which may lead to less initialisation shock and improved forecast performance. The HadGEM3 coupled model combines the atmospheric model UM (Unified Model) at 60 km horizontal resolution on 85 vertical levels, the ocean model NEMO (Nucleus for European Modelling of the Ocean) at 25 km (at the equator) horizontal resolution on 75 vertical levels, and the sea-ice model CICE at the same resolution as NEMO. The atmosphere and the ocean/sea-ice fields are coupled every 1-hour using the OASIS coupler. The coupled model is corrected using two separate 6-hour window data assimilation systems: a 4D-Var for the atmosphere with associated soil moisture content nudging and snow analysis schemes on the one hand, and a 3D-Var FGAT for the ocean and sea-ice on the other hand. The background information in the DA systems comes from a previous 6-hour forecast of the coupled model. To isolate the impact of the coupled DA, 13-month experiments have been carried out, including 1) a full atmosphere/land/ocean/sea-ice coupled DA run, 2) an atmosphere-only run forced by OSTIA SSTs and sea-ice with atmosphere and land DA, and 3) an ocean-only run forced by atmospheric fields from run 2 with ocean and sea-ice DA. In addition, 5-day and 10-day forecast runs, have been produced from initial conditions generated by either run 1 or a combination of runs 2 and 3. The different results have been compared to each other and, whenever possible, to other references such as the Met Office atmosphere and ocean operational analyses or the OSTIA SST data. The performance of the coupled DA is similar to the existing separate ocean and atmosphere

  7. Design, Construction, Testing and Evaluation of a Residential Ice Storage Air Conditioning System.

    DTIC Science & Technology

    1982-11-01

    FuseI.Size: 40 Amps Shipping Weight: 550 lbs. 19 Aok *l 4. - ’j-A .~ % --4. L 94 Table 9 Model PA�C Compressor 3 P Semi Hermetic Condensor Air... hermetic compressor , airI cooled condenser, drier, 2 evaporators, and thermostatic expansion valve refrigerant feed with a low side accumulator with...50% V •water. The tank provided storage for 12,730 pounds of ice. The system used a 25 ton compressor (rated 0 40"F suction) which would freeze the

  8. Investigating the Uptake Mechanisms of Hydrogen Peroxide to Single and Polycrystalline Ice with a Novel Flow Tube System

    NASA Astrophysics Data System (ADS)

    Hong, Angela; Ammann, Markus; Bartels-Rausch, Thorsten

    2016-04-01

    Air-ice chemical interactions are important for describing the distribution and subsequent chemical fate of trace atmospheric gases within ice and snow and determining the oxidative capacities of these environments. The nature of this interaction is governed by a compound's physicochemical properties as well as ice microstructure. Hydrogen peroxide (H2O2), a reservoir of HOx radicals in the atmosphere and an important chromophore in snow and ice, is a trace gas that demonstrates complex uptake behaviour to frozen aqueous media by the reversible, fast adsorption to the air-ice interface, aggregation, and lateral interactions, and a slower process, ostensibly via uptake into the bulk. However, the exact mechanism and kinetics for the slow uptake of H2O2 and the size of this reservoir is unknown. It is important to describe and quantify this loss term, over environmentally-relevant timescales, accommodation of H2O2 into the bulk may be the dominant process which controls the composition and chemistry of the snow and overlying atmosphere. We hypothesize that the slow uptake of H2O2 occurs by diffusion into the grain boundaries of ice. To provide mechanistic insight to the macroscopic phenomenon of atmospheric gas uptake to ice, and discern various mechanisms including adsorption to air-ice interface and accommodation into the bulk through uptake into grain boundaries, we design, machine, and validate a novel flow reactor system featuring a Drilled Ice Flow Tube (DIFT). Our flow reactor system is uniquely suited to testing these uptake mechanisms: by controlling the degree of grain boundaries present in the DIFT (ie. monocrystalline or polycrystalline), we can directly observe the effect of the ice microstructure on the adsorptive and bulk uptake of trace atmospheric gases over long timescales (eg. on the order of hours). Here, we describe method development of the DIFT and demonstrate using polarised microscopy imagery that our experimental set-up allows for the direct

  9. Comparison of observed and simulated spatial patterns of ice microphysical processes in tropical oceanic mesoscale convective systems: Ice Microphysics in Midlevel Inflow

    SciTech Connect

    Barnes, Hannah C.; Houze, Robert A.

    2016-07-25

    To equitably compare the spatial pattern of ice microphysical processes produced by three microphysical parameterizations with each other, observations, and theory, simulations of tropical oceanic mesoscale convective systems (MCSs) in the Weather Research and Forecasting (WRF) model were forced to develop the same mesoscale circulations as observations by assimilating radial velocity data from a Doppler radar. The same general layering of microphysical processes was found in observations and simulations with deposition anywhere above the 0°C level, aggregation at and above the 0°C level, melting at and below the 0°C level, and riming near the 0°C level. Thus, this study is consistent with the layered ice microphysical pattern portrayed in previous conceptual models and indicated by dual-polarization radar data. Spatial variability of riming in the simulations suggests that riming in the midlevel inflow is related to convective-scale vertical velocity perturbations. Finally, this study sheds light on limitations of current generally available bulk microphysical parameterizations. In each parameterization, the layers in which aggregation and riming took place were generally too thick and the frequency of riming was generally too high compared to the observations and theory. Additionally, none of the parameterizations produced similar details in every microphysical spatial pattern. Discrepancies in the patterns of microphysical processes between parameterizations likely factor into creating substantial differences in model reflectivity patterns. It is concluded that improved parameterizations of ice-phase microphysics will be essential to obtain reliable, consistent model simulations of tropical oceanic MCSs.

  10. Systemic Data-Based Decision Making: A Systems Approach for Using Data in Schools

    ERIC Educational Resources Information Center

    Walser, Tamara M.

    2009-01-01

    No Child Left Behind has increased data collection and reporting, the development of data systems, and interest in using data for decision-making in schools and classrooms. Ends-driven decision making has become common educational practice, where the ends justify the means at all costs, and short-term results trump longer-term outcomes and the…

  11. Laboratory Studies of Ethane Ice Relevant to Outer Solar System Surfaces

    NASA Astrophysics Data System (ADS)

    Moore, Marla H.; Hudson, R. L.; Raines, L.

    2009-09-01

    Oort Cloud comets, as well as TNOs Makemake (2005 FY9), Quaoar, and Pluto, are known to contain ethane. However, even though this molecule is found on several outer Solar System objects relatively little information is available about its amorphous and crystalline phases. In new experiments, we have prepared ethane ices at temperatures applicable to the outer Solar System, and have heated and ion-irradiated these ices to study phase changes and ethane's radiation chemistry using mid-IR spectroscopy (2.2 - 16.6 microns). Included in our work is the meta-stable phase that exists at 35 - 55 K. These results, including newly obtained optical constants, are relevant to ground-based observational campaigns, the New Horizons mission, and supporting laboratory work. An improved understanding of solid-phase ethane may contribute to future searches for this and other hydrocarbons in the outer Solar System. This work was funded by NASA's Planetary Geology and Geophysics, Planetary Atmospheres, and Outer Planets programs. LR was supported by a summer research internship at the NASA Astrobiology Institute's Goddard Center for Astrobiology.

  12. Ice, Ice, Baby!

    NASA Astrophysics Data System (ADS)

    Hamilton, C.

    2008-12-01

    The Center for Remote Sensing of Ice Sheets (CReSIS) has developed an outreach program based on hands-on activities called "Ice, Ice, Baby". These lessons are designed to teach the science principles of displacement, forces of motion, density, and states of matter. These properties are easily taught through the interesting topics of glaciers, icebergs, and sea level rise in K-8 classrooms. The activities are fun, engaging, and simple enough to be used at science fairs and family science nights. Students who have participated in "Ice, Ice, Baby" have successfully taught these to adults and students at informal events. The lessons are based on education standards which are available on our website www.cresis.ku.edu. This presentation will provide information on the activities, survey results from teachers who have used the material, and other suggested material that can be used before and after the activities.

  13. Artificial Icing Test Utility Tactical Transport Aircraft System (UTTAS) Sikorsky YUH-60A Helicopter

    DTIC Science & Technology

    1977-02-01

    The pilot and copilot windshields are electrically anti-iced hr transparent conductors imbedded between the laminations of the windshields. AC... equinment or diversion is necessary. (4) Severe icing: The rate of accumulation is such that deicing/ant -icing equipment fails to reduce or control the

  14. Regular network model for the sea ice-albedo feedback in the Arctic.

    PubMed

    Müller-Stoffels, Marc; Wackerbauer, Renate

    2011-03-01

    The Arctic Ocean and sea ice form a feedback system that plays an important role in the global climate. The complexity of highly parameterized global circulation (climate) models makes it very difficult to assess feedback processes in climate without the concurrent use of simple models where the physics is understood. We introduce a two-dimensional energy-based regular network model to investigate feedback processes in an Arctic ice-ocean layer. The model includes the nonlinear aspect of the ice-water phase transition, a nonlinear diffusive energy transport within a heterogeneous ice-ocean lattice, and spatiotemporal atmospheric and oceanic forcing at the surfaces. First results for a horizontally homogeneous ice-ocean layer show bistability and related hysteresis between perennial ice and perennial open water for varying atmospheric heat influx. Seasonal ice cover exists as a transient phenomenon. We also find that ocean heat fluxes are more efficient than atmospheric heat fluxes to melt Arctic sea ice.

  15. A combined road weather forecast system to prevent road ice formation in the Adige Valley (Italy)

    NASA Astrophysics Data System (ADS)

    Di Napoli, Claudia; Piazza, Andrea; Antonacci, Gianluca; Todeschini, Ilaria; Apolloni, Roberto; Pretto, Ilaria

    2016-04-01

    Road ice is a dangerous meteorological hazard to a nation's transportation system and economy. By reducing the pavement friction with vehicle tyres, ice formation on pavements increases accident risk and delays travelling times thus posing a serious threat to road users' safety and the running of economic activities. Keeping roads clear and open is therefore essential, especially in mountainous areas where ice is likely to form during the winter period. Winter road maintenance helps to restore road efficiency and security, and its benefits are up to 8 times the costs sustained for anti-icing strategies [1]. However, the optimization of maintenance costs and the reduction of the environmental damage from over-salting demand further improvements. These can be achieved by reliable road weather forecasts, and in particular by the prediction of road surface temperatures (RSTs). RST is one of the most important parameters in determining road surface conditions. It is well known from literature that ice forms on pavements in high-humidity conditions when RSTs are below 0°C. We have therefore implemented an automatic forecast system to predict critical RSTs on a test route along the Adige Valley complex terrain, in the Italian Alps. The system considers two physical models, each computing heat and energy fluxes between the road and the atmosphere. One is Reuter's radiative cooling model, which predicts RSTs at sunrise as a function of surface temperatures at sunset and the time passed since then [2]. One is METRo (Model of the Environment and Temperature of Roads), a road weather forecast software which also considers heat conduction through road material [3]. We have applied the forecast system to a network of road weather stations (road weather information system, RWIS) installed on the test route [4]. Road and atmospheric observations from RWIS have been used as initial conditions for both METRo and Reuter's model. In METRo observations have also been coupled to

  16. The online community based decision making support system for mitigating biased decision making

    NASA Astrophysics Data System (ADS)

    Kang, Sunghyun; Seo, Jiwan; Choi, Seungjin; Kim, Junho; Han, Sangyong

    2016-10-01

    As the Internet technology and social media advance, various information and opinions are shared and distributed through the online communities. However, the existence of implicit and explicit bias of opinions may have a potential influence on the outcomes. Compared to the importance of mitigating biased information, the study in this field is relatively young and does not address many important issues. In this paper we propose the noble approach to mitigate the biased opinions using conventional machine learning methods. The proposed method extracts the useful features such as inclination and sentiment of the community members. They are classified based on their previous behavior, and the propensity of the members is understood. This information on each community and its members is very useful and improve the ability to make an unbiased decision. The proposed method presented in this paper is shown to have the ability to assist optimal, fair and good decision making while also reducing the influence of implicit bias.

  17. Transport and transformation of de-icing urea from airport runways in a constructed wetland system.

    PubMed

    Thorén, A K; Legrand, C; Herrmann, J

    2003-01-01

    Urea, NH2-CO-NH2, is used as a de-icing agent at Kalmar Airport, southeast Sweden. During 1998-2001, urea contributed on average 30% of the yearly nitrogen (N) transport of 41,000 kg via Törnebybäcken stream to the coastal zone of the Baltic Sea. In order to reduce stream transport of N from airport, agricultural and other diffuse sources, a wetland was constructed in 1996. Annual wetland retention of total-N varied in the range of 2,500-8,100 kg (6-36% of influent) during 1998-2001, according to mass balances calculated from monthly sampling. During airport de-icing, January-March 2001,660 kg urea-N out of 2,600 kg applied urea-N reached the wetland according to daily sampling. This indicated that 75% of the urea was transformed before entering the wetland. Urea was found to be only a minor part (8%) of total-N in the wetland influent. Calculations of cumulative urea-N loads at the wetland inlet and outlet respectively, showed a significant urea transformation during February 2001 with approximately 40% of the incoming urea-N being transformed in the wetland system. These results show that significant amounts of urea can be transformed in a wetland system at air temperatures around 0 degree C.

  18. Radiolysis of Amino Acids in Outer Solar-System Ice Analogs

    NASA Technical Reports Server (NTRS)

    Gerakines, Perry A.; Hudson, Reggie L.

    2011-01-01

    Amino acids have been found in cometary dust particles and in the organic component of meteorites. These molecules, important for pre-biotic chemistry and for active biological systems, might be formed in cold planetary or interstellar environments and then delivered to H20-rich surfaces in the outer solar system. Many models for the availability of organic species on Earth and elsewhere depend on the ability of these molecules to survive in radiation-rich space environments. This poster presents results of O.8-MeV proton radiolysis of ice films at lS-140K. using infrared spectroscopy, the destruction rates of glycine, alanine, and phenylalanine have been determined for both pure films and those containing amino acids diluted in H2o. our results are discussed in terms of the survivability of these molecules in the icy surfaces present in the outer solar system and the possibility of their detection by instruments on board the New Horizons spacecraft

  19. Numerical modeling and simulation of hot air jet anti-icing system employing channels for enhanced heat transfer

    NASA Astrophysics Data System (ADS)

    Ahmed, Kamran Zaki

    Aircraft icing is a serious concern for the aviation community since it is one of the major causes of fatal aircraft accidents. Aircrafts use different anti-icing systems and one such system is the hot-air anti-icing system, which utilizes hot-air from the engine compressor bleed to heat critical aircraft surfaces and prevent ice formation. Numerous experimental and numerical studies have been performed to increase the efficiency of the hot-air jet based anti-icing systems. Most of the investigations have focused on either orifice design or the impingement region of target surface geometry. Since the impingement surface heat transfer drops off sharply past the stagnation region, investigators have studied the use of multiple jets to enhance surface heat transfer over a larger area. However, use of multiple jets is a further strain on engine resources. One way to conserve engine resources is to use single jet in conjunction with various geometric and physical mechanisms to enhance heat transfer. The current study focuses on enhancing heat transfer using a single jet and a channel. The study investigates the effect of channel's height, inlet location and Reynolds number on heat transfer characteristics in terms of average Nusselt number distribution along the impingement surface. The commercial CFD code, FLUENT, is used to simulate the different cases. Results indicate that the heat transfer depends strongly on height and width of channel, jet-to-target spacing, inlet angle and jet Reynolds number.

  20. Present-day and future Antarctic ice sheet climate and surface mass balance in the Community Earth System Model

    NASA Astrophysics Data System (ADS)

    Lenaerts, Jan T. M.; Vizcaino, Miren; Fyke, Jeremy; van Kampenhout, Leo; van den Broeke, Michiel R.

    2016-09-01

    We present climate and surface mass balance (SMB) of the Antarctic ice sheet (AIS) as simulated by the global, coupled ocean-atmosphere-land Community Earth System Model (CESM) with a horizontal resolution of {˜ }1° in the past, present and future (1850-2100). CESM correctly simulates present-day Antarctic sea ice extent, large-scale atmospheric circulation and near-surface climate, but fails to simulate the recent expansion of Antarctic sea ice. The present-day Antarctic ice sheet SMB equals 2280 ± 131 {Gt year^{-1}}, which concurs with existing independent estimates of AIS SMB. When forced by two CMIP5 climate change scenarios (high mitigation scenario RCP2.6 and high-emission scenario RCP8.5), CESM projects an increase of Antarctic ice sheet SMB of about 70 {Gt year^{-1}} per degree warming. This increase is driven by enhanced snowfall, which is partially counteracted by more surface melt and runoff along the ice sheet's edges. This intensifying hydrological cycle is predominantly driven by atmospheric warming, which increases (1) the moisture-carrying capacity of the atmosphere, (2) oceanic source region evaporation, and (3) summer AIS cloud liquid water content.

  1. Ikaite crystal distribution in Arctic winter sea ice and implications for CO2 system dynamics

    NASA Astrophysics Data System (ADS)

    Rysgaard, S.; Søgaard, D. H.; Cooper, M.; Pućko, M.; Lennert, K.; Papakyriakou, T. N.; Wang, F.; Geilfus, N. X.; Glud, R. N.; Ehn, J.; McGinnnis, D. F.; Attard, K.; Sievers, J.; Deming, J. W.; Barber, D.

    2012-12-01

    The precipitation of ikaite (CaCO3·6H2O) in polar sea ice is critical to the efficiency of the sea ice-driven carbon pump and potentially important to the global carbon cycle, yet the spatial and temporal occurrence of ikaite within the ice is poorly known. We report unique observations of ikaite in unmelted ice and vertical profiles of ikaite abundance and concentration in sea ice for the crucial season of winter. Ice was examined from two locations: a 1 m thick land-fast ice site and a 0.3 m thick polynya site, both in the Young Sound area (74° N, 20° W) of NE Greenland. Ikaite crystals, ranging in size from a few µm to 700 µm were observed to concentrate in the interstices between the ice platelets in both granular and columnar sea ice. In vertical sea-ice profiles from both locations, ikaite concentration determined from image analysis, decreased with depth from surfaceice values of 700-900 µmol kg-1 ice (~ 25 × 106 crystals kg-1) to bottom-layer values of 100-200 µmol kg-1 ice (1-7 × 106 kg-1), all of which are much higher (4-10 times) than those reported in the few previous studies. Direct measurements of total alkalinity (TA) in surface layers fell within the same range as ikaite concentration whereas TA concentrations in bottom layers were twice as high. This depth-related discrepancy suggests interior ice processes where ikaite crystals form in surface sea ice layers and partly dissolved in bottom layers. From these findings and model calculations we relate sea ice formation and melt to observed pCO2 conditions in polar surface waters, and hence, the air-sea CO2 flux.

  2. 14 CFR 25.1419 - Ice protection.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... equivalent, must be provided to alert the flightcrew when the anti-ice or de-ice system is not functioning... ice protection system; or (3) Identification of conditions conducive to airframe icing as defined by... applicant seeks certification for flight in icing conditions, the airplane must be able to safely operate...

  3. 14 CFR 25.1419 - Ice protection.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... equivalent, must be provided to alert the flightcrew when the anti-ice or de-ice system is not functioning... ice protection system; or (3) Identification of conditions conducive to airframe icing as defined by... applicant seeks certification for flight in icing conditions, the airplane must be able to safely operate...

  4. 14 CFR 25.1419 - Ice protection.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... equivalent, must be provided to alert the flightcrew when the anti-ice or de-ice system is not functioning... ice protection system; or (3) Identification of conditions conducive to airframe icing as defined by... applicant seeks certification for flight in icing conditions, the airplane must be able to safely operate...

  5. 14 CFR 25.1419 - Ice protection.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... equivalent, must be provided to alert the flightcrew when the anti-ice or de-ice system is not functioning... ice protection system; or (3) Identification of conditions conducive to airframe icing as defined by... applicant seeks certification for flight in icing conditions, the airplane must be able to safely operate...

  6. 14 CFR 25.1419 - Ice protection.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... equivalent, must be provided to alert the flightcrew when the anti-ice or de-ice system is not functioning... ice protection system; or (3) Identification of conditions conducive to airframe icing as defined by... applicant seeks certification for flight in icing conditions, the airplane must be able to safely operate...

  7. Space Launch System Complex Decision-Making Process

    NASA Technical Reports Server (NTRS)

    Lyles, Garry; Flores, Tim; Hundley, Jason; Monk, Timothy; Feldman,Stuart

    2012-01-01

    The Space Shuttle program has ended and elements of the Constellation Program have either been cancelled or transitioned to new NASA exploration endeavors. The National Aeronautics and Space Administration (NASA) has worked diligently to select an optimum configuration for the Space Launch System (SLS), a heavy lift vehicle that will provide the foundation for future beyond low earth orbit (LEO) large-scale missions for the next several decades. From Fall 2010 until Spring 2011, an SLS decision-making framework was formulated, tested, fully documented, and applied to multiple SLS vehicle concepts at NASA from previous exploration architecture studies. This was a multistep process that involved performing figure of merit (FOM)-based assessments, creating Pass/Fail gates based on draft threshold requirements, performing a margin-based assessment with supporting statistical analyses, and performing sensitivity analysis on each. This paper focuses on the various steps and methods of this process (rather than specific data) that allowed for competing concepts to be compared across a variety of launch vehicle metrics in support of the successful completion of the SLS Mission Concept Review (MCR) milestone.

  8. Determining ice water content from 2D crystal images in convective cloud systems

    NASA Astrophysics Data System (ADS)

    Leroy, Delphine; Coutris, Pierre; Fontaine, Emmanuel; Schwarzenboeck, Alfons; Strapp, J. Walter

    2016-04-01

    Cloud microphysical in-situ instrumentation measures bulk parameters like total water content (TWC) and/or derives particle size distributions (PSD) (utilizing optical spectrometers and optical array probes (OAP)). The goal of this work is to introduce a comprehensive methodology to compute TWC from OAP measurements, based on the dataset collected during recent HAIC (High Altitude Ice Crystals)/HIWC (High Ice Water Content) field campaigns. Indeed, the HAIC/HIWC field campaigns in Darwin (2014) and Cayenne (2015) provide a unique opportunity to explore the complex relationship between cloud particle mass and size in ice crystal environments. Numerous mesoscale convective systems (MCSs) were sampled with the French Falcon 20 research aircraft at different temperature levels from -10°C up to 50°C. The aircraft instrumentation included an IKP-2 (isokinetic probe) to get reliable measurements of TWC and the optical array probes 2D-S and PIP recording images over the entire ice crystal size range. Based on the known principle relating crystal mass and size with a power law (m=α•Dβ), Fontaine et al. (2014) performed extended 3D crystal simulations and thereby demonstrated that it is possible to estimate the value of the exponent β from OAP data, by analyzing the surface-size relationship for the 2D images as a function of time. Leroy et al. (2015) proposed an extended version of this method that produces estimates of β from the analysis of both the surface-size and perimeter-size relationships. Knowing the value of β, α then is deduced from the simultaneous IKP-2 TWC measurements for the entire HAIC/HIWC dataset. The statistical analysis of α and β values for the HAIC/HIWC dataset firstly shows that α is closely linked to β and that this link changes with temperature. From these trends, a generalized parameterization for α is proposed. Finally, the comparison with the initial IKP-2 measurements demonstrates that the method is able to predict TWC values

  9. The NASA aircraft icing research program

    NASA Technical Reports Server (NTRS)

    Shaw, Robert J.; Reinmann, John J.

    1990-01-01

    The objective of the NASA aircraft icing research program is to develop and make available to industry icing technology to support the needs and requirements for all-weather aircraft designs. Research is being done for both fixed wing and rotary wing applications. The NASA program emphasizes technology development in two areas, advanced ice protection concepts and icing simulation. Reviewed here are the computer code development/validation, icing wind tunnel testing, and icing flight testing efforts.

  10. Reducing uncertainty in high-resolution sea ice models.

    SciTech Connect

    Peterson, Kara J.; Bochev, Pavel Blagoveston

    2013-07-01

    Arctic sea ice is an important component of the global climate system, reflecting a significant amount of solar radiation, insulating the ocean from the atmosphere and influencing ocean circulation by modifying the salinity of the upper ocean. The thickness and extent of Arctic sea ice have shown a significant decline in recent decades with implications for global climate as well as regional geopolitics. Increasing interest in exploration as well as climate feedback effects make predictive mathematical modeling of sea ice a task of tremendous practical import. Satellite data obtained over the last few decades have provided a wealth of information on sea ice motion and deformation. The data clearly show that ice deformation is focused along narrow linear features and this type of deformation is not well-represented in existing models. To improve sea ice dynamics we have incorporated an anisotropic rheology into the Los Alamos National Laboratory global sea ice model, CICE. Sensitivity analyses were performed using the Design Analysis Kit for Optimization and Terascale Applications (DAKOTA) to determine the impact of material parameters on sea ice response functions. Two material strength parameters that exhibited the most significant impact on responses were further analyzed to evaluate their influence on quantitative comparisons between model output and data. The sensitivity analysis along with ten year model runs indicate that while the anisotropic rheology provides some benefit in velocity predictions, additional improvements are required to make this material model a viable alternative for global sea ice simulations.

  11. MUSE - Mission to the Uranian system: Unveiling the evolution and formation of ice giants

    NASA Astrophysics Data System (ADS)

    Bocanegra-Bahamón, Tatiana; Bracken, Colm; Costa Sitjà, Marc; Dirkx, Dominic; Gerth, Ingo; Konstantinidis, Kostas; Labrianidis, Christos; Laneuville, Matthieu; Luntzer, Armin; MacArthur, Jane L.; Maier, Andrea; Morschhauser, Achim; Nordheim, Tom A.; Sallantin, Renaud; Tlustos, Reinhard

    2015-05-01

    The planet Uranus, one of the two ice giants in the Solar System, has only been visited once by the Voyager 2 spacecraft in 1986. Ice giants represent a fundamental class of planets, and many known exoplanets fall within this category. Therefore, a dedicated mission to an ice giant is crucial to improve the understanding of the formation, evolution and current characteristics of such planets in order to extend the knowledge of both the Solar System and exoplanetary systems. In the study at hand, the rationale, selection, and conceptual design for a mission to investigate the Uranian system, as an archetype for ice giants, is presented. A structured analysis of science questions relating to the Uranian system is performed, categorized by the themes atmosphere, interior, moons and rings, and magnetosphere. In each theme, science questions are defined, with their relative importance in the theme quantified. Additionally, top-level weights for each theme are defined, with atmosphere and interior weighted the strongest, as they are more related to both exoplanetary systems and the Uranian system, than the other two themes (which are more specific for the planet itself). Several top level mission architecture aspects have been defined, from which the most promising concepts were generated using heuristic methods. A trade-off analysis of these concepts is presented, separately, for engineering aspects, such as cost, complexity, and risk, and for science aspects. The science score for each mission is generated from the capability of each mission concept to answer the science questions. The trade-off results in terms of relative science and engineering weight are presented, and competitive mission concepts are analyzed based on the preferred mission type. A mission design point for a typical flagship science mission is selected from the trade space. It consists of a Uranus orbiter with a dry mass of 2073 kg including 402 kg of payload and a Uranus entry probe, which is to

  12. Stacking disorder in ice I.

    PubMed

    Malkin, Tamsin L; Murray, Benjamin J; Salzmann, Christoph G; Molinero, Valeria; Pickering, Steven J; Whale, Thomas F

    2015-01-07

    Traditionally, ice I was considered to exist in two well-defined crystalline forms at ambient pressure: stable hexagonal ice (ice Ih) and metastable cubic ice (ice Ic). However, it is becoming increasingly evident that what has been called cubic ice in the past does not have a structure consistent with the cubic crystal system. Instead, it is a stacking-disordered material containing cubic sequences interlaced with hexagonal sequences, which is termed stacking-disordered ice (ice Isd). In this article, we summarise previous work on ice with stacking disorder including ice that was called cubic ice in the past. We also present new experimental data which shows that ice which crystallises after heterogeneous nucleation in water droplets containing solid inclusions also contains stacking disorder even at freezing temperatures of around -15 °C. This supports the results from molecular simulations, that the structure of ice that crystallises initially from supercooled water is always stacking-disordered and that this metastable ice can transform to the stable hexagonal phase subject to the kinetics of recrystallization. We also show that stacking disorder in ice which forms from water droplets is quantitatively distinct from ice made via other routes. The emerging picture of ice I is that of a very complex material which frequently contains stacking disorder and this stacking disorder can vary in complexity depending on the route of formation and thermal history.

  13. EOS Aqua AMSR-E Arctic Sea Ice Validation Program: Arctic2003 Aircraft Campaign Flight Report

    NASA Technical Reports Server (NTRS)

    Cavalieri, D. J.; Markus,T.

    2003-01-01

    In March 2003 a coordinated Arctic sea ice validation field campaign using the NASA Wallops P-3B aircraft was successfully completed. This campaign was part of the program for validating the Earth Observing System (EOS) Aqua Advanced Microwave Scanning Radiometer (AMSR-E) sea ice products. The AMSR-E, designed and built by the Japanese National Space Development Agency for NASA, was launched May 4, 2002 on the EOS Aqua spacecraft. The AMSR-E sea ice products to be validated include sea ice concentration, sea ice temperature, and snow depth on sea ice. This flight report describes the suite of instruments flown on the P-3, the objectives of each of the seven flights, the Arctic regions overflown, and the coordination among satellite, aircraft, and surface-based measurements. Two of the seven aircraft flights were coordinated with scientists making surface measurements of snow and ice properties including sea ice temperature and snow depth on sea ice at a study area near Barrow, AK and at a Navy ice camp located in the Beaufort Sea. Two additional flights were dedicated to making heat and moisture flux measurements over the St. Lawrence Island polynya to support ongoing air-sea-ice processes studies of Arctic coastal polynyas. The remaining flights covered portions of the Bering Sea ice edge, the Chukchi Sea, and Norton Sound.

  14. Weather Support to Deicing Decision Making (WSDDM): A Winter Weather Nowcasting System.

    NASA Astrophysics Data System (ADS)

    Rasmussen, Roy; Dixon, Mike; Hage, Frank; Cole, Jeff; Wade, Chuck; Tuttle, John; McGettigan, Starr; Carty, Thomas; Stevenson, Lloyd; Fellner, Warren; Knight, Shelly; Karplus, Eli; Rehak, Nancy

    2001-04-01

    This paper describes a winter weather nowcasting system called Weather Support to Deicing Decision Making (WSDDM), designed to provide airline, airport, and air traffic users with winter weather information relevant to their operations. The information is provided on an easy to use graphical display and characterizes airport icing conditions for nonmeteorologists. The system has been developed and refined over a series of winter-long airport demonstrations at Denver's Stapleton International Airport, Chicago's O'Hare International Airport, and New York's LaGuardia Airport. The WSDDM system utilizes commercially available weather information in the form of Next Generation Weather Radar WSR-88D radar reflectivity data depicted as color coded images on a window of the display and Aviation Routine Weather Report (METAR) surface weather reports from Automated Surface Observating System stations and observers. METAR information includes wind speed and direction, air temperature, and precipitation type/rate, which are routinely updated on an hourly basis or more frequently if conditions are changing. Recent studies have shown that the liquid equivalent snowfall rate is the most important factor in determining the holdover time of a deicing fluid. However, the current operational snowfall intensity reported in METARs is based on visibility, which has been shown to give misleading information on liquid equivalent rates in many cases due to the wide variation in density and shape of snow. The particular hazard has been identified as high visibility-high snowfall conditions. The WSDDM system addresses this potentially hazardous condition through the deployment of snow gauges at an airport. These snow gauges report real-time estimates of the liquid equivalent snowfall rate once every minute to WSDDM users. The WSDDM system also provides 30-min nowcasts of liquid equivalent snowfall rate through the use of a real-time calibration of radar reflectivity and snow gauge snowfall

  15. Arctic ice management

    NASA Astrophysics Data System (ADS)

    Desch, Steven J.; Smith, Nathan; Groppi, Christopher; Vargas, Perry; Jackson, Rebecca; Kalyaan, Anusha; Nguyen, Peter; Probst, Luke; Rubin, Mark E.; Singleton, Heather; Spacek, Alexander; Truitt, Amanda; Zaw, Pye Pye; Hartnett, Hilairy E.

    2017-01-01

    As the Earth's climate has changed, Arctic sea ice extent has decreased drastically. It is likely that the late-summer Arctic will be ice-free as soon as the 2030s. This loss of sea ice represents one of the most severe positive feedbacks in the climate system, as sunlight that would otherwise be reflected by sea ice is absorbed by open ocean. It is unlikely that CO2 levels and mean temperatures can be decreased in time to prevent this loss, so restoring sea ice artificially is an imperative. Here we investigate a means for enhancing Arctic sea ice production by using wind power during the Arctic winter to pump water to the surface, where it will freeze more rapidly. We show that where appropriate devices are employed, it is possible to increase ice thickness above natural levels, by about 1 m over the course of the winter. We examine the effects this has in the Arctic climate, concluding that deployment over 10% of the Arctic, especially where ice survival is marginal, could more than reverse current trends of ice loss in the Arctic, using existing industrial capacity. We propose that winter ice thickening by wind-powered pumps be considered and assessed as part of a multipronged strategy for restoring sea ice and arresting the strongest feedbacks in the climate system.

  16. Impact-driven ice loss in outer Solar System satellites: Consequences for the Late Heavy Bombardment

    NASA Astrophysics Data System (ADS)

    Nimmo, F.; Korycansky, D. G.

    2012-05-01

    We use recent hydrodynamical results (Kraus, R.G., Senft, L.G., Stewart, S.S. [2011]. Icarus, 214, 724-738) for the production of water vapor by hypervelocity impacts on ice targets to assess which present-day major satellites of Jupiter, Saturn, and Uranus would have lost mass due to impact vaporization during an era of massive bombardment similar to the Late Heavy Bombardment in the inner Solar System. Using impactor populations suggested by recent work (Charnoz, S., Morbidelli, A., Dones, L., Salmon, J. [2009]. Icarus, 199, 413-428; Barr, A.C., Canup, R.M. [2010]. Nat. Geosci., 3, 164-167), we find that several satellites would have lost all their HO; we suggest that the most likely resolution of this paradox is that either the LHB delivered ≈10 times less mass to the outer Solar System than predicted by the standard Nice Model, or that the inner satellites formed after the LHB.

  17. Isolation and characterization of marine psychrophilic phage-host systems from Arctic sea ice.

    PubMed

    Borriss, Michael; Helmke, Elisabeth; Hanschke, Renate; Schweder, Thomas

    2003-10-01

    Phage-host systems from extreme cold environments have rarely been surveyed. This study is concerned with the isolation and characterization of three different phage-host systems from Arctic sea ice and melt pond samples collected north-west of Svalbard (Arctic). On the basis of 16S rDNA sequences, the three bacterial phage hosts exhibited the greatest similarity to the species Shewanella frigidimarina (96.0%), Flavobacterium hibernum (94.0%), and Colwellia psychrerythraea (98.4%), respectively. The host bacteria are psychrophilic with good growth at 0 degrees C, resulting in a rapid formation of visible colonies at this temperature. The phages showed an even more pronounced adaptation to cold temperatures than the bacteria, with growth maxima below 14 degrees C and good plaque formation at 0 degrees C. Transmission electron microscopy (TEM) examinations revealed that the bacteriophages belonged to the tailed, double-stranded DNA phage families Siphoviridae and Myoviridae. All three phages were host-specific.

  18. Modeling of Highly Instrumented Honeywell Turbofan Engine Tested with Ice Crystal Ingestion in the NASA Propulsion System Laboratory

    NASA Technical Reports Server (NTRS)

    Veres, Joseph P.; Jorgenson, Philip C. E.; Jones, Scott M.

    2016-01-01

    The Propulsion Systems Laboratory (PSL), an altitude test facility at NASA Glenn Research Center, has been used to test a highly instrumented turbine engine at simulated altitude operating conditions. This is a continuation of the PSL testing that successfully duplicated the icing events that were experienced in a previous engine (serial LF01) during flight through ice crystal clouds, which was the first turbofan engine tested in PSL. This second model of the ALF502R-5A serial number LF11 is a highly instrumented version of the previous engine. The PSL facility provides a continuous cloud of ice crystals with controlled characteristics of size and concentration, which are ingested by the engine during operation at simulated altitudes. Several of the previous operating points tested in the LF01 engine were duplicated to confirm repeatability in LF11. The instrumentation included video cameras to visually illustrate the accretion of ice in the low pressure compressor (LPC) exit guide vane region in order to confirm the ice accretion, which was suspected during the testing of the LF01. Traditional instrumentation included static pressure taps in the low pressure compressor inner and outer flow path walls, as well as total pressure and temperature rakes in the low pressure compressor region. The test data was utilized to determine the losses and blockages due to accretion in the exit guide vane region of the LPC. Multiple data points were analyzed with the Honeywell Customer Deck. A full engine roll back point was modeled with the Numerical Propulsion System Simulation (NPSS) code. The mean line compressor flow analysis code with ice crystal modeling was utilized to estimate the parameters that indicate the risk of accretion, as well as to estimate the degree of blockage and losses caused by accretion during a full engine roll back point. The analysis provided additional validation of the icing risk parameters within the LPC, as well as the creation of models for

  19. Implications of Contingency Planning Support for Weather and Icing Information

    NASA Technical Reports Server (NTRS)

    Vigeant-Langlois, Laurence; Hansman, R. John, Jr.

    2003-01-01

    A human-centered systems analysis was applied to the adverse aircraft weather encounter problem in order to identify desirable functions of weather and icing information. The importance of contingency planning was identified as emerging from a system safety design methodology as well as from results of other aviation decision-making studies. The relationship between contingency planning support and information on regions clear of adverse weather was investigated in a scenario- based analysis. A rapid prototype example of the key elements in the depiction of icing conditions was developed in a case study, and the implications for the components of the icing information system were articulated.

  20. Application of new GPS aircraft control/display system to topographic mapping of the Greenland ice cap

    NASA Technical Reports Server (NTRS)

    Wright, C. W.

    1992-01-01

    A new PC-based GPS flight management display system (GFMS) was developed for Greenland ice cap mapping during the NASA Greenland Ice Sheet mapping experiment, when a total of nine flights were made over four different flight tracks, of which two coincided with ground tracks of the ERS altimeter satellite. In this system, the GFMS inputs the GPS position data to a PC, which generates aircraft automatic pilot steering commands and a cockpit display. The display includes (1) the course deviation indicators for cross-track error and altitude, (2) the flight plan and waypoint map overlay oriented to the aircraft, and (3) various other mission-pertinent numerical data.

  1. Decision making support system for emergency shutdown of gas lifeline system

    SciTech Connect

    Takada, Shiro; Fukui, Shinji

    1995-12-31

    Quick recovery of the lifeline function and serviceability after big earthquakes is very important to avoid a secondary disaster. Emergency shutdown of the lifeline systems is a possible way for this purpose. The present paper proposes a computer aided decision making system for a proper timing of an emergency shutdown. The AHP (Analytical Hierarchy Process) method has been employed to consider relative evaluation of the various factors associated with the decision making. The proposed method is useful especially for an emergency shutdown of the gas supply system which would cause severe effects due to the shutdown.

  2. Ikaite crystal distribution in winter sea ice and implications for CO2 system dynamics

    NASA Astrophysics Data System (ADS)

    Rysgaard, S.; Søgaard, D. H.; Cooper, M.; Pućko, M.; Lennert, K.; Papakyriakou, T. N.; Wang, F.; Geilfus, N. X.; Glud, R. N.; Ehn, J.; McGinnis, D. F.; Attard, K.; Sievers, J.; Deming, J. W.; Barber, D.

    2013-04-01

    The precipitation of ikaite (CaCO3 ⋅ 6H2O) in polar sea ice is critical to the efficiency of the sea ice-driven carbon pump and potentially important to the global carbon cycle, yet the spatial and temporal occurrence of ikaite within the ice is poorly known. We report unique observations of ikaite in unmelted ice and vertical profiles of ikaite abundance and concentration in sea ice for the crucial season of winter. Ice was examined from two locations: a 1 m thick land-fast ice site and a 0.3 m thick polynya site, both in the Young Sound area (74° N, 20° W) of NE Greenland. Ikaite crystals, ranging in size from a few μm to 700 μm, were observed to concentrate in the interstices between the ice platelets in both granular and columnar sea ice. In vertical sea ice profiles from both locations, ikaite concentration determined from image analysis, decreased with depth from surface-ice values of 700-900 μmol kg-1 ice (~25 × 106 crystals kg-1) to values of 100-200 μmol kg-1 ice (1-7 × 106 crystals kg-1) near the sea ice-water interface, all of which are much higher (4-10 times) than those reported in the few previous studies. Direct measurements of total alkalinity (TA) in surface layers fell within the same range as ikaite concentration, whereas TA concentrations in the lower half of the sea ice were twice as high. This depth-related discrepancy suggests interior ice processes where ikaite crystals form in surface sea ice layers and partly dissolve in layers below. Melting of sea ice and dissolution of observed concentrations of ikaite would result in meltwater with a pCO2 of <15 μatm. This value is far below atmospheric values of 390 μatm and surface water concentrations of 315 μatm. Hence, the meltwater increases the potential for seawater uptake of CO2.

  3. Massively parallel molecular-dynamics simulation of ice crystallisation and melting: the roles of system size, ensemble, and electrostatics.

    PubMed

    English, Niall J

    2014-12-21

    Ice crystallisation and melting was studied via massively parallel molecular dynamics under periodic boundary conditions, using approximately spherical ice nano-particles (both "isolated" and as a series of heterogeneous "seeds") of varying size, surrounded by liquid water and at a variety of temperatures. These studies were performed for a series of systems ranging in size from ∼1 × 10(6) to 8.6 × 10(6) molecules, in order to establish system-size effects upon the nano-clusters" crystallisation and dissociation kinetics. Both "traditional" four-site and "single-site" and water models were used, with and without formal point charges, dipoles, and electrostatics, respectively. Simulations were carried out in the microcanonical and isothermal-isobaric ensembles, to assess the influence of "artificial" thermo- and baro-statting, and important disparities were observed, which declined upon using larger systems. It was found that there was a dependence upon system size for both ice growth and dissociation, in that larger systems favoured slower growth and more rapid melting, given the lower extent of "communication" of ice nano-crystallites with their periodic replicae in neighbouring boxes. Although the single-site model exhibited less variation with system size vis-à-vis the multiple-site representation with explicit electrostatics, its crystallisation-dissociation kinetics was artificially fast.

  4. Massively parallel molecular-dynamics simulation of ice crystallisation and melting: The roles of system size, ensemble, and electrostatics

    NASA Astrophysics Data System (ADS)

    English, Niall J.

    2014-12-01

    Ice crystallisation and melting was studied via massively parallel molecular dynamics under periodic boundary conditions, using approximately spherical ice nano-particles (both "isolated" and as a series of heterogeneous "seeds") of varying size, surrounded by liquid water and at a variety of temperatures. These studies were performed for a series of systems ranging in size from ˜1 × 106 to 8.6 × 106 molecules, in order to establish system-size effects upon the nano-clusters" crystallisation and dissociation kinetics. Both "traditional" four-site and "single-site" and water models were used, with and without formal point charges, dipoles, and electrostatics, respectively. Simulations were carried out in the microcanonical and isothermal-isobaric ensembles, to assess the influence of "artificial" thermo- and baro-statting, and important disparities were observed, which declined upon using larger systems. It was found that there was a dependence upon system size for both ice growth and dissociation, in that larger systems favoured slower growth and more rapid melting, given the lower extent of "communication" of ice nano-crystallites with their periodic replicae in neighbouring boxes. Although the single-site model exhibited less variation with system size vis-à-vis the multiple-site representation with explicit electrostatics, its crystallisation-dissociation kinetics was artificially fast.

  5. The TetR-Type MfsR Protein of the Integrative and Conjugative Element (ICE) ICEclc Controls both a Putative Efflux System and Initiation of ICE Transfer

    PubMed Central

    Pradervand, Nicolas; Delavat, François; Sulser, Sandra; Miyazaki, Ryo

    2014-01-01

    Integrative and conjugating elements (ICE) are self-transferable DNAs widely present in bacterial genomes, which often carry a variety of auxiliary genes of potential adaptive benefit. One of the model ICE is ICEclc, an element originally found in Pseudomonas knackmussii B13 and known for its propensity to provide its host with the capacity to metabolize chlorocatechols and 2-aminophenol. In this work, we studied the mechanism and target of regulation of MfsR, a TetR-type repressor previously found to exert global control on ICEclc horizontal transfer. By using a combination of ICEclc mutant and transcriptome analysis, gene reporter fusions, and DNA binding assays, we found that MfsR is a repressor of both its own expression and that of a gene cluster putatively coding for a major facilitator superfamily efflux system on ICEclc (named mfsABC). Phylogenetic analysis suggests that mfsR was originally located immediately adjacent to the efflux pump genes but became displaced from its original cis target DNA by a gene insertion. This resulted in divergence of the original bidirectional promoters into two separated individual regulatory units. Deletion of mfsABC did not result in a strong phenotype, and despite screening a large number of compounds and conditions, we were unable to define the precise current function or target of the putative efflux pump. Our data reconstruct how the separation of an ancestor mfsR-mfsABC system led to global control of ICEclc transfer by MfsR. PMID:25182498

  6. Extratropical Weather Systems on Mars: Radiatively-Active Water Ice Effects

    NASA Technical Reports Server (NTRS)

    Hollingsworth, J. L.; Kahre, M. A.; Haberle, R. M.; Urata, R. A.; Montmessin, F.

    2017-01-01

    Extratropical, large-scale weather disturbances, namely transient, synoptic-period,baroclinic barotropic eddies - or - low- (high-) pressure cyclones (anticyclones), are components fundamental to global circulation patterns for rapidly rotating, differentially heated, shallow atmospheres such as Earth and Mars. Such "wave-like" disturbances that arise via (geophysical) fluid shear instability develop, mature and decay, and travel west-to-east in the middle and high latitudes within terrestrial-like planetary atmospheres. These disturbances serve as critical agents in the transport of heat and momentum between low and high latitudes of the planet. Moreover, they transport trace species within the atmosphere (e.g., water vapor/ice, other aerosols (dust), chemical species, etc). Between early autumn through early spring, middle and high latitudes on Mars exhibit strong equator-to-pole mean temperature contrasts (i.e., "baroclinicity"). Data collected during the Viking era and observations from both the Mars Global Surveyor (MGS) and Mars Reconnaissance Orbiter (MRO) indicate that such strong baroclinicity supports vigorous, large-scale eastward traveling weather systems [Banfield et al., 2004; Barnes et al., 1993]. A good example of traveling weather systems, frontal wave activity and sequestered dust activity from MGS/MOC image analyses is provided in Figure 1 (cf. Wang et al. [2005]). Utilizing an upgraded and evolving version of the NASA Ames Research Center (ARC) Mars global climate model, investigated here are key dynamical and physical aspects of simulated northern hemisphere (NH) large-scale extratropica lweather systems,with and without radiatively-active water ice clouds. Mars Climate Model:

  7. Sea ice deformation and the ice thickness distribution: How novel observations can help to improve models

    NASA Astrophysics Data System (ADS)

    Martin, T.

    2012-12-01

    variable ITD and redistribution by ridging on the Arctic climate system. For example, the total Arctic sea ice volume is increased by 16% in winter and more than 20% in summer, on average the ice is ~0.5 m thicker, which benefits multi-year ice, but the ice concentration is reduced. The latter causes a reduced surface albedo, increased oceanic heat loss/gain in winter/summer, and higher surface air temperatures by 1-2 °C on average. The warmer air temperatures also affect adjacent land areas. However, the parameters applied to the ridging model are not well constrained by observations. To further the understanding of ice thickness redistribution by ridging process oriented field studies that record all involved forces are necessary. An example of a deformation event in the Baltic Sea is given, which was well covered by air-borne ice thickness and surface roughness measurements complemented by ice motion and wind observations. It is the combination of several instruments that yield the full picture and make this data set valuable with respect to model improvements.

  8. Subaqueous ice-contact fans: Depositional systems characterised by highly aggradational supercritical flow conditions

    NASA Astrophysics Data System (ADS)

    Lang, Joerg; Winsemann, Jutta

    2015-04-01

    Subaqueous ice-contact fans are deposited by high-energy plane-wall jets from subglacial conduits into standing water bodies. Highly aggradational conditions during flow expansion and deceleration allow for the preservation of bedforms related to supercritical flows, which are commonly considered rare in the depositional record. We present field examples from gravelly and sandy subaqueous ice-contact fan successions, which indicate that deposition by supercritical flows might be considered as a characteristic feature of these depositional systems. The studied successions were deposited in deep ice-dammed lakes, which formed along the margins of the Middle Pleistocene Scandinavian ice sheets across Northern Germany. The gravel-rich subaqueous fan deposits are dominated by large scour-fills (up to 25 m wide and 3 m) deep and deposits of turbulent hyperconcentrated flows, which are partly attributed to supercritical flow conditions (Winsemann et al., 2009). Scours (up to 4.5 m wide and 0.9 m deep) infilled by gravelly backsets are observed above laterally extensive erosional surfaces and are interpreted as deposits of cyclic steps. Laterally discontinuous beds of low-angle cross-stratified gravel are interpreted as antidune deposits. Downflow and up-section the gravel-rich deposits pass into sand-rich successions, which include deposits of chutes-and-pools, breaking antidunes, stationary antidunes and humpback dunes (Lang and Winsemann, 2013). Deposits of chutes-and-pools and breaking antidunes are characterised by scour-fills (up to 4 m wide and 1.2 m deep) comprising backsets or gently dipping sigmoidal foresets. Stationary antidune deposits consist of laterally extensive sinusoidal waveforms with long wavelengths (1-12 m) and low amplitudes (0.1-0.5 m), which formed under quasi-steady flows at the lower limit of the supercritical flow stage and high rates of sedimentation. Humpback dunes are characterised by divergent sigmoidal foresets and are interpreted as

  9. Ice pack heat sink subsystem, phase 2. [astronaut life support cooling system

    NASA Technical Reports Server (NTRS)

    Roebelen, G. J., Jr.; Kellner, J. D.

    1975-01-01

    The report describes the design, development, fabrication, and test at one gravity of a prototype ice pack heat sink subsystem to be used eventually for astronaut cooling during manned space missions; the investigation of thermal storage material with the objective of uncovering materials with heats of fusion and/or solution in the range of 300 Btu/lb (700 kilojoules/kilogram); and the planned procedure for implementing an ice pack heat sink subsystem flight experiment. In normal use, excess heat in the liquid cooling garment (LCG) coolant is transferred to a reusable/regenerable ice pack heat sink. For emergency operation, or for extension of extravehicular activity mission time after all the ice has melted, water from the ice pack is boiled to vacuum, thereby continuing to remove heat from the LCG coolant. This subsystem incorporates a quick disconnect thermal interface between the ice pack heat sink and the subsystem heat exchanger.

  10. Arctic Sea ice model sensitivities.

    SciTech Connect

    Peterson, Kara J.; Bochev, Pavel Blagoveston; Paskaleva, Biliana Stefanova

    2010-12-01

    Arctic sea ice is an important component of the global climate system and, due to feedback effects, the Arctic ice cover is changing rapidly. Predictive mathematical models are of paramount importance for accurate estimates of the future ice trajectory. However, the sea ice components of Global Climate Models (GCMs) vary significantly in their prediction of the future state of Arctic sea ice and have generally underestimated the rate of decline in minimum sea ice extent seen over the past thirty years. One of the contributing factors to this variability is the sensitivity of the sea ice state to internal model parameters. A new sea ice model that holds some promise for improving sea ice predictions incorporates an anisotropic elastic-decohesive rheology and dynamics solved using the material-point method (MPM), which combines Lagrangian particles for advection with a background grid for gradient computations. We evaluate the variability of this MPM sea ice code and compare it with the Los Alamos National Laboratory CICE code for a single year simulation of the Arctic basin using consistent ocean and atmospheric forcing. Sensitivities of ice volume, ice area, ice extent, root mean square (RMS) ice speed, central Arctic ice thickness,and central Arctic ice speed with respect to ten different dynamic and thermodynamic parameters are evaluated both individually and in combination using the Design Analysis Kit for Optimization and Terascale Applications (DAKOTA). We find similar responses for the two codes and some interesting seasonal variability in the strength of the parameters on the solution.

  11. Digging up ice-rocks: clues to our origin frozen in the outer Solar System

    NASA Astrophysics Data System (ADS)

    Pinilla-Alonso, Noemi; Emery, Joshua P.; Stansberry, John A.

    2016-10-01

    As of 2016, almost 2000 trans-Neptunian objects (TNOs) and Centaurs have been discovered, and this is only a small fraction of the estimated total population. These ice-rocks are the relics of the formation of the Solar System and keep deep in their frozen interior the code to decipher the first stages of its formation. However, after more than 20 years of studies from ground- and space-based telescopes, we are not able, as yet, to unravel the conditions in the outer nebula into a clear picture of the chemical, dynamical, and thermal history of the outer Solar System.The big picture of this region shows the trans-Neptunian belt as a population of icy objects, covered by a mixture of water ice, silicates and complex organics, with varied sizes (9 to 2400 km) and albedos (4 to 96%). In some particular cases the presence of volatiles (CO, N2) or other ices (CH3OH) has also been detected. Two space-based observatories have made exceptional contributions to our understanding of the physical nature of TNOs: Spitzer Space Telescope and the Herschel Space Telescope. Spitzer, detected for the first time thermal radiation from TNOs, and together with Herschel provided constraints on the sizes, albedos, and thermal properties of over 100 of them. Moreover, IRAC/Spitzer data combined with existing observations at wavelengths < 2.5μm, and with the thermal properties addressed by Herschel and Spitzer, have proven to be a treasure trove that provides unprecedented insights into the surface composition of TNOs.In the near future, James Webb Space Telescope (JWST, to be launched in 2018) will succeed the Hubble Space Telescope as NASA's premier space-based telescope for planetary science. This telescope will offer much more detailed characterization of TNO's composition via NIRCam photometry, or NIRSpec spectroscopy, from 1 - 5 μm.Here we show the results of the study of TNOs' surface composition by means of the analysis of 0.4 to 5 μm albedos. We will also show how IRAC data

  12. Analytic model for low energy excitation states and phase transitions in spin-ice systems

    NASA Astrophysics Data System (ADS)

    López-Bara, F. I.; López-Aguilar, F.

    2017-04-01

    Low energy excitation states in magnetic structures of the so-called spin-ices are produced via spin flips among contiguous tetrahedra of their crystal structure. These spin flips generate entities which mimic magnetic dipoles in every two tetrahedra according to the dumbbell model. When the temperature increases, the spin-flip processes are transmitted in the lattice, generating so-called Dirac strings, which constitute structural entities that can present mimetic behavior similar to that of magnetic monopoles. In recent studies of both specific heat and ac magnetic susceptibility, two (even possibly three) phases have been shown to vary the temperature. The first of these phases presents a sharp peak in the specific heat and another phase transition occurs for increasing temperature whose peak is broader than that of the former phase. The sharp peak occurs when there are no free individual magnetic charges and temperature of the second phase transition coincides with the maximum proliferation of free deconfined magnetic charges. In the present paper, we propose a model for analyzing the low energy excitation many-body states of these spin-ice systems. We give analytical formulas for the internal energy, specific heat, entropy and their temperature evolution. We study the description of the possible global states via the nature and structure of their one-body components by means of the thermodynamic functions. Below 0.37 K, the Coulomb-like magnetic charge interaction can generate a phase transition to a condensation of pole–antipole pairs, possibly having Bose–Einstein structure which is responsible for the sharp peak of the first phase transition. When there are sufficient free positive and negative charges, the system tends to behave as a magnetic plasma, which implies the broader peak in the specific heat appearing at higher temperature than the sharper experimental peak.

  13. Glacier Land Ice Measurements from Space (GLIMS) and the GLIMS Information Management System at NSIDC

    NASA Astrophysics Data System (ADS)

    Machado, A. E.; Scharfen, G. R.; Barry, R. G.; Khalsa, S. S.; Raup, B.; Swick, R.; Troisi, V. J.; Wang, I.

    2001-12-01

    GLIMS (Global Land Ice Measurements from Space) is an international project to survey a majority of the world's glaciers with the accuracy and precision needed to assess recent changes and determine trends in glacial environments. This will be accomplished by: comprehensive periodic satellite measurements, coordinated distribution of screened image data, analysis of images at worldwide Regional Centers, validation of analyses, and a publicly accessible database. The primary data source will be from the ASTER (Advanced Spaceborne Thermal Emission and reflection Radiometer) instrument aboard the EOS Terra spacecraft, and Landsat ETM+ (Enhanced Thematic Mapper Plus), currently in operation. Approximately 700 ASTER images have been acquired with GLIMS gain settings as of mid-2001. GLIMS is a collaborative effort with the United States Geological Survey (USGS), the National Aeronautics Space Adminstration (NASA), other U.S. Federal Agencies and a group of internationally distributed glaciologists at Regional Centers of expertise. The National Snow and Ice Data Center (NSIDC) is developing the information management system for GLIMS. We will ingest and maintain GLIMS-analyzed glacier data from Regional Centers and provide access to the data via the World Wide Web. The GLIMS database will include measurements (over time) of glacier length, area, boundaries, topography, surface velocity vectors, and snowline elevation, derived primarily from remote sensing data. The GLIMS information management system at NSIDC will provide an easy to use and widely accessible service for the glaciological community and other users needing information about the world's glaciers. The structure of the international GLIMS consortium, status of database development, sample imagery and derived analyses and user search and order interfaces will be demonstrated. More information on GLIMS is available at: http://www.glims.org/.

  14. Ice Protection of Turbojet Engines by Inertia Separation of Water I : Alternate-duct System

    NASA Technical Reports Server (NTRS)

    Von Glahn, Uwe

    1948-01-01

    Aerodynamic and icing investigations of internal water-inertia separation inlets designed to prevent automatically entrance of large quantities of water into a turbojet engine in icing conditions was conducted on a one-half scale model. A simplified analytical approach to the design of internal water-inertia separation inlets is included. Results show that in order to be effective in preventing screen and guide-vane icing for an inlet of this type, a ram-pressure recovery of 75 percent was attained at design inlet-velocity ratio in an icing condition. For nonicing operation, ram-pressure recovery is comparable to direct-ram inlet.

  15. Climate effects on volcanism: influence on magmatic systems of loading and unloading from ice mass variations, with examples from Iceland.

    PubMed

    Sigmundsson, Freysteinn; Pinel, Virginie; Lund, Björn; Albino, Fabien; Pagli, Carolina; Geirsson, Halldór; Sturkell, Erik

    2010-05-28

    Pressure influences both magma production and the failure of magma chambers. Changes in pressure interact with the local tectonic settings and can affect magmatic activity. Present-day reduction in ice load on subglacial volcanoes due to global warming is modifying pressure conditions in magmatic systems. The large pulse in volcanic production at the end of the last glaciation in Iceland suggests a link between unloading and volcanism, and models of that process can help to evaluate future scenarios. A viscoelastic model of glacio-isostatic adjustment that considers melt generation demonstrates how surface unloading may lead to a pulse in magmatic activity. Iceland's ice caps have been thinning since 1890 and glacial rebound at rates exceeding 20 mm yr(-1) is ongoing. Modelling predicts a significant amount of 'additional' magma generation under Iceland due to ice retreat. The unloading also influences stress conditions in shallow magma chambers, modifying their failure conditions in a manner that depends critically on ice retreat, the shape and depth of magma chambers as well as the compressibility of the magma. An annual cycle of land elevation in Iceland, due to seasonal variation of ice mass, indicates an annual modulation of failure conditions in subglacial magma chambers.

  16. Microbial activity inhibition in chilled mackerel (Scomber scombrus) by employment of an organic acid-icing system.

    PubMed

    Sanjuás-Rey, Minia; Gallardo, José M; Barros-Velázquez, Jorge; Aubourg, Santiago P

    2012-05-01

    The present study concerns Atlantic mackerel (Scomber scombrus) traded as a chilled product. The study was aimed to investigate the effect of including a mixture of organic acids (citric, ascorbic, and lactic) in the icing medium employed during the fish chilled storage. To this end and according to preliminary trials results, an aqueous solution including 0.050% (w/v) of each acid was employed as icing medium; its effect on the microbial activity development in mackerel muscle was monitored for up to 13 d of chilled storage and compared to a counterpart-fish batch kept under traditional water ice considered as control. Results indicated a lower bacterial growth in mackerel muscle subjected to storage in the organic acid-icing system by comparison with control fish. Thus, statistically-significant (P < 0.05) differences between both batches for all 6 microbial groups investigated (aerobes, anaerobes, psychrotrophes, Enterobacteriaceae, lipolytics, and proteolytics) and for 2 chemical indices related to microbial activity development (total volatile bases and trimethylamine) were obtained. The surface wash caused by the melting of the ice during storage and the subsequent antimicrobial effect of such acids on skin microflora of the fish can be invoked as the main reasons for the limited bacterial growth found in the corresponding mackerel muscle.

  17. An ice lithography instrument.

    PubMed

    Han, Anpan; Chervinsky, John; Branton, Daniel; Golovchenko, J A

    2011-06-01

    We describe the design of an instrument that can fully implement a new nanopatterning method called ice lithography, where ice is used as the resist. Water vapor is introduced into a scanning electron microscope (SEM) vacuum chamber above a sample cooled down to 110 K. The vapor condenses, covering the sample with an amorphous layer of ice. To form a lift-off mask, ice is removed by the SEM electron beam (e-beam) guided by an e-beam lithography system. Without breaking vacuum, the sample with the ice mask is then transferred into a metal deposition chamber where metals are deposited by sputtering. The cold sample is then unloaded from the vacuum system and immersed in isopropanol at room temperature. As the ice melts, metal deposited on the ice disperses while the metals deposited on the sample where the ice had been removed by the e-beam remains. The instrument combines a high beam-current thermal field emission SEM fitted with an e-beam lithography system, cryogenic systems, and a high vacuum metal deposition system in a design that optimizes ice lithography for high throughput nanodevice fabrication. The nanoscale capability of the instrument is demonstrated with the fabrication of nanoscale metal lines.

  18. An ice lithography instrument

    SciTech Connect

    Han, Anpan; Chervinsky, John; Branton, Daniel; Golovchenko, J. A.

    2011-06-15

    We describe the design of an instrument that can fully implement a new nanopatterning method called ice lithography, where ice is used as the resist. Water vapor is introduced into a scanning electron microscope (SEM) vacuum chamber above a sample cooled down to 110 K. The vapor condenses, covering the sample with an amorphous layer of ice. To form a lift-off mask, ice is removed by the SEM electron beam (e-beam) guided by an e-beam lithography system. Without breaking vacuum, the sample with the ice mask is then transferred into a metal deposition chamber where metals are deposited by sputtering. The cold sample is then unloaded from the vacuum system and immersed in isopropanol at room temperature. As the ice melts, metal deposited on the ice disperses while the metals deposited on the sample where the ice had been removed by the e-beam remains. The instrument combines a high beam-current thermal field emission SEM fitted with an e-beam lithography system, cryogenic systems, and a high vacuum metal deposition system in a design that optimizes ice lithography for high throughput nanodevice fabrication. The nanoscale capability of the instrument is demonstrated with the fabrication of nanoscale metal lines.

  19. Numerical Modeling of Anti-icing Systems and Comparison to Test Results on a NACA 0012 Airfoil

    NASA Technical Reports Server (NTRS)

    Al-Khalil, Kamel M.; Potapczuk, Mark G.

    1993-01-01

    A series of experimental tests were conducted in the NASA Lewis IRT on an electro-thermally heated NACA 0012 airfoil. Quantitative comparisons between the experimental results and those predicted by a computer simulation code were made to assess the validity of a recently developed anti-icing model. An infrared camera was utilized to scan the instantaneous temperature contours of the skin surface. Despite some experimental difficulties, good agreement between the numerical predictions and the experiment results were generally obtained for the surface temperature and the possibility for each runback to freeze. Some recommendations were given for an efficient operation of a thermal anti-icing system.

  20. Organic solids produced from simple C/H/O/N ices by charged particles - Applications to the outer solar system

    SciTech Connect

    Khare, B.N.; Thompson, W.R.; Chyba, C.F.; Sagan, C.; Arakawa, E.T.

    1989-01-01

    The effects of charged particle irradiation by cold plasma discharge on surfaces of H2O:CH4 clathrate with a 200:1 ratio and on ices composed of H2O and C2H6 or C2H2 are examined. The molecules studies are found in Comet Halley and are plausible constituents in icy outer solar system objects. The IR transmission spectra of four ice-tholin residues obtained in the laboratory are compared with spectra produced by irradiation of gases and ices containing simple hydrocarbons. The similarities between CH4 clathrate residue and Halley organic grains, and the surface transport or atmospheric replenishment activity on Triton and Pluto are discussed. 56 refs.

  1. Organic solids produced from simple C/H/O/N ices by charged particles - Applications to the outer solar system

    NASA Technical Reports Server (NTRS)

    Khare, B. N.; Thompson, W. R.; Chyba, C. F.; Sagan, C.; Arakawa, E. T.

    1989-01-01

    The effects of charged particle irradiation by cold plasma discharge on surfaces of H2O:CH4 clathrate with a 200:1 ratio and on ices composed of H2O and C2H6 or C2H2 are examined. The molecules studies are found in Comet Halley and are plausible constituents in icy outer solar system objects. The IR transmission spectra of four ice-tholin residues obtained in the laboratory are compared with spectra produced by irradiation of gases and ices containing simple hydrocarbons. The similarities between CH4 clathrate residue and Halley organic grains, and the surface transport or atmospheric replenishment activity on Triton and Pluto are discussed.

  2. Aircraft Landing Gear, Ice and Rain Control Systems (Course Outline), Aviation Mechanics 3 (Air Frame):9067.02.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    This document presents an outline for a 135-hour course designed to familiarize the student with operation, inspection, troubleshooting, and repair of aircraft landing gear, ice and rain control systems. It is designed to help the trainee master the knowledge and skills necessary to become an aviation airframe mechanic. The aviation airframe…

  3. How Activity Systems Evolve: Making / Saving Salmon in British Columbia

    ERIC Educational Resources Information Center

    Lee, Yew-Jin; Roth, Wolff-Michael

    2008-01-01

    The purpose of this article is to describe the history of a state-sponsored salmon enhancement project in British Columbia and to explicate the development of the former using cultural historical activity theory. We make thematic the notion of inner contradictions, which express themselves outwardly as a function of both quantitative and…

  4. Seasonal Evolution and Interannual Variability of the Local Solar Energy Absorbed by the Arctic Sea Ice-Ocean System

    NASA Technical Reports Server (NTRS)

    Perovich, Donald K.; Nghiem, Son V.; Markus, Thorsten; Schwieger, Axel

    2007-01-01

    The melt season of the Arctic sea ice cover is greatly affected by the partitioning of the incident solar radiation between reflection to the atmosphere and absorption in the ice and ocean. This partitioning exhibits a strong seasonal cycle and significant interannual variability. Data in the period 1998, 2000-2004 were analyzed in this study. Observations made during the 1997-1998 SHEBA (Surface HEat Budget of the Arctic Ocean) field experiment showed a strong seasonal dependence of the partitioning, dominated by a five-phase albedo evolution. QuikSCAT scatterometer data from the SHEBA region in 1999-2004 were used to further investigate solar partitioning in summer. The time series of scatterometer data were used to determine the onset of melt and the beginning of freezeup. This information was combined with SSM/I-derived ice concentration, TOVS-based estimates of incident solar irradiance, and SHEBA results to estimate the amount of solar energy absorbed in the ice-ocean system for these years. The average total solar energy absorbed in the ice-ocean system from April through September was 900 MJ m(sup -2). There was considerable interannual variability, with a range of 826 to 1044 MJ m(sup -2). The total amount of solar energy absorbed by the ice and ocean was strongly related to the date of melt onset, but only weakly related to the total duration of the melt season or the onset of freezeup. The timing of melt onset is significant because the incident solar energy is large and a change at this time propagates through the entire melt season, affecting the albedo every day throughout melt and freezeup.

  5. Modeling South Pacific Ice-Ocean Interactions in the Global Climate System

    NASA Technical Reports Server (NTRS)

    Holland, David M.; Jenkins, Adrian; Jacobs, Stanley S.

    2001-01-01

    The objective of this project has been to improve the modeling of interactions between large Antarctic ice shelves and adjacent regions of the Southern Ocean. Our larger goal is to gain a better understanding of the extent to which the ocean controls ice shelf attrition, thereby influencing the size and dynamics of the Antarctic Ice Sheet. Melting and freezing under ice shelves also impacts seawater properties, regional upwelling and sinking and the larger-scale ocean circulation. Modifying an isopycnal coordinate general circulation model for use in sub-ice shelf cavities, we found that the abrupt change in water column thickness at an ice shelf front does not form a strong barrier to buoyancy-driven circulation across the front. Outflow along the ice shelf base, driven by melting of the thickest ice, is balanced by deep inflow. Substantial effort was focused on the Filchner-Ronne cavity, where other models have been applied and time-series records are available from instruments suspended beneath the ice. A model comparison indicated that observed changes in the production of High Salinity Shelf Water could have a major impact on circulation within the cavity. This water propagates into the cavity with an asymmetric seasonal signal that has similar phasing and shape in the model and observations, and can be related to winter production at the sea surface. Even remote parts of the sub-ice shelf cavity are impacted by external forcing on sub-annual time scales. This shows that cavity circulations and products, and therefore cavity shape, will respond to interannual variability in sea ice production and longer-term climate change. The isopycnal model gives generally lower net melt rates than have been obtained from other models and oceanographic data, perhaps due to its boundary layer formulation, or the lack of tidal forcing. Work continues on a manuscript describing the Ross cavity results.

  6. Cryogenic Property Measurements on Icy Compositions with Application to Solar System Ices

    NASA Astrophysics Data System (ADS)

    Hays, C.; Castillo-Rogez, J.; Barmatz, M.; Mitchell, K.

    2007-08-01

    grains). Post-synthesis microstructural characterization will be performed using Cryogenic Optical Microscopy integrating a cross-polarizer to analyze thin sections, and a Cryogenic Scanning Electron Microscope. Mechanical property measurements on solid specimens will be performed between 80 and 270 K with a cryogenically cooled Instron measurement system. Compression measurements will be conducted as a function of temperature, strain-rate, microstructural length scale and orientation. The time dependent viscous response will be measured by performing creep measurements over the same range of temperatures. Using low-frequency cyclic loading, the dissipation factor will be measured at frequencies approaching satellite orbital frequencies. We will report preliminary mechanical property measurements of Antarctic glacial specimens at cryogenic temperatures. Fluids. In order to improve our understanding of effusive cryovolcanism, the rheological properties of liquid and mixed (slurry) materials will be measured between 80 and 300 K using a cryogenically cooled Brookfield rotational rheometer. We will report preliminary measurements of the temperature dependence of the viscous response for several compositions in the Methanol-Water System. Also, we will describe an experiment designed to measure methane wetting on water ice. These experiments will be carried out in order to explore the effects of the presence of methane lakes on Titan's surface. We are developing the capability to investigate more complex materials relevant to surface processes on Titan, including methane-ethane phase studies, hydrocarbons such as acetylene and benzene, as well as tholins and clathrates, which should exhibit a range of rheological and mechanical properties from fast-moving fluids to glacial creep. Acknowledgements: Most of the research described in this presentation was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National

  7. Physical properties of the candidate quantum spin-ice system Pr2Hf2O7

    NASA Astrophysics Data System (ADS)

    Anand, V. K.; Opherden, L.; Xu, J.; Adroja, D. T.; Islam, A. T. M. N.; Herrmannsdörfer, T.; Hornung, J.; Schönemann, R.; Uhlarz, M.; Walker, H. C.; Casati, N.; Lake, B.

    2016-10-01

    Physical properties of a pyrohafnate compound Pr2Hf2O7 have been investigated by ac magnetic susceptibility χac(T ) , dc magnetic susceptibility χ (T ) , isothermal magnetization M (H ) , and heat-capacity Cp(T ) measurements on polycrystalline as well as single-crystal samples combined with high-resolution synchrotron x-ray diffraction (XRD) for structural characterization and inelastic neutron scattering (INS) to determine the crystal-field energy-level scheme and wave functions. Synchrotron XRD data confirm the ordered cubic pyrochlore (F d 3 ¯m ) structure without any noticeable site mixing or oxygen deficiency. No clear evidence of long-range magnetic ordering is observed down to 90 mK, however the χac(T ) evinces slow spin dynamics revealed by a frequency dependent broad peak associated with spin freezing. The INS data reveal the expected five well-defined magnetic excitations due to crystal-field splitting of the J =4 ground-state multiplet of the Pr3 +. The crystal-field parameters and ground-state wave function of Pr3 + have been determined. The Ising anisotropic nature of the magnetic ground state is inferred from the INS as well as χ (T ) and M (H ) data. Together these properties make Pr2Hf2O7 a candidate compound for quantum spin-ice behavior.

  8. Proceedings of the Airframe Icing Workshop

    NASA Technical Reports Server (NTRS)

    Colantonio, Ron O. (Editor)

    2009-01-01

    The NASA Glenn Research Center (GRC) has a long history of working with its partners towards the understanding of ice accretion formation and its associated degradation of aerodynamic performance. The June 9, 2009, Airframe Icing Workshop held at GRC provided an opportunity to examine the current NASA airframe icing research program and to dialogue on remaining and emerging airframe icing issues and research with the external community. Some of the airframe icing gaps identified included, but are not limited to, ice accretion simulation enhancements, three-dimensional benchmark icing database development, three-dimensional iced aerodynamics modeling, and technology development for a smart icing system.

  9. Electromagnetic emissions from a modular Low Voltage Electro-Impulse De-icing system

    NASA Astrophysics Data System (ADS)

    Zieve, Peter; Huffer, Brent; Ng, James

    1989-03-01

    An important consideration in the certification of electro-impulse deicing (EIDI) systems for aircraft ice protection is electromagnetic interference (EMI). When the capacitor bank in an EIDI system discharges, a large pulse of current travels down a transmission line to the coil. Subsequent radiation by the transmission line and the coil produces EMI. The low voltage electro-impulse deicing system (LVEIDI) is unique in that the capacitor bank is mounted adjacent to the coil thereby eliminating most of the cables. Electromagnetic emissions from this system would then be primarily from the coil. The performed tests investigate the EMI environment inside and outside of both a composite and an aluminum wing. Due to the absence of the shielding effect of aluminum, the problem of electromagnetic emissions is particularly severe when the wing is constructed of composite materials. Measurements of the radiated electric field indicate that emissions from the aluminum wing were well within the standards. Some tests with the composite wing were within standards while others were not. It was found that the composite wing could be brought back into compliance through the addition of thin metallic shielding. Conducted emissions on the LVEIDI power feed cable were brought within standards with the addition of a line filter. An unshielded connection cable for a compass flux valve was run through the wing just behind the LVEIDI module. Discharge of the capacitor bank had no discernible effect on operation of the compass flux valve. No problems were observed in other tests of the wing internal environment.

  10. Models of governance in multihospital systems. Implications for hospital and system-level decision-making.

    PubMed

    Morlock, L L; Alexander, J A

    1986-12-01

    This study utilizes data from a national survey of 159 multihospital systems in order to describe the types of governance structures currently being utilized, and to compare the policy making process for various types of decisions in systems with different approaches to governance. Survey results indicate that multihospital systems most often use one of three governance models. Forty-one percent of the systems (including 33% of system hospitals) use a parent holding company model in which there is a system-wide corporate governing board and separate governing boards for each member hospital. Twenty-two percent of systems in the sample (but 47% of all system hospitals) utilize what we have termed a modified parent holding company model in which there is one system-wide governing board, but advisory boards are substituted for governing boards at the local hospital level. Twenty-three percent of the sampled systems (including 11% of system hospitals) use a corporate model in which there is one system-wide governing board but no other governing or advisory boards at either the divisional, regional or local hospital levels. A comparison of systems using these three governance approaches found significant variation in terms of system size, ownership and the geographic proximity of member hospitals. In order to examine the relationship between alternative approaches to governance and patterns of decision-making, the three model types were compared with respect to the percentages of systems reporting that local boards, corporate management and/or system-wide corporate boards have responsibility for decision-making in a number of specific issue areas. Study results indicate that, regardless of model type, corporate boards are most likely to have responsibility for decisions regarding the transfer, pledging and sale of assets; the formation of new companies; purchase of assets greater than $100,000; changes in hospital bylaws; and the appointment of local board members. In

  11. Parameterizing Size Distribution in Ice Clouds

    SciTech Connect

    DeSlover, Daniel; Mitchell, David L.

    2009-09-25

    cloud optical properties formulated in terms of PSD parameters in combination with remote measurements of thermal radiances to characterize the small mode. This is possible since the absorption efficiency (Qabs) of small mode crystals is larger at 12 µm wavelength relative to 11 µm wavelength due to the process of wave resonance or photon tunneling more active at 12 µm. This makes the 12/11 µm absorption optical depth ratio (or equivalently the 12/11 µm Qabs ratio) a means for detecting the relative concentration of small ice particles in cirrus. Using this principle, this project tested and developed PSD schemes that can help characterize cirrus clouds at each of the three ARM sites: SGP, NSA and TWP. This was the main effort of this project. These PSD schemes and ice sedimentation velocities predicted from them have been used to test the new cirrus microphysics parameterization in the GCM known as the Community Climate Systems Model (CCSM) as part of an ongoing collaboration with NCAR. Regarding the second problem, we developed and did preliminary testing on a passive thermal method for retrieving the total water path (TWP) of Arctic mixed phase clouds where TWPs are often in the range of 20 to 130 g m-2 (difficult for microwave radiometers to accurately measure). We also developed a new radar method for retrieving the cloud ice water content (IWC), which can be vertically integrated to yield the ice water path (IWP). These techniques were combined to determine the IWP and liquid water path (LWP) in Arctic clouds, and hence the fraction of ice and liquid water. We have tested this approach using a case study from the ARM field campaign called M-PACE (Mixed-Phase Arctic Cloud Experiment). This research led to a new satellite remote sensing method that appears promising for detecting low levels of liquid water in high clouds typically between -20 and -36 oC. We hope to develop this method in future research.

  12. Ice Fog and Light Snow Measurements Using a High-Resolution Camera System

    NASA Astrophysics Data System (ADS)

    Kuhn, Thomas; Gultepe, Ismail

    2016-09-01

    Ice fog, diamond dust, and light snow usually form over extremely cold weather conditions, and they affect both visibility and Earth's radiative energy budget. Prediction of these hydrometeors using models is difficult because of limited knowledge of the microphysical properties at the small size ranges due to measurement issues. These phenomena need to be better represented in forecast and climate models; therefore, in addition to remote sensing accurate measurements using ground-based instrumentation are required. An imaging instrument, aimed at measuring ice fog and light snow particles, has been built and is presented here. The ice crystal imaging (ICI) probe samples ice particles into a vertical, tapered inlet with an inlet flow rate of 11 L min-1. A laser beam across the vertical air flow containing the ice crystals allows for their detection by a photodetector collecting the scattered light. Detected particles are then imaged with high optical resolution. An illuminating LED flash and image capturing are triggered by the photodetector. In this work, ICI measurements collected during the fog remote sensing and modeling (FRAM) project, which took place during Winter of 2010-2011 in Yellowknife, NWT, Canada, are summarized and challenges related to measuring small ice particles are described. The majority of ice particles during the 2-month-long campaign had sizes between 300 and 800 μm. During ice fog events the size distribution measured had a lower mode diameter of 300 μm compared to the overall campaign average with mode at 500 μm.

  13. A System of Conservative Regridding for Ice-Atmosphere Coupling in a General Circulation Model (GCM)

    NASA Technical Reports Server (NTRS)

    Fischer, R.; Nowicki, S.; Kelley, M.; Schmidt, G. A.

    2014-01-01

    The method of elevation classes, in which the ice surface model is run at multiple elevations within each grid cell, has proven to be a useful way for a low-resolution atmosphere inside a general circulation model (GCM) to produce high-resolution downscaled surface mass balance fields for use in one-way studies coupling atmospheres and ice flow models. Past uses of elevation classes have failed to conserve mass and energy because the transformation used to regrid to the atmosphere was inconsistent with the transformation used to downscale to the ice model. This would cause problems for two-way coupling. A strategy that resolves this conservation issue has been designed and is presented here. The approach identifies three grids between which data must be regridded and five transformations between those grids required by a typical coupled atmosphere-ice flow model. This paper develops a theoretical framework for the problem and shows how each of these transformations may be achieved in a consistent, conservative manner. These transformations are implemented in Glint2, a library used to couple atmosphere models with ice models. Source code and documentation are available for download. Confounding real-world issues are discussed, including the use of projections for ice modeling, how to handle dynamically changing ice geometry, and modifications required for finite element ice models.

  14. Uncertainty quantification: Making predictions of complex reaction systems reliable

    NASA Astrophysics Data System (ADS)

    Russi, Trent; Packard, Andy; Frenklach, Michael

    2010-10-01

    There is increasing need to make chemical reaction models and modeling more predictive. We examine the modeling methodology from the perspective of propagation of uncertainties, those in assumed model parameters along with those in experimental observations. Accepting the length of the uncertainty interval in the predicted property as a measure of model predictiveness, we examine methodological factors affecting it. Employing the recently introduced technique of Data Collaboration, we show that even 'harmless' assumptions, invoked explicitly or implicitly to alleviate a burden of numerical procedures, could lead to substantial differences in model predictiveness. We also demonstrate that the direct, one-step methodology, such as Data Collaboration, necessarily makes modeling more predictive and thus more reliable than a two-step approach typical of most current methods.

  15. Climate Data Records (CDRs) for Ice Motion and Ice Age

    NASA Astrophysics Data System (ADS)

    Tschudi, M. A.; Fowler, C.; Maslanik, J. A.; Stroeve, J. C.

    2011-12-01

    Climate Data Records (CDRs) for remotely-sensed Arctic sea ice motion and sea ice age are under development by our group at the University of Colorado, Boulder. The ice motion product, archived at NSIDC, has a considerable history of use, while sea ice age is a relatively new product. Our technique to estimate sea ice motion utilizes images from SSM/I, as well as SMMR and the series of AVHRR sensors to estimate the daily motion of ice parcels. This method is augmented by incorporating ice motion observations from the network of drifting buoys deployed as part of the International Arctic Buoy Program. Our technique to calculate ice age relies on following the actual age of the ice for each ice parcel, categorizing the parcel as first-year ice, second-year, ice, etc. based on how many summer melt seasons the ice parcel survives. Both of these research-grade products have been interpolated onto 25x25 km grid points spanning the entire Arctic Ocean using the Equal-Area Scalable Earth (EASE) grid. Datasets generated from this program have shown that the Arctic ice cover has experienced a significant (> 70%) decline in multiyear ice over the last 20 years, leaving a younger ice cover in 2011. By comparing ice age derived by the Lagrangian tracking method to ice thickness estimated by Ice, Cloud and land Elevation Satellite (ICESat) Geoscience Laser Altimeter System (GLAS) data, it is observed that ice age is linearly related to ice thickness, up to an age of 10 years. Therefore, the shift in dominance of multiyear ice to first-year ice relates to a significant thinning of the ice. This thinning is estimated to correspond to a 40% reduction in ice volume in the last 20 years. An ancillary dataset (APP-X) produced by the University of Wisconsin, Madison has been combined with the ice motion product to monitor the properties of the sea ice parcels tracked by the ice motion product. This dataset includes ice surface and 2-meter air temperature, albedo, downwelling shortwave

  16. Bedforms of the Keewatin Ice Sheet, Canada

    NASA Astrophysics Data System (ADS)

    Aylsworth, J. M.; Shilts, W. W.

    1989-05-01

    By compiling glacial bedforms on a map that covers most of one sector of the Laurentide Ice Sheet, it is possible to make some suggestions about their genesis based largely on spatial relationships. It can be concluded that drumlins and ribbed moraine form at the base of actively flowing ice under similar dynamic conditions. For either landform to exist, however, there must have been enough sediment available in the base of the glacier to leave or form a feature large enough to be recognizable. The presence or absence of sufficient load is related to the geology of the glacier bed and has little to do with regionally changing dynamics of the ice-water system. Likewise, given sufficient load, it is evident that whether drumlins formed or whether ribbed moraine formed in a certain area is a function of the physical nature of the load which is, again, related to geology of the source outcrops. Whether the physical characteristics come into play after the sediment has been released from the ice and is being reshaped by basal drag, streamlining, etc., or whether the nature of the load while entrained changes the behaviour of the basal part of the ice is unclear. Physical characteristics of the basal sediment load have apparently promoted internal thrusting of coherent slabs of entrained debris and ice to form ribbed moraine on melting, whereas drumlins may reflect moulding of plastic subglacial debris or erosional streamlining of both the unconsolidated glacial substrate and bedrock. The observation that many eskers cross drumlin fields at nearly right angles to their orientation suggests that conditions producing streamlining and those pertaining to subglacial drainage are separated in time and circumstance. The general occurrence of drumlins and eskers throughout the sediment-rich portions of the Keewatin Ice Sheet, from Zone 1 to its edge, is difficult to reconcile with the restriction and intimate association of these forms with ribbed moraine almost exclusively in

  17. Experimental study of performance degradation of a rotating system in the NASA Lewis RC icing tunnel

    NASA Technical Reports Server (NTRS)

    Korkan, Kenneth

    1992-01-01

    The Helicopter Icing Consortium (HIC) conducted one of the first U.S. tests of a heavily instrumented model in the controlled environment of a refrigerated tunnel. In the Icing Research Tunnel (IRT) at NASA LeRC, ice was accreted on the main rotor blade of the BMTR-1 Sikorsky model helicopter under a variety of environmental conditions, such that liquid water content (LWC) and volume mean droplet diameter (VMD) ranges reflected the Federal Aviation Agency and Department of Defence icing condition envelopes. This report gives the correlated results of the data provided by NASA LeRC. The method of statistical analysis is discussed. Lift, thrust, and torque coefficients are presented as a function of icing time, as correlated with changes in ambient temperature, LWC, and VMD. The physical significance of these forces is discussed.

  18. Administrative Decision-Making and Computer-Based Planning Systems.

    ERIC Educational Resources Information Center

    Weischadle, David E.

    This paper presents the overall conceptual framework in which information gathered and stored by computers can be transformed into a comprehensive planning system useful in administrative decisionmaking. Identified and discussed are information needs (enrollment, costs, resources, and measurements) and a sample system (STEP - System for Trenton's…

  19. Ice fog and light snow measurements using a high resolution camera system

    NASA Astrophysics Data System (ADS)

    Kuhn, Thomas; Gultepe, Ismail

    2016-04-01

    In this presentation, measurements collected by the ice crystal imaging (ICI) probe employed during FRAM (Fog Remote Sensing and Modeling) project for the Winter of 2010-2011 in Yellowknife, NWT, Canada are analysed to study small ice crystal impact on aviation operations. Ice fog, diamond dust, and light snow form during cold weather conditions and they affect aviation operations through visibility and deposition over the surfaces. In addition, these events influence the local heat budget through radiative cooling. Prediction of these hydrometeors using models is difficult because of limited knowledge of the microphysical properties at the small size ranges. These phenomena need to be better represented in forecast and climate models and this can only be done using accurate measurements from ground-based instrumentation. Imaging of ice particles' properties can complement other in-situ measurements being collected routinely. The newly developed ICI probe, aimed at measuring ice fog and light snow particles, is presented here. The ICI probe samples ice particles through a vertical inlet, where a laser beam and photodetector detect ice crystals contained in the flow. The detected particles are then imaged with high optical resolution between 10 to 1000 micron size range. An illuminating LED flash and image capturing for measurements are triggered by the photodetector. The results suggested that the majority of ice particles during the two-month long campaign were small with sizes between 300 μm and 800 μm. During ice fog events, the size distribution measured had a lower mode diameter of 300 μm compared to the overall campaign average with mode at 500 μm. In this presentation, challenges and issues related to small ice crystals are described and their importance for aviation operations and climate change are discussed.

  20. Application of GRACE to the Evaluation of an Ice Flow Model of the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Schlegel, N.; Wiese, D. N.; Watkins, M. M.; Larour, E. Y.; Box, J. E.; Fettweis, X.; van den Broeke, M. R.; Morlighem, M.; Boening, C.; Seroussi, H. L.

    2014-12-01

    Quantifying Greenland's future contribution to sea level rise is a challenging task and requires accurate estimates of ice flow sensitivity to climate change. Transient ice flow models are promising tools for estimating future ice sheet behavior. However, confidence in these types of future projections is low, especially because evaluation of model historical runs is so challenging due to the scarcity of continental-wide data for validation. For more than a decade, NASA's GRACE has continuously acquired time-variable measurements of the Earth's gravity field and has provided unprecedented surveillance of mass balance of the ice sheets, offering an opportunity for ice sheet model evaluation. Here, we take advantage of a new high-resolution (~300 km) monthly mascon solution for the purpose of mass balance comparison with an independent, historical ice flow model simulation using the Ice Sheet System Model (ISSM). The comparison highlights which regions of the ice sheet differ most from GRACE. Investigation of regional differences in trends and seasonal amplitudes between simulations forced with three different Regional Climate Model (RCM)-based estimates of surface mass balance (SMB) allows us to make conclusions about the relative contributions of various error sources in the model hindcast. This study constitutes the first regional comparison of GRACE data and an ice sheet model. Conclusions will aid in the improvement of RCM SMB estimates as well as ice sheet simulation estimates of present and future rates of sea level rise. This work was performed at the California Institute of Technology's Jet Propulsion Laboratory under a contract with the National Aeronautics and Space Administration's Cryosphere Program and President's and Director's Fund Program.

  1. A snow and ice melt seasonal prediction modelling system for Alpine reservoirs

    NASA Astrophysics Data System (ADS)

    Förster, Kristian; Oesterle, Felix; Hanzer, Florian; Schöber, Johannes; Huttenlau, Matthias; Strasser, Ulrich

    2016-10-01

    The timing and the volume of snow and ice melt in Alpine catchments are crucial for management operations of reservoirs and hydropower generation. Moreover, a sustainable reservoir operation through reservoir storage and flow control as part of flood risk management is important for downstream communities. Forecast systems typically provide predictions for a few days in advance. Reservoir operators would benefit if lead times could be extended in order to optimise the reservoir management. Current seasonal prediction products such as the NCEP (National Centers for Environmental Prediction) Climate Forecast System version 2 (CFSv2) enable seasonal forecasts up to nine months in advance, with of course decreasing accuracy as lead-time increases. We present a coupled seasonal prediction modelling system that runs at monthly time steps for a small catchment in the Austrian Alps (Gepatschalm). Meteorological forecasts are obtained from the CFSv2 model. Subsequently, these data are downscaled to the Alpine Water balance And Runoff Estimation model AWARE running at monthly time step. Initial conditions are obtained using the physically based, hydro-climatological snow model AMUNDSEN that predicts hourly fields of snow water equivalent and snowmelt at a regular grid with 50 m spacing. Reservoir inflow is calculated taking into account various runs of the CFSv2 model. These simulations are compared with observed inflow volumes for the melting and accumulation period 2015.

  2. On the Role of Basal Friction and Ice Rheoloy in Constraining the Evolution of Upernavik: Insights from DataAssimilation of Velocity Time Series into the Ice Sheet System Model.

    NASA Astrophysics Data System (ADS)

    Larour, E. Y.

    2015-12-01

    Newly released and processed time series of surface velocities for the Upernavik Glacier, Greenland, areassimilated into the Ice Sheet System Model to reconstruct the evolution of the glacier since 2008, its underlying basal friction at the ice/bed interface, and the ice rheology throughout the glacier, especially at the shear margins, where softening from cryo-hydrological warming and lateral shearing play a critical role. Several key questions are investigated: 1) the interaction between calving at the ice front, loss of lateral butressing at the shear margins, and the evolution of basal friction; 2) the role of basal topography in controlling all five of Upernavik Glacier tributaries, and the sensitivity of basal stress to reconstructions of the latter and 3) the importance of cryo-hydrological warming, and how it compares with other factors such as calving and butressing in understanding ice-flow dynamics. The time scales we will investigate range from weeks to years, and will heavily rely on the newly developed data assimilation capabilities of the Ice Sheet System Model.This work was performed at the California Institute of Technology's Jet Propulsion Laboratory undera contract with the National Aeronautics and Space Administration's Cryosphere Science Program.

  3. Neural Systems Underlying Individual Differences in Intertemporal Decision-making.

    PubMed

    Elton, Amanda; Smith, Christopher T; Parrish, Michael H; Boettiger, Charlotte A

    2017-03-01

    Excessively choosing immediate over larger future rewards, or delay discounting (DD), associates with multiple clinical conditions. Individual differences in DD likely depend on variations in the activation of and functional interactions between networks, representing possible endophenotypes for associated disorders, including alcohol use disorders (AUDs). Numerous fMRI studies have probed the neural bases of DD, but investigations of large-scale networks remain scant. We addressed this gap by testing whether activation within large-scale networks during Now/Later decision-making predicts individual differences in DD. To do so, we scanned 95 social drinkers (18-40 years old; 50 women) using fMRI during hypothetical choices between small monetary amounts available "today" or larger amounts available later. We identified neural networks engaged during Now/Later choice using independent component analysis and tested the relationship between component activation and degree of DD. The activity of two components during Now/Later choice correlated with individual DD rates: A temporal lobe network positively correlated with DD, whereas a frontoparietal-striatal network negatively correlated with DD. Activation differences between these networks predicted individual differences in DD, and their negative correlation during Now/Later choice suggests functional competition. A generalized psychophysiological interactions analysis confirmed a decrease in their functional connectivity during decision-making. The functional connectivity of these two networks negatively correlates with alcohol-related harm, potentially implicating these networks in AUDs. These findings provide novel insight into the neural underpinnings of individual differences in impulsive decision-making with potential implications for addiction and related disorders in which impulsivity is a defining feature.

  4. The Generalized Value System and Future State Decision Making.

    DTIC Science & Technology

    1986-03-01

    fire weapon’s value for that same target. Another user input approach to decisicn making is Multiat- tribute Utility Theory ( MAUT ). Several references...characteristics of MAUT such as relating the util - ity (value) of allfactors on a common scale. In addition, both GVS and MAUT allow for values and...are shown in Figures 3.6 and 3.7. Using the language of utility theory , Figure 3.6 shows a risk preferring individual, whereas Figure 3.7 shows a risk

  5. Influences of the Little Ice Age glacier advance on hillslope morphometry and development in paraglacial valley systems around the Jostedalsbreen ice cap in Western Norway

    NASA Astrophysics Data System (ADS)

    Laute, Katja; Beylich, Achim A.

    2012-09-01

    This paper focuses on the influence of the "Little Ice Age" (LIA) glacier advance on hillslope morphometry and development in selected U-shaped and (para)glacial tributary valleys, which are still occupied in their upper parts by outlet glaciers of the Jostedalsbreen ice cap in Western Norway. Especially the morphometric influences and geomorphic consequences of the LIA glacier advance on the development of the valley-side hillslope systems and associated denudative processes are assessed by comparing hillslope systems located inside and outside of the LIA glacier maximum extent. The process-based approach applied includes orthophoto- and topographical map interpretation as well as hillslope profile surveying in field for morphometric analyses and detailed geomorphological mapping for process analyses. In addition GIS and DEM computing as well as geophysical measurements (georadar) for storage analyses are performed. It is found that hillslopes inside the LIA glacier limit have steepened lower hillslope segments due to a negative sediment net balance of removal and deposition of material by the advancing LIA glacier front. There are significant differences in the present-day slope debris thickness and composition between hillslopes inside or outside the LIA glacier limit. Slope debris from hillslopes inside the glacier maximum extent are clearly less thick and display a different internal structure originating from a combination of debris from gravitational processes and reworked modern glacial deposits. Compared to that slope debris covers on hillslopes outside the LIA glacier limit are in general noticeable thicker and less influenced by glacial deposits. The combined effects of modified slope morphometry and altered composition of material covering lower hillslope segments have generated a higher intensity of post-LIA denudative hillslope processes.

  6. Subsurface Ice Probe

    NASA Technical Reports Server (NTRS)

    Hecht, Michael; Carsey, Frank

    2005-01-01

    The subsurface ice probe (SIPR) is a proposed apparatus that would bore into ice to depths as great as hundreds of meters by melting the ice and pumping the samples of meltwater to the surface. Originally intended for use in exploration of subsurface ice on Mars and other remote planets, the SIPR could also be used on Earth as an alternative to coring, drilling, and melting apparatuses heretofore used to sample Arctic and Antarctic ice sheets. The SIPR would include an assembly of instrumentation and electronic control equipment at the surface, connected via a tether to a compact assembly of boring, sampling, and sensor equipment in the borehole (see figure). Placing as much equipment as possible at the surface would help to attain primary objectives of minimizing power consumption, sampling with high depth resolution, and unobstructed imaging of the borehole wall. To the degree to which these requirements would be satisfied, the SIPR would offer advantages over the aforementioned ice-probing systems.

  7. Electronic Performance Support Systems (EPSS): Making the Transition.

    ERIC Educational Resources Information Center

    Des Jardins, Susan; Davis, Harry, Jr.

    An electronic performance support system (EPSS) is a computerized system designed to increase productivity by supporting the performance of the worker on demand at the time of need. This way, workers are allowed to perform with a minimum of intervention from others. Popular examples of performance support tools, or partially implemented EPSSs,…

  8. Isolation and characterization of phage-host systems from the Baltic Sea ice.

    PubMed

    Luhtanen, Anne-Mari; Eronen-Rasimus, Eeva; Kaartokallio, Hermanni; Rintala, Janne-Markus; Autio, Riitta; Roine, Elina

    2014-01-01

    In search for sea ice bacteria and their phages from the Baltic Sea ice, two ice samples were collected from land-fast ice in a south-west Finland coastal site in February and March 2011. Bacteria were isolated from the melted sea ice samples and phages were screened from the same samples for 43 purified isolates. Plaque-producing phages were found for 15 bacterial isolates at 3 °C. Ten phage isolates were successfully plaque purified and eight of them were chosen for particle purification to analyze their morphology and structural proteins. Phage 1/32 infecting an isolate affiliated to phylum Bacteroidetes (Flavobacterium sp.) is a siphovirus and six phages infecting isolates affiliated to γ-Proteobacteria (Shewanella sp.) hosts were myoviruses. Cross titrations between the hosts showed that all studied phages are host specific. Phage solutions, host growth and phage infection were tested in different temperatures revealing phage temperature tolerance up to 45 °C, whereas phage infection was in most of the cases retarded above 15 °C. This study is the first to report isolation and cultivation of ice bacteria and cold-active phages from the Baltic Sea ice.

  9. How and when to terminate the Pleistocene ice ages?

    NASA Astrophysics Data System (ADS)

    Abe-Ouchi, A.; Saito, F.; Kawamura, K.; Takahashi, K.; Raymo, M. E.; Okuno, J.; Blatter, H.

    2015-12-01

    Climate change with wax and wane of large Northern Hemisphere ice sheet occurred in the past 800 thousand years characterized by 100 thousand year cycle with a large amplitude of sawtooth pattern, following a transition from a period of 40 thousand years cycle with small amplitude of ice sheet change at about 1 million years ago. Although the importance of insolation as the ultimate driver is now appreciated, the mechanism what determines timing and strength of terminations are far from clearly understood. Here we show, using comprehensive climate and ice-sheet models, that insolation and internal feedbacks between the climate, the ice sheets and the lithosphere-asthenosphere system explain the 100,000-year periodicity. The responses of equilibrium states of ice sheets to summer insolation show hysteresis, with the shape and position of the hysteresis loop playing a key part in determining the periodicities of glacial cycles. The hysteresis loop of the North American ice sheet is such that after inception of the ice sheet, its mass balance remains mostly positive through several precession cycles, whose amplitudes decrease towards an eccentricity minimum. The larger the ice sheet grows and extends towards lower latitudes, the smaller is the insolation required to make the mass balance negative. Therefore, once a large ice sheet is established, a moderate increase in insolation is sufficient to trigger a negative mass balance, leading to an almost complete retreat of the ice sheet within several thousand years. We discuss further the mechanism which determine the timing of ice age terminations by examining the role of astronomical forcing and change of atmospheric carbon dioxide contents through sensitivity experiments and comparison of several ice age cycles with different settings of astronomical forcings.

  10. neXtSIM: a new Lagrangian sea ice model

    NASA Astrophysics Data System (ADS)

    Rampal, Pierre; Bouillon, Sylvain; Ólason, Einar; Morlighem, Mathieu

    2016-05-01

    The Arctic sea ice cover has changed drastically over the last decades. Associated with these changes is a shift in dynamical regime seen by an increase of extreme fracturing events and an acceleration of sea ice drift. The highly non-linear dynamical response of sea ice to external forcing makes modelling these changes and the future evolution of Arctic sea ice a challenge for current models. It is, however, increasingly important that this challenge be better met, both because of the important role of sea ice in the climate system and because of the steady increase of industrial operations in the Arctic. In this paper we present a new dynamical/thermodynamical sea ice model called neXtSIM that is designed to address this challenge. neXtSIM is a continuous and fully Lagrangian model, whose momentum equation is discretised with the finite-element method. In this model, sea ice physics are driven by the combination of two core components: a model for sea ice dynamics built on a mechanical framework using an elasto-brittle rheology, and a model for sea ice thermodynamics providing damage healing for the mechanical framework. The evaluation of the model performance for the Arctic is presented for the period September 2007 to October 2008 and shows that observed multi-scale statistical properties of sea ice drift and deformation are well captured as well as the seasonal cycles of ice volume, area, and extent. These results show that neXtSIM is an appropriate tool for simulating sea ice over a wide range of spatial and temporal scales.

  11. Effects of cold therapy in the treatment of mandibular angle fractures: hilotherm system vs ice bag.

    PubMed

    Barca, Ida; Colangeli, Walter; Cristofaro, Maria Giulia; Giudice, Amerigo; Giofrè, Elio; Varano, Anna; Giudice, Mario

    2016-01-01

    La crioterapia dopo interventi di chirurgia maxillo-facciale è una metodica comunemente utilizzata sia a fini analgesici che di riduzione dell’edema e dell’ecchimosi dei tessuti molli. Hilotherapy è costituito da un’unità mobile elettrica refrigerante dotata di un termostato digitale regolabile e da un circuito chiuso di acqua distillata refrigerata che scorre all’interno di collettori e di maschere in gomma specificatamente conformate per i distretti anatomici del massiccio facciale. Abbiamo selezionato 40 pz affetti da frattura unifocale di angolo mandibolare e suddivisi in 2 gruppi, crioterapia con ice-bag (gruppo A) e Hiloterapy System (Gruppo B); entrambi sottoposti a medesimo trattamento farmacologico di base (antibiotico-antiedemigeno-antidolorifico). L’analisi dei dati ha dimostrato come l’utilizzo dell’Hiloterapy System nel post-operatorio per 48 ore a temperatura modulata ha garantito un più rapido decremento dell’edema dei tessuti molli e un miglior controllo del dolore, con conseguente minor richiesta di farmaci anti-infiammatori ed anti-dolorifici, rispetto al gruppo A.

  12. In vitro toxicities of experimental jet fuel system ice-inhibiting agents.

    PubMed

    Geiss, K T; Frazier, J M

    2001-07-02

    One research emphasis within the Department of Defense has been to seek the replacement of operational compounds with alternatives that pose less potential risk to human and ecological systems. Alternatives to glycol ethers, such as diethylene glycol monomethyl ether (M-DE), were investigated for use as jet fuel system ice-inhibiting agents (FSIIs). This group of chemicals includes three derivatives of 1,3-dioxolane-4-methanol (M-1, M-2, and M-3) and a 1,3-dioxane (M-27). In addition, M-DE was evaluated as a reference compound. Our approach was to implement an in vitro test battery based on primary rat hepatocyte cultures to perform initial toxicity evaluations. Hepatocytes were exposed to experimental chemicals (0, 0.001, 0.01, 0.1, 1, 10 mM dosages) for periods up to 24 h. Samples were assayed for lactate dehydrogenase (LDH) release, MTT dye reduction activity, glutathione level, and rate of protein synthesis as indicators of toxicity. Of the compounds tested, M-1, especially at the 10-mM dose, appeared to be more potent than the other chemicals, as measured by these toxicity assays. M-DE, the current FSII, elicited little response in the toxicity assays. Although some variations in toxicity were observed at the 10-mM dose, the in vitro toxicities of the chemicals tested (except for M-1) were not considerably greater than that of M-DE.

  13. How (and why) the immune system makes us sleep

    PubMed Central

    Imeri, Luca; Opp, Mark R.

    2010-01-01

    Good sleep is necessary for physical and mental health. For example, sleep loss impairs immune function, and sleep is altered during infection. Immune signalling molecules are present in the healthy brain, where they interact with neurochemical systems to contribute to the regulation of normal sleep. Animal studies have shown that interactions between immune signalling molecules (such as the cytokine interleukin 1) and brain neurochemical systems (such as the serotonin system) are amplified during infection, indicating that these interactions might underlie the changes in sleep that occur during infection. Why should the immune system cause us to sleep differently when we are sick? We propose that the alterations in sleep architecture during infection are exquisitely tailored to support the generation of fever, which in turn imparts survival value. PMID:19209176

  14. Early Solar System Bombardment: Exploring the Echos of Planetary Migration and Lost Ice Giants

    NASA Astrophysics Data System (ADS)

    Bottke, William

    2017-01-01

    Heavily cratered surfaces on the Moon, Mars, Mercury show the terrestrial planets were battered by an intense bombardment during their first billion years or more, but the timing, sources, and dynamical implications of these impacts are controversial. The Late Heavy Bombardment refers to impact events that occurred after stabilization of planetary lithospheres such that they could be preserved as craters. Lunar melt rocks and meteorite shock ages point toward a discrete episode of elevated impact flux between ~3.5 to ~4.2 Ga and a relative quiescence between ~4.0-4.2 to ~4.4 Ga. Evidence from Precambrian impact spherule layers suggest a long-lived tail of terrestrial impactors lasted to ~2.0-2.5 Ga.Dynamical models that include populations residual from primary accretion and destabilized by giant planet migration can potentially account for observations, although all have pros and cons. The most parsimonious solution to match constraints is a hybrid model with discrete early, post-accretion and later, planetary instability-driven impactor populations.For the latter, giant planet instability models can successfully reproduce the orbits of the giant planets, the origin/properties of Jupiter/Neptune Trojans, irregular satellites, the structure of the main asteroid and Kuiper belts, and the presence of comet-like bodies in the main belt, Hilda, and Trojan asteroid populations. The best solutions, however, postulate there were once five giant planets: Jupiter, Saturn, and three ice giants, one that was eventually ejected out of the Solar System by a Jupiter encounter. Intriguing evidence for this “lost” ice giant planet can be found in the orbital properties of bodies captured in the main asteroid belt.The applicability of giant planet instabilities to exoplanet systems seems likely, with the initial configuration of giant planet orbits a byproduct of their early migration and subsequent capture into mutual mean motion resonances. The question is how long can a

  15. Modeling Commercial Turbofan Engine Icing Risk With Ice Crystal Ingestion

    NASA Technical Reports Server (NTRS)

    Jorgenson, Philip C. E.; Veres, Joseph P.

    2013-01-01

    The occurrence of ice accretion within commercial high bypass aircraft turbine engines has been reported under certain atmospheric conditions. Engine anomalies have taken place at high altitudes that have been attributed to ice crystal ingestion, partially melting, and ice accretion on the compression system components. The result was degraded engine performance, and one or more of the following: loss of thrust control (roll back), compressor surge or stall, and flameout of the combustor. As ice crystals are ingested into the fan and low pressure compression system, the increase in air temperature causes a portion of the ice crystals to melt. It is hypothesized that this allows the ice-water mixture to cover the metal surfaces of the compressor stationary components which leads to ice accretion through evaporative cooling. Ice accretion causes a blockage which subsequently results in the deterioration in performance of the compressor and engine. The focus of this research is to apply an engine icing computational tool to simulate the flow through a turbofan engine and assess the risk of ice accretion. The tool is comprised of an engine system thermodynamic cycle code, a compressor flow analysis code, and an ice particle melt code that has the capability of determining the rate of sublimation, melting, and evaporation through the compressor flow path, without modeling the actual ice accretion. A commercial turbofan engine which has previously experienced icing events during operation in a high altitude ice crystal environment has been tested in the Propulsion Systems Laboratory (PSL) altitude test facility at NASA Glenn Research Center. The PSL has the capability to produce a continuous ice cloud which are ingested by the engine during operation over a range of altitude conditions. The PSL test results confirmed that there was ice accretion in the engine due to ice crystal ingestion, at the same simulated altitude operating conditions as experienced previously in

  16. 33 CFR 96.220 - What makes up a safety management system?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... SECURITY VESSEL OPERATING REGULATIONS RULES FOR THE SAFE OPERATION OF VESSELS AND SAFETY MANAGEMENT SYSTEMS Company and Vessel Safety Management Systems § 96.220 What makes up a safety management system? (a) The... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false What makes up a safety...

  17. 33 CFR 96.220 - What makes up a safety management system?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... SECURITY VESSEL OPERATING REGULATIONS RULES FOR THE SAFE OPERATION OF VESSELS AND SAFETY MANAGEMENT SYSTEMS Company and Vessel Safety Management Systems § 96.220 What makes up a safety management system? (a) The... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false What makes up a safety...

  18. Academic Airframe Icing Perspective

    NASA Technical Reports Server (NTRS)

    Bragg, Mike; Rothmayer, Alric; Thompson, David

    2009-01-01

    2-D ice accretion and aerodynamics reasonably well understood for engineering applications To significantly improve our current capabilities we need to understand 3-D: a) Important ice accretion physics and modeling not well understood in 3-D; and b) Aerodynamics unsteady and 3-D especially near stall. Larger systems issues important and require multidisciplinary team approach

  19. Characterization and first results of an ice nucleating particle measurement system based on counterflow virtual impactor technique

    NASA Astrophysics Data System (ADS)

    Schenk, L. P.; Mertes, S.; Kästner, U.; Frank, F.; Nillius, B.; Bundke, U.; Rose, D.; Schmidt, S.; Schneider, J.; Worringen, A.; Kandler, K.; Bukowiecki, N.; Ebert, M.; Curtius, J.; Stratmann, F.

    2014-10-01

    A specific instrument combination was developed to achieve a better microphysical and chemical characterization of atmospheric aerosol particles that have the potential to act as ice nucleating particles (INP). For this purpose a pumped counterflow virtual impactor system called IN-PCVI was set up and characterized to separate ice particles that had been activated on INP in the Fast Ice Nucleus Chamber (FINCH) from interstitial, non-activated particles. This coupled setup consisting of FINCH (ice particle activation and counting), IN-PCVI (INP separation and preparation), and further aerosol instrumentation (INP characterization) had been developed for the application in field experiments. The separated INP were characterized on-line with regard to their total number concentration, number size distribution and chemical composition, especially with the Aircraft-based Laser Ablation Aerosol Mass Spectrometer ALABAMA. Moreover, impactor samples for electron microscopy were taken. Due to the coupling the IN-PCVI had to be operated with different flow settings than known from literature, which required a further characterization of its cut-off-behavior. Taking the changed cut-off-behavior into account, the INP number concentration measured by the IN-PCVI system was in good agreement with the one detected by the FINCH optics for water saturation ratios up to 1.01 (ice saturation ratios between 1.21-1.34 and temperatures between -18 and -26 °C). First field results of INP properties are presented which were gained during the INUIT-JFJ/CLACE 2013 campaign at the high altitude research station Jungfraujoch in the Bernese Alps, Switzerland (3580 m a.s.l.).

  20. Sedimentary record of a Scandinavian Ice Sheet drainage system and till deposition over subglacial obstacles promoting basal sliding (an example from southern Poland)

    NASA Astrophysics Data System (ADS)

    Salamon, Tomasz

    2015-12-01

    Subglacial obstacles occurring in the path of advancing ice sheets generally generate higher longitudinal compression and higher frictional drag than a flat substrate. However, in the case of a soft sediment substratum, they can have a very different effect on ice sheet behaviour. This study concerns a substrate composed of very fine-grained sediments with low permeability. The relationship between subglacial obstacles and the overriding Scandinavian Ice Sheet was studied in an area of southern Poland where a small intervalley Neogene clay ridge (40 m high) was present. Based on sedimentological and structural analysis of subglacial till and gravelly-sandy sediments, the basal depositional processes and subglacial conditions and their influence on ice sheet behaviour were analysed. The till and related deposits within the ridge reflecting high water pressure conditions and lack of glacitectonic deformations indicate that the clay ridge did not generate much resistance against the advancing ice sheet, but instead favoured basal slip: the impermeable substratum weakened the ice/bed coupling and promoted ice detachment from the substratum. Gravelly sandy inclusions at the till/clay contact indicate that during the first stage of ice sheet overriding, a canal drainage system developed at the ice/substrate interface. Varied geometry, size and location of inclusions of sorted sediments suggest periodic instability of the canal system, which could lead to its transformation from initially uniform to being composed of conduits of different sizes. During later stages of ice sheet overriding, a traction till was deposited and occasional drainage through a water film was sufficient to evacuate basal meltwater. The resulting change in the character of subglacial drainage was probably related to variations in water pressure gradient during progressive ice sheet advance.