Sample records for ice motion information

  1. An ice-motion tracking system at the Alaska SAR facility

    NASA Technical Reports Server (NTRS)

    Kwok, Ronald; Curlander, John C.; Pang, Shirley S.; Mcconnell, Ross

    1990-01-01

    An operational system for extracting ice-motion information from synthetic aperture radar (SAR) imagery is being developed as part of the Alaska SAR Facility. This geophysical processing system (GPS) will derive ice-motion information by automated analysis of image sequences acquired by radars on the European ERS-1, Japanese ERS-1, and Canadian RADARSAT remote sensing satellites. The algorithm consists of a novel combination of feature-based and area-based techniques for the tracking of ice floes that undergo translation and rotation between imaging passes. The system performs automatic selection of the image pairs for input to the matching routines using an ice-motion estimator. It is designed to have a daily throughput of ten image pairs. A description is given of the GPS system, including an overview of the ice-motion-tracking algorithm, the system architecture, and the ice-motion products that will be available for distribution to geophysical data users.

  2. Sea ice motion measurements from Seasat SAR images

    NASA Technical Reports Server (NTRS)

    Leberl, F.; Raggam, J.; Elachi, C.; Campbell, W. J.

    1983-01-01

    Data from the Seasat synthetic aperture radar (SAR) experiment are analyzed in order to determine the accuracy of this information for mapping the distribution of sea ice and its motion. Data from observations of sea ice in the Beaufort Sea from seven sequential orbits of the satellite were selected to study the capabilities and limitations of spaceborne radar application to sea-ice mapping. Results show that there is no difficulty in identifying homologue ice features on sequential radar images and the accuracy is entirely controlled by the accuracy of the orbit data and the geometric calibration of the sensor. Conventional radargrammetric methods are found to serve well for satellite radar ice mapping, while ground control points can be used to calibrate the ice location and motion measurements in the cases where orbit data and sensor calibration are lacking. The ice motion was determined to be approximately 6.4 + or - 0.5 km/day. In addition, the accuracy of pixel location was found over land areas. The use of one control point in 10,000 sq km produced an accuracy of about + or 150 m, while with a higher density of control points (7 in 1000 sq km) the location accuracy improves to the image resolution of + or - 25 m. This is found to be applicable for both optical and digital data.

  3. Space/Time Statistics of Polar Ice Motion

    NASA Technical Reports Server (NTRS)

    Emery, William J.; Fowler, Charles; Maslanik, James A.

    2003-01-01

    Ice motions have been computed from passive microwave imagery (SMMR and SSM/I) on a daily basis for both Polar Regions. In the Arctic these daily motions have been merged with daily motions from AVHRR imagery and the Arctic buoy program. In the Antarctic motion only from the AVHRR were available for merging with the passive microwave vectors. Long-term means, monthly means and weekly means have all been computed from the resulting 22-year time series of polar ice motion. Papers are in preparation that present the long term (22 year) means, their variability and show animations of the monthly means over this time period for both Polar Regions. These papers will have links to "enhanced objects" that allow the reader to view the animations as part of the paper. The first paper presents the ice motion results from each of the Polar Regions. The second paper looks only at ice motion in the Arctic in order to develop a time series of ice age in the Arctic. Starting with the first full SMMR year in 1979 we keep track of each individual "ice element" (resolution of the sensor) and track it in the subsequent monthly time series. After a year we "age" each "particle" and we thus can keep track of the age of the ice starting in 1979. We keep track of ice age classes between one and five years and thus we can see the evolution of the ice as it ages after the initial 5-year period. This calculation shows how we are losing the older ice through Fram Strait at a rather alarming rate particularly in the past 15 years. This loss of older ice has resulted in an overall decrease in the thickest, oldest ice, which is now limited to a region just north of the Canadian Archipelago with tongues extending out across the pole towards the Siberian Shelf. This loss of old ice is consistent with the effects of global warming which provides the heat needed to melt, move and disperse this oldest ice through Fram Strait. This is the first step in a progression that may eventually open the Arctic

  4. Calibration of Sea Ice Motion from QuikSCAT with those from SSM/I and Buoy

    NASA Technical Reports Server (NTRS)

    Liu, Antony K.; Zhao, Yun-He; Zukor, Dorothy J. (Technical Monitor)

    2001-01-01

    QuikSCAT backscatter and DMSP SSM/I radiance data are used to derive sea ice motion for both the Arctic and Antarctic region using wavelet analysis method. This technique provides improved spatial coverage over the existing array of Arctic Ocean buoys and better temporal resolution over techniques utilizing satellite data from Synthetic Aperture Radar (SAR). Sea ice motion of the Arctic for the period from October 1999 to March 2000 derived from QuikSCAT and SSM/I data agrees well with that derived from ocean buoys quantitatively. Thus the ice tracking results from QuikSCAT and SSM/I are complement to each other, Then, three sea-ice drift daily results from QuikSCAT, SSM/I, and buoy data can be merged to generate composite maps with more complete coverage of sea ice motion than those from single data source. A series of composite sea ice motion maps for December 1999 show that the major circulation patterns of sea ice motion are changing and shifting significantly within every four days and they are dominated by wind forcing. Sea-ice drift in the summer can not be derived from NSCAT and SSM/I data. In later summer of 1999 (in September), however, QuikSCAT data can provide good sea ice motion information in the Arctic. QuiksCAT can also provide at least partial sea ice motion information until June 15 in early summer 1999. For the Antarctic, case study shows that sea ice motion derived from QuikSCAT data is predominantly forced by and is consistent with wind field derived from QuikSCAT around the polar region. These calibrated/validated results indicate that QuikSCAT, SSM/I, and buoy merged daily ice motion are suitably accurate to identify and closely locate sea ice processes, and to improve our current knowledge of sea ice drift and related processes through the data assimilation of ocean-ice numerical model.

  5. Greenland ice sheet motion insensitive to exceptional meltwater forcing.

    PubMed

    Tedstone, Andrew J; Nienow, Peter W; Sole, Andrew J; Mair, Douglas W F; Cowton, Thomas R; Bartholomew, Ian D; King, Matt A

    2013-12-03

    Changes to the dynamics of the Greenland ice sheet can be forced by various mechanisms including surface-melt-induced ice acceleration and oceanic forcing of marine-terminating glaciers. We use observations of ice motion to examine the surface melt-induced dynamic response of a land-terminating outlet glacier in southwest Greenland to the exceptional melting observed in 2012. During summer, meltwater generated on the Greenland ice sheet surface accesses the ice sheet bed, lubricating basal motion and resulting in periods of faster ice flow. However, the net impact of varying meltwater volumes upon seasonal and annual ice flow, and thus sea level rise, remains unclear. We show that two extreme melt events (98.6% of the Greenland ice sheet surface experienced melting on July 12, the most significant melt event since 1889, and 79.2% on July 29) and summer ice sheet runoff ~3.9 σ above the 1958-2011 mean resulted in enhanced summer ice motion relative to the average melt year of 2009. However, despite record summer melting, subsequent reduced winter ice motion resulted in 6% less net annual ice motion in 2012 than in 2009. Our findings suggest that surface melt-induced acceleration of land-terminating regions of the ice sheet will remain insignificant even under extreme melting scenarios.

  6. Sea ice motions in the Central Arctic pack ice as inferred from AVHRR imagery

    NASA Technical Reports Server (NTRS)

    Emery, William; Maslanik, James; Fowler, Charles

    1995-01-01

    Synoptic observations of ice motion in the Arctic Basin are currently limited to those acquired by drifting buoys and, more recently, radar data from ERS-1. Buoys are not uniformly distributed throughout the Arctic, and SAR coverage is currently limited regionally and temporally due to the data volume, swath width, processing requirements, and power needs of the SAR. Additional ice-motion observations that can map ice responses simultaneously over large portions of the Arctic on daily to weekly time intervals are thus needed to augment the SAR and buoys data and to provide an intermediate-scale measure of ice drift suitable for climatological analyses and ice modeling. Principal objectives of this project were to: (1) demonstrate whether sufficient ice features and ice motion existed within the consolidated ice pack to permit motion tracking using AVHRR imagery; (2) determine the limits imposed on AVHRR mapping by cloud cover; and (3) test the applicability of AVHRR-derived motions in studies of ice-atmosphere interactions. Each of these main objectives was addressed. We conclude that AVHRR data, particularly when blended with other available observations, provide a valuable data set for studying sea ice processes. In a follow-on project, we are now extending this work to cover larger areas and to address science questions in more detail.

  7. Satellite radar interferometry for monitoring ice sheet motion: application to an antarctic ice stream.

    PubMed

    Goldstein, R M; Engelhardt, H; Kamb, B; Frolich, R M

    1993-12-03

    Satellite radar interferometry (SRI) provides a sensitive means of monitoring the flow velocities and grounding-line positions of ice streams, which are indicators of response of the ice sheets to climatic change or internal instability. The detection limit is about 1.5 millimeters for vertical motions and about 4 millimeters for horizontal motions in the radar beam direction. The grounding line, detected by tidal motions where the ice goes afloat, can be mapped at a resolution of approximately 0.5 kilometer. The SRI velocities and grounding line of the Rutford Ice Stream, Antarctica, agree fairly well with earlier ground-based data. The combined use of SRI and other satellite methods is expected to provide data that will enhance the understanding of ice stream mechanics and help make possible the prediction of ice sheet behavior.

  8. Ross sea ice motion, area flux, and deformation

    NASA Technical Reports Server (NTRS)

    kwok, Ron

    2005-01-01

    The sea ice motion, area export, and deformation of the Ross Sea ice cover are examined with satellite passive microwave and RADARSAT observations. The record of high-resolution synthetic aperture radar (SAR) data, from 1998 and 2000, allows the estimation of the variability of ice deformation at the small scale (10 km) and to assess the quality of the longer record of passive microwave ice motion. Daily and subdaily deformation fields and RADARSAT imagery highlight the variability of motion and deformation in the Ross Sea. With the passive microwave ice motion, the area export at a flux gate positioned between Cape Adare and Land Bay is estimated. Between 1992 and 2003, a positive trend can be seen in the winter (March-November) ice area flux that has a mean of 990 x 103 km2 and ranges from a low of 600 x 103 km2 in 1992 to a peak of 1600 x 103 km2 in 2001. In the mean, the southern Ross Sea produces almost twice its own area of sea ice during the winter. Cross-gate sea level pressure (SLP) gradients explain 60% of the variance in the ice area flux. A positive trend in this gradient, from reanalysis products, suggests a 'spinup' of the Ross Sea Gyre over the past 12 yr. In both the NCEP-NCAR and ERA-40 surface pressure fields, longer-term trends in this gradient and mean SLP between 1979 and 2002 are explored along with positive anomalies in the monthly cross-gate SLP gradient associated with the positive phase of the Southern Hemisphere annular mode and the extrapolar Southern Oscillation.

  9. Stationary motion stability of monocycle on ice surface

    NASA Astrophysics Data System (ADS)

    Lebedev, Dmitri A.

    2018-05-01

    The problem of the one-wheeled crew motion on smooth horizontal ice is considered. The motion equations are worked out in quasicoordinates in the form of Euler-Lagrange's equations. The variety of stationary motions is defined. Stability of some stationary motions is investigated. Comparison of the results received for a similar model of one-wheeled crew at its motion on the horizontal plane without slipping is carried out.

  10. Sustained High Basal Motion of the Greenland Ice Sheet Revealed by Borehole Deformation

    NASA Technical Reports Server (NTRS)

    Ryser, Claudia; Luthi, Martin P.; Andrews, Lauren C.; Hoffman, Matthew, J.; Catania, Ginny A.; Hawley, Robert L.; Neumann, Thomas A.; Kristensen, Steen S.

    2014-01-01

    Ice deformation and basal motion characterize the dynamical behavior of the Greenland ice sheet (GrIS). We evaluate the contribution of basal motion from ice deformation measurements in boreholes drilled to the bed at two sites in the western marginal zone of the GrIS. We find a sustained high amount of basal motion contribution to surface velocity of 44-73 percent in winter, and up to 90 percent in summer. Measured ice deformation rates show an unexpected variation with depth that can be explained with the help of an ice-flow model as a consequence of stress transfer from slippery to sticky areas. This effect necessitates the use of high-order ice-flow models, not only in regions of fast-flowing ice streams but in all temperate-based areas of the GrIS. The agreement between modeled and measured deformation rates confirms that the recommended values of the temperature-dependent flow rate factor A are a good choice for ice-sheet models.

  11. Exploring the effect of East Antarctic ice mass loss on GIA-induced horizontal bedrock motions

    NASA Astrophysics Data System (ADS)

    Konfal, S. A.; Whitehouse, P. L.; Hermans, T.; van der Wal, W.; Wilson, T. J.; Bevis, M. G.; Kendrick, E. C.; Dalziel, I.; Smalley, R., Jr.

    2017-12-01

    Ice history inputs used in Antarctic models of GIA include major centers of ice mass loss in West Antarctica. In the Transantarctic Mountains (TAM) region spanning the boundary between East and West Antarctica, horizontal crustal motions derived from GPS observations from the Antarctic Network (ANET) component of the Polar Earth Observing Network (POLENET) are towards these West Antarctic ice mass centers, opposite to the pattern of radial crustal motion expected in an unloading scenario. We investigate alternative ice history and earth structure inputs to GIA models in an attempt to reproduce observed crustal motions in the region. The W12 ice history model is altered to create scenarios including ice unloading in the Wilkes Subglacial Basin based on available glaciological records. These altered ice history models, along with the unmodified W12 ice history model, are coupled with 60 radially varying (1D) earth model combinations, including approximations of optimal earth profiles identified in published GIA models. The resulting model-predicted motions utilizing both the modified and unmodified ice history models fit ANET GPS-derived crustal motions in the northern TAM region for a suite of earth model combinations. Further south, where the influence of simulated Wilkes unloading is weakest and West Antarctic unloading is strongest, observed and predicted motions do not agree. The influence of simulated Wilkes ice unloading coupled with laterally heterogeneous earth models is also investigated. The resulting model-predicted motions do not differ significantly between the original W12 and W12 with simulated Wilkes unloading ice histories.

  12. Application of data assimilation methods for analysis and integration of observed and modeled Arctic Sea ice motions

    NASA Astrophysics Data System (ADS)

    Meier, Walter Neil

    This thesis demonstrates the applicability of data assimilation methods to improve observed and modeled ice motion fields and to demonstrate the effects of assimilated motion on Arctic processes important to the global climate and of practical concern to human activities. Ice motions derived from 85 GHz and 37 GHz SSM/I imagery and estimated from two-dimensional dynamic-thermodynamic sea ice models are compared to buoy observations. Mean error, error standard deviation, and correlation with buoys are computed for the model domain. SSM/I motions generally have a lower bias, but higher error standard deviations and lower correlation with buoys than model motions. There are notable variations in the statistics depending on the region of the Arctic, season, and ice characteristics. Assimilation methods are investigated and blending and optimal interpolation strategies are implemented. Blending assimilation improves error statistics slightly, but the effect of the assimilation is reduced due to noise in the SSM/I motions and is thus not an effective method to improve ice motion estimates. However, optimal interpolation assimilation reduces motion errors by 25--30% over modeled motions and 40--45% over SSM/I motions. Optimal interpolation assimilation is beneficial in all regions, seasons and ice conditions, and is particularly effective in regimes where modeled and SSM/I errors are high. Assimilation alters annual average motion fields. Modeled ice products of ice thickness, ice divergence, Fram Strait ice volume export, transport across the Arctic and interannual basin averages are also influenced by assimilated motions. Assimilation improves estimates of pollutant transport and corrects synoptic-scale errors in the motion fields caused by incorrect forcings or errors in model physics. The portability of the optimal interpolation assimilation method is demonstrated by implementing the strategy in an ice thickness distribution (ITD) model. This research presents an

  13. Sub-daily sea ice motion and deformation from RADARSAT observations

    NASA Technical Reports Server (NTRS)

    Kwok, R.; Cunningham, G. F.

    2003-01-01

    We find a persistent level of oscillatory sea ice motion and deformation, superimposed on the large-scale wind-driven field, in May 2002 (spring) and February 2003 (mid-winter), in the high Arctic over a region centered at approx.(85degreeN, 135degreeW). At this latitude, the RADARSAT wide-swath SAR coverage provides 4??equential observations every day, for ice motion retrieval, with a sampling interval at the orbital period of approx. 101 minutes.

  14. Experimental Investigation of the Resistance Performance and Heave and Pitch Motions of Ice-Going Container Ship Under Pack Ice Conditions

    NASA Astrophysics Data System (ADS)

    Guo, Chun-yu; Xie, Chang; Zhang, Jin-zhao; Wang, Shuai; Zhao, Da-gang

    2018-04-01

    In order to analyze the ice-going ship's performance under the pack ice conditions, synthetic ice was introduced into a towing tank. A barrier using floating cylinder in the towing tank was designed to carry out the resistance experiment. The test results indicated that the encountering frequency between the ship model and the pack ice shifts towards a high-velocity point as the concentration of the pack ice increases, and this encountering frequency creates an unstable region of the resistance, and the unstable region shifts to the higher speed with the increasing concentration. The results also showed that for the same speed points, the ratio of the pack ice resistance to the open water resistance increases with the increasing concentration, and for the same concentrations, this ratio decreases as the speed increases. Motion characteristics showed that the mean value of the heave motion increases as the speed increases, and the pitch motion tends to increase with the increasing speed. In addition, the total resistance of the fullscale was predicted.

  15. Use of SAR imagery and other remotely-sensed data in deriving ice information during a severe ice event on the Grand Banks (Newfoundland)

    NASA Technical Reports Server (NTRS)

    Carsey, F. D.; Argus, S. D.

    1988-01-01

    Image data from synthetic aperture radar (SAR) are used to observe an ice compaction event off the East Coast of Newfoundland in spring, 1987. The information developed from sequential SAR observations is shown to do a remarkably effective job of describing the ice conditions; the difficult variable is the ice thickness which is found to be surprisingly large (2 to 4 times the thickness predictable from thermodynamic growth alone). It may be possible to model the ice thickness using SAR-derived ice motion.

  16. Measuring Sea-Ice Motion in the Arctic with Real Time Photogrammetry

    NASA Astrophysics Data System (ADS)

    Brozena, J. M.; Hagen, R. A.; Peters, M. F.; Liang, R.; Ball, D.

    2014-12-01

    The U.S. Naval Research Laboratory, in coordination with other groups, has been collecting sea-ice data in the Arctic off the north coast of Alaska with an airborne system employing a radar altimeter, LiDAR and a photogrammetric camera in an effort to obtain wide swaths of measurements coincident with Cryosat-2 footprints. Because the satellite tracks traverse areas of moving pack ice, precise real-time estimates of the ice motion are needed to fly a survey grid that will yield complete data coverage. This requirement led us to develop a method to find the ice motion from the aircraft during the survey. With the advent of real-time orthographic photogrammetric systems, we developed a system that measures the sea ice motion in-flight, and also permits post-process modeling of sea ice velocities to correct the positioning of radar and LiDAR data. For the 2013 and 2014 field seasons, we used this Real Time Ice Motion Estimation (RTIME) system to determine ice motion using Applanix's Inflight Ortho software with an Applanix DSS439 system. Operationally, a series of photos were taken in the survey area. The aircraft then turned around and took more photos along the same line several minutes later. Orthophotos were generated within minutes of collection and evaluated by custom software to find photo footprints and potential overlap. Overlapping photos were passed to the correlation software, which selects a series of "chips" in the first photo and looks for the best matches in the second photo. The correlation results are then passed to a density-based clustering algorithm to determine the offset of the photo pair. To investigate any systematic errors in the photogrammetry, we flew several flight lines over a fixed point on various headings, over an area of non-moving ice in 2013. The orthophotos were run through the correlation software to find any residual offsets, and run through additional software to measure chip positions and offsets relative to the aircraft

  17. Ionospheric Correction of InSAR for Accurate Ice Motion Mapping at High Latitudes

    NASA Astrophysics Data System (ADS)

    Liao, H.; Meyer, F. J.

    2016-12-01

    Monitoring the motion of the large ice sheets is of great importance for determining ice mass balance and its contribution to sea level rise. Recently the first comprehensive ice motion of the Greenland and the Antarctica have been generated with InSAR. However, these studies have indicated that the performance of InSAR-based ice motion mapping is limited by the presence of the ionosphere. This is particularly true at high latitudes and for low-frequency SAR data. Filter-based and empirical methods (e.g., removing polynomials), which have often been used to mitigate ionospheric effects, are often ineffective in these areas due to the typically strong spatial variability of ionospheric phase delay in high latitudes and due to the risk of removing true deformation signals from the observations. In this study, we will first present an outline of our split-spectrum InSAR-based ionospheric correction approach and particularly highlight how our method improves upon published techniques, such as the multiple sub-band approach to boost estimation accuracy as well as advanced error correction and filtering algorithms. We applied our work flow to a large number of ionosphere-affected dataset over the large ice sheets to estimate the benefit of ionospheric correction on ice motion mapping accuracy. Appropriate test sites over Greenland and the Antarctic have been chosen through cooperation with authors (UW, Ian Joughin) of previous ice motion studies. To demonstrate the magnitude of ionospheric noise and to showcase the performance of ionospheric correction, we will show examples of ionospheric-affected InSAR data and our ionosphere corrected result for comparison in visual. We also compared the corrected phase data to known ice velocity fields quantitatively for the analyzed areas from experts in ice velocity mapping. From our studies we found that ionospheric correction significantly reduces biases in ice velocity estimates and boosts accuracy by a factor that depends on a

  18. Ice motion of the Patagonian Icefields of South America: 1984-2014

    NASA Astrophysics Data System (ADS)

    Mouginot, J.; Rignot, E.

    2015-03-01

    We present the first comprehensive high-resolution mosaic of ice velocity of the Northern (NPI) and Southern Patagonian Icefields (SPI), from multiple synthetic aperture radar and optical data collected between 1984 and 2014. The results reveal that many of the outlet glaciers extend far into the central ice plateaus, which implies that changes in ice dynamics propagate far inside the accumulation area. We report pronounced seasonal to interannual variability of ice motion on Pío XI and Jorge Montt, a doubling in speed of Jorge Montt, a major slow down of O'Higgins, significant fluctuations of Upsala and a deceleration of San Rafael, which illustrate the need for sustained, continuous time series of ice motion to understand the long-term evolution of the rapidly thinning icefields. The velocity product also resolves major ambiguities in glacier drainage in areas of relatively flat topography illustrating the need to combine topography and flow direction to map drainage basins.

  19. Atmospheric and oceanic forcing of Weddell Sea ice motion

    NASA Astrophysics Data System (ADS)

    Kottmeier, C.; Sellmann, Lutz

    1996-09-01

    The data from sea ice buoys, which were deployed during the Winter Weddell Sea Project 1986, the Winter Weddell Gyre Studies 1989 and 1992, the Ice Station Weddell in 1992, the Antarctic Zone Flux Experiment in 1994, and several ship cruises in Austral summers, are uniformly reanalyzed by the same objective methods. Geostrophic winds are derived after matching of the buoy pressure data with the surface pressure fields of the European Centre for Medium Range Weather Forecasts. The ratio between ice drift and geostrophic wind speeds is reduced when winds and currents oppose each other, when the atmospheric surface layer is stably stratified, and when the ice is under pressure near coasts. Over the continental shelves, the spatial inhomogeneity of tidal and inertial motion effectively controls the variability of divergence for periods below 36 hours. Far from coasts, speed ratios, which presumably reflect internal stress variations in the ice cover, are independent of drift divergence on the spatial scale of 100 km. To study basin-scale ice dynamics, all ice drift data are related to the geostrophic winds based on the complex linear model [Thorndike and Colony, 1982] for daily averaged data. The composite patterns of mean ice motion, geostrophic winds, and geostrophic surface currents document cyclonic basin-wide circulations. Geostrophic ocean currents are generally small in the Weddell Sea. Significant features are the coastal current near the southeastern coasts and the bands of larger velocities of ≈6 cm s-1 following the northward and eastward orientation of the continental shelf breaks in the western and northwestern Weddell Sea. In the southwestern Weddell Sea the mean ice drift speed is reduced to less than 0.5% of the geostrophic wind speed and increases rather continuously to 1.5% in the northern, central, and eastern Weddell Sea. The linear model accounts for less than 50% of the total variance of drift speeds in the southwestern Weddell Sea and up to 80

  20. Ice, Ice, Baby!

    NASA Astrophysics Data System (ADS)

    Hamilton, C.

    2008-12-01

    The Center for Remote Sensing of Ice Sheets (CReSIS) has developed an outreach program based on hands-on activities called "Ice, Ice, Baby". These lessons are designed to teach the science principles of displacement, forces of motion, density, and states of matter. These properties are easily taught through the interesting topics of glaciers, icebergs, and sea level rise in K-8 classrooms. The activities are fun, engaging, and simple enough to be used at science fairs and family science nights. Students who have participated in "Ice, Ice, Baby" have successfully taught these to adults and students at informal events. The lessons are based on education standards which are available on our website www.cresis.ku.edu. This presentation will provide information on the activities, survey results from teachers who have used the material, and other suggested material that can be used before and after the activities.

  1. Summer Sea Ice Motion from the 18 GHz Channel of AMSR-E and the Exchange of Sea Ice between the Pacific and Atlantic Sectors

    NASA Technical Reports Server (NTRS)

    Kwok, Ronald

    2008-01-01

    We demonstrate that sea ice motion in summer can be derived reliably from the 18GHz channel of the AMSR-E instrument on the EOS Aqua platform. The improved spatial resolution of this channel with its lower sensitivity to atmospheric moisture seems to have alleviated various issues that have plagued summer motion retrievals from shorter wavelength observations. Two spatial filters improve retrieval quality: one reduces some of the microwave signatures associated with synoptic-scale weather systems and the other removes outliers. Compared with daily buoy drifts, uncertainties in motion are approx.3-4 km/day. Using the daily motion fields, we examine five years of summer ice area exchange between the Pacific and Atlantic sectors of the Arctic Ocean. With the sea-level pressure patterns during the summer of 2006 and 2007 favoring the export of sea ice into the Atlantic Sector, the regional outflow is approx.21% and approx.15% of the total sea ice retreat in the Pacific sector.

  2. Applications of AVHRR-Derived Ice Motions for the Arctic and Antarctic

    NASA Technical Reports Server (NTRS)

    Maslanik, James; Emery, William

    1998-01-01

    Characterization and diagnosis of sea ice/atmosphere/ocean interactions require a synthesis of observations and modeling to identify the key mechanisms controlling the ice/climate system. In this project, we combined product generation, observational analyses, and modeling to define and interpret variability in ice motion in conjunction with thermodynamic factors such as surface temperature and albedo. The goals of this work were twofold: (1) to develop and test procedures to produce an integrated set of polar products from remotely-sensed and supporting data; and (2) to apply these data to understand processes at work in controlling sea ice distribution.

  3. Brief Communication: Mapping river ice using drones and structure from motion

    NASA Astrophysics Data System (ADS)

    Alfredsen, Knut; Haas, Christian; Tuhtan, Jeffrey A.; Zinke, Peggy

    2018-02-01

    In cold climate regions, the formation and break-up of river ice is important for river morphology, winter water supply, and riparian and instream ecology as well as for hydraulic engineering. Data on river ice is therefore significant, both to understand river ice processes directly and to assess ice effects on other systems. Ice measurement is complicated due to difficult site access, the inherent complexity of ice formations, and the potential danger involved in carrying out on-ice measurements. Remote sensing methods are therefore highly useful, and data from satellite-based sensors and, increasingly, aerial and terrestrial imagery are currently applied. Access to low cost drone systems with quality cameras and structure from motion software opens up a new possibility for mapping complex ice formations. Through this method, a georeferenced surface model can be built and data on ice thickness, spatial distribution, and volume can be extracted without accessing the ice, and with considerably fewer measurement efforts compared to traditional surveying methods. A methodology applied to ice mapping is outlined here, and examples are shown of how to successfully derive quantitative data on ice processes.

  4. An Improved Method for Deriving Mountain Glacier Motion by Integrating Information of Intensity and Phase Based on SAR Images

    NASA Astrophysics Data System (ADS)

    Ruan, Z.; Yan, S.; Liu, G.; Guo, H.; LV, M.

    2016-12-01

    Glacier dynamic parameters, such as velocity fields and motion patterns, play a crucial role in the estimation of ice mass balance variations and in the monitoring of glacier-related hazards. Characterized by being independent of cloud cover and solar illumination, synthetic aperture radar (SAR) at long wavelength has provided an invaluable way to measure mountain glacier motion. Compared with optical imagery and in-situ surveys, it has been successfully exploited to detect glacier motion in many previous studies, usually with pixel-tracking (PT), differential interferometric SAR (D-InSAR) and multi-aperture interferometry (MAI) methods. However, the reliability of the extracted glacier velocities heavily depends on complex terrain topography and diverse glacial motion types. D-InSAR and MAI techniques are prone to fail in the case of mountain glaciers because of the steep terrain and their narrow sizes. PT method is considered to be the alternative way, although it is subject to a low accuracy.We propose an integrated strategy based on comprehensive utilization of the phase information (D-InSAR and MAI) and intensity information (PT) of SAR images, which is used to yield an accurate and detailed ice motion pattern for the typical glaciers in the West Kunlun Mountains, China, by fully exploiting the SAR imagery. In order to avoid the error introduced by the motion decomposition operation, the derived ice motion is presented in the SAR imaging dimension composed of the along-track and slant-range directions. The Shuttle Radar Topographic Mission (SRTM) digital elevation model (DEM) at 3 arc-sec resolution is employed to remove and compensate for the topography-related signal in the D-InSAR, MAI, and PT methods. Compared with the traditional SAR-based methods, the proposed approach can determine the ice motion over a widely varying range of ice velocities with a relatively high accuracy. Its capability is proved by the detailed ice displacement pattern with the

  5. String-like collective motion and diffusion in the interfacial region of ice

    NASA Astrophysics Data System (ADS)

    Wang, Xinyi; Tong, Xuhang; Zhang, Hao; Douglas, Jack F.

    2017-11-01

    We investigate collective molecular motion and the self-diffusion coefficient Ds of water molecules in the mobile interfacial layer of the secondary prismatic plane (11 2 ¯ 0 ) of hexagonal ice by molecular dynamics simulation based on the TIP4P/2005 water potential and a metrology of collective motion drawn from the field of glass-forming liquids. The width ξ of the mobile interfacial layer varies from a monolayer to a few nm as the temperature is increased towards the melting temperature Tm, in accordance with recent simulations and many experimental studies, although different experimental methods have differed in their precise estimates of the thickness of this layer. We also find that the dynamics within this mobile interfacial ice layer is "dynamically heterogeneous" in a fashion that has many features in common with glass-forming liquids and the interfacial dynamics of crystalline Ni over the same reduced temperature range, 2/3 < T/Tm < 1. In addition to exhibiting non-Gaussian diffusive transport, decoupling between mass diffusion and the structural relaxation time, and stretched exponential relaxation, we find string-like collective molecular exchange motion in the interfacial zone within the ice interfacial layer and colored noise fluctuations in the mean square molecular atomic displacement 〈u2〉 after a "caging time" of 1 ps, i.e., the Debye-Waller factor. However, while the heterogeneous dynamics of ice is clearly similar in many ways to molecular and colloidal glass-forming materials, we find distinct trends between the diffusion coefficient activation energy Ea for diffusion Ds and the interfacial width ξ from the scale of collective string-like motion L than those found in glass-forming liquids.

  6. Ice stream motion facilitated by a shallow-deforming and accreting bed

    PubMed Central

    Spagnolo, Matteo; Phillips, Emrys; Piotrowski, Jan A.; Rea, Brice R.; Clark, Chris D.; Stokes, Chris R.; Carr, Simon J.; Ely, Jeremy C.; Ribolini, Adriano; Wysota, Wojciech; Szuman, Izabela

    2016-01-01

    Ice streams drain large portions of ice sheets and play a fundamental role in governing their response to atmospheric and oceanic forcing, with implications for sea-level change. The mechanisms that generate ice stream flow remain elusive. Basal sliding and/or bed deformation have been hypothesized, but ice stream beds are largely inaccessible. Here we present a comprehensive, multi-scale study of the internal structure of mega-scale glacial lineations (MSGLs) formed at the bed of a palaeo ice stream. Analyses were undertaken at macro- and microscales, using multiple techniques including X-ray tomography, thin sections and ground penetrating radar (GPR) acquisitions. Results reveal homogeneity in stratigraphy, kinematics, granulometry and petrography. The consistency of the physical and geological properties demonstrates a continuously accreting, shallow-deforming, bed and invariant basal conditions. This implies that ice stream basal motion on soft sediment beds during MSGL formation is accommodated by plastic deformation, facilitated by continuous sediment supply and an inefficient drainage system. PMID:26898399

  7. Land motion due to 20th century mass balance of the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Kjeldsen, K. K.; Khan, S. A.

    2017-12-01

    Quantifying the contribution from ice sheets and glaciers to past sea level change is of great value for understanding sea level projections into the 21st century. However, quantifying and understanding past changes are equally important, in particular understanding the impact in the near-field where the signal is highest. We assess the impact of 20th century mass balance of the Greenland Ice Sheet on land motion using results from Kjeldsen et al, 2015. These results suggest that the ice sheet on average lost a minimum of 75 Gt/yr, but also show that the mass balance was highly spatial- and temporal variable, and moreover that on a centennial time scale changes were driven by a decreasing surface mass balance. Based on preliminary results we discuss land motion during the 20th century due to mass balance changes and the driving components surface mass balance and ice dynamics.

  8. Sea ice motion from low-resolution satellite sensors: An alternative method and its validation in the Arctic

    NASA Astrophysics Data System (ADS)

    Lavergne, T.; Eastwood, S.; Teffah, Z.; Schyberg, H.; Breivik, L.-A.

    2010-10-01

    The retrieval of sea ice motion with the Maximum Cross-Correlation (MCC) method from low-resolution (10-15 km) spaceborne imaging sensors is challenged by a dominating quantization noise as the time span of displacement vectors is shortened. To allow investigating shorter displacements from these instruments, we introduce an alternative sea ice motion tracking algorithm that builds on the MCC method but relies on a continuous optimization step for computing the motion vector. The prime effect of this method is to effectively dampen the quantization noise, an artifact of the MCC. It allows for retrieving spatially smooth 48 h sea ice motion vector fields in the Arctic. Strategies to detect and correct erroneous vectors as well as to optimally merge several polarization channels of a given instrument are also described. A test processing chain is implemented and run with several active and passive microwave imagers (Advanced Microwave Scanning Radiometer-EOS (AMSR-E), Special Sensor Microwave Imager, and Advanced Scatterometer) during three Arctic autumn, winter, and spring seasons. Ice motion vectors are collocated to and compared with GPS positions of in situ drifters. Error statistics are shown to be ranging from 2.5 to 4.5 km (standard deviation for components of the vectors) depending on the sensor, without significant bias. We discuss the relative contribution of measurement and representativeness errors by analyzing monthly validation statistics. The 37 GHz channels of the AMSR-E instrument allow for the best validation statistics. The operational low-resolution sea ice drift product of the EUMETSAT OSI SAF (European Organisation for the Exploitation of Meteorological Satellites Ocean and Sea Ice Satellite Application Facility) is based on the algorithms presented in this paper.

  9. Present-day Antarctic ice mass changes and crustal motion

    NASA Technical Reports Server (NTRS)

    James, Thomas S.; Ivins, Erik R.

    1995-01-01

    The peak vertical velocities predicted by three realistic, but contrasting, present-day scenarios of Antarctic ice sheet mass balance are found to be of the order of several mm/a. One scenario predicts local uplift rates in excess of 5 mm/a. These rates are small compared to the peak Antarctic vertical velocities of the ICE-3G glacial rebound model, which are in excess of 20 mm/a. If the Holocene Antarctic deglaciation history protrayed in ICE-3G is realistic, and if regional upper mantle viscosity is not an order of magnitude below 10(exp 21) Pa(dot)s, then a vast geographical region in West Antarctica is uplifting at a rate that could be detected by a future Global Positioning System (GPS) campaign. While present-day scenarios predict small vertical crustal velocities, their overall continent-ocean mass exchange is large enough to account for a substantial portion of the observed secular polar motion (omega m(arrow dot)) and time-varying zonal gravity field.

  10. Present-day Antarctic Ice Mass Changes and Crustal Motion

    NASA Technical Reports Server (NTRS)

    James, Thomas S.; Ivins, Erik R.

    1995-01-01

    The peak vertical velocities predicted by three realistic, but contrasting, present-day scenarios of Antarctic ice sheet mass balance are found to be of the order of several mm/a. One scenario predicts local uplift rates in excess of 5 mm/a. These rates are small compared to the peak Antarctic vertical velocities of the ICE-3G glacial rebound model, which are in excess of 20 mm/a. If the Holocene Antarctic deglaciation history portrayed in ICE-3G is realistic, and if regional upper mantle viscosity is not an order of magnitude below 10(exp 21) pa s, then a vast geographical region in West Antarctica is uplifting at a rate that could be detected by a future Global Positioning System (GPS) campaign. While present-day scenarios predict small vertical crustal velocities, their overall continent-ocean mass exchange is large enough to account for a substantial portion of the observed secular polar motion ((Omega)m(bar)) and time-varying zonal gravity field J(sub 1).

  11. Wave excited motion of a body floating on water confined between two semi-infinite ice sheets

    NASA Astrophysics Data System (ADS)

    Ren, K.; Wu, G. X.; Thomas, G. A.

    2016-12-01

    The wave excited motion of a body floating on water confined between two semi-infinite ice sheets is investigated. The ice sheet is treated as an elastic thin plate and water is treated as an ideal and incompressible fluid. The linearized velocity potential theory is adopted in the frequency domain and problems are solved by the method of matched eigenfunctions expansion. The fluid domain is divided into sub-regions and in each sub-region the velocity potential is expanded into a series of eigenfunctions satisfying the governing equation and the boundary conditions on horizontal planes including the free surface and ice sheets. Matching is conducted at the interfaces of two neighbouring regions to ensure the continuity of the pressure and velocity, and the unknown coefficients in the expressions are obtained as a result. The behaviour of the added mass and damping coefficients of the floating body with the effect of the ice sheets and the excitation force are analysed. They are found to vary oscillatorily with the wave number, which is different from that for a floating body in the open sea. The motion of the body confined between ice sheets is investigated, in particular its resonant behaviour with extremely large motion found to be possible under certain conditions. Standing waves within the polynya are also observed.

  12. Pilots' Information Needs and Strategies for Operating in Icing Conditions

    NASA Technical Reports Server (NTRS)

    Vigeant-Langlois, Laurence N.; Hansman, R. John

    2003-01-01

    Pilot current use of icing information, pilot encounters and strategies for dealing with in-flight aircraft structural icing situations, and desired attributes of new icing information systems were investigated through a survey of pilots of several operational categories. The survey identified important information elements and fiequently used information paths for obtaining icing-related information. Free- response questions solicited descriptions of significant , icing encounters, and probed key icing-related decision and information criteria. Results indicated the information needs for the horizontal and vertical location of icing conditions and the identification of icing-free zones.

  13. A review of sea ice proxy information from polar ice cores

    NASA Astrophysics Data System (ADS)

    Abram, Nerilie J.; Wolff, Eric W.; Curran, Mark A. J.

    2013-11-01

    Sea ice plays an important role in Earth's climate system. The lack of direct indications of past sea ice coverage, however, means that there is limited knowledge of the sensitivity and rate at which sea ice dynamics are involved in amplifying climate changes. As such, there is a need to develop new proxy records for reconstructing past sea ice conditions. Here we review the advances that have been made in using chemical tracers preserved in ice cores to determine past changes in sea ice cover around Antarctica. Ice core records of sea salt concentration show promise for revealing patterns of sea ice extent particularly over glacial-interglacial time scales. In the coldest climates, however, the sea salt signal appears to lose sensitivity and further work is required to determine how this proxy can be developed into a quantitative sea ice indicator. Methane sulphonic acid (MSA) in near-coastal ice cores has been used to reconstruct quantified changes and interannual variability in sea ice extent over shorter time scales spanning the last ˜160 years, and has potential to be extended to produce records of Antarctic sea ice changes throughout the Holocene. However the MSA ice core proxy also requires careful site assessment and interpretation alongside other palaeoclimate indicators to ensure reconstructions are not biased by non-sea ice factors, and we summarise some recommended strategies for the further development of sea ice histories from ice core MSA. For both proxies the limited information about the production and transfer of chemical markers from the sea ice zone to the Antarctic ice sheets remains an issue that requires further multidisciplinary study. Despite some exploratory and statistical work, the application of either proxy as an indicator of sea ice change in the Arctic also remains largely unknown. As information about these new ice core proxies builds, so too does the potential to develop a more comprehensive understanding of past changes in sea

  14. Simultaneous teleseismic and geodetic observations of the stick-slip motion of an Antarctic ice stream.

    PubMed

    Wiens, Douglas A; Anandakrishnan, Sridhar; Winberry, J Paul; King, Matt A

    2008-06-05

    Long-period seismic sources associated with glacier motion have been recently discovered, and an increase in ice flow over the past decade has been suggested on the basis of secular changes in such measurements. Their significance, however, remains uncertain, as a relationship to ice flow has not been confirmed by direct observation. Here we combine long-period surface-wave observations with simultaneous Global Positioning System measurements of ice displacement to study the tidally modulated stick-slip motion of the Whillans Ice Stream in West Antarctica. The seismic origin time corresponds to slip nucleation at a region of the bed of the Whillans Ice Stream that is likely stronger than in surrounding regions and, thus, acts like an 'asperity' in traditional fault models. In addition to the initial pulse, two seismic arrivals occurring 10-23 minutes later represent stopping phases as the slip terminates at the ice stream edge and the grounding line. Seismic amplitude and average rupture velocity are correlated with tidal amplitude for the different slip events during the spring-to-neap tidal cycle. Although the total seismic moment calculated from ice rigidity, slip displacement, and rupture area is equivalent to an earthquake of moment magnitude seven (M(w) 7), seismic amplitudes are modest (M(s) 3.6-4.2), owing to the source duration of 20-30 minutes. Seismic radiation from ice movement is proportional to the derivative of the moment rate function at periods of 25-100 seconds and very long-period radiation is not detected, owing to the source geometry. Long-period seismic waves are thus useful for detecting and studying sudden ice movements but are insensitive to the total amount of slip.

  15. PU-ICE Summary Information.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, Michael

    The Generator Knowledge Report for the Plutonium Isentropic Compression Experiment Containment Systems (GK Report) provides information for the Plutonium Isentropic Compression Experiment (Pu- ICE) program to support waste management and characterization efforts. Attachment 3-18 presents generator knowledge (GK) information specific to the eighteenth Pu-ICE conducted in August 2015, also known as ‘Shot 18 (Aug 2015) and Pu-ICE Z-2841 (1).’ Shot 18 (Aug 2015) was generated on August 28, 2015 (1). Calculations based on the isotopic content of Shot 18 (Aug 2015) and the measured mass of the containment system demonstrate the post-shot containment system is low-level waste (LLW). Therefore, thismore » containment system will be managed at Sandia National Laboratory/New Mexico (SNL/NM) as LLW. Attachment 3-18 provides documentation of the TRU concentration and documents the concentration of any hazardous constituents.« less

  16. Brief communication: The global signature of post-1900 land ice wastage on vertical land motion

    NASA Astrophysics Data System (ADS)

    Riva, Riccardo E. M.; Frederikse, Thomas; King, Matt A.; Marzeion, Ben; van den Broeke, Michiel R.

    2017-06-01

    Melting glaciers, ice caps and ice sheets have made an important contribution to sea-level rise through the last century. Self-attraction and loading effects driven by shrinking ice masses cause a spatially varying redistribution of ocean waters that affects reconstructions of past sea level from sparse observations. We model the solid-earth response to ice mass changes and find significant vertical deformation signals over large continental areas. We show how deformation rates have been strongly varying through the last century, which implies that they should be properly modelled before interpreting and extrapolating recent observations of vertical land motion and sea-level change.

  17. Simultaneous observations of ice motion, calving and seismicity on the Yahtse Glacier, Alaska. (Invited)

    NASA Astrophysics Data System (ADS)

    Larsen, C. F.; Bartholomaus, T. C.; O'Neel, S.; West, M. E.

    2010-12-01

    We observe ice motion, calving and seismicity simultaneously and with high-resolution on an advancing tidewater glacier in Icy Bay, Alaska. Icy Bay’s tidewater glaciers dominate regional glacier-generated seismicity in Alaska. Yahtse emanates from the St. Elias Range near the Bering-Bagley-Seward-Malaspina Icefield system, the most extensive glacier cover outside the polar regions. Rapid rates of change and fast flow (>16 m/d near the terminus) at Yahtse Glacier provide a direct analog to the disintegrating outlet systems in Greenland. Our field experiment co-locates GPS and seismometers on the surface of the glacier, with a greater network of bedrock seismometers surrounding the glacier. Time-lapse photogrammetry, fjord wave height sensors, and optical survey methods monitor iceberg calving and ice velocity near the terminus. This suite of geophysical instrumentation enables us to characterize glacier motion and geometry changes while concurrently listening for seismic energy release. We are performing a close examination of calving as a seismic source, and the associated mechanisms of energy transfer to seismic waves. Detailed observations of ice motion (GPS and optical surveying), glacier geometry and iceberg calving (direct observations and timelapse photogrammetry) have been made in concert with a passive seismic network. Combined, the observations form the basis of a rigorous analysis exploring the relationship between glacier-generated seismic events and motion, glacier-fiord interactions, calving and hydraulics. Our work is designed to demonstrate the applicability and utility of seismology to study the impact of climate forcing on calving glaciers.

  18. Multiyear ice transport and small scale sea ice deformation near the Alaska coast measured by air-deployable Ice Trackers

    NASA Astrophysics Data System (ADS)

    Mahoney, A. R.; Kasper, J.; Winsor, P.

    2015-12-01

    Highly complex patterns of ice motion and deformation were captured by fifteen satellite-telemetered GPS buoys (known as Ice Trackers) deployed near Barrow, Alaska, in spring 2015. Two pentagonal clusters of buoys were deployed on pack ice by helicopter in the Beaufort Sea between 20 and 80 km offshore. During deployment, ice motion in the study region was effectively zero, but two days later the buoys captured a rapid transport event in which multiyear ice from the Beaufort Sea was flushed into the Chukchi Sea. During this event, westward ice motion began in the Chukchi Sea and propagated eastward. This created new openings in the ice and led to rapid elongation of the clusters as the westernmost buoys accelerated away from their neighbors to the east. The buoys tracked ice velocities of over 1.5 ms-1, with fastest motion occurring closest to the coast indicating strong current shear. Three days later, ice motion reversed and the two clusters became intermingled, rendering divergence calculations based on the area enclosed by clusters invalid. The data show no detectable difference in velocity between first year and multiyear ice floes, but Lagrangian timeseries of SAR imagery centered on each buoy show that first year ice underwent significant small-scale deformation during the event. The five remaining buoys were deployed by local residents on prominent ridges embedded in the landfast ice within 16 km of Barrow in order to track the fate of such features after they detached from the coast. Break-up of the landfast ice took place over a period of several days and, although the buoys each initially followed a similar eastward trajectory around Point Barrow into the Beaufort Sea, they rapidly dispersed over an area more than 50 km across. With rapid environmental and socio-economic change in the Arctic, understanding the complexity of nearshore ice motion is increasingly important for predict future changes in the ice and the tracking ice-related hazards

  19. Solitary Waves of Ice Loss Detected in Greenland Crustal Motion

    NASA Astrophysics Data System (ADS)

    Adhikari, S.; Ivins, E. R.; Larour, E. Y.

    2017-12-01

    The annual cycle and secular trend of Greenland mass loading are well recorded in measurements of solid Earth deformation. While bedrock vertical displacements are in phase with loading as inferred from space observations, horizontal motions have received almost no attention. The horizontal bedrock displacements can potentially track the spatiotemporal detail of mass changes with great fidelity. Our analysis of Greenland crustal motion data reveals that a significant excitation of horizontal amplitudes occurs during the intense Greenland melting. A suite of space geodetic observations and climate reanalysis data cannot explain these large horizontal displacements. We discover that solitary seasonal waves of substantial mass transport traveled through Rink Glacier in 2010 and 2012. We deduce that intense summer melting enhanced either basal lubrication or shear softening, or both, causing the glacier to thin dynamically. The newly routed upstream sublglacial water was likely to be both retarded and inefficient, thus providing a causal mechanism for the prolonged ice transport to continue well into the winter months. As the climate continues to produce increasingly warmer spring and summer, amplified seasonal waves of mass transport may become ever more present in years of future observations. Increased frequency of amplified seasonal mass transport may ultimately strengthen the Greenland's dynamic ice mass loss, a component of the balance that will have important ramifications for sea level rise. This animation shows a solitary wave passing through Rink Glacier, Greenland, in 2012, recorded by the motion of a GPS station (circle with arrow). Darker blue colors within the flow indicate mass loss, red colors show mass gain. The star marks the center of the wave. Credit: NASA/JPL-Caltech

  20. Motion of Major Ice Shelf Fronts in Antarctica from Slant Range Analysis of Radar Altimeter Data, 1978 - 1998

    NASA Technical Reports Server (NTRS)

    Zwally, H. J.; Beckley, M. A.; Brenner, A. C.; Giovinetto, M. B.; Koblinsky, Chester J. (Technical Monitor)

    2001-01-01

    Slant range analysis of radar altimeter data from the Seasat, Geosat, ERS-1 and ERS-2 databases are used to determine barrier location at particular times, and estimate barrier motion (km/yr) for major Antarctic ice shelves. The barrier locations, which are the seaward edges or fronts of floating ice shelves, advance with time as the ice flows from the grounded ice sheets and retreat whenever icebergs calve from the fronts. The analysis covers various multiyear intervals from 1978 to 1998, supplemented by barrier location maps produced elsewhere for 1977 and 1986. Barrier motion is estimated as the ratio between mean annual ice shelf area change for a particular interval, and the length of the discharge periphery. This value is positive if the barrier location progresses seaward, or negative if the barrier location regresses (break-back). Either positive or negative values are lower limit estimates because the method does not detect relatively small area changes due to calving or surge events. The findings are discussed in the context of the three ice shelves that lie in large embayments (the Filchner-Ronne, Amery, and Ross), and marginal ice shelves characterized by relatively short distances between main segments of grounding line and barrier (those in the Queen Maud Land sector between 10.1 deg. W and 32.5 deg. E, and the West and Shackleton ice shelves). All the ice shelves included in the study account for approximately three-fourths of the total ice shelf area of Antarctica, and discharge approximately two-thirds of the total grounded ice area.

  1. Interferometric estimation of ice sheet motion and topography

    NASA Technical Reports Server (NTRS)

    Joughlin, Ian; Kwok, Ron; Fahnestock, Mark; Winebrenner, Dale; Tulaczyk, Slawek; Gogenini, Prasad

    1997-01-01

    With ERS-1/2 satellite radar interferometry, it is possible to make measurements of glacier motion with high accuracy and fine spatial resolution. Interferometric techniques were applied to map velocity and topography for several outlet glaciers in Greenland. For the Humboldt and Petermann glaciers, data from several adjacent tracks were combined to make a wide-area map that includes the enhanced flow regions of both glaciers. The discharge flux of the Petermann glacier upstream of the grounding line was estimated, thereby establishing the potential use of ERS-1/2 interferometric data for monitoring ice-sheet discharge. Interferograms collected along a single track are sensitive to only one component of motion. By utilizing data from ascending and descending passes and by making a surface-parallel flow assumption, it is possible to measure the full three-dimensional vector flow field. The application of this technique for an area on the Ryder glacier is demonstrated. Finally, ERS-1/2 interferograms were used to observe a mini-surge on the Ryder glacier that occurred in autumn of 1995.

  2. Tidally induced variations in vertical and horizontal motion on Rutford Ice Stream, West Antarctica, inferred from remotely sensed observations

    NASA Astrophysics Data System (ADS)

    Minchew, B. M.; Simons, M.; Riel, B.; Milillo, P.

    2017-01-01

    To better understand the influence of stress changes over floating ice shelves on grounded ice streams, we develop a Bayesian method for inferring time-dependent 3-D surface velocity fields from synthetic aperture radar (SAR) and optical remote sensing data. Our specific goal is to observe ocean tide-induced variability in vertical ice shelf position and horizontal ice stream flow. Thus, we consider the special case where observed surface displacement at a given location can be defined by a 3-D secular velocity vector, a family of 3-D sinusoidal functions, and a correction to the digital elevation model used to process the SAR data. Using nearly 9 months of SAR data collected from multiple satellite viewing geometries with the COSMO-SkyMed 4-satellite constellation, we infer the spatiotemporal response of Rutford Ice Stream, West Antarctica, to ocean tidal forcing. Consistent with expected tidal uplift, inferred vertical motion over the ice shelf is dominated by semidiurnal and diurnal tidal constituents. Horizontal ice flow variability, on the other hand, occurs primarily at the fortnightly spring-neap tidal period (Msf). We propose that periodic grounding of the ice shelf is the primary mechanism for translating vertical tidal motion into horizontal flow variability, causing ice flow to accelerate first and most strongly over the ice shelf. Flow variations then propagate through the grounded ice stream at a mean rate of ˜29 km/d and decay quasi-linearly with distance over ˜85 km upstream of the grounding zone.

  3. The global signature of post-1900 land ice wastage on vertical land motion

    NASA Astrophysics Data System (ADS)

    Riva, Riccardo; Frederikse, Thomas; King, Matt; Marzeion, Ben; van den Broeke, Michiel

    2017-04-01

    The amount of ice stored on land has strongly declined during the 20th century, and melt rates showed a significant acceleration over the last two decades. Land ice wastage is well known to be one of the main drivers of global mean sea-level rise, as widely discussed in the literature and reflected in the last assessment report of the IPCC. A less obvious effect of melting land ice is the response of the solid earth to mass redistribution on its surface, which, in the first approximation, results in land uplift where the load reduces (e.g., close to the meltwater sources) and land subsidence where the load increases (e.g., under the rising oceans). This effect is nowadays well known within the cryospheric and sea level communities. However, what is often not realized is that the solid earth response is a truly global effect: a localized mass change does cause a large deformation signal in its proximity, but also causes a change of the position of every other point on the Earth's surface. The theory of the Earth's elastic response to changing surface loads forms the basis of the 'sea-level equation', which allows sea-level fingerprints of continental mass change to be computed. In this paper, we provide the first dedicated analysis of global vertical land motion driven by land ice wastage. By means of established techniques to compute the solid earth elastic response to surface load changes and the most recent datasets of glacier and ice sheet mass change, we show that land ice loss currently leads to vertical deformation rates of several tenths of mm per year at mid-latitudes, especially over the Northern Hemisphere where most sources are located. In combination with the improved accuracy of space geodetic techniques (e.g., Global Navigation Satellite Systems), this means that the effect of ice melt is non-negligible over a large part of the continents. In particular, we show how deformation rates have been strongly varying through the last century, which implies

  4. Multiscale Observation System for Sea Ice Drift and Deformation

    NASA Astrophysics Data System (ADS)

    Lensu, M.; Haapala, J. J.; Heiler, I.; Karvonen, J.; Suominen, M.

    2011-12-01

    The drift and deformation of sea ice cover is most commonly followed from successive SAR images. The time interval between the images is seldom less than one day which provides rather crude approximation of the motion fields as ice can move tens of kilometers per day. This is particulary so from the viewpoint of operative services, seeking to provide real time information for ice navigating ships and other end users, as leads are closed and opened or ridge fields created in time scales of one hour or less. The ice forecast models are in a need of better temporal resolution for ice motion data as well. We present experiences from a multiscale monitoring system set up to the Bay of Bothnia, the northernmost basin of the Baltic Sea. The basin generates difficult ice conditions every winter while the ports are kept open with the help of an icebreaker fleet. The key addition to SAR imagery is the use of coastal radars for the monitoring of coastal ice fields. An independent server is used to tap the radar signal and process it to suit ice monitoring purposes. This is done without interfering the basic use of the radars, the ship traffic monitoring. About 20 images per minute are captured and sent to the headquarters for motion field extraction, website animation and distribution. This provides very detailed real time picture of the ice movement and deformation within 20 km range. The real time movements are followed in addition with ice drifter arrays, and using AIS ship identification data, from which the translation of ship cannels due to ice drift can be found out. To the operative setup is associated an extensive research effort that uses the data for ice drift model enhancement. The Baltic ice models seek to forecast conditions relevant to ship traffic, especilly hazardous ones like severe ice compression. The main missing link here is downscaling, or the relation of local scale ice dynamics and kinematics to the ice model scale behaviour. The data flow when

  5. 3D Volume and Morphology of Perennial Cave Ice and Related Geomorphological Models at Scăriloara Ice Cave, Romania, from Structure from Motion, Ground Penetrating Radar and Total Station Surveys

    NASA Astrophysics Data System (ADS)

    Hubbard, J.; Onac, B. P.; Kruse, S.; Forray, F. L.

    2017-12-01

    Research at Scăriloara Ice Cave has proceeded for over 150 years, primarily driven by the presence and paleoclimatic importance of the large perennial ice block and various ice speleothems located within its galleries. Previous observations of the ice block led to rudimentary volume estimates of 70,000 to 120,000 cubic meters (m3), prospectively placing it as one of the world's largest cave ice deposits. The cave morphology and the surface of the ice block are now recreated in a total station survey-validated 3D model, produced using Structure from Motion (SfM) software. With the total station survey and the novel use of ArcGIS tools, the SfM validation process is drastically simplified to produce a scaled, georeferenced, and photo-texturized 3D model of the cave environment with a root-mean-square error (RMSE) of 0.24 m. Furthermore, ground penetrating radar data was collected and spatially oriented with the total station survey to recreate the ice block basal surface and was combined with the SfM model to create a model of the ice block itself. The resulting ice block model has a volume of over 118,000 m3 with an uncertainty of 9.5%, with additional volumes left un-surveyed. The varying elevation of the ice block basal surface model reflect specific features of the cave roof, such as areas of enlargement, shafts, and potential joints, which offer further validation and inform theories on cave and ice genesis. Specifically, a large depression area was identified as a potential area of initial ice growth. Finally, an ice thickness map was produced that will aid in the designing of future ice coring projects. This methodology presents a powerful means to observe and accurately characterize and measure cave and cave ice morphologies with ease and affordability. Results further establish the significance of Scăriloara's ice block to paleoclimate research, provide insights into cave and ice block genesis, and aid future study design.

  6. Kinesthetic information disambiguates visual motion signals.

    PubMed

    Hu, Bo; Knill, David C

    2010-05-25

    Numerous studies have shown that extra-retinal signals can disambiguate motion information created by movements of the eye or head. We report a new form of cross-modal sensory integration in which the kinesthetic information generated by active hand movements essentially captures ambiguous visual motion information. Several previous studies have shown that active movement can bias observers' percepts of bi-stable stimuli; however, these effects seem to be best explained by attentional mechanisms. We show that kinesthetic information can change an otherwise stable perception of motion, providing evidence of genuine fusion between visual and kinesthetic information. The experiments take advantage of the aperture problem, in which the motion of a one-dimensional grating pattern behind an aperture, while geometrically ambiguous, appears to move stably in the grating normal direction. When actively moving the pattern, however, the observer sees the motion to be in the hand movement direction. Copyright 2010 Elsevier Ltd. All rights reserved.

  7. Climatic impact of glacial cycle polar motion: Coupled oscillations of ice sheet mass and rotation pole position

    USGS Publications Warehouse

    Bills, Bruce G.; James, Thomas S.; Mengel, John G.

    1999-01-01

    Precessional motion of Earth's rotation axis relative to its orbit is a well-known source of long-period climatic variation. It is less well appreciated that growth and decay of polar ice sheets perturb the symmetry of the global mass distribution enough that the geographic location of the rotation axis will change by at least 15 km and possibly as much as 100 km during a single glacial cycle. This motion of the pole will change the seasonal and latitudinal pattern of temperatures. We present calculations, based on a diurnal average energy balance, which compare the summer and winter temperature anomalies due to a 1° decrease in obliquity with those due to a 1° motion of the rotation pole toward Hudson Bay. Both effects result in peak temperature perturbations of about 1° Celsius. The obliquity change primarily influences the amplitude of the seasonal cycle, while the polar motion primarily changes the annual mean temperatures. The polar motion induced temperature anomaly is such that it will act as a powerful negative feedback on ice sheet growth. We also explore the evolution of the coupled system composed of ice sheet mass and pole position. Oscillatory solutions result from the conflicting constraints of rotational and thermal stability. A positive mass anomaly on an otherwise featureless Earth is in rotational equilibrium only at the poles or the equator. The two polar equilibria are rotationally unstable, and the equatorial equilibrium, though rotationally stable, is thermally unstable. We find that with a plausible choice for the strength of coupling between the thermal and rotational systems, relatively modest external forcing can produce significant response at periods of 104–106 years, but it strongly attenuates polar motion at longer periods. We suggest that these coupled oscillations may contribute to the observed dominance of 100 kyr glacial cycles since the mid-Pleistocene and will tend to stabilize geographic patterns that are suitable to

  8. Glacier and Ice Shelves Studies Using Satellite SAR Interferometry

    NASA Technical Reports Server (NTRS)

    Rignot, Eric

    1999-01-01

    Satellite radar interferometry is a powerful technique to measure the surface velocity and topography of glacier ice. On ice shelves, a quadruple difference technique separates tidal motion from the steady creep flow deformation of ice. The results provide a wealth of information about glacier grounding lines , mass fluxes, stability, elastic properties of ice, and tidal regime. The grounding line, which is where the glacier detaches from its bed and becomes afloat, is detected with a precision of a few tens of meters. Combining this information with satellite radar altimetry makes it possible to measure glacier discharge into the ocean and state of mass balance with greater precision than ever before, and in turn provide a significant revision of past estimates of mass balance of the Greenland and Antarctic Ice Sheets. Analysis of creep rates on floating ice permits an estimation of basal melting at the ice shelf underside. The results reveal that the action of ocean water in sub-ice-shelf cavities has been largely underestimated by oceanographic models and is the dominant mode of mass release to the ocean from an ice shelf. Precise mapping of grounding line positions also permits the detection of grounding line migration, which is a fine indicator of glacier change, independent of our knowledge of snow accumulation and ice melting. This technique has been successfully used to detect the rapid retreat of Pine Island Glacier, the largest ice stream in West Antarctica. Finally, tidal motion of ice shelves measured interferometrically provides a modern, synoptic view of the physical processes which govern the formation of tabular icebergs in the Antarctic.

  9. Thon rings from amorphous ice and implications of beam-induced Brownian motion in single particle electron cryo-microscopy.

    PubMed

    McMullan, G; Vinothkumar, K R; Henderson, R

    2015-11-01

    We have recorded dose-fractionated electron cryo-microscope images of thin films of pure flash-frozen amorphous ice and pre-irradiated amorphous carbon on a Falcon II direct electron detector using 300 keV electrons. We observe Thon rings [1] in both the power spectrum of the summed frames and the sum of power spectra from the individual frames. The Thon rings from amorphous carbon images are always more visible in the power spectrum of the summed frames whereas those of amorphous ice are more visible in the sum of power spectra from the individual frames. This difference indicates that while pre-irradiated carbon behaves like a solid during the exposure, amorphous ice behaves like a fluid with the individual water molecules undergoing beam-induced motion. Using the measured variation in the power spectra amplitude with number of electrons per image we deduce that water molecules are randomly displaced by a mean squared distance of ∼1.1 Å(2) for every incident 300 keV e(-)/Å(2). The induced motion leads to an optimal exposure with 300 keV electrons of 4.0 e(-)/Å(2) per image with which to observe Thon rings centred around the strong 3.7 Å scattering peak from amorphous ice. The beam-induced movement of the water molecules generates pseudo-Brownian motion of embedded macromolecules. The resulting blurring of single particle images contributes an additional term, on top of that from radiation damage, to the minimum achievable B-factor for macromolecular structure determination. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  10. Towards breaking the spatial resolution barriers: An optical flow and super-resolution approach for sea ice motion estimation

    NASA Astrophysics Data System (ADS)

    Petrou, Zisis I.; Xian, Yang; Tian, YingLi

    2018-04-01

    Estimation of sea ice motion at fine scales is important for a number of regional and local level applications, including modeling of sea ice distribution, ocean-atmosphere and climate dynamics, as well as safe navigation and sea operations. In this study, we propose an optical flow and super-resolution approach to accurately estimate motion from remote sensing images at a higher spatial resolution than the original data. First, an external example learning-based super-resolution method is applied on the original images to generate higher resolution versions. Then, an optical flow approach is applied on the higher resolution images, identifying sparse correspondences and interpolating them to extract a dense motion vector field with continuous values and subpixel accuracies. Our proposed approach is successfully evaluated on passive microwave, optical, and Synthetic Aperture Radar data, proving appropriate for multi-sensor applications and different spatial resolutions. The approach estimates motion with similar or higher accuracy than the original data, while increasing the spatial resolution of up to eight times. In addition, the adopted optical flow component outperforms a state-of-the-art pattern matching method. Overall, the proposed approach results in accurate motion vectors with unprecedented spatial resolutions of up to 1.5 km for passive microwave data covering the entire Arctic and 20 m for radar data, and proves promising for numerous scientific and operational applications.

  11. Airborne Tomographic Swath Ice Sounding Processing System

    NASA Technical Reports Server (NTRS)

    Wu, Xiaoqing; Rodriquez, Ernesto; Freeman, Anthony; Jezek, Ken

    2013-01-01

    Glaciers and ice sheets modulate global sea level by storing water deposited as snow on the surface, and discharging water back into the ocean through melting. Their physical state can be characterized in terms of their mass balance and dynamics. To estimate the current ice mass balance, and to predict future changes in the motion of the Greenland and Antarctic ice sheets, it is necessary to know the ice sheet thickness and the physical conditions of the ice sheet surface and bed. This information is required at fine resolution and over extensive portions of the ice sheets. A tomographic algorithm has been developed to take raw data collected by a multiple-channel synthetic aperture sounding radar system over a polar ice sheet and convert those data into two-dimensional (2D) ice thickness measurements. Prior to this work, conventional processing techniques only provided one-dimensional ice thickness measurements along profiles.

  12. Modeling of Firn Compaction for Estimating Ice-Sheet Mass Change from Observed Ice-Sheet Elevation Change

    NASA Technical Reports Server (NTRS)

    Li, Jun; Zwally, H. Jay

    2011-01-01

    Changes in ice-sheet surface elevation are caused by a combination of ice-dynamic imbalance, ablation, temporal variations in accumulation rate, firn compaction and underlying bedrock motion. Thus, deriving the rate of ice-sheet mass change from measured surface elevation change requires information on the rate of firn compaction and bedrock motion, which do not involve changes in mass, and requires an appropriate firn density to associate with elevation changes induced by recent accumulation rate variability. We use a 25 year record of surface temperature and a parameterization for accumulation change as a function of temperature to drive a firn compaction model. We apply this formulation to ICESat measurements of surface elevation change at three locations on the Greenland ice sheet in order to separate the accumulation-driven changes from the ice-dynamic/ablation-driven changes, and thus to derive the corresponding mass change. Our calculated densities for the accumulation-driven changes range from 410 to 610 kg/cu m, which along with 900 kg/cu m for the dynamic/ablation-driven changes gives average densities ranging from 680 to 790 kg/cu m. We show that using an average (or "effective") density to convert elevation change to mass change is not valid where the accumulation and the dynamic elevation changes are of opposite sign.

  13. Guide to Sea Ice Information and Sea Ice Data Online - the Sea Ice Knowledge and Data Platform www.meereisportal.de and www.seaiceportal.de

    NASA Astrophysics Data System (ADS)

    Treffeisen, R. E.; Nicolaus, M.; Bartsch, A.; Fritzsch, B.; Grosfeld, K.; Haas, C.; Hendricks, S.; Heygster, G.; Hiller, W.; Krumpen, T.; Melsheimer, C.; Ricker, R.; Weigelt, M.

    2016-12-01

    The combination of multi-disciplinary sea ice science and the rising demand of society for up-to-date information and user customized products places emphasis on creating new ways of communication between science and society. The new knowledge platform is a contribution to the cross-linking of scientifically qualified information on climate change, and focuses on the theme: `sea ice' in both Polar Regions. With this platform, the science opens to these changing societal demands. It is the first comprehensive German speaking knowledge platform on sea ice; the platform went online in 2013. The web site delivers popularized information for the general public as well as scientific data meant primarily for the more expert readers and scientists. It also provides various tools allowing for visitor interaction. The demand for the web site indicates a high level of interest from both the general public and experts. It communicates science-based information to improve awareness and understanding of sea ice related research. The principle concept of the new knowledge platform is based on three pillars: (1) sea ice knowledge and background information, (2) data portal with visualizations, and (3) expert knowledge, latest research results and press releases. Since then, the content and selection of data sets increased and the data portal received increasing attention, also from the international science community. Meanwhile, we are providing near-real time and archived data of many key parameters of sea ice and its snow cover. The data sets result from measurements acquired by various platforms as well as numerical simulations. Satellite observations (e.g., AMSR2, CryoSat-2 and SMOS) of sea ice concentration, freeboard, thickness and drift are available as gridded data sets. Sea ice and snow temperatures and thickness as well as atmospheric parameters are available from autonomous ice-tethered platforms (buoys). Additional ship observations, ice station measurements, and

  14. Effects of auditory information on self-motion perception during simultaneous presentation of visual shearing motion

    PubMed Central

    Tanahashi, Shigehito; Ashihara, Kaoru; Ujike, Hiroyasu

    2015-01-01

    Recent studies have found that self-motion perception induced by simultaneous presentation of visual and auditory motion is facilitated when the directions of visual and auditory motion stimuli are identical. They did not, however, examine possible contributions of auditory motion information for determining direction of self-motion perception. To examine this, a visual stimulus projected on a hemisphere screen and an auditory stimulus presented through headphones were presented separately or simultaneously, depending on experimental conditions. The participant continuously indicated the direction and strength of self-motion during the 130-s experimental trial. When the visual stimulus with a horizontal shearing rotation and the auditory stimulus with a horizontal one-directional rotation were presented simultaneously, the duration and strength of self-motion perceived in the opposite direction of the auditory rotation stimulus were significantly longer and stronger than those perceived in the same direction of the auditory rotation stimulus. However, the auditory stimulus alone could not sufficiently induce self-motion perception, and if it did, its direction was not consistent within each experimental trial. We concluded that auditory motion information can determine perceived direction of self-motion during simultaneous presentation of visual and auditory motion information, at least when visual stimuli moved in opposing directions (around the yaw-axis). We speculate that the contribution of auditory information depends on the plausibility and information balance of visual and auditory information. PMID:26113828

  15. Implications of Contingency Planning Support for Weather and Icing Information

    NASA Technical Reports Server (NTRS)

    Vigeant-Langlois, Laurence; Hansman, R. John, Jr.

    2003-01-01

    A human-centered systems analysis was applied to the adverse aircraft weather encounter problem in order to identify desirable functions of weather and icing information. The importance of contingency planning was identified as emerging from a system safety design methodology as well as from results of other aviation decision-making studies. The relationship between contingency planning support and information on regions clear of adverse weather was investigated in a scenario- based analysis. A rapid prototype example of the key elements in the depiction of icing conditions was developed in a case study, and the implications for the components of the icing information system were articulated.

  16. Observations of the Sea Ice Cover Using Satellite Radar Interferometry

    NASA Technical Reports Server (NTRS)

    Kwok, Ronald

    1995-01-01

    The fringes observed in repeat pass interferograms are expressions of surface relief and relative displacements. The limiting condition in the application of spaceborne radar interferometry to the remote sensing of the sea ice cover is the large magnitude of motion between repeat passes. The translation and rotation of ice floes tend to decorrelate the observations rendering radar interferometry ineffective. In our study, we have located three images in the high Arctic during a period when there was negligible motion between repeat observations. The fringes obtained from these images show a wealth of information about the sea ice cover which is important in atmosphere-ice interactions and sea ice mechanics. These measurements provide the first detailed remote sensing view of the sea ice cover. Ridges can be observed and their heights estimated if the interferometric baseline allows. We have observed ridges with heights greater than 4m. The variability in the phase measurements over an area provides an indication of the large scale roughness. Relative centimetric displacements between rigid ice floes have been observed. We illustrate these observations with examples extracted from the interferograms formed from this set of ERS-1 SAR images.

  17. First Observation of Rock Motion on Racetrack Playa, Death Valley National Park—Role of a Persistent Pool, Sun, Zephyrs, Windowpane Ice, and Tugboats

    NASA Astrophysics Data System (ADS)

    Norris, R. D.; Norris, J. M.

    2014-12-01

    Trails in the mud-cracked surface of Racetrack Playa have been scored by hundreds of rocks up to 320 kg, but the mechanism of movement is debated. In Winter 2013-2014, we observed rocks in motion associated with a transient pool formed by winter precipitation. The pond was 7 cm deep on the southern edge of the playa, tapering to a mud flat to the north. Freezing during cold winter nights formed floating "windowpane" ice 3-5 mm thick. Rocks repeatedly moved on sunny days under light winds of 3-5 m/second, as the ice broke up near midday and was set into motion by wind stress on melt pools and the ice surface. Ice panels shoved rocks along the mud like a tugboat, sometimes forming moving imbricated ice piles upstream of the rocks and in other cases moving faster than the rocks and forming brash-filled leads downstream. GPS units mounted in experimental rocks recorded a creeping pace of 2-6 m/minute, a speed that made it difficult to observe trail formation visually. The 2013-2014 pond formed on November 20-24 and persisted through early February 2014. During this time rocks were observed moving at least five times, and studies of "stiz marks" formed by rocks at the ends of trail segments show that there were likely 3-5 additional move events. Observed travel times ranged from a few seconds to 16 minutes. In one event, two experimental rocks 153 m apart began moving simultaneously and traveled 64.1 and 65.6 m respectively, ultimately moving 157-162 m in subsequent events. Rock motion depends on the creation of winter pools sufficiently deep to allow the formation of floating ice and exposed to the light winds and sun needed for ice breakup. The combination of these events is extremely rare, leading to highly episodic trail formation. Our observations differ from previous hypotheses in that the rocks were moved by thinner ice, at slower speeds, and by lighter winds than predicted.

  18. Collaborations for Arctic Sea Ice Information and Tools

    NASA Astrophysics Data System (ADS)

    Sheffield Guy, L.; Wiggins, H. V.; Turner-Bogren, E. J.; Rich, R. H.

    2017-12-01

    informed decision-making. One of SEARCH's primary science topics is focused on Arctic sea ice; the SEARCH Sea Ice Action Team is leading efforts to advance understanding and awareness of the impacts of Arctic sea-ice loss.

  19. Entrainment, transport and concentration of meteorites in polar ice sheets

    NASA Technical Reports Server (NTRS)

    Drewry, D. J.

    1986-01-01

    Glaciers and ice sheets act as slow-moving conveyancing systems for material added to both their upper and lower surfaces. Because the transit time for most materials is extremely long the ice acts as a major global storage facility. The effects of horizontal and vertical motions on the flow patterns of Antarctic ice sheets are summarized. The determination of the source areas of meteorites and their transport paths is a problem of central importance since it relates not only directly to concentration mechanisms but also to the wider issues in glaciology and meteorites. The ice and snow into which a meteorite falls, and which moves with it to the concentration area, encodes information about the infall area. The principle environmental conditions being former elevation, temperature (also related to elevation), and age of the ice. This encoded information could be used to identify the infall area.

  20. Landfast Sea Ice Breakouts: Stabilizing Ice Features, Oceanic and Atmospheric Forcing at Barrow, Alaska

    NASA Astrophysics Data System (ADS)

    Jones, J.; Eicken, H.; Mahoney, A. R.; MV, R.; Kambhamettu, C.; Fukamachi, Y.; Ohshima, K. I.; George, C.

    2016-12-01

    Landfast sea ice is an important seasonal feature along most Arctic coastlines, such as that of the Chukchi Sea near Barrow, Alaska. Its stability throughout the ice season is determined by many factors but grounded pressure ridges are the primary stabilizing component. Landfast ice breakouts occur when these grounded ridges fail or unground, and previously stationary ice detaches from the coast and drifts away. Using ground-based radar imagery from a coastal ice and ocean observatory at Barrow, we have developed a method to estimate the extent of grounded ridges by tracking ice motion and deformation over the course of winter and have derived ice keel depth and potential for grounding from cumulative convergent ice motion. Estimates of landfast ice grounding strength have been compared to the atmospheric and oceanic stresses acting on the landfast ice before and during breakout events to determine prevailing causes for the failure of stabilizing features. Applying this approach to two case studies in 2008 and 2010, we conclude that a combination of atmospheric and oceanic stresses may have caused the breakouts analyzed in this study, with the latter as the dominant force. Preconditioning (as weakening) of grounded ridges by sea level variations may facilitate failure of the ice sheet leading to breakout events.

  1. Landfast sea ice breakouts: Stabilizing ice features, oceanic and atmospheric forcing at Barrow, Alaska

    NASA Astrophysics Data System (ADS)

    Jones, Joshua; Eicken, Hajo; Mahoney, Andrew; MV, Rohith; Kambhamettu, Chandra; Fukamachi, Yasushi; Ohshima, Kay I.; George, J. Craig

    2016-09-01

    Landfast sea ice is an important seasonal feature along most Arctic coastlines, such as that of the Chukchi Sea near Barrow, Alaska. Its stability throughout the ice season is determined by many factors but grounded pressure ridges are the primary stabilizing component. Landfast ice breakouts occur when these grounded ridges fail or unground, and previously stationary ice detaches from the coast and drifts away. Using ground-based radar imagery from a coastal ice and ocean observatory at Barrow, we have developed a method to estimate the extent of grounded ridges by tracking ice motion and deformation over the course of winter and have derived ice keel depth and potential for grounding from cumulative convergent ice motion. Estimates of landfast ice grounding strength have been compared to the atmospheric and oceanic stresses acting on the landfast ice before and during breakout events to determine prevailing causes for the failure of stabilizing features. Applying this approach to two case studies in 2008 and 2010, we conclude that a combination of atmospheric and oceanic stresses may have caused the breakouts analyzed in this study, with the latter as the dominant force. Preconditioning (as weakening) of grounded ridges by sea level variations may facilitate failure of the ice sheet leading to breakout events.

  2. Operationally Merged Satellite Visible/IR and Passive Microwave Sea Ice Information for Improved Sea Ice Forecasts and Ship Routing

    DTIC Science & Technology

    2015-09-30

    microwave sea ice information for improved sea ice forecasts and ship routing W. Meier NASA Goddard Space Flight Center, Cryospheric Sciences Laboratory...updating the initial ice concentration analysis fields along the ice edge. In the past year, NASA Goddard and NRL have generated a merged 4 km AMSR-E...collaborations of three groups: NASA Goddard Space Flight Center ( NASA /GSFC) in Greenbelt, MD, NRL/Oceanography Division located at Stennis Space Center (SSC

  3. Validation and Interpretation of a new sea ice GlobIce dataset using buoys and the CICE sea ice model

    NASA Astrophysics Data System (ADS)

    Flocco, D.; Laxon, S. W.; Feltham, D. L.; Haas, C.

    2012-04-01

    The GlobIce project has provided high resolution sea ice product datasets over the Arctic derived from SAR data in the ESA archive. The products are validated sea ice motion, deformation and fluxes through straits. GlobIce sea ice velocities, deformation data and sea ice concentration have been validated using buoy data provided by the International Arctic Buoy Program (IABP). Over 95% of the GlobIce and buoy data analysed fell within 5 km of each other. The GlobIce Eulerian image pair product showed a high correlation with buoy data. The sea ice concentration product was compared to SSM/I data. An evaluation of the validity of the GlobICE data will be presented in this work. GlobICE sea ice velocity and deformation were compared with runs of the CICE sea ice model: in particular the mass fluxes through the straits were used to investigate the correlation between the winter behaviour of sea ice and the sea ice state in the following summer.

  4. The statistical properties of sea ice velocity fields

    NASA Astrophysics Data System (ADS)

    Agarwal, S.; Wettlaufer, J. S.

    2016-12-01

    Thorndike and Colony (1982) showed that more than 70% of the variance of the ice motion can be explained by the geostrophic winds. This conclusion was reached by analyzing only 2 years of data. Due to the importance of ice motion in Arctic climate we ask how persistent is such a prediction. In so doing, we study and develop a stochastic model for the Arctic sea ice velocity fields based on the observed sea ice velocity fields from satellites and buoys for the period 1978 - 2012. Having previously found that the Arctic Sea Equivalent Ice Extent (EIE) has a white noise structure on annual to bi-annual time scales (Agarwal et. al. 2012), we assess the connection to ice motion. We divide the Arctic into dynamic and thermodynamic components, with focus on the dynamic part i.e. the velocity fields of sea ice driven by the geostrophic winds over the Arctic. We show (1) the stationarity of the spatial correlation structure of the velocity fields, and (2) the robustness of white noise structure present in the velocity fields on annual to bi-annual time scales, which combine to explain the white noise characteristics of the EIE on these time scales. S. Agarwal, W. Moon and J.S. Wettlaufer, Trends, noise and reentrant long-term persistence in Arctic sea ice, Proc. R. Soc. A, 468, 2416 (2012). A.S. Thorndike and R. Colony, Sea ice motion in response to geostrophic winds, J. Geophys. Res. 87, 5845 (1982).

  5. Sea-ice information co-management: Planning for sustainable multiple uses of ice-covered seas in a rapidly changing Arctic

    NASA Astrophysics Data System (ADS)

    Eicken, H.; Lovecraft, A. L.

    2012-12-01

    A thinner, less extensive and more mobile summer sea-ice cover is a major element and driver of Arctic Ocean change. Declining summer sea ice presents Arctic stakeholders with substantial challenges and opportunities from the perspective of sustainable ocean use and derivation of sea-ice or ecosystem services. Sea-ice use by people and wildlife as well as its role as a major environmental hazard focuses the interests and concerns of indigenous hunters and Arctic coastal communities, resource managers and the maritime industry. In particular, rapid sea-ice change and intensifying offshore industrial activities have raised fundamental questions as to how best to plan for and manage multiple and increasingly overlapping ocean and sea ice uses. The western North American Arctic - a region that has seen some of the greatest changes in ice and ocean conditions in the past three decades anywhere in the North - is the focus of our study. Specifically, we examine the important role that relevant and actionable sea-ice information can play in allowing stakeholders to evaluate risks and reconcile overlapping and potentially competing interests. Our work in coastal Alaska suggests that important prerequisites to address such challenges are common values, complementary bodies of expertise (e.g., local or indigenous knowledge, engineering expertise, environmental science) and a forum for the implementation and evaluation of a sea-ice data and information framework. Alongside the International Polar Year 2007-08 and an associated boost in Arctic Ocean observation programs and platforms, there has been a movement towards new governance bodies that have these qualities and can play a central role in guiding the design and optimization of Arctic observing systems. To help further the development of such forums an evaluation of the density and spatial distribution of institutions, i.e., rule sets that govern ocean use, as well as the use of scenario planning and analysis can serve as

  6. Tidal Modulation of Ice-shelf Flow: a Viscous Model of the Ross Ice Shelf

    NASA Technical Reports Server (NTRS)

    Brunt, Kelly M.; MacAyeal, Douglas R.

    2014-01-01

    Three stations near the calving front of the Ross Ice Shelf, Antarctica, recorded GPS data through a full spring-neap tidal cycle in November 2005. The data revealed a diurnal horizontal motion that varied both along and transverse to the long-term average velocity direction, similar to tidal signals observed in other ice shelves and ice streams. Based on its periodicity, it was hypothesized that the signal represents a flow response of the Ross Ice Shelf to the diurnal tides of the Ross Sea. To assess the influence of the tide on the ice-shelf motion, two hypotheses were developed. The first addressed the direct response of the ice shelf to tidal forcing, such as forces due to sea-surface slopes or forces due to sub-ice-shelf currents. The second involved the indirect response of ice-shelf flow to the tidal signals observed in the ice streams that source the ice shelf. A finite-element model, based on viscous creep flow, was developed to test these hypotheses, but succeeded only in falsifying both hypotheses, i.e. showing that direct tidal effects produce too small a response, and indirect tidal effects produce a response that is not smooth in time. This nullification suggests that a combination of viscous and elastic deformation is required to explain the observations.

  7. Mass balance, meteorological, ice motion, surface altitude, runoff, and ice thickness data at Gulkana Glacier, Alaska, 1995 balance year

    USGS Publications Warehouse

    March, Rod S.

    2000-01-01

    The 1995 measured winter snow, maximum winter snow, net, and annual balances in the Gulkana Glacier basin were evaluated on the basis of meteorological, hydrological, and glaciological data obtained in the basin. Averaged over the glacier, the measured winter snow balance was 0.94 meter on April 19, 1995, 0.6 standard deviation below the long-term average; the maximum winter snow balance, 0.94 meter, was reached on April 25, 1995; the net balance (from September 18, 1994 to August 29, 1995) was -0.70 meter, 0.76 standard deviation below the long-term average. The annual balance (October 1, 1994, to September 30, 1995) was -0.86 meter. Ice-surface motion and altitude changes measured at three index sites document seasonal ice speed and glacier-thickness changes. Annual stream runoff was 2.05 meters averaged over the basin, approximately equal to the long-term average. The 1976 ice-thickness data are reported from a single site near the highest measurement site (180 meters thick) and from two glacier cross profiles near the mid-glacier (270 meters thick on centerline) and low glacier (150 meters thick on centerline) measurement sites. A new area-altitude distribution determined from 1993 photogrammetry is reported. Area-averaged balances are reported from both the 1967 and 1993 area-altitude distribution so the reader may directly see the effect of the update. Briefly, loss of ablation area between 1967 and 1993 results in a larger weighting being applied to data from the upper glacier site and hence, increases calculated area-averaged balances. The balance increase is of the order of 15 percent for net balance.

  8. Greenland deep boreholes inform on sliding and deformation of the basal ice

    NASA Astrophysics Data System (ADS)

    Dahl-Jensen, D.

    2017-12-01

    Repeated measurements of the deformation of the deep boreholes on the Greenland ice sheet informs on the basal sliding, near basal deformation and in general on the horizontal velocity through the ice. Results of the logging of the boreholes at Dye3, GRIP, NGRIP, NEEM and Camp Century through the last 40 years by the Danish Ice and Climate group will be presented and discussed. The results on the flow will be compared with the information on ice properties, impurity load and bedrock entrained material from the deep ice cores and the radio echo sounding images near the drill sites.The results show that the basal movement often happens in an impurity rich zone above the bedrock while pure basal sliding is limited even in the presence of basal water and significant basal melt.Most of the deep ice core sites are located close to ice divides where the surface velocity is limited so significant basal sliding is not expected. Exceptions are the surface velocities at Camp Century and Dye 3, both being 13 m/yr.Finally, the ongoing deep drilling at EGRIP will shortly be presented where we are drilling in the center of the North East Greenland Ice Stream (NEGIS).

  9. Parallel algorithm for determining motion vectors in ice floe images by matching edge features

    NASA Technical Reports Server (NTRS)

    Manohar, M.; Ramapriyan, H. K.; Strong, J. P.

    1988-01-01

    A parallel algorithm is described to determine motion vectors of ice floes using time sequences of images of the Arctic ocean obtained from the Synthetic Aperture Radar (SAR) instrument flown on-board the SEASAT spacecraft. Researchers describe a parallel algorithm which is implemented on the MPP for locating corresponding objects based on their translationally and rotationally invariant features. The algorithm first approximates the edges in the images by polygons or sets of connected straight-line segments. Each such edge structure is then reduced to a seed point. Associated with each seed point are the descriptions (lengths, orientations and sequence numbers) of the lines constituting the corresponding edge structure. A parallel matching algorithm is used to match packed arrays of such descriptions to identify corresponding seed points in the two images. The matching algorithm is designed such that fragmentation and merging of ice floes are taken into account by accepting partial matches. The technique has been demonstrated to work on synthetic test patterns and real image pairs from SEASAT in times ranging from .5 to 0.7 seconds for 128 x 128 images.

  10. Dynamics of hydrogen guests in ice XVII nanopores

    NASA Astrophysics Data System (ADS)

    del Rosso, Leonardo; Celli, Milva; Colognesi, Daniele; Rudić, Svemir; English, Niall J.; Burnham, Christian J.; Ulivi, Lorenzo

    2017-11-01

    The present high-resolution inelastic neutron scattering experiment on ice XVII, containing molecular hydrogen with a different ortho/para ratio, allows one to assign the H2 motion spectral bands to rotational and center-of-mass translational transitions of either para- or ortho-H2. Due to its structure, ice XVII confines H2 molecules to move in spiral channels of molecular size. Reported data demonstrate that H2 molecules rotate almost freely in these nanometric channels, though showing larger perturbation than in clathrate hydrates, and perform a translational motion exhibiting two low-frequency excitations. The agreement between the experimental spectra and the corresponding molecular dynamics results clearly enables one to portray a picture of the confined motions of a hydrophobic guest within a metastable ice framework, i.e., ice XVII.

  11. Ice-Shelf Flexure and Tidal Forcing of Bindschadler Ice Stream, West Antarctica

    NASA Technical Reports Server (NTRS)

    Walker, Ryan T.; Parizek, Bryron R.; Alley, Richard B.; Brunt, Kelly M.; Anandakrishnan, Sridhar

    2014-01-01

    Viscoelastic models of ice-shelf flexure and ice-stream velocity perturbations are combined into a single efficient flowline model to study tidal forcing of grounded ice. The magnitude and timing of icestream response to tidally driven changes in hydrostatic pressure and/or basal drag are found to depend significantly on bed rheology, with only a perfectly plastic bed allowing instantaneous velocity response at the grounding line. The model can reasonably reproduce GPS observations near the grounding zone of Bindschadler Ice Stream (formerly Ice Stream D) on semidiurnal time scales; however, other forcings such as tidally driven ice-shelf slope transverse to the flowline and flexurally driven till deformation must also be considered if diurnal motion is to be matched

  12. Motion cues that make an impression: Predicting perceived personality by minimal motion information.

    PubMed

    Koppensteiner, Markus

    2013-11-01

    The current study presents a methodology to analyze first impressions on the basis of minimal motion information. In order to test the applicability of the approach brief silent video clips of 40 speakers were presented to independent observers (i.e., did not know speakers) who rated them on measures of the Big Five personality traits. The body movements of the speakers were then captured by placing landmarks on the speakers' forehead, one shoulder and the hands. Analysis revealed that observers ascribe extraversion to variations in the speakers' overall activity, emotional stability to the movements' relative velocity, and variation in motion direction to openness. Although ratings of openness and conscientiousness were related to biographical data of the speakers (i.e., measures of career progress), measures of body motion failed to provide similar results. In conclusion, analysis of motion behavior might be done on the basis of a small set of landmarks that seem to capture important parts of relevant nonverbal information.

  13. Tracking and Predicting Fine Scale Sea Ice Motion by Constructing Super-Resolution Images and Fusing Multiple Satellite Sensors

    DTIC Science & Technology

    2013-09-30

    COVERED 00-00-2013 to 00-00-2013 4. TITLE AND SUBTITLE Tracking and Predicting Fine Scale Sea Ice Motion by Constructing Super-Resolution Images...limited, but potentially provide more detailed data. Initial assessments have been made on MODIS data in terms of its suitability. While clouds obscure...estimates. 2 Data from Aqua, Terra, and Suomi NPP satellites were investigated. Aqua and Terra are older satellites that fly the MODIS instrument

  14. Ice Streams as the Critical Link Between the Interior Ice Reservoir of the Antarctic Ice Sheet and the Global Climate System - a WISSARD Perspective (Invited)

    NASA Astrophysics Data System (ADS)

    Tulaczyk, S. M.; Beem, L.; Walter, J. I.; Hossainzadeh, S.; Mankoff, K. D.

    2010-12-01

    Fast flowing ice streams represent crucial features of the Antarctic ice sheet because they provide discharge ‘valves’ for the interior ice reservoir and because their grounding lines are exposed to ocean thermal forcing. Even with no/little topographic control ice flow near the perimeter of a polar ice sheet self-organizes into discrete, fast-flowing ice streams. Within these features basal melting (i.e. lubrication for ice sliding) is sustained through elevated basal shear heating in a region of thin ice that would otherwise be characterized by basal freezing and slow ice motion. Because faster basal ice motion is typically associated with faster subglacial erosion, ice streams tend to localize themselves over time by carving troughs into underlying rocks and sediments. Debris generated by this erosional activity is carried to the continental shelf and/or continental slope where it may be deposited at very high rates, rivaling these associated with deposition by some of the largest rivers on Earth. In terms of their hydrologic and geological functions, Antarctic ice streams play pretty much the same role as rivers do on non-glaciated continents. However, understanding of their dynamics is still quite rudimentary, largely because of the relative inaccessibility of the key basal and marine boundaries of ice streams where pertinent measurements need to be made. The present elevated interest in predicting future contribution of Antarctica to global sea level changes is driving ambitious research programs aimed at scientific exploration of these poorly investigated environments that will play a key role in defining the response of the ice sheet to near future climate changes. We will review one of these programs, the Whillans Ice Stream Subglacial Access Research Drilling (WISSARD) with particular focus on its planned contributions to understanding of ice stream dynamics.

  15. Contrasts in Sea Ice Deformation and Production in the Arctic Seasonal and Perennial Ice Zones

    NASA Technical Reports Server (NTRS)

    Kwok, K.

    2006-01-01

    Four years (1997-2000) of RADARSAT Geophysical Processor System (RGPS) data are used to contrast the sea ice deformation and production regionally, and in the seasonal (SIZ) and perennial (PIZ) ice zones. Ice production is of seasonal ice in openings during the winter. Three-day estimates of these quantities are provided within Lagrangian elements initially 10 km on a side. A distinct seasonal cycle is seen in both zones with these estimates highest in the late fall and with seasonal minimums in the midwinter. Regional divergence over the winter could be up to 30%. Spatially, the highest deformation is seen in the SIZ north of coastal Alaska. Both ice deformation and production are higher in the SIZ: deformation-related ice production in the SIZ (approx.0.5 m) is 1.5-2.3 times that of the PIZ (approx.0.3 m): this is connected to ice strength and thickness. Atmospheric forcing and boundary layer structure contribute to only the seasonal and interannual variability. Seasonal ice growth in ice fractures accounts for approx.25-40% of the total ice production of the Arctic Ocean. Uncertainties in these estimates are discussed. By itself, this deformation-ice production relationship could be considered a negative feedback when thickness is perturbed. However, the overall effect on ice production in the face of increasing seasonal and thinner/weaker ice coverage could be modified by local destabilization of the water column promoting overturning of warmer water due to increased brine rejection; and the upwelling of the pynocline associated with increased occurrence of large shear motion in sea ice. Divergence is shown to be negligibly correlated to cyclonic motion in summer and winter in both ice zones.

  16. Contribution of Deformation to Sea Ice Mass Balance: A Case Study From an N-ICE2015 Storm

    NASA Astrophysics Data System (ADS)

    Itkin, Polona; Spreen, Gunnar; Hvidegaard, Sine Munk; Skourup, Henriette; Wilkinson, Jeremy; Gerland, Sebastian; Granskog, Mats A.

    2018-01-01

    The fastest and most efficient process of gaining sea ice volume is through the mechanical redistribution of mass as a consequence of deformation events. During the ice growth season divergent motion produces leads where new ice grows thermodynamically, while convergent motion fractures the ice and either piles the resultant ice blocks into ridges or rafts one floe under the other. Here we present an exceptionally detailed airborne data set from a 9 km2 area of first year and second year ice in the Transpolar Drift north of Svalbard that allowed us to estimate the redistribution of mass from an observed deformation event. To achieve this level of detail we analyzed changes in sea ice freeboard acquired from two airborne laser scanner surveys just before and right after a deformation event brought on by a passing low-pressure system. A linear regression model based on divergence during this storm can explain 64% of freeboard variability. Over the survey region we estimated that about 1.3% of level sea ice volume was pressed together into deformed ice and the new ice formed in leads in a week after the deformation event would increase the sea ice volume by 0.5%. As the region is impacted by about 15 storms each winter, a simple linear extrapolation would result in about 7% volume increase and 20% deformed ice fraction at the end of the season.

  17. Comparison of Ice-shelf Creep Flow Simulations with Ice-front Motion of Filchner-Ronne Ice Shelf, Antarctica, Detected by SAR Interferometry

    NASA Technical Reports Server (NTRS)

    Hulbe, C. L.; Rignot, E.; MacAyeal, D. R.

    1998-01-01

    Comparison between numerical model ice-shelf flow simulations and synthetic aperture radar (SAR) interferograms is used to study the dynamics at the Hemmen Ice Rise (HIR) and Lassiter Coast (LC) corners of the iceberg-calving front of the Filchner-Ronne Ice Shelf (FRIS).

  18. Information extraction during simultaneous motion processing.

    PubMed

    Rideaux, Reuben; Edwards, Mark

    2014-02-01

    When confronted with multiple moving objects the visual system can process them in two stages: an initial stage in which a limited number of signals are processed in parallel (i.e. simultaneously) followed by a sequential stage. We previously demonstrated that during the simultaneous stage, observers could discriminate between presentations containing up to 5 vs. 6 spatially localized motion signals (Edwards & Rideaux, 2013). Here we investigate what information is actually extracted during the simultaneous stage and whether the simultaneous limit varies with the detail of information extracted. This was achieved by measuring the ability of observers to extract varied information from low detail, i.e. the number of signals presented, to high detail, i.e. the actual directions present and the direction of a specific element, during the simultaneous stage. The results indicate that the resolution of simultaneous processing varies as a function of the information which is extracted, i.e. as the information extraction becomes more detailed, from the number of moving elements to the direction of a specific element, the capacity to process multiple signals is reduced. Thus, when assigning a capacity to simultaneous motion processing, this must be qualified by designating the degree of information extraction. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  19. Seismic Excitation of the Ross Ice Shelf by Whillans Ice Stream Stick-Slip Events

    NASA Astrophysics Data System (ADS)

    Wiens, D.; Pratt, M. J.; Aster, R. C.; Nyblade, A.; Bromirski, P. D.; Stephen, R. A.; Gerstoft, P.; Diez, A.; Cai, C.; Anthony, R. E.; Shore, P.

    2015-12-01

    Rapid variations in the flow rate of upstream glaciers and ice streams may cause significant deformation of ice shelves. The Whillans Ice Stream (WIS) represents an extreme example of rapid variations in velocity, with motions near the grounding line consisting almost entirely of once or twice-daily stick-slip events with a displacement of up to 0.7 m (Winberry et al, 2014). Here we report observations of compressional waves from the WIS slip events propagating hundreds of kilometers across the Ross Ice Shelf (RIS) detected by broadband seismographs deployed on the ice shelf. The WIS slip events consist of rapid basal slip concentrated at three high friction regions (often termed sticky-spots or asperities) within a period of about 25 minutes (Pratt et al, 2014). Compressional displacement pulses from the second and third sticky spots are detected across the entire RIS up to about 600 km away from the source. The largest pulse results from the third sticky spot, located along the northwestern grounding line of the WIS. Propagation velocities across the ice shelf are significantly slower than the P wave velocity in ice, as the long period displacement pulse is also sensitive to velocities of the water and sediments beneath the ice shelf. Particle motions are, to the limit of resolution, entirely within the horizontal plane and roughly radial with respect to the WIS sticky-spots, but show significant complexity, presumably due to differences in ice velocity, thickness, and the thickness of water and sediment beneath. Study of this phenomenon should lead to greater understanding of how the ice shelf responds to sudden forcing around the periphery.

  20. Ocean Tide Influences on the Antarctic and Greenland Ice Sheets

    NASA Astrophysics Data System (ADS)

    Padman, Laurie; Siegfried, Matthew R.; Fricker, Helen A.

    2018-03-01

    Ocean tides are the main source of high-frequency variability in the vertical and horizontal motion of ice sheets near their marine margins. Floating ice shelves, which occupy about three quarters of the perimeter of Antarctica and the termini of four outlet glaciers in northern Greenland, rise and fall in synchrony with the ocean tide. Lateral motion of floating and grounded portions of ice sheets near their marine margins can also include a tidal component. These tide-induced signals provide insight into the processes by which the oceans can affect ice sheet mass balance and dynamics. In this review, we summarize in situ and satellite-based measurements of the tidal response of ice shelves and grounded ice, and spatial variability of ocean tide heights and currents around the ice sheets. We review sensitivity of tide heights and currents as ocean geometry responds to variations in sea level, ice shelf thickness, and ice sheet mass and extent. We then describe coupled ice-ocean models and analytical glacier models that quantify the effect of ocean tides on lower-frequency ice sheet mass loss and motion. We suggest new observations and model developments to improve the representation of tides in coupled models that are used to predict future ice sheet mass loss and the associated contribution to sea level change. The most critical need is for new data to improve maps of bathymetry, ice shelf draft, spatial variability of the drag coefficient at the ice-ocean interface, and higher-resolution models with improved representation of tidal energy sinks.

  1. Submesoscale Sea Ice-Ocean Interactions in Marginal Ice Zones

    NASA Astrophysics Data System (ADS)

    Manucharyan, Georgy E.; Thompson, Andrew F.

    2017-12-01

    Signatures of ocean eddies, fronts, and filaments are commonly observed within marginal ice zones (MIZs) from satellite images of sea ice concentration, and in situ observations via ice-tethered profilers or underice gliders. However, localized and intermittent sea ice heating and advection by ocean eddies are currently not accounted for in climate models and may contribute to their biases and errors in sea ice forecasts. Here, we explore mechanical sea ice interactions with underlying submesoscale ocean turbulence. We demonstrate that the release of potential energy stored in meltwater fronts can lead to energetic submesoscale motions along MIZs with spatial scales O(10 km) and Rossby numbers O(1). In low-wind conditions, cyclonic eddies and filaments efficiently trap the sea ice and advect it over warmer surface ocean waters where it can effectively melt. The horizontal eddy diffusivity of sea ice mass and heat across the MIZ can reach O(200 m2 s-1). Submesoscale ocean variability also induces large vertical velocities (order 10 m d-1) that can bring relatively warm subsurface waters into the mixed layer. The ocean-sea ice heat fluxes are localized over cyclonic eddies and filaments reaching about 100 W m-2. We speculate that these submesoscale-driven intermittent fluxes of heat and sea ice can contribute to the seasonal evolution of MIZs. With the continuing global warming and sea ice thickness reduction in the Arctic Ocean, submesoscale sea ice-ocean processes are expected to become increasingly prominent.

  2. A coupled ice-ocean model of upwelling in the marginal ice zone

    NASA Technical Reports Server (NTRS)

    Roed, L. P.; Obrien, J. J.

    1983-01-01

    A dynamical coupled ice-ocean numerical model for the marginal ice zone (MIZ) is suggested and used to study upwelling dynamics in the MIZ. The nonlinear sea ice model has a variable ice concentration and includes internal ice stress. The model is forced by stresses on the air/ocean and air/ice surfaces. The main coupling between the ice and the ocean is in the form of an interfacial stress on the ice/ocean interface. The ocean model is a linear reduced gravity model. The wind stress exerted by the atmosphere on the ocean is proportional to the fraction of open water, while the interfacial stress ice/ocean is proportional to the concentration of ice. A new mechanism for ice edge upwelling is suggested based on a geostrophic equilibrium solution for the sea ice medium. The upwelling reported in previous models invoking a stationary ice cover is shown to be replaced by a weak downwelling due to the ice motion. Most of the upwelling dynamics can be understood by analysis of the divergence of the across ice edge upper ocean transport. On the basis of numerical model, an analytical model is suggested that reproduces most of the upwelling dynamics of the more complex numerical model.

  3. Advanced ice protection systems test in the NASA Lewis icing research tunnel

    NASA Technical Reports Server (NTRS)

    Bond, Thomas H.; Shin, Jaiwon; Mesander, Geert A.

    1991-01-01

    Tests of eight different deicing systems based on variations of three different technologies were conducted in the NASA Lewis Research Center Icing Research Tunnel (IRT) in June and July 1990. The systems used pneumatic, eddy current repulsive, and electro-expulsive means to shed ice. The tests were conducted on a 1.83 m span, 0.53 m chord NACA 0012 airfoil operated at a 4 degree angle of attack. The models were tested at two temperatures: a glaze condition at minus 3.9 C and a rime condition at minus 17.2 C. The systems were tested through a range of icing spray times and cycling rates. Characterization of the deicers was accomplished by monitoring power consumption, ice shed particle size, and residual ice. High speed video motion analysis was performed to quantify ice particle size.

  4. Export of Ice-Cavity Water from Pine Island Ice Shelf, West Antarctica

    NASA Astrophysics Data System (ADS)

    Thurnherr, Andreas; Jacobs, Stanley; Dutrieux, Pierre

    2013-04-01

    Stability of the West Antarctic Ice Sheet is sensitive to changes in melting at the bottom of floating ice shelves that form the seaward extensions of Antarctic glaciers flowing into the ocean. Not least because observations in the cavities beneath ice shelves are difficult, heat fluxes and melt rates have been inferred from oceanographic measurements obtained near the ice edge (calving fronts). Here, we report on a set of hydrographic and velocity data collected in early 2009 near the calving front of the Amundsen Sea's fast-moving and (until recently) accelerating Pine Island Glacier and its associated ice shelf. CTD profiles collected along the southern half of the meridionally-trending ice front show clear evidence for export of ice-cavity water. That water was carried in the upper ocean along the ice front by a southward current that is possibly related to a striking clockwise gyre that dominated the (summertime) upper-ocean circulation in Pine Island Bay. Signatures of ice-cavity water appear unrelated to current direction along most of the ice front, suggesting that cross-frontal exchange is dominated by temporal variability. However, repeated hydrographic and velocity measurements in a small "ice cove" at the southern end of the calving front show a persistent strong (mean velocity peaking near 0.5 ms-1) outflow of ice-cavity water in the upper 500 m. While surface features (boils) suggested upwelling from deep below the ice shelf, vertical velocity measurements reveal 1) that the mean upwelling within the confines of the cove was too weak to feed the observed outflow, and 2) that large high-frequency internal waves dominated the vertical motion of water inside the cove. These observations indicate that water exchange between the Pine Island Ice Shelf cavity and the Amundsen sea is strongly asymmetric with weak broad inflow at depth and concentrated surface-intensified outflow of melt-laden deep water at the southern edge of the calving front. The lack of

  5. Can GRACE Explain Some of the Main Interannual Polar Motion Signatures?

    NASA Astrophysics Data System (ADS)

    Adhikari, S.; Ivins, E. R.; Larour, E. Y.

    2016-12-01

    GRACE has provided a series of monthly solutions for water mass transport that now span a 14-year period. A natural question to ask is how much of this mass transport information might be used to reconstruct, theoretically, the non-tidal and non-Chandlerian polar motion at interannual time scales. Reconstruction of the pole position at interannual time scales since 2002 has been performed by Chen et al. (2013, GRL) and Adhikari and Ivins (2016, Science Advances). (The main feature of polar motion that has been evolving since the mid 1990's is the increasing dominance of Greenland ice mass loss.) Here we discuss this reconstruction and the level of error that occurs because of missing information about the spherical harmonic degree 1 and 2 terms and the lack of terms associated with angular momentum transfer in the Louiville equations. Using GRACE observations and complementary solutions of self-attraction/loading problem on an elastically compressible rotating earth, we show that ice mass losses from polar ice sheets, and when combined with changes in continental hydrology, explain nearly the entire amplitude (83±23%) and mean directional shift (within 5.9±7.6°) of recently observed eastward polar motion. We also show that decadal scale pole variations are directly linked to global changes in continental hydrology. The energy sources for such motions are likely to be associated with decadal scale ocean and atmospheric oscillations that also drive 20th century continental wet-dry variability. Interannual variability in pole position, therefore, offers a tool for assessing past stability of our climate, and for the future, now faced with an increased intensity in the water cycle and more vulnerable to ice sheet instability. Figure caption: Observed and reconstructed mean annual pole positions with respect to the 2003-2015 mean position. Blue error band is associated with the reconstructed solution; red signifies additional errors that are related to uncertainty in

  6. Motion as a source of environmental information: a fresh view on biological motion computation by insect brains

    PubMed Central

    Egelhaaf, Martin; Kern, Roland; Lindemann, Jens Peter

    2014-01-01

    Despite their miniature brains insects, such as flies, bees and wasps, are able to navigate by highly erobatic flight maneuvers in cluttered environments. They rely on spatial information that is contained in the retinal motion patterns induced on the eyes while moving around (“optic flow”) to accomplish their extraordinary performance. Thereby, they employ an active flight and gaze strategy that separates rapid saccade-like turns from translatory flight phases where the gaze direction is kept largely constant. This behavioral strategy facilitates the processing of environmental information, because information about the distance of the animal to objects in the environment is only contained in the optic flow generated by translatory motion. However, motion detectors as are widespread in biological systems do not represent veridically the velocity of the optic flow vectors, but also reflect textural information about the environment. This characteristic has often been regarded as a limitation of a biological motion detection mechanism. In contrast, we conclude from analyses challenging insect movement detectors with image flow as generated during translatory locomotion through cluttered natural environments that this mechanism represents the contours of nearby objects. Contrast borders are a main carrier of functionally relevant object information in artificial and natural sceneries. The motion detection system thus segregates in a computationally parsimonious way the environment into behaviorally relevant nearby objects and—in many behavioral contexts—less relevant distant structures. Hence, by making use of an active flight and gaze strategy, insects are capable of performing extraordinarily well even with a computationally simple motion detection mechanism. PMID:25389392

  7. Motion as a source of environmental information: a fresh view on biological motion computation by insect brains.

    PubMed

    Egelhaaf, Martin; Kern, Roland; Lindemann, Jens Peter

    2014-01-01

    Despite their miniature brains insects, such as flies, bees and wasps, are able to navigate by highly erobatic flight maneuvers in cluttered environments. They rely on spatial information that is contained in the retinal motion patterns induced on the eyes while moving around ("optic flow") to accomplish their extraordinary performance. Thereby, they employ an active flight and gaze strategy that separates rapid saccade-like turns from translatory flight phases where the gaze direction is kept largely constant. This behavioral strategy facilitates the processing of environmental information, because information about the distance of the animal to objects in the environment is only contained in the optic flow generated by translatory motion. However, motion detectors as are widespread in biological systems do not represent veridically the velocity of the optic flow vectors, but also reflect textural information about the environment. This characteristic has often been regarded as a limitation of a biological motion detection mechanism. In contrast, we conclude from analyses challenging insect movement detectors with image flow as generated during translatory locomotion through cluttered natural environments that this mechanism represents the contours of nearby objects. Contrast borders are a main carrier of functionally relevant object information in artificial and natural sceneries. The motion detection system thus segregates in a computationally parsimonious way the environment into behaviorally relevant nearby objects and-in many behavioral contexts-less relevant distant structures. Hence, by making use of an active flight and gaze strategy, insects are capable of performing extraordinarily well even with a computationally simple motion detection mechanism.

  8. Dynamics of coupled ice-ocean system in the marginal ice zone: Study of the mesoscale processes and of constitutive equations for sea ice

    NASA Technical Reports Server (NTRS)

    Hakkinen, S.

    1984-01-01

    This study is aimed at the modelling of mesoscale processed such as up/downwelling and ice edge eddies in the marginal ice zones. A 2-dimensional coupled ice-ocean model is used for the study. The ice model is coupled to the reduced gravity ocean model (f-plane) through interfacial stresses. The constitutive equations of the sea ice are formulated on the basis of the Reiner-Rivlin theory. The internal ice stresses are important only at high ice concentrations (90-100%), otherwise the ice motion is essentially free drift, where the air-ice stress is balanced by the ice-water stress. The model was tested by studying the upwelling dynamics. Winds parallel to the ice edge with the ice on the right produce upwilling because the air-ice momentum flux is much greater that air-ocean momentum flux, and thus the Ekman transport is bigger under the ice than in the open water. The upwelling simulation was extended to include temporally varying forcing, which was chosen to vary sinusoidally with a 4 day period. This forcing resembles successive cyclone passings. In the model with a thin oceanic upper layer, ice bands were formed.

  9. Disparity, motion, and color information improve gloss constancy performance.

    PubMed

    Wendt, Gunnar; Faul, Franz; Ekroll, Vebjørn; Mausfeld, Rainer

    2010-09-01

    S. Nishida and M. Shinya (1998) found that observers have only a limited ability to recover surface-reflectance properties under changes in surface shape. Our aim in the present study was to investigate how the degree of surface-reflectance constancy depends on the availability of information that may help to infer the reflectance and shape properties of surfaces. To this end, we manipulated the availability of (i) motion-induced information (static vs. dynamic presentation), (ii) disparity information (with the levels "monocular," "surface disparity," and "surface + highlight disparity"), and (iii) color information (grayscale stimuli vs. hue differences between diffuse and specular reflections). The task of the subjects was to match the perceived lightness and glossiness between two surfaces with different spatial frequency and amplitude by manipulating the diffuse component and the exponent of the Phong lighting model in one of the surfaces. Our results indicate that all three types of information improve the constancy of glossiness matches--both in isolation and in combination. The lightness matching data only revealed an influence of motion and color information. Our results indicate, somewhat counterintuitively, that motion information has a detrimental effect on lightness constancy.

  10. Analysis of motion in speed skating

    NASA Astrophysics Data System (ADS)

    Koga, Yuzo; Nishimura, Tetsu; Watanabe, Naoki; Okamoto, Kousuke; Wada, Yuhei

    1997-03-01

    A motion on sports has been studied by many researchers from the view of the medical, psychological and mechanical fields. Here, we try to analyze a speed skating motion dynamically for an aim of performing the best record. As an official competition of speed skating is performed on the round rink, the skating motion must be studied on the three phases, that is, starting phase, straight and curved course skating phase. It is indispensable to have a visual data of a skating motion in order to analyze kinematically. So we took a several subject's skating motion by 8 mm video cameras in order to obtain three dimensional data. As the first step, the movement of the center of gravity of skater (abbreviate to C. G.) is discussed in this paper, because a skating motion is very complicated. The movement of C. G. will give an information of the reaction force to a skate blade from the surface of ice. We discuss the discrepancy of several skating motion by studied subjects. Our final goal is to suggest the best skating form for getting the finest record.

  11. Evidence for ice-ocean albedo feedback in the Arctic Ocean shifting to a seasonal ice zone.

    PubMed

    Kashiwase, Haruhiko; Ohshima, Kay I; Nihashi, Sohey; Eicken, Hajo

    2017-08-15

    Ice-albedo feedback due to the albedo contrast between water and ice is a major factor in seasonal sea ice retreat, and has received increasing attention with the Arctic Ocean shifting to a seasonal ice cover. However, quantitative evaluation of such feedbacks is still insufficient. Here we provide quantitative evidence that heat input through the open water fraction is the primary driver of seasonal and interannual variations in Arctic sea ice retreat. Analyses of satellite data (1979-2014) and a simplified ice-upper ocean coupled model reveal that divergent ice motion in the early melt season triggers large-scale feedback which subsequently amplifies summer sea ice anomalies. The magnitude of divergence controlling the feedback has doubled since 2000 due to a more mobile ice cover, which can partly explain the recent drastic ice reduction in the Arctic Ocean.

  12. Fram Strait sea ice outflow

    NASA Technical Reports Server (NTRS)

    Kwok, R.; Cunningham, G. F.; Pang, S. S.

    2004-01-01

    We summarize 24 years of ice export estimates and examine, over a 9-year record, the associated variability in the time-varying upward-looking sonar (ULS) thickness distributions of the Fram Strait. A more thorough assessment of the PMW (passive microwave) ice motion with 5 years of synthetic aperture radar (SAR)observations shows the uncertainties to be consistent with that found by Kwok and Rothrock [1999], giving greater confidence to the record of ice flux calculations.

  13. Submesoscale sea ice-ocean interactions in marginal ice zones

    NASA Astrophysics Data System (ADS)

    Thompson, A. F.; Manucharyan, G.

    2017-12-01

    Signatures of ocean eddies, fronts and filaments are commonly observed within the marginal ice zones (MIZ) from satellite images of sea ice concentration, in situ observations via ice-tethered profilers or under-ice gliders. Localized and intermittent sea ice heating and advection by ocean eddies are currently not accounted for in climate models and may contribute to their biases and errors in sea ice forecasts. Here, we explore mechanical sea ice interactions with underlying submesoscale ocean turbulence via a suite of numerical simulations. We demonstrate that the release of potential energy stored in meltwater fronts can lead to energetic submesoscale motions along MIZs with sizes O(10 km) and Rossby numbers O(1). In low-wind conditions, cyclonic eddies and filaments efficiently trap the sea ice and advect it over warmer surface ocean waters where it can effectively melt. The horizontal eddy diffusivity of sea ice mass and heat across the MIZ can reach O(200 m2 s-1). Submesoscale ocean variability also induces large vertical velocities (order of 10 m day-1) that can bring relatively warm subsurface waters into the mixed layer. The ocean-sea ice heat fluxes are localized over cyclonic eddies and filaments reaching about 100 W m-2. We speculate that these submesoscale-driven intermittent fluxes of heat and sea ice can potentially contribute to the seasonal evolution of MIZs. With continuing global warming and sea ice thickness reduction in the Arctic Ocean, as well as the large expanse of thin sea ice in the Southern Ocean, submesoscale sea ice-ocean processes are expected to play a significant role in the climate system.

  14. Basal melt beneath whillans ice stream and ice streams A and C

    NASA Technical Reports Server (NTRS)

    Joughin, I.; Teluezyk, S.; Engelhardt, H.

    2002-01-01

    We have used a recently derived map of the velocity of Whillans Ice Stream and Ice Streams A and C to help estimate basal melt. Temperature was modeled with a simple vertical advection-diffusion equation, 'tuned' to match temperature profiles. We find that most of the melt occurs beneath the tributaries where larger basal shear stresses and thicker ice favors greater melt (e.g., 10-20 mm/yr). The occurrence of basal freezing is predicted beneath much of the ice plains of Ice Stream C and Whillans Ice Stream. Modelled melt rates for when Ice Stream C was active suggest there was just enough melt water generated in its tributaries to balance basal freezing on its ice plain. Net basal melt for Whillans Ice Stream is positive due to smaller basal temperature gradients. Modelled temperatures on Whillans Ice Stream, however, were constrained by a single temperature profile at UpB. Basal temperature gradients for Whillans B1 and Ice Stream A may have conditions more similar to those beneath Ice Streams C and D, in which case, there may not be sufficient melt to sustain motion. This would be consistent with the steady deceleration of Whillans stream over the last few decades.

  15. From an 'ice-see' perspective: The current use, potential and limitations of Structure-from-Motion photogrammetry for cryospheric applications

    NASA Astrophysics Data System (ADS)

    Westoby, Matthew; Dunning, Stuart; Allan, Mark; Smith, Mark; Quincey, Duncan; Carrivick, Jonathan; Watson, C. Scott

    2016-04-01

    Structure-from-Motion with Multi-View Stereo (SfM-MVS) methods are rapidly becoming the tool of choice for geoscientists who require a relatively low-cost and viable alternative to traditional surveying technologies for characterising the form and short-term evolution of Earth surface landforms and landscapes. Uptake of SfM-MVS methods by workers in the cryospheric science community has been particularly rapid. The choice to use SfM-MVS has many logistical benefits which promote its adoption in remote glacial environments, namely the requirement for little more than a digital camera and proprietary or open-source software for topographic reconstruction, and a surveyed network of ground control to transform the resultant 3D models into a real-world co-ordinate system, if desired. Optionally, a dedicated aerial photography platform (e.g. kite, blimp, multirotor or fixed-wing UAV) may be used for initial photograph acquisition, which can facilitate glacier-scale observation and analysis. To date, cryospheric applications of SfM-MVS have included: the monitoring of glacier, moraine, and rock glacier movement; the evolution of ice cliffs on debris-covered glaciers; the reconstruction of ice-marginal or deglaciated topography; patch- and moraine-scale sedimentological characterisation; and the characterisation of glacier surfaces to monitor supraglacial drainage development or to inform energy balance modelling. This contribution will showcase existing applications and original data and discuss exciting potential opportunities and current limitations of the SfM-MVS method for the cryospheric sciences.

  16. Faithful conversion of propagating quantum information to mechanical motion

    NASA Astrophysics Data System (ADS)

    Reed, A. P.; Mayer, K. H.; Teufel, J. D.; Burkhart, L. D.; Pfaff, W.; Reagor, M.; Sletten, L.; Ma, X.; Schoelkopf, R. J.; Knill, E.; Lehnert, K. W.

    2017-12-01

    The motion of micrometre-sized mechanical resonators can now be controlled and measured at the fundamental limits imposed by quantum mechanics. These resonators have been prepared in their motional ground state or in squeezed states, measured with quantum-limited precision, and even entangled with microwave fields. Such advances make it possible to process quantum information using the motion of a macroscopic object. In particular, recent experiments have combined mechanical resonators with superconducting quantum circuits to frequency-convert, store and amplify propagating microwave fields. But these systems have not been used to manipulate states that encode quantum bits (qubits), which are required for quantum communication and modular quantum computation. Here we demonstrate the conversion of propagating qubits encoded as superpositions of zero and one photons to the motion of a micromechanical resonator with a fidelity in excess of the classical bound. This ability is necessary for mechanical resonators to convert quantum information between the microwave and optical domains or to act as storage elements in a modular quantum information processor. Additionally, these results are an important step towards testing speculative notions that quantum theory may not be valid for sufficiently massive systems.

  17. Ice in space: An experimental and theoretical investigation. [with applications to comets

    NASA Technical Reports Server (NTRS)

    Patashnick, H.; Rupprecht, G.

    1976-01-01

    The thermodynamics of water ice formation was experimentally investigated under a wide variety of conditions, including those of outer space. This information, and in particular, the lifetime of ice particles as a function of solar distance is an absolute requirement for proper interpretation of photometric profiles of comets. The sublimation of ice particles in a nonequilibrium situation was studied. An oscillating fiber microbalance was used to measure the sublimation rate of water droplets (which were suspended on a long quartz fiber which was oscillating in a vacuum chamber). The influence of particle size, surface temperature, and the index refraction from simulated solar radiation were studied in relation to ice formation. Also examined was the influence of impurities (clathrates) on ice formation. Windows in the vacuum chamber allowed the ice particles to be exposed to a 1 kilowatt xenon arc lamp which was used to simulate solar radiation. Ice is proposed as a possible energy source for comets, as amorphous water ice and ammonia in low temperature and pressure environments demonstrated a clear energy release upon warming. Motion pictures of ice formation were taken and photographs are shown.

  18. Validation and Interpretation of a New Sea Ice Globice Dataset Using Buoys and the Cice Sea Ice Model

    NASA Astrophysics Data System (ADS)

    Flocco, D.; Laxon, S. W.; Feltham, D. L.; Haas, C.

    2011-12-01

    The GlobIce project has provided high resolution sea ice product datasets over the Arctic derived from SAR data in the ESA archive. The products are validated sea ice motion, deformation and fluxes through straits. GlobIce sea ice velocities, deformation data and sea ice concentration have been validated using buoy data provided by the International Arctic Buoy Program (IABP). Over 95% of the GlobIce and buoy data analysed fell within 5 km of each other. The GlobIce Eulerian image pair product showed a high correlation with buoy data. The sea ice concentration product was compared to SSM/I data. An evaluation of the validity of the GlobICE data will be presented in this work. GlobICE sea ice velocity and deformation were compared with runs of the CICE sea ice model: in particular the mass fluxes through the straits were used to investigate the correlation between the winter behaviour of sea ice and the sea ice state in the following summer.

  19. On-Ice Functional Assessment of an Elite Ice Hockey Goaltender After Treatment for Femoroacetabular Impingement.

    PubMed

    Tramer, Joseph S; Deneweth, Jessica M; Whiteside, David; Ross, James R; Bedi, Asheesh; Goulet, Grant C

    2015-01-01

    Femoroacetabular impingement (FAI) is a major cause of performance inhibition in elite-level athletes. The condition is characterized by pain, osseous abnormalities such as an increased alpha angle, and decreased range of motion at the affected hip joint. Arthroscopic surgical decompression is useful in reshaping the joint to alleviate symptoms. Functional kinematic outcomes of sport-specific movements after surgery, however, are presently unknown. The ability of an ice hockey goaltender to execute sport-specific movements would improve after arthroscopic surgery. Clinical research. Level 5. An ice hockey goaltender was evaluated after arthroscopic correction of FAI on the symptomatic hip. Passive range of motion and radiographic parameters were assessed from a computed tomography-derived 3-dimensional model. An on-ice motion capture system was also used to determine peak femoral shock and concurrent hip joint postures during the butterfly and braking movements. Maximum alpha angles were 47° in the surgical and 61° in the nonsurgical hip. Internal rotation range of motion was, on average, 23° greater in the surgically corrected hip compared with contralateral. Peak shock was lower in the surgical hip by 1.39 g and 0.86 g during butterfly and braking, respectively. At peak shock, the surgical hip demonstrated increased flexion, adduction, and internal rotation for both tasks (butterfly, 6.1°, 12.3°, and 30.8°; braking, 14.8°, 19.2°, and 41.4°). On-ice motion capture revealed performance differences between hips after arthroscopic surgery in a hockey goaltender. Range of motion and the patient's subjective assessment of hip function were improved in the surgical hip. While presenting as asymptomatic, it was discovered that the contralateral hip displayed measurements consistent with FAI. Therefore, consideration of preemptive treatment in a presently painless hip may be deemed beneficial for young athletes seeking a long career in sport, and future work is

  20. All-weather ice information system for Alaskan arctic coastal shipping

    NASA Technical Reports Server (NTRS)

    Gedney, R. T.; Jirberg, R. J.; Schertler, R. J.; Mueller, R. A.; Chase, T. L.; Kramarchuk, I.; Nagy, L. A.; Hanlon, R. A.; Mark, H.

    1977-01-01

    A near real-time ice information system designed to aid arctic coast shipping along the Alaskan North Slope is described. The system utilizes a X-band Side Looking Airborne Radar (SLAR) mounted aboard a U.S. Coast Guard HC-130B aircraft. Radar mapping procedures showing the type, areal distribution and concentration of ice cover were developed. In order to guide vessel operational movements, near real-time SLAR image data were transmitted directly from the SLAR aircraft to Barrow, Alaska and the U.S. Coast Guard icebreaker Glacier. In addition, SLAR image data were transmitted in real time to Cleveland, Ohio via the NOAA-GOES Satellite. Radar images developed in Cleveland were subsequently facsimile transmitted to the U.S. Navy's Fleet Weather Facility in Suitland, Maryland for use in ice forecasting and also as a demonstration back to Barrow via the Communications Technology Satellite.

  1. Retrieving Ice Basal Motion Using the Hydrologically Coupled JPL/UCI Ice Sheet System Model (ISSM)

    NASA Astrophysics Data System (ADS)

    Khakbaz, B.; Morlighem, M.; Seroussi, H. L.; Larour, E. Y.

    2011-12-01

    The study of basal sliding in ice sheets requires coupling ice-flow models with subglacial water flow. In fact, subglacial hydrology models can be used to model basal water-pressure explicitly and to generate basal sliding velocities. This study addresses the addition of a thin-film-based subglacial hydrologic module to the Ice Sheet System Model (ISSM) developed by JPL in collaboration with the University of California Irvine (UCI). The subglacial hydrology model follows the study of J. Johnson (2002) who assumed a non-arborscent distributed drainage system in the form of a thin film beneath ice sheets. The differential equation that arises from conservation of mass in the water system is solved numerically with the finite element method in order to obtain the spatial distribution of basal water over the study domain. The resulting sheet water thickness is then used to model the basal water-pressure and subsequently the basal sliding velocity. In this study, an introduction and preliminary results of the subglacial water flow and basal sliding velocity will be presented for the Pine Island Glacier west Antarctica.This work was performed at the California Institute of Technology's Jet Propulsion Laboratory under a contract with the National Aeronautics and Space Administration's Modeling, Analysis and Prediction (MAP) Program.

  2. Processes driving sea ice variability in the Bering Sea in an eddying ocean/sea ice model: Mean seasonal cycle

    NASA Astrophysics Data System (ADS)

    Li, Linghan; McClean, Julie L.; Miller, Arthur J.; Eisenman, Ian; Hendershott, Myrl C.; Papadopoulos, Caroline A.

    2014-12-01

    The seasonal cycle of sea ice variability in the Bering Sea, together with the thermodynamic and dynamic processes that control it, are examined in a fine resolution (1/10°) global coupled ocean/sea-ice model configured in the Community Earth System Model (CESM) framework. The ocean/sea-ice model consists of the Los Alamos National Laboratory Parallel Ocean Program (POP) and the Los Alamos Sea Ice Model (CICE). The model was forced with time-varying reanalysis atmospheric forcing for the time period 1970-1989. This study focuses on the time period 1980-1989. The simulated seasonal-mean fields of sea ice concentration strongly resemble satellite-derived observations, as quantified by root-mean-square errors and pattern correlation coefficients. The sea ice energy budget reveals that the seasonal thermodynamic ice volume changes are dominated by the surface energy flux between the atmosphere and the ice in the northern region and by heat flux from the ocean to the ice along the southern ice edge, especially on the western side. The sea ice force balance analysis shows that sea ice motion is largely associated with wind stress. The force due to divergence of the internal ice stress tensor is large near the land boundaries in the north, and it is small in the central and southern ice-covered region. During winter, which dominates the annual mean, it is found that the simulated sea ice was mainly formed in the northern Bering Sea, with the maximum ice growth rate occurring along the coast due to cold air from northerly winds and ice motion away from the coast. South of St Lawrence Island, winds drive the model sea ice southwestward from the north to the southwestern part of the ice-covered region. Along the ice edge in the western Bering Sea, model sea ice is melted by warm ocean water, which is carried by the simulated Bering Slope Current flowing to the northwest, resulting in the S-shaped asymmetric ice edge. In spring and fall, similar thermodynamic and dynamic

  3. High-density amorphous ice: A path-integral simulation

    NASA Astrophysics Data System (ADS)

    Herrero, Carlos P.; Ramírez, Rafael

    2012-09-01

    Structural and thermodynamic properties of high-density amorphous (HDA) ice have been studied by path-integral molecular dynamics simulations in the isothermal-isobaric ensemble. Interatomic interactions were modeled by using the effective q-TIP4P/F potential for flexible water. Quantum nuclear motion is found to affect several observable properties of the amorphous solid. At low temperature (T = 50 K) the molar volume of HDA ice is found to increase by 6%, and the intramolecular O-H distance rises by 1.4% due to quantum motion. Peaks in the radial distribution function of HDA ice are broadened with respect to their classical expectancy. The bulk modulus, B, is found to rise linearly with the pressure, with a slope ∂B/∂P = 7.1. Our results are compared with those derived earlier from classical and path-integral simulations of HDA ice. We discuss similarities and discrepancies with those earlier simulations.

  4. Assessment of a demonstration project to supply near real-time sea ice information to end users

    NASA Astrophysics Data System (ADS)

    Blackford, C.; Howes, Sally; Whitelaw, Alan S.; Laxon, S.; Mantripp, D.

    1994-12-01

    Sea ice maps are required by a diverse range of users for scientific research and operational activities. Satellite remote sensing provides opportunities for monitoring and producing sea ice maps at a range of scales, in near real time. During March 1994 ESYS Limited and the University College London Mullard Space Science Laboratory (MSSL) operated a sea ice demonstration project to supply near real time sea ice maps in the southern ocean. The sea ice information was derived from a number of data sources: DMSP SSM/I data; ERS-1 SAR and Radar Altimeter fast delivery data; NOAA AVHRR data; and PoSAT-1 imagery. The maps were supplied to three users, two involved in yacht races in the southern ocean and a ship on an oceanographic research cruise in the waters of the Princess Elizabeth Trough region of Antarctica. The demonstration was successful, supplying the users with sea ice information which they had previously not received and combining data from various sources to produce sea ice maps. The demonstration also developed operational skills within ESYS and enabled the transfer of knowledge from MSSL to ESYS.

  5. Arctic sea-ice diffusion from observed and simulated Lagrangian trajectories

    NASA Astrophysics Data System (ADS)

    Rampal, Pierre; Bouillon, Sylvain; Bergh, Jon; Ólason, Einar

    2016-07-01

    We characterize sea-ice drift by applying a Lagrangian diffusion analysis to buoy trajectories from the International Arctic Buoy Programme (IABP) dataset and from two different models: the standalone Lagrangian sea-ice model neXtSIM and the Eulerian coupled ice-ocean model used for the TOPAZ reanalysis. By applying the diffusion analysis to the IABP buoy trajectories over the period 1979-2011, we confirm that sea-ice diffusion follows two distinct regimes (ballistic and Brownian) and we provide accurate values for the diffusivity and integral timescale that could be used in Eulerian or Lagrangian passive tracers models to simulate the transport and diffusion of particles moving with the ice. We discuss how these values are linked to the evolution of the fluctuating displacements variance and how this information could be used to define the size of the search area around the position predicted by the mean drift. By comparing observed and simulated sea-ice trajectories for three consecutive winter seasons (2007-2011), we show how the characteristics of the simulated motion may differ from or agree well with observations. This comparison illustrates the usefulness of first applying a diffusion analysis to evaluate the output of modeling systems that include a sea-ice model before using these in, e.g., oil spill trajectory models or, more generally, to simulate the transport of passive tracers in sea ice.

  6. Programme for Monitoring of the Greenland Ice Sheet - Ice Surface Velocities

    NASA Astrophysics Data System (ADS)

    Andersen, S. B.; Ahlstrom, A. P.; Boncori, J. M.; Dall, J.

    2011-12-01

    In 2007, the Danish Ministry of Climate and Energy launched the Programme for Monitoring of the Greenland Ice Sheet (PROMICE) as an ongoing effort to assess changes in the mass budget of the Greenland Ice Sheet. Iceberg calving from the outlet glaciers of the Greenland Ice Sheet, often termed the ice-dynamic mass loss, is responsible for an important part of the mass loss during the last decade. To quantify this part of the mass loss, we combine airborne surveys yielding ice-sheet thickness along the entire margin, with surface velocities derived from satellite synthetic-aperture radar (SAR). In order to derive ice sheet surface velocities from SAR a processing chain has been developed for GEUS by DTU Space based on a commercial software package distributed by GAMMA Remote Sensing. The processor, named SUSIE (Scripts and Utilities for SAR Ice-motion Estimation), can use both differential SAR interferometry and offset-tracking techniques to measure the horizontal velocity components, providing also an estimate of the corresponding measurement error. So far surface velocities have been derived for a number of sites including Nioghalvfjerdsfjord Glacier, the Kangerlussuaq region, the Nuuk region, Helheim Glacier and Daugaard-Jensen Glacier using data from ERS-1/ERS-2, ENVISAT ASAR and ALOS Palsar. Here we will present these first results.

  7. An on-ice measurement approach to analyse the biomechanics of ice hockey skating.

    PubMed

    Buckeridge, Erica; LeVangie, Marc C; Stetter, Bernd; Nigg, Sandro R; Nigg, Benno M

    2015-01-01

    Skating is a fundamental movement in ice hockey; however little research has been conducted within the field of hockey skating biomechanics due to the difficulties of on-ice data collection. In this study a novel on-ice measurement approach was tested for reliability, and subsequently implemented to investigate the forward skating technique, as well as technique differences across skill levels. Nine high caliber (High) and nine low caliber (Low) hockey players performed 30 m forward skating trials. A 3D accelerometer was mounted to the right skate for the purpose of stride detection, with the 2nd and 6th strides defined as acceleration and steady-state, respectively. The activity of five lower extremity muscles was recorded using surface electromyography. Biaxial electro-goniometers were used to quantify hip and knee angles, and in-skate plantar force was measured using instrumented insoles. Reliability was assessed with the coefficient of multiple correlation, which demonstrated moderate (r>0.65) to excellent (r>0.95) scores across selected measured variables. Greater plantar-flexor muscle activity and hip extension were evident during acceleration strides, while steady state strides exhibited greater knee extensor activity and hip abduction range of motion (p<0.05). High caliber exhibited greater hip range of motion and forefoot force application (p<0.05). The successful implementation of this on-ice mobile measurement approach offers potential for athlete monitoring, biofeedback and training advice.

  8. Assessing deformation and morphology of Arctic landfast sea ice using InSAR to support use and management of coastal ice

    NASA Astrophysics Data System (ADS)

    Dammann, D. O.; Eicken, H.; Meyer, F. J.; Mahoney, A. R.

    2016-12-01

    Arctic landfast sea ice provides important services to people, including coastal communities and industry, as well as key marine biota. In many regions of the Arctic, the use of landfast sea ice by all stakeholders is increasingly limited by reduced stability of the ice cover, which results in more deformation and rougher ice conditions as well as reduced extent and an increased likelihood of detachment from the shore. Here, we use Synthetic Aperture Radar Interferometry (InSAR) to provide stakeholder-relevant data on key constraints for sea ice use, in particular ice stability and morphology, which are difficult to assess using conventional SAR. InSAR has the capability to detect small-scale landfast ice displacements, which are linked to important coastal hazards, including the formation of cracks, ungrounding of ice pressure ridges, and catastrophic breakout events. While InSAR has previously been used to identify the extent of landfast ice and regions of deformation within, quantitative analysis of small-scale ice motion has yet to be thoroughly validated and its potential remains largely underutilized in sea ice science. Using TanDEM-X interferometry, we derive surface displacements of landfast ice within Elson Lagoon near Barrow, Alaska, which we validate using in-situ DGPS data. We then apply an inverse model to estimate rates and patterns of shorefast ice deformation in other regions of landfast ice using interferograms generated with long-temporal baseline L-band ALOS-1 PALSAR-1 data. The model is able to correctly identify deformation modes and proxies for the associated relative internal elastic stress. The derived potential for fractures corresponds well with large-scale sea ice patterns and local in-situ observations. The utility of InSAR to quantify sea ice roughness has also been explored using TanDEM-X bistatic interferometry, which eliminates the effects of temporal changes in the ice cover. The InSAR-derived DEM shows good correlation with a high

  9. Digital-image processing and image analysis of glacier ice

    USGS Publications Warehouse

    Fitzpatrick, Joan J.

    2013-01-01

    This document provides a methodology for extracting grain statistics from 8-bit color and grayscale images of thin sections of glacier ice—a subset of physical properties measurements typically performed on ice cores. This type of analysis is most commonly used to characterize the evolution of ice-crystal size, shape, and intercrystalline spatial relations within a large body of ice sampled by deep ice-coring projects from which paleoclimate records will be developed. However, such information is equally useful for investigating the stress state and physical responses of ice to stresses within a glacier. The methods of analysis presented here go hand-in-hand with the analysis of ice fabrics (aggregate crystal orientations) and, when combined with fabric analysis, provide a powerful method for investigating the dynamic recrystallization and deformation behaviors of bodies of ice in motion. The procedures described in this document compose a step-by-step handbook for a specific image acquisition and data reduction system built in support of U.S. Geological Survey ice analysis projects, but the general methodology can be used with any combination of image processing and analysis software. The specific approaches in this document use the FoveaPro 4 plug-in toolset to Adobe Photoshop CS5 Extended but it can be carried out equally well, though somewhat less conveniently, with software such as the image processing toolbox in MATLAB, Image-Pro Plus, or ImageJ.

  10. Ocean Wave-to-Ice Energy Transfer Determined from Seafloor Pressure and Ice Shelf Seismic Observations

    NASA Astrophysics Data System (ADS)

    Chen, Z.; Bromirski, P. D.; Gerstoft, P.; Stephen, R. A.; Wiens, D.; Aster, R. C.; Nyblade, A.

    2017-12-01

    Ice shelves play an important role in buttressing land ice from reaching the sea, thus restraining the rate of sea level rise. Long-period gravity wave impacts excite vibrations in ice shelves that may trigger tabular iceberg calving and/or ice shelf collapse events. Three kinds of seismic plate waves were continuously observed by broadband seismic arrays on the Ross Ice Shelf (RIS) and on the Pine Island Glacier (PIG) ice shelf: (1) flexural-gravity waves, (2) flexural waves, and (3) extensional Lamb waves, suggesting that all West Antarctic ice shelves are subjected to similar gravity wave excitation. Ocean gravity wave heights were estimated from pressure perturbations recorded by an ocean bottom differential pressure gauge at the RIS front, water depth 741 m, about 8 km north of an on-ice seismic station that is 2 km from the shelf front. Combining the plate wave spectrum, the frequency-dependent energy transmission and reflection at the ice-water interface were determined. In addition, Young's modulus and Poisson's ratio of the RIS are estimated from the plate wave motions, and compared with the widely used values. Quantifying these ice shelf parameters from observations will improve modeling of ice shelf response to ocean forcing, and ice shelf evolution.

  11. A Motion Detection Algorithm Using Local Phase Information

    PubMed Central

    Lazar, Aurel A.; Ukani, Nikul H.; Zhou, Yiyin

    2016-01-01

    Previous research demonstrated that global phase alone can be used to faithfully represent visual scenes. Here we provide a reconstruction algorithm by using only local phase information. We also demonstrate that local phase alone can be effectively used to detect local motion. The local phase-based motion detector is akin to models employed to detect motion in biological vision, for example, the Reichardt detector. The local phase-based motion detection algorithm introduced here consists of two building blocks. The first building block measures/evaluates the temporal change of the local phase. The temporal derivative of the local phase is shown to exhibit the structure of a second order Volterra kernel with two normalized inputs. We provide an efficient, FFT-based algorithm for implementing the change of the local phase. The second processing building block implements the detector; it compares the maximum of the Radon transform of the local phase derivative with a chosen threshold. We demonstrate examples of applying the local phase-based motion detection algorithm on several video sequences. We also show how the locally detected motion can be used for segmenting moving objects in video scenes and compare our local phase-based algorithm to segmentation achieved with a widely used optic flow algorithm. PMID:26880882

  12. Ice shelf structure and stability: Larsen C Ice Shelf, Antarctica

    NASA Astrophysics Data System (ADS)

    Hubbard, B. P.; Ashmore, D.; Bevan, S. L.; Booth, A. D.; Holland, P.; Jansen, D.; Kuipers Munneke, P.; Kulessa, B.; Luckman, A. J.; Sevestre, H.; O'Leary, M.

    2017-12-01

    We report on recent empirical investigations of the internal structure and stability (or otherwise) of Larsen C Ice Shelf (LCIS), Antarctica, focusing on research carried out for the MIDAS research project between 2014 and 2017. Borehole- and surface geophysics-based fieldwork carried out in austral springs 2014 and 2015 revealed that ephemeral surface ponds, preferentially located within the major inlets within the northern sector of the ice shelf, result in the formation of several tens of metres of (relatively dense) subsurface ice within what would otherwise have been a progressively densifying snow and firn column. Five boreholes were drilled throughout the sector and logged by optical televiewer, showing this refrozen ice to be extensive and of variable composition depending on its process of formation. Mapping the depth-distribution of the resulting ice types and associating each with a simple flow-line model of ice motion and accumulation indicates that this area of LCIS has experienced substantial melting for some centuries but that surface ponding has only occurred in recent decades, possibly restricted to the past 20 years. We also present near-surface temperature data that reveal surprising temporal patterns in foehn wind activity and intensity. Finally, we report on the geometrical extension and widening of a rift that was responsible for calving a 5,800 km^2 iceberg from the LCIS in July 2017. The nature of rift propagation through `suture' ice bands, widely considered to be composed of marine ice, is contrasted with that of its propagation through meteoric ice.

  13. Atmospheric forcing of sea ice leads in the Beaufort Sea

    NASA Astrophysics Data System (ADS)

    Lewis, B. J.; Hutchings, J.; Mahoney, A. R.; Shapiro, L. H.

    2016-12-01

    Leads in sea ice play an important role in the polar marine environment where they allow heat and moisture transfer between the oceans and atmosphere and act as travel pathways for both marine mammals and ships. Examining AVHRR thermal imagery of the Beaufort Sea, collected between 1994 and 2010, sea ice leads appear in repeating patterns and locations (Eicken et al 2005). The leads, resolved by AVHRR, are at least 250m wide (Mahoney et al 2012), thus the patterns described are for lead systems that extend up to hundreds of kilometers across the Beaufort Sea. We describe how these patterns are associated with the location of weather systems relative to the coastline. Mean sea level pressure and 10m wind fields from ECMWF ERA-Interim reanalysis are used to identify if particular lead patterns can be uniquely forecast based on the location of weather systems. Ice drift data from the NSIDC's Polar Pathfinder Daily 25km EASE-Grid Sea Ice Motion Vectors indicates the role shear along leads has on the motion of ice in the Beaufort Gyre. Lead formation is driven by 4 main factors: (i) coastal features such as promontories and islands influence the origin of leads by concentrating stresses within the ice pack; (ii) direction of the wind forcing on the ice pack determines the type of fracture, (iii) the location of the anticyclone (or cyclone) center determines the length of the fracture for certain patterns; and (iv) duration of weather conditions affects the width of the ice fracture zones. Movement of the ice pack on the leeward side of leads originating at promontories and islands increases, creating shear zones that control ice transport along the Alaska coast in winter. . Understanding how atmospheric conditions influence the large-scale motion of the ice pack is needed to design models that predict variability of the gyre and export of multi-year ice to lower latitudes.

  14. Ice in Channels and Ice-Rock Mixtures in Valleys on Mars: Did They Slide on Deformable Rubble Like Antarctic Ice Streams?

    NASA Technical Reports Server (NTRS)

    Lucchitta, B. K.

    1997-01-01

    Recent studies of ice streams in Antarctica reveal a mechanism of basal motion that may apply to channels and valleys on Mars. The mechanism is sliding of the ice on deformable water-saturated till under high pore pressures. It has been suggested by Lucchitta that ice was present in outflow channels on Mars and gave them their distinctive morphology. This ice may have slid like Antarctic ice streams but on rubbly weathering products rather than till. However, to generate water under high pore pressures, elevated heatflow is needed to melt the base of the ice. Either volcanism or higher heatflow more than 2 b.y. ago could have raised the basal temperature. Regarding valley networks, higher heatflow 3 b.y. ago could have allowed sliding of ice-saturated overburden at a few hundred meters depth. If the original, pristine valleys were somewhat deeper than they are now, they could have formed by the same mechanism. Recent sounding of the seafloor in front of the Ross Ice Shelf in Antarctica reveals large persistent patterns of longitudinal megaflutes and drumlinoid forms, which bear remarkable resemblance to longitudinal grooves and highly elongated streamlined islands found on the floors of martian outflow channels. The flutes are interpreted to have formed at the base of ice streams during the last glacial advance. Additional similarities of Antarctic ice streams with martian outflow channels are apparent. Antarctic ice streams are 30 to 80 km wide and hundreds of kilometers long. Martian outflow channels have similar dimensions. Ice stream beds are below sea level. Carr determined that most common floor elevations of martian outflow channels lie below martian datum, which may have been close to or below past martian sea levels. The Antarctic ice stream bed gradient is flat and locally may go uphill, and surface slopes are exceptionally. Martian channels also have floor gradients that are shallow or go uphill locally and have low surface gradients. The depth to the

  15. Information fusion performance evaluation for motion imagery data using mutual information: initial study

    NASA Astrophysics Data System (ADS)

    Grieggs, Samuel M.; McLaughlin, Michael J.; Ezekiel, Soundararajan; Blasch, Erik

    2015-06-01

    As technology and internet use grows at an exponential rate, video and imagery data is becoming increasingly important. Various techniques such as Wide Area Motion imagery (WAMI), Full Motion Video (FMV), and Hyperspectral Imaging (HSI) are used to collect motion data and extract relevant information. Detecting and identifying a particular object in imagery data is an important step in understanding visual imagery, such as content-based image retrieval (CBIR). Imagery data is segmented and automatically analyzed and stored in dynamic and robust database. In our system, we seek utilize image fusion methods which require quality metrics. Many Image Fusion (IF) algorithms have been proposed based on different, but only a few metrics, used to evaluate the performance of these algorithms. In this paper, we seek a robust, objective metric to evaluate the performance of IF algorithms which compares the outcome of a given algorithm to ground truth and reports several types of errors. Given the ground truth of a motion imagery data, it will compute detection failure, false alarm, precision and recall metrics, background and foreground regions statistics, as well as split and merge of foreground regions. Using the Structural Similarity Index (SSIM), Mutual Information (MI), and entropy metrics; experimental results demonstrate the effectiveness of the proposed methodology for object detection, activity exploitation, and CBIR.

  16. Ice Particle Impacts on a Flat Plate

    NASA Technical Reports Server (NTRS)

    Vargas, Mario; Ruggeri, Charles; Struk, Peter M.; Pereira, Mike; Revilock, Duane; Kreeger, Richard E.

    2015-01-01

    An experimental study was conducted at the Ballistic Laboratory of NASA Glenn Research Center to study the impact of ice particles on a stationary flat surface target set at 45 degrees with respect to the direction of motion of the impinging particle (Figure 1). The experiment is part of NASA efforts to study the physics involved in engine power-loss events due to ice-crystal ingestion and ice accretion formation inside engines. These events can occur when aircraft encounter high-altitude convective weather.

  17. Processing of angular motion and gravity information through an internal model.

    PubMed

    Laurens, Jean; Straumann, Dominik; Hess, Bernhard J M

    2010-09-01

    The vestibular organs in the base of the skull provide important information about head orientation and motion in space. Previous studies have suggested that both angular velocity information from the semicircular canals and information about head orientation and translation from the otolith organs are centrally processed in an internal model of head motion, using the principles of optimal estimation. This concept has been successfully applied to model behavioral responses to classical vestibular motion paradigms. This study measured the dynamic of the vestibuloocular reflex during postrotatory tilt, tilt during the optokinetic afternystagmus, and off-vertical axis rotation. The influence of otolith signal on the VOR was systematically varied by using a series of tilt angles. We found that the time constants of responses varied almost identically as a function of gravity in these paradigms. We show that Bayesian modeling could predict the experimental results in an accurate and consistent manner. In contrast to other approaches, the Bayesian model also provides a plausible explanation of why these vestibulooculo motor responses occur as a consequence of an internal process of optimal motion estimation.

  18. Data assimilation and prognostic whole ice sheet modelling with the variationally derived, higher order, open source, and fully parallel ice sheet model VarGlaS

    NASA Astrophysics Data System (ADS)

    Brinkerhoff, D. J.; Johnson, J. V.

    2013-07-01

    We introduce a novel, higher order, finite element ice sheet model called VarGlaS (Variational Glacier Simulator), which is built on the finite element framework FEniCS. Contrary to standard procedure in ice sheet modelling, VarGlaS formulates ice sheet motion as the minimization of an energy functional, conferring advantages such as a consistent platform for making numerical approximations, a coherent relationship between motion and heat generation, and implicit boundary treatment. VarGlaS also solves the equations of enthalpy rather than temperature, avoiding the solution of a contact problem. Rather than include a lengthy model spin-up procedure, VarGlaS possesses an automated framework for model inversion. These capabilities are brought to bear on several benchmark problems in ice sheet modelling, as well as a 500 yr simulation of the Greenland ice sheet at high resolution. VarGlaS performs well in benchmarking experiments and, given a constant climate and a 100 yr relaxation period, predicts a mass evolution of the Greenland ice sheet that matches present-day observations of mass loss. VarGlaS predicts a thinning in the interior and thickening of the margins of the ice sheet.

  19. Satellite altimetry in sea ice regions - detecting open water for estimating sea surface heights

    NASA Astrophysics Data System (ADS)

    Müller, Felix L.; Dettmering, Denise; Bosch, Wolfgang

    2017-04-01

    The Greenland Sea and the Farm Strait are transporting sea ice from the central Arctic ocean southwards. They are covered by a dynamic changing sea ice layer with significant influences on the Earth climate system. Between the sea ice there exist various sized open water areas known as leads, straight lined open water areas, and polynyas exhibiting a circular shape. Identifying these leads by satellite altimetry enables the extraction of sea surface height information. Analyzing the radar echoes, also called waveforms, provides information on the surface backscatter characteristics. For example waveforms reflected by calm water have a very narrow and single-peaked shape. Waveforms reflected by sea ice show more variability due to diffuse scattering. Here we analyze altimeter waveforms from different conventional pulse-limited satellite altimeters to separate open water and sea ice waveforms. An unsupervised classification approach employing partitional clustering algorithms such as K-medoids and memory-based classification methods such as K-nearest neighbor is used. The classification is based on six parameters derived from the waveform's shape, for example the maximum power or the peak's width. The open-water detection is quantitatively compared to SAR images processed while accounting for sea ice motion. The classification results are used to derive information about the temporal evolution of sea ice extent and sea surface heights. They allow to provide evidence on climate change relevant influences as for example Arctic sea level rise due to enhanced melting rates of Greenland's glaciers and an increasing fresh water influx into the Arctic ocean. Additionally, the sea ice cover extent analyzed over a long-time period provides an important indicator for a globally changing climate system.

  20. An On-Ice Measurement Approach to Analyse the Biomechanics of Ice Hockey Skating

    PubMed Central

    Buckeridge, Erica; LeVangie, Marc C.; Stetter, Bernd; Nigg, Sandro R.; Nigg, Benno M.

    2015-01-01

    Skating is a fundamental movement in ice hockey; however little research has been conducted within the field of hockey skating biomechanics due to the difficulties of on-ice data collection. In this study a novel on-ice measurement approach was tested for reliability, and subsequently implemented to investigate the forward skating technique, as well as technique differences across skill levels. Nine high caliber (High) and nine low caliber (Low) hockey players performed 30m forward skating trials. A 3D accelerometer was mounted to the right skate for the purpose of stride detection, with the 2nd and 6th strides defined as acceleration and steady-state, respectively. The activity of five lower extremity muscles was recorded using surface electromyography. Biaxial electro-goniometers were used to quantify hip and knee angles, and in-skate plantar force was measured using instrumented insoles. Reliability was assessed with the coefficient of multiple correlation, which demonstrated moderate (r>0.65) to excellent (r>0.95) scores across selected measured variables. Greater plantar-flexor muscle activity and hip extension were evident during acceleration strides, while steady state strides exhibited greater knee extensor activity and hip abduction range of motion (p<0.05). High caliber exhibited greater hip range of motion and forefoot force application (p<0.05). The successful implementation of this on-ice mobile measurement approach offers potential for athlete monitoring, biofeedback and training advice. PMID:25973775

  1. Fram Strait: Atmospheric Forcing of The Sea Ice Flux

    NASA Astrophysics Data System (ADS)

    Widell, K.; Østerhus, S.; Gammelsrød, T.

    Measuring the magnitude and variability of the ice and freshwater flux through Fram Strait is an important element in understanding climate variability in the Arctic. Since the major part of the ice and freshwater that leaves the Arctic passes through Fram Strait, this passage can be considered a key area for estimating the net ice production in the Arctic Ocean. In 1990, the Norwegian Polar Institute (NPI) started a monitoring program in the strait, most years by means of two moorings with Upward Looking Sonars (ULS) measuring ice draft. From 1995 and on, these moorings were also equipped with Doppler Current Meters (DCM) to measure the ice velocity. These measurements give an opportunity to investigate the different forces affecting ice motion in the strait. Maximum correlation coefficient between atmospheric sea level pressure (from NCEP/NCAR reanalysed data) and southward ice velocity is found when using the cross strait pressure difference along 80N between 10W and 5E (R = 0.72) consider- ing monthly means. Subtracting current velocity at 50 m depth (also measured by the DCM) from ice velocity improves the correlation to R = 0.84. This gives insight in the relative importance of current and wind on the ice motion, and indicates that pressure data can be used to make fairly good estimates of the ice velocity in the strait. In combination with data on ice thickness and ice stream width, this result is used to calculate the ice volume transport. By making assumptions on the parameters in- volved, the time series is extended back to 1948, the start of the pressure record. This time series will be presented and compared to literature, and annual and seasonal vari- ation of the ice flux will be discussed.

  2. Predicting the melting temperature of ice-Ih with only electronic structure information as input.

    PubMed

    Pinnick, Eric R; Erramilli, Shyamsunder; Wang, Feng

    2012-07-07

    The melting temperature of ice-Ih was calculated with only electronic structure information as input by creating a problem-specific force field. The force field, Water model by AFM for Ice and Liquid (WAIL), was developed with the adaptive force matching (AFM) method by fitting to post-Hartree-Fock quality forces obtained in quantum mechanics∕molecular mechanics calculations. WAIL predicts the ice-Ih melting temperature to be 270 K. The model also predicts the densities of ice and water, the temperature of maximum density of water, the heat of vaporizations, and the radial distribution functions for both ice and water in good agreement with experimental measurements. The non-dissociative WAIL model is very similar to a flexible version of the popular TIP4P potential and has comparable computational cost. By customizing to problem-specific configurations with the AFM approach, the resulting model is remarkably more accurate than any variants of TIP4P for simulating ice-Ih and water in the temperature range from 253 K and 293 K under ambient pressure.

  3. Europa Ice Floes

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Jupiter's moon Europa, as seen in this image taken June 27, 1996 by NASA's Galileo spacecraft, displays features in some areas resembling ice floes seen in Earth's polar seas. Europa, about the size of Earth's moon, has an icy crust that has been severely fractured, as indicated by the dark linear, curved, and wedged-shaped bands seen here. These fractures have broken the crust into plates as large as 30 kilometers (18.5 miles) across. Areas between the plates are filled with material that was probably icy slush contaminated with rocky debris. Some individual plates were separated and rotated into new positions. Europa's density indicates that it has a shell of water ice thicker than 100 kilometers (about 60 miles), parts of which could be liquid. Currently, water ice could extend from the surface down to the rocky interior, but the features seen in this image suggest that motion of the disrupted icy plates was lubricated by soft ice or liquid water below the surface at the time of disruption. This image covers part of the equatorial zone of Europa and was taken from a distance of 156,000 kilometers (about 96,300 miles) by the Solid-state Imaging Subsystem on the Galileo spacecraft. North is to the right and the sun is nearly directly overhead. The area shown is about 510 by 989 kilometers (310-by-600 miles), and the smallest visible feature is about 1.6 kilometers (1 mile) across.

    The Jet Propulsion Laboratory manages the Galileo mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web Galileo mission home page at http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at http:// www.jpl.nasa.gov/galileo/sepo.

  4. Synthesis of High-Frequency Ground Motion Using Information Extracted from Low-Frequency Ground Motion

    NASA Astrophysics Data System (ADS)

    Iwaki, A.; Fujiwara, H.

    2012-12-01

    Broadband ground motion computations of scenario earthquakes are often based on hybrid methods that are the combinations of deterministic approach in lower frequency band and stochastic approach in higher frequency band. Typical computation methods for low-frequency and high-frequency (LF and HF, respectively) ground motions are the numerical simulations, such as finite-difference and finite-element methods based on three-dimensional velocity structure model, and the stochastic Green's function method, respectively. In such hybrid methods, LF and HF wave fields are generated through two different methods that are completely independent of each other, and are combined at the matching frequency. However, LF and HF wave fields are essentially not independent as long as they are from the same event. In this study, we focus on the relation among acceleration envelopes at different frequency bands, and attempt to synthesize HF ground motion using the information extracted from LF ground motion, aiming to propose a new method for broad-band strong motion prediction. Our study area is Kanto area, Japan. We use the K-NET and KiK-net surface acceleration data and compute RMS envelope at four frequency bands: 0.5-1.0 Hz, 1.0-2.0 Hz, 2.0-4.0 Hz, .0-8.0 Hz, and 8.0-16.0 Hz. Taking the ratio of the envelopes of adjacent bands, we find that the envelope ratios have stable shapes at each site. The empirical envelope-ratio characteristics are combined with low-frequency envelope of the target earthquake to synthesize HF ground motion. We have applied the method to M5-class earthquakes and a M7 target earthquake that occurred in the vicinity of Kanto area, and successfully reproduced the observed HF ground motion of the target earthquake. The method can be applied to a broad band ground motion simulation for a scenario earthquake by combining numerically-computed low-frequency (~1 Hz) ground motion with the empirical envelope ratio characteristics to generate broadband ground motion

  5. Multiscale physics of rubber-ice friction

    NASA Astrophysics Data System (ADS)

    Tuononen, Ari J.; Kriston, András; Persson, Bo

    2016-09-01

    Ice friction plays an important role in many engineering applications, e.g., tires on icy roads, ice breaker ship motion, or winter sports equipment. Although numerous experiments have already been performed to understand the effect of various conditions on ice friction, to reveal the fundamental frictional mechanisms is still a challenging task. This study uses in situ white light interferometry to analyze ice surface topography during linear friction testing with a rubber slider. The method helps to provide an understanding of the link between changes in the surface topography and the friction coefficient through direct visualization and quantitative measurement of the morphologies of the ice surface at different length scales. Besides surface polishing and scratching, it was found that ice melts locally even after one sweep showing the refrozen droplets. A multi-scale rubber friction theory was also applied to study the contribution of viscoelasticity to the total friction coefficient, which showed a significant level with respect to the smoothness of the ice; furthermore, the theory also confirmed the possibility of local ice melting.

  6. Improved method for sea ice age computation based on combination of sea ice drift and concentration

    NASA Astrophysics Data System (ADS)

    Korosov, Anton; Rampal, Pierre; Lavergne, Thomas; Aaboe, Signe

    2017-04-01

    Sea Ice Age is one of the components of the Sea Ice ECV as defined by the Global Climate Observing System (GCOS) [WMO, 2015]. It is an important climate indicator describing the sea ice state in addition to sea ice concentration (SIC) and thickness (SIT). The amount of old/thick ice in the Arctic Ocean has been decreasing dramatically [Perovich et al. 2015]. Kwok et al. [2009] reported significant decline in the MYI share and consequent loss of thickness and therefore volume. Today, there is only one acknowledged sea ice age climate data record [Tschudi, et al. 2015], based on Maslanik et al. [2011] provided by National Snow and Ice Data Center (NSIDC) [http://nsidc.org/data/docs/daac/nsidc0611-sea-ice-age/]. The sea ice age algorithm [Fowler et al., 2004] is using satellite-derived ice drift for Lagrangian tracking of individual ice parcels (12-km grid cells) defined by areas of sea ice concentration > 15% [Maslanik et al., 2011], i.e. sea ice extent, according to the NASA Team algorithm [Cavalieri et al., 1984]. This approach has several drawbacks. (1) Using sea ice extent instead of sea ice concentration leads to overestimation of the amount of older ice. (2) The individual ice parcels are not advected uniformly over (long) time. This leads to undersampling in areas of consistent ice divergence. (3) The end product grid cells are assigned the age of the oldest ice parcel within that cell, and the frequency distribution of the ice age is not taken into account. In addition, the base sea ice drift product (https://nsidc.org/data/docs/daac/nsidc0116_icemotion.gd.html) is known to exhibit greatly reduced accuracy during the summer season [Sumata et al 2014, Szanyi, 2016] as it only relies on a combination of sea ice drifter trajectories and wind-driven "free-drift" motion during summer. This results in a significant overestimate of old-ice content, incorrect shape of the old-ice pack, and lack of information about the ice age distribution within the grid cells. We

  7. Physical conditions at the base of a fast moving antarctic ice stream.

    PubMed

    Engelhardt, H; Humphrey, N; Kamb, B; Fahnestock, M

    1990-04-06

    Boreholes drilled to the bottom of ice stream B in the West Antarctic Ice Sheet reveal that the base of the ice stream is at the melting point and the basal water pressure is within about 1.6 bars of the ice overburden pressure. These conditions allow the rapid ice streaming motion to occur by basal sliding or by shear deformation of unconsolidated sediments that underlie the ice in a layer at least 2 meters thick. The mechanics of ice streaming plays a role in the response of the ice sheet to climatic change.

  8. Wind, current and swell influences on the ice extent and flux in the Grand Banks-Labrador sea area as observed in the LIMEX '87 experiment

    NASA Technical Reports Server (NTRS)

    Argus, Susan Digby; Carsey, Frank; Holt, Benjamin

    1988-01-01

    This paper presents data collected by airborne and satellite instruments during the Labrador Ice Margin Experiment, that demonstrate the effects of oceanic and atmospheric processes on the ice conditions in the Grand Banks-Labrador sea area. Special consideration is given to the development of algorithms for extracting information from SAR data. It is shown that SAR data can be used to monitor ice extent, determine ice motion, locate shear zones, monitor the penetration of swell into the ice, estimate floe sizes, and establish the dimensions of the ice velocity zones. It is also shown that the complex interaction of the ice cover with winds, currents, swell, and coastlines is similar to the dynamics established for a number of sites in both polar regions.

  9. Tidal Flexure, Ice Velocities, and Ablation Rates of Peterman Gletscher, Greenland

    NASA Technical Reports Server (NTRS)

    Rignot, Eric

    1996-01-01

    Over the floating section of a tide-water glacier, single radar intererograms are difficult to use because the long-term steady motion of the ice is intermixed with the tidal vertical motion of the glacier. With multiple interferograms, it is however possible to isolate the tidal signal and remove it from the single interferograms to estimate the ice velocities. The technique is applied to ERS-1 synthetic aperture radar (SAR) images of Petermann Gletscher, north Greenland.

  10. Atmospheric forcing of sea ice anomalies in the Ross Sea Polynya region

    NASA Astrophysics Data System (ADS)

    Dale, Ethan; McDonald, Adrian; Rack, Wolfgang

    2016-04-01

    Despite warming trends in global temperatures, sea ice extent in the southern hemisphere has shown an increasing trend over recent decades. Wind-driven sea ice export from coastal polynyas is an important source of sea ice production. Areas of major polynyas in the Ross Sea, the region with largest increase in sea ice extent, have been suggested to produce the vast amount of the sea ice in the region. We investigate the impacts of strong wind events on polynyas and the subsequent sea ice production. We utilize Bootstrap sea ice concentration (SIC) measurements derived from satellite based, Special Sensor Microwave Imager (SSM/I) brightness temperature images. These are compared with surface wind measurements made by automatic weather stations of the University of Wisconsin-Madison Antarctic Meteorology Program. Our analysis focusses on the winter period defined as 1st April to 1st November in this study. Wind data was used to classify each day into characteristic regimes based on the change of wind speed. For each regime, a composite of SIC anomaly was formed for the Ross Sea region. We found that persistent weak winds near the edge of the Ross Ice Shelf are generally associated with positive SIC anomalies in the Ross Sea polynya area (RSP). Conversely we found negative SIC anomalies in this area during persistent strong winds. By analyzing sea ice motion vectors derived from SSM/I brightness temperatures, we find significant sea ice motion anomalies throughout the Ross Sea during strong wind events. These anomalies persist for several days after the strong wing event. Strong, negative correlations are found between SIC within the RSP and wind speed indicating that strong winds cause significant advection of sea ice in the RSP. This rapid decrease in SIC is followed by a more gradual recovery in SIC. This increase occurs on a time scale greater than the average persistence of strong wind events and the resulting Sea ice motion anomalies, highlighting the production

  11. Multi-frequency SAR, SSM/I and AVHRR derived geophysical information of the marginal ice zone

    NASA Technical Reports Server (NTRS)

    Shuchman, R. A.; Onstott, R. G.; Wackerman, C. C.; Russel, C. A.; Sutherland, L. L.; Johannessen, O. M.; Johannessen, J. A.; Sandven, S.; Gloerson, P.

    1991-01-01

    A description is given of the fusion of synthetic aperture radar (SAR), special sensor microwave imager (SSM/I), and NOAA Advanced Very High Resolution Radiometer (AVHRR) data to study arctic processes. These data were collected during the SIZEX/CEAREX experiments that occurred in the Greenland Sea in March of 1989. Detailed comparisons between the SAR, AVHRR, and SSM/I indicated: (1) The ice edge position was in agreement to within 25 km, (2) The SSM/I SAR total ice concentration compared favorably, however, the SSM/I significantly underpredicted the multiyear fraction, (3) Combining high resolution SAR with SSM/I can potentially map open water and new ice features in the marginal ice zone (MIZ) which cannot be mapped by the single sensors, and (4) The combination of all three sensors provides accurate ice information as well as sea surface temperature and wind speeds.

  12. Modality-dependent effect of motion information in sensory-motor synchronised tapping.

    PubMed

    Ono, Kentaro

    2018-05-14

    Synchronised action is important for everyday life. Generally, the auditory domain is more sensitive for coding temporal information, and previous studies have shown that auditory-motor synchronisation is much more precise than visuo-motor synchronisation. Interestingly, adding motion information improves synchronisation with visual stimuli and the advantage of the auditory modality seems to diminish. However, whether adding motion information also improves auditory-motor synchronisation remains unknown. This study compared tapping accuracy with a stationary or moving stimulus in both auditory and visual modalities. Participants were instructed to tap in synchrony with the onset of a sound or flash in the stationary condition, while these stimuli were perceived as moving from side to side in the motion condition. The results demonstrated that synchronised tapping with a moving visual stimulus was significantly more accurate than tapping with a stationary visual stimulus, as previous studies have shown. However, tapping with a moving auditory stimulus was significantly poorer than tapping with a stationary auditory stimulus. Although motion information impaired audio-motor synchronisation, an advantage of auditory modality compared to visual modality still existed. These findings are likely the result of higher temporal resolution in the auditory domain, which is likely due to the physiological and structural differences in the auditory and visual pathways in the brain. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Contrasts in Sea Ice Formation and Production in the Arctic Seasonal and Perennial Ice Zones

    NASA Technical Reports Server (NTRS)

    Kwok, R.

    2006-01-01

    Four years (1997-2000) of RADARSAT Geophysical Processor System (RGPS) data are used to contrast the sea ice deformation and production regionally, and in the seasonal (SIZ) and perennial (PIZ) ice zones. Ice production is of seasonal ice in openings during the winter. 3-day estimates of these quantities are provided within Lagrangian elements initially 10 km on a side. A distinct seasonal cycle is seen in both zones with these estimates highest in the late fall and with seasonal minimums in the mid-winter. Regional divergence over the winter could be up to 30%. Spatially, the highest deformation is in the SIZ north of coastal Alaska. Both ice deformation and production are higher in the SIZ: deformation-related ice production in the SIZ (approx.0.5 m) is 1.5-2.3 times that of the PIZ (approx.0.3 m) - this is connected to ice strength and thickness. Atmospheric forcing and boundary layer structure contribute to only the seasonal and interannual variability. Seasonal ice growth in ice fractures accounts for approx.25-40% of the total ice production of the Arctic Ocean. By itself, this deformation-ice production relationship could be considered a negative feedback when thickness is perturbed. However, the overall effect on ice production in the face of increasing seasonal and thinner/weaker ice coverage could be modified by: local destabilization of the water column promoting overturning of warmer water due to increased brine rejection; and, the upwelling of the pynocline associated with increased occurrence of large shear motion in sea ice.

  14. Low field domain wall dynamics in artificial spin-ice basis structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwon, J.; School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798; Goolaup, S.

    2015-10-28

    Artificial magnetic spin-ice nanostructures provide an ideal platform for the observation of magnetic monopoles. The formation of a magnetic monopole is governed by the motion of a magnetic charge carrier via the propagation of domain walls (DWs) in a lattice. To date, most experiments have been on the static visualization of DW propagation in the lattice. In this paper, we report on the low field dynamics of DW in a unit spin-ice structure measured by magnetoresistance changes. Our results show that reversible DW propagation can be initiated within the spin-ice basis. The initial magnetization configuration of the unit structure stronglymore » influences the direction of DW motion in the branches. Single or multiple domain wall nucleation can be induced in the respective branches of the unit spin ice by the direction of the applied field.« less

  15. The Tweeting Ice Shelf: geophysics and outreach

    NASA Astrophysics Data System (ADS)

    Van Liefferinge, Brice; Berger, Sophie; Drews, Reinhard; Pattyn, Frank

    2015-04-01

    Over the last decade the Antarctic and Greenland ice sheets have contributed about one third of the annual sea level rise (Hanna et al., 2013). However, it remains difficult to reconcile global mass balance estimates obtained from different satellite-based methods. A typical approach is to balance the mass input from atmospheric modelling with the outgoing mass flux at the ice-sheet boundary (Shepherd et al., 2012). The flux calculations at the boundary rely on satellite-derived surface velocities, which are currently only available as snapshots in time, and which need ground truth for validation. Here, we report on continuous, year-round measurements that aim at improving the input-output method in several aspects and carefully map the flow speed allowing for detecting seasonal variability. For this purpose, we set up in December 2014 three stand-alone single-frequency GPSes on the Roi Baudouin ice shelf (East Antarctica). The GPSes are installed across a surface depression (typical for large ice-shelf channels), where subglacial melting is expected. This setup allows us to investigate how these channels behave, i.e., if they become wider, whether or not they enhance the ice flow, and, in combination with an installed phase-sensitive radar, what amount of melting occurs below the channels in contact with the ocean. The GPS data are transmitted on a daily basis. Ice-shelf velocity is derived from the raw hourly location following the methods described in den Ouden et al. (2010), Dunse et al. (2012), and Ahlstrøm et al. (2013). However, a reference station has not been used for the correction. Basic processing involves outliers removal, smoothing, time-series analysis and comparison with tidal models. The project comes alongside an outreach event: on a weekly basis, the ice shelf 'tweets' its position, motion and relays other information with respect to the project. The GPS systems can be followed on Twitter via @TweetinIceShelf as well as the Tweeting Ice Shelf

  16. Local response of a glacier to annual filling and drainage of an ice-marginal lake

    USGS Publications Warehouse

    Walder, J.S.; Trabant, D.C.; Cunico, M.; Fountain, A.G.; Anderson, S.P.; Anderson, R. Scott; Malm, A.

    2006-01-01

    Ice-marginal Hidden Creek Lake, Alaska, USA, outbursts annually over the course of 2-3 days. As the lake fills, survey targets on the surface of the 'ice dam' (the glacier adjacent to the lake) move obliquely to the ice margin and rise substantially. As the lake drains, ice motion speeds up, becomes nearly perpendicular to the face of the ice dam, and the ice surface drops. Vertical movement of the ice dam probably reflects growth and decay of a wedge of water beneath the ice dam, in line with established ideas about jo??kulhlaup mechanics. However, the distribution of vertical ice movement, with a narrow (50-100 m wide) zone where the uplift rate decreases by 90%, cannot be explained by invoking flexure of the ice dam in a fashion analogous to tidal flexure of a floating glacier tongue or ice shelf. Rather, the zone of large uplift-rate gradient is a fault zone: ice-dam deformation is dominated by movement along high-angle faults that cut the ice dam through its entire thickness, with the sense of fault slip reversing as the lake drains. Survey targets spanning the zone of steep uplift gradient move relative to one another in a nearly reversible fashion as the lake fills and drains. The horizontal strain rate also undergoes a reversal across this zone, being compressional as the lake fills, but extensional as the lake drains. Frictional resistance to fault-block motion probably accounts for the fact that lake level falls measurably before the onset of accelerated horizontal motion and vertical downdrop. As the overall fault pattern is the same from year to year, even though ice is lost by calving, the faults must be regularly regenerated, probably by linkage of surface and bottom crevasses as ice is advected toward the lake basin.

  17. Image-based change estimation (ICE): monitoring land use, land cover and agent of change information for all lands

    Treesearch

    Kevin Megown; Andy Lister; Paul Patterson; Tracey Frescino; Dennis Jacobs; Jeremy Webb; Nicholas Daniels; Mark Finco

    2015-01-01

    The Image-based Change Estimation (ICE) protocols have been designed to respond to several Agency and Department information requirements. These include provisions set forth by the 2014 Farm Bill, the Forest Service Action Plan and Strategic Plan, the 2012 Planning Rule, and the 2015 Planning Directives. ICE outputs support the information needs by providing estimates...

  18. Sea Ice Kinematics and Thickness from RGPS: Observations and Theory

    NASA Technical Reports Server (NTRS)

    Stern, Harry; Lindsay, Ron; Yu, Yan-Ling; Moritz, Richard; Rothrock, Drew

    2005-01-01

    The RADARSAT Geophysical Processor System (RGPS) has produced a wealth of data on Arctic sea ice motion, deformation, and thickness with broad geographical coverage and good temporal resolution. These data provide unprecedented spatial detail of the structure and evolution of the sea ice cover. The broad purpose of this study was to take advantage of the strengths of the RGPS data set to investigate sea ice kinematics and thickness, which affect the climate through their influence on ice production, ridging, and transport (i.e. mass balance); heat flux to the atmosphere; and structure of the upper ocean mixed layer. The objectives of this study were to: (1) Explain the relationship between the discontinuous motion of the ice cover and the large-scale, smooth wind field that drives the ice; (2) Characterize the sea ice deformation in the Arctic at different temporal and spatial scales, and compare it with deformation predicted by a state-of-theart ice/ocean model; and (3) Compare RGPS-derived sea ice thickness with other data, and investigate the thinning of the Arctic sea ice cover as seen in ULS data obtained by U.S. Navy submarines. We briefly review the results of our work below, separated into the topics of sea ice deformation and sea ice thickness. This is followed by a list of publications, meetings and presentations, and other activities supported under this grant. We are attaching to this report copies of all the listed publications. Finally, we would like to point out our community service to NASA through our involvement with the ASF User Working Group and the RGPS Science Working Group, as evidenced in the list of meetings and presentations below.

  19. Investigation of surface water behavior during glaze ice accretion

    NASA Technical Reports Server (NTRS)

    Hansman, R. John, Jr.; Turnock, Stephen R.

    1988-01-01

    Microvideo observations of glaze ice accretions on 1-in-diameter cylinders in a closed-loop refrigerated wind tunnel were obtained to study factors controlling the behavior of unfrozen surface water during glaze ice accretion. Three zones of surface water behavior were noted, each with a characteristic roughness. The effect of substrate thermal and roughness properties on ice accretions was also studied. The contact angle and hysteresis were found to increase sharply at temperatures just below 0 C, explaining the high resistance to motion of water beads observed on accreting glaze ice surfaces. Based on the results, a simple multizone modification to the current glaze ice accretion model is proposed.

  20. Ice Shelf-Ocean Interactions Near Ice Rises and Ice Rumples

    NASA Astrophysics Data System (ADS)

    Lange, M. A.; Rückamp, M.; Kleiner, T.

    2013-12-01

    , focusing on the floating ice parts of the Brunt and Riiser-Larsen ice shelves. The major response of the ice is observed instantaneously and is caused by the time independent nature of the Stokes equations and the used Glen-type rheology. The influence of ice temperatures and therefore the time-dependent effect on the flow-rate are small, given a 100 year time frame and applying a fixed-geometry setting.. A particularly important result of the current project lies in the fact that we have numerically simulated the three-dimensional stress fields in an ice shelf. Common numerical models that utilize a vertically integrated Shallow Shelf Approximation (SSA-models), do not provide that information. Due to the detailed horizontal resolution of 1km in our models, we were able to also model the observed heavily fractured areas in the vicinity of McDonald Ice Rise, a region that is characterized by simulated tensile stresses reaching maximum vertical extension in the ice column.

  1. Broken ice

    NASA Image and Video Library

    2017-12-08

    An area of broken glacier ice seen from the IceBridge DC-8 on Oct. 22, 2012. Credit: NASA / George Hale NASA's Operation IceBridge is an airborne science mission to study Earth's polar ice. For more information about IceBridge, visit: www.nasa.gov/icebridge NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  2. SPH Modelling of Sea-ice Pack Dynamics

    NASA Astrophysics Data System (ADS)

    Staroszczyk, Ryszard

    2017-12-01

    The paper is concerned with the problem of sea-ice pack motion and deformation under the action of wind and water currents. Differential equations describing the dynamics of ice, with its very distinct mateFfigrial responses in converging and diverging flows, express the mass and linear momentum balances on the horizontal plane (the free surface of the ocean). These equations are solved by the fully Lagrangian method of smoothed particle hydrodynamics (SPH). Assuming that the ice behaviour can be approximated by a non-linearly viscous rheology, the proposed SPH model has been used to simulate the evolution of a sea-ice pack driven by wind drag stresses. The results of numerical simulations illustrate the evolution of an ice pack, including variations in ice thickness and ice area fraction in space and time. The effects of different initial ice pack configurations and of different conditions assumed at the coast-ice interface are examined. In particular, the SPH model is applied to a pack flow driven by a vortex wind to demonstrate how well the Lagrangian formulation can capture large deformations and displacements of sea ice.

  3. Hexagonal ice in pure water and biological NMR samples.

    PubMed

    Bauer, Thomas; Gath, Julia; Hunkeler, Andreas; Ernst, Matthias; Böckmann, Anja; Meier, Beat H

    2017-01-01

    Ice, in addition to "liquid" water and protein, is an important component of protein samples for NMR spectroscopy at subfreezing temperatures but it has rarely been observed spectroscopically in this context. We characterize its spectroscopic behavior in the temperature range from 100 to 273 K, and find that it behaves like pure water ice. The interference of magic-angle spinning (MAS) as well as rf multiple-pulse sequences with Bjerrum-defect motion greatly influences the ice spectra.

  4. Larsen Ice Shelf, Antarctica

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Warmer surface temperatures over just a few months in the Antarctic can splinter an ice shelf and prime it for a major collapse, NASA and university scientists report in the latest issue of the Journal of Glaciology. Using satellite images of tell-tale melt water on the ice surface and a sophisticated computer simulation of the motions and forces within an ice shelf, the scientists demonstrated that added pressure from surface water filling crevasses can crack the ice entirely through. The process can be expected to become more widespread if Antarctic summer temperatures increase. This true-color image from Landsat 7, acquired on February 21, 2000, shows pools of melt water on the surface of the Larsen Ice Shelf, and drifting icebergs that have split from the shelf. The upper image is an overview of the shelf's edge, while the lower image is displayed at full resolution of 30 meters (98 feet) per pixel. The labeled pond in the lower image measures roughly 1.6 by 1.6 km (1.0 x 1.0 miles). Full text of Press Release More Images and Animations Image courtesy Landsat 7 Science Team and NASA GSFC

  5. Perceiving environmental properties from motion information: Minimal conditions

    NASA Technical Reports Server (NTRS)

    Proffitt, Dennis R.; Kaiser, Mary K.

    1989-01-01

    The status of motion as a minimal information source for perceiving the environmental properties of surface segregation, three-dimensional (3-D) form, displacement, and dynamics is discussed. The selection of these particular properties was motivated by a desire to present research on perceiving properties that span the range of dimensional complexity.

  6. The Potsdam Parallel Ice Sheet Model (PISM-PIK) - Part 2: Dynamic equilibrium simulation of the Antarctic ice sheet

    NASA Astrophysics Data System (ADS)

    Martin, M. A.; Winkelmann, R.; Haseloff, M.; Albrecht, T.; Bueler, E.; Khroulev, C.; Levermann, A.

    2010-08-01

    We present a dynamic equilibrium simulation of the ice sheet-shelf system on Antarctica with the Potsdam Parallel Ice Sheet Model (PISM-PIK). The simulation is initialized with present-day conditions for topography and ice thickness and then run to steady state with constant present-day surface mass balance. Surface temperature and basal melt distribution are parameterized. Grounding lines and calving fronts are free to evolve, and their modeled equilibrium state is compared to observational data. A physically-motivated dynamic calving law based on horizontal spreading rates allows for realistic calving fronts for various types of shelves. Steady-state dynamics including surface velocity and ice flux are analyzed for whole Antarctica and the Ronne-Filchner and Ross ice shelf areas in particular. The results show that the different flow regimes in sheet and shelves, and the transition zone between them, are captured reasonably well, supporting the approach of superposition of SIA and SSA for the representation of fast motion of grounded ice. This approach also leads to a natural emergence of streams in this new 3-D marine ice sheet model.

  7. Process of establishing a plane-wave system on ice cover over a dipole moving uniformly in an ideal fluid column

    NASA Astrophysics Data System (ADS)

    Il'ichev, A. T.; Savin, A. S.

    2017-12-01

    We consider a planar evolution problem for perturbations of the ice cover by a dipole starting its uniform rectilinear horizontal motion in a column of an initially stationary fluid. Using asymptotic Fourier analysis, we show that at supercritical velocities, waves of two types form on the water-ice interface. We describe the process of establishing these waves during the dipole motion. We assume that the fluid is ideal and incompressible and its motion is potential. The ice cover is modeled by the Kirchhoff-Love plate.

  8. Antarctic Sea Ice Thickness and Snow-to-Ice Conversion from Atmospheric Reanalysis and Passive Microwave Snow Depth

    NASA Technical Reports Server (NTRS)

    Markus, Thorsten; Maksym, Ted

    2007-01-01

    Passive microwave snow depth, ice concentration, and ice motion estimates are combined with snowfall from the European Centre for Medium Range Weather Forecasting (ECMWF) reanalysis (ERA-40) from 1979-200 1 to estimate the prevalence of snow-to-ice conversion (snow-ice formation) on level sea ice in the Antarctic for April-October. Snow ice is ubiquitous in all regions throughout the growth season. Calculated snow- ice thicknesses fall within the range of estimates from ice core analysis for most regions. However, uncertainties in both this analysis and in situ data limit the usefulness of snow depth and snow-ice production to evaluate the accuracy of ERA-40 snowfall. The East Antarctic is an exception, where calculated snow-ice production exceeds observed ice thickness over wide areas, suggesting that ERA-40 precipitation is too high there. Snow-ice thickness variability is strongly controlled not just by snow accumulation rates, but also by ice divergence. Surprisingly, snow-ice production is largely independent of snow depth, indicating that the latter may be a poor indicator of total snow accumulation. Using the presence of snow-ice formation as a proxy indicator for near-zero freeboard, we examine the possibility of estimating level ice thickness from satellite snow depths. A best estimate for the mean level ice thickness in September is 53 cm, comparing well with 51 cm from ship-based observations. The error is estimated to be 10-20 cm, which is similar to the observed interannual and regional variability. Nevertheless, this is comparable to expected errors for ice thickness determined by satellite altimeters. Improvement in satellite snow depth retrievals would benefit both of these methods.

  9. Satellite remote sensing over ice

    NASA Technical Reports Server (NTRS)

    Thomas, R. H.

    1984-01-01

    Satellite remote sensing provides unique opportunities for observing ice-covered terrain. Passive-microwave data give information on snow extent on land, sea-ice extent and type, and zones of summer melting on the polar ice sheets, with the potential for estimating snow-accumulation rates on these ice sheets. All weather, high-resolution imagery of sea ice is obtained using synthetic aperture radars, and ice-movement vectors can be deduced by comparing sequential images of the same region. Radar-altimetry data provide highly detailed information on ice-sheet topography, with the potential for deducing thickening/thinning rates from repeat surveys. The coastline of Antarctica can be mapped accurately using altimetry data, and the size and spatial distribution of icebergs can be monitored. Altimetry data also distinguish open ocean from pack ice and they give an indication of sea-ice characteristics.

  10. Satellite remote sensing over ice

    NASA Technical Reports Server (NTRS)

    Thomas, R. H.

    1986-01-01

    Satellite remote sensing provides unique opportunities for observing ice-covered terrain. Passive-microwave data give information on snow extent on land, sea-ice extent and type, and zones of summer melting on the polar ice sheets, with the potential for estimating snow-accumulation rates on these ice sheets. All weather, high-resolution imagery of sea ice is obtained using synthetic aperture radars, and ice-movement vectors can be deduced by comparing sequential images of the same region. Radar-altimetry data provide highly detailed information on ice-sheet topography, with the potential for deducing thickening/thinning rates from repeat surveys. The coastline of Antarctica can be mapped accurately using altimetry data, and the size and spatial distribution of icebergs can be monitored. Altimetry data also distinguish open ocean from pack ice and they give an indication of sea-ice characteristics.

  11. Atmospheric forcing of sea ice anomalies in the Ross Sea polynya region

    NASA Astrophysics Data System (ADS)

    Dale, Ethan R.; McDonald, Adrian J.; Coggins, Jack H. J.; Rack, Wolfgang

    2017-01-01

    We investigate the impacts of strong wind events on the sea ice concentration within the Ross Sea polynya (RSP), which may have consequences on sea ice formation. Bootstrap sea ice concentration (SIC) measurements derived from satellite SSM/I brightness temperatures are correlated with surface winds and temperatures from Ross Ice Shelf automatic weather stations (AWSs) and weather models (ERA-Interim). Daily data in the austral winter period were used to classify characteristic weather regimes based on the percentiles of wind speed. For each regime a composite of a SIC anomaly was formed for the entire Ross Sea region and we found that persistent weak winds near the edge of the Ross Ice Shelf are generally associated with positive SIC anomalies in the Ross Sea polynya and vice versa. By analyzing sea ice motion vectors derived from the SSM/I brightness temperatures we find significant sea ice motion anomalies throughout the Ross Sea during strong wind events, which persist for several days after a strong wind event has ended. Strong, negative correlations are found between SIC and AWS wind speed within the RSP indicating that strong winds cause significant advection of sea ice in the region. We were able to partially recreate these correlations using colocated, modeled ERA-Interim wind speeds. However, large AWS and model differences are observed in the vicinity of Ross Island, where ERA-Interim underestimates wind speeds by a factor of 1.7 resulting in a significant misrepresentation of RSP processes in this area based on model data. Thus, the cross-correlation functions produced by compositing based on ERA-Interim wind speeds differed significantly from those produced with AWS wind speeds. In general the rapid decrease in SIC during a strong wind event is followed by a more gradual recovery in SIC. The SIC recovery continues over a time period greater than the average persistence of strong wind events and sea ice motion anomalies. This suggests that sea ice

  12. Wave-induced stress and breaking of sea ice in a coupled hydrodynamic discrete-element wave-ice model

    NASA Astrophysics Data System (ADS)

    Herman, Agnieszka

    2017-11-01

    In this paper, a coupled sea ice-wave model is developed and used to analyze wave-induced stress and breaking in sea ice for a range of wave and ice conditions. The sea ice module is a discrete-element bonded-particle model, in which ice is represented as cuboid grains floating on the water surface that can be connected to their neighbors by elastic joints. The joints may break if instantaneous stresses acting on them exceed their strength. The wave module is based on an open-source version of the Non-Hydrostatic WAVE model (NHWAVE). The two modules are coupled with proper boundary conditions for pressure and velocity, exchanged at every wave model time step. In the present version, the model operates in two dimensions (one vertical and one horizontal) and is suitable for simulating compact ice in which heave and pitch motion dominates over surge. In a series of simulations with varying sea ice properties and incoming wavelength it is shown that wave-induced stress reaches maximum values at a certain distance from the ice edge. The value of maximum stress depends on both ice properties and characteristics of incoming waves, but, crucially for ice breaking, the location at which the maximum occurs does not change with the incoming wavelength. Consequently, both regular and random (Jonswap spectrum) waves break the ice into floes with almost identical sizes. The width of the zone of broken ice depends on ice strength and wave attenuation rates in the ice.

  13. The Antarctic Ice.

    ERIC Educational Resources Information Center

    Radok, Uwe

    1985-01-01

    The International Antarctic Glaciological Project has collected information on the East Antarctic ice sheet since 1969. Analysis of ice cores revealed climatic history, and radar soundings helped map bedrock of the continent. Computer models of the ice sheet and its changes over time will aid in predicting the future. (DH)

  14. Interactions between spacecraft motions and the atmospheric cloud physics laboratory experiments

    NASA Technical Reports Server (NTRS)

    Anderson, B. J.

    1981-01-01

    In evaluating the effects of spacecraft motions on atmospheric cloud physics laboratory (ACPL) experimentation, the motions of concern are those which will result in the movement of the fluid or cloud particles within the experiment chambers. Of the various vehicle motions and residual forces which can and will occur, three types appear most likely to damage the experimental results: non-steady rotations through a large angle, long-duration accelerations in a constant direction, and vibrations. During the ACPL ice crystal growth experiments, the crystals are suspended near the end of a long fiber (20 cm long by 200 micron diameter) of glass or similar material. Small vibrations of the supported end of the fiber could cause extensive motions of the ice crystal, if care is not taken to avoid this problem.

  15. High-precision GPS autonomous platforms for sea ice dynamics and physical oceanography

    NASA Astrophysics Data System (ADS)

    Elosegui, P.; Wilkinson, J.; Olsson, M.; Rodwell, S.; James, A.; Hagan, B.; Hwang, B.; Forsberg, R.; Gerdes, R.; Johannessen, J.; Wadhams, P.; Nettles, M.; Padman, L.

    2012-12-01

    Project "Arctic Ocean sea ice and ocean circulation using satellite methods" (SATICE), is the first high-rate, high-precision, continuous GPS positioning experiment on sea ice in the Arctic Ocean. The SATICE systems collect continuous, dual-frequency carrier-phase GPS data while drifting on sea ice. Additional geophysical measurements also collected include ocean water pressure, ocean surface salinity, atmospheric pressure, snow-depth, air-ice-ocean temperature profiles, photographic imagery, and others, enabling sea ice drift, freeboard, weather, ice mass balance, and sea-level height determination. Relatively large volumes of data from each buoy are streamed over a satellite link to a central computer on the Internet in near real time, where they are processed to estimate the time-varying buoy positions. SATICE system obtains continuous GPS data at sub-minute intervals with a positioning precision of a few centimetres in all three dimensions. Although monitoring of sea ice motions goes back to the early days of satellite observations, these autonomous platforms bring out a level of spatio-temporal detail that has never been seen before, especially in the vertical axis. These high-resolution data allows us to address new polar science questions and challenge our present understanding of both sea ice dynamics and Arctic oceanography. We will describe the technology behind this new autonomous platform, which could also be adapted to other applications that require high resolution positioning information with sustained operations and observations in the polar marine environment, and present results pertaining to sea ice dynamics and physical oceanography.

  16. Operationally Monitoring Sea Ice at the Canadian Ice Service

    NASA Astrophysics Data System (ADS)

    de Abreu, R.; Flett, D.; Carrieres, T.; Falkingham, J.

    2004-05-01

    The Canadian Ice Service (CIS) of the Meteorological Service of Canada promotes safe and efficient maritime operations and protects Canada's environment by providing reliable and timely information about ice and iceberg conditions in Canadian waters. Daily and seasonal charts describing the extent, type and concentration of sea ice and icebergs are provided to support navigation and other activities (e.g. oil and gas) in coastal waters. The CIS relies on a suite of spaceborne visible, infrared and microwave sensors to operationally monitor ice conditions in Canadian coastal and inland waterways. These efforts are complemented by operational sea ice models that are customized and run at the CIS. The archive of these data represent a 35 year archive of ice conditions and have proven to be a valuable dataset for historical sea ice analysis. This presentation will describe the daily integration of remote sensing observations and modelled ice conditions used to produce ice and iceberg products. A review of the decadal evolution of this process will be presented, as well as a glimpse into the future of ice and iceberg monitoring. Examples of the utility of the CIS digital sea ice archive for climate studies will also be presented.

  17. Isopycnal deepening of an under-ice river plume in coastal waters: Field observations and modeling

    NASA Astrophysics Data System (ADS)

    Li, S. Samuel; Ingram, R. Grant

    2007-07-01

    The Great Whale River, located on the southeast coast of Hudson Bay in Canada, forms a large river plume under complete landfast ice during early spring. Short-term fluctuations of plume depth have motivated the present numerical study of an under-ice river plume subject to tidal motion and friction. We introduce a simple two-layer model for predicting the vertical penetration of the under-ice river plume as it propagates over a deepening topography. The topography is idealized but representative. Friction on the bottom surface of the ice cover, on the seabed, and at the plume interface is parameterized using the quadratic friction law. The extent of the vertical penetration is controlled by dimensionless parameters related to tidal motion and river outflow. Model predictions are shown to compare favorably with under-ice plume measurements from the river mouth. This study illustrates that isopycnal deepening occurs when the ice-cover vertical motion creates a reduced flow cross-section during the ebbing tide. This results in supercritical flow and triggers the downward plume penetration in the offshore. For a given river discharge, the freshwater source over a tidal cycle is unsteady in terms of discharge velocity because of the variation in the effective cross-sectional area at the river mouth, through which freshwater flows.

  18. Understanding the Importance of Oceanic Forcing on Sea Ice Variability

    DTIC Science & Technology

    2010-12-01

    problem, which includes ice thickness. Thorndike et al. (1975) recognized that many of the physical properties of sea ice depend upon its thickness...IMB2005B are presented below. In agreement with previous studies (e.g., Thorndike and Colony 1982), they show that during the winter months (December...During the Past 100 Years, 33, 2, 143– 154. 148 Thorndike , A.S., and R. Colony, 1982: Sea ice motion in response to geostrophic winds. Journal of

  19. Ice flood velocity calculating approach based on single view metrology

    NASA Astrophysics Data System (ADS)

    Wu, X.; Xu, L.

    2017-02-01

    Yellow River is the river in which the ice flood occurs most frequently in China, hence, the Ice flood forecasting has great significance for the river flood prevention work. In various ice flood forecast models, the flow velocity is one of the most important parameters. In spite of the great significance of the flow velocity, its acquisition heavily relies on manual observation or deriving from empirical formula. In recent years, with the high development of video surveillance technology and wireless transmission network, the Yellow River Conservancy Commission set up the ice situation monitoring system, in which live videos can be transmitted to the monitoring center through 3G mobile networks. In this paper, an approach to get the ice velocity based on single view metrology and motion tracking technique using monitoring videos as input data is proposed. First of all, River way can be approximated as a plane. On this condition, we analyze the geometry relevance between the object side and the image side. Besides, we present the principle to measure length in object side from image. Secondly, we use LK optical flow which support pyramid data to track the ice in motion. Combining the result of camera calibration and single view metrology, we propose a flow to calculate the real velocity of ice flood. At last we realize a prototype system by programming and use it to test the reliability and rationality of the whole solution.

  20. Information content of visible and midinfrared radiances for retrieving tropical ice cloud properties

    NASA Astrophysics Data System (ADS)

    Chang, Kai-Wei; L'Ecuyer, Tristan S.; Kahn, Brian H.; Natraj, Vijay

    2017-05-01

    Hyperspectral instruments such as Atmospheric Infrared Sounder (AIRS) have spectrally dense observations effective for ice cloud retrievals. However, due to the large number of channels, only a small subset is typically used. It is crucial that this subset of channels be chosen to contain the maximum possible information about the retrieved variables. This study describes an information content analysis designed to select optimal channels for ice cloud retrievals. To account for variations in ice cloud properties, we perform channel selection over an ensemble of cloud regimes, extracted with a clustering algorithm, from a multiyear database at a tropical Atmospheric Radiation Measurement site. Multiple satellite viewing angles over land and ocean surfaces are considered to simulate the variations in observation scenarios. The results suggest that AIRS channels near wavelengths of 14, 10.4, 4.2, and 3.8 μm contain the most information. With an eye toward developing a joint AIRS-MODIS (Moderate Resolution Imaging Spectroradiometer) retrieval, the analysis is also applied to combined measurements from both instruments. While application of this method to MODIS yields results consistent with previous channel sensitivity studies, the analysis shows that this combination may yield substantial improvement in cloud retrievals. MODIS provides most information on optical thickness and particle size, aided by a better constraint on cloud vertical placement from AIRS. An alternate scenario where cloud top boundaries are supplied by the active sensors in the A-train is also explored. The more robust cloud placement afforded by active sensors shifts the optimal channels toward the window region and shortwave infrared, further constraining optical thickness and particle size.

  1. Characterizing Arctic Sea Ice Topography Using High-Resolution IceBridge Data

    NASA Technical Reports Server (NTRS)

    Petty, Alek; Tsamados, Michel; Kurtz, Nathan; Farrell, Sinead; Newman, Thomas; Harbeck, Jeremy; Feltham, Daniel; Richter-Menge, Jackie

    2016-01-01

    We present an analysis of Arctic sea ice topography using high resolution, three-dimensional, surface elevation data from the Airborne Topographic Mapper, flown as part of NASA's Operation IceBridge mission. Surface features in the sea ice cover are detected using a newly developed surface feature picking algorithm. We derive information regarding the height, volume and geometry of surface features from 2009-2014 within the Beaufort/Chukchi and Central Arctic regions. The results are delineated by ice type to estimate the topographic variability across first-year and multi-year ice regimes.

  2. Information content of thermal infrared a microwave bands for simultaneous retrieval of cirrus ice water path and particle effective diameter

    NASA Astrophysics Data System (ADS)

    Bell, A.; Tang, G.; Yang, P.; Wu, D.

    2017-12-01

    Due to their high spatial and temporal coverage, cirrus clouds have a profound role in regulating the Earth's energy budget. Variability of their radiative, geometric, and microphysical properties can pose significant uncertainties in global climate model simulations if not adequately constrained. Thus, the development of retrieval methodologies able to accurately retrieve ice cloud properties and present associated uncertainties is essential. The effectiveness of cirrus cloud retrievals relies on accurate a priori understanding of ice radiative properties, as well as the current state of the atmosphere. Current studies have implemented information content theory analyses prior to retrievals to quantify the amount of information that should be expected on parameters to be retrieved, as well as the relative contribution of information provided by certain measurement channels. Through this analysis, retrieval algorithms can be designed in a way to maximize the information in measurements, and therefore ensure enough information is present to retrieve ice cloud properties. In this study, we present such an information content analysis to quantify the amount of information to be expected in retrievals of cirrus ice water path and particle effective diameter using sub-millimeter and thermal infrared radiometry. Preliminary results show these bands to be sensitive to changes in ice water path and effective diameter, and thus lend confidence their ability to simultaneously retrieve these parameters. Further quantification of sensitivity and the information provided from these bands can then be used to design and optimal retrieval scheme. While this information content analysis is employed on a theoretical retrieval combining simulated radiance measurements, the methodology could in general be applicable to any instrument or retrieval approach.

  3. Emerging Use of Dual Channel Infrared for Remote Sensing of Sea Ice

    NASA Astrophysics Data System (ADS)

    Lewis, N. S.; Serreze, M. C.; Gallaher, D. W.; Koenig, L.; Schaefer, K. M.; Campbell, G. G.; Thompson, J. A.; Grant, G.; Fetterer, F. M.

    2017-12-01

    Using GOES-16 data as a proxy for overhead persistent infrared, we examine the feasibility of using a dual channel shortwave / midwave infrared (SWIR/MWIR) approach to detect and chart sea ice in Hudson Bay through a series of images with a temporal scale of less than fifteen minutes. While not traditionally exploited for sea ice remote sensing, the availability of near continuous shortwave and midwave infrared data streams over the Arctic from overhead persistent infrared (OPIR) satellites could provide an invaluable source of information regarding the changing Arctic climate. Traditionally used for the purpose of missile warning and strategic defense, characteristics of OPIR make it an attractive source for Arctic remote sensing as the temporal resolution can provide insight into ice edge melt and motion processes. Fundamentally, the time series based algorithm will discern water/ice/clouds using a SWIR/MWIR normalized difference index. Cloud filtering is accomplished through removing pixels categorized as clouds while retaining a cache of previous ice/water pixels to replace any cloud obscured (and therefore omitted) pixels. Demonstration of the sensitivity of GOES-16 SWIR/MWIR to detect and discern water/ice/clouds provides a justification for exploring the utility of military OPIR sensors for civil and commercial applications. Potential users include the scientific community as well as emergency responders, the fishing industry, oil and gas industries, and transportation industries that are seeking to exploit changing conditions in the Arctic but require more accurate and timely ice charting products.

  4. Mobile, stationary and mixed phase tracers: consequences to sea ice biogeochemistry

    NASA Astrophysics Data System (ADS)

    Jeffery, N.; Elliott, S.; Hunke, E. C.; Deal, C.; Jin, M.

    2016-02-01

    Models of brine motion in sea ice have offered mechanisms for transporting biogeochemical compounds vertically within the ice and between the ice-ocean interface. In these models, sea ice microstructure and/or gross physical properties determine the resupply of nitrate, for example, to sympagic algae and that resupply, in large part, constrains sea ice primary production. The assumption of brine transport models is that the transported matter exists in a purely mobile phase within the ice brine channels. As a result, non-reacting, mobile phase tracers evolve like salinity in dynamic sea ice. Field and laboratory observations indicate that this is a good approximation for the primary algal macronutrients - nitrate, silicate and phosphate, but clear deviations are evident for ammonium, micronutrients such as iron, humic substances, algal bi-products such as gels and extracellular polysaccharides, and the algae themselves. This wide range of biogeochemical matter resists brine motion and is present in both the mobile and stationary phases, i.e. these tracers are "mixed" with respect to their transport phases. Although the precise mechanism for this resistance may be due to attachment by frustules, "stickiness" of the material surface, adsorption, or, in the case of microorganisms, active motility, a key common element in all cases is the presence of the ice matrix. In this presentation we investigate the consequences of mixed phase tracers in sea ice on algal concentrations, vertical distributions, and the potential accumulation of biogeochemical matter within the ice. We assume that sea ice growth promotes retention to the stationary phase, while melt and the disintegration of the ice matrix promotes release into the mobile phase. By varying the retention and release timescales of this formulation, we retrieve the purely mobile and maximal accumulation limits.

  5. The Potsdam Parallel Ice Sheet Model (PISM-PIK) - Part 2: Dynamic equilibrium simulation of the Antarctic ice sheet

    NASA Astrophysics Data System (ADS)

    Martin, M. A.; Winkelmann, R.; Haseloff, M.; Albrecht, T.; Bueler, E.; Khroulev, C.; Levermann, A.

    2011-09-01

    We present a dynamic equilibrium simulation of the ice sheet-shelf system on Antarctica with the Potsdam Parallel Ice Sheet Model (PISM-PIK). The simulation is initialized with present-day conditions for bed topography and ice thickness and then run to steady state with constant present-day surface mass balance. Surface temperature and sub-shelf basal melt distribution are parameterized. Grounding lines and calving fronts are free to evolve, and their modeled equilibrium state is compared to observational data. A physically-motivated calving law based on horizontal spreading rates allows for realistic calving fronts for various types of shelves. Steady-state dynamics including surface velocity and ice flux are analyzed for whole Antarctica and the Ronne-Filchner and Ross ice shelf areas in particular. The results show that the different flow regimes in sheet and shelves, and the transition zone between them, are captured reasonably well, supporting the approach of superposition of SIA and SSA for the representation of fast motion of grounded ice. This approach also leads to a natural emergence of sliding-dominated flow in stream-like features in this new 3-D marine ice sheet model.

  6. Europa Ice Rafts

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This high resolution image shows the ice-rich crust of Europa, one of the moons of Jupiter. Seen here are crustal plates ranging up to 13 kilometers (8 miles) across, which have been broken apart and 'rafted' into new positions, superficially resembling the disruption of pack-ice on polar seas during spring thaws on Earth. The size and geometry of these features suggest that motion was enabled by ice-crusted water or soft ice close to the surface at the time of disruption.

    The area shown is about 34 kilometers by 42 kilometers (21 miles by 26 miles), centered at 9.4 degrees north latitude, 274 degrees west longitude, and the resolution is 54 meters (59 yards). This picture was taken by the Solid State Imaging system on board the Galileo spacecraft on February 20, 1997, from a distance of 5,340 kilometers (3,320 miles) during the spacecraft's close flyby of Europa.

    The Jet Propulsion Laboratory, Pasadena, CA, manages the mission for NASA's Office of Space Science, Washington D.C. This image and other images and data received from Galileo are posted on the World Wide Web Galileo mission home page at: http://galileo.jpl.nasa.gov.

  7. Sensitivity Analysis of a Lagrangian Sea Ice Model

    NASA Astrophysics Data System (ADS)

    Rabatel, Matthias; Rampal, Pierre; Bertino, Laurent; Carrassi, Alberto; Jones, Christopher K. R. T.

    2017-04-01

    Large changes in the Arctic sea ice have been observed in the last decades in terms of the ice thickness, extension and drift. Understanding the mechanisms behind these changes is of paramount importance to enhance our modeling and forecasting capabilities. For 40 years, models have been developed to describe the non-linear dynamical response of the sea ice to a number of external and internal factors. Nevertheless, there still exists large deviations between predictions and observations. There are related to incorrect descriptions of the sea ice response and/or to the uncertainties about the different sources of information: parameters, initial and boundary conditions and external forcing. Data assimilation (DA) methods are used to combine observations with models, and there is nowadays an increasing interest of DA for sea-ice models and observations. We consider here the state-of-the art sea-ice model, neXtSIM te{Rampal2016a}, which is based on a time-varying Lagrangian mesh and makes use of the Elasto-Brittle rheology. Our ultimate goal is designing appropriate DA scheme for such a modelling facility. This contribution reports about the first milestone along this line: a sensitivity analysis in order to quantify forecast error to guide model development and to set basis for further Lagrangian DA methods. Specific features of the sea-ice dynamics in relation to the wind are thus analysed. Virtual buoys are deployed across the Arctic domain and their trajectories of motion are analysed. The simulated trajectories are also compared to real buoys trajectories observed. The model response is also compared with that one from a model version not including internal forcing to highlight the role of the rheology. Conclusions and perspectives for the general DA implementation are also discussed. \\bibitem{Rampal2016a} P. Rampal, S. Bouillon, E. Ólason, and M. Morlighem. ne{X}t{SIM}: a new {L}agrangian sea ice model. The Cryosphere, 10 (3): 1055-1073, 2016.

  8. Femoroacetabular Impingement in Elite Ice Hockey Goaltenders: Etiological Implications of On-Ice Hip Mechanics.

    PubMed

    Whiteside, David; Deneweth, Jessica M; Bedi, Asheesh; Zernicke, Ronald F; Goulet, Grant C

    2015-07-01

    Femoroacetabular impingement (FAI) is particularly prevalent in ice hockey. The butterfly goalie technique is thought to involve extreme ranges of hip motion that may predispose goaltenders to FAI. To quantify hip mechanics during 3 common goaltender movements and interpret their relevance to the development of FAI. Descriptive laboratory study. Fourteen collegiate and professional goaltenders performed skating, butterfly save, and recovery movements on the ice. Hip mechanics were compared across the 3 movements. The butterfly did not exhibit the greatest range of hip motion in any of the 3 planes. Internal rotation was the only hip motion that appeared close to terminal in this study. When subjects decelerated during skating—shaving the blade of their skate across the surface of the ice—the magnitude of peak hip internal rotation was 54% greater than in the butterfly and 265% greater than in the recovery. No movement involved levels of concomitant flexion, adduction, and internal rotation that resembled the traditional impingement (FADIR) test. The magnitude of internal rotation was the most extreme planar hip motion (relative to end-range) recorded in this study (namely during decelerating) and appeared to differentiate this cohort from other athletic populations. Consequently, repetitive end-range hip internal rotation may be the primary precursor to symptomatic FAI in hockey goaltenders and provides the most plausible account for the high incidence of FAI in these athletes. Resection techniques should, therefore, focus on enhancing internal rotation in goaltenders, compared with flexion and adduction. While the butterfly posture can require significant levels of hip motion, recovering from a save and, in particular, decelerating during skating are also demanding on goaltenders' hip joints. Therefore, it appears critical to consider and accommodate a variety of sport-specific hip postures to comprehensively diagnose, treat, and rehabilitate FAI. © 2015 The

  9. Development of a Capacitive Ice Sensor to Measure Ice Growth in Real Time

    PubMed Central

    Zhi, Xiang; Cho, Hyo Chang; Wang, Bo; Ahn, Cheol Hee; Moon, Hyeong Soon; Go, Jeung Sang

    2015-01-01

    This paper presents the development of the capacitive sensor to measure the growth of ice on a fuel pipe surface in real time. The ice sensor consists of pairs of electrodes to detect the change in capacitance and a thermocouple temperature sensor to examine the ice formation situation. In addition, an environmental chamber was specially designed to control the humidity and temperature to simulate the ice formation conditions. From the humidity, a water film is formed on the ice sensor, which results in an increase in capacitance. Ice nucleation occurs, followed by the rapid formation of frost ice that decreases the capacitance suddenly. The capacitance is saturated. The developed ice sensor explains the ice growth providing information about the icing temperature in real time. PMID:25808770

  10. Development of a capacitive ice sensor to measure ice growth in real time.

    PubMed

    Zhi, Xiang; Cho, Hyo Chang; Wang, Bo; Ahn, Cheol Hee; Moon, Hyeong Soon; Go, Jeung Sang

    2015-03-19

    This paper presents the development of the capacitive sensor to measure the growth of ice on a fuel pipe surface in real time. The ice sensor consists of pairs of electrodes to detect the change in capacitance and a thermocouple temperature sensor to examine the ice formation situation. In addition, an environmental chamber was specially designed to control the humidity and temperature to simulate the ice formation conditions. From the humidity, a water film is formed on the ice sensor, which results in an increase in capacitance. Ice nucleation occurs, followed by the rapid formation of frost ice that decreases the capacitance suddenly. The capacitance is saturated. The developed ice sensor explains the ice growth providing information about the icing temperature in real time.

  11. Molecular Insight into the Slipperiness of Ice.

    PubMed

    Weber, Bart; Nagata, Yuki; Ketzetzi, Stefania; Tang, Fujie; Smit, Wilbert J; Bakker, Huib J; Backus, Ellen H G; Bonn, Mischa; Bonn, Daniel

    2018-05-16

    Measurements of the friction coefficient of steel-on-ice over a large temperature range reveal very high friction at low temperatures (-100 °C) and a steep decrease in the friction coefficient with increasing temperature. Very low friction is only found over the limited temperature range typical for ice skating. The strong decrease in the friction coefficient with increasing temperature exhibits Arrhenius behavior with an activation energy of E a ≈ 11.5 kJ mol -1 . Remarkably, molecular dynamics simulations of the ice-air interface reveal a very similar activation energy for the mobility of surface molecules. Weakly hydrogen-bonded surface molecules diffuse over the surface in a rolling motion, their number and mobility increasing with increasing temperature. This correlation between macroscopic friction and microscopic molecular mobility indicates that slippery ice arises from the high mobility of its surface molecules, making the ice surface smooth and the shearing of the weakly bonded surface molecules easy.

  12. Ice Surfaces In False Color

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    The theme for the weeks of 1/17 and 1/24 is the north polar region of Mars as seen in false color THEMIS images. Ice/frost will typically appear as bright blue in color; dust mantled ice will appear in tones of red/orange.

    This full resolution image shows a marked difference in the 'blueness' of the ice surfaces. The lower (presumably older) surface is oranger and the top (presumably younger) surface is blue. This may represent the fresher ice of the upper surface which has not yet covered with as much dust as the lower surface.

    Image information: VIS instrument. Latitude 80.8, Longitude 302.1 East (57.9 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  13. Stick-slip Cycles and Tidal Modulation of Ice Stream Flow

    NASA Astrophysics Data System (ADS)

    Lipovsky, B.; Dunham, E. M.

    2016-12-01

    The reactivation of a single dormant Antarctic ice stream would double the continent's mass imbalance. Despite importance of understanding the likelihood of such an event, direct observation of the basal processes that lead to the activation and stagnation of streaming ice are minimal. As the only ice stream undergoing stagnation, the Whillans Ice Plain (WIP) occupies a central role in our understanding of these subglacial processes. Complicating matters is the observation, from GPS records, that the WIP experiences most of its motion during episodes of rapid sliding. These sliding events are tidally modulated and separated by 12 hour periods of quiescence. We conduct numerical simulations of ice stream stick-slip cycles. Our simulations include rate- and state-dependent frictional sliding, tidal forcing, inertia, upstream loading in a cross-stream, thickness-averaged formulation. Our principal finding is that ice stream motion may respond to ocean tidal forcing with one of two end member behaviors. In one limit, tidally modulated slip events have rupture velocities that approach the shear wave speed and slip events have a duration that scales with the ice stream width divided by the shear wave speed. In the other limit, tidal modulation results in ice stream sliding velocities with lower amplitude variation but at much longer timescales, i.e. semi-diurnal and longer. This latter behavior more closely mimics the behavior of several active ice streams (Bindschadler, Rutford). We find that WIP slip events exist between these two end member behaviors: rupture velocities are far below the inertial limit yet sliding occurs only episodically. The continuum of sliding behaviors is governed by a critical ice stream width over which slip event nucleate. When the critical width is much longer than the ice stream width, slip events are unable to nucleate. The critical width depends on the subglacial effective pressure, ice thickness, and frictional and elastic constitutive

  14. Thick or Thin Ice Shell on Europa?

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Scientists are all but certain that Europa has an ocean underneath its icy surface, but they do not know how thick this ice might be. This artist concept illustrates two possible cut-away views through Europa's ice shell. In both, heat escapes, possibly volcanically, from Europa's rocky mantle and is carried upward by buoyant oceanic currents. If the heat from below is intense and the ice shell is thin enough (left), the ice shell can directly melt, causing what are called 'chaos' on Europa, regions of what appear to be broken, rotated and tilted ice blocks. On the other hand, if the ice shell is sufficiently thick (right), the less intense interior heat will be transferred to the warmer ice at the bottom of the shell, and additional heat is generated by tidal squeezing of the warmer ice. This warmer ice will slowly rise, flowing as glaciers do on Earth, and the slow but steady motion may also disrupt the extremely cold, brittle ice at the surface. Europa is no larger than Earth's moon, and its internal heating stems from its eccentric orbit about Jupiter, seen in the distance. As tides raised by Jupiter in Europa's ocean rise and fall, they may cause cracking, additional heating and even venting of water vapor into the airless sky above Europa's icy surface. (Artwork by Michael Carroll.)

  15. Quantifying Glacier Volume Change Using UAV-Derived Imagery and Structure from Motion Photogrammetry

    NASA Astrophysics Data System (ADS)

    Decker, C. R.; La Frenierre, J.

    2017-12-01

    Glaciers in the Tropical Andes, like those worldwide, are experiencing rapid ice volume loss due to climate change. Tropical areas are of significant interest in glacier studies because they are especially sensitive to climate change. Quantifying the rate of ice volume loss is important given their sensitivity to climate change and the importance of glacier meltwater for downstream human use. Past studies have found shrinking ice surfaces areas, but finding the actual rate of volume loss gives more information about how glaciers are reacting to climate change as well as the direct hydrological effects of ice volume loss. In this study we determined the rate of ice volume loss for a debris covered section of the Reschreiter Glacier and a portion of the clean ice tongue of the Hans Meyer Glacier on Volcán Chimborazo in Ecuador. Traditional geodetic approaches of measuring ice volume change, including the use of satellite-derived digital elevation models and airborne LIDAR, are difficult in this case due to the small size of Chimborazo's glaciers, frequently cloudy conditions, and limited local resources. Instead, we obtained imagery with an Unmanned Aerial Vehicle (UAV) and processed this imagery using Structure from Motion photogrammetry. Our results are used to evaluate the role of elevation and debris cover as Chimborazo's glaciers respond to climate change.

  16. Autonomous Ice Mass Balance Buoys for Seasonal Sea Ice

    NASA Astrophysics Data System (ADS)

    Whitlock, J. D.; Planck, C.; Perovich, D. K.; Parno, J. T.; Elder, B. C.; Richter-Menge, J.; Polashenski, C. M.

    2017-12-01

    The ice mass-balance represents the integration of all surface and ocean heat fluxes and attributing the impact of these forcing fluxes on the ice cover can be accomplished by increasing temporal and spatial measurements. Mass balance information can be used to understand the ongoing changes in the Arctic sea ice cover and to improve predictions of future ice conditions. Thinner seasonal ice in the Arctic necessitates the deployment of Autonomous Ice Mass Balance buoys (IMB's) capable of long-term, in situ data collection in both ice and open ocean. Seasonal IMB's (SIMB's) are free floating IMB's that allow data collection in thick ice, thin ice, during times of transition, and even open water. The newest generation of SIMB aims to increase the number of reliable IMB's in the Arctic by leveraging inexpensive commercial-grade instrumentation when combined with specially developed monitoring hardware. Monitoring tasks are handled by a custom, expandable data logger that provides low-cost flexibility for integrating a large range of instrumentation. The SIMB features ultrasonic sensors for direct measurement of both snow depth and ice thickness and a digital temperature chain (DTC) for temperature measurements every 2cm through both snow and ice. Air temperature and pressure, along with GPS data complete the Arctic picture. Additionally, the new SIMB is more compact to maximize deployment opportunities from multiple types of platforms.

  17. Commercial aviation icing research requirements

    NASA Technical Reports Server (NTRS)

    Koegeboehn, L. P.

    1981-01-01

    A short range and long range icing research program was proposed. A survey was made to various industry and goverment agencies to obtain their views of needs for commercial aviation ice protection. Through these responsed, other additional data, and Douglas Aircraft icing expertise; an assessment of the state-of-the-art of aircraft icing data and ice protection systems was made. The information was then used to formulate the icing research programs.

  18. Method to estimate drag coefficient at the air/ice interface over drifting open pack ice from remotely sensed data

    NASA Technical Reports Server (NTRS)

    Feldman, U.

    1984-01-01

    A knowledge in near real time, of the surface drag coefficient for drifting pack ice is vital for predicting its motions. And since this is not routinely available from measurements it must be replaced by estimates. Hence, a method for estimating this variable, as well as the drag coefficient at the water/ice interface and the ice thickness, for drifting open pack ice was developed. These estimates were derived from three-day sequences of LANDSAT-1 MSS images and surface weather charts and from the observed minima and maxima of these variables. The method was tested with four data sets in the southeastern Beaufort sea. Acceptable results were obtained for three data sets. Routine application of the method depends on the availability of data from an all-weather air or spaceborne remote sensing system, producing images with high geometric fidelity and high resolution.

  19. Modeling Sea Ice Trajectories for Oil Spill Tracking.

    DTIC Science & Technology

    1981-06-01

    is compared with sea ice motions observed during the AIDJEX main field experiment in the Beaufort Sea from April 1975 to February 1976. The average ...more recently grown on leads formed as the floes fracture and divide. The large-scale average thickness of the pack ice is roughly 3 m. As an...opposite extreme, during the summer when air temperatures rise above freezing, melting and offshore winds combine to form an approximately 300-km-wide swath

  20. Informed Decision Making for In-Home Use of Motion Sensor-Based Monitoring Technologies

    ERIC Educational Resources Information Center

    Bruce, Courtenay R.

    2012-01-01

    Motion sensor-based monitoring technologies are designed to maintain independence and safety of older individuals living alone. These technologies use motion sensors that are placed throughout older individuals' homes in order to derive information about eating, sleeping, and leaving/returning home habits. Deviations from normal behavioral…

  1. The instantaneous linear motion information measurement method based on inertial sensors for ships

    NASA Astrophysics Data System (ADS)

    Yang, Xu; Huang, Jing; Gao, Chen; Quan, Wei; Li, Ming; Zhang, Yanshun

    2018-05-01

    Ship instantaneous line motion information is the important foundation for ship control, which needs to be measured accurately. For this purpose, an instantaneous line motion measurement method based on inertial sensors is put forward for ships. By introducing a half-fixed coordinate system to realize the separation between instantaneous line motion and ship master movement, the instantaneous line motion acceleration of ships can be obtained with higher accuracy. Then, the digital high-pass filter is applied to suppress the velocity error caused by the low frequency signal such as schuler period. Finally, the instantaneous linear motion displacement of ships can be measured accurately. Simulation experimental results show that the method is reliable and effective, and can realize the precise measurement of velocity and displacement of instantaneous line motion for ships.

  2. Motion-Dependent Filling-In of Spatiotemporal Information at the Blind Spot

    PubMed Central

    Maus, Gerrit W.; Whitney, David

    2016-01-01

    We usually do not notice the blind spot, a receptor-free region on the retina. Stimuli extending through the blind spot appear filled in. However, if an object does not reach through but ends in the blind spot, it is perceived as “cut off” at the boundary. Here we show that even when there is no corresponding stimulation at opposing edges of the blind spot, well known motion-induced position shifts also extend into the blind spot and elicit a dynamic filling-in process that allows spatial structure to be extrapolated into the blind spot. We presented observers with sinusoidal gratings that drifted into or out of the blind spot, or flickered in counterphase. Gratings moving into the blind spot were perceived to be longer than those moving out of the blind spot or flickering, revealing motion-dependent filling-in. Further, observers could perceive more of a grating’s spatial structure inside the blind spot than would be predicted from simple filling-in of luminance information from the blind spot edge. This is evidence for a dynamic filling-in process that uses spatiotemporal information from the motion system to extrapolate visual percepts into the scotoma of the blind spot. Our findings also provide further support for the notion that an explicit spatial shift of topographic representations contributes to motion-induced position illusions. PMID:27100795

  3. Motion-Dependent Filling-In of Spatiotemporal Information at the Blind Spot.

    PubMed

    Maus, Gerrit W; Whitney, David

    2016-01-01

    We usually do not notice the blind spot, a receptor-free region on the retina. Stimuli extending through the blind spot appear filled in. However, if an object does not reach through but ends in the blind spot, it is perceived as "cut off" at the boundary. Here we show that even when there is no corresponding stimulation at opposing edges of the blind spot, well known motion-induced position shifts also extend into the blind spot and elicit a dynamic filling-in process that allows spatial structure to be extrapolated into the blind spot. We presented observers with sinusoidal gratings that drifted into or out of the blind spot, or flickered in counterphase. Gratings moving into the blind spot were perceived to be longer than those moving out of the blind spot or flickering, revealing motion-dependent filling-in. Further, observers could perceive more of a grating's spatial structure inside the blind spot than would be predicted from simple filling-in of luminance information from the blind spot edge. This is evidence for a dynamic filling-in process that uses spatiotemporal information from the motion system to extrapolate visual percepts into the scotoma of the blind spot. Our findings also provide further support for the notion that an explicit spatial shift of topographic representations contributes to motion-induced position illusions.

  4. Rapid Collapse of the Vavilov Ice Cap, Russian High Arctic.

    NASA Astrophysics Data System (ADS)

    Willis, M. J.; Zheng, W.; Durkin, W. J., IV; Pritchard, M. E.; Ramage, J. M.; Dowdeswell, J. A.; Benham, T. J.; Glazovsky, A.; Macheret, Y.; Porter, C. C.

    2016-12-01

    Cold based ice caps and glaciers are thought to respond slowly to environmental changes. As sea ice cover evolves in the Arctic, a feedback process alters air-temperatures and precipitation patterns across the region. During the last decades of the 20th century the land-terminating western margin of the Vavilov Ice Cap, on October Revolution Island of the Severnaya Zemlya Archipelago, advanced slowly westwards. The advance was driven by precipitation changes that occurred about half a millennia ago. InSAR shows that in 1996 the margin sustained ice speeds of around 20 m/yr. By 2000 the ice front had moved a short distance into the Kara Sea and had transitioned to a marine-terminating front, although an ice apron around the ice margin indicates the ice there was still frozen to the bed and there is no evidence of calving in satellite imagery. In 2013 ice motions near the terminus had accelerated to around 1 m/day. By late 2015 the main trunk of the newly activated outlet glacier attained speeds of 25 m/day and the inland portion of the ice cap thinned at rates of more than 0.3 m/day. The acceleration of the outlet glacier occurred due to its advance over weak, water-saturated marine sediments that provide little resistance to ice flow, and to the removal of lateral resistive stresses as the glacier advanced out into an open embayment. Longitudinal stretching at the front forces an increase in the surface slope upstream. Rapid rates of motion inland generate frictional melt at the bed, possibly aided by cryohydrological warming. Large areas of the interior of the Vavilov ice cap are now below the equilibrium line and the grounded portion of the ice cap is losing mass at a rate of 4.5 km3 w.e./year. The changes at the Vavilov are likely irrecoverable in a warming climate due to a reduction in the accumulation area of the ice cap. Increased precipitation drove the advance, which accelerated due to the presence of soft sediments. The acceleration lowered the elevation

  5. Did glacially induced TPW end the ice age? A reanalysis

    NASA Astrophysics Data System (ADS)

    Chan, Ngai-Ham; Mitrovica, Jerry X.; Daradich, Amy

    2015-09-01

    Previous studies of Earth rotation perturbations due to ice-age loading have predicted a slow secular drift of the rotation axis relative to the surface geography (i.e. true polar wander, TPW) of order of several degrees over the Plio-Pleistocene. It has been argued that this drift and the change in the geographic distribution of solar insolation that it implies may have been responsible for important transitions in ice-age climate, including the termination of ice-age cycles.We use a revised rotational stability theory that incorporates a more accurate treatment of the Earth's background ellipticity to reconsider this issue, and demonstrate that the net displacement of the pole predicted in earlier studies disappears. This more muted polar motion is due to two factors: first, the revised theory no longer predicts the permanent shift in the rotation axis, or the so-called `unidirectional TPW', that appears in the traditional stability theory; and, second, the increased background ellipticity incorporated in the revised predictions acts to reduce the normal mode amplitudes governing the motion of the pole. We conclude that ice-age-induced TPW was not responsible for the termination of the ice age. This does not preclude the possibility that TPW induced by mantle convective flow may have played a role in major Plio-Pleistocene climate transitions, including the onset of Northern Hemisphere glaciation.

  6. Modeling of Antarctic Sea Ice in a General Circulation Model.

    NASA Astrophysics Data System (ADS)

    Wu, Xingren; Simmonds, Ian; Budd, W. F.

    1997-04-01

    A dynamic-thermodynamic sea ice model is developed and coupled with the Melbourne University general circulation model to simulate the seasonal cycle of the Antarctic sea ice distribution. The model is efficient, rapid to compute, and useful for a range of climate studies. The thermodynamic part of the sea ice model is similar to that developed by Parkinson and Washington, the dynamics contain a simplified ice rheology that resists compression. The thermodynamics is based on energy conservation at the top surface of the ice/snow, the ice/water interface, and the open water area to determine the ice formation, accretion, and ablation. A lead parameterization is introduced with an effective partitioning scheme for freezing between and under the ice floes. The dynamic calculation determines the motion of ice, which is forced with the atmospheric wind, taking account of ice resistance and rafting. The simulated sea ice distribution compares reasonably well with observations. The seasonal cycle of ice extent is well simulated in phase as well as in magnitude. Simulated sea ice thickness and concentration are also in good agreement with observations over most regions and serve to indicate the importance of advection and ocean drift in the determination of the sea ice distribution.

  7. Modeling of Antarctic sea ice in a general circulation model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Xingren; Budd, W.F.; Simmonds, I.

    1997-04-01

    A dynamic-thermodynamic sea ice model is developed and coupled with the Melbourne University general circulation model to simulate the seasonal cycle of the Antarctic sea ice distributions The model is efficient, rapid to compute, and useful for a range of climate studies. The thermodynamic part of the sea ice model is similar to that developed by Parkinson and Washington, the dynamics contain a simplified ice rheology that resists compression. The thermodynamics is based on energy conservation at the top surface of the ice/snow, the ice/water interface, and the open water area to determine the ice formation, accretion, and ablation. Amore » lead parameterization is introduced with an effective partitioning scheme for freezing between and under the ice floes. The dynamic calculation determines the motion of ice, which is forced with the atmospheric wind, taking account of ice resistance and rafting. The simulated sea ice distribution compares reasonably well with observations. The seasonal cycle of ice extent is well simulated in phase as well as in magnitude. Simulated sea ice thickness and concentration are also in good agreement with observations over most regions and serve to indicate the importance of advection and ocean drift in the determination of the sea ice distribution. 64 refs., 15 figs., 2 tabs.« less

  8. Effectively Communicating Information about Dynamically Changing Arctic Sea Ice to the Public through the Global Fiducials Program

    NASA Astrophysics Data System (ADS)

    Molnia, B. F.; Friesen, B.; Wilson, E.; Noble, S.

    2015-12-01

    On July 15, 2009, the National Academy of Sciences (NAS) released a report, Scientific Value of Arctic Sea Ice Imagery Derived Products, advocating public release of Arctic images derived from classified data. In the NAS press release that announced the release, report lead Stephanie Pfirman states "To prepare for a possibly ice-free Arctic and its subsequent effects on the environment, economy, and national security, it is critical to have accurate projections of changes over the next several decades." In the same release NAS President Ralph Cicerone states "We hope that these images are the first of many that could help scientists learn how the changing climate could impact the environment and our society." The same day, Secretary of the Interior Ken Salazar announced that the requested images had been released and were available to the public on a US Geological Survey Global Fiducials Program (GFP) Library website (http://gfl.usgs.gov). The website was developed by the USGS to provide public access to the images and to support environmental analysis of global climate-related science. In the statement describing the release titled, Information Derived from Classified Materials Will Aid Understanding of Changing Climate, Secretary Salazar states "We need the best data from all places if we are to meet the challenges that rising carbon emissions are creating. This information will be invaluable to scientists, researchers, and the public as we tackle climate change." Initially about 700 Arctic sea ice images were released. Six years later, the number exceeds 1,500. The GFP continues to facilitate the acquisition of new Arctic sea ice imagery from US National Imagery Systems. This example demonstrates how information about dynamically changing Arctic sea ice continues to be effectively communicated to the public by the GFP. In addition to Arctic sea ice imagery, the GFP has publicly released imagery time series of more than 125 other environmentally important

  9. Propagation of acoustic-gravity waves in arctic zones with elastic ice-sheets

    NASA Astrophysics Data System (ADS)

    Kadri, Usama; Abdolali, Ali; Kirby, James T.

    2017-04-01

    We present an analytical solution of the boundary value problem of propagating acoustic-gravity waves generated in the ocean by earthquakes or ice-quakes in arctic zones. At the surface, we assume elastic ice-sheets of a variable thickness, and show that the propagating acoustic-gravity modes have different mode shape than originally derived by Ref. [1] for a rigid ice-sheet settings. Computationally, we couple the ice-sheet problem with the free surface model by Ref. [2] representing shrinking ice blocks in realistic sea state, where the randomly oriented ice-sheets cause inter modal transition at the edges and multidirectional reflections. We then derive a depth-integrated equation valid for spatially slowly varying thickness of ice-sheet and water depth. Surprisingly, and unlike the free-surface setting, here it is found that the higher acoustic-gravity modes exhibit a larger contribution. These modes travel at the speed of sound in water carrying information on their source, e.g. ice-sheet motion or submarine earthquake, providing various implications for ocean monitoring and detection of quakes. In addition, we found that the propagating acoustic-gravity modes can result in orbital displacements of fluid parcels sufficiently high that may contribute to deep ocean currents and circulation, as postulated by Refs. [1, 3]. References [1] U. Kadri, 2016. Generation of Hydroacoustic Waves by an Oscillating Ice Block in Arctic Zones. Advances in Acoustics and Vibration, 2016, Article ID 8076108, 7 pages http://dx.doi.org/10.1155/2016/8076108 [2] A. Abdolali, J. T. Kirby and G. Bellotti, 2015, Depth-integrated equation for hydro-acoustic waves with bottom damping, J. Fluid Mech., 766, R1 doi:10.1017/jfm.2015.37 [3] U. Kadri, 2014. Deep ocean water transportation by acoustic?gravity waves. J. Geophys. Res. Oceans, 119, doi:10.1002/ 2014JC010234

  10. Topographic enhancement of tidal motion in the western Barents Sea

    NASA Technical Reports Server (NTRS)

    Kowalik, Z.; Proshutinsky, A. YU.

    1995-01-01

    A high-resolution numerical lattice is used to study a topographically trapped motion around islands and shallow banks of the western Barents Sea caused both by the semidiurnal and diurnal tidal waves. Observations and model computations in the vicinity of Bear Island show well-developed trapped motion with distinctive tidal oscillatory motion. Numerical investigations demonstrate that one source of the trapped motion is tidal current rectification over shallow topgraphy. Tidal motion supports residual currents of the order of 8 cm/s around Bear Island and shallow Spitsbergenbanken. The structures of enhanced tidal currents for the semidiurnal components are generated in the shallow areas due to topographic amplification. In the diurnal band of oscillations the maximum current is associated with the shelf wave occurrence. Residual currents due to diurnal tides occur at both the shallow areas and the shelf slope in regions of maximum topographic gradients. Surface manifestation of the diurnal current enhancement is the local maximum of tidal amplitude at the shelf break of the order of 5 to 10 cm. Tidal current enhancement and tidally generated residual currents in the Bear Island and Spitsbergenabanken regions cause an increased generation of ice leads, ridges and, trapped motion of the ice floes.

  11. Projecting Antarctic ice discharge using response functions from SeaRISE ice-sheet models

    NASA Astrophysics Data System (ADS)

    Levermann, A.; Winkelmann, R.; Nowicki, S.; Fastook, J. L.; Frieler, K.; Greve, R.; Hellmer, H. H.; Martin, M. A.; Meinshausen, M.; Mengel, M.; Payne, A. J.; Pollard, D.; Sato, T.; Timmermann, R.; Wang, W. L.; Bindschadler, R. A.

    2014-08-01

    values increase to 0.09 m (66% range: 0.04-0.17 m; 90% range: 0.02-0.25 m) for RCP-2.6 and 0.15 m (66% range: 0.07-0.28 m; 90% range: 0.04-0.43 m) for RCP-8.5. All probability distributions are highly skewed towards high values. The applied ice-sheet models are coarse resolution with limitations in the representation of grounding-line motion. Within the constraints of the applied methods, the uncertainty induced from different ice-sheet models is smaller than that induced by the external forcing to the ice sheets.

  12. Potential of Higher Moments of the Radar Doppler Spectrum for Studying Ice Clouds

    NASA Astrophysics Data System (ADS)

    Loehnert, U.; Maahn, M.

    2015-12-01

    More observations of ice clouds are required to fill gaps in understanding of microphysical properties and processes. However, in situ observations by aircraft are costly and cannot provide long term observations which are required for a deeper understanding of the processes. Ground based remote sensing observations have the potential to fill this gap, but their observations do not contain sufficient information to unambiguously constrain ice cloud properties which leads to high uncertainties. For vertically pointing cloud radars, usually only reflectivity and mean Doppler velocity are used for retrievals; some studies proposed also the use of Doppler spectrum width.In this study, it is investigated whether additional information can be obtained by exploiting also higher moments of the Doppler spectrum such as skewness and kurtosis together with the slope of the Doppler peak. For this, observations of pure ice clouds from the Indirect and Semi-Direct Aerosol Campaign (ISDAC) in Alaska 2008 are analyzed. Using the ISDAC data set, an Optimal Estimation based retrieval is set up based on synthetic and real radar observations. The passive and active microwave radiative transfer model (PAMTRA) is used as a forward model together with the Self-Similar Rayleigh-Gans approximation for estimation of the scattering properties. The state vector of the retrieval consists of the parameters required to simulate the radar Doppler spectrum and describes particle mass, cross section area, particle size distribution, and kinematic conditions such as turbulence and vertical air motion. Using the retrieval, the information content (degrees of freedom for signal) is quantified that higher moments and slopes can contribute to an ice cloud retrieval. The impact of multiple frequencies, radar sensitivity and radar calibration is studied. For example, it is found that a single-frequency measurement using all moments and slopes contains already more information content than a dual

  13. Potential of Higher Moments of the Radar Doppler Spectrum for Studying Ice Clouds

    NASA Astrophysics Data System (ADS)

    Lunt, M. F.; Rigby, M. L.; Ganesan, A.; Manning, A.; O'Doherty, S.; Prinn, R. G.; Saito, T.; Harth, C. M.; Muhle, J.; Weiss, R. F.; Salameh, P.; Arnold, T.; Yokouchi, Y.; Krummel, P. B.; Steele, P.; Fraser, P. J.; Li, S.; Park, S.; Kim, J.; Reimann, S.; Vollmer, M. K.; Lunder, C. R.; Hermansen, O.; Schmidbauer, N.; Young, D.; Simmonds, P. G.

    2014-12-01

    More observations of ice clouds are required to fill gaps in understanding of microphysical properties and processes. However, in situ observations by aircraft are costly and cannot provide long term observations which are required for a deeper understanding of the processes. Ground based remote sensing observations have the potential to fill this gap, but their observations do not contain sufficient information to unambiguously constrain ice cloud properties which leads to high uncertainties. For vertically pointing cloud radars, usually only reflectivity and mean Doppler velocity are used for retrievals; some studies proposed also the use of Doppler spectrum width.In this study, it is investigated whether additional information can be obtained by exploiting also higher moments of the Doppler spectrum such as skewness and kurtosis together with the slope of the Doppler peak. For this, observations of pure ice clouds from the Indirect and Semi-Direct Aerosol Campaign (ISDAC) in Alaska 2008 are analyzed. Using the ISDAC data set, an Optimal Estimation based retrieval is set up based on synthetic and real radar observations. The passive and active microwave radiative transfer model (PAMTRA) is used as a forward model together with the Self-Similar Rayleigh-Gans approximation for estimation of the scattering properties. The state vector of the retrieval consists of the parameters required to simulate the radar Doppler spectrum and describes particle mass, cross section area, particle size distribution, and kinematic conditions such as turbulence and vertical air motion. Using the retrieval, the information content (degrees of freedom for signal) is quantified that higher moments and slopes can contribute to an ice cloud retrieval. The impact of multiple frequencies, radar sensitivity and radar calibration is studied. For example, it is found that a single-frequency measurement using all moments and slopes contains already more information content than a dual

  14. Retrieval of ice cloud properties using an optimal estimation algorithm and MODIS infrared observations: 1. Forward model, error analysis, and information content

    NASA Astrophysics Data System (ADS)

    Wang, Chenxi; Platnick, Steven; Zhang, Zhibo; Meyer, Kerry; Yang, Ping

    2016-05-01

    An optimal estimation (OE) retrieval method is developed to infer three ice cloud properties simultaneously: optical thickness (τ), effective radius (reff), and cloud top height (h). This method is based on a fast radiative transfer (RT) model and infrared (IR) observations from the MODerate resolution Imaging Spectroradiometer (MODIS). This study conducts thorough error and information content analyses to understand the error propagation and performance of retrievals from various MODIS band combinations under different cloud/atmosphere states. Specifically, the algorithm takes into account four error sources: measurement uncertainty, fast RT model uncertainty, uncertainties in ancillary data sets (e.g., atmospheric state), and assumed ice crystal habit uncertainties. It is found that the ancillary and ice crystal habit error sources dominate the MODIS IR retrieval uncertainty and cannot be ignored. The information content analysis shows that for a given ice cloud, the use of four MODIS IR observations is sufficient to retrieve the three cloud properties. However, the selection of MODIS IR bands that provide the most information and their order of importance varies with both the ice cloud properties and the ambient atmospheric and the surface states. As a result, this study suggests the inclusion of all MODIS IR bands in practice since little a priori information is available.

  15. Characterizing Microbial Mat Morphology with Structure from Motion Techniques in Ice-Covered Lake Joyce, McMurdo Dry Valleys, Antarctica

    NASA Astrophysics Data System (ADS)

    Mackey, T. J.; Leidman, S. Z.; Allen, B.; Hawes, I.; Lawrence, J.; Jungblut, A. D.; Krusor, M.; Coleman, L.; Sumner, D. Y.

    2015-12-01

    Structure from Motion (SFM) techniques can provide quantitative morphological documentation of otherwise inaccessible benthic ecosystems such as microbial mats in Lake Joyce, a perennially ice-covered lake of the Antarctic McMurdo Dry Valleys (MDV). Microbial mats are a key ecosystem of MDV lakes, and diverse mat morphologies like pinnacles emerge from interactions among microbial behavior, mineralization, and environmental conditions. Environmental gradients can be isolated to test mat growth models, but assessment of mat morphology along these gradients is complicated by their inaccessibility: the Lake Joyce ice cover is 4-5 m thick, water depths containing diverse pinnacle morphologies are 9-14 m, and relevant mat features are cm-scale. In order to map mat pinnacle morphology in different sedimentary settings, we deployed drop cameras (SeaViewer and GoPro) through 29 GPS referenced drill holes clustered into six stations along a transect spanning 880 m. Once under the ice cover, a boom containing a second GoPro camera was unfurled and rotated to collect oblique images of the benthic mats within dm of the mat-water interface. This setup allowed imaging from all sides over a ~1.5 m diameter area of the lake bottom. Underwater lens parameters were determined for each camera in Agisoft Lens; images were reconstructed and oriented in space with the SFM software Agisoft Photoscan, using the drop camera axis of rotation as up. The reconstructions were compared to downward facing images to assess accuracy, and similar images of an object with known geometry provided a test for expected error in reconstructions. Downward facing images identify decreasing pinnacle abundance in higher sedimentation settings, and quantitative measurements of 3D reconstructions in KeckCAVES LidarViewer supplement these mat morphological facies with measurements of pinnacle height and orientation. Reconstructions also help isolate confounding variables for mat facies trends with measurements

  16. Aircraft icing research at NASA

    NASA Technical Reports Server (NTRS)

    Reinmann, J. J.; Shaw, R. J.; Olsen, W. A., Jr.

    1982-01-01

    Research activity is described for: ice protection systems, icing instrumentation, experimental methods, analytical modeling for the above, and in flight research. The renewed interest in aircraft icing has come about because of the new need for All-Weather Helicopters and General Aviation aircraft. Because of increased fuel costs, tomorrow's Commercial Transport aircraft will also require new types of ice protection systems and better estimates of the aeropenalties caused by ice on unprotected surfaces. The physics of aircraft icing is very similar to the icing that occurs on ground structures and structures at sea; all involve droplets that freeze on the surfaces because of the cold air. Therefore all icing research groups will benefit greatly by sharing their research information.

  17. Depth information in natural environments derived from optic flow by insect motion detection system: a model analysis

    PubMed Central

    Schwegmann, Alexander; Lindemann, Jens P.; Egelhaaf, Martin

    2014-01-01

    Knowing the depth structure of the environment is crucial for moving animals in many behavioral contexts, such as collision avoidance, targeting objects, or spatial navigation. An important source of depth information is motion parallax. This powerful cue is generated on the eyes during translatory self-motion with the retinal images of nearby objects moving faster than those of distant ones. To investigate how the visual motion pathway represents motion-based depth information we analyzed its responses to image sequences recorded in natural cluttered environments with a wide range of depth structures. The analysis was done on the basis of an experimentally validated model of the visual motion pathway of insects, with its core elements being correlation-type elementary motion detectors (EMDs). It is the key result of our analysis that the absolute EMD responses, i.e., the motion energy profile, represent the contrast-weighted nearness of environmental structures during translatory self-motion at a roughly constant velocity. In other words, the output of the EMD array highlights contours of nearby objects. This conclusion is largely independent of the scale over which EMDs are spatially pooled and was corroborated by scrutinizing the motion energy profile after eliminating the depth structure from the natural image sequences. Hence, the well-established dependence of correlation-type EMDs on both velocity and textural properties of motion stimuli appears to be advantageous for representing behaviorally relevant information about the environment in a computationally parsimonious way. PMID:25136314

  18. Formation of a wave on an ice-sheet above the dipole, moving in a fluid

    NASA Astrophysics Data System (ADS)

    Il'ichev, A. T.; Savin, A. A.; Savin, A. S.

    2012-05-01

    Theory of wave motions of a fluid with an ice-sheet was developed due to the necessity of solving of a number of problems of marine and land physics. The main attention in these investigations was focused on propagation and interaction of free waves, and also on appearance of waves under action of different loadings on the ice-sheet. From the other side, the problems dealing with waves on the fluid surface, free from the ice due to motion in the mass of the fluid of rigid bodies, has the known solutions. In this connection, it seems natural to disserminate the formulation and methods of such problems to the case of the fluid with the ice-sheet. In the present note we describe the character of formation of waves from the singularity, localized in the fluid of infinite depth beneath the ice-sheet. We use the example of the dipole, which models a cylinder in the infinite mass of the fluid. The character of the formation does not depend on the type of singularity. The ice-sheet is considered as a thin elastic plate of a constant width, floating on the water surface.

  19. Study on bouncing motion of a water drop collision on superhydrophobic surface under icing conditions

    NASA Astrophysics Data System (ADS)

    Maeda, Tetsuro; Morita, Katsuaki; Kimura, Shigeo

    2017-11-01

    When micro droplets in the air are supercooled and collide with the object, they froze on the surface at the time of a collision and can be defined as icing. If supercooled water droplets collide with an airfoil of an aircraft in flight and shape changes, there is a danger of losing lift and falling. Recently, the ice protection system using a heater and Anti- / Deicing (superhydrophobic) coating is focused. In this system, colliding water droplets are melted by the heat of the heater at the tip of the blade, and the water droplet is bounced by the aerodynamic force on the rear superhydrophobic coating. Thus, it prevents the phenomenon of icing again at the back of the wing (runback ice). Therefore, it is possible to suppress power consumption of the electric heater. In that system, it is important to withdraw water droplets at an extremely superhydrophobic surface at an early stage. However, research on bouncing phenomenon on superhydrophobic surface under icing conditions are not done much now. Therefore, in our research, we focus on one drop supercooled water droplet that collides with the superhydrophobic surface in the icing phenomenon, and aim to follow that phenomenon. In this report, the contact time is defined as the time from collision of a water droplet to bouncing from the superhydrophobic surface, and various parameters (temperature, speed, and diameter) on water droplets under icing conditions are set as the water drop bouncing time (contact time) of the product.

  20. Short-term variations of Icelandic ice cap mass inferred from cGPS coordinate time series

    NASA Astrophysics Data System (ADS)

    Compton, Kathleen; Bennett, Richard A.; Hreinsdóttir, Sigrún; van Dam, Tonie; Bordoni, Andrea; Barletta, Valentina; Spada, Giorgio

    2017-06-01

    As the global climate changes, understanding short-term variations in water storage is increasingly important. Continuously operating Global Positioning System (cGPS) stations in Iceland record annual periodic motion—the elastic response to winter accumulation and spring melt seasons—with peak-to-peak vertical amplitudes over 20 mm for those sites in the Central Highlands. Here for the first time for Iceland, we demonstrate the utility of these cGPS-measured displacements for estimating seasonal and shorter-term ice cap mass changes. We calculate unit responses to each of the five largest ice caps in central Iceland at each of the 62 cGPS locations using an elastic half-space model and estimate ice mass variations from the cGPS time series using a simple least squares inversion scheme. We utilize all three components of motion, taking advantage of the seasonal motion recorded in the horizontal. We remove secular velocities and accelerations and explore the impact that seasonal motions due to atmospheric, hydrologic, and nontidal ocean loading have on our inversion results. Our results match available summer and winter mass balance measurements well, and we reproduce the seasonal stake-based observations of loading and melting within the 1σ confidence bounds of the inversion. We identify nonperiodic ice mass changes associated with interannual variability in precipitation and other processes such as increased melting due to reduced ice surface albedo or decreased melting due to ice cap insulation in response to tephra deposition following volcanic eruptions, processes that are not resolved with once or twice-yearly stake measurements.

  1. Effects of background motion on eye-movement information.

    PubMed

    Nakamura, S

    1997-02-01

    The effect of background stimulus on eye-movement information was investigated by analyzing the underestimation of the target velocity during pursuit eye movement (Aubert-Fleishl paradox). In the experiment, a striped pattern with various brightness contrasts and spatial frequencies was used as a background stimulus, which was moved at various velocities. Analysis showed that the perceived velocity of the pursuit target, which indicated the magnitudes of eye-movement information, decreased when the background stripes moved in the same direction as eye movement at higher velocities and increased when the background moved in the opposite direction. The results suggest that the eye-movement information varied as a linear function of the velocity of the motion of the background retinal image (optic flow). In addition, the effectiveness of optic flow on eye-movement information was determined by the attributes of the background stimulus such as the brightness contrast or the spatial frequency of the striped pattern.

  2. Antarctic Glaciological Data at NSIDC: field data, temperature, and ice velocity

    NASA Astrophysics Data System (ADS)

    Bauer, R.; Bohlander, J.; Scambos, T.; Berthier, E.; Raup, B.; Scharfen, G.

    2003-12-01

    An extensive collection of many Antarctic glaciological parameters is available for the polar science community upon request. The National Science Foundation's Office of Polar Programs funds the Antarctic Glaciological Data Center (AGDC) at the National Snow and Ice Data Center (NSIDC) to archive and distribute Antarctic glaciological and cryospheric system data collected by the U.S. Antarctic Program. AGDC facilitates data exchange among Principal Investigators, preserves recently collected data useful to future research, gathers data sets from past research, and compiles continent-wide information useful for modeling and field work planning. Data sets are available via our web site, http://nsidc.org/agdc/. From here, users can access extensive documentation, citation information, locator maps, derived images and references, and the numerical data. More than 50 Antarctic scientists have contributed data to the archive. Among the compiled products distributed by AGDC are VELMAP and THERMAP. THERMAP is a compilation of over 600 shallow firn temperature measurements ('10-meter temperatures') collected since 1950. These data provide a record of mean annual temperature, and potentially hold a record of climate change on the continent. The data are represented with maps showing the traverse route, and include data sources, measurement technique, and additional measurements made at each site, i.e., snow density and accumulation. VELMAP is an archive of surface ice velocity measurements for the Antarctic Ice Sheet. The primary objective of VELMAP is to assemble a historic record of outlet glaciers and ice shelf ice motion over the Antarctic. The collection includes both PI-contributed measurements and data generated at NSIDC using Landsat and SPOT satellite imagery. Tabular data contain position, speed, bearing, and data quality information, and related references. Two new VELMAP data sets are highlighted: the Mertz Glacier and the Institute Ice Stream. Mertz Glacier ice

  3. Visual and Non-Visual Contributions to the Perception of Object Motion during Self-Motion

    PubMed Central

    Fajen, Brett R.; Matthis, Jonathan S.

    2013-01-01

    Many locomotor tasks involve interactions with moving objects. When observer (i.e., self-)motion is accompanied by object motion, the optic flow field includes a component due to self-motion and a component due to object motion. For moving observers to perceive the movement of other objects relative to the stationary environment, the visual system could recover the object-motion component – that is, it could factor out the influence of self-motion. In principle, this could be achieved using visual self-motion information, non-visual self-motion information, or a combination of both. In this study, we report evidence that visual information about the speed (Experiment 1) and direction (Experiment 2) of self-motion plays a role in recovering the object-motion component even when non-visual self-motion information is also available. However, the magnitude of the effect was less than one would expect if subjects relied entirely on visual self-motion information. Taken together with previous studies, we conclude that when self-motion is real and actively generated, both visual and non-visual self-motion information contribute to the perception of object motion. We also consider the possible role of this process in visually guided interception and avoidance of moving objects. PMID:23408983

  4. Formation and interpretation of eskers beneath retreating ice sheets

    NASA Astrophysics Data System (ADS)

    Creyts, T. T.; Hewitt, I.

    2017-12-01

    The retreat of the ice sheets during the Pleistocene left large and spectacular subglacial features exposed. Understanding these features gives us insight into how the ice sheets retreated, how meltwater influenced retreat, and can help inform our understanding of potential future rates of ice sheet retreat. Among these features, eskers, long sinuous ridges primarily composed of clastic sediments, lack a detailed explanation of how surface melt rates and ice sheet retreat rates influence their growth and spatial distribution. Here, we develop a theory for esker formation based on the initial work of Rothlisberger modified for sediment transport and inclusion of surface meltwater forcing. The primary subglacial ingredients include water flow through subglacial tunnels with the addition of mass balances for sediment transport. We show how eskers when water flow slows below a critical stress for sediment motion. This implies that eskers are deposited in a localized region near the snout of the ice sheet. Our findings suggest that very long eskers form sequentially as the ice front retreats. The position of the esker follows the path of the channel mouth through time, which does not necessarily coincide with the instantaneous route of the feeding channel. However, in most cases, we expect those locations to be similar. The role of surface meltwater and the climatology associated with the forcing is crucial to the lateral spacing of the eskers. We predict that high surface melt rates lead to narrower catchments but that the greater extent of the ablation area means that channels are likely larger. At the same time, for a given channel size (and hence sediment flux), the size of a deposited esker depends on a margin retreat rate. Hence, the size of the eskers is related delicately to the balance between surface melt rates and margin retreat rates. We discuss how our theory can be combined with observed esker distributions to infer the relationship between these two rates

  5. Iceberg in sea ice

    NASA Image and Video Library

    2017-12-08

    An iceberg embedded in sea ice as seen from the IceBridge DC-8 over the Bellingshausen Sea on Oct. 19, 2012. Credit: NASA / James Yungel NASA's Operation IceBridge is an airborne science mission to study Earth's polar ice. For more information about IceBridge, visit: www.nasa.gov/icebridge NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  6. STS-48 ESC Earth observation of ice pack, Antarctic Ice Shelf

    NASA Technical Reports Server (NTRS)

    1991-01-01

    STS-48 Earth observation taken aboard Discovery, Orbiter Vehicle (OV) 103, is of the breakup of pack ice along the periphery of the Antarctic Ice Shelf. Strong offshore winds, probably associated with katabatic downdrafts from the interior of the continent, are seen peeling off the edges of the ice shelf into long filaments of sea ice, icebergs, bergy bits, and growlers to flow northward into the South Atlantic Ocean. These photos are used to study ocean wind, tide and current patterns. Similar views photographed during previous missions, when analyzed with these recent views may yield information about regional ice drift and breakup of ice packs. The image was captured using an electronic still camera (ESC), was stored on a removable hard disk or small optical disk, and was converted to a format suitable for downlink transmission. The ESC documentation was part of Development Test Objective (DTO) 648, Electronic Still Photography.

  7. Active Microwave Remote Sensing Observations of Weddell Sea Ice

    NASA Technical Reports Server (NTRS)

    Drinkwater, Mark R.

    1997-01-01

    sea ice in response to current and wind forcing and iceberg barriers. These are closely related to continental-shelf or central basin regimes, in which tidal forcing or barotropic circulation patterns appear to influence the sea-ice motion, respectively. These regimes provide valuable information about the regions of most prolific ice growth and influence of ice conditions upon air-sea-ice exchange processes in the Weddell Sea.

  8. Scaling ice microstructures from the laboratory to nature: cryo-EBSD on large samples.

    NASA Astrophysics Data System (ADS)

    Prior, David; Craw, Lisa; Kim, Daeyeong; Peyroux, Damian; Qi, Chao; Seidemann, Meike; Tooley, Lauren; Vaughan, Matthew; Wongpan, Pat

    2017-04-01

    Electron backscatter diffraction (EBSD) has extended significantly our ability to conduct detailed quantitative microstructural investigations of rocks, metals and ceramics. EBSD on ice was first developed in 2004. Techniques have improved significantly in the last decade and EBSD is now becoming more common in the microstructural analysis of ice. This is particularly true for laboratory-deformed ice where, in some cases, the fine grain sizes exclude the possibility of using a thin section of the ice. Having the orientations of all axes (rather than just the c-axis as in an optical method) yields important new information about ice microstructure. It is important to examine natural ice samples in the same way so that we can scale laboratory observations to nature. In the case of ice deformation, higher strain rates are used in the laboratory than those seen in nature. These are achieved by increasing stress and/or temperature and it is important to assess that the microstructures produced in the laboratory are comparable with those observed in nature. Natural ice samples are coarse grained. Glacier and ice sheet ice has a grain size from a few mm up to several cm. Sea and lake ice has grain sizes of a few cm to many metres. Thus extending EBSD analysis to larger sample sizes to include representative microstructures is needed. The chief impediments to working on large ice samples are sample exchange, limitations on stage motion and temperature control. Large ice samples cannot be transferred through a typical commercial cryo-transfer system that limits sample sizes. We transfer through a nitrogen glove box that encloses the main scanning electron microscope (SEM) door. The nitrogen atmosphere prevents the cold stage and the sample from becoming covered in frost. Having a long optimal working distance for EBSD (around 30mm for the Otago cryo-EBSD facility) , by moving the camera away from the pole piece, enables the stage to move without crashing into either the

  9. Ice Core Investigations

    ERIC Educational Resources Information Center

    Krim, Jessica; Brody, Michael

    2008-01-01

    What can glaciers tell us about volcanoes and atmospheric conditions? How does this information relate to our understanding of climate change? Ice Core Investigations is an original and innovative activity that explores these types of questions. It brings together popular science issues such as research, climate change, ice core drilling, and air…

  10. Variability of Fram Strait Ice Flux and North Atlantic Oscillation

    NASA Technical Reports Server (NTRS)

    Kwok, Ron

    1999-01-01

    An important term in the mass balance of the Arctic Ocean sea ice is the ice export. We estimated the winter sea ice export through the Fram Strait using ice motion from satellite passive microwave data and ice thickness data from moored upward looking sonars. The average winter area flux over the 18-year record (1978-1996) is 670,000 square km, approximately 7% of the area of the Arctic Ocean. The winter area flux ranges from a minimum of 450,000 sq. km in 1984 to a maximum of 906,000 sq km in 1995. The daily, monthly and interannual variabilities of the ice area flux are high. There is an upward trend in the ice area flux over the 18-year record. The average winter volume flux over the winters of October 1990 through May 1995 is 1745 cubic km ranging from a low of 1375 cubic km in 1990 to a high of 2791 cubic km in 1994. The sea-level pressure gradient across the Fram Strait explains more than 80% of the variance in the ice flux over the 18-year record. We use the coefficients from the regression of the time-series of area flux versus pressure gradient across the Fram Strait and ice thickness data to estimate the summer area and volume flux. The average 12-month area flux and volume flux are 919,000 sq km and 2366 cubic km. We find a significant correlation (R =0.86) between the area flux and positive phases of the North Atlantic Oscillation (NAO) index over the months of December through March. Correlation between our six years of volume flux estimates and the NAO index gives R =0.56. During the high NAO years, a more intense Icelandic low increases the gradient in the sea-level pressure by almost 1 mbar across the Fram Strait thus increasing the atmospheric forcing on ice transport. Correlation is reduced during the negative NAO years because of decreased dominance of this large-scale atmospheric pattern on the sea-level pressure gradient across the Fram Strait. Additional information is contained in the original.

  11. Retrieval of ice cloud properties using an optimal estimation algorithm and MODIS infrared observations. Part I: Forward model, error analysis, and information content

    PubMed Central

    Wang, Chenxi; Platnick, Steven; Zhang, Zhibo; Meyer, Kerry; Yang, Ping

    2018-01-01

    An optimal estimation (OE) retrieval method is developed to infer three ice cloud properties simultaneously: optical thickness (τ), effective radius (reff), and cloud-top height (h). This method is based on a fast radiative transfer (RT) model and infrared (IR) observations from the MODerate resolution Imaging Spectroradiometer (MODIS). This study conducts thorough error and information content analyses to understand the error propagation and performance of retrievals from various MODIS band combinations under different cloud/atmosphere states. Specifically, the algorithm takes into account four error sources: measurement uncertainty, fast RT model uncertainty, uncertainties in ancillary datasets (e.g., atmospheric state), and assumed ice crystal habit uncertainties. It is found that the ancillary and ice crystal habit error sources dominate the MODIS IR retrieval uncertainty and cannot be ignored. The information content analysis shows that, for a given ice cloud, the use of four MODIS IR observations is sufficient to retrieve the three cloud properties. However, the selection of MODIS IR bands that provide the most information and their order of importance varies with both the ice cloud properties and the ambient atmospheric and the surface states. As a result, this study suggests the inclusion of all MODIS IR bands in practice since little a priori information is available. PMID:29707470

  12. Retrieval of Ice Cloud Properties Using an Optimal Estimation Algorithm and MODIS Infrared Observations. Part I: Forward Model, Error Analysis, and Information Content

    NASA Technical Reports Server (NTRS)

    Wang, Chenxi; Platnick, Steven; Zhang, Zhibo; Meyer, Kerry; Yang, Ping

    2016-01-01

    An optimal estimation (OE) retrieval method is developed to infer three ice cloud properties simultaneously: optical thickness (tau), effective radius (r(sub eff)), and cloud-top height (h). This method is based on a fast radiative transfer (RT) model and infrared (IR) observations from the MODerate resolution Imaging Spectroradiometer (MODIS). This study conducts thorough error and information content analyses to understand the error propagation and performance of retrievals from various MODIS band combinations under different cloud/atmosphere states. Specifically, the algorithm takes into account four error sources: measurement uncertainty, fast RT model uncertainty, uncertainties in ancillary datasets (e.g., atmospheric state), and assumed ice crystal habit uncertainties. It is found that the ancillary and ice crystal habit error sources dominate the MODIS IR retrieval uncertainty and cannot be ignored. The information content analysis shows that, for a given ice cloud, the use of four MODIS IR observations is sufficient to retrieve the three cloud properties. However, the selection of MODIS IR bands that provide the most information and their order of importance varies with both the ice cloud properties and the ambient atmospheric and the surface states. As a result, this study suggests the inclusion of all MODIS IR bands in practice since little a priori information is available.

  13. Retrieval of Ice Cloud Properties Using an Optimal Estimation Algorithm and MODIS Infrared Observations. Part I: Forward Model, Error Analysis, and Information Content

    NASA Technical Reports Server (NTRS)

    Wang, Chenxi; Platnick, Steven; Zhang, Zhibo; Meyer, Kerry; Yang, Ping

    2016-01-01

    An optimal estimation (OE) retrieval method is developed to infer three ice cloud properties simultaneously: optical thickness (tau), effective radius (r(sub eff)), and cloud top height (h). This method is based on a fast radiative transfer (RT) model and infrared (IR) observations from the MODerate resolution Imaging Spectroradiometer (MODIS). This study conducts thorough error and information content analyses to understand the error propagation and performance of retrievals from various MODIS band combinations under different cloud/atmosphere states. Specifically, the algorithm takes into account four error sources: measurement uncertainty, fast RT model uncertainty, uncertainties in ancillary data sets (e.g., atmospheric state), and assumed ice crystal habit uncertainties. It is found that the ancillary and ice crystal habit error sources dominate the MODIS IR retrieval uncertainty and cannot be ignored. The information content analysis shows that for a given ice cloud, the use of four MODIS IR observations is sufficient to retrieve the three cloud properties. However, the selection of MODIS IR bands that provide the most information and their order of importance varies with both the ice cloud properties and the ambient atmospheric and the surface states. As a result, this study suggests the inclusion of all MODIS IR bands in practice since little a priori information is available.

  14. Retrieval of ice cloud properties using an optimal estimation algorithm and MODIS infrared observations. Part I: Forward model, error analysis, and information content.

    PubMed

    Wang, Chenxi; Platnick, Steven; Zhang, Zhibo; Meyer, Kerry; Yang, Ping

    2016-05-27

    An optimal estimation (OE) retrieval method is developed to infer three ice cloud properties simultaneously: optical thickness ( τ ), effective radius ( r eff ), and cloud-top height ( h ). This method is based on a fast radiative transfer (RT) model and infrared (IR) observations from the MODerate resolution Imaging Spectroradiometer (MODIS). This study conducts thorough error and information content analyses to understand the error propagation and performance of retrievals from various MODIS band combinations under different cloud/atmosphere states. Specifically, the algorithm takes into account four error sources: measurement uncertainty, fast RT model uncertainty, uncertainties in ancillary datasets (e.g., atmospheric state), and assumed ice crystal habit uncertainties. It is found that the ancillary and ice crystal habit error sources dominate the MODIS IR retrieval uncertainty and cannot be ignored. The information content analysis shows that, for a given ice cloud, the use of four MODIS IR observations is sufficient to retrieve the three cloud properties. However, the selection of MODIS IR bands that provide the most information and their order of importance varies with both the ice cloud properties and the ambient atmospheric and the surface states. As a result, this study suggests the inclusion of all MODIS IR bands in practice since little a priori information is available.

  15. Acoustic Gravity Waves Generated by an Oscillating Ice Sheet in Arctic Zone

    NASA Astrophysics Data System (ADS)

    Abdolali, A.; Kadri, U.; Kirby, J. T., Jr.

    2016-12-01

    We investigate the formation of acoustic-gravity waves due to oscillations of large ice blocks, possibly triggered by atmospheric and ocean currents, ice block shrinkage or storms and ice-quakes.For the idealized case of a homogeneous weakly compressible water bounded at the surface by ice sheet and a rigid bed, the description of the infinite family of acoustic modes is characterized by the water depth h and angular frequency of oscillating ice sheet ω ; The acoustic wave field is governed by the leading mode given by: Nmax=\\floor {(ω h)/(π c)} where c is the sound speed in water and the special brackets represent the floor function (Fig1). Unlike the free-surface setting, the higher acoustic modes might exhibit a larger contribution and therefore all progressive acoustic modes have to be considered.This study focuses on the characteristics of acoustic-gravity waves generated by an oscillating elastic ice sheet in a weakly compressible fluid coupled with a free surface model [Abdolali et al. 2015] representing shrinking ice blocks in realistic sea state, where the randomly oriented ice sheets cause inter modal transition and multidirectional reflections. A theoretical solution and a 3D numerical model have been developed for the study purposes. The model is first validated against the theoretical solution [Kadri, 2016]. To overcome the computational difficulties of 3D models, we derive a depth-integrated equation valid for spatially varying ice sheet thickness and water depth. We show that the generated acoustic-gravity waves contribute significantly to deep ocean currents compared to other mechanisms. In addition, these waves travel at the sound speed in water carrying information on ice sheet motion, providing various implications for ocean monitoring and detection of ice-quakes. Fig1:Snapshots of dynamic pressure given by an oscillating ice sheet; h=4500m, c=1500m/s, semi-length b=10km, ζ =1m, omega=π rad/s. Abdolali, A., Kirby, J. T. and Bellotti, G

  16. Baffin Bay Ice Drift and Export: 2002-2007

    NASA Technical Reports Server (NTRS)

    Kwok, Ron

    2007-01-01

    Multiyear estimates of sea ice drift in Baffin Bay and Davis Strait are derived for the first time from the 89 GHz channel of the AMSR-E instrument. Uncertainties in the drift estimates, assessed with Envisat ice motion, are approximately 2-3 km/day. A persistent atmospheric trough, between the coast of Greenland and Baffin Island, drives the prevailing southward drift pattern with average daily displacements in excess of 18-20 km during winter. Over the 5-year record, the ice export ranges between 360 and 675 x 10(exp 3) km(exp 2), with an average of 530 x 10(exp 3) km(exp 2). Sea ice area inflow from the Nares Strait, Lancaster Sound and Jones Sound potentially contribute up to a third of the net area outflow while ice production at the North Water Polynya contributes the balance. Rough estimates of annual volume export give approximately 500-800 km(exp 3). Comparatively, these are approximately 70% and approximately 30% of the annual area and Strait.

  17. The Hip in Ice Hockey: A Current Concepts Review.

    PubMed

    Kuhn, Andrew W; Noonan, Benjamin C; Kelly, Bryan T; Larson, Christopher M; Bedi, Asheesh

    2016-09-01

    Ice hockey is a fast, physical sport with unique associated biomechanical demands often placing the hip in forced and repetitive supraphysiological ranges of motion. Ice hockey players commonly endure and are sidelined by nebulous groin injury or hip pain. Underlying causes can be chronic or acute and extra-articular, intra-articular, or "hip-mimicking." This article serves to review common hip-related injuries in ice hockey. For each, we define the particular condition; comment on risk factors and preventive strategies; discuss key historical, physical examination, and imaging findings; and finally, suggest nonoperative and/or operative treatment plans. Copyright © 2016 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  18. Recrystallization inhibition in ice due to ice binding protein activity detected by nuclear magnetic resonance.

    PubMed

    Brown, Jennifer R; Seymour, Joseph D; Brox, Timothy I; Skidmore, Mark L; Wang, Chen; Christner, Brent C; Luo, Bing-Hao; Codd, Sarah L

    2014-09-01

    Liquid water present in polycrystalline ice at the interstices between ice crystals results in a network of liquid-filled veins and nodes within a solid ice matrix, making ice a low porosity porous media. Here we used nuclear magnetic resonance (NMR) relaxation and time dependent self-diffusion measurements developed for porous media applications to monitor three dimensional changes to the vein network in ices with and without a bacterial ice binding protein (IBP). Shorter effective diffusion distances were detected as a function of increased irreversible ice binding activity, indicating inhibition of ice recrystallization and persistent small crystal structure. The modification of ice structure by the IBP demonstrates a potential mechanism for the microorganism to enhance survivability in ice. These results highlight the potential of NMR techniques in evaluation of the impact of IBPs on vein network structure and recrystallization processes; information useful for continued development of ice-interacting proteins for biotechnology applications.

  19. Bending the law: tidal bending and its effects on ice viscosity and flow

    NASA Astrophysics Data System (ADS)

    Rosier, S.; Gudmundsson, G. H.

    2017-12-01

    Many ice shelves are subject to strong ocean tides and, in order to accommodate this vertical motion, the ice must bend within the grounding zone. This tidal bending generates large stresses within the ice, changing its effective viscosity. For a confined ice shelf, this is particularly relevant because the tidal bending stresses occur along the sidewalls, which play an important role in the overall flow regime of the ice shelf. Hence, tidal bending stresses will affect both the mean and time-varying components of ice shelf flow. GPS measurements reveal strong variations in horizontal ice shelf velocities at a variety of tidal frequencies. We show, using full-Stokes viscoelastic modelling, that inclusion of tidal bending within the model accounts for much of the observed tidal modulation of horizontal ice shelf flow. Furthermore, our model shows that in the absence of a vertical tidal forcing, the mean flow of the ice shelf is reduced considerably.

  20. Endmembers of Ice Shelf Melt

    NASA Astrophysics Data System (ADS)

    Boghosian, A.; Child, S. F.; Kingslake, J.; Tedesco, M.; Bell, R. E.; Alexandrov, O.; McMichael, S.

    2017-12-01

    Studies of surface melt on ice shelves have defined a spectrum of meltwater behavior. On one end the storage of meltwater in persistent surface ponds can trigger ice shelf collapse as in the 2002 event leading to the disintegration of the Larsen B Ice Shelf. On the other, meltwater export by rivers can stabilize an ice shelf as was recently shown on the Nansen Ice Shelf. We explore this dichotomy by quantifying the partitioning between stored and transported water on two glaciers adjacent to floating ice shelves, Nimrod (Antarctica) and Peterman (Greenland). We analyze optical satellite imagery (LANDSAT, WorldView), airborne imagery (Operation IceBridge, Trimetrogon Aerial Phototography), satellite radar (Sentinel-1), and digital elevation models (DEMs) to categorize surface meltwater fate and map the evolution of ice shelf hydrology and topographic features through time. On the floating Peterman Glacier tongue a sizable river exports water to the ocean. The surface hydrology of Nimrod Glacier, geometrically similar to Peterman but with ten times shallower surface slope, is dominated by storage in surface lakes. In contrast, the Nansen has the same surface slope as Nimrod but transports water through surface rivers. Slope alone is not the sole control on ice shelf hydrology. It is essential to track the storage and transport volumes for each of these systems. To estimate water storage and transport we analyze high resolution (40 cm - 2 m) modern and historical DEMs. We produce historical (1957 onwards) DEMs with structure-from-motion photogrammetry. The DEMs are used to constrain water storage potential estimates of observed basins and water routing/transport potential. We quantify the total volume of water stored seasonally and interannually. We use the normalize difference water index to map meltwater extent, and estimate lake water depth from optical data. We also consider the role of stored water in subsurface aquifers in recharging surface water after

  1. Micromechanics of sea ice gouge in shear zones

    NASA Astrophysics Data System (ADS)

    Sammonds, Peter; Scourfield, Sally; Lishman, Ben

    2015-04-01

    The deformation of sea ice is a key control on the Arctic Ocean dynamics. Shear displacement on all scales is an important deformation process in the sea cover. Shear deformation is a dominant mechanism from the scale of basin-scale shear lineaments, through floe-floe interaction and block sliding in ice ridges through to the micro-scale mechanics. Shear deformation will not only depend on the speed of movement of ice surfaces but also the degree that the surfaces have bonded during thermal consolidation and compaction. Recent observations made during fieldwork in the Barents Sea show that shear produces a gouge similar to a fault gouge in a shear zone in the crust. A range of sizes of gouge are exhibited. The consolidation of these fragments has a profound influence on the shear strength and the rate of the processes involved. We review experimental results in sea ice mechanics from mid-scale experiments, conducted in the Hamburg model ship ice tank, simulating sea ice floe motion and interaction and compare these with laboratory experiments on ice friction done in direct shear, and upscale to field measurement of sea ice friction and gouge deformation made during experiments off Svalbard. We find that consolidation, fragmentation and bridging play important roles in the overall dynamics and fit the model of Sammis and Ben-Zion, developed for understanding the micro-mechanics of rock fault gouge, to the sea ice problem.

  2. A Rotational Motion Perception Neural Network Based on Asymmetric Spatiotemporal Visual Information Processing.

    PubMed

    Hu, Bin; Yue, Shigang; Zhang, Zhuhong

    All complex motion patterns can be decomposed into several elements, including translation, expansion/contraction, and rotational motion. In biological vision systems, scientists have found that specific types of visual neurons have specific preferences to each of the three motion elements. There are computational models on translation and expansion/contraction perceptions; however, little has been done in the past to create computational models for rotational motion perception. To fill this gap, we proposed a neural network that utilizes a specific spatiotemporal arrangement of asymmetric lateral inhibited direction selective neural networks (DSNNs) for rotational motion perception. The proposed neural network consists of two parts-presynaptic and postsynaptic parts. In the presynaptic part, there are a number of lateral inhibited DSNNs to extract directional visual cues. In the postsynaptic part, similar to the arrangement of the directional columns in the cerebral cortex, these direction selective neurons are arranged in a cyclic order to perceive rotational motion cues. In the postsynaptic network, the delayed excitation from each direction selective neuron is multiplied by the gathered excitation from this neuron and its unilateral counterparts depending on which rotation, clockwise (cw) or counter-cw (ccw), to perceive. Systematic experiments under various conditions and settings have been carried out and validated the robustness and reliability of the proposed neural network in detecting cw or ccw rotational motion. This research is a critical step further toward dynamic visual information processing.All complex motion patterns can be decomposed into several elements, including translation, expansion/contraction, and rotational motion. In biological vision systems, scientists have found that specific types of visual neurons have specific preferences to each of the three motion elements. There are computational models on translation and expansion

  3. A multistage motion vector processing method for motion-compensated frame interpolation.

    PubMed

    Huang, Ai- Mei; Nguyen, Truong Q

    2008-05-01

    In this paper, a novel, low-complexity motion vector processing algorithm at the decoder is proposed for motion-compensated frame interpolation or frame rate up-conversion. We address the problems of having broken edges and deformed structures in an interpolated frame by hierarchically refining motion vectors on different block sizes. Our method explicitly considers the reliability of each received motion vector and has the capability of preserving the structure information. This is achieved by analyzing the distribution of residual energies and effectively merging blocks that have unreliable motion vectors. The motion vector reliability information is also used as a prior knowledge in motion vector refinement using a constrained vector median filter to avoid choosing identical unreliable one. We also propose using chrominance information in our method. Experimental results show that the proposed scheme has better visual quality and is also robust, even in video sequences with complex scenes and fast motion.

  4. Sunlight, Sea Ice, and the Ice Albedo Feedback in a Changing Artic Sea Ice Cover

    DTIC Science & Technology

    2015-11-30

    information from the PIOMAS model [J. Zhang], melt pond coverage from MODIS [Rösel et al., 2012], and ice-age estimates [Maslanik et al., 2011] to...determined from MODIS satellite data using an artificial neural network, Cryosph., 6(2), 431–446, doi:10.5194/tc- 6-431-2012. PUBLICATIONS Carmack...from MODIS , and ice-age estimates to this dataset. We have used this extented dataset to build a climatology of the partitioning of solar heat between

  5. Arctic Sea Ice Trafficability - New Strategies for a Changing Icescape

    NASA Astrophysics Data System (ADS)

    Dammann, Dyre Oliver

    substantial thickness variability results in the need to raise thickness thresholds by 50%. If sea ice is thick enough for safe travel, then the efficiency of travel is relevant and is influenced by the roughness of the ice surface. Here, I develop a technique to derive trafficability measures from ice roughness using polarimetric and interferometric synthetic aperture radar (SAR). Validated using Structure-from-Motion analysis of imagery obtained from an unmanned aerial system near Utqiagvik, Alaska, I demonstrate the ability of these SAR techniques to map both topography and roughness with potential to guide trail construction efforts towards more trafficable ice. Even when the ice is sufficiently thick to ensure safe travel, potential for fracturing can be a serious hazard through the ability of cracks to compromise load-bearing capacity. Therefore, I have created a state-of-the-art technique using interferometric SAR to assess ice stability with capability of assessing internal ice stress and potential for failure. In an analysis of ice deformation and potential hazards for the Northstar Island ice road near Prudhoe Bay on Alaska's North Slope I have identified a zone of high relative fracture intensity potential that conformed with road inspections and hazard assessments by the operator. Through this work I have investigated the intersection between ice use and geophysics, demonstrating that quantitative evaluation of a given region in the ice use assessment framework developed here can aid in tactical routing of ice trails and roads as well as help inform long-term strategic decision-making regarding the future of Arctic operations on or near sea ice.

  6. Clouds Over Sea Ice

    NASA Image and Video Library

    2012-11-01

    Low-lying clouds over sea ice on the Bellingshausen Sea. Credit: NASA / Maria-Jose Vinas NASA's Operation IceBridge is an airborne science mission to study Earth's polar ice. For more information about IceBridge, visit: www.nasa.gov/icebridge NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  7. Edge of Ice Shelf

    NASA Image and Video Library

    2017-12-08

    Edge of an ice shelf in Adelaide Island, off the Antarctic Peninsula. Credit: NASA / Maria-Jose Vinas NASA's Operation IceBridge is an airborne science mission to study Earth's polar ice. For more information about IceBridge, visit: www.nasa.gov/icebridge NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  8. Sunlight off the ice

    NASA Image and Video Library

    2017-12-08

    Sunlight reflecting off of ice in the Bellingshausen Sea on Oct. 19, 2012. Credit: NASA / George Hale NASA's Operation IceBridge is an airborne science mission to study Earth's polar ice. For more information about IceBridge, visit: www.nasa.gov/icebridge NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  9. IceChrono v1: a probabilistic model to compute a common and optimal chronology for several ice cores

    NASA Astrophysics Data System (ADS)

    Parrenin, Frédéric

    2015-04-01

    Polar ice cores provide exceptional archives of past environmental conditions. The dating of ice cores is essential to interpret the paleo records that they contain, but it is a complicated problem since it involves different dating methods. Here I present IceChrono v1, a new probabilistic model to combine different kinds of chronological information to obtain a common and optimized chronology for several ice cores, as well as its uncertainty. It is based on the inversion of three quantities: the surface accumulation rate, the Lock-In Depth (LID) of air bubbles and the vertical thinning function. The chronological information used are: models of the sedimentation process (accumulation of snow, densification of snow into ice and air trapping, ice flow), ice and gas dated horizons, ice and gas dated depth intervals, Δdepth observations (depth shift between synchronous events recorded in the ice and in the air), stratigraphic links in between ice cores (ice-ice, air-air or mix ice-air and air-ice links). The optimization problem is formulated as a least squares problems, that is, all densities of probabilities are assumed gaussian. It is numerically solved using the Levenberg-Marquardt algorithm and a numerical evaluation of the model's Jacobian. IceChrono is similar in scope to the Datice model, but has differences from the mathematical, numerical and programming point of views. I apply IceChrono on an AICC2012-like experiment and I find similar results than Datice within a few centuries, which is a confirmation of both IceChrono and Datice codes. IceChrono v1 is freely available under the GPL v3 open source license.

  10. Ice in space: An experimental and theoretical investigation

    NASA Technical Reports Server (NTRS)

    Patashnick, H.; Rupprecht, G.

    1977-01-01

    Basic knowledge is provided on the behavior of ice and ice particles under a wide variety of conditions including those of interplanetary space. This information and, in particular, the lifetime of ice particles as a function of solar distance is an absolute requirement for a proper interpretation of photometric profiles in comets. Because fundamental properties of ice and ice particles are developed in this report, the applicability of this information extends beyond the realm of comets into any area where volatile particles exist, be it in space or in the earth's atmosphere.

  11. Isochronal Ice Sheet Model: a New Approach to Tracer Transport by Explicitly Tracing Accumulation Layers

    NASA Astrophysics Data System (ADS)

    Born, A.; Stocker, T. F.

    2014-12-01

    The long, high-resolution and largely undisturbed depositional record of polar ice sheets is one of the greatest resources in paleoclimate research. The vertical profile of isotopic and other geochemical tracers provides a full history of depositional and dynamical variations. Numerical simulations of this archive could afford great advances both in the interpretation of these tracers as well as to help improve ice sheet models themselves, as show successful implementations in oceanography and atmospheric dynamics. However, due to the slow advection velocities, tracer modeling in ice sheets is particularly prone to numerical diffusion, thwarting efforts that employ straightforward solutions. Previous attemps to circumvent this issue follow conceptually and computationally extensive approaches that augment traditional Eulerian models of ice flow with a semi-Lagrangian tracer scheme (e.g. Clarke et al., QSR, 2005). Here, we propose a new vertical discretization for ice sheet models that eliminates numerical diffusion entirely. Vertical motion through the model mesh is avoided by mimicking the real-world ice flow as a thinning of underlying layers (see figure). A new layer is added to the surface at equidistant time intervals (isochronally). Therefore, each layer is uniquely identified with an age. Horizontal motion follows the shallow ice approximation using an implicit numerical scheme. Vertical diffusion of heat which is physically desirable is also solved implicitly. A simulation of a two-dimensional section through the Greenland ice sheet will be discussed.

  12. Crustal motion measurements from the POLENET Antarctic Network: comparisons with glacial isostatic adjustment models

    NASA Astrophysics Data System (ADS)

    Wilson, T. J.; Konfal, S. A.; Bevis, M. G.; Spada, G.; Melini, D.; Barletta, V. R.; Kendrick, E. C.; Saddler, D.; Smalley, R., Jr.; Dalziel, I. W. D.; Willis, M. J.

    2016-12-01

    Crustal motions measured by GPS provide a unique proxy record of ice mass change, due to the elastic and viscoelastic response of the earth to removal of ice loads. The ANET/POLENET array of bedrock GPS sites spans much of the Antarctic interior, encompassing regions where glacial isostatic adjustment (GIA) models predict large crustal displacements due to LGM ice loss and including coastal West Antarctica where major modern ice mass loss is documented. To isolate the long-term GIA component of measured crustal motions, we computed and removed elastic displacements due to recent ice mass change. We used the annually resolved ice mass balance data from Martín-Español et al. (2016) derived from a statistical inversion of satellite altimetry, gravimetry, and elastic-corrected GPS data for the period 2003-2013. The Regional Elastic Rebound Calculator (REAR) [Melini et al., 2015] was used to compute elastic vertical and horizontal surface displacements. Uplift due to elastic rebound is substantial in West Antarctica, very minimal in East Antarctica, and variable across the Weddell Embayment. The ANET GPS-derived crustal motion patterns ascribed to non-elastic GIA are spatially complex and differ significantly in magnitude from model predictions. We present a systematic comparison of measured and predicted velocities within different sectors of Antarctica, in order to examine spatial patterns relative to modern ice mass changes, ice history model uncertainties, and lateral variations in earth properties. In the Weddell Embayment region most vertical velocities are lower than uplift predicted by GIA models. Several sites in the southernmost Transantarctic Mountains and the Whitmore Mountains, where small ice mass increase occurs, have vertical uplift significantly exceeding GIA model predictions. There is an intriguing spatial correlation of these fast-moving sites with a low-velocity anomaly in the upper mantle documented by analysis of teleseismic Rayleigh waves by

  13. Ice in Volcanic Clouds

    NASA Astrophysics Data System (ADS)

    Few, A. A.

    2010-12-01

    It is widely recognized that lightning activity in thunderstorm clouds is associated with ice in the clouds. In volcanic plumes the lower electrical discharges near the vent are clearly not associated with ice; however, the electrical discharges from the upper volcanic clouds very likely are associated with ice. There is ample water in volcanic plumes and clouds. The explosive volcanic eruption is produced by volatile components in the rising magma. Researchers estimate that the water content of the volatiles is up to 99% by mole; other gases are mainly sulfur and chlorine species. These volatiles carry with them a wide range of hot magma melts and solids, importantly silicate particles and tephra. The more massive components fall out near the vent carrying with them much of the heat from the plume; these large components are not in thermodynamic equilibrium with the gases, ash, and lapilli; thus the heat removed does not lower the temperature of the materials carried aloft in the plume. Upward motion is initially provided by the thrust from the volcanic eruption, then by buoyancy of the hot plume. The rising plume is cooled by entrainment of environmental air, which contains water, and by adiabatic expansion; the plume transitions into a volcanic cloud. Further lifting and cooling produces supercooled water droplets (T ~ -5 C) in a limited zone (z ~ 9 km) before the fast updraft (~ 60 m/s) rapidly transforms them into ice. Computer models of volcanic clouds that include water and ice microphysics indicate that the latent heat of condensation is not significant in cloud dynamics because it occurs in a region where buoyancy is provided by the original hot plume material. The latent heat of ice formation occurs at higher and colder levels and seems to contribute to the final lifting of the cloud top by ~1.5km. Laboratory results indicate that the fine silicate ash particles, which are abundant, are good ice nuclei, IN. Because of the abundance of the silicate ash

  14. Phase synchronization motion and neural coding in dynamic transmission of neural information.

    PubMed

    Wang, Rubin; Zhang, Zhikang; Qu, Jingyi; Cao, Jianting

    2011-07-01

    In order to explore the dynamic characteristics of neural coding in the transmission of neural information in the brain, a model of neural network consisting of three neuronal populations is proposed in this paper using the theory of stochastic phase dynamics. Based on the model established, the neural phase synchronization motion and neural coding under spontaneous activity and stimulation are examined, for the case of varying network structure. Our analysis shows that, under the condition of spontaneous activity, the characteristics of phase neural coding are unrelated to the number of neurons participated in neural firing within the neuronal populations. The result of numerical simulation supports the existence of sparse coding within the brain, and verifies the crucial importance of the magnitudes of the coupling coefficients in neural information processing as well as the completely different information processing capability of neural information transmission in both serial and parallel couplings. The result also testifies that under external stimulation, the bigger the number of neurons in a neuronal population, the more the stimulation influences the phase synchronization motion and neural coding evolution in other neuronal populations. We verify numerically the experimental result in neurobiology that the reduction of the coupling coefficient between neuronal populations implies the enhancement of lateral inhibition function in neural networks, with the enhancement equivalent to depressing neuronal excitability threshold. Thus, the neuronal populations tend to have a stronger reaction under the same stimulation, and more neurons get excited, leading to more neurons participating in neural coding and phase synchronization motion.

  15. Europa's Broken Ice

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Jupiter's moon Europa, as seen in this image taken June 27, 1996 by NASA's Galileo spacecraft, displays features in some areas resembling ice floes seen in Earth's polar seas. Europa, about the size of Earth's moon, has an icy crust that has been severely fractured, as indicated by the dark linear, curved, and wedged-shaped bands seen here. These fractures have broken the crust into plates as large as 30 kilometers (18.5 miles) across. Areas between the plates are filled with material that was probably icy slush contaminated with rocky debris. Some individual plates were separated and rotated into new positions. Europa's density indicates that it has a shell of water ice as thick as 100 kilometers (about 60 miles), parts of which could be liquid. Currently, water ice could extend from the surface down to the rocky interior, but the features seen in this image suggest that motion of the disrupted icy plates was lubricated by soft ice or liquid water below the surface at the time of disruption. This image covers part of the equatorial zone of Europa and was taken from a distance of 156,000 kilometers (about 96,300 miles) by the solid-state imager camera on the Galileo spacecraft. North is to the right and the sun is nearly directly overhead. The area shown is about 360 by 770 kilometers (220-by-475 miles or about the size of Nebraska), and the smallest visible feature is about 1.6 kilometers (1 mile) across. The Jet Propulsion Laboratory manages the Galileo mission for NASA's Office of Space Science.

  16. Wave propagation in the marginal ice zone - Model predictions and comparisons with buoy and synthetic aperture radar data

    NASA Technical Reports Server (NTRS)

    Liu, Antony K.; Holt, Benjamin; Vachon, Paris W.

    1991-01-01

    Ocean wave dispersion relation and viscous attenuation by a sea ice cover are studied for waves propagating into the marginal ice zone (MIZ). The Labrador ice margin experiment (LIMEX), conducted on the MIZ off the east coast of Newfoundland, Canada in March 1987, provided aircraft SAR imagery, ice property and wave buoy data. Wave energy attenuation rates are estimated from SAR data and the ice motion package data that were deployed at the ice edge and into the ice pack, and compared with a model. It is shown that the model data comparisons are quite good for the ice conditions observed during LIMEX 1987.

  17. Rate and state dependent processes in sea ice deformation

    NASA Astrophysics Data System (ADS)

    Sammonds, P. R.; Scourfield, S.; Lishman, B.

    2014-12-01

    Realistic models of sea ice processes and properties are needed to assess sea ice thickness, extent and concentration and, when run within GCMs, provide prediction of climate change. The deformation of sea ice is a key control on the Arctic Ocean dynamics. But the deformation of sea ice is dependent not only on the rate of the processes involved but also the state of the sea ice and particular in terms of its evolution with time and temperature. Shear deformation is a dominant mechanism from the scale of basin-scale shear lineaments, through floe-floe interaction to block sliding in ice ridges. The shear deformation will not only depend on the speed of movement of ice surfaces but also the degree that the surfaces have bonded during thermal consolidation and compaction. Frictional resistance to sliding can vary by more than two orders of magnitude depending on the state of the interface. But this in turn is dependent upon both imposed conditions and sea ice properties such as size distribution of interfacial broken ice, angularity, porosity, salinity, etc. We review experimental results in sea ice mechanics from mid-scale experiments, conducted in the Hamburg model ship ice tank, simulating sea ice floe motion and interaction and compare these with laboratory experiments on ice friction done in direct shear from which a rate and state constitutive relation for shear deformation is derived. Finally we apply this to field measurement of sea ice friction made during experiments in the Barents Sea to assess the other environmental factors, the state terms, that need to be modelled in order to up-scale to Arctic Ocean-scale dynamics.

  18. Geometric controls of the flexural gravity waves on the Ross Ice Shelf

    NASA Astrophysics Data System (ADS)

    Sergienko, O. V.

    2017-12-01

    Long-period ocean waves, formed locally or at distant sources, can reach sub-ice-shelf cavities and excite coupled motion in the cavity and the ice shelf - flexural gravity waves. Three-dimensional numerical simulations of the flexural gravity waves on the Ross Ice Shelf show that propagation of these waves is strongly controlled by the geometry of the system - the cavity shape, its water-column thickness and the ice-shelf thickness. The results of numerical simulations demonstrate that propagation of the waves is spatially organized in beams, whose orientation is determined by the direction of the of the open ocean waves incident on the ice-shelf front. As a result, depending on the beams orientation, parts of the Ross Ice Shelf experience significantly larger flexural stresses compared to other parts where the flexural gravity beams do not propagate. Very long-period waves can propagate farther away from the ice-shelf front exciting flexural stresses in the vicinity of the grounding line.

  19. A Comparison of Sea Ice Type, Sea Ice Temperature, and Snow Thickness Distributions in the Arctic Seasonal Ice Zones with the DMSP SSM/I

    NASA Technical Reports Server (NTRS)

    St.Germain, Karen; Cavalieri, Donald J.; Markus, Thorsten

    1997-01-01

    Global climate studies have shown that sea ice is a critical component in the global climate system through its effect on the ocean and atmosphere, and on the earth's radiation balance. Polar energy studies have further shown that the distribution of thin ice and open water largely controls the distribution of surface heat exchange between the ocean and atmosphere within the winter Arctic ice pack. The thickness of the ice, the depth of snow on the ice, and the temperature profile of the snow/ice composite are all important parameters in calculating surface heat fluxes. In recent years, researchers have used various combinations of DMSP SSMI channels to independently estimate the thin ice type (which is related to ice thickness), the thin ice temperature, and the depth of snow on the ice. In each case validation efforts provided encouraging results, but taken individually each algorithm gives only one piece of the information necessary to compute the energy fluxes through the ice and snow. In this paper we present a comparison of the results from each of these algorithms to provide a more comprehensive picture of the seasonal ice zone using passive microwave observations.

  20. Laboratory, Computational and Theoretical Investigations of Ice Nucleation and its Implications for Mixed Phase Clouds

    NASA Astrophysics Data System (ADS)

    Yang, Fan

    Ice particles in atmospheric clouds play an important role in determining cloud lifetime, precipitation and radiation. It is therefore important to understand the whole life cycle of ice particles in the atmosphere, e.g., where they come from (nucleation), how they evolve (growth), and where they go (precipitation). Ice nucleation is the crucial step for ice formation, and in this study, we will mainly focus on ice nucleation in the lab and its effect on mixed-phase stratiform clouds. In the first half of this study, we investigate the relevance of moving contact lines (i.e., the region where three or more phases meet) on the phenomenon of contact nucleation. High speed video is used to investigate heterogeneous ice nucleation in supercooled droplets resting on cold substrates under two different dynamic conditions: droplet electrowetting and droplet vibration. The results show that contact-line motion is not a sufficient condition to trigger ice nucleation, while locally curved contact lines that can result from contact-line motion are strongly related to ice nucleation. We propose that pressure perturbations due to locally curved contact lines can strongly enhance the ice nucleation rate, which gives another interpretation for the mechanism for contact nucleation. Corresponding theoretical results provide a quantitative connection between pressure perturbations and temperature, providing a useful tool for ice nucleation calculations in atmospheric models. In this second half of the study, we build a minimalist model for long lifetime mixed-phase stratiform clouds based on stochastic ice nucleation. Our result shows that there is a non-linear relationship between ice water contact and ice number concentration in the mixed-phase cloud, as long as the volume ice nucleation rate is constant. This statistical property may help identify the source of ice nuclei in mixed-phase clouds. In addition, results from Lagrangian ice particle tracking in time dependent fields

  1. Improved parameterization of marine ice dynamics and flow instabilities for simulation of the Austfonna ice cap using a large-scale ice sheet model

    NASA Astrophysics Data System (ADS)

    Dunse, T.; Greve, R.; Schuler, T.; Hagen, J. M.; Navarro, F.; Vasilenko, E.; Reijmer, C.

    2009-12-01

    particular flow units. The measurements indicate that the gross volume of Austfonna is cold. This observation is supported by model results which suggest that regional fast flow occurs despite the lack of considerable temperate-ice volumes. This in turn indicates that fast flow is accomplished exclusively by basal motion in regions where the glacier base is at pressure-melting conditions, and not by enhanced deformation of considerable volumes of temperate ice.

  2. Ice Shelves and Landfast Ice on the Antarctic Perimeter: Revised Scope of Work

    NASA Technical Reports Server (NTRS)

    Abdalati, Waleed (Technical Monitor); Scambos, Ted

    2004-01-01

    Ice shelves respond quickly and profoundly to a warming climate. Within a decade after mean summertime temperature reaches approximately 0 deg C and persistent melt ponding is observed, a rapid retreat and disintegration begins. This link was documented for ice shelves in the Antarctic Peninsula region (the Larsen 'A', B', and Wilkins Ice shelves) in the results of a previous grant under ADRO-1. Modeling of shelf ice flow and the effects of meltwater indicated that melt ponding accelerates shelf breakup by increasing fracturing. The ADRO-2 funding (topic of this report) supported further inquiry into the evolution of ice shelves under warming conditions, and the post-breakup effects on their feeder glaciers. Also, this grant considered fast ice and sea ice characteristics, to the extent that they provide information regarding shelf stability. A major component of this work was in the form of NSIDC image data support and in situ sea ice research on the Aurora Australis 'ARISE' cruise of September 9 2003 through October 28 2003.

  3. Airborne Grid Sea-Ice Surveys for Comparison with Cryosat-2

    NASA Astrophysics Data System (ADS)

    Brozena, J. M.; Gardner, J. M.; Liang, R.; Hagen, R. A.; Ball, D.; Newman, T.

    2015-12-01

    The Naval Research Laboratory is studying of the changing Arctic with a focus on ice thickness and distribution variability. The goal is optimization of computer models used to predict sea ice changes. An important part of our study is to calibrate/validate Cryosat-2 ice thickness data prior to its incorporation into new ice forecast models. The footprint of the altimeter over sea-ice is a significant issue in any attempt to ground-truth the data. Along-track footprints are reduced to ~ 300 m by SAR processing of the returns. However, the cross-track footprint is determined by the topography of the surface. Further, the actual return is the sum of the returns from individual reflectors within the footprint making it difficult to interpret the return, and optimize the waveform tracker. We therefore collected a series of grids of scanning LiDAR and radar on sub-satellite tracks over sea-ice that would extend far enough cross-track to capture the illuminated area. The difficulty in the collection of such grids, which are comprised of adjacent overlapping tracks is ice motion of as much as 300 m over the duration of a single flight track (~ 20 km) of data collection. With a typical LiDAR swath width of < 500m adjustment of the survey tracks in near real-time for the ice motion is necessary for a coherent data set. This was accomplished by a an NRL devised photogrammetric method of ice velocity determination. Post-processing refinements resulted in typical track-to-track miss-ties of ~ 1-2 m, much of which could be attributed to ice deformation over the period of the survey. This allows us to reconstruct the ice configuration to the time of the satellite overflight, resulting in a good picture of the surface actually illuminated by the radar. The detailed 2-d LiDAR image is the snow surface, not the underlying ice presumably illuminated by the radar. Our hope is that the 1-D radar profiles collected along the LiDAR swath centerlines will be sufficient to correct the

  4. Body movements during the off-ice execution of back spins in figure skating.

    PubMed

    Mapelli, Andrea; Rodano, Renato; Fiorentini, Angelo; Giustolisi, Andrea; Sidequersky, Fernanda V; Sforza, Chiarella

    2013-10-01

    Using an optoelectronic motion capture system, we quantitatively assessed the arrangement of body segments and the displacement of the horizontal projection of the center of mass (CM) in seven skaters performing off-ice back spins on a rotating device (spinner). The position of the CM at the beginning of the spins was not a determining factor, but its rapid stabilization towards the center of the spinner, together with the achievement of a stable arrangement of trunk and limbs, was crucial to get the dynamic equilibrium, necessary for a lasting performance. At full spinning, however, there was an indicative variety of individual body postures. A final deceleration, associable with the loss of body equilibrium, was detected in the last spin of most of skaters. In conclusion, the current investigation demonstrated that the off-ice execution of back spin, a critical movement of ice skating, can be measured in laboratory, thus providing quantitative information to both the skaters and the coaches. The analysis is not invasive, and it may be proposed also for longitudinal evaluations of skating and postural training. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. The Influence of Subglacial Hydrology on Ice Stream Velocity in a Physical Model

    NASA Astrophysics Data System (ADS)

    Wagman, B. M.; Catania, G.; Buttles, J. L.

    2011-12-01

    We use a physical model to investigate how changes in subglacial hydrology affect ice motion in ice streams found in the West Antarctic Ice Sheet. Ice streams are modeled using silicone polymer placed over a thin water layer to simulate ice flow dominated by basal sliding. Dynamic similarity between modeled and natural ice streams is achieved through direct comparison of the glacier force balance using the conditions on Whillans Ice Stream (WIS) as our goal.This ice stream has a force balance that has evolved through time due to increased basal resistance. Currently, between 50-90% of the driving stress is supported by the ice stream shear margins [Stearns et al., JGlac 2005]. A similar force balance can be achieved in our model with a surface slope of 0.025. We test two hypotheses; 1) the distribution and thickness of the subglacial water layer influences the ice flow speed and thus the force balance and can reproduce the observed slowdown of WIS and; 2) shear margins are locations where transitions in water layer thickness occur.

  6. Greenland Ice Sheet flow response to runoff variability

    NASA Astrophysics Data System (ADS)

    Stevens, Laura A.; Behn, Mark D.; Das, Sarah B.; Joughin, Ian; Noël, Brice P. Y.; Broeke, Michiel R.; Herring, Thomas

    2016-11-01

    We use observations of ice sheet surface motion from a Global Positioning System network operating from 2006 to 2014 around North Lake in west Greenland to investigate the dynamical response of the Greenland Ice Sheet's ablation area to interannual variability in surface melting. We find no statistically significant relationship between runoff season characteristics and ice flow velocities within a given year or season. Over the 7 year time series, annual velocities at North Lake decrease at an average rate of -0.9 ± 1.1 m yr-2, consistent with the negative trend in annual velocities observed in neighboring regions over recent decades. We find that net runoff integrated over several preceding years has a negative correlation with annual velocities, similar to findings from the two other available decadal records of ice velocity in western Greenland. However, we argue that this correlation is not necessarily evidence for a direct hydrologic mechanism acting on the timescale of multiple years but could be a statistical construct. Finally, we stress that neither the decadal slowdown trend nor the negative correlation between velocity and integrated runoff is predicted by current ice-sheet models, underscoring that these models do not yet capture all the relevant feedbacks between runoff and ice dynamics needed to predict long-term trends in ice sheet flow.

  7. Limited Impact of Subglacial Supercooling Freeze-on for Greenland Ice Sheet Stratigraphy

    NASA Astrophysics Data System (ADS)

    Dow, Christine F.; Karlsson, Nanna B.; Werder, Mauro A.

    2018-02-01

    Large units of disrupted radiostratigraphy (UDR) are visible in many radio-echo sounding data sets from the Greenland Ice Sheet. This study investigates whether supercooling freeze-on rates at the bed can cause the observed UDR. We use a subglacial hydrology model to calculate both freezing and melting rates at the base of the ice sheet in a distributed sheet and within basal channels. We find that while supercooling freeze-on is a phenomenon that occurs in many areas of the ice sheet, there is no discernible correlation with the occurrence of UDR. The supercooling freeze-on rates are so low that it would require tens of thousands of years with minimal downstream ice motion to form the hundreds of meters of disrupted radiostratigraphy. Overall, the melt rates at the base of the ice sheet greatly overwhelm the freeze-on rates, which has implications for mass balance calculations of Greenland ice.

  8. DRA/NASA/ONERA Collaboration on Icing Research. Part 2; Prediction of Airfoil Ice Accretion

    NASA Technical Reports Server (NTRS)

    Wright, William B.; Gent, R. W.; Guffond, Didier

    1997-01-01

    This report presents results from a joint study by DRA, NASA, and ONERA for the purpose of comparing, improving, and validating the aircraft icing computer codes developed by each agency. These codes are of three kinds: (1) water droplet trajectory prediction, (2) ice accretion modeling, and (3) transient electrothermal deicer analysis. In this joint study, the agencies compared their code predictions with each other and with experimental results. These comparison exercises were published in three technical reports, each with joint authorship. DRA published and had first authorship of Part 1 - Droplet Trajectory Calculations, NASA of Part 2 - Ice Accretion Prediction, and ONERA of Part 3 - Electrothermal Deicer Analysis. The results cover work done during the period from August 1986 to late 1991. As a result, all of the information in this report is dated. Where necessary, current information is provided to show the direction of current research. In this present report on ice accretion, each agency predicted ice shapes on two dimensional airfoils under icing conditions for which experimental ice shapes were available. In general, all three codes did a reasonable job of predicting the measured ice shapes. For any given experimental condition, one of the three codes predicted the general ice features (i.e., shape, impingement limits, mass of ice) somewhat better than did the other two. However, no single code consistently did better than the other two over the full range of conditions examined, which included rime, mixed, and glaze ice conditions. In several of the cases, DRA showed that the user's knowledge of icing can significantly improve the accuracy of the code prediction. Rime ice predictions were reasonably accurate and consistent among the codes, because droplets freeze on impact and the freezing model is simple. Glaze ice predictions were less accurate and less consistent among the codes, because the freezing model is more complex and is critically

  9. Embedded ice with lead

    NASA Image and Video Library

    2017-12-08

    Iceberg embedded in sea ice with a lead on one side. This opening was likely caused by winds blowing against the side of the iceberg. Credit: NASA / George Hale NASA's Operation IceBridge is an airborne science mission to study Earth's polar ice. For more information about IceBridge, visit: www.nasa.gov/icebridge NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  10. IceChrono1: a probabilistic model to compute a common and optimal chronology for several ice cores

    NASA Astrophysics Data System (ADS)

    Parrenin, F.; Bazin, L.; Capron, E.; Landais, A.; Lemieux-Dudon, B.; Masson-Delmotte, V.

    2015-05-01

    Polar ice cores provide exceptional archives of past environmental conditions. The dating of ice cores and the estimation of the age-scale uncertainty are essential to interpret the climate and environmental records that they contain. It is, however, a complex problem which involves different methods. Here, we present IceChrono1, a new probabilistic model integrating various sources of chronological information to produce a common and optimized chronology for several ice cores, as well as its uncertainty. IceChrono1 is based on the inversion of three quantities: the surface accumulation rate, the lock-in depth (LID) of air bubbles and the thinning function. The chronological information integrated into the model are models of the sedimentation process (accumulation of snow, densification of snow into ice and air trapping, ice flow), ice- and air-dated horizons, ice and air depth intervals with known durations, depth observations (depth shift between synchronous events recorded in the ice and in the air) and finally air and ice stratigraphic links in between ice cores. The optimization is formulated as a least squares problem, implying that all densities of probabilities are assumed to be Gaussian. It is numerically solved using the Levenberg-Marquardt algorithm and a numerical evaluation of the model's Jacobian. IceChrono follows an approach similar to that of the Datice model which was recently used to produce the AICC2012 (Antarctic ice core chronology) for four Antarctic ice cores and one Greenland ice core. IceChrono1 provides improvements and simplifications with respect to Datice from the mathematical, numerical and programming point of views. The capabilities of IceChrono1 are demonstrated on a case study similar to the AICC2012 dating experiment. We find results similar to those of Datice, within a few centuries, which is a confirmation of both IceChrono1 and Datice codes. We also test new functionalities with respect to the original version of Datice

  11. Influences of Ocean Thermohaline Stratification on Arctic Sea Ice

    NASA Astrophysics Data System (ADS)

    Toole, J. M.; Timmermans, M.-L.; Perovich, D. K.; Krishfield, R. A.; Proshutinsky, A.; Richter-Menge, J. A.

    2009-04-01

    The Arctic Ocean's surface mixed layer constitutes the dynamical and thermodynamical link between the sea ice and the underlying waters. Wind stress, acting directly on the surface mixed layer or via wind-forced ice motion, produce surface currents that can in turn drive deep ocean flow. Mixed layer temperature is intimately related to basal sea ice growth and melting. Heat fluxes into or out of the surface mixed layer can occur at both its upper and lower interfaces: the former via air-sea exchange at leads and conduction through the ice, the latter via turbulent mixing and entrainment at the layer base. Variations in Arctic Ocean mixed layer properties are documented based on more than 16,000 temperature and salinity profiles acquired by Ice-Tethered Profilers since summer 2004 and analyzed in conjunction with sea ice observations from Ice Mass Balance Buoys and atmospheric heat flux estimates. Guidance interpreting the observations is provided by a one-dimensional ocean mixed layer model. The study focuses attention on the very strong density stratification about the mixed layer base in the Arctic that, in regions of sea ice melting, is increasing with time. The intense stratification greatly impedes mixed layer deepening by vertical convection and shear mixing, and thus limits the flux of deep ocean heat to the surface that could influence sea ice growth/decay. Consistent with previous work, this study demonstrates that the Arctic sea ice is most sensitive to changes in ocean mixed layer heat resulting from fluxes across its upper (air-sea and/or ice-water) interface.

  12. Compiling Techniques for East Antarctic Ice Velocity Mapping Based on Historical Optical Imagery

    NASA Astrophysics Data System (ADS)

    Li, X.; Li, R.; Qiao, G.; Cheng, Y.; Ye, W.; Gao, T.; Huang, Y.; Tian, Y.; Tong, X.

    2018-05-01

    Ice flow velocity over long time series in East Antarctica plays a vital role in estimating and predicting the mass balance of Antarctic Ice Sheet and its contribution to global sea level rise. However, there is no Antarctic ice velocity product with large space scale available showing the East Antarctic ice flow velocity pattern before the 1990s. We proposed three methods including parallax decomposition, grid-based NCC image matching, feature and gird-based image matching with constraints for estimation of surface velocity in East Antarctica based on ARGON KH-5 and LANDSAT imagery, showing the feasibility of using historical optical imagery to obtain Antarctic ice motion. Based on these previous studies, we presented a set of systematic method for developing ice surface velocity product for the entire East Antarctica from the 1960s to the 1980s in this paper.

  13. Ocean Disposal of Man-Made Ice Piers

    EPA Pesticide Factsheets

    The National Science Foundation is permitted to ocean dump man-made ice piers from its base at McMurdo Sound in Antarctica under a MPRSA general permit. Information is provided about ice piers and impacts of ice pier disposal.

  14. Current Status and Future Plan of Arctic Sea Ice monitoring in South Korea

    NASA Astrophysics Data System (ADS)

    Shin, J.; Park, J.

    2016-12-01

    Arctic sea ice is one of the most important parameters in climate. For monitoring of sea ice changes, the National Meteorological Satellite Center (NMSC) of Korea Metrological Administration has developed the "Arctic sea ice monitoring system" to retrieve the sea ice extent and surface roughness using microwave sensor data, and statistical prediction model for Arctic sea ice extent. This system has been implemented to the web site for real-time public service. The sea ice information can be retrieved using the spaceborne microwave sensor-Special Sensor Microwave Imager/Sounder (SSMI/S). The sea ice information like sea ice extent, sea ice surface roughness, and predictive sea ice extent are produced weekly base since 2007. We also publish the "Analysis report of the Arctic sea ice" twice a year. We are trying to add more sea ice information into this system. Details of current status and future plan of Arctic sea ice monitoring and the methodology of the sea ice information retrievals will be presented in the meeting.

  15. Characterizing spatiotemporal information loss in sparse-sampling-based dynamic MRI for monitoring respiration-induced tumor motion in radiotherapy.

    PubMed

    Arai, Tatsuya J; Nofiele, Joris; Madhuranthakam, Ananth J; Yuan, Qing; Pedrosa, Ivan; Chopra, Rajiv; Sawant, Amit

    2016-06-01

    Sparse-sampling and reconstruction techniques represent an attractive strategy to achieve faster image acquisition speeds, while maintaining adequate spatial resolution and signal-to-noise ratio in rapid magnetic resonance imaging (MRI). The authors investigate the use of one such sequence, broad-use linear acquisition speed-up technique (k-t BLAST) in monitoring tumor motion for thoracic and abdominal radiotherapy and examine the potential trade-off between increased sparsification (to increase imaging speed) and the potential loss of "true" information due to greater reliance on a priori information. Lung tumor motion trajectories in the superior-inferior direction, previously recorded from ten lung cancer patients, were replayed using a motion phantom module driven by an MRI-compatible motion platform. Eppendorf test tubes filled with water which serve as fiducial markers were placed in the phantom. The modeled rigid and deformable motions were collected in a coronal image slice using balanced fast field echo in conjunction with k-t BLAST. Root mean square (RMS) error was used as a metric of spatial accuracy as measured trajectories were compared to input data. The loss of spatial information was characterized for progressively increasing acceleration factor from 1 to 16; the resultant sampling frequency was increased approximately from 2.5 to 19 Hz when the principal direction of the motion was set along frequency encoding direction. In addition to the phantom study, respiration-induced tumor motions were captured from two patients (kidney tumor and lung tumor) at 13 Hz over 49 s to demonstrate the impact of high speed motion monitoring over multiple breathing cycles. For each subject, the authors compared the tumor centroid trajectory as well as the deformable motion during free breathing. In the rigid and deformable phantom studies, the RMS error of target tracking at the acquisition speed of 19 Hz was approximately 0.3-0.4 mm, which was smaller than the

  16. Sparse ice: Geophysical, biological and Indigenous knowledge perspectives on a habitat for ice-associated fauna

    NASA Astrophysics Data System (ADS)

    Lee, O. A.; Eicken, H.; Weyapuk, W., Jr.; Adams, B.; Mohoney, A. R.

    2015-12-01

    The significance of highly dispersed, remnant Arctic sea ice as a platform for marine mammals and indigenous hunters in spring and summer may have increased disproportionately with changes in the ice cover. As dispersed remnant ice becomes more common in the future it will be increasingly important to understand its ecological role for upper trophic levels such as marine mammals and its role for supporting primary productivity of ice-associated algae. Potential sparse ice habitat at sea ice concentrations below 15% is difficult to detect using remote sensing data alone. A combination of high resolution satellite imagery (including Synthetic Aperture Radar), data from the Barrow sea ice radar, and local observations from indigenous sea ice experts was used to detect sparse sea ice in the Alaska Arctic. Traditional knowledge on sea ice use by marine mammals was used to delimit the scales where sparse ice could still be used as habitat for seals and walrus. Potential sparse ice habitat was quantified with respect to overall spatial extent, size of ice floes, and density of floes. Sparse ice persistence offshore did not prevent the occurrence of large coastal walrus haul outs, but the lack of sparse ice and early sea ice retreat coincided with local observations of ringed seal pup mortality. Observations from indigenous hunters will continue to be an important source of information for validating remote sensing detections of sparse ice, and improving understanding of marine mammal adaptations to sea ice change.

  17. IceChrono1: a probabilistic model to compute a common and optimal chronology for several ice cores

    NASA Astrophysics Data System (ADS)

    Parrenin, Frédéric; Bazin, Lucie; Capron, Emilie; Landais, Amaëlle; Lemieux-Dudon, Bénédicte; Masson-Delmotte, Valérie

    2016-04-01

    Polar ice cores provide exceptional archives of past environmental conditions. The dating of ice cores and the estimation of the age scale uncertainty are essential to interpret the climate and environmental records that they contain. It is however a complex problem which involves different methods. Here, we present IceChrono1, a new probabilistic model integrating various sources of chronological information to produce a common and optimized chronology for several ice cores, as well as its uncertainty. IceChrono1 is based on the inversion of three quantities: the surface accumulation rate, the Lock-In Depth (LID) of air bubbles and the thinning function. The chronological information integrated into the model are: models of the sedimentation process (accumulation of snow, densification of snow into ice and air trapping, ice flow), ice and air dated horizons, ice and air depth intervals with known durations, Δdepth observations (depth shift between synchronous events recorded in the ice and in the air) and finally air and ice stratigraphic links in between ice cores. The optimization is formulated as a least squares problem, implying that all densities of probabilities are assumed to be Gaussian. It is numerically solved using the Levenberg-Marquardt algorithm and a numerical evaluation of the model's Jacobian. IceChrono follows an approach similar to that of the Datice model which was recently used to produce the AICC2012 chronology for 4 Antarctic ice cores and 1 Greenland ice core. IceChrono1 provides improvements and simplifications with respect to Datice from the mathematical, numerical and programming point of views. The capabilities of IceChrono is demonstrated on a case study similar to the AICC2012 dating experiment. We find results similar to those of Datice, within a few centuries, which is a confirmation of both IceChrono and Datice codes. We also test new functionalities with respect to the original version of Datice: observations as ice intervals

  18. Little Ice Age Fluctuations of Quelccaya Ice Cap, Peru

    NASA Astrophysics Data System (ADS)

    Stroup, J. S.; Kelly, M. A.; Lowell, T.

    2009-12-01

    A record of the past extents of Quelccaya Ice Cap (QIC) provides valuable information about tropical climate change from late glacial to recent time. Here, we examine the timing and regional significance of fluctuations of QIC during the Little Ice Age (LIA; ~1300-1850 AD). One prominent set of moraines, known as the Huancane I moraines, is located ~1 km from the present-day western ice cap margin and provides a near-continuous outline of the most recent advance of QIC. This moraine set was radiocarbon dated (~298 ± 134 and 831 ± 87 yr BP) by Mercer and Palacios (1977) and presented as some of the first evidence for cooling in the tropics during the Little Ice Age. Recent field investigations in the QIC region focused on refining the chronology of the Huancane I moraines. In 2008, new stratigraphic sections exposed by local lake-flooding events revealed multiple layers of peat within the Huancane I moraines. In both 2008 and 2009, samples were obtained for 10Be dating of boulders on Huancane I moraines. A combination of radiocarbon and 10Be ages indicate that the Huancane I moraines were deposited by ice cap expansion after ~3800 yr BP and likely by multiple advances at approximately 1000, 600, 400, and 200 yr BP. Radiocarbon and 10Be chronologies of the Huancane I moraines are compared with the Quelccaya ice core records (Thompson et al., 1985; 1986; 2006). Accumulation data from the ice core records are interpreted to indicate a significant wet period at ~1500-1700 AD followed by a significant drought at ~1720-1860 AD. We examine ice marginal fluctuations during these times to determine influence of such events on the ice cap extent.

  19. Challenges in molecular simulation of homogeneous ice nucleation

    NASA Astrophysics Data System (ADS)

    Brukhno, Andrey V.; Anwar, Jamshed; Davidchack, Ruslan; Handel, Richard

    2008-12-01

    We address the problem of recognition and growth of ice nuclei in simulation of supercooled bulk water. Bond orientation order parameters based on the spherical harmonics analysis are shown to be ineffective when applied to ice nucleation. Here we present an alternative method which robustly differentiates between hexagonal and cubic ice forms. The method is based on accumulation of the maximum projection of bond orientations onto a set of predetermined vectors, where different terms can contribute with opposite signs with the result that the irrelevant or incompatible molecular arrangements are damped out. We also introduce an effective cluster size by assigning a quality weight to each molecule in an ice-like cluster. We employ our cluster analysis in Monte Carlo simulation of homogeneous ice formation. Replica-exchange umbrella sampling is used for biasing the growth of the largest cluster and calculating the associated free energy barrier. Our results suggest that the ice formation can be seen as a two-stage process. Initially, short tetrahedrally arranged threads and rings are present; these become correlated and form a diffuse ice-genic network. Later, hydrogen bond arrangements within the amorphous ice-like structure gradually settle down and simultaneously 'tune-up' nearby water molecules. As a result, a well-shaped ice core emerges and spreads throughout the system. The process is very slow and diverse owing to the rough energetic landscape and sluggish molecular motion in supercooled water, while large configurational fluctuations are needed for crystallization to occur. In the small systems studied so far the highly cooperative molecular rearrangements eventually lead to a relatively fast percolation of the forming ice structure through the periodic boundaries, which inevitably affects the simulation results.

  20. The internal structure of the Brunt Ice Shelf, Antarctica from ice-penetrating radar

    NASA Astrophysics Data System (ADS)

    King, Edward; De Rydt, Jan; Gudmundsson, Hilmar

    2016-04-01

    The Brunt Ice Shelf is a small feature on the Coats Land Coast of the Weddell Sea, Antarctica. It is unusual among Antarctic ice shelves because the ice crossing the grounding line from the ice sheet retains no structural integrity, so the ice shelf comprises icebergs of continental ice cemented together by sea ice, with the whole blanketed by in-situ snowfall. The size and distribution of the icebergs is governed by the thickness profile along the grounding line. Where bedrock troughs discharge thick ice to the ice shelf, the icebergs are large and remain close together with little intervening sea ice. Where bedrock ridges mean the ice crossing the grounding line is thin, the icebergs are small and widely-scattered with large areas of sea ice between them. To better understand the internal structure of the Brunt Ice Shelf and how this might affect the flow dynamics we conducted ice-penetrating radar surveys during December 2015 and January 2016. Three different ground-based radar systems were used, operating at centre frequencies of 400, 50 and 10 MHz respectively. The 400 MHz system gave detailed firn structure and accumulation profiles as well as time-lapse profiles of the active propagation of a crevasse. The 50 MHz system provided intermediate-level detail of iceberg distribution and thickness as well as information on the degree of salt water infiltration into the accumulating snow pack. The 10 MHz system used a high-power transmitter in an attempt to measure ice thickness beneath salt-impregnated ice. In this poster we will present example data from each of the three radar systems which will demonstrate the variability of the internal structure of the ice shelf. We will also present preliminary correlations between the internal structure and the surface topography from satellite data.

  1. Accuracy and Tuning of Flow Parsing for Visual Perception of Object Motion During Self-Motion

    PubMed Central

    Niehorster, Diederick C.

    2017-01-01

    How do we perceive object motion during self-motion using visual information alone? Previous studies have reported that the visual system can use optic flow to identify and globally subtract the retinal motion component resulting from self-motion to recover scene-relative object motion, a process called flow parsing. In this article, we developed a retinal motion nulling method to directly measure and quantify the magnitude of flow parsing (i.e., flow parsing gain) in various scenarios to examine the accuracy and tuning of flow parsing for the visual perception of object motion during self-motion. We found that flow parsing gains were below unity for all displays in all experiments; and that increasing self-motion and object motion speed did not alter flow parsing gain. We conclude that visual information alone is not sufficient for the accurate perception of scene-relative motion during self-motion. Although flow parsing performs global subtraction, its accuracy also depends on local motion information in the retinal vicinity of the moving object. Furthermore, the flow parsing gain was constant across common self-motion or object motion speeds. These results can be used to inform and validate computational models of flow parsing. PMID:28567272

  2. Proprioception of foot and ankle complex in young regular practitioners of ice hockey, ballet dancing and running.

    PubMed

    Li, Jing Xian; Xu, Dong Qing; Hoshizaki, Blaine

    2009-01-01

    This study examined the proprioception of the foot and ankle complex in regular ice hockey practitioners, runners, and ballet dancers. A total of 45 young people with different exercise habits formed four groups: the ice hockey, ballet dancing, running, and sedentary groups. Kinesthesia of the foot and ankle complex was measured in plantarflexion (PF), dorsiflexion (DF), inversion (IV), and eversion (EV) at 0.4 degrees /s using a custom-made device. The results showed the following: (1) significantly better perceived passive motion sense in PF/DF was found as compared with the measurements in IV/EV within each group (P < .01); (2) ice hockey and ballet groups perceived significantly better passive motion sense in IV/EV than the running (P < .05) and the sedentary (P < .01) groups; and (3) no significant difference in the all measurements was found between running and sedentary groups. The benefits of ice hockey and ballet dancing on proprioception may be associated with their movement characteristics.

  3. Non-rigid, but not rigid, motion interferes with the processing of structural face information in developmental prosopagnosia.

    PubMed

    Maguinness, Corrina; Newell, Fiona N

    2015-04-01

    There is growing evidence to suggest that facial motion is an important cue for face recognition. However, it is poorly understood whether motion is integrated with facial form information or whether it provides an independent cue to identity. To provide further insight into this issue, we compared the effect of motion on face perception in two developmental prosopagnosics and age-matched controls. Participants first learned faces presented dynamically (video), or in a sequence of static images, in which rigid (viewpoint) or non-rigid (expression) changes occurred. Immediately following learning, participants were required to match a static face image to the learned face. Test face images varied by viewpoint (Experiment 1) or expression (Experiment 2) and were learned or novel face images. We found similar performance across prosopagnosics and controls in matching facial identity across changes in viewpoint when the learned face was shown moving in a rigid manner. However, non-rigid motion interfered with face matching across changes in expression in both individuals with prosopagnosia compared to the performance of control participants. In contrast, non-rigid motion did not differentially affect the matching of facial expressions across changes in identity for either prosopagnosics (Experiment 3). Our results suggest that whilst the processing of rigid motion information of a face may be preserved in developmental prosopagnosia, non-rigid motion can specifically interfere with the representation of structural face information. Taken together, these results suggest that both form and motion cues are important in face perception and that these cues are likely integrated in the representation of facial identity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Middle Range Sea Ice Prediction System of Voyage Environmental Information System in Arctic Sea Route

    NASA Astrophysics Data System (ADS)

    Lim, H. S.

    2017-12-01

    Due to global warming, the sea ice in the Arctic Ocean is melting dramatically in summer, which is providing a new opportunity to exploit the Northern Sea Route (NSR) connecting Asia and Europe ship route. Recent increases in logistics transportation through NSR and resource development reveal the possible threats of marine pollution and marine transportation accidents without real-time navigation system. To develop a safe Voyage Environmental Information System (VEIS) for vessels operating, the Korea Institute of Ocean Science and Technology (KIOST) which is supported by the Ministry of Oceans and Fisheries, Korea has initiated the development of short-term and middle range prediction system for the sea ice concentration (SIC) and sea ice thickness (SIT) in NSR since 2014. The sea ice prediction system of VEIS consists of AMSR2 satellite composite images (a day), short-term (a week) prediction system, and middle range (a month) prediction system using a statistical method with re-analysis data (TOPAZ) and short-term predicted model data. In this study, the middle range prediction system for the SIC and SIT in NSR is calibrated with another middle range predicted atmospheric and oceanic data (NOAA CFSv2). The system predicts one month SIC and SIT on a daily basis, as validated with dynamic composite SIC data extracted from AMSR2 L2 satellite images.

  5. The influence of meltwater on the thermal structure and flow of the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Poinar, Kristin

    As the climate has warmed over the past decades, the amount of melt on the Greenland Ice Sheet has increased, and areas higher on the ice sheet have begun to melt regularly. This increase in melt has been hypothesized to enhance ice flow in myriad ways, including through basal lubrication and englacial refreezing. By developing and interpreting thermal ice-sheet models and analyzing remote sensing data, I evaluate the effect of these processes on ice flow and sea-level rise from the Greenland Ice Sheet. I first develop a thermal ice sheet model that is applicable to western Greenland. Key components of this model are its treatment of multiple phases (solid ice and liquid water) and its viscosity-dependent velocity field. I apply the model to Jakobshavn Isbrae, a fast-flowing outlet glacier. This is an important benchmark for my model, which I next apply to the topics outlined above. I use the thermal model to calculate the effect of englacial latent-heat transfer (meltwater refreezing within englacial features such as firn and crevasses) on ice dynamics in western Greenland. I find that in slow-moving areas, this can significantly warm the ice, but that englacial latent heat transfer has only a minimal effect on ice motion (60%) of the ice flux into the ocean, evidence of deep englacial warming is virtually absent. Thus, the effects of englacial latent heat transfer on ice motion are likely limited to slow-moving regions, which limits its importance to ice-sheet mass balance. Next, I couple a model for ice fracture to a modified version of my thermal model to calculate the depth and shape evolution of water-filled crevasses that form in crevasse fields. At most elevations and for typical water input volumes, crevasses penetrate to the top ~200--300 meters depth, warm the ice there by ~10°C, and may persist englacially, in a liquid state, for multiple decades. The surface hydrological network limits the amount of water that can reach most crevasses. We find that

  6. Cosmic ray spectrum and composition from three years of IceTop and IceCube

    NASA Astrophysics Data System (ADS)

    Rawlins, K.; IceCube Collaboration

    2016-05-01

    IceTop is the surface component of the IceCube Observatory, composed of frozen water tanks at the top of IceCube’s strings. Data from this detector can be analyzed in different ways with the goal of measuring cosmic ray spectrum and composition. The shower size S125 from IceTop alone can be used as a proxy for primary energy, and unfolded into an all-particle spectrum. In addition, S125 from the surface can be combined with high-energy muon energy loss information from the deep IceCube detector for those air showers which pass through both. Using these coincident events in a complementary analysis, both the spectrum and mass composition of primary cosmic rays can be extracted in parallel using a neural network. Both of these analyses have been performed on three years of IceTop and IceCube data. Both all-particle spectra as well as individual spectra for elemental groups are presented.

  7. Dynamics of the global meridional ice flow of Europa's icy shell

    NASA Astrophysics Data System (ADS)

    Ashkenazy, Yosef; Sayag, Roiy; Tziperman, Eli

    2018-01-01

    Europa is one of the most probable places in the solar system to find extra-terrestrial life1,2, motivating the study of its deep ( 100 km) ocean3-6 and thick icy shell3,7-11. The chaotic terrain patterns on Europa's surface12-15 have been associated with vertical convective motions within the ice8,10. Horizontal gradients of ice thickness16,17 are expected due to the large equator-to-pole gradient of surface temperature and can drive a global horizontal ice flow, yet such a flow and its observable implications have not been studied. We present a global ice flow model for Europa composed of warm, soft ice flowing beneath a cold brittle rigid ice crust3. The model is coupled to an underlying (diffusive) ocean and includes the effect of tidal heating and convection within the ice. We show that Europa's ice can flow meridionally due to pressure gradients associated with equator-to-pole ice thickness differences, which can be up to a few km and can be reduced both by ice flow and due to ocean heat transport. The ice thickness and meridional flow direction depend on whether the ice convects or not; multiple (convecting and non-convecting) equilibria are found. Measurements of the ice thickness and surface temperature from future Europa missions18,19 can be used with our model to deduce whether Europa's icy shell convects and to constrain the effectiveness of ocean heat transport.

  8. Ice Clouds

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    Heavy water ice clouds almost completely obscure the surface in Vastitas Borealis.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

    Image information: VIS instrument. Latitude 69.5, Longitude 283.6 East (76.4 West). 19 meter/pixel resolution.

  9. Ice-Borehole Probe

    NASA Technical Reports Server (NTRS)

    Behar, Alberto; Carsey, Frank; Lane, Arthur; Engelhardt, Herman

    2006-01-01

    An instrumentation system has been developed for studying interactions between a glacier or ice sheet and the underlying rock and/or soil. Prior borehole imaging systems have been used in well-drilling and mineral-exploration applications and for studying relatively thin valley glaciers, but have not been used for studying thick ice sheets like those of Antarctica. The system includes a cylindrical imaging probe that is lowered into a hole that has been bored through the ice to the ice/bedrock interface by use of an established hot-water-jet technique. The images acquired by the cameras yield information on the movement of the ice relative to the bedrock and on visible features of the lower structure of the ice sheet, including ice layers formed at different times, bubbles, and mineralogical inclusions. At the time of reporting the information for this article, the system was just deployed in two boreholes on the Amery ice shelf in East Antarctica and after successful 2000 2001 deployments in 4 boreholes at Ice Stream C, West Antarctica, and in 2002 at Black Rapids Glacier, Alaska. The probe is designed to operate at temperatures from 40 to +40 C and to withstand the cold, wet, high-pressure [130-atm (13.20-MPa)] environment at the bottom of a water-filled borehole in ice as deep as 1.6 km. A current version is being outfitted to service 2.4-km-deep boreholes at the Rutford Ice Stream in West Antarctica. The probe (see figure) contains a sidelooking charge-coupled-device (CCD) camera that generates both a real-time analog video signal and a sequence of still-image data, and contains a digital videotape recorder. The probe also contains a downward-looking CCD analog video camera, plus halogen lamps to illuminate the fields of view of both cameras. The analog video outputs of the cameras are converted to optical signals that are transmitted to a surface station via optical fibers in a cable. Electric power is supplied to the probe through wires in the cable at a

  10. Seasonal climate information preserved within West Antarctic ice cores and its relation to large-scale atmospheric circulation and regional sea ice variations

    NASA Astrophysics Data System (ADS)

    Küttel, M.; Steig, E. J.; Ding, Q.; Battisti, D. S.

    2010-12-01

    Recent evidence suggests that West Antarctica has been warming since at least the 1950s. With the instrumental record being limited to the mid-20th century, indirect information from stable isotopes (δ18O and δD, hereafter collectively δ) preserved within ice cores have commonly been used to place this warming into a long term context. Here, using a large number of δ records obtained during the International Trans-Antarctic Scientific Expedition (ITASE), past variations in West Antarctic δ are not only investigated over time but also in space. This study therefore provides an important complement to longer records from single locations as e.g. the currently being processed West Antarctic ice sheet (WAIS) Divide ice core. Although snow accumulation rates at the ITASE sites in West Antarctica are variable, they are generally high enough to allow studies on sub-annual scale over the last 50-100 years. Here, we show that variations in δ in this region are strongly related to the state of the large-scale atmospheric circulation as well as sea ice variations in the adjacent Southern Ocean, with important seasonal changes. While a strong relationship to sea ice changes in the Ross and Amundsen Sea as well as to the atmospheric circulation offshore is found during austral fall (MAM) and winter (JJA), only modest correlations are found during spring (SON) and summer (DJF). Interestingly, the correlations with the atmospheric circulation in the latter two seasons have the strongest signal over the Antarctic continent, but not offshore - an important difference to MAM and JJA. These seasonal changes are in good agreement with the seasonally varying predominant circulation: meridional with more frequent storms in the Amundsen Sea during MAM and JJA and more zonal and stable during SON and DJF. The relationship to regional temperature is similarly seasonally variable with highest correlations found during MAM and JJA. Notably, the circulation pattern found to be strongest

  11. Iceberg trapped in sea ice

    NASA Image and Video Library

    2012-11-01

    An iceberg trapped in sea ice in the Amundsen Sea, seen from the IceBridge DC-8 during the Getz 07 mission on Oct. 27. Credit: NASA / Maria-Jose Vinas NASA's Operation IceBridge is an airborne science mission to study Earth's polar ice. For more information about IceBridge, visit: www.nasa.gov/icebridge NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  12. Variability of Arctic Sea Ice as Viewed from Space

    NASA Technical Reports Server (NTRS)

    Parkinson, Claire L.

    1998-01-01

    Over the past 20 years, satellite passive-microwave radiometry has provided a marvelous means for obtaining information about the variability of the Arctic sea ice cover and particularly about sea ice concentrations (% areal coverages) and from them ice extents and the lengths of the sea ice season. This ability derives from the sharp contrast between the microwave emissions of sea ice versus liquid water and allows routine monitoring of the vast Arctic sea ice cover, which typically varies in extent from a minimum of about 8,000,000 sq km in September to a maximum of about 15,000,000 sq km in March, the latter value being over 1.5 times the area of either the United States or Canada. The vast Arctic ice cover has many impacts, including hindering heat, mass, and y momentum exchanges between the oceans and the atmosphere, reducing the amount of solar radiation absorbed at the Earth's surface, affecting freshwater transports and ocean circulation, and serving as a vital surface for many species of polar animals. These direct impacts also lead to indirect impacts, including effects on local and perhaps global atmospheric temperatures, effects that are being examined in general circulation modeling studies, where preliminary results indicate that changes on the order of a few percent sea ice concentration can lead to temperature changes of 1 K or greater even in local areas outside of the sea ice region. Satellite passive-microwave data for November 1978 through December 1996 reveal marked regional and interannual variabilities in both the ice extents and the lengths of the sea ice season, as well as some statistically significant trends. For the north polar ice cover as a whole, maximum ice extents varied over a range of 14,700,000 - 15,900,000 km(2), while individual regions showed much greater percentage variations, e.g., with the Greenland Sea experiencing a range of 740,000 - 1,1110,000 km(2) in its yearly maximum ice coverage. Although variations from year to

  13. Polar Ice Caps: a Canary for the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Honsaker, W.; Lowell, T. V.; Sagredo, E.; Kelly, M. A.; Hall, B. L.

    2010-12-01

    Ice caps are glacier masses that are highly sensitive to climate change. Because of their hypsometry they can have a binary state. When relatively slight changes in the equilibrium line altitude (ELA) either intersect or rise above the land the ice can become established or disappear. Thus these upland ice masses have a fast response time. Here we consider a way to extract the ELA signal from independent ice caps adjacent to the Greenland Ice Sheet margin. It may be that these ice caps are sensitive trackers of climate change that also impact the ice sheet margin. One example is the Istorvet Ice Cap located in Liverpool Land, East Greenland (70.881°N, 22.156°W). The ice cap topography and the underlying bedrock surface dips to the north, with peak elevation of the current ice ranging in elevation from 1050 to 745 m.a.s.l. On the eastern side of the ice mass the outlet glaciers extending down to sea level. The western margin has several small lobes in topographic depressions, with the margin reaching down to 300 m.a.s.l. Topographic highs separate the ice cap into at least 5 main catchments, each having a pair of outlet lobes toward either side of the ice cap. Because of the regional bedrock slope each catchment has its own elevation range. Therefore, as the ELA changes it is possible for some catchments of the ice cap to experience positive mass balance while others have a negative balance. Based on weather observations we estimate the present day ELA to be ~1000 m.a.s.l, meaning mass balance is negative for the majority of the ice cap. By tracking glacier presence/absence in these different catchments, we can reconstruct small changes in the ELA. Another example is the High Ice Cap (informal name) in Milne Land (70.903°N, 25.626°W, 1080 m), East Greenland. Here at least 4 unconformities in ice layers found near the southern margin of the ice cap record changing intervals of accumulation and ablation. Therefore, this location may also be sensitive to slight

  14. Recent Changes in Arctic Glaciers, Ice Caps, and the Greenland Ice Sheet: Cold Facts About Warm Ice

    NASA Astrophysics Data System (ADS)

    Abdalati, W.

    2005-12-01

    One of the major manifestations of Arctic change can be observed in the state of balance of Arctic glaciers and ice caps and the Greenland ice sheet. These ice masses are estimated to contain nearly 3 million cubic kilometers of ice, which is more than six times greater than all the water stored in the Earth's lakes, rivers, and snow combined and is the equivalent of over 7 meters of sea level. Most of these ice masses have been shrinking in recent in years, but their mass balance is highly variable on a wide range of spatial and temporal scales. On the Greenland ice sheet most of the coastal regions have thinned substantially as melt has increased and some of its outlet glaciers have accelerated. Near the equilibrium line in West Greenland, we have seen evidence of summer acceleration that is linked to surface meltwater production, suggesting a relatively rapid response mechanism of the ice sheet change to a warming climate. At the same time, however, the vast interior regions of the Greenland ice sheet have shown little change or slight growth, as accumulation in these areas may have increased. Throughout much of the rest of the Arctic, many glaciers and ice caps have been shrinking in the past few decades, and in Canada and Alaska, the rate of ice loss seems to have accelerated during the late 1990s. These recent observations offer only a snapshot in time of the long-term behavior, but they are providing crucial information about the current state of ice mass balance and the mechanisms that control it in one of the most climatically sensitive regions on Earth. As we continue to learn more through a combination of remote sensing observations, in situ measurements and improved modeling capabilities, it is important that we coordinate and integrate these approaches effectively in order to predict future changes and their impact on sea level, freshwater discharge, and ocean circulation.

  15. Atmospheric form drag over Arctic sea ice derived from high-resolution IceBridge elevation data

    NASA Astrophysics Data System (ADS)

    Petty, A.; Tsamados, M.; Kurtz, N. T.

    2016-02-01

    Here we present a detailed analysis of atmospheric form drag over Arctic sea ice, using high resolution, three-dimensional surface elevation data from the NASA Operation IceBridge Airborne Topographic Mapper (ATM) laser altimeter. Surface features in the sea ice cover are detected using a novel feature-picking algorithm. We derive information regarding the height, spacing and orientation of unique surface features from 2009-2014 across both first-year and multiyear ice regimes. The topography results are used to explicitly calculate atmospheric form drag coefficients; utilizing existing form drag parameterizations. The atmospheric form drag coefficients show strong regional variability, mainly due to variability in ice type/age. The transition from a perennial to a seasonal ice cover therefore suggest a decrease in the atmospheric form drag coefficients over Arctic sea ice in recent decades. These results are also being used to calibrate a recent form drag parameterization scheme included in the sea ice model CICE, to improve the representation of form drag over Arctic sea ice in global climate models.

  16. Aircraft Icing Weather Data Reporting and Dissemination System

    NASA Technical Reports Server (NTRS)

    Bass, Ellen J.; Minsk, Brian; Lindholm, Tenny; Politovich, Marcia; Reehorst, Andrew (Technical Monitor)

    2002-01-01

    The long-term operational concept of this research is to develop an onboard aircraft system that assesses and reports atmospheric icing conditions automatically and in a timely manner in order to improve aviation safety and the efficiency of aircraft operations via improved real-time and forecast weather products. The idea is to use current measurement capabilities on aircraft equipped with icing sensors and in-flight data communication technologies as a reporting source. Without requiring expensive avionics upgrades, aircraft data must be processed and available for downlink. Ideally, the data from multiple aircraft can then be integrated (along with other real-time and modeled data) on the ground such that aviation-centered icing hazard metrics for volumes of airspace can be assessed. As the effect of icing on different aircraft types can vary, the information should be displayed in meaningful ways such that multiple types of users can understand the information. That is, information must be presented in a manner to allow users to understand the icing conditions with respect to individual concerns and aircraft capabilities. This research provides progress toward this operational concept by: identifying an aircraft platform capable of digitally capturing, processing, and downlinking icing data; identifying the required in situ icing data processing; investigating the requirements for routing the icing data for use by weather products; developing an icing case study in order to gain insight into major air carrier needs; developing and prototyping icing display concepts based on the National Center for Atmospheric Research's existing diagnostic and forecast experimental icing products; and conducting a usability study for the prototyped icing display concepts.

  17. Dynamics of landfast sea ice near Jangbogo Antarctic Research Station observed by SAR interferometry

    NASA Astrophysics Data System (ADS)

    Lee, H.; Han, H.

    2015-12-01

    Landfast sea ice is a type of sea ice adjacent to the coast and immobile for a certain period of time. It is important to analyze the temporal and spatial variation of landfast ice because it has significant influences on marine ecosystem and the safe operation of icebreaker vessels. However, it has been a difficult task for both remote sensing and in situ observation to discriminate landfast ice from other types of sea ice, such as pack ice, and also to understand the dynamics and internal strss-strain of fast ice. In this study, we identify landfast ice and its annual variation in Terra Nova Bay (74° 37' 4"S, 164° 13' 7"E), East Antarctica, where Jangbogo Antarctic Research Station has recently been constructed in 2014, by using Interferometric Synthetic Aperture Radar (InSAR) technology. We generated 38 interferograms having temporal baselines of 1-9 days out of 62 COSMO-SkyMed SAR images over Terra Nova Bay obtained from December 2010 to January 2012. Landfast ice began to melt in November 2011 when air temperature raised above freezing point but lasted more than two month to the end of the study period in January 2012. No meaningful relationship was found between sea ice extent and wind and current. Glacial strain (~67cm/day) is similar to tidal strain (~40 cm) so that they appear similar in one-day InSAR. As glacial stress is cumulative while tidal stress is oscillatory, InSAR images with weekly temporal baseline (7~9 days) revealed that a consistent motion of Campbell Glacier Tongue (CGT) is pushing the sea ice continuously to make interferometric fringes parallel to the glacier-sea ice contacts. Glacial interferometric fringe is parallel to the glacier-sea ice contact lines while tidal strain should be parallel to the coastlines defined by sea shore and glacier tongue. DDInSAR operation removed the consistent glacial strain leaving tidal strain alone so that the response of fast ice to tide can be used to deduce physical properties of sea ice in various

  18. SGP and TWP (Manus) Ice Cloud Vertical Velocities

    DOE Data Explorer

    Kalesse, Heike

    2013-06-27

    Daily netcdf-files of ice-cloud dynamics observed at the ARM sites at SGP (Jan1997-Dec2010) and Manus (Jul1999-Dec2010). The files include variables at different time resolution (10s, 20min, 1hr). Profiles of radar reflectivity factor (dbz), Doppler velocity (vel) as well as retrieved vertical air motion (V_air) and reflectivity-weighted particle terminal fall velocity (V_ter) are given at 10s, 20min and 1hr resolution. Retrieved V_air and V_ter follow radar notation, so positive values indicate downward motion. Lower level clouds are removed, however a multi-layer flag is included.

  19. Characterizing spatiotemporal information loss in sparse-sampling-based dynamic MRI for monitoring respiration-induced tumor motion in radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arai, Tatsuya J.; Nofiele, Joris; Yuan, Qing

    Purpose: Sparse-sampling and reconstruction techniques represent an attractive strategy to achieve faster image acquisition speeds, while maintaining adequate spatial resolution and signal-to-noise ratio in rapid magnetic resonance imaging (MRI). The authors investigate the use of one such sequence, broad-use linear acquisition speed-up technique (k-t BLAST) in monitoring tumor motion for thoracic and abdominal radiotherapy and examine the potential trade-off between increased sparsification (to increase imaging speed) and the potential loss of “true” information due to greater reliance on a priori information. Methods: Lung tumor motion trajectories in the superior–inferior direction, previously recorded from ten lung cancer patients, were replayed usingmore » a motion phantom module driven by an MRI-compatible motion platform. Eppendorf test tubes filled with water which serve as fiducial markers were placed in the phantom. The modeled rigid and deformable motions were collected in a coronal image slice using balanced fast field echo in conjunction with k-t BLAST. Root mean square (RMS) error was used as a metric of spatial accuracy as measured trajectories were compared to input data. The loss of spatial information was characterized for progressively increasing acceleration factor from 1 to 16; the resultant sampling frequency was increased approximately from 2.5 to 19 Hz when the principal direction of the motion was set along frequency encoding direction. In addition to the phantom study, respiration-induced tumor motions were captured from two patients (kidney tumor and lung tumor) at 13 Hz over 49 s to demonstrate the impact of high speed motion monitoring over multiple breathing cycles. For each subject, the authors compared the tumor centroid trajectory as well as the deformable motion during free breathing. Results: In the rigid and deformable phantom studies, the RMS error of target tracking at the acquisition speed of 19 Hz was approximately 0

  20. Characterizing spatiotemporal information loss in sparse-sampling-based dynamic MRI for monitoring respiration-induced tumor motion in radiotherapy

    PubMed Central

    Arai, Tatsuya J.; Nofiele, Joris; Madhuranthakam, Ananth J.; Yuan, Qing; Pedrosa, Ivan; Chopra, Rajiv; Sawant, Amit

    2016-01-01

    Purpose: Sparse-sampling and reconstruction techniques represent an attractive strategy to achieve faster image acquisition speeds, while maintaining adequate spatial resolution and signal-to-noise ratio in rapid magnetic resonance imaging (MRI). The authors investigate the use of one such sequence, broad-use linear acquisition speed-up technique (k-t BLAST) in monitoring tumor motion for thoracic and abdominal radiotherapy and examine the potential trade-off between increased sparsification (to increase imaging speed) and the potential loss of “true” information due to greater reliance on a priori information. Methods: Lung tumor motion trajectories in the superior–inferior direction, previously recorded from ten lung cancer patients, were replayed using a motion phantom module driven by an MRI-compatible motion platform. Eppendorf test tubes filled with water which serve as fiducial markers were placed in the phantom. The modeled rigid and deformable motions were collected in a coronal image slice using balanced fast field echo in conjunction with k-t BLAST. Root mean square (RMS) error was used as a metric of spatial accuracy as measured trajectories were compared to input data. The loss of spatial information was characterized for progressively increasing acceleration factor from 1 to 16; the resultant sampling frequency was increased approximately from 2.5 to 19 Hz when the principal direction of the motion was set along frequency encoding direction. In addition to the phantom study, respiration-induced tumor motions were captured from two patients (kidney tumor and lung tumor) at 13 Hz over 49 s to demonstrate the impact of high speed motion monitoring over multiple breathing cycles. For each subject, the authors compared the tumor centroid trajectory as well as the deformable motion during free breathing. Results: In the rigid and deformable phantom studies, the RMS error of target tracking at the acquisition speed of 19 Hz was approximately 0.3–0

  1. School of Ice: US Ice Drilling Program Made Accessible to Faculty at Minority-Serving Institutions

    NASA Astrophysics Data System (ADS)

    Davis, H. B.; Hoffman, L. T.

    2017-12-01

    The School of Ice program is designed for college faculty who teach at minority-serving institutions or historically black colleges and universities to help build their background knowledge about ice core science and climate change and gain activities and labs for transferring information to their students. In this session, you will learn about the information and activities shared with faculty and the effect of the Institute on faculty. This session will provide an overview of activities that faculty can use to engage students in ice drilling processes and results. Faculty who have attended this institute in the last four years have reported increases in their understanding of the content and how to teach it.

  2. Record low lake ice thickness and bedfast ice extent on Alaska's Arctic Coastal Plain in 2017 exemplify the value of monitoring freshwater ice to understand sea-ice forcing and predict permafrost dynamics

    NASA Astrophysics Data System (ADS)

    Arp, C. D.; Alexeev, V. A.; Bondurant, A. C.; Creighton, A.; Engram, M. J.; Jones, B. M.; Parsekian, A.

    2017-12-01

    The winter of 2016/2017 was exceptionally warm and snowy along the coast of Arctic Alaska partly due to low fall sea ice extent. Based on several decades of field measurements, we documented a new record low maximum ice thickness (MIT) for lakes on the Barrow Peninsula, averaging 1.2 m. This is in comparison to a long-term average MIT of 1.7 m stretching back to 1962 with a maximum of 2.1 m in 1970 and previous minimum of 1.3 m in 2014. The relevance of thinner lake ice in arctic coastal lowlands, where thermokarst lakes cover greater than 20% of the land area, is that permafrost below lakes with bedfast ice is typically preserved. Lakes deeper than the MIT warm and thaw sub-lake permafrost forming taliks. Remote sensing analysis using synthetic aperture radar (SAR) is a valuable tool for scaling the field observations of MIT to the entire freshwater landscape to map bedfast ice. A new, long-term time-series of late winter multi-platform SAR from 1992 to 2016 shows a large dynamic range of bedfast ice extent, 29% of lake area or 6% of the total land area over this period, and adding 2017 to this record is expected to extend this range further. Empirical models of lake mean annual bed temperature suggest that permafrost begins to thaw at depths less than 60% of MIT. Based on this information and knowledge of average lake ice growth trajectories, we suggest that future SAR analysis of lake ice should focus on mid-winter (January) to evaluate the extent of bedfast ice and corresponding zones of sub-lake permafrost thaw. Tracking changes in these areas from year to year in mid-winter may provide the best landscape-scale evaluation of changing permafrost conditions in lake-rich arctic lowlands. Because observed changes in MIT coupled with mid-winter bedfast ice extent provide much information on permafrost stability, we suggest that these measurements can serve as Essential Climate Variables (EVCs) to indicate past and future changes in lake-rich arctic regions. The

  3. Where's the Water in (Salty) Ice?

    NASA Astrophysics Data System (ADS)

    Kahan, T.; Malley, P.

    2017-12-01

    Solutes can have large effects on reactivity in ice and at ice surfaces. Freeze concentration ("the salting out effect") forms liquid regions containing high solute concentrations surrounded by relatively solute-free ice. Thermodynamics can predict the fraction of ice that is liquid for a given temperature and (pre-frozen) solute concentration, as well as the solute concentration within these liquid regions, but they do not inform on the spatial distribution of the solutes and the liquid regions within the ice. This leads to significant uncertainty in predictions of reaction kinetics in ice and at ice surfaces. We have used Raman microscopy to determine the location of liquid regions within ice and at ice surface in the presence of sodium chloride (NaCl). Under most conditions, liquid channels are observed at the ice surface and throughout the ice bulk. The fraction of the ice that is liquid, as well as the widths of these channels, increases with increasing temperature. Below the eutectic temperature (-21.1 oC), no liquid is observed. Patches of NaCl.2H2O ("hydrohalite") are observed at the ice surface under these conditions. These results will improve predictions of reaction kinetics in ice and at ice surfaces.

  4. Ice Layer Cross-Section In False Color

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    The theme for the weeks of 1/17 and 1/24 is the north polar region of Mars as seen in false color THEMIS images. Ice/frost will typically appear as bright blue in color; dust mantled ice will appear in tones of red/orange.

    This image of shows a cross sectional view of the ice layers. Note the subtle peach banding on the left side of the image. The time variation that the bands represent is not yet understood.

    Image information: VIS instrument. Latitude 83.5, Longitude 118.2 East (241.8 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  5. Skylab floating ice experiment

    NASA Technical Reports Server (NTRS)

    Campbell, W. J. (Principal Investigator); Ramseier, R. O.; Weaver, R. J.; Weeks, W. F.

    1975-01-01

    The author has identified the following significant results. Coupling of the aircraft data with the ground truth observations proved to be highly successful with interesting results being obtained with IR and SLAR passive microwave techniques, and standard photography. Of particular interest were the results of the PMIS system which operated at 10.69 GHz with both vertical and horizontal polarizations. This was the first time that dual polarized images were obtained from floating ice. In both sea and lake ice, it was possible to distinguish a wide variety of thin ice types because of their large differences in brightness temperatures. It was found that the higher brightness temperature was invariably obtained in the vertically polarized mode, and as the age of the ice increases the brightness temperature increases in both polarizations. Associated with this change in age, the difference in temperature was observed as the different polarizations decreased. It appears that the horizontally polarized data is the most sensitive to variations in ice type for both fresh water and sea ice. The study also showed the great amount of information on ice surface roughness and deformation patterns that can be obtained from X-band SLAR observations.

  6. Modal-Power-Based Haptic Motion Recognition

    NASA Astrophysics Data System (ADS)

    Kasahara, Yusuke; Shimono, Tomoyuki; Kuwahara, Hiroaki; Sato, Masataka; Ohnishi, Kouhei

    Motion recognition based on sensory information is important for providing assistance to human using robots. Several studies have been carried out on motion recognition based on image information. However, in the motion of humans contact with an object can not be evaluated precisely by image-based recognition. This is because the considering force information is very important for describing contact motion. In this paper, a modal-power-based haptic motion recognition is proposed; modal power is considered to reveal information on both position and force. Modal power is considered to be one of the defining features of human motion. A motion recognition algorithm based on linear discriminant analysis is proposed to distinguish between similar motions. Haptic information is extracted using a bilateral master-slave system. Then, the observed motion is decomposed in terms of primitive functions in a modal space. The experimental results show the effectiveness of the proposed method.

  7. Non-basal dislocations should be accounted for in simulating ice mass flow

    NASA Astrophysics Data System (ADS)

    Chauve, T.; Montagnat, M.; Piazolo, S.; Journaux, B.; Wheeler, J.; Barou, F.; Mainprice, D.; Tommasi, A.

    2017-09-01

    Prediction of ice mass flow and associated dynamics is pivotal at a time of climate change. Ice flow is dominantly accommodated by the motion of crystal defects - the dislocations. In the specific case of ice, their observation is not always accessible by means of the classical tools such as X-ray diffraction or transmission electron microscopy (TEM). Part of the dislocation population, the geometrically necessary dislocations (GNDs) can nevertheless be constrained using crystal orientation measurements via electron backscattering diffraction (EBSD) associated with appropriate analyses based on the Nye (1950) approach. The present study uses the Weighted Burgers Vectors, a reduced formulation of the Nye theory that enables the characterization of GNDs. Applied to ice, this method documents, for the first time, the presence of dislocations with non-basal [ c ] or < c + a > Burgers vectors. These [ c ] or < c + a > dislocations represent up to 35% of the GNDs observed in laboratory-deformed ice samples. Our findings offer a more complex and comprehensive picture of the key plasticity processes responsible for polycrystalline ice creep and provide better constraints on the constitutive mechanical laws implemented in ice sheet flow models used to predict the response of Earth ice masses to climate change.

  8. Ice conditions on the Chesapeake Bay as observed from LANDSAT during the winters of 1977, 1978 and 1979

    NASA Technical Reports Server (NTRS)

    Foster, J. L.

    1980-01-01

    The LANDSAT observations during the winters of 1977, 1978 and 1979, which were unusually cold in the northeastern U.S. and in the Chesapeake Bay area, were evaluated. Abnormal atmospheric circulation patterns displaced cold polar air to the south, and as a result, the Chesapeake Bay experienced much greater than normal icing conditions during these 3 years. The LANDSAT observations of the Chesapeake Bay area during these winters demonstrate the satellite's capabilities to monitor ice growth and melt, to detect ice motions, and to measure ice extent.

  9. Ice Mass Fluctuations and Earthquake Hazard

    NASA Technical Reports Server (NTRS)

    Sauber, J.

    2006-01-01

    In south central Alaska, tectonic strain rates are high in a region that includes large glaciers undergoing ice wastage over the last 100-150 years [Sauber et al., 2000; Sauber and Molnia, 2004]. In this study we focus on the region referred to as the Yakataga segment of the Pacific-North American plate boundary zone in Alaska. In this region, the Bering and Malaspina glacier ablation zones have average ice elevation decreases from 1-3 meters/year (see summary and references in Molnia, 2005). The elastic response of the solid Earth to this ice mass decrease alone would cause several mm/yr of horizontal motion and uplift rates of up to 10-12 mm/yr. In this same region observed horizontal rates of tectonic deformation range from 10 to 40 mm/yr to the north-northwest and the predicted tectonic uplift rates range from -2 mm/year near the Gulf of Alaska coast to 12mm/year further inland [Savage and Lisowski, 1988; Ma et al, 1990; Sauber et al., 1997, 2000, 2004; Elliot et al., 2005]. The large ice mass changes associated with glacial wastage and surges perturb the tectonic rate of deformation at a variety of temporal and spatial scales. The associated incremental stress change may enhance or inhibit earthquake occurrence. We report recent (seasonal to decadal) ice elevation changes derived from data from NASA's ICESat satellite laser altimeter combined with earlier DEM's as a reference surface to illustrate the characteristics of short-term ice elevation changes [Sauber et al., 2005, Muskett et al., 2005]. Since we are interested in evaluating the effect of ice changes on faulting potential, we calculated the predicted surface displacement changes and incremental stresses over a specified time interval and calculated the change in the fault stability margin using the approach given by Wu and Hasegawa [1996]. Additionally, we explored the possibility that these ice mass fluctuations altered the seismic rate of background seismicity. Although we primarily focus on

  10. Incorrect Match Detection Method for Arctic Sea-Ice Reconstruction Using Uav Images

    NASA Astrophysics Data System (ADS)

    Kim, J.-I.; Kim, H.-C.

    2018-05-01

    Shapes and surface roughness, which are considered as key indicators in understanding Arctic sea-ice, can be measured from the digital surface model (DSM) of the target area. Unmanned aerial vehicle (UAV) flying at low altitudes enables theoretically accurate DSM generation. However, the characteristics of sea-ice with textureless surface and incessant motion make image matching difficult for DSM generation. In this paper, we propose a method for effectively detecting incorrect matches before correcting a sea-ice DSM derived from UAV images. The proposed method variably adjusts the size of search window to analyze the matching results of DSM generated and distinguishes incorrect matches. Experimental results showed that the sea-ice DSM produced large errors along the textureless surfaces, and that the incorrect matches could be effectively detected by the proposed method.

  11. Snow depth of the Weddell and Bellingshausen sea ice covers from IceBridge surveys in 2010 and 2011: An examination

    NASA Astrophysics Data System (ADS)

    Kwok, R.; Maksym, T.

    2014-07-01

    We examine the snow radar data from the Weddell and Bellingshausen Seas acquired by eight IceBridge (OIB) flightlines in October of 2010 and 2011. In snow depth retrieval, the sidelobes from the stronger scattering snow-ice (s-i) interfaces could be misidentified as returns from the weaker air-snow (a-s) interfaces. In this paper, we first introduce a retrieval procedure that accounts for the structure of the radar system impulse response followed by a survey of the snow depths in the Weddell and Bellingshausen Seas. Limitations and potential biases in our approach are discussed. Differences between snow depth estimates from a repeat survey of one Weddell Sea track separated by 12 days, without accounting for variability due to ice motion, is -0.7 ± 13.6 cm. Average snow depth is thicker in coastal northwestern Weddell and thins toward Cape Norvegia, a decrease of >30 cm. In the Bellingshausen, the thickest snow is found nearshore in both Octobers and is thickest next to the Abbot Ice Shelf. Snow depth is linearly related to freeboard when freeboards are low but diverge as the freeboard increases especially in the thicker/rougher ice of the western Weddell. We find correlations of 0.71-0.84 between snow depth and surface roughness suggesting preferential accumulation over deformed ice. Retrievals also seem to be related to radar backscatter through surface roughness. Snow depths reported here, generally higher than those from in situ records, suggest dissimilarities in sample populations. Implications of these differences on Antarctic sea ice thickness are discussed.

  12. The Potsdam Parallel Ice Sheet Model (PISM-PIK) - Part 1: Model description

    NASA Astrophysics Data System (ADS)

    Winkelmann, R.; Martin, M. A.; Haseloff, M.; Albrecht, T.; Bueler, E.; Khroulev, C.; Levermann, A.

    2011-09-01

    We present the Potsdam Parallel Ice Sheet Model (PISM-PIK), developed at the Potsdam Institute for Climate Impact Research to be used for simulations of large-scale ice sheet-shelf systems. It is derived from the Parallel Ice Sheet Model (Bueler and Brown, 2009). Velocities are calculated by superposition of two shallow stress balance approximations within the entire ice covered region: the shallow ice approximation (SIA) is dominant in grounded regions and accounts for shear deformation parallel to the geoid. The plug-flow type shallow shelf approximation (SSA) dominates the velocity field in ice shelf regions and serves as a basal sliding velocity in grounded regions. Ice streams can be identified diagnostically as regions with a significant contribution of membrane stresses to the local momentum balance. All lateral boundaries in PISM-PIK are free to evolve, including the grounding line and ice fronts. Ice shelf margins in particular are modeled using Neumann boundary conditions for the SSA equations, reflecting a hydrostatic stress imbalance along the vertical calving face. The ice front position is modeled using a subgrid-scale representation of calving front motion (Albrecht et al., 2011) and a physically-motivated calving law based on horizontal spreading rates. The model is tested in experiments from the Marine Ice Sheet Model Intercomparison Project (MISMIP). A dynamic equilibrium simulation of Antarctica under present-day conditions is presented in Martin et al. (2011).

  13. Sensory Profile, Drivers of Liking, and Influence of Information on the Acceptance of Low-Calorie Synbiotic and Probiotic Chocolate Ice Cream.

    PubMed

    Peres, Juliana; Esmerino, Erick; da Silva, Alessandra Lins; Racowski, Ilana; Bolini, Helena

    2018-05-01

    The objective of this study was to evaluate the sensory profile and the influence of the information on the acceptance of the symbiotic chocolate ice cream made with sucrose and different sweeteners (aspartame, sucralose, neotame, Stevia with 60%, 85%, 95%, and 97% of rebaudioside A) through analysis of variance (ANOVA), Tukey's test, and partial least of square (PLS) regression. Quantitative descriptive analysis (QDA) was carried out by 18 assessors, who evaluated the samples in relation to the raised descriptors. Additionally, two acceptance tests (blind/informed) were performed with 120 consumers. The samples sweetened with sucralose and rebaudioside 97% presented similar profile to the control sample, thus having a better potential to replace sucrose in chocolate ice cream. The acceptance test carried out with information had higher scores for the attributes appearance, aroma, flavor, texture, and overall impression. The correlation between data from the acceptance tests and QDA showed that the descriptors "low-energy" and "natural sweetener" claims interfered negatively in the drivers of liking of chocolate ice cream. Therefore, we can conclude that some characteristics unnoticed by consumers were highlighted after providing the information about the product's characteristics. This research is important and contributes to the manufacture and development of low-calorie chocolate ice cream with functional properties, guiding, through suitable sensory and statistical tools, the application of stevia and other artificial sweeteners in products with reduction or total absence of sucrose and highlighting the impact of the labeling of these products on consumer perception. © 2018 Institute of Food Technologists®.

  14. IceProd 2 Usage Experience

    NASA Astrophysics Data System (ADS)

    Delventhal, D.; Schultz, D.; Diaz Velez, J. C.

    2017-10-01

    IceProd is a data processing and management framework developed by the IceCube Neutrino Observatory for processing of Monte Carlo simulations, detector data, and data driven analysis. It runs as a separate layer on top of grid and batch systems. This is accomplished by a set of daemons which process job workflow, maintaining configuration and status information on the job before, during, and after processing. IceProd can also manage complex workflow DAGs across distributed computing grids in order to optimize usage of resources. IceProd has recently been rewritten to increase its scaling capabilities, handle user analysis workflows together with simulation production, and facilitate the integration with 3rd party scheduling tools. IceProd 2, the second generation of IceProd, has been running in production for several months now. We share our experience setting up the system and things we’ve learned along the way.

  15. Interplay of defect doping and Bernal-Fowler rules: A simulation study of the dynamics on ice lattices

    NASA Astrophysics Data System (ADS)

    Köster, K. W.; Klocke, T.; Wieland, F.; Böhmer, R.

    2017-10-01

    Protonic defects on ice lattices induced by doping with acids such as HCl and HF or bases such as KOH can facilitate order-disorder transitions. In laboratory experiments KOH doping is efficient in promoting the ordering transition from hexagonal ice I to ice XI, but it is ineffective for other known ice phases, for which HCl can trigger hydrogen ordering. Aiming at understanding these differences, random-walk simulations of the defect diffusion are performed on two- and three-dimensional ice lattices under the constraints imposed by the Bernal-Fowler ice rules. Effective defect diffusion coefficients are calculated for a range of dopants, concentrations, and ice phases. The interaction of different defects, incorporated by different dopants, is investigated to clarify the particular motion-enhancing role played by complementary defect pairs.

  16. Ice swimming - 'Ice Mile' and '1 km Ice event'.

    PubMed

    Knechtle, Beat; Rosemann, Thomas; Rüst, Christoph A

    2015-01-01

    Ice swimming for 1 mile and 1 km is a new discipline in open-water swimming since 2009. This study examined female and male performances in swimming 1 mile ('Ice Mile') and 1 km ('1 km Ice event') in water of 5 °C or colder between 2009 and 2015 with the hypothesis that women would be faster than men. Between 2009 and 2015, 113 men and 38 women completed one 'Ice Mile' and 26 men and 13 completed one '1 km Ice event' in water colder than +5 °C following the rules of International Ice Swimming Association (IISA). Differences in performance between women and men were determined. Sex difference (%) was calculated using the equation ([time for women] - [time for men]/[time for men] × 100). For 'Ice Mile', a mixed-effects regression model with interaction analyses was used to investigate the influence of sex and environmental conditions on swimming speed. The association between water temperature and swimming speed was assessed using Pearson correlation analyses. For 'Ice Mile' and '1 km Ice event', the best men were faster than the best women. In 'Ice Mile', calendar year, number of attempts, water temperature and wind chill showed no association with swimming speed for both women and men. For both women and men, water temperature was not correlated to swimming speed in both 'Ice Mile' and '1 km Ice event'. In water colder than 5 °C, men were faster than women in 'Ice Mile' and '1 km Ice event'. Water temperature showed no correlation to swimming speed.

  17. IceProd 2: A Next Generation Data Analysis Framework for the IceCube Neutrino Observatory

    NASA Astrophysics Data System (ADS)

    Schultz, D.

    2015-12-01

    We describe the overall structure and new features of the second generation of IceProd, a data processing and management framework. IceProd was developed by the IceCube Neutrino Observatory for processing of Monte Carlo simulations, detector data, and analysis levels. It runs as a separate layer on top of grid and batch systems. This is accomplished by a set of daemons which process job workflow, maintaining configuration and status information on the job before, during, and after processing. IceProd can also manage complex workflow DAGs across distributed computing grids in order to optimize usage of resources. IceProd is designed to be very light-weight; it runs as a python application fully in user space and can be set up easily. For the initial completion of this second version of IceProd, improvements have been made to increase security, reliability, scalability, and ease of use.

  18. Further Evaluation of Scaling Methods for Rotorcraft Icing

    NASA Technical Reports Server (NTRS)

    Tsao, Jen-Ching; Kreeger, Richard E.

    2012-01-01

    The paper will present experimental results from two recent icing tests in the NASA Glenn Icing Research Tunnel (IRT). The first test, conducted in February 2009, was to evaluate the current recommended scaling methods for fixed wing on representative rotor airfoils at fixed angle of attack. For this test, scaling was based on the modified Ruff method with scale velocity determined by constant Weber number and water film Weber number. Models were un-swept NACA 0012 wing sections. The reference model had a chord of 91.4 cm and scale model had a chord of 35.6 cm. Reference tests were conducted with velocity of 100 kt (52 m/s), droplet medium volume diameter (MVD) 195 m, and stagnation-point freezing fractions of 0.3 and 0.5 at angle of attack of 5deg and 7deg . It was shown that good ice shape scaling was achieved with constant Weber number for NACA 0012 airfoils with angle of attack up to 7deg . The second test, completed in May 2010, was primarily focused on obtaining transient and steady-state iced aerodynamics, ice accretion and shedding, and thermal icing validation data from an oscillating airfoil section over some selected ranges of icing conditions and blade assembly operational configurations. The model used was a 38.1-cm chord Sikorsky SC2110 airfoil section installed on an airfoil test apparatus with oscillating capability in the IRT. For two test conditions, size and condition scaling were performed. It was shown that good ice shape scaling was achieved for SC2110 airfoil at dynamic pitching motion. The data obtained will be applicable for future main rotor blade and tail rotor blade applications.

  19. Diminishing sea ice in the western Arctic Ocean

    USGS Publications Warehouse

    Stone, R.S.; Belchansky, G.I.; Drobot, Sheldon; Douglas, David C.; Levinson, D.H.; Waple, A.M.

    2004-01-01

    Since the advent of satellite passive microwave radiometry (1978), variations in sea ice extent and concentration have been carefully monitored from space. An estimated 7.4% decrease in sea ice extent has occurred in the last 25 yr (Johannessen et al. 2004), with recent record minima (e.g., Maslanik et al. 1999; Serreze et al. 2003) accounting for much of the decline. Comparisons between the time series of Arctic sea ice melt dynamics and snowmelt dates at the NOAA–CMDL Barrow Observatory (BRW) reveal intriguing correlations.Melt-onset dates over sea ice (Drobot and Anderson 2001) were cross correlated with the melt-date time series from BRW, and a prominent region of high correlation between snowmelt onset over sea ice and the BRW record of melt dates was approximately aligned with the climatological center of the Beaufort Sea Anticyclone (BSA). The BSA induces anticyclonic ice motion in the region, effectively forcing the Beaufort gyre. A weak gyre caused by a breakdown of the BSA diminishes transport of multiyear ice into this region (Drobot and Maslanik 2003). Similarly, the annual snow cycle at BRW varies with the position and intensity of the BSA (Stone et al. 2002, their Fig. 6). Thus, variations in the BSA appear to have far-reaching effects on the annual accumulation and subsequent melt of snow over a large region of the western Arctic.A dramatic increase in melt season duration (Belchansky et al. 2004) was also observed within the same region of high correlation between onset of melt over the ice pack and snowmelt at BRW (Fig. 5.7). By inference, this suggests linkages between factors that modulate the annual cycle of snow on land and processes that influence melting of snow and ice in the western Arctic Ocean.

  20. Glacier seismology: eavesdropping on the ice-bed interface

    NASA Astrophysics Data System (ADS)

    Walter, F.; Röösli, C.

    2015-12-01

    Glacier sliding plays a central role in ice dynamics. A number of remote sensing and deep drilling initiatives have therefore focused on the ice-bed interface. Although these techniques have provided valuable insights into bed properties, they do not supply theorists with data of sufficient temporal and spatial resolution to rigorously test mathematical sliding laws. As an alternative, passive seismic techniques have gained popularity in glacier monitoring. Analysis of glacier-related seismic sources ('icequakes') has become a useful technique to study inaccessible regions of the cryosphere, including the ice-bed interface. Seismic monitoring networks on the polar ice sheets have shown that ice sliding is not only a smooth process involving viscous deformation and regelation of basal ice layers. Instead, ice streams exhibit sudden slip episodes over their beds and intermittent phases of partial or complete stagnation. Here we discuss new and recently published discoveries of basal seismic sources beneath various glacial bodies. We revisit basal seismicity of hard-bedded Alpine glaciers, which is not the result of pure stick-slip motion. Sudden changes in seismicity suggest that the local configuration of the subglacial drainage system undergoes changes on sub daily time scales. Accordingly, such observations place constraints on basal resistance and sliding of hard-bedded glaciers. In contrast, certain clusters of stick-slip dislocations associated with micro seismicity beneath the Greenland ice sheet undergo diurnal variations in magnitudes and inter event times. This is best explained with a soft till bed, which hosts the shear dislocations and whose strength varies in response to changes in subglacial water pressure. These results suggest that analysis of basal icequakes is well suited for characterizing glacier and ice sheet beds. Future studies should address the relative importance between "smooth" and seismogenic sliding in different glacial environments.

  1. Ice Bridge Antarctic Sea Ice

    NASA Image and Video Library

    2009-10-21

    Sea ice is seen out the window of NASA's DC-8 research aircraft as it flies 2,000 feet above the Bellingshausen Sea in West Antarctica on Wednesday, Oct., 21, 2009. This was the fourth science flight of NASA’s Operation Ice Bridge airborne Earth science mission to study Antarctic ice sheets, sea ice, and ice shelves. Photo Credit: (NASA/Jane Peterson)

  2. Synthesis of User Needs for Arctic Sea Ice Predictions

    NASA Astrophysics Data System (ADS)

    Wiggins, H. V.; Turner-Bogren, E. J.; Sheffield Guy, L.

    2017-12-01

    Forecasting Arctic sea ice on sub-seasonal to seasonal scales in a changing Arctic is of interest to a diverse range of stakeholders. However, sea ice forecasting is still challenging due to high variability in weather and ocean conditions and limits to prediction capabilities; the science needs for observations and modeling are extensive. At a time of challenged science funding, one way to prioritize sea ice prediction efforts is to examine the information needs of various stakeholder groups. This poster will present a summary and synthesis of existing surveys, reports, and other literature that examines user needs for sea ice predictions. The synthesis will include lessons learned from the Sea Ice Prediction Network (a collaborative, multi-agency-funded project focused on seasonal Arctic sea ice predictions), the Sea Ice for Walrus Outlook (a resource for Alaska Native subsistence hunters and coastal communities, that provides reports on weather and sea ice conditions), and other efforts. The poster will specifically compare the scales and variables of sea ice forecasts currently available, as compared to what information is requested by various user groups.

  3. Human face detection using motion and color information

    NASA Astrophysics Data System (ADS)

    Kim, Yang-Gyun; Bang, Man-Won; Park, Soon-Young; Choi, Kyoung-Ho; Hwang, Jeong-Hyun

    2008-02-01

    In this paper, we present a hardware implementation of a face detector for surveillance applications. To come up with a computationally cheap and fast algorithm with minimal memory requirement, motion and skin color information are fused successfully. More specifically, a newly appeared object is extracted first by comparing average Hue and Saturation values of background image and a current image. Then, the result of skin color filtering of the current image is combined with the result of a newly appeared object. Finally, labeling is performed to locate a true face region. The proposed system is implemented on Altera Cyclone2 using Quartus II 6.1 and ModelSim 6.1. For hardware description language (HDL), Verilog-HDL is used.

  4. Ice Clouds in Color IR

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Released August 9, 2004 This image shows two representations of the same infra-red image in the Elysium region of Mars. On the left is a grayscale image showing surface temperature, and on the right is a false-color composite made from 3 individual THEMIS bands. The false-color image is colorized using a technique called decorrelation stretch (DCS), which emphasizes the spectral differences between the bands to highlight compositional variations.

    The light blue area in the center of this image is a very nice example of a water ice cloud. Water ice is frequently present in the Martian atmosphere as a thin haze. Clouds such as this one can be difficult to identify in a temperature image, but are easy to spot in the DCS images. In this case, the water ice is relatively confined and concentrated which may be due to the topography of the Elysium volcanic construct.

    Image information: IR instrument. Latitude 23.2, Longitude 150.1 East (209.9 West). 100 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed

  5. Altered transfer of visual motion information to parietal association cortex in untreated first-episode psychosis: Implications for pursuit eye tracking

    PubMed Central

    Lencer, Rebekka; Keedy, Sarah K.; Reilly, James L.; McDonough, Bruce E.; Harris, Margret S. H.; Sprenger, Andreas; Sweeney, John A.

    2011-01-01

    Visual motion processing and its use for pursuit eye movement control represent a valuable model for studying the use of sensory input for action planning. In psychotic disorders, alterations of visual motion perception have been suggested to cause pursuit eye tracking deficits. We evaluated this system in functional neuroimaging studies of untreated first-episode schizophrenia (N=24), psychotic bipolar disorder patients (N=13) and healthy controls (N=20). During a passive visual motion processing task, both patient groups showed reduced activation in the posterior parietal projection fields of motion-sensitive extrastriate area V5, but not in V5 itself. This suggests reduced bottom-up transfer of visual motion information from extrastriate cortex to perceptual systems in parietal association cortex. During active pursuit, activation was enhanced in anterior intraparietal sulcus and insula in both patient groups, and in dorsolateral prefrontal cortex and dorsomedial thalamus in schizophrenia patients. This may result from increased demands on sensorimotor systems for pursuit control due to the limited availability of perceptual motion information about target speed and tracking error. Visual motion information transfer deficits to higher -level association cortex may contribute to well-established pursuit tracking abnormalities, and perhaps to a wider array of alterations in perception and action planning in psychotic disorders. PMID:21873035

  6. Polynyas and Ice Production Evolution in the Ross Sea (PIPERS)

    NASA Astrophysics Data System (ADS)

    Ackley, S. F.

    2017-12-01

    One focus of the PIPERS cruise into the Ross Sea ice cover during April-June 2017 was the Terra Nova Bay (TNB) polynya where joint measurements of air-ice-ocean wave interaction were conducted over twelve days. In Terra Nova Bay, measurements were made in three katabatic wind events each with sustained winds over 35 ms-1 and air temperatures below -15C. Near shore, intense wave fields with wave amplitudes of over 2m and 7-9 sec periods built and large amounts of frazil ice crystals grew. The frazil ice gathered initially into short and narrow plumes that eventually were added laterally to create longer and wider streaks or bands. Breaking waves within these wider streaks were dampened which appeared to enhance the development of pancake ice. Eventually, the open water areas between the streaks sealed off, developing a complete ice cover of 100 percent concentration (80-90 percent pancakes, 20-10 percent frazil) over a wide front (30km). The pancakes continued to grow in diameter and thickness as waves alternately contracted and expanded the ice cover, with the thicker larger floes further diminishing the wave field and lateral motion between pancakes until the initial pancake ice growth ceased. The equilibrium thickness of the ice was 20-30cm in the pancake ice. While the waves had died off however, katabatic wind velocities were sustained and resulted in a wide area of concentrated, rafted, pancake ice that was rapidly advected downstream until the end of the katabatic event. High resolution TerraSar-X radar satellite imagery showed the length of the ice area produced in one single event extended over 300km or ten times the length of the open water area during one polynya event. The TNB polynya is therefore an "ice factory" where frazil ice is manufactured into pancake ice floes that are then pushed out of the assembly area and advected, rafted (and occasionally piled up into "dragon skin" ice), until the katabatic wind dies off at the coastal source.

  7. Ice Crystal Icing Research at NASA

    NASA Technical Reports Server (NTRS)

    Flegel, Ashlie B.

    2017-01-01

    Ice crystals found at high altitude near convective clouds are known to cause jet engine power-loss events. These events occur due to ice crystals entering a propulsion system's core flowpath and accreting ice resulting in events such as uncommanded loss of thrust (rollback), engine stall, surge, and damage due to ice shedding. As part of a community with a growing need to understand the underlying physics of ice crystal icing, NASA has been performing experimental efforts aimed at providing datasets that can be used to generate models to predict the ice accretion inside current and future engine designs. Fundamental icing physics studies on particle impacts, accretion on a single airfoil, and ice accretions observed during a rollback event inside a full-scale engine in the Propulsion Systems Laboratory are summarized. Low fidelity code development using the results from the engine tests which identify key parameters for ice accretion risk and the development of high fidelity codes are described. These activities have been conducted internal to NASA and through collaboration efforts with industry, academia, and other government agencies. The details of the research activities and progress made to date in addressing ice crystal icing research challenges are discussed.

  8. Ice Crystal Icing Research at NASA

    NASA Technical Reports Server (NTRS)

    Flegel, Ashlie B.

    2017-01-01

    Ice crystals found at high altitude near convective clouds are known to cause jet engine power-loss events. These events occur due to ice crystals entering a propulsion systems core flowpath and accreting ice resulting in events such as uncommanded loss of thrust (rollback), engine stall, surge, and damage due to ice shedding. As part of a community with a growing need to understand the underlying physics of ice crystal icing, NASA has been performing experimental efforts aimed at providing datasets that can be used to generate models to predict the ice accretion inside current and future engine designs. Fundamental icing physics studies on particle impacts, accretion on a single airfoil, and ice accretions observed during a rollback event inside a full-scale engine in the Propulsion Systems Laboratory are summarized. Low fidelity code development using the results from the engine tests which identify key parameters for ice accretion risk and the development of high fidelity codes are described. These activities have been conducted internal to NASA and through collaboration efforts with industry, academia, and other government agencies. The details of the research activities and progress made to date in addressing ice crystal icing research challenges are discussed.

  9. Homogeneous ice nucleation and supercooled liquid water in orographic wave clouds

    NASA Technical Reports Server (NTRS)

    Heymsfield, Andrew J.; Miloshevich, Larry M.

    1993-01-01

    This study investigates ice nucleation mechanisms in cold lenticular wave clouds, a cloud type characterized by quasi-steady-state air motions and microphysical properties. It is concluded that homogeneous ice nucleation is responsible for the ice production in these clouds at temperatures below about -33 C. The lack of ice nucleation observed above -33 C indicates a dearth of ice-forming nuclei, and hence heterogeneous ice nucleation, in these clouds. Aircraft measurements in the temperature range -31 to -41 C show the following complement of simultaneous and abrupt changes in cloud properties that indicate a transition from the liquid phase to ice: disappearance of liquid water; decrease in relative humidity from near water saturation to ice saturation; increase in mean particle size; change in particle concentration; and change in temperature due to the release of latent heat. A numerical model of cloud particle growth and homogeneous ice nucleation is used to aid in interpretation of our in situ measurements. The abrupt changes in observed cloud properties compare favorably, both qualitatively and quantitatively, with results from the homogeneous ice nucleation model. It is shown that the homogeneous ice nucleation rates from the measurements are consistent with the temperature-dependent rates employed by the model (within a factor of 100, corresponding to about 1 C in temperature) in the temperature range -35 deg to -38 C. Given the theoretical basis of the modeled rates, it may be reasonable to apply them throughout the -30 to -50 C temperature range considered by the theory.

  10. Configuration of Pluto's Volatile Ices

    NASA Astrophysics Data System (ADS)

    Grundy, William M.; Binzel, R. P.; Cook, J. C.; Cruikshank, D. P.; Dalle Ore, C. M.; Earle, A. M.; Ennico, K.; Jennings, D. E.; Howett, C. J. A.; Linscott, I. R.; Lunsford, A. W.; Olkin, C. B.; Parker, A. H.; Parker, J. Wm; Protopapa, S.; Reuter, D. C.; Singer, K. N.; Spencer, J. R.; Stern, S. A.; Tsang, C. C. C.; Verbiscer, A. J.; Weaver, H. A.; Young, L. A.; Berry, K.; Buie, M. W.; Stansberry, J. A.

    2015-11-01

    We report on near-infrared remote sensing by New Horizons' Ralph instrument (Reuter et al. 2008, Space Sci. Rev. 140, 129-154) of Pluto's N2, CO, and CH4 ices. These especially volatile ices are mobile even at Pluto's cryogenic surface temperatures. Sunlight reflected from these ices becomes imprinted with their characteristic spectral absorption bands. The detailed appearance of these absorption features depends on many aspects of local composition, thermodynamic state, and texture. Multiple-scattering radiative transfer models are used to retrieve quantitative information about these properties and to map how they vary across Pluto's surface. Using parameter maps derived from New Horizons observations, we investigate the striking regional differences in the abundances and scattering properties of Pluto's volatile ices. Comparing these spatial patterns with the underlying geology provides valuable constraints on processes actively modifying the planet's surface, over a variety of spatial scales ranging from global latitudinal patterns to more regional and local processes within and around the feature informally known as Sputnik Planum. This work was supported by the NASA New Horizons Project.

  11. Slush Fund: Modeling the Multiphase Physics of Oceanic Ices

    NASA Astrophysics Data System (ADS)

    Buffo, J.; Schmidt, B. E.

    2016-12-01

    melting events will be discussed for terrestrial ice. The impact of fluid motion within the mushy layer on nutrient transport and habitability will be discussed. Results from the model's application to icy moon environments will be presented, highlighting ice shell composition, thickness, thermodynamics, and role in potential habitability.

  12. Ice sheet margins and ice shelves

    NASA Technical Reports Server (NTRS)

    Thomas, R. H.

    1984-01-01

    The effect of climate warming on the size of ice sheet margins in polar regions is considered. Particular attention is given to the possibility of a rapid response to warming on the order of tens to hundreds of years. It is found that the early response of the polar regions to climate warming would be an increase in the area of summer melt on the ice sheets and ice shelves. For sufficiently large warming (5-10C) the delayed effects would include the breakup of the ice shelves by an increase in ice drainage rates, particularly from the ice sheets. On the basis of published data for periodic changes in the thickness and melting rates of the marine ice sheets and fjord glaciers in Greenland and Antarctica, it is shown that the rate of retreat (or advance) of an ice sheet is primarily determined by: bedrock topography; the basal conditions of the grounded ice sheet; and the ice shelf condition downstream of the grounding line. A program of satellite and ground measurements to monitor the state of ice sheet equilibrium is recommended.

  13. The Potsdam Parallel Ice Sheet Model (PISM-PIK) - Part 1: Model description

    NASA Astrophysics Data System (ADS)

    Winkelmann, R.; Martin, M. A.; Haseloff, M.; Albrecht, T.; Bueler, E.; Khroulev, C.; Levermann, A.

    2010-08-01

    We present the Potsdam Parallel Ice Sheet Model (PISM-PIK), developed at the Potsdam Institute for Climate Impact Research to be used for simulations of large-scale ice sheet-shelf systems. It is derived from the Parallel Ice Sheet Model (Bueler and Brown, 2009). Velocities are calculated by superposition of two shallow stress balance approximations within the entire ice covered region: the shallow ice approximation (SIA) is dominant in grounded regions and accounts for shear deformation parallel to the geoid. The plug-flow type shallow shelf approximation (SSA) dominates the velocity field in ice shelf regions and serves as a basal sliding velocity in grounded regions. Ice streams naturally emerge through this approach and can be identified diagnostically as regions with a significant contribution of membrane stresses to the local momentum balance. All lateral boundaries in PISM-PIK are free to evolve, including the grounding line and ice fronts. Ice shelf margins in particular are modeled using Neumann boundary conditions for the SSA equations, reflecting a hydrostatic stress imbalance along the vertical calving face. The ice front position is modeled using a subgrid scale representation of calving front motion (Albrecht et al., 2010) and a physically motivated dynamic calving law based on horizontal spreading rates. The model is validated within the Marine Ice Sheet Model Intercomparison Project (MISMIP) and is used for a dynamic equilibrium simulation of Antarctica under present-day conditions in the second part of this paper (Martin et al., 2010).

  14. In situ cosmogenic radiocarbon production and 2-D ice flow line modeling for an Antarctic blue ice area

    NASA Astrophysics Data System (ADS)

    Buizert, Christo; Petrenko, Vasilii V.; Kavanaugh, Jeffrey L.; Cuffey, Kurt M.; Lifton, Nathaniel A.; Brook, Edward J.; Severinghaus, Jeffrey P.

    2012-06-01

    Radiocarbon measurements at ice margin sites and blue ice areas can potentially be used for ice dating, ablation rate estimates and paleoclimatic reconstructions. Part of the measured signal comes from in situ cosmogenic 14C production in ice, and this component must be well understood before useful information can be extracted from 14C data. We combine cosmic ray scaling and production estimates with a two-dimensional ice flow line model to study cosmogenic 14C production at Taylor Glacier, Antarctica. We find (1) that 14C production through thermal neutron capture by nitrogen in air bubbles is negligible; (2) that including ice flow patterns caused by basal topography can lead to a surface 14C activity that differs by up to 25% from the activity calculated using an ablation-only approximation, which is used in all prior work; and (3) that at high ablation margin sites, solar modulation of the cosmic ray flux may change the strength of the dominant spallogenic production by up to 10%. As part of this effort we model two-dimensional ice flow along the central flow line of Taylor Glacier. We present two methods for parameterizing vertical strain rates, and assess which method is more reliable for Taylor Glacier. Finally, we present a sensitivity study from which we conclude that uncertainties in published cosmogenic production rates are the largest source of potential error. The results presented here can inform ongoing and future 14C and ice flow studies at ice margin sites, including important paleoclimatic applications such as the reconstruction of paleoatmospheric 14C content of methane.

  15. Ice and AIS: ship speed data and sea ice forecasts in the Baltic Sea

    NASA Astrophysics Data System (ADS)

    Löptien, U.; Axell, L.

    2014-12-01

    The Baltic Sea is a seasonally ice-covered marginal sea located in a densely populated area in northern Europe. Severe sea ice conditions have the potential to hinder the intense ship traffic considerably. Thus, sea ice fore- and nowcasts are regularly provided by the national weather services. Typically, the forecast comprises several ice properties that are distributed as prognostic variables, but their actual usefulness is difficult to measure, and the ship captains must determine their relative importance and relevance for optimal ship speed and safety ad hoc. The present study provides a more objective approach by comparing the ship speeds, obtained by the automatic identification system (AIS), with the respective forecasted ice conditions. We find that, despite an unavoidable random component, this information is useful to constrain and rate fore- and nowcasts. More precisely, 62-67% of ship speed variations can be explained by the forecasted ice properties when fitting a mixed-effect model. This statistical fit is based on a test region in the Bothnian Sea during the severe winter 2011 and employs 15 to 25 min averages of ship speed.

  16. Ice and AIS: ship speed data and sea ice forecasts in the Baltic Sea

    NASA Astrophysics Data System (ADS)

    Löptien, U.; Axell, L.

    2014-07-01

    The Baltic Sea is a seasonally ice covered marginal sea located in a densely populated area in northern Europe. Severe sea ice conditions have the potential to hinder the intense ship traffic considerably. Thus, sea ice fore- and nowcasts are regularly provided by the national weather services. Typically, several ice properties are allocated, but their actual usefulness is difficult to measure and the ship captains must determine their relative importance and relevance for optimal ship speed and safety ad hoc. The present study provides a more objective approach by comparing the ship speeds, obtained by the Automatic Identification System (AIS), with the respective forecasted ice conditions. We find that, despite an unavoidable random component, this information is useful to constrain and rate fore- and nowcasts. More precisely, 62-67% of ship speed variations can be explained by the forecasted ice properties when fitting a mixed effect model. This statistical fit is based on a test region in the Bothnian Bay during the severe winter 2011 and employes 15 to 25 min averages of ship speed.

  17. Chilean Tsunami Rocks the Ross Ice Shelf

    NASA Astrophysics Data System (ADS)

    Bromirski, P. D.; Gerstoft, P.; Chen, Z.; Stephen, R. A.; Diez, A.; Arcas, D.; Wiens, D.; Aster, R. C.; Nyblade, A.

    2016-12-01

    The response of the Ross Ice Shelf (RIS) to the September 16, 2015 9.3 Mb Chilean earthquake tsunami (> 75 s period) and infragravity (IG) waves (50 - 300 s period) were recorded by a broadband seismic array deployed on the RIS from November 2014 to November 2015. The array included two linear transects, one approximately orthogonal to the shelf front extending 430 km southward toward the grounding zone, and an east-west transect spanning the RIS roughly parallel to the front about 100 km south of the ice edge (https://scripps.ucsd.edu/centers/iceshelfvibes/). Signals generated by both the tsunami and IG waves were recorded at all stations on floating ice, with little ocean wave-induced energy reaching stations on grounded ice. Cross-correlation and dispersion curve analyses indicate that tsunami and IG wave-generated signals propagate across the RIS at gravity wave speeds (about 70 m/s), consistent with coupled water-ice flexural-gravity waves propagating through the ice shelf from the north. Gravity wave excitation at periods > 100 s is continuously observed during the austral winter, providing mechanical excitation of the RIS throughout the year. Horizontal displacements are typically about 3 times larger than vertical displacements, producing extensional motions that could facilitate expansion of existing fractures. The vertical and horizontal spectra in the IG band attenuate exponentially with distance from the front. Tsunami model data are used to assess variability of excitation of the RIS by long period gravity waves. Substantial variability across the RIS roughly parallel to the front is observed, likely resulting from a combination of gravity wave amplitude variability along the front, signal attenuation, incident angle of the wave forcing at the front that depends on wave generation location as well as bathymetry under and north of the shelf, and water layer and ice shelf thickness and properties.

  18. Sea ice in the Baltic Sea - revisiting BASIS ice, a historical data set covering the period 1960/1961-1978/1979

    NASA Astrophysics Data System (ADS)

    Löptien, U.; Dietze, H.

    2014-12-01

    The Baltic Sea is a seasonally ice-covered, marginal sea in central northern Europe. It is an essential waterway connecting highly industrialised countries. Because ship traffic is intermittently hindered by sea ice, the local weather services have been monitoring sea ice conditions for decades. In the present study we revisit a historical monitoring data set, covering the winters 1960/1961 to 1978/1979. This data set, dubbed Data Bank for Baltic Sea Ice and Sea Surface Temperatures (BASIS) ice, is based on hand-drawn maps that were collected and then digitised in 1981 in a joint project of the Finnish Institute of Marine Research (today the Finnish Meteorological Institute (FMI)) and the Swedish Meteorological and Hydrological Institute (SMHI). BASIS ice was designed for storage on punch cards and all ice information is encoded by five digits. This makes the data hard to access. Here we present a post-processed product based on the original five-digit code. Specifically, we convert to standard ice quantities (including information on ice types), which we distribute in the current and free Network Common Data Format (NetCDF). Our post-processed data set will help to assess numerical ice models and provide easy-to-access unique historical reference material for sea ice in the Baltic Sea. In addition we provide statistics showcasing the data quality. The website http://www.baltic-ocean.org hosts the post-processed data and the conversion code. The data are also archived at the Data Publisher for Earth & Environmental Science, PANGAEA (doi:10.1594/PANGAEA.832353).

  19. A common and optimized age scale for Antarctic ice cores

    NASA Astrophysics Data System (ADS)

    Parrenin, F.; Veres, D.; Landais, A.; Bazin, L.; Lemieux-Dudon, B.; Toye Mahamadou Kele, H.; Wolff, E.; Martinerie, P.

    2012-04-01

    Dating ice cores is a complex problem because 1) there is a age shift between the gas bubbles and the surrounding ice 2) there are many different ice cores which can be synchronized with various proxies and 3) there are many methods to date the ice and the gas bubbles, each with advantages and drawbacks. These methods fall into the following categories: 1) Ice flow (for the ice) and firn densification modelling (for the gas bubbles); 2) Comparison of ice core proxies with insolation variations (so-called orbital tuning methods); 3) Comparison of ice core proxies with other well dated archives; 4) Identification of well-dated horizons, such as tephra layers or geomagnetic anomalies. Recently, an new dating tool has been developped (DATICE, Lemieux-Dudon et al., 2010), to take into account all the different dating information into account and produce a common and optimal chronology for ice cores with estimated confidence intervals. In this talk we will review the different dating information for Antarctic ice cores and show how the DATICE tool can be applied.

  20. Future Antarctic bed topography and its implications for ice sheet dynamics

    NASA Astrophysics Data System (ADS)

    Adhikari, S.; Ivins, E. R.; Larour, E.; Seroussi, H.; Morlighem, M.; Nowicki, S.

    2014-06-01

    The Antarctic bedrock is evolving as the solid Earth responds to the past and ongoing evolution of the ice sheet. A recently improved ice loading history suggests that the Antarctic Ice Sheet (AIS) has generally been losing its mass since the Last Glacial Maximum. In a sustained warming climate, the AIS is predicted to retreat at a greater pace, primarily via melting beneath the ice shelves. We employ the glacial isostatic adjustment (GIA) capability of the Ice Sheet System Model (ISSM) to combine these past and future ice loadings and provide the new solid Earth computations for the AIS. We find that past loading is relatively less important than future loading for the evolution of the future bed topography. Our computations predict that the West Antarctic Ice Sheet (WAIS) may uplift by a few meters and a few tens of meters at years AD 2100 and 2500, respectively, and that the East Antarctic Ice Sheet is likely to remain unchanged or subside minimally except around the Amery Ice Shelf. The Amundsen Sea Sector in particular is predicted to rise at the greatest rate; one hundred years of ice evolution in this region, for example, predicts that the coastline of Pine Island Bay will approach roughly 45 mm yr-1 in viscoelastic vertical motion. Of particular importance, we systematically demonstrate that the effect of a pervasive and large GIA uplift in the WAIS is generally associated with the flattening of reverse bed slope, reduction of local sea depth, and thus the extension of grounding line (GL) towards the continental shelf. Using the 3-D higher-order ice flow capability of ISSM, such a migration of GL is shown to inhibit the ice flow. This negative feedback between the ice sheet and the solid Earth may promote stability in marine portions of the ice sheet in the future.

  1. Future Antarctic bed topography and its implications for ice sheet dynamics

    NASA Astrophysics Data System (ADS)

    Adhikari, S.; Ivins, E.; Larour, E.; Seroussi, H.; Morlighem, M.; Nowicki, S.

    2014-01-01

    The Antarctic bedrock is evolving as the solid Earth responds to the past and ongoing evolution of the ice sheet. A~recently improved ice loading history suggests that the Antarctic Ice Sheet (AIS) is generally losing its mass since the last glacial maximum (LGM). In a sustained warming climate, the AIS is predicted to retreat at a greater pace primarily via melting beneath the ice shelves. We employ the glacial isostatic adjustment (GIA) capability of the Ice Sheet System Model (ISSM) to combine these past and future ice loadings and provide the new solid Earth computations for the AIS. We find that the past loading is relatively less important than future loading on the evolution of the future bed topography. Our computations predict that the West Antarctic Ice Sheet (WAIS) may uplift by a few meters and a few tens of meters at years 2100 and 2500 AD, respectively, and that the East Antarctic Ice Sheet (EAIS) is likely to remain unchanged or subside minimally except around the Amery Ice Shelf. The Amundsen Sea Sector in particular is predicted to rise at the greatest rate; one hundred years of ice evolution in this region, for example, predicts that the coastline of Pine Island Bay approaches roughly 45 mm yr-1 in viscoelastic vertical motion. Of particular importance, we systematically demonstrate that the effect of a pervasive and large GIA uplift in the WAIS is associated with the flattening of reverse bed, reduction of local sea depth, and thus the extension of grounding line (GL) towards the continental shelf. Using the 3-D higher-order ice flow capability of ISSM, such a migration of GL is shown to inhibit the ice flow. This negative feedback between the ice sheet and the solid Earth may promote the stability to marine portions of the ice sheet in future.

  2. Future Antarctic Bed Topography and Its Implications for Ice Sheet Dynamics

    NASA Technical Reports Server (NTRS)

    Adhikari, Surendra; Ivins, Erik R.; Larour, Eric Y.; Seroussi, Helene L.; Morlighem, Mathieu; Nowicki, S.

    2014-01-01

    The Antarctic bedrock is evolving as the solid Earth responds to the past and ongoing evolution of the ice sheet. A recently improved ice loading history suggests that the Antarctic Ice Sheet (AIS) has generally been losing its mass since the Last Glacial Maximum. In a sustained warming climate, the AIS is predicted to retreat at a greater pace, primarily via melting beneath the ice shelves.We employ the glacial isostatic adjustment (GIA) capability of the Ice Sheet System Model (ISSM) to combine these past and future ice loadings and provide the new solid Earth computations for the AIS.We find that past loading is relatively less important than future loading for the evolution of the future bed topography. Our computations predict that the West Antarctic Ice Sheet (WAIS) may uplift by a few meters and a few tens of meters at years AD 2100 and 2500, respectively, and that the East Antarctic Ice Sheet is likely to remain unchanged or subside minimally except around the Amery Ice Shelf. The Amundsen Sea Sector in particular is predicted to rise at the greatest rate; one hundred years of ice evolution in this region, for example, predicts that the coastline of Pine Island Bay will approach roughly 45mmyr-1 in viscoelastic vertical motion. Of particular importance, we systematically demonstrate that the effect of a pervasive and large GIA uplift in the WAIS is generally associated with the flattening of reverse bed slope, reduction of local sea depth, and thus the extension of grounding line (GL) towards the continental shelf. Using the 3-D higher-order ice flow capability of ISSM, such a migration of GL is shown to inhibit the ice flow. This negative feedback between the ice sheet and the solid Earth may promote stability in marine portions of the ice sheet in the future.

  3. Seasonal Changes of Arctic Sea Ice Physical Properties Observed During N-ICE2015: An Overview

    NASA Astrophysics Data System (ADS)

    Gerland, S.; Spreen, G.; Granskog, M. A.; Divine, D.; Ehn, J. K.; Eltoft, T.; Gallet, J. C.; Haapala, J. J.; Hudson, S. R.; Hughes, N. E.; Itkin, P.; King, J.; Krumpen, T.; Kustov, V. Y.; Liston, G. E.; Mundy, C. J.; Nicolaus, M.; Pavlov, A.; Polashenski, C.; Provost, C.; Richter-Menge, J.; Rösel, A.; Sennechael, N.; Shestov, A.; Taskjelle, T.; Wilkinson, J.; Steen, H.

    2015-12-01

    Arctic sea ice is changing, and for improving the understanding of the cryosphere, data is needed to describe the status and processes controlling current seasonal sea ice growth, change and decay. We present preliminary results from in-situ observations on sea ice in the Arctic Basin north of Svalbard from January to June 2015. Over that time, the Norwegian research vessel «Lance» was moored to in total four ice floes, drifting with the sea ice and allowing an international group of scientists to conduct detailed research. Each drift lasted until the ship reached the marginal ice zone and ice started to break up, before moving further north and starting the next drift. The ship stayed within the area approximately 80°-83° N and 5°-25° E. While the expedition covered measurements in the atmosphere, the snow and sea ice system, and in the ocean, as well as biological studies, in this presentation we focus on physics of snow and sea ice. Different ice types could be investigated: young ice in refrozen leads, first year ice, and old ice. Snow surveys included regular snow pits with standardized measurements of physical properties and sampling. Snow and ice thickness were measured at stake fields, along transects with electromagnetics, and in drillholes. For quantifying ice physical properties and texture, ice cores were obtained regularly and analyzed. Optical properties of snow and ice were measured both with fixed installed radiometers, and from mobile systems, a sledge and an ROV. For six weeks, the surface topography was scanned with a ground LIDAR system. Spatial scales of surveys ranged from spot measurements to regional surveys from helicopter (ice thickness, photography) during two months of the expedition, and by means of an array of autonomous buoys in the region. Other regional information was obtained from SAR satellite imagery and from satellite based radar altimetry. The analysis of the data collected has started, and first results will be

  4. Rotation of melting ice disks due to melt fluid flow.

    PubMed

    Dorbolo, S; Adami, N; Dubois, C; Caps, H; Vandewalle, N; Darbois-Texier, B

    2016-03-01

    We report experiments concerning the melting of ice disks (85 mm in diameter and 14 mm in height) at the surface of a thermalized water bath. During the melting, the ice disks undergo translational and rotational motions. In particular, the disks rotate. The rotation speed has been found to increase with the bath temperature. We investigated the flow under the bottom face of the ice disks by a particle image velocimetry technique. We find that the flow goes downwards and also rotates horizontally, so that a vertical vortex is generated under the ice disk. The proposed mechanism is the following. In the vicinity of the bottom face of the disk, the water eventually reaches the temperature of 4 °C for which the water density is maximum. The 4 °C water sinks and generates a downwards plume. The observed vertical vorticity results from the flow in the plume. Finally, by viscous entrainment, the horizontal rotation of the flow induces the solid rotation of the ice block. This mechanism seems generic: any vertical flow that generates a vortex will induce the rotation of a floating object.

  5. E-tracers: A New Technique for Wireless Sensing Under Ice Sheets

    NASA Astrophysics Data System (ADS)

    Burrow, S.; Wadham, J. L.; Salter, M.; Barnes, R.

    2009-12-01

    A significant hurdle to the understanding of ice sheet basal hydrology and its coupling with ice motion is the difficulty in making in-situ measurements along a flow path. While dye tracing techniques may be used in small glaciers to determine transit times of surface melt water through the sub-glacial system, they provide no information on in situ conditions (e.g. pressure) and are ineffective at ice-sheet scale where dilution is high. The use of tethered sensor packages is complicated by the long lengths (~100’s m) and torturous path of the moulins and conduits within ice sheets. Recent attempts to pass solid objects (rubber ducks) and other sensor packages through glacial moulins have confirmed the difficultly in deploying sensors into the sub glacial environment. Here, we report the first successful deployment and recovery of compact, electronic units to moulins up to 7 km from the margin of a large land-terminating Greenland outlet. The technique uses RF (Radio Frequency) location to create an electronic tracer (an ‘e-tracer’) enabling a data-logging sensor package to be located in the pro-glacial flood plain once it has passed through the ice sheet. A number of individual packages are used in each deployment mitigating for the risk that some may become stuck within the moulin or lodge in an inaccessible part of the floodplain. In preliminary tests on the Leverett glacier in West Greenland during August 2009 we have demonstrated that this technique can be used to locate and retrieve dummy sensor packages: 50% and 20% of the dummy sensor packages introduced to moulins at 1 and 7 km from the ice sheet terminus respectively, emerged in the sub-glacial stream. It was possible to effectively detect the e-tracer units (which broadcast on 151MHz with 10mW of power) over a horizontal range of up to 5km across the pro-glacial floodplain and locate them to a high accuracy, allowing visual recognition and manual recovery. These performance statistics give this

  6. A regional-scale estimation of ice wedge ice volumes in the Canadian High Arctic

    NASA Astrophysics Data System (ADS)

    Templeton, M.; Pollard, W. H.; Grand'Maison, C. B.

    2016-12-01

    Ice wedges are both prominent and environmentally vulnerable features in continuous permafrost environments. As the world's Arctic regions begin to warm, concern over the potential effects of ice wedge melt out has become an immediate issue, receiving much attention in the permafrost literature. In this study we estimate the volume of ice wedge ice for large areas in the Canadian High Arctic through the use of high resolution satellite imagery and the improved capabilities of Geographic Information Systems (GIS). The methodology used for this study is similar to that of one performed in Siberia and Alaska by Ulrich et al, in 2014. Utilizing Ulrich's technique, this study detected ice wedge polygons from satellite imagery using ArcGIS. The average width and depth of these ice wedges were obtained from a combination of field data and long-term field studies for the same location. The assumptions used in the analysis of ice wedge volume have been tested, including trough width being representative of ice wedge width, and ice wedge ice content (Pollard and French 1980). This study used specific field sites located near Eureka on Ellesmere Island (N80°01', W85°43') and at Expedition Fiord on Axel Heiberg Island (N79°23', W90°59'). The preliminary results indicate that the methodology used by Ulrich et al, 2014 is transferrable to the Canadian High Arctic, and that ice wedge volumes range between 3-10% of the upper part of permafrost. These findings are similar to previous studies and their importance is made all the more evident by the dynamic nature of ice wedges where it could be argued that they are a key driver of thermokarst terrain. The ubiquitous nature of ice wedges across arctic terrain highlights the importance and the need to improve our understanding of ice wedge dynamics, as subsidence from ice wedge melt-out could lead to large scale landscape change.

  7. MODIS Snow and Ice Products from the NSIDC DAAC

    NASA Technical Reports Server (NTRS)

    Scharfen, Greg R.; Hall, Dorothy K.; Riggs, George A.

    1997-01-01

    The National Snow and Ice Data Center (NSIDC) Distributed Active Archive Center (DAAC) provides data and information on snow and ice processes, especially pertaining to interactions among snow, ice, atmosphere and ocean, in support of research on global change detection and model validation, and provides general data and information services to cryospheric and polar processes research community. The NSIDC DAAC is an integral part of the multi-agency-funded support for snow and ice data management services at NSIDC. The Moderate Resolution Imaging Spectroradiometer (MODIS) will be flown on the first Earth Observation System (EOS) platform (AM-1) in 1998. The MODIS Instrument Science Team is developing geophysical products from data collected by the MODIS instrument, including snow and ice products which will be archived and distributed by NSIDC DAAC. The MODIS snow and ice mapping algorithms will generate global snow, lake ice, and sea ice cover products on a daily basis. These products will augment the existing record of satellite-derived snow cover and sea ice products that began about 30 years ago. The characteristics of these products, their utility, and comparisons to other data set are discussed. Current developments and issues are summarized.

  8. The Last Arctic Sea Ice Refuge

    NASA Astrophysics Data System (ADS)

    Pfirman, S. L.; Tremblay, B.; Newton, R.; Fowler, C.

    2010-12-01

    Summer sea ice may persist along the northern flank of Canada and Greenland for decades longer than the rest of the Arctic, raising the possibility of a naturally formed refugium for ice-associated species. Observations and models indicate that some ice in this region forms locally, while some is transported to the area by winds and ocean currents. Depending on future changes in melt patterns and sea ice transport rates, both the central Arctic and Siberian shelf seas may be sources of ice to the region. An international system of monitoring and management of the sea ice refuge, along with the ice source regions, has the potential to maintain viable habitat for ice-associated species, including polar bears, for decades into the future. Issues to consider in developing a strategy include: + the likely duration and extent of summer sea ice in this region based on observations, models and paleoenvironmental information + the extent and characteristics of the “ice shed” contributing sea ice to the refuge, including its dynamics, physical and biological characteristics as well as potential for contamination from local or long-range sources + likely assemblages of ice-associated species and their habitats + potential stressors such as transportation, tourism, resource extraction, contamination + policy, governance, and development issues including management strategies that could maintain the viability of the refuge.

  9. A geophone wireless sensor network for investigating glacier stick-slip motion

    NASA Astrophysics Data System (ADS)

    Martinez, Kirk; Hart, Jane K.; Basford, Philip J.; Bragg, Graeme M.; Ward, Tyler; Young, David S.

    2017-08-01

    We have developed an innovative passive borehole geophone system, as part of a wireless environmental sensor network to investigate glacier stick-slip motion. The new geophone nodes use an ARM Cortex-M3 processor with a low power design capable of running on battery power while embedded in the ice. Only data from seismic events was stored, held temporarily on a micro-SD card until they were retrieved by systems on the glacier surface which are connected to the internet. The sampling rates, detection and filtering levels were determined from a field trial using a standard commercial passive seismic system. The new system was installed on the Skalafellsjökull glacier in Iceland and provided encouraging results. The results showed that there was a relationship between surface melt water production and seismic event (ice quakes), and these occurred on a pattern related to the glacier surface melt-water controlled velocity changes (stick-slip motion). Three types of seismic events were identified, which were interpreted to reflect a pattern of till deformation (Type A), basal sliding (Type B) and hydraulic transience (Type C) associated with stick-slip motion.

  10. Water Ice on Pluto

    NASA Image and Video Library

    2015-10-16

    The Ralph instrument on NASA's New Horizons spacecraft detected water ice on Pluto's surface, picking up on the ice's near-infrared spectral characteristics. (See featured image from Oct. 8, 2015.) The middle panel shows a region west of Pluto's "heart" feature -- which the mission team calls Tombaugh Regio -- about 280 miles (450 kilometers) across. It combines visible imagery from Ralph's Multispectral Visible Imaging Camera (MVIC) with infrared spectroscopy from the Linear Etalon Imaging Spectral Array (LEISA). Areas with the strongest water ice spectral signature are highlighted in blue. Major outcrops of water ice occur in regions informally called Viking Terra, along Virgil Fossa west of Elliot crater, and in Baré Montes. Numerous smaller outcrops are associated with impact craters and valleys between mountains. In the lower left panel, LEISA spectra are shown for two regions indicated by cyan and magenta boxes. The white curve is a water ice model spectrum, showing similar features to the cyan spectrum. The magenta spectrum is dominated by methane ice absorptions. The lower right panel shows an MVIC enhanced color view of the region in the white box, with MVIC's blue, red and near-infrared filters displayed in blue, green and red channels, respectively. The regions showing the strongest water ice signature are associated with terrains that are actually a lighter shade of red. http://photojournal.jpl.nasa.gov/catalog/PIA20030

  11. Future Antarctic bed topography and its implications for ice sheet dynamics

    NASA Astrophysics Data System (ADS)

    Adhikari, Surendra; Ivins, Erik; Larour, Eric; Seroussi, Helene; Morlighem, Mathieu; Nowicki, Sophie

    2014-05-01

    A recently improved ice loading history suggests that the Antarctic Ice Sheet (AIS) has been generally losing its mass since the last glacial maximum. In a sustained warming climate, the AIS is predicted to retreat at a greater pace primarily via melting beneath the ice shelves. We employ the glacial isostatic adjustment (GIA) capability of the Ice Sheet System Model (ISSM) to combine these past and future ice loadings and provide the new solid Earth computations for the AIS. We find that the past loading is relatively less important than future loading on the evolution of the future bed topography. Our computations predict that the West Antarctic Ice Sheet (WAIS) may uplift by a few meters and a few tens of meters at years 2100 and 2500 AD, respectively, and that the East Antarctic Ice Sheet (EAIS) is likely to remain unchanged or subside minimally except around the Amery Ice Shelf. The Amundsen Sea Sector of WAIS in particular is predicted to rise at the greatest rate; one hundred years of ice evolution in this region, for example, predicts that the coastline of Pine Island Bay approaches roughly 45 mm/yr in viscoelastic vertical motion. Of particular importance, we systematically demonstrate that the effect of a pervasive and large GIA uplift in the WAIS is associated with the flattening of reverse bed, reduction of local sea depth, and thus the extension of grounding line (GL) towards the continental shelf. Using the 3-D higher-order ice flow capability of ISSM, such a migration of GL is shown to inhibit the ice flow. This negative feedback between the ice sheet and the solid Earth may promote the stability to marine portions of the ice sheet in the future.

  12. Ice stream activity scaled to ice sheet volume during Laurentide Ice Sheet deglaciation.

    PubMed

    Stokes, C R; Margold, M; Clark, C D; Tarasov, L

    2016-02-18

    The contribution of the Greenland and West Antarctic ice sheets to sea level has increased in recent decades, largely owing to the thinning and retreat of outlet glaciers and ice streams. This dynamic loss is a serious concern, with some modelling studies suggesting that the collapse of a major ice sheet could be imminent or potentially underway in West Antarctica, but others predicting a more limited response. A major problem is that observations used to initialize and calibrate models typically span only a few decades, and, at the ice-sheet scale, it is unclear how the entire drainage network of ice streams evolves over longer timescales. This represents one of the largest sources of uncertainty when predicting the contributions of ice sheets to sea-level rise. A key question is whether ice streams might increase and sustain rates of mass loss over centuries or millennia, beyond those expected for a given ocean-climate forcing. Here we reconstruct the activity of 117 ice streams that operated at various times during deglaciation of the Laurentide Ice Sheet (from about 22,000 to 7,000 years ago) and show that as they activated and deactivated in different locations, their overall number decreased, they occupied a progressively smaller percentage of the ice sheet perimeter and their total discharge decreased. The underlying geology and topography clearly influenced ice stream activity, but--at the ice-sheet scale--their drainage network adjusted and was linked to changes in ice sheet volume. It is unclear whether these findings can be directly translated to modern ice sheets. However, contrary to the view that sees ice streams as unstable entities that can accelerate ice-sheet deglaciation, we conclude that ice streams exerted progressively less influence on ice sheet mass balance during the retreat of the Laurentide Ice Sheet.

  13. Online sea ice data platform: www.seaiceportal.de

    NASA Astrophysics Data System (ADS)

    Nicolaus, Marcel; Asseng, Jölund; Bartsch, Annekathrin; Bräuer, Benny; Fritzsch, Bernadette; Grosfeld, Klaus; Hendricks, Stefan; Hiller, Wolfgang; Heygster, Georg; Krumpen, Thomas; Melsheimer, Christian; Ricker, Robert; Treffeisen, Renate; Weigelt, Marietta; Nicolaus, Anja; Lemke, Peter

    2016-04-01

    There is an increasing public interest in sea ice information from both Polar Regions, which requires up-to-date background information and data sets at different levels for various target groups. In order to serve this interest and need, seaiceportal.de (originally: meereisportal.de) was developed as a comprehensive German knowledge platform on sea ice and its snow cover in the Arctic and Antarctic. It was launched in April 2013. Since then, the content and selection of data sets increased and the data portal received increasing attention, also from the international science community. Meanwhile, we are providing near-real time and archive data of many key parameters of sea ice and its snow cover. The data sets result from measurements acquired by various platforms as well as numerical simulations. Satellite observations of sea ice concentration, freeboard, thickness and drift are available as gridded data sets. Sea ice and snow temperatures and thickness as well as atmospheric parameters are available from autonomous platforms (buoys). Additional ship observations, ice station measurements, and mooring time series are compiled as data collections over the last decade. In parallel, we are continuously extending our meta-data and uncertainty information for all data sets. In addition to the data portal, seaiceportal.de provides general comprehensive background information on sea ice and snow as well as expert statements on recent observations and developments. This content is mostly in German in order to complement the various existing international sites for the German speaking public. We will present the portal, its content and function, but we are also asking for direct user feedback.

  14. Envelope Protection for In-Flight Ice Contamination

    NASA Technical Reports Server (NTRS)

    Gingras, David R.; Barnhart, Billy P.; Ranaudo, Richard J.; Ratvasky, Thomas P.; Morelli, Eugene A.

    2010-01-01

    Fatal loss-of-control (LOC) accidents have been directly related to in-flight airframe icing. The prototype system presented in this paper directly addresses the need for real-time onboard envelope protection in icing conditions. The combinations of a-priori information and realtime aerodynamic estimations are shown to provide sufficient input for determining safe limits of the flight envelope during in-flight icing encounters. The Icing Contamination Envelope Protection (ICEPro) system has been designed and implemented to identify degradations in airplane performance and flying qualities resulting from ice contamination and provide safe flight-envelope cues to the pilot. Components of ICEPro are described and results from preliminary tests are presented.

  15. Help, I don’t know which sea ice algorithm to use?!: Developing an authoritative sea ice climate data record

    NASA Astrophysics Data System (ADS)

    Meier, W.; Stroeve, J.; Duerr, R. E.; Fetterer, F. M.

    2009-12-01

    The declining Arctic sea ice is one of the most dramatic indicators of climate change and is being recognized as a key factor in future climate impacts on biology, human activities, and global climate change. As such, the audience for sea ice data is expanding well beyond the sea ice community. The most comprehensive sea ice data are from a series of satellite-borne passive microwave sensors. They provide a near-complete daily timeseries of sea ice concentration and extent since late-1978. However, there are many complicating issues in using such data, particularly for novice users. First, there is not one single, definitive algorithm, but several. And even for a given algorithm, different processing and quality-control methods may be used, depending on the source. Second, for all algorithms, there are uncertainties in any retrieved value. In general, these limitations are well-known: low spatial-resolution results in an imprecise ice edge determination and lack of small-scale detail (e.g., lead detection) within the ice pack; surface melt depresses concentration values during summer; thin ice is underestimated in some algorithms; some algorithms are sensitive to physical surface temperature; other surface features (e.g., snow) can influence retrieved data. While general error estimates are available for concentration values, currently the products do not carry grid-cell level or even granule level data quality information. Finally, metadata and data provenance information are limited, both of which are essential for future reprocessing. Here we describe the progress to date toward development of sea ice concentration products and outline the future steps needed to complete a sea ice climate data record.

  16. IceBridge team members

    NASA Image and Video Library

    2013-11-13

    These IceBridge team members aboard a huge U.S. Air Force C-17 transport aircraft are ready to step out into the cold Antarctic air. The C-17 aircraft that fly to Antarctica are operated by the U.S. Air Force's 62nd and 446th Airlift Wings based at Joint Base Lewis-McChord near Seattle, Wash. Credit: NASA/Goddard/Michael Studinger NASA's Operation IceBridge is an airborne science mission to study Earth's polar ice. For more information about IceBridge, visit: www.nasa.gov/icebridge NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  17. Ice2sea - Estimating the future contribution of continental ice to sea-level rise - project summary

    NASA Astrophysics Data System (ADS)

    Ford, Elaina; Vaughan, David

    2013-04-01

    Ice2sea brings together the EU's scientific and operational expertise from 24 leading institutions across Europe and beyond. Improved projections of the contribution of ice to sea-level rise produced by this major European-funded programme will inform the fifth IPCC report (due in September 2013). In 2007, the fourth Intergovernmental Panel on Climate Change (IPCC) report highlighted ice-sheets as the most significant remaining uncertainty in projections of sea-level rise. Understanding about the crucial ice-sheet effects was "too limited to assess their likelihood or provide a best estimate of an upper bound for sea-level rise". Ice2sea was created to address these issues - the project started in 2009 and is now drawing to a close, with our final symposium in May 2013, and final publicity activities around the IPCC report release in autumn 2013. Here we present a summary of the overall and key outputs of the ice2sea project.

  18. Sea ice in the Baltic Sea - revisiting BASIS ice, a~historical data set covering the period 1960/1961-1978/1979

    NASA Astrophysics Data System (ADS)

    Löptien, U.; Dietze, H.

    2014-06-01

    The Baltic Sea is a seasonally ice-covered, marginal sea, situated in central northern Europe. It is an essential waterway connecting highly industrialised countries. Because ship traffic is intermittently hindered by sea ice, the local weather services have been monitoring sea ice conditions for decades. In the present study we revisit a historical monitoring data set, covering the winters 1960/1961. This data set, dubbed Data Bank for Baltic Sea Ice and Sea Surface Temperatures (BASIS) ice, is based on hand-drawn maps that were collected and then digitised 1981 in a joint project of the Finnish Institute of Marine Research (today Finish Meteorological Institute (FMI)) and the Swedish Meteorological and Hydrological Institute (SMHI). BASIS ice was designed for storage on punch cards and all ice information is encoded by five digits. This makes the data hard to access. Here we present a post-processed product based on the original five-digit code. Specifically, we convert to standard ice quantities (including information on ice types), which we distribute in the current and free Network Common Data Format (NetCDF). Our post-processed data set will help to assess numerical ice models and provide easy-to-access unique historical reference material for sea ice in the Baltic Sea. In addition we provide statistics showcasing the data quality. The website www.baltic-ocean.org hosts the post-prossed data and the conversion code. The data are also archived at the Data Publisher for Earth & Environmental Science PANGEA (doi:10.1594/PANGEA.832353).

  19. Tsunami and infragravity waves impacting Antarctic ice shelves

    NASA Astrophysics Data System (ADS)

    Bromirski, P. D.; Chen, Z.; Stephen, R. A.; Gerstoft, P.; Arcas, D.; Diez, A.; Aster, R. C.; Wiens, D. A.; Nyblade, A.

    2017-07-01

    The responses of the Ross Ice Shelf (RIS) to the 16 September 2015 8.3 (Mw) Chilean earthquake tsunami (>75 s period) and to oceanic infragravity (IG) waves (50-300 s period) were recorded by a broadband seismic array deployed on the RIS from November 2014 to November 2016. Here we show that tsunami and IG-generated signals within the RIS propagate at gravity wave speeds (˜70 m/s) as water-ice coupled flexural-gravity waves. IG band signals show measureable attenuation away from the shelf front. The response of the RIS to Chilean tsunami arrivals is compared with modeled tsunami forcing to assess ice shelf flexural-gravity wave excitation by very long period (VLP; >300 s) gravity waves. Displacements across the RIS are affected by gravity wave incident direction, bathymetry under and north of the shelf, and water layer and ice shelf thicknesses. Horizontal displacements are typically about 10 times larger than vertical displacements, producing dynamical extensional motions that may facilitate expansion of existing fractures. VLP excitation is continuously observed throughout the year, with horizontal displacements highest during the austral winter with amplitudes exceeding 20 cm. Because VLP flexural-gravity waves exhibit no discernable attenuation, this energy must propagate to the grounding zone. Both IG and VLP band flexural-gravity waves excite mechanical perturbations of the RIS that likely promote tabular iceberg calving, consequently affecting ice shelf evolution. Understanding these ocean-excited mechanical interactions is important to determine their effect on ice shelf stability to reduce uncertainty in the magnitude and rate of global sea level rise.

  20. Ice streams of the Late Wisconsin Cordilleran Ice Sheet in western North America

    NASA Astrophysics Data System (ADS)

    Eyles, Nick; Arbelaez Moreno, Lina; Sookhan, Shane

    2018-01-01

    The Late Wisconsin Cordilleran Ice Sheet (CIS) of western North America is thought to have reached its maximum extent (∼2.5 × 106 km2) as late at c. 14.5 ka. Most (80%) of the ice sheet's bed consists of high mountains but its 'core zone' sited on plateaux of the Intermontane Belt of British Columbia and coterminous parts of the USA, shows broad swaths of subglacially-streamlined rock and sediment. Broad scale mapping from new digital imagery data identifies three subglacial bed types: 1) 'hard beds' of variably streamlined bedrock; 2) drumlinized 'soft beds' of deformation till reworked from antecedent sediment, and 3) 'mixed beds' of variably-streamlined bedrock protruding through drumlinized sediment. Drumlins on soft beds appear to be erosional features cut into till and antecedent sediments, and identify the catchment areas of paleo ice streams expressed downglacier as flow sets of megascale glacial lineations (MSGLs). 'Grooved' and 'cloned' drumlins appear to record the transition from drumlins to MSGLs. The location of paleo ice streams reflects topographic funneling of ice from plateau surfaces through outlet valleys and a soft bed that sustained fast flow; rock-cut MSGLs are also present locally on the floors of outlet valleys. CIS disintegrated in <1000 years shortly after c. 13.0 ka releasing very large volumes of meltwater and sediment to the Pacific coast. Abrupt deglaciation may reflect unsustainable calving of marine-based ice streams along the glacio-isostatically depressed coast; large deep 'fiord lakes' in the ice sheet's interior may have played an analogous role. Mapping of the broad scale distribution of bed types across the Cordilleran Ice Sheet provides key information for paleoglaciological modelling and also for understanding the beds of modern ice masses such as the Greenland Ice Sheet which is of a comparable topographic setting.

  1. On the brine drainage and algal uptake controls of the nutrient supply to the sea ice interior

    NASA Astrophysics Data System (ADS)

    Vancoppenolle, M.; Goosse, H.; de Montety, A.; Fichefet, T.; Tison, J.-L.

    2009-04-01

    Sea ice ecosystems are important components of the biogeochemical cycles (including carbon) and hence have a potential impact on climate. They are characterized by large stocks of micro-algae. Those algae (mostly diatoms) live in liquid inclusions of saline brine, which are encased within the solid ice matrix and require sustained nutrient supply to grow. In this study, we investigate the interactions between nutrients, brine motion and algal growth, using a one-dimensional (1D) sea ice model. The model includes (i) a classical formulation for snow and ice thermodynamics with explicit, reformulated brine physics and (ii) an idealized sea ice biological component, characterized by one single nutrient, namely dissolved silica (DSi), which stocks are reduced by a prescribed primary production. DSi is considered as a passive tracer dissolved within brine following fluid motion. The brine flow regime (advective, diffusive or turbulent) is computed as a function of environmental ice conditions. In winter, a Rayleigh number proposed by Notz and Worster (2008) is used to differentiate diffusion and convection. Ice salinity and DSi concentrations within the ice are solutions of 1D advection-diffusion equations over the variable volume brine network domain. The model is configured for a typical year of seasonal Weddell Sea ice. The simulated vertical salinity and tracer profiles as well as ice-ocean salt fluxes realistically agree with observations. Complex bio-physical interactions are simulated by the model. Analysis highlights the role of convection in the lowermost 5-10 cm of ice (gravity drainage), mixing highly saline, nutrient-depleted brine with comparatively fresh, nutrient-rich seawater. Hence, gravity drainage rejects salt to the ocean and provides nutrients to the ice interior. In turn, primary production and brine convection act synergetically to form a nutrient pump, which enhances the net ocean-to-ice DSi flux by 20-115%, compared to an abiotic situation. The

  2. Sea ice thermohaline dynamics and biogeochemistry in the Arctic Ocean: Empirical and model results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duarte, Pedro; Meyer, Amelie; Olsen, Lasse M.

    Here, large changes in the sea ice regime of the Arctic Ocean have occurred over the last decades justifying the development of models to forecast sea ice physics and biogeochemistry. The main goal of this study is to evaluate the performance of the Los Alamos Sea Ice Model (CICE) to simulate physical and biogeochemical properties at time scales of a few weeks and to use the model to analyze ice algal bloom dynamics in different types of ice. Ocean and atmospheric forcing data and observations of the evolution of the sea ice properties collected from 18 April to 4 Junemore » 2015, during the Norwegian young sea ICE expedition, were used to test the CICE model. Our results show the following: (i) model performance is reasonable for sea ice thickness and bulk salinity; good for vertically resolved temperature, vertically averaged Chl a concentrations, and standing stocks; and poor for vertically resolved Chl a concentrations. (ii) Improving current knowledge about nutrient exchanges, ice algal recruitment, and motion is critical to improve sea ice biogeochemical modeling. (iii) Ice algae may bloom despite some degree of basal melting. (iv) Ice algal motility driven by gradients in limiting factors is a plausible mechanism to explain their vertical distribution. (v) Different ice algal bloom and net primary production (NPP) patterns were identified in the ice types studied, suggesting that ice algal maximal growth rates will increase, while sea ice vertically integrated NPP and biomass will decrease as a result of the predictable increase in the area covered by refrozen leads in the Arctic Ocean.« less

  3. Sea ice thermohaline dynamics and biogeochemistry in the Arctic Ocean: Empirical and model results

    DOE PAGES

    Duarte, Pedro; Meyer, Amelie; Olsen, Lasse M.; ...

    2017-06-08

    Here, large changes in the sea ice regime of the Arctic Ocean have occurred over the last decades justifying the development of models to forecast sea ice physics and biogeochemistry. The main goal of this study is to evaluate the performance of the Los Alamos Sea Ice Model (CICE) to simulate physical and biogeochemical properties at time scales of a few weeks and to use the model to analyze ice algal bloom dynamics in different types of ice. Ocean and atmospheric forcing data and observations of the evolution of the sea ice properties collected from 18 April to 4 Junemore » 2015, during the Norwegian young sea ICE expedition, were used to test the CICE model. Our results show the following: (i) model performance is reasonable for sea ice thickness and bulk salinity; good for vertically resolved temperature, vertically averaged Chl a concentrations, and standing stocks; and poor for vertically resolved Chl a concentrations. (ii) Improving current knowledge about nutrient exchanges, ice algal recruitment, and motion is critical to improve sea ice biogeochemical modeling. (iii) Ice algae may bloom despite some degree of basal melting. (iv) Ice algal motility driven by gradients in limiting factors is a plausible mechanism to explain their vertical distribution. (v) Different ice algal bloom and net primary production (NPP) patterns were identified in the ice types studied, suggesting that ice algal maximal growth rates will increase, while sea ice vertically integrated NPP and biomass will decrease as a result of the predictable increase in the area covered by refrozen leads in the Arctic Ocean.« less

  4. Sea ice thermohaline dynamics and biogeochemistry in the Arctic Ocean: Empirical and model results

    NASA Astrophysics Data System (ADS)

    Duarte, Pedro; Meyer, Amelie; Olsen, Lasse M.; Kauko, Hanna M.; Assmy, Philipp; Rösel, Anja; Itkin, Polona; Hudson, Stephen R.; Granskog, Mats A.; Gerland, Sebastian; Sundfjord, Arild; Steen, Harald; Hop, Haakon; Cohen, Lana; Peterson, Algot K.; Jeffery, Nicole; Elliott, Scott M.; Hunke, Elizabeth C.; Turner, Adrian K.

    2017-07-01

    Large changes in the sea ice regime of the Arctic Ocean have occurred over the last decades justifying the development of models to forecast sea ice physics and biogeochemistry. The main goal of this study is to evaluate the performance of the Los Alamos Sea Ice Model (CICE) to simulate physical and biogeochemical properties at time scales of a few weeks and to use the model to analyze ice algal bloom dynamics in different types of ice. Ocean and atmospheric forcing data and observations of the evolution of the sea ice properties collected from 18 April to 4 June 2015, during the Norwegian young sea ICE expedition, were used to test the CICE model. Our results show the following: (i) model performance is reasonable for sea ice thickness and bulk salinity; good for vertically resolved temperature, vertically averaged Chl a concentrations, and standing stocks; and poor for vertically resolved Chl a concentrations. (ii) Improving current knowledge about nutrient exchanges, ice algal recruitment, and motion is critical to improve sea ice biogeochemical modeling. (iii) Ice algae may bloom despite some degree of basal melting. (iv) Ice algal motility driven by gradients in limiting factors is a plausible mechanism to explain their vertical distribution. (v) Different ice algal bloom and net primary production (NPP) patterns were identified in the ice types studied, suggesting that ice algal maximal growth rates will increase, while sea ice vertically integrated NPP and biomass will decrease as a result of the predictable increase in the area covered by refrozen leads in the Arctic Ocean.

  5. Variability of Arctic Sea Ice as Determined from Satellite Observations

    NASA Technical Reports Server (NTRS)

    Parkinson, Claire L.

    1999-01-01

    The compiled, quality-controlled satellite multichannel passive-microwave record of polar sea ice now spans over 18 years, from November 1978 through December 1996, and is revealing considerable information about the Arctic sea ice cover and its variability. The information includes data on ice concentrations (percent areal coverages of ice), ice extents, ice melt, ice velocities, the seasonal cycle of the ice, the interannual variability of the ice, the frequency of ice coverage, and the length of the sea ice season. The data reveal marked regional and interannual variabilities, as well as some statistically significant trends. For the north polar ice cover as a whole, maximum ice extents varied over a range of 14,700,000 - 15,900,000 sq km, while individual regions experienced much greater percent variations, for instance, with the Greenland Sea having a range of 740,000 - 1,110,000 sq km in its yearly maximum ice coverage. In spite of the large variations from year to year and region to region, overall the Arctic ice extents showed a statistically significant, 2.80% / decade negative trend over the 18.2-year period. Ice season lengths, which vary from only a few weeks near the ice margins to the full year in the large region of perennial ice coverage, also experienced interannual variability, along with spatially coherent overall trends. Linear least squares trends show the sea ice season to have lengthened in much of the Bering Sea, Baffin Bay, the Davis Strait, and the Labrador Sea, but to have shortened over a much larger area, including the Sea of Okhotsk, the Greenland Sea, the Barents Sea, and the southeastern Arctic.

  6. Preliminary Survey of Icing Conditions Measured During Routine Transcontinental Airline Operation

    NASA Technical Reports Server (NTRS)

    Perkins, Porter J.

    1952-01-01

    Icing data collected on routine operations by four DC-4-type aircraft equipped with NACA pressure-type icing-rate meters are presented as preliminary information obtained from a statistical icing data program sponsored by the NACA with the cooperation of many airline companies and the United States Air Force. The program is continuing on a much greater scale to provide large quantities of data from many air routes in the United States and overseas. Areas not covered by established air routes are also being included in the survey. The four aircraft which collected the data presented in this report were operated by United Air Lines over a transcontinental route from January through May, 1951. An analysis of the pressure-type icing-rate meter was satisfactory for collecting statistical data during routine operations. Data obtained on routine flight icing encounters from.these four instrumented aircraft, although insufficient for a conclusive statistical analysis, provide a greater quantity and considerably more realistic information than that obtained from random research flights. A summary of statistical data will be published when the information obtained daring the 1951-52 icing season and that to be obtained during the 1952-53 season can be analyzed and assembled. The 1951-52 data already analyzed indicate that the quantity, quality, and range of icing information being provided by this expanded program should afford a sound basis for ice-protection-system design by defining the important meteorological parameters of the icing cloud.

  7. Ice Bridge Antarctic Sea Ice

    NASA Image and Video Library

    2009-10-21

    An iceberg is seen out the window of NASA's DC-8 research aircraft as it flies 2,000 feet above the Amundsen Sea in West Antarctica on Wednesday, Oct., 21, 2009. This was the fourth science flight of NASA’s Operation Ice Bridge airborne Earth science mission to study Antarctic ice sheets, sea ice, and ice shelves. Photo Credit: (NASA/Jane Peterson)

  8. Vection during conflicting multisensory information about the axis, magnitude, and direction of self-motion.

    PubMed

    Ash, April; Palmisano, Stephen

    2012-01-01

    We examined the vection induced by consistent and conflicting multisensory information about self-motion. Observers viewed displays simulating constant-velocity self-motion in depth while physically oscillating their heads left-right or back-forth in time with a metronome. Their tracked head movements were either ignored or incorporated directly into the self-motion display (as an added simulated self-acceleration). When this head oscillation was updated into displays, sensory conflict was generated by simulating oscillation along: (i) an orthogonal axis to the head movement; or (ii) the same axis, but in a non-ecological direction. Simulated head oscillation always produced stronger vection than 'no display oscillation'--even when the axis/direction of this display motion was inconsistent with the physical head motion. When head-and-display oscillation occurred along the same axis: (i) consistent (in-phase) horizontal display oscillation produced stronger vection than conflicting (out-of-phase) horizontal display oscillation; however, (ii) consistent and conflicting depth oscillation conditions did not induce significantly different vection. Overall, orthogonal-axis oscillation was found to produce very similar vection to same-axis oscillation. Thus, we conclude that while vection appears to be very robust to sensory conflict, there are situations where sensory consistency improves vection.

  9. Ask about ice, then consider iron

    PubMed Central

    Rabel, Antoinette; Leitman, Susan F.; Miller, Jeffery L.

    2015-01-01

    Background and purpose To review a condition defined by the desire to consume ice in order to satisfy an addictive-like compulsion, rather than for purposes of hydration or pain relief. This condition is called ice pica, or pagophagia. Explain the association between ice pica and iron deficiency. Suggest to clinicians how to perform clinical screening for patients at risk for ice pica. Recommend treatment and follow-up care, if needed. Methods Extensive published literature review of original research articles, reviews, clinical practice manuscripts and scientific publications on pica and pagophagia. Conclusions A compulsion or craving for the consumption of ice is often overlooked in clinical practice. It is therefore important for clinicians to include ice pica as part of the review of systems for certain patient populations. Ice pica is frequently associated with iron deficiency, and iron supplementation is an effective therapy in most cases. Implications for practice Knowledge gained from screening for ice pica can generate valuable patient information and lead to the diagnosis and treatment of iron deficiency. The populations at risk include young women and blood donors of either sex. PMID:25943566

  10. Volcano-ice age link discounted

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerr, R.A.

    1996-05-10

    Speculation that huge volcanic eruptions may have caused an immediate `volcanic winter` that devastated early humans and accelerated a slide into the Ice Age. However, further information from the Greenland ice sheet about the Toba errumption on the island of Sumatra 70,000 years ago, seems to indicate that such volcanic actions wasn`t a major climatic catalyst. This article discusses the evidence and further possibilities.

  11. Ice cream structure modification by ice-binding proteins.

    PubMed

    Kaleda, Aleksei; Tsanev, Robert; Klesment, Tiina; Vilu, Raivo; Laos, Katrin

    2018-04-25

    Ice-binding proteins (IBPs), also known as antifreeze proteins, were added to ice cream to investigate their effect on structure and texture. Ice recrystallization inhibition was assessed in the ice cream mixes using a novel accelerated microscope assay and the ice cream microstructure was studied using an ice crystal dispersion method. It was found that adding recombinantly produced fish type III IBPs at a concentration 3 mg·L -1 made ice cream hard and crystalline with improved shape preservation during melting. Ice creams made with IBPs (both from winter rye, and type III IBP) had aggregates of ice crystals that entrapped pockets of the ice cream mixture in a rigid network. Larger individual ice crystals and no entrapment in control ice creams was observed. Based on these results a model of ice crystals aggregates formation in the presence of IBPs was proposed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Ice sheets and nitrogen.

    PubMed

    Wolff, Eric W

    2013-07-05

    Snow and ice play their most important role in the nitrogen cycle as a barrier to land-atmosphere and ocean-atmosphere exchanges that would otherwise occur. The inventory of nitrogen compounds in the polar ice sheets is approximately 260 Tg N, dominated by nitrate in the much larger Antarctic ice sheet. Ice cores help to inform us about the natural variability of the nitrogen cycle at global and regional scale, and about the extent of disturbance in recent decades. Nitrous oxide concentrations have risen about 20 per cent in the last 200 years and are now almost certainly higher than at any time in the last 800 000 years. Nitrate concentrations recorded in Greenland ice rose by a factor of 2-3, particularly between the 1950s and 1980s, reflecting a major change in NOx emissions reaching the background atmosphere. Increases in ice cores drilled at lower latitudes can be used to validate or constrain regional emission inventories. Background ammonium concentrations in Greenland ice show no significant recent trend, although the record is very noisy, being dominated by spikes of input from biomass burning events. Neither nitrate nor ammonium shows significant recent trends in Antarctica, although their natural variations are of biogeochemical and atmospheric chemical interest. Finally, it has been found that photolysis of nitrate in the snowpack leads to significant re-emissions of NOx that can strongly impact the regional atmosphere in snow-covered areas.

  13. Ice sheets and nitrogen

    PubMed Central

    Wolff, Eric W.

    2013-01-01

    Snow and ice play their most important role in the nitrogen cycle as a barrier to land–atmosphere and ocean–atmosphere exchanges that would otherwise occur. The inventory of nitrogen compounds in the polar ice sheets is approximately 260 Tg N, dominated by nitrate in the much larger Antarctic ice sheet. Ice cores help to inform us about the natural variability of the nitrogen cycle at global and regional scale, and about the extent of disturbance in recent decades. Nitrous oxide concentrations have risen about 20 per cent in the last 200 years and are now almost certainly higher than at any time in the last 800 000 years. Nitrate concentrations recorded in Greenland ice rose by a factor of 2–3, particularly between the 1950s and 1980s, reflecting a major change in NOx emissions reaching the background atmosphere. Increases in ice cores drilled at lower latitudes can be used to validate or constrain regional emission inventories. Background ammonium concentrations in Greenland ice show no significant recent trend, although the record is very noisy, being dominated by spikes of input from biomass burning events. Neither nitrate nor ammonium shows significant recent trends in Antarctica, although their natural variations are of biogeochemical and atmospheric chemical interest. Finally, it has been found that photolysis of nitrate in the snowpack leads to significant re-emissions of NOx that can strongly impact the regional atmosphere in snow-covered areas. PMID:23713125

  14. Phi-s correlation and dynamic time warping - Two methods for tracking ice floes in SAR images

    NASA Technical Reports Server (NTRS)

    Mcconnell, Ross; Kober, Wolfgang; Kwok, Ronald; Curlander, John C.; Pang, Shirley S.

    1991-01-01

    The authors present two algorithms for performing shape matching on ice floe boundaries in SAR (synthetic aperture radar) images. These algorithms quickly produce a set of ice motion and rotation vectors that can be used to guide a pixel value correlator. The algorithms match a shape descriptor known as the Phi-s curve. The first algorithm uses normalized correlation to match the Phi-s curves, while the second uses dynamic programming to compute an elastic match that better accommodates ice floe deformation. Some empirical data on the performance of the algorithms on Seasat SAR images are presented.

  15. Water Ice and Life's Roots in Space

    NASA Technical Reports Server (NTRS)

    Blake, David; Jenniskens, Peter; DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    Nearly three decades ago as Voyager 2 spacecraft raced out of the Solar System. NASA engineers turned its camera arm around (at the request of the American astronomer Carl Sagan) to take a parting snapshot of Earth. Earth's image was a single pale blue pixel, its color caused by the Rayleigh scattering of sunlight in the water of our oceans. Earth is a water planet, and this is the color of life. No matter how far we travel on our planet, no matter how high or deep, if we find liquid water, we find some form of life that manages to survive there. And yet there is a cruel irony. Water in its solid crystalline form is hostile to life. Organisms can roost in geysers, wallow in brine and gulp down acid, but they cowered from ice. The rigid ordering of water molecules in ice crystals expels impurities and tears organic tissue beyond repair. In fact, about the only good thing you can say about ice is that it gets out of the way: Its low density ensures that it floats and leaves the water dwelling creatures in peace. Recent discoveries have caused us to rethink this basic premise. New lines of evidence both observational and experimental - suggest that prebiotic organic compounds are not only comfortable in, but in fact had their origin in a peculiar form of solid water ice that is ubiquitous in interstellar space, but completely absent from Earth. Only recently have we been able to create even submicroscopic quantities of this ice in terrestrial laboratories, yet it constitutes the most abundant form of water in the universe. Interstellar ice is a far cry from the ice we are so familiar with on Earth. This interstellar ice has no crystalline structure, and despite the fact that its temperature is a scant few degrees above absolute zero (where all molecular motion ceases), it is highly reactive and can flow like water when exposed to radiation. It is in fact this ice's similarity to liquid water that allows it to participate in the creation of the very first organic

  16. Wave Attenuation and Gas Exchange Velocity in Marginal Sea Ice Zone

    NASA Astrophysics Data System (ADS)

    Bigdeli, A.; Hara, T.; Loose, B.; Nguyen, A. T.

    2018-03-01

    The gas transfer velocity in marginal sea ice zones exerts a strong control on the input of anthropogenic gases into the ocean interior. In this study, a sea state-dependent gas exchange parametric model is developed based on the turbulent kinetic energy dissipation rate. The model is tuned to match the conventional gas exchange parametrization in fetch-unlimited, fully developed seas. Next, fetch limitation is introduced in the model and results are compared to fetch limited experiments in lakes, showing that the model captures the effects of finite fetch on gas exchange with good fidelity. Having validated the results in fetch limited waters such as lakes, the model is next applied in sea ice zones using an empirical relation between the sea ice cover and the effective fetch, while accounting for the sea ice motion effect that is unique to sea ice zones. The model results compare favorably with the available field measurements. Applying this parametric model to a regional Arctic numerical model, it is shown that, under the present conditions, gas flux into the Arctic Ocean may be overestimated by 10% if a conventional parameterization is used.

  17. Vertical motions of passive margins of Greenland: influence of ice sheet, glacial erosion, and sediment transport

    NASA Astrophysics Data System (ADS)

    Souche, A.; Medvedev, S.; Hartz, E. H.

    2009-04-01

    The sub-ice topography of Greenland is characterized by a central depression below the sea level and by elevated (in some places significantly) margins. Whereas the central depression may be explained by significant load of the Greenland ice sheet, the origin of the peripheral relief remains unclear. We analyze the influence of formation of the ice sheet and carving by glacial erosion on the evolution of topography along the margins of Greenland. Our analysis shows that: (1) The heavy ice loading in the central part of Greenland and consecutive peripheral bulging has a negligible effect on amplitude of the uplifted Greenland margins. (2) First order estimates of uplift due to isostatic readjustment caused by glacial erosion and unloading in the fjord systems is up to 1.1 km. (3) The increase of accuracy of topographic data (comparing several data sets of resolution with grid size from 5 km to 50 m) results in increase of the isostatic response in the model. (4) The analysis of mass redistribution during erosion-sedimentation process and data on age of offshore sediments allows us to estimate the timing of erosion along the margins of Greenland. This ongoing analysis, however, requires careful account for the link between sources (localized glacial erosion) and sinks (offshore sedimentary basins around Greenland).

  18. Glacier Land Ice Measurements from Space (GLIMS) and the GLIMS Information Management System at NSIDC

    NASA Astrophysics Data System (ADS)

    Machado, A. E.; Scharfen, G. R.; Barry, R. G.; Khalsa, S. S.; Raup, B.; Swick, R.; Troisi, V. J.; Wang, I.

    2001-12-01

    GLIMS (Global Land Ice Measurements from Space) is an international project to survey a majority of the world's glaciers with the accuracy and precision needed to assess recent changes and determine trends in glacial environments. This will be accomplished by: comprehensive periodic satellite measurements, coordinated distribution of screened image data, analysis of images at worldwide Regional Centers, validation of analyses, and a publicly accessible database. The primary data source will be from the ASTER (Advanced Spaceborne Thermal Emission and reflection Radiometer) instrument aboard the EOS Terra spacecraft, and Landsat ETM+ (Enhanced Thematic Mapper Plus), currently in operation. Approximately 700 ASTER images have been acquired with GLIMS gain settings as of mid-2001. GLIMS is a collaborative effort with the United States Geological Survey (USGS), the National Aeronautics Space Adminstration (NASA), other U.S. Federal Agencies and a group of internationally distributed glaciologists at Regional Centers of expertise. The National Snow and Ice Data Center (NSIDC) is developing the information management system for GLIMS. We will ingest and maintain GLIMS-analyzed glacier data from Regional Centers and provide access to the data via the World Wide Web. The GLIMS database will include measurements (over time) of glacier length, area, boundaries, topography, surface velocity vectors, and snowline elevation, derived primarily from remote sensing data. The GLIMS information management system at NSIDC will provide an easy to use and widely accessible service for the glaciological community and other users needing information about the world's glaciers. The structure of the international GLIMS consortium, status of database development, sample imagery and derived analyses and user search and order interfaces will be demonstrated. More information on GLIMS is available at: http://www.glims.org/.

  19. Hockey, iPads, and Projectile Motion in a Physics Classroom

    ERIC Educational Resources Information Center

    Hechter, Richard P.

    2013-01-01

    With the increased availability of modern technology and handheld probeware for classrooms, the iPad and the Video Physics application developed by Vernier are used to capture and analyze the motion of an ice hockey puck within secondary-level physics education. Students collect, analyze, and generate digital modes of representation of physics…

  20. Novel method of extracting motion from natural movies.

    PubMed

    Suzuki, Wataru; Ichinohe, Noritaka; Tani, Toshiki; Hayami, Taku; Miyakawa, Naohisa; Watanabe, Satoshi; Takeichi, Hiroshige

    2017-11-01

    The visual system in primates can be segregated into motion and shape pathways. Interaction occurs at multiple stages along these pathways. Processing of shape-from-motion and biological motion is considered to be a higher-order integration process involving motion and shape information. However, relatively limited types of stimuli have been used in previous studies on these integration processes. We propose a new algorithm to extract object motion information from natural movies and to move random dots in accordance with the information. The object motion information is extracted by estimating the dynamics of local normal vectors of the image intensity projected onto the x-y plane of the movie. An electrophysiological experiment on two adult common marmoset monkeys (Callithrix jacchus) showed that the natural and random dot movies generated with this new algorithm yielded comparable neural responses in the middle temporal visual area. In principle, this algorithm provided random dot motion stimuli containing shape information for arbitrary natural movies. This new method is expected to expand the neurophysiological and psychophysical experimental protocols to elucidate the integration processing of motion and shape information in biological systems. The novel algorithm proposed here was effective in extracting object motion information from natural movies and provided new motion stimuli to investigate higher-order motion information processing. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  1. Determining Distributed Ablation over Dirty Ice Areas of Debris-covered Glaciers Using a UAV-SfM Approach

    NASA Astrophysics Data System (ADS)

    Woodget, A.; Fyffe, C. L.; Kirkbride, M. P.; Deline, P.; Westoby, M.; Brock, B. W.

    2017-12-01

    Dirty ice areas (where debris cover is discontinuous) are often found on debris-covered glaciers above the limit of continuous debris and are important because they are areas of high melt and have been recognized as the locus of the identified upglacier increase in debris cover. The modelling of glacial ablation in areas of dirty ice is in its infancy and is currently restricted to theoretical studies. Glacial ablation is traditionally determined at point locations using stakes drilled into the ice. However, in areas of dirty ice, ablation is highly spatially variable, since debris a few centimetres thick is near the threshold between enhancing and reducing ablation. As a result, it is very difficult to ascertain if point ablation measurements are representative of ablation of the area surrounding the stake - making these measurements unsuitable for the validation of models of dirty ice ablation. This paper aims to quantify distributed ablation and its relationship to essential dirty ice characteristics with a view to informing the construction of dirty ice melt models. A novel approach to determine distributed ablation is presented which uses repeat aerial imagery acquired from a UAV (Unmanned Aerial Vehicle), processed using SfM (Structure from Motion) techniques, on an area of dirty ice on Miage Glacier, Italian Alps. A spatially continuous ablation map is presented, along with a correlation to the local debris characteristics. Furthermore, methods are developed which link ground truth data on the percentage debris cover, albedo and clast depth to the UAV imagery, allowing these characteristics to be determined for the entire study area, and used as model inputs. For example, debris thickness is determined through a field relationship with clast size, which is then correlated with image texture and point cloud roughness metrics derived from the UAV imagery. Finally, we evaluate the potential of our novel approach to lead to improved modelling of dirty ice

  2. Experimental provocation of 'ice-cream headache' by ice cubes and ice water.

    PubMed

    Mages, Stephan; Hensel, Ole; Zierz, Antonia Maria; Kraya, Torsten; Zierz, Stephan

    2017-04-01

    Background There are various studies on experimentally provoked 'ice-cream headache' or 'headache attributed to ingestion or inhalation of a cold stimulus' (HICS) using different provocation protocols. The aim of this study was to compare two provocation protocols. Methods Ice cubes pressed to the palate and fast ingestion of ice water were used to provoke HICS and clinical features were compared. Results The ice-water stimulus provoked HICS significantly more often than the ice-cube stimulus (9/77 vs. 39/77). Ice-water-provoked HICS had a significantly shorter latency (median 15 s, range 4-97 s vs. median 68 s, range 27-96 s). There was no difference in pain localisation. Character after ice-cube stimulation was predominantly described as pressing and after ice-water stimulation as stabbing. A second HICS followed in 10/39 (26%) of the headaches provoked by ice water. Lacrimation occurred significantly more often in volunteers with than in those without HICS. Discussion HICS provoked by ice water was more frequent, had a shorter latency, different pain character and higher pain intensity than HICS provoked by ice cubes. The finding of two subsequent HICS attacks in the same volunteers supports the notion that two types of HICS exist. Lacrimation during HICS indicates involvement of the trigeminal-autonomic reflex.

  3. Motion-based prediction explains the role of tracking in motion extrapolation.

    PubMed

    Khoei, Mina A; Masson, Guillaume S; Perrinet, Laurent U

    2013-11-01

    During normal viewing, the continuous stream of visual input is regularly interrupted, for instance by blinks of the eye. Despite these frequents blanks (that is the transient absence of a raw sensory source), the visual system is most often able to maintain a continuous representation of motion. For instance, it maintains the movement of the eye such as to stabilize the image of an object. This ability suggests the existence of a generic neural mechanism of motion extrapolation to deal with fragmented inputs. In this paper, we have modeled how the visual system may extrapolate the trajectory of an object during a blank using motion-based prediction. This implies that using a prior on the coherency of motion, the system may integrate previous motion information even in the absence of a stimulus. In order to compare with experimental results, we simulated tracking velocity responses. We found that the response of the motion integration process to a blanked trajectory pauses at the onset of the blank, but that it quickly recovers the information on the trajectory after reappearance. This is compatible with behavioral and neural observations on motion extrapolation. To understand these mechanisms, we have recorded the response of the model to a noisy stimulus. Crucially, we found that motion-based prediction acted at the global level as a gain control mechanism and that we could switch from a smooth regime to a binary tracking behavior where the dot is tracked or lost. Our results imply that a local prior implementing motion-based prediction is sufficient to explain a large range of neural and behavioral results at a more global level. We show that the tracking behavior deteriorates for sensory noise levels higher than a certain value, where motion coherency and predictability fail to hold longer. In particular, we found that motion-based prediction leads to the emergence of a tracking behavior only when enough information from the trajectory has been accumulated

  4. The Coordination Dynamics of Observational Learning: Relative Motion Direction and Relative Phase as Informational Content Linking Action-Perception to Action-Production.

    PubMed

    Buchanan, John J

    2016-01-01

    The primary goal of this chapter is to merge together the visual perception perspective of observational learning and the coordination dynamics theory of pattern formation in perception and action. Emphasis is placed on identifying movement features that constrain and inform action-perception and action-production processes. Two sources of visual information are examined, relative motion direction and relative phase. The visual perception perspective states that the topological features of relative motion between limbs and joints remains invariant across an actor's motion and therefore are available for pickup by an observer. Relative phase has been put forth as an informational variable that links perception to action within the coordination dynamics theory. A primary assumption of the coordination dynamics approach is that environmental information is meaningful only in terms of the behavior it modifies. Across a series of single limb tasks and bimanual tasks it is shown that the relative motion and relative phase between limbs and joints is picked up through visual processes and supports observational learning of motor skills. Moreover, internal estimations of motor skill proficiency and competency are linked to the informational content found in relative motion and relative phase. Thus, the chapter links action to perception and vice versa and also links cognitive evaluations to the coordination dynamics that support action-perception and action-production processes.

  5. Expanding research capabilities with sea ice climate records for analysis of long-term climate change and short-term variability

    NASA Astrophysics Data System (ADS)

    Scott, D. J.; Meier, W. N.

    2008-12-01

    Recent sea ice analysis is leading to predictions of a sea ice-free summertime in the Arctic within 20 years, or even sooner. Sea ice topics, such as concentration, extent, motion, and age, are predominately studied using satellite data. At the National Snow and Ice Data Center (NSIDC), passive microwave sea ice data sets provide timely assessments of seasonal-scale variability as well as consistent long-term climate data records. Such data sets are crucial to understanding changes and assessing their impacts. Noticeable impacts of changing sea ice conditions on native cultures and wildlife in the Arctic region are now being documented. With continued deterioration in Arctic sea ice, global economic impacts will be seen as new shipping routes open. NSIDC is at the forefront of making climate data records available to address the changes in sea ice and its global impacts. By focusing on integrated data sets, NSIDC leads the way by broadening the studies of sea ice beyond the traditional cryospheric community.

  6. Comet Halley - The orbital motion

    NASA Technical Reports Server (NTRS)

    Yeomans, D. K.

    1977-01-01

    The orbital motion of Comet Halley is investigated over the interval from A.D. 837 to 2061. Using the observations from 1607 through 1911, least-squares differential orbit corrections were successfully computed using the existing model for the nongravitational forces. The nongravitational-force model was found to be consistent with the outgassing-rocket effect of a water-ice cometary nucleus and, prior to the 1910 return, these forces are time-independent for nearly a millennium. For the 1986 return, viewing conditions are outlined for the comet and the related Orionid and Eta Aquarid meteor showers.

  7. Breakup of Pack Ice, Antarctic Ice Shelf

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Breakup of Pack Ice along the periphery of the Antarctic Ice Shelf (53.5S, 3.0E) produced this mosaic of ice floes off the Antarctic Ice Shelf. Strong offshore winds, probably associated with strong katabatic downdrafts from the interior of the continent, are seen peeling off the edges of the ice shelf into long filamets of sea ice, icebergs, bergy bits and growlers to flow northward into the South Atlantic Ocean. 53.5S, 3.0E

  8. Changes and variations in the turning angle of Arctic sea ice

    NASA Astrophysics Data System (ADS)

    Ukita, J.; Honda, M.; Ishizuka, S.

    2012-12-01

    The motion of sea ice is under influences of forcing from winds and currents and of sea ice properties. In facing rapidly changing Arctic climate we are interested in whether we observe and quantify changes in sea ice conditions reflected in its velocity field. Theoretical consideration on the freedrift model predicts a change in the sea ice turning angle with respect to the direction of forcing wind in association with thinning sea ice thickness. Possible changes in atmospheric and ocean boundary layer conditions may be reflected in the sea ice turning angle through modification of both atmospheric and oceanic Ekman spirals. With these in mind this study examines statistical properties of the turning angle of the Arctic sea ice and compares them with atmospheric/ice/ocean conditions for the period of 1979-2010 on the basis of IABP buoy data. Preliminary results indicate that over this period the turning angle has varying trends depending on different seasons. We found weakly significant (>90% level) changes in the turning angle from August to October with the maximum trend in October. The direction of trends is counter-clockwise with respect to the geostrophic wind direction, which is consistent with the thinning of sea ice. The interannual variability of the turning angle for this peak season of the reduced sea ice cover is not the same as that of the Arctic SIE. However, in recent years the turning angle appears to covary with the surface air temperature, providing supporting evidence for the relationship between the angle and sea ice thickness. In the presentation we will provide results on the relationships between the turning angle and atmospheric and oceanic variables and further discuss their implications.

  9. Particle trajectory computer program for icing analysis of axisymmetric bodies

    NASA Technical Reports Server (NTRS)

    Frost, Walter; Chang, Ho-Pen; Kimble, Kenneth R.

    1982-01-01

    General aviation aircraft and helicopters exposed to an icing environment can accumulate ice resulting in a sharp increase in drag and reduction of maximum lift causing hazardous flight conditions. NASA Lewis Research Center (LeRC) is conducting a program to examine, with the aid of high-speed computer facilities, how the trajectories of particles contribute to the ice accumulation on airfoils and engine inlets. This study, as part of the NASA/LeRC research program, develops a computer program for the calculation of icing particle trajectories and impingement limits relative to axisymmetric bodies in the leeward-windward symmetry plane. The methodology employed in the current particle trajectory calculation is to integrate the governing equations of particle motion in a flow field computed by the Douglas axisymmetric potential flow program. The three-degrees-of-freedom (horizontal, vertical, and pitch) motion of the particle is considered. The particle is assumed to be acted upon by aerodynamic lift and drag forces, gravitational forces, and for nonspherical particles, aerodynamic moments. The particle momentum equation is integrated to determine the particle trajectory. Derivation of the governing equations and the method of their solution are described in Section 2.0. General features, as well as input/output instructions for the particle trajectory computer program, are described in Section 3.0. The details of the computer program are described in Section 4.0. Examples of the calculation of particle trajectories demonstrating application of the trajectory program to given axisymmetric inlet test cases are presented in Section 5.0. For the examples presented, the particles are treated as spherical water droplets. In Section 6.0, limitations of the program relative to excessive computer time and recommendations in this regard are discussed.

  10. Kinetic boundaries and phase transformations of ice i at high pressure.

    PubMed

    Wang, Yu; Zhang, Huichao; Yang, Xue; Jiang, Shuqing; Goncharov, Alexander F

    2018-01-28

    Raman spectroscopy in diamond anvil cells has been employed to study phase boundaries and transformation kinetics of H 2 O ice at high pressures up to 16 GPa and temperatures down to 15 K. Ice i formed at nearly isobaric cooling of liquid water transforms on compression to high-density amorphous (HDA) ice at 1.1-3 GPa at 15-100 K and then crystallizes in ice vii with the frozen-in disorder (ice vii') which remains stable up to 14.1 GPa at 80 K and 15.9 GPa at 100 K. Unexpectedly, on decompression of ice vii', it transforms to ice viii in its domain of metastability, and then it relaxes into low-density amorphous (LDA) ice on a subsequent pressure release and warming up. On compression of ice i at 150-170 K, ice ix is crystallized and no HDA ice is found; further compression of ice ix results in the sequential phase transitions to stable ices vi and viii. Cooling ice i to 210 K at 0.3 GPa transforms it to a stable ice ii. Our extensive investigations provide previously missing information on the phase diagram of water, especially on the kinetic paths that result in formation of phases which otherwise are not accessible; these results are keys for understanding the phase relations including the formation of metastable phases. Our observations inform on the ice modifications that can occur naturally in planetary environments and are not accessible for direct observations.

  11. Kinetic boundaries and phase transformations of ice i at high pressure

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Zhang, Huichao; Yang, Xue; Jiang, Shuqing; Goncharov, Alexander F.

    2018-01-01

    Raman spectroscopy in diamond anvil cells has been employed to study phase boundaries and transformation kinetics of H2O ice at high pressures up to 16 GPa and temperatures down to 15 K. Ice i formed at nearly isobaric cooling of liquid water transforms on compression to high-density amorphous (HDA) ice at 1.1-3 GPa at 15-100 K and then crystallizes in ice vii with the frozen-in disorder (ice vii') which remains stable up to 14.1 GPa at 80 K and 15.9 GPa at 100 K. Unexpectedly, on decompression of ice vii', it transforms to ice viii in its domain of metastability, and then it relaxes into low-density amorphous (LDA) ice on a subsequent pressure release and warming up. On compression of ice i at 150-170 K, ice ix is crystallized and no HDA ice is found; further compression of ice ix results in the sequential phase transitions to stable ices vi and viii. Cooling ice i to 210 K at 0.3 GPa transforms it to a stable ice ii. Our extensive investigations provide previously missing information on the phase diagram of water, especially on the kinetic paths that result in formation of phases which otherwise are not accessible; these results are keys for understanding the phase relations including the formation of metastable phases. Our observations inform on the ice modifications that can occur naturally in planetary environments and are not accessible for direct observations.

  12. Sea Ice Detection Based on an Improved Similarity Measurement Method Using Hyperspectral Data.

    PubMed

    Han, Yanling; Li, Jue; Zhang, Yun; Hong, Zhonghua; Wang, Jing

    2017-05-15

    Hyperspectral remote sensing technology can acquire nearly continuous spectrum information and rich sea ice image information, thus providing an important means of sea ice detection. However, the correlation and redundancy among hyperspectral bands reduce the accuracy of traditional sea ice detection methods. Based on the spectral characteristics of sea ice, this study presents an improved similarity measurement method based on linear prediction (ISMLP) to detect sea ice. First, the first original band with a large amount of information is determined based on mutual information theory. Subsequently, a second original band with the least similarity is chosen by the spectral correlation measuring method. Finally, subsequent bands are selected through the linear prediction method, and a support vector machine classifier model is applied to classify sea ice. In experiments performed on images of Baffin Bay and Bohai Bay, comparative analyses were conducted to compare the proposed method and traditional sea ice detection methods. Our proposed ISMLP method achieved the highest classification accuracies (91.18% and 94.22%) in both experiments. From these results the ISMLP method exhibits better performance overall than other methods and can be effectively applied to hyperspectral sea ice detection.

  13. Sea Ice Detection Based on an Improved Similarity Measurement Method Using Hyperspectral Data

    PubMed Central

    Han, Yanling; Li, Jue; Zhang, Yun; Hong, Zhonghua; Wang, Jing

    2017-01-01

    Hyperspectral remote sensing technology can acquire nearly continuous spectrum information and rich sea ice image information, thus providing an important means of sea ice detection. However, the correlation and redundancy among hyperspectral bands reduce the accuracy of traditional sea ice detection methods. Based on the spectral characteristics of sea ice, this study presents an improved similarity measurement method based on linear prediction (ISMLP) to detect sea ice. First, the first original band with a large amount of information is determined based on mutual information theory. Subsequently, a second original band with the least similarity is chosen by the spectral correlation measuring method. Finally, subsequent bands are selected through the linear prediction method, and a support vector machine classifier model is applied to classify sea ice. In experiments performed on images of Baffin Bay and Bohai Bay, comparative analyses were conducted to compare the proposed method and traditional sea ice detection methods. Our proposed ISMLP method achieved the highest classification accuracies (91.18% and 94.22%) in both experiments. From these results the ISMLP method exhibits better performance overall than other methods and can be effectively applied to hyperspectral sea ice detection. PMID:28505135

  14. FLYSAFE, nowcasting of in flight icing supporting aircrew decision making process

    NASA Astrophysics Data System (ADS)

    Drouin, A.; Le Bot, C.

    2009-09-01

    FLYSAFE is an Integrated Project of the 6th framework of the European Commission with the aim to improve flight safety through the development of a Next Generation Integrated Surveillance System (NGISS). The NGISS provides information to the flight crew on the three major external hazards for aviation: weather, air traffic and terrain. The NGISS has the capability of displaying data about all three hazards on a single display screen, facilitating rapid pilot appreciation of the situation by the flight crew. Weather Information Management Systems (WIMS) were developed to provide the NGISS and the flight crew with weather related information on in-flight icing, thunderstorms, wake-vortex and clear-air turbulence. These products are generated on the ground from observations and model forecasts. WIMS supply relevant information on three different scales: global, regional and local (over airport Terminal Manoeuvring Area). Within the flysafe program, around 120 hours of flight trials were performed during February 2008 and August 2008. Two aircraft were involved each with separate objectives : - to assess FLYSAFE's innovative solutions for the data-link, on-board data fusion, data-display, and data-updates during flight; - to evaluate the new weather information management systems (in flight icing and thunderstorms) using in-situ measurements recorded on board the test aircraft. In this presentation we will focus on the in-flight icing nowcasting system developed at Météo France in the framework of FLYSAFE: the local ICE WIMS. The local ICE WIMS is based on data fusion. The most relevant information for icing detection is extracted from the numerical weather prediction model, the infra-red and visible satellite imagery and the ground weather radar reflectivities. After a presentation of the local ICE WIMS, we detail the evaluation of the local ICE WIMS performed using the winter and summer flight trial data.

  15. Ice-shell purification of ice-binding proteins.

    PubMed

    Marshall, Craig J; Basu, Koli; Davies, Peter L

    2016-06-01

    Ice-affinity purification is a simple and efficient method of purifying to homogeneity both natural and recombinant ice-binding proteins. The purification involves the incorporation of ice-binding proteins into slowly-growing ice and the exclusion of other proteins and solutes. In previous approaches, the ice was grown around a hollow brass finger through which coolant was circulated. We describe here an easily-constructed apparatus that employs ice affinity purification that not only shortens the time for purification from 1-2 days to 1-2 h, but also enhances yield and purity. In this apparatus, the surface area for the separation was increased by extracting the ice-binding proteins into an ice-shell formed inside a rotating round-bottom flask partially submerged in a sub-zero bath. In principle, any ice-binding compound can be recovered from liquid solution, and the method is readily scalable. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. A Newly Updated Database of Elevation-changes of the Greenand Ice Sheet to Study Surface Processes and Ice Dynamics

    NASA Astrophysics Data System (ADS)

    Schenk, A. F.; Csatho, B. M.; van den Broeke, M.; Kuipers Munneke, P.

    2015-12-01

    This paper reports about important upgrades of the Greenland Ice Sheet (GrIS) surface elevation and elevation-change database obtained with our Surface Elevation And Change detection (SERAC) software suite. We have developed SERAC to derive information from laser altimetry data, particularly time series of elevation changes and their partitioning into changes caused by ice dynamics. This allows direct investigation of ice dynamic processes that is much needed for improving the predictive power of ice sheet models. SERAC is different from most other change detection methods. It is based on detecting changes of surface patches, about 1 km by 1 km in size, rather than deriving elevation changes from individual laser points. The current database consists of ~100,000 time series with satellite laser altimetry data from ICESat, airborne laser observations obtained by NASA's Airborne Topographic Mapper (ATM) and the Land, Vegetation and Ice Sensor (LVIS). The upgrade is significant, because not only new observations from 2013 and 2014 have been added but also a number of improvements lead to a more comprehensive and consistent record of elevation-changes. First, we used the model that gives in addition to ice sheet also information about ice caps and glaciers (Rastner et al., 2012) for deciding if a laser point is on the ice sheet or ice cap. Then we added small gaps that exist in the ICESat GLA12 data set because the ice sheet mask is not wide enough. The new database is now more complete and will facilitate more accurate comparisons of mass balance studies obtained from the Gravity Recovery and Climate Experiment system (GRACE). For determining the part of a time series caused by ice dynamics we used the new firn compaction model and Surface Mass Balance (SMB) estimates from RACMO2.3. The new database spans the time period from 1993 to 2014. Adding new observations amounts to a spatial densification of the old record and at the same time extends the time domain by two

  17. Quantification of Ice Accretions for Icing Scaling Evaluations

    NASA Technical Reports Server (NTRS)

    Ruff, Gary A.; Anderson, David N.

    2003-01-01

    The comparison of ice accretion characteristics is an integral part of aircraft icing research. It is often necessary to compare an ice accretion obtained from a flight test or numerical simulation to one produced in an icing wind tunnel or for validation of an icing scaling method. Traditionally, this has been accomplished by overlaying two-dimensional tracings of ice accretion shapes. This paper addresses the basic question of how to compare ice accretions using more quantitative methods. For simplicity, geometric characteristics of the ice accretions are used for the comparison. One method evaluated is a direct comparison of the percent differences of the geometric measurements. The second method inputs these measurements into a fuzzy inference system to obtain a single measure of the goodness of the comparison. The procedures are demonstrated by comparing ice shapes obtained in the Icing Research Tunnel at NASA Glenn Research Center during recent icing scaling tests. The results demonstrate that this type of analysis is useful in quantifying the similarity of ice accretion shapes and that the procedures should be further developed by expanding the analysis to additional icing data sets.

  18. Ice Accretions and Icing Effects for Modern Airfoils

    NASA Technical Reports Server (NTRS)

    Addy, Harold E., Jr.

    2000-01-01

    Icing tests were conducted to document ice shapes formed on three different two-dimensional airfoils and to study the effects of the accreted ice on aerodynamic performance. The models tested were representative of airfoil designs in current use for each of the commercial transport, business jet, and general aviation categories of aircraft. The models were subjected to a range of icing conditions in an icing wind tunnel. The conditions were selected primarily from the Federal Aviation Administration's Federal Aviation Regulations 25 Appendix C atmospheric icing conditions. A few large droplet icing conditions were included. To verify the aerodynamic performance measurements, molds were made of selected ice shapes formed in the icing tunnel. Castings of the ice were made from the molds and placed on a model in a dry, low-turbulence wind tunnel where precision aerodynamic performance measurements were made. Documentation of all the ice shapes and the aerodynamic performance measurements made during the icing tunnel tests is included in this report. Results from the dry, low-turbulence wind tunnel tests are also presented.

  19. Sunlight, Sea Ice, and the Ice Albedo Feedback in a Changing Arctic Sea Ice Cover

    DTIC Science & Technology

    2013-09-30

    Sea Ice , and the Ice Albedo Feedback in a...COVERED 00-00-2013 to 00-00-2013 4. TITLE AND SUBTITLE Sunlight, Sea Ice , and the Ice Albedo Feedback in a Changing Arctic Sea Ice Cover 5a...during a period when incident solar irradiance is large increasing solar heat input to the ice . Seasonal sea ice typically has a smaller albedo

  20. A Simple Frictionless Device for the Study of Motion

    ERIC Educational Resources Information Center

    Straulino, S.; Bonechi, L.

    2011-01-01

    The air-cushion table is a powerful instrument to demonstrate the motion of an object in the absence of friction. Such devices are often rather large and do not fit very easily in the classroom. In a different version of this experience, gas comes directly out of the disc itself, which is provided, for example, by a tank of dry ice that slowly…

  1. Modeling brine and nutrient dynamics in Antarctic sea ice: The case of dissolved silica

    NASA Astrophysics Data System (ADS)

    Vancoppenolle, Martin; Goosse, Hugues; de Montety, Anne; Fichefet, Thierry; Tremblay, Bruno; Tison, Jean-Louis

    2010-02-01

    Sea ice ecosystems are characterized by microalgae living in brine inclusions. The growth rate of ice algae depends on light and nutrient supply. Here, the interactions between nutrients and brine dynamics under the influence of algae are investigated using a one-dimensional model. The model includes snow and ice thermodynamics with brine physics and an idealized sea ice biological component, characterized by one nutrient, namely, dissolved silica (DSi). In the model, DSi follows brine motion and is consumed by ice algae. Depending on physical ice characteristics, the brine flow is either advective, diffusive, or turbulent. The vertical profiles of ice salinity and DSi concentration are solutions of advection-diffusion equations. The model is configured to simulate the typical thermodynamic regimes of first-year Antarctic pack ice. The simulated vertical profiles of salinity and DSi qualitatively reproduce observations. Analysis of results highlights the role of convection in the lowermost 5-10 cm of ice. Convection mixes saline, nutrient-poor brine with comparatively fresh, nutrient-rich seawater. This implies a rejection of salt to the ocean and a flux of DSi to the ice. In the presence of growing algae, the simulated ocean-to-ice DSi flux increases by 0-115% compared to an abiotic situation. In turn, primary production and brine convection act in synergy to form a nutrient pump. The other important processes are the flooding of the surface by seawater and the percolation of meltwater. The former refills nutrients near the ice surface in spring. The latter, if present, tends to expell nutrients from the ice in summer.

  2. Ice nucleation by particles immersed in supercooled cloud droplets.

    PubMed

    Murray, B J; O'Sullivan, D; Atkinson, J D; Webb, M E

    2012-10-07

    The formation of ice particles in the Earth's atmosphere strongly affects the properties of clouds and their impact on climate. Despite the importance of ice formation in determining the properties of clouds, the Intergovernmental Panel on Climate Change (IPCC, 2007) was unable to assess the impact of atmospheric ice formation in their most recent report because our basic knowledge is insufficient. Part of the problem is the paucity of quantitative information on the ability of various atmospheric aerosol species to initiate ice formation. Here we review and assess the existing quantitative knowledge of ice nucleation by particles immersed within supercooled water droplets. We introduce aerosol species which have been identified in the past as potentially important ice nuclei and address their ice-nucleating ability when immersed in a supercooled droplet. We focus on mineral dusts, biological species (pollen, bacteria, fungal spores and plankton), carbonaceous combustion products and volcanic ash. In order to make a quantitative comparison we first introduce several ways of describing ice nucleation and then summarise the existing information according to the time-independent (singular) approximation. Using this approximation in combination with typical atmospheric loadings, we estimate the importance of ice nucleation by different aerosol types. According to these estimates we find that ice nucleation below about -15 °C is dominated by soot and mineral dusts. Above this temperature the only materials known to nucleate ice are biological, with quantitative data for other materials absent from the literature. We conclude with a summary of the challenges our community faces.

  3. Antarctic Glacial Isostatic Adjustment and Ice Sheet Mass Balance using GRACE: A Report from the Ice-sheet Mass Balance Exercise (IMBIE)

    NASA Astrophysics Data System (ADS)

    Ivins, E. R.; Wahr, J. M.; Schrama, E. J.; Milne, G. A.; Barletta, V.; Horwath, M.; Whitehouse, P.

    2012-12-01

    In preparation for the Inter-govermental Panel on Climate Change: Assessment Report 5 (IPCC AR5), ESA and NASA have formed a committee of experts to perform a formal set of comparative experiments concerning space observations of ice sheet mass balance. This project began in August of 2011 and has now concluded with a report submitted for Science (Shepherd et al., 2012). The focus of the work conducted is to re-evaluate scientific reports on the mass balance of Greenland ice sheet (GIS) and Antarctic ice sheet (AIS). The most serious discrepancies have been reported for the AIS, amounting to as much as 0.9 mm/yr in discrepant sea level contribution. A direct method of determining the AIS is by space gravimetry. However, for this method to contribute to our understanding of sea level change, we require knowledge of present-day non-elastic vertical movements of bedrock in Antarctica. Quantifying the uncertainty and bias caused by lack of observational control on models of regional glacial isostatic adjustment (GIA), was a major focus for our experiments. This regional process is the most problematic error source for GRACE-determinations of ice mass balance in Antarctica. While GIA likely dominates some large vertical motions in Antarctica that are now observed with GPS (Thomas et al., 2011, GRL), interpretations still require models. The reported uncertainty for space gravimetric (GRACE) based sea level sourcing is roughly 0.20 to 0.35 mm/yr. The uncertainty is also part of the error budget for mass balances derived from altimetry measurements, though at a much lower level. Analysis of the GRACE time series using CSR RL04 (2003.0-2010.10) for AIS mass balance reveals a small trend of order +1 to -24 Gt/yr without a GIA correction. Three periods were selected over which to perform inter-comparisons (see Table). One class of GIA models, that relies primarily on far field sea level reconstructions (e.g. ICE-5G), provide a GIA correction that places AIS mass imbalance (

  4. Indigenous Knowledge and Sea Ice Science: What Can We Learn from Indigenous Ice Users?

    NASA Astrophysics Data System (ADS)

    Eicken, H.

    2010-12-01

    Drawing on examples mostly from Iñupiaq and Yup’ik sea-ice expertise in coastal Alaska, this contribution examines how local, indigenous knowledge (LIK) can inform and guide geophysical and biological sea-ice research. Part of the relevance of LIK derives from its linkage to sea-ice use and the services coastal communities derive from the ice cover. As a result, indigenous experts keep track of a broad range of sea-ice variables at a particular location. These observations are embedded into a broader worldview that speaks to both long-term variability or change and to the system of values associated with ice use. The contribution examines eight different contexts in which LIK in study site selection and assessment of a sampling campaign in the context of inter annual variability, the identification of rare or inconspicuous phenomena or events, the contribution by indigenous experts to hazard assessment and emergency response, the record of past and present climate embedded in LIK, and the value of holistic sea-ice knowledge in detecting subtle, intertwined patterns of environmental change. The relevance of local, indigenous sea-ice expertise in helping advance adaptation and responses to climate change as well as its potential role in guiding research questions and hypotheses are also examined. The challenges that may have to be overcome in creating an interface for exchange between indigenous experts and seaice researchers are considered. Promising approaches to overcome these challenges include cross-cultural, interdisciplinary education, and the fostering of Communities of Practice.

  5. Impact of wave mixing on the sea ice cover

    NASA Astrophysics Data System (ADS)

    Rynders, Stefanie; Aksenov, Yevgeny; Madec, Gurvan; Nurser, George; Feltham, Daniel

    2017-04-01

    As information on surface waves in ice-covered regions becomes available in ice-ocean models, there is an opportunity to model wave-related processes more accurate. Breaking waves cause mixing of the upper water column and present mixing schemes in ocean models take this into account through surface roughness. A commonly used approach is to calculate surface roughness from significant wave height, parameterised from wind speed. We present results from simulations using modelled significant wave height instead, which accounts for the presence of sea ice and the effect of swell. The simulations use the NEMO ocean model coupled to the CICE sea ice model, with wave information from the ECWAM model of the European Centre for Medium-Range Weather Forecasts (ECMWF). The new waves-in-ice module allows waves to propagate in sea ice and attenuates waves according to multiple scattering and non-elastic losses. It is found that in the simulations with wave mixing the mixed layer depth (MLD) under ice cover is reduced, since the parameterisation from wind speed overestimates wave height in the ice-covered regions. The MLD change, in turn, affects sea ice concentration and ice thickness. In the Arctic, reduced MLD in winter translates into increased ice thicknesses overall, with higher increases in the Western Arctic and decreases along the Siberian coast. In summer, shallowing of the mixed layer results in more heat accumulating in the surface ocean, increasing ice melting. In the Southern Ocean the meridional gradient in ice thickness and concentration is increased. We argue that coupling waves with sea ice - ocean models can reduce negative biases in sea ice cover, affecting the distribution of nutrients and, thus, biological productivity and ecosystems. This coupling will become more important in the future, when wave heights in a large part of the Arctic are expected to increase due to sea ice retreat and a larger wave fetch. Therefore, wave mixing constitutes a possible

  6. Comparisons of Cubed Ice, Crushed Ice, and Wetted Ice on Intramuscular and Surface Temperature Changes

    PubMed Central

    Dykstra, Joseph H; Hill, Holly M; Miller, Michael G; Cheatham, Christopher C; Michael, Timothy J; Baker, Robert J

    2009-01-01

    Context: Many researchers have investigated the effectiveness of different types of cold application, including cold whirlpools, ice packs, and chemical packs. However, few have investigated the effectiveness of different types of ice used in ice packs, even though ice is one of the most common forms of cold application. Objective: To evaluate and compare the cooling effectiveness of ice packs made with cubed, crushed, and wetted ice on intramuscular and skin surface temperatures. Design: Repeated-measures counterbalanced design. Setting: Human performance research laboratory. Patients or Other Participants: Twelve healthy participants (6 men, 6 women) with no history of musculoskeletal disease and no known preexisting inflammatory conditions or recent orthopaedic injuries to the lower extremities. Intervention(s): Ice packs made with cubed, crushed, or wetted ice were applied to a standardized area on the posterior aspect of the right gastrocnemius for 20 minutes. Each participant was given separate ice pack treatments, with at least 4 days between treatment sessions. Main Outcome Measure(s): Cutaneous and intramuscular (2 cm plus one-half skinfold measurement) temperatures of the right gastrocnemius were measured every 30 seconds during a 20-minute baseline period, a 20-minute treatment period, and a 120-minute recovery period. Results: Differences were observed among all treatments. Compared with the crushed-ice treatment, the cubed-ice and wetted-ice treatments produced lower surface and intramuscular temperatures. Wetted ice produced the greatest overall temperature change during treatment and recovery, and crushed ice produced the smallest change. Conclusions: As administered in our protocol, wetted ice was superior to cubed or crushed ice at reducing surface temperatures, whereas both cubed ice and wetted ice were superior to crushed ice at reducing intramuscular temperatures. PMID:19295957

  7. Conceptual Research of Lunar-based Earth Observation for Polar Glacier Motion

    NASA Astrophysics Data System (ADS)

    Ruan, Zhixing; Liu, Guang; Ding, Yixing

    2016-07-01

    The ice flow velocity of glaciers is important for estimating the polar ice sheet mass balance, and it is of great significance for studies into rising sea level under the background of global warming. However so far the long-term and global measurements of these macro-scale motion processes of the polar glaciers have hardly been achieved by Earth Observation (EO) technique from the ground, aircraft or satellites in space. This paper, facing the demand for space technology for large-scale global environmental change observation,especially the changes of polar glaciers, and proposes a new concept involving setting up sensors on the lunar surface and using the Moon as a platform for Earth observation, transmitting the data back to Earth. Lunar-based Earth observation, which enables the Earth's large-scale, continuous, long-term dynamic motions to be measured, is expected to provide a new solution to the problems mentioned above. According to the pattern and characteristics of polar glaciers motion, we will propose a comprehensive investigation of Lunar-based Earth observation with synthetic aperture radar (SAR). Via theoretical modeling and experimental simulation inversion, intensive studies of Lunar-based Earth observation for the glacier motions in the polar regions will be implemented, including the InSAR basics theory, observation modes of InSAR and optimization methods of their key parameters. It will be of a great help to creatively expand the EO technique system from space. In addition, they will contribute to establishing the theoretical foundation for the realization of the global, long-term and continuous observation for the glacier motion phenomena in the Antarctic and the Arctic.

  8. Ask about ice, then consider iron.

    PubMed

    Rabel, Antoinette; Leitman, Susan F; Miller, Jeffery L

    2016-02-01

    The study aims to review a condition defined by the desire to consume ice in order to satisfy an addictive-like compulsion, rather than for purposes of hydration or pain relief. This condition is called ice pica, or pagophagia. Associations between ice pica and iron deficiency, suggestions for clinical screening of at risk populations, and recommendations for treatment and follow-up care are provided. An extensive literature review of original research articles, reviews, clinical practice manuscripts, and scientific publications on pica and pagophagia. A compulsion or craving for the consumption of ice is often overlooked in clinical practice. It is therefore important for clinicians to include ice pica as part of the review of systems for certain patient populations. Ice pica is frequently associated with iron deficiency, and iron supplementation is an effective therapy in most cases. Knowledge gained from screening for ice pica can generate valuable patient information and lead to the diagnosis and treatment of iron deficiency. The populations at risk include young women and blood donors of either sex. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  9. The Effects of Sulfuric Acid on Mechanical Properties of Polycrystalline Ice

    NASA Astrophysics Data System (ADS)

    DeAngelis, M. K.; Lee, M. S.; Huang, K.

    2017-12-01

    The rates of flow for ice streams and glaciers are an important contributor to models of future sea level rise. Soluble impurities, such as sulfuric acid from acid rain, have been identified in ice cores, making it of utmost importance to understand the complete effects of such impurities on the mechanical properties of ice. While previous studies have provided insight into how sulfuric acid affects the viscosity in glaciers, the effects of sulfuric acid on elastic stiffness and friction has received less attention. In this study, we measured and compared the Young's Modulus and steady-state friction of 10 ppm sulfuric acid doped water ice samples to that of pure water ice samples. Microstructure characterization of the sample indicated that, even at such low concentration, the acid was located in small melt pockets at grain triple junctions. With an ultrasonic velocity testing system at -22 °C, primary waves and secondary waves were sent through each sample and wave velocities were recorded. These values and the density of the samples were used to calculate Young's Modulus. The sulfuric acid doped ice has an elastic stiffness that is less than that of pure ice. Reduced modulus could influence calving rates and other ice shelf processes. Using a custom cryo-biaxial apparatus, the friction of doped ice on rock was directly measured at several programmed velocities. The double direct shear configuration was employed, with a normal stress of 100 kPa and a temperature of -5 °C. Compared to previous studies on pure ice, the sulfuric acid doped ice sample experienced similar steady state friction. However, preliminary results indicate that doped samples exhibited velocity weakening behavior (i.e. as velocity increased, friction decreased) and stick slip events, while pure ice maintained a relatively neutral velocity dependence at this temperature. Field observations have reported stick slip motion at Whillans Ice Stream in Antarctica, but an explanation is unclear

  10. Visual search for motion-form conjunctions: is form discriminated within the motion system?

    PubMed

    von Mühlenen, A; Müller, H J

    2001-06-01

    Motion-form conjunction search can be more efficient when the target is moving (a moving 45 degrees tilted line among moving vertical and stationary 45 degrees tilted lines) rather than stationary. This asymmetry may be due to aspects of form being discriminated within a motion system representing only moving items, whereas discrimination of stationary items relies on a static form system (J. Driver & P. McLeod, 1992). Alternatively, it may be due to search exploiting differential motion velocity and direction signals generated by the moving-target and distractor lines. To decide between these alternatives, 4 experiments systematically varied the motion-signal information conveyed by the moving target and distractors while keeping their form difference salient. Moving-target search was found to be facilitated only when differential motion-signal information was available. Thus, there is no need to assume that form is discriminated within the motion system.

  11. Three-Dimensional Motion Estimation Using Shading Information in Multiple Frames

    DTIC Science & Technology

    1989-09-01

    j. Threle-D.imensionai GO Motion Estimation U sing, Shadin g Ilnformation in Multiple Frames- IJean-Pierre Schotf MIT Artifi -cial intelligence...vision 3-D structure 3-D vision- shape from shading multiple frames 20. ABSTRACT (Cofrn11,00 an reysrf* OWd Of Rssss00n7 Ad 4111111& F~ block f)nseq See...motion and shading have been treated as two disjoint problems. On the one hand, researchers studying motion or structure from motion often assume

  12. Quantum simulation of thermally-driven phase transition and oxygen K-edge x-ray absorption of high-pressure ice

    PubMed Central

    Kang, Dongdong; Dai, Jiayu; Sun, Huayang; Hou, Yong; Yuan, Jianmin

    2013-01-01

    The structure and phase transition of high-pressure ice are of long-standing interest and challenge, and there is still a huge gap between theoretical and experimental understanding. The quantum nature of protons such as delocalization, quantum tunneling and zero-point motion is crucial to the comprehension of the properties of high-pressure ice. Here we investigated the temperature-induced phase transition and oxygen K-edge x-ray absorption spectra of ice VII, VIII and X using ab initio path-integral molecular dynamics simulations. The tremendous difference between experiments and the previous theoretical predictions is closed for the phase diagram of ice below 300 K at pressures up to 110 GPa. Proton tunneling assists the proton-ordered ice VIII to transform into proton-disordered ice VII where only thermal activated proton-transfer cannot occur. The oxygen K edge with its shift is sensitive to the order-disorder transition, and therefore can be applied to diagnose the dynamics of ice structures. PMID:24253589

  13. PSL Icing Facility Upgrade Overview

    NASA Technical Reports Server (NTRS)

    Griffin, Thomas A.; Dicki, Dennis J.; Lizanich, Paul J.

    2014-01-01

    The NASA Glenn Research Center Propulsion Systems Lab (PSL) was recently upgraded to perform engine inlet ice crystal testing in an altitude environment. The system installed 10 spray bars in the inlet plenum for ice crystal generation using 222 spray nozzles. As an altitude test chamber, the PSL is capable of simulating icing events at altitude in a groundtest facility. The system was designed to operate at altitudes from 4,000 to 40,000 ft at Mach numbers up to 0.8M and inlet total temperatures from -60 to +15 degF. This paper and presentation will be part of a series of presentations on PSL Icing and will cover the development of the icing capability through design, developmental testing, installation, initial calibration, and validation engine testing. Information will be presented on the design criteria and process, spray bar developmental testing at Cox and Co., system capabilities, and initial calibration and engine validation test. The PSL icing system was designed to provide NASA and the icing community with a facility that could be used for research studies of engine icing by duplicating in-flight events in a controlled ground-test facility. With the system and the altitude chamber we can produce flight conditions and cloud environments to simulate those encountered in flight. The icing system can be controlled to set various cloud uniformities, droplet median volumetric diameter (MVD), and icing water content (IWC) through a wide variety of conditions. The PSL chamber can set altitudes, Mach numbers, and temperatures of interest to the icing community and also has the instrumentation capability of measuring engine performance during icing testing. PSL last year completed the calibration and initial engine validation of the facility utilizing a Honeywell ALF502-R5 engine and has duplicated in-flight roll back conditions experienced during flight testing. This paper will summarize the modifications and buildup of the facility to accomplish these tests.

  14. Advances in Ice Penetrating Radar

    NASA Astrophysics Data System (ADS)

    Paden, J. D.

    2016-12-01

    , gravity, mass conservation, etc., we improve the accuracy of ice bottom tracking. We present examples of the integration of these information sources to produce improved ice thickness estimates and show examples of data products which span more than two decades.

  15. Modeling brine and nutrient dynamics in Antarctic sea ice: the case of dissolved silica

    NASA Astrophysics Data System (ADS)

    Vancoppenolle, M.; Goosse, H.; de Montety, A.; Fichefet, T.; Tremblay, B.; Tison, J.

    2009-12-01

    Sea ice ecosystems are characterized by micro-algae living in brine inclusions. The growth rate of ice algae depends on light and nutrient supply. Here, the interactions between nutrients and brine dynamics under the influence of algae are investigated using a one-dimensional model. The model includes snow and ice thermodynamics with brine physics and an idealized sea ice biological component, characterized by one nutrient, namely dissolved silica (DSi). In the model, DSi follows brine motion and is consumed by ice algae. Depending on physical ice characteristics, the brine flow is either advective, diffusive or turbulent. The vertical profiles of ice salinity and DSi concentration are solutions of advection-diffusion equations. The model is configured to simulate the typical thermodynamic regimes of first-year Antarctic pack ice. The simulated vertical profiles of salinity and DSi qualitatively reproduce observations. Analysis of results highlights the role of convection in the lowermost 5-10 cm of ice. Convection mixes saline, nutrient-poor brine with comparatively fresh, nutrient-rich seawater. This implies a rejection of salt to the ocean and a flux of DSi to the ice. In presence of growing algae, the simulated ocean-to-ice DSi flux increases by 0-115% compared to an abiotic situation. In turn, primary production and brine convection act in synergy to form a nutrient pump. The other important processes are the flooding of the surface by seawater and the percolation of meltwater. The former refills nutrients near the ice surface in spring. The latter, if present, tends to expell nutrients from the ice in summer. Sketch of salt (left) and nutrient (right) exchanges at the ice-ocean interface proposed in this paper.

  16. Impacts of the Variability of Ice Types on the Decline of the Arctic Perennial Sea Ice Cover

    NASA Technical Reports Server (NTRS)

    Comiso, Josefino C.

    2005-01-01

    The observed rapid decline in the Arctic perennial ice cover is one of the most remarkable signal of change in the Arctic region. Updated data now show an even higher rate of decline of 9.8% per decade than the previous report of 8.9% per decade mainly because of abnormally low values in the last 4 years. To gain insights into this decline, the variability of the second year ice, which is the relatively thin component of the perennial ice cover, and other ice types is studied. The perennial ice cover in the 1990s was observed to be highly variable which might have led to higher production of second year ice and may in part explain the observed ice thinning during the period and triggered further decline. The passive microwave signature of second year ice is also studied and results show that while the signature is different from that of the older multiyear ice, it is surprisingly more similar to that of first year ice. This in part explains why previous estimates of the area of multiyear ice during the winter period are considerably lower than the area of the perennial ice cover during the preceding summer. Four distinct clusters representing radiometrically different types have been identified using multi-channel cluster analysis of passive microwave data. Data from two of these clusters, postulated to come from second year and older multiyear ice regions are also shown to have average thicknesses of 2.4 and 4.1 m, respectively, indicating that the passive microwave data may contain some ice thickness information that can be utilized for mass balance studies. The yearly anomaly maps indicate high gains of first year ice cover in the Arctic during the last decade which means higher production of second year ice and fraction of this type in the declining perennial ice cover. While not the only cause, the rapid decline in the perennial ice cover is in part caused by the increasing fractional component of the thinner second year ice cover that is very vulnerable to

  17. Geomorphology of ice stream beds: recent progress and future challenges

    NASA Astrophysics Data System (ADS)

    Stokes, Chris R.

    2016-04-01

    Ice sheets lose mass primarily by melting and discharge via rapidly-flowing ice streams. Surface and basal melting (e.g. of ice shelves) are closely linked to atmospheric and oceanic conditions, but the mechanisms that drive changes in ice stream discharge are more complex; and are influenced by conditions at their bed which can sustain, enhance or inhibit their motion. Although explicit comparisons are rare, the ice-bed interface is similar to the 'boundary layer' in fluvial and aeolian environments, where shear stresses (both basal and lateral in the case of ice streams) oppose the flow of the overlying medium. The analogy extends further because processes within the boundary layer create a distinctive geomorphology (and roughness) that is characterised by subglacial bedforms that resemble features in fluvial and aeolian environments. Their creation results from erosion, transport and deposition of sediment which is poorly constrained, but which is intimately linked to the mechanisms through which ice streams are able to flow rapidly. The study of ice stream geomorphology is, therefore, critical to our understanding of their dynamics. Despite difficulty in observing the subglacial environment of active ice streams, our understanding of their geomorphology has grown rapidly in the last three decades, from almost complete ignorance to a detailed knowledge of their geomorphological products. This has been brought about by two main approaches: (i) geophysical investigation of modern (active) ice streams, and (ii) sedimentological and geomorphological investigation of palaeo-ice stream beds. The aim of this paper is to review progress in these two areas, highlight the key questions that remain, and discuss the opportunities that are likely to arise that will enable them to be addressed. It is clear that whilst these two main approaches have led to important advances, they have often been viewed as separate sub-disciplines, with minimal cross-pollination of ideas and

  18. Surface Modeling and Grid Generation for Iced Airfoils (SmaggIce)

    NASA Technical Reports Server (NTRS)

    Hammond, Brandy M.

    2004-01-01

    requires a brief yet intense study into GUI coverage criteria and creating algorithms for GUI implementation. Nevertheless, there are still heavily graphical features of SmaggIceSmaggIce that must be either corrected or redesigned before its release. A particular feature of SmaggIce is the ability to smooth out curves created by control points that form an arbitrary shape into something more acquiescent to gridding (while maintaining the integrity of the data). This is done by a mathematical model known as Non-Uniform Rational B-Spline (NURBS) curves. Existing NURBS code is written in FORTRAN-77 with static arrays for holding information. My new assignment is to allow for dynamic memory allocation within the code and to make it possible for the developers to call out functions from the NURBS code using C.

  19. Detection of radial motion depends on spatial displacement.

    PubMed

    de la Malla, Cristina; López-Moliner, Joan

    2010-06-01

    Nakayama and Tyler (1981) disentangled the use of pure motion (speed) information from spatial displacement information for the detection of lateral motion. They showed that when positional cues were removed the contribution of motion or spatial information was dependent on the temporal frequency: for temporal frequencies lower than 1Hz the mechanism used to detect motion relied on speed information while for higher temporal frequencies a mechanism based on displacement information was used. Here we test whether the same dependency is also revealed in radial motion. In order to do so, we adapted the paradigm previously used by Nakayama and Tyler to obtain detection thresholds for lateral and radial motion by using a 2-IFC procedure. Subjects had to report which of the intervals contained the signal stimulus (33% coherent motion). We replicated the temporal frequency dependency for lateral motion but results indicate, however, that the detection of radial is always consistent with detecting a spatial displacement amplitude. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  20. High geothermal heat flux in close proximity to the Northeast Greenland Ice Stream.

    PubMed

    Rysgaard, Søren; Bendtsen, Jørgen; Mortensen, John; Sejr, Mikael K

    2018-01-22

    The Greenland ice sheet (GIS) is losing mass at an increasing rate due to surface melt and flow acceleration in outlet glaciers. Currently, there is a large disagreement between observed and simulated ice flow, which may arise from inaccurate parameterization of basal motion, subglacial hydrology or geothermal heat sources. Recently it was suggested that there may be a hidden heat source beneath GIS caused by a higher than expected geothermal heat flux (GHF) from the Earth's interior. Here we present the first direct measurements of GHF from beneath a deep fjord basin in Northeast Greenland. Temperature and salinity time series (2005-2015) in the deep stagnant basin water are used to quantify a GHF of 93 ± 21 mW m -2 which confirm previous indirect estimated values below GIS. A compilation of heat flux recordings from Greenland show the existence of geothermal heat sources beneath GIS and could explain high glacial ice speed areas such as the Northeast Greenland ice stream.

  1. Wave-Ice and Air-Ice-Ocean Interaction During the Chukchi Sea Ice Edge Advance

    DTIC Science & Technology

    2014-09-30

    During cruise CU-B UAF UW Airborne expendable Ice Buoy (AXIB) Ahead, at and inside ice edge Surface meteorology T, SLP ~1 year CU-B UW...Balance (IMB) buoys Inside ice edge w/ >50cm thickness Ice mass balance T in snow-ice-ocean, T, SLP at surface ~1 year WHOI CRREL (SeaState DRI

  2. Evidence for subduction in the ice shell of Europa

    NASA Astrophysics Data System (ADS)

    Kattenhorn, Simon A.; Prockter, Louise M.

    2014-10-01

    Jupiter’s icy moon Europa has one of the youngest planetary surfaces in the Solar System, implying rapid recycling by some mechanism. Despite ubiquitous extension and creation of new surface area at dilational bands that resemble terrestrial mid-ocean spreading zones, there is little evidence of large-scale contraction to balance the observed extension or to recycle ageing terrains. We address this enigma by presenting several lines of evidence that subduction may be recycling surface material into the interior of Europa’s ice shell. Using Galileo spacecraft images, we produce a tectonic reconstruction of geologic features across a 134,000 km2 region of Europa and find, in addition to dilational band spreading, evidence for transform motions along prominent strike-slip faults, as well as the removal of approximately 20,000 km2 of the surface along a discrete tabular zone. We interpret this zone as a subduction-like convergent boundary that abruptly truncates older geological features and is flanked by potential cryolavas on the overriding ice. We propose that Europa’s ice shell has a brittle, mobile, plate-like system above convecting warmer ice. Hence, Europa may be the only Solar System body other than Earth to exhibit a system of plate tectonics.

  3. Skating start propulsion: three-dimensional kinematic analysis of elite male and female ice hockey players.

    PubMed

    Shell, Jaymee R; Robbins, Shawn M K; Dixon, Philippe C; Renaud, Philippe J; Turcotte, René A; Wu, Tom; Pearsall, David J

    2017-09-01

    The forward skating start is a fundamental skill for male and female ice hockey players. However, performance differences by athlete's sex cannot be fully explained by physiological variables; hence, other factors such as skating technique warrant examination. Therefore, the purpose of this study was to evaluate the body movement kinematics of ice hockey skating starts between elite male and female ice hockey participants. Male (n = 9) and female (n = 10) elite ice hockey players performed five forward skating start accelerations. An 18-camera motion capture system placed on the arena ice surface captured full-body kinematics during the first seven skating start steps within 15 meters. Males' maximum skating speeds were greater than females. Skating technique sex differences were noted: in particular, females presented ~10° lower hip abduction throughout skating stance as well as ~10° greater knee extension at initial ice stance contact, conspicuously followed by a brief cessation in knee extension at the moment of ice contact, not evident in male skaters. Further study is warranted to explain why these skating technique differences exist in relation to factors such as differences in training, equipment, performance level, and anthropometrics.

  4. Time-Domain Terahertz Spectroscopy (0.3 - 7.5 THz) of Molecular Ices of Simple Alcohols

    NASA Astrophysics Data System (ADS)

    McGuire, Brett A.; Ioppolo, Sergio; Allodi, Marco A.; de Vries, Xander; Finneran, Ian; Carroll, Brandon; Blake, Geoffrey

    2014-06-01

    We have recently constructed a time-domain TeraHertz (THz) spectrometer for the study of molecular ices in the far-infrared. Here, we present the results of a study of amorphous and crystalline ices of simple alcohols from methanol (CH_3OH) through butanol (CH_3(CH_2)_3OH) in the region of 0.3 - 7.5 THz. We examine the effects of the length and degree of branching of the carbon chain on the observed spectra arising from the bulk, large-amplitude motions which are prominent in this spectral region. We also discuss these results in an astrochemical context: the application of these spectra to astronomical observations of interstellar ices with Herschel PACS/SPIRE and SOFIA.

  5. Cometary Materials Originating from Interstellar Ices: Clues from Laboratory Experiments

    NASA Astrophysics Data System (ADS)

    Fresneau, A.; Abou Mrad, N.; d'Hendecourt, L. LS; Duvernay, F.; Flandinet, L.; Orthous-Daunay, F.-R.; Vuitton, V.; Thissen, R.; Chiavassa, T.; Danger, G.

    2017-03-01

    We use laboratory experiments to derive information on the chemistry occurring during the evolution of astrophysical ices from dense molecular clouds to interplanetary objects. Through a new strategy that consists of coupling very high resolution mass spectrometry and infrared spectroscopy (FT-IR), we investigate the molecular content of the organic residues synthesized from different initial ice compositions. We also obtain information on the evolution of the soluble part of the residues after their over-irradiation. The results give insight into the role of water ice as a trapping and diluting agent during the chemical evolution. They also give information about the importance of the amount of ammonia in such ices, particularly regarding its competition with the carbon chemistry. All of these results allow us to build a first mapping of the evolution of soluble organic matter based on its chemical and physical history. Furthermore, our results suggest that interstellar ices should lead to organic materials enriched in heteroatoms that present similarities with cometary materials but strongly differ from meteoritic organic material, especially in their C/N ratios.

  6. Online Sea Ice Knowledge and Data Platform: www.seaiceportal.de

    NASA Astrophysics Data System (ADS)

    Treffeisen, R. E.; Nicolaus, M.; Bartsch, A.; Fritzsch, B.; Grosfeld, K.; Haas, C.; Hendricks, S.; Heygster, G.; Hiller, W.; Krumpen, T.; Melsheimer, C.; Nicolaus, A.; Ricker, R.; Weigelt, M.

    2016-12-01

    There is an increasing public interest in sea ice information from both Polar Regions, which requires up-to-date background information and data sets at different levels for various target groups. In order to serve this interest and need, seaiceportal.de (originally: meereisportal.de) was developed as a comprehensive German knowledge platform on sea ice and its snow cover in the Arctic and Antarctic. It was launched in April 2013. Since then, the content and selection of data sets increased and the data portal received increasing attention, also from the international science community. Meanwhile, we are providing near-real time and archived data of many key parameters of sea ice and its snow cover. The data sets result from measurements acquired by various platforms as well as numerical simulations. Satellite observations (e.g., AMSR2, CryoSat-2 and SMOS) of sea ice concentration, freeboard, thickness and drift are available as gridded data sets. Sea ice and snow temperatures and thickness as well as atmospheric parameters are available from autonomous ice-tethered platforms (buoys). Additional ship observations, ice station measurements, and mooring time series are compiled as data collections over the last decade. In parallel, we are continuously extending our meta-data and uncertainty information for all data sets. In addition to the data portal, seaiceportal.de provides general comprehensive background information on sea ice and snow as well as expert statements on recent observations and developments. This content is mostly in German in order to complement the various existing international sites for the German speaking public. We will present the portal, its content and function, but we are also asking for direct user feedback and are open for potential new partners.

  7. Isotopic differentiation and sublattice melting in dense dynamic ice

    NASA Astrophysics Data System (ADS)

    Hermann, Andreas; Ashcroft, N. W.; Hoffmann, Roald

    2013-12-01

    The isotopes of hydrogen provide a unique exploratory laboratory for examining the role of zero point energy (ZPE) in determining the structural and dynamic features of the crystalline ices of water. There are two critical regions of high pressure: (i) near 1 TPa and (ii) near the predicted onset of metallization at around 5 TPa. At the lower pressure of the two, we see the expected small isotopic effects on phase transitions. Near metallization, however, the effects are much greater, leading to a situation where tritiated ice could skip almost entirely a phase available to the other isotopomers. For the higher pressure ices, we investigate in some detail the enthalpics of a dynamic proton sublattice, with the corresponding structures being quite ionic. The resistance toward diffusion of single protons in the ground state structures of high-pressure H2O is found to be large, in fact to the point that the ZPE reservoir cannot overcome these. However, the barriers toward a three-dimensional coherent or concerted motion of protons can be much lower, and the ensuing consequences are explored.

  8. Attraction of posture and motion-trajectory elements of conspecific biological motion in medaka fish.

    PubMed

    Shibai, Atsushi; Arimoto, Tsunehiro; Yoshinaga, Tsukasa; Tsuchizawa, Yuta; Khureltulga, Dashdavaa; Brown, Zuben P; Kakizuka, Taishi; Hosoda, Kazufumi

    2018-06-05

    Visual recognition of conspecifics is necessary for a wide range of social behaviours in many animals. Medaka (Japanese rice fish), a commonly used model organism, are known to be attracted by the biological motion of conspecifics. However, biological motion is a composite of both body-shape motion and entire-field motion trajectory (i.e., posture or motion-trajectory elements, respectively), and it has not been revealed which element mediates the attractiveness. Here, we show that either posture or motion-trajectory elements alone can attract medaka. We decomposed biological motion of the medaka into the two elements and synthesized visual stimuli that contain both, either, or none of the two elements. We found that medaka were attracted by visual stimuli that contain at least one of the two elements. In the context of other known static visual information regarding the medaka, the potential multiplicity of information regarding conspecific recognition has further accumulated. Our strategy of decomposing biological motion into these partial elements is applicable to other animals, and further studies using this technique will enhance the basic understanding of visual recognition of conspecifics.

  9. Solubility of sodium chloride in superionic water ice

    NASA Astrophysics Data System (ADS)

    Hernandez, Jean-Alexis; Caracas, Razvan

    2017-04-01

    In icy planets, complex interactions are expected to occur at the interface between the rocky core and the icy mantle composed of mixtures based on water, methane, and ammonia [1, 2]. The hydration of the silicate layer produces salts (MgSO4, NaCl, KCl) that could mix with the ice, and change considerably its properties [3]. Here, we used first-principles molecular dynamics to investigate the stability and the properties of the binary system NaCl-H2O at the relevant thermodynamic conditions for planetary interiors up to ice giants. In these conditions, pure water ice undergoes several transitions that affect considerably its ionic conductivity and its elastic properties [4]. We calculated the Gibbs free energy of mixing along the NaCl-H2O binary by applying Boltzmann statistics to account for energy differences between configurations. We evaluated vibrational entropy from the vibrational spectra of the nuclei motion using the recently developed two phases thermodynamic memory function (2PT-MF) model for multicomponent systems [5, 6]. We show that the solubility of NaCl in water ice at 1600 K is less than 0.78 mol%. We find that salty ices present an extended superionic domain toward high pressures in comparison to pure water ice. Finally, we predict that the complete symmetrization of the hydrogen bonds (i.e. transition to ice X) occurs at higher pressure than in pure water ice, as observed in LiCl doped water ice at ambient temperature [7]. References: [1] M. R. Frank, C. E. Runge, H. P. Scott, S. J. Maglio, J. Olson, V. B. Prakapenka, G. Shen, PEPI 155 (2006) 152-162 [2] B. Journaux, I. Daniel, R. Caracas, G. Montagnac, H. Cardon, Icarus 226 (2013) 355-363 [3] S. Klotz, L. E. Bove, T. Strässle, T. C. Hansen, A. M. Saitta, Nature Materials 8 (2009) 405-409 [4] J. -A. Hernandez, R. Caracas, Phys. Rev. Lett. 117 (2016) 135503 [5] M. P. Desjarlais, Phys. Rev. E 88 (2013) 062145 [6] M. French, M. P. Desjarlais, R. Redmer, Phys. Rev. E 93 (2016) 022140 [7] L. E. Bove

  10. Ice Front at Venable Ice Shelf

    NASA Image and Video Library

    2013-06-13

    This photo, taken onboard the Chilean Navy P3 aircraft, shows the ice front of Venable Ice Shelf, West Antarctica, in October 2008. It is an example of a small-size ice shelf that is a large melt water producer.

  11. Looking Into and Through the Ross Ice Shelf - ROSETTA-ICE

    NASA Astrophysics Data System (ADS)

    Bell, R. E.

    2015-12-01

    Our current understanding of the structure and stability of the Ross Ice Shelf is based on satellite studies of the ice surface and the 1970's RIGGS program. The study of the flowlines evident in the MODIS imagery combined with surface geophysics has revealed a complex history with ice streams Mercer, Whillans and Kamb changing velocity over the past 1000 years. Here, we present preliminary IcePod and IceBridge radar data acquired in December 2014 and November 2013 across the Ross Ice Shelf that show clearly, for the first time, the structure of the ice shelf and provide insights into ice-ocean interaction. The three major layers of the ice shelf are (1) the continental meteoric ice layer), ice formed on the grounded ice sheet that entered the ice shelf where ice streams and outlet glaciers crossed the grounding line (2) the locally accumulating meteoric ice layer, ice and snow that forms from snowfall on the floating ice shelf and (3) a basal marine ice layer. The locally accumulating meteoric ice layer contains well-defined internal layers that are generally parallel to the ice surface and thickens away from the grounding line and reaches a maximum thickness of 220m along the line crossing Roosevelt Island. The continental meteoric layer is located below a broad irregular internal reflector, and is characterized by irregular internal layers. These internal layers are often folded, likely a result of deformation as the ice flowed across the grounding line. The basal marine ice layer, up to 50m thick, is best resolved in locations where basal crevasses are present, and appears to thicken along the flow at rates of decimeters per year. Each individual flowband of the ice shelf contains layers that are distinct in their structure. For example, the thickness of the locally accumulated layer is a function of both the time since crossing the grounding line and the thickness of the incoming ice. Features in the meteoric ice, such as distinct folds, can be traced between

  12. Advanced instrumentation for aircraft icing research

    NASA Technical Reports Server (NTRS)

    Bachalo, W.; Smith, J.; Rudoff, R.

    1990-01-01

    A compact and rugged probe based on the phase Doppler method was evaluated as a means for characterizing icing clouds using airborne platforms and for advancing aircraft icing research in large scale wind tunnels. The Phase Doppler Particle Analyzer (PDPA) upon which the new probe was based is now widely recognized as an accurate method for the complete characterization of sprays. The prototype fiber optic-based probe was evaluated in simulated aircraft icing clouds and found to have the qualities essential to providing information that will advance aircraft icing research. Measurement comparisons of the size and velocity distributions made with the standard PDPA and the fiber optic probe were in excellent agreement as were the measurements of number density and liquid water content. Preliminary testing in the NASA Lewis Icing Research Tunnel (IRT) produced reasonable results but revealed some problems with vibration and signal quality at high speeds. The cause of these problems were identified and design changes were proposed to eliminate the shortcomings of the probe.

  13. Rapid Ice-Sheet Changes and Mechanical Coupling to Solid-Earth/Sea-Level and Space Geodetic Observation

    NASA Astrophysics Data System (ADS)

    Adhikari, S.; Ivins, E. R.; Larour, E. Y.

    2015-12-01

    Perturbations in gravitational and rotational potentials caused by climate driven mass redistribution on the earth's surface, such as ice sheet melting and terrestrial water storage, affect the spatiotemporal variability in global and regional sea level. Here we present a numerically accurate, computationally efficient, high-resolution model for sea level. Unlike contemporary models that are based on spherical-harmonic formulation, the model can operate efficiently in a flexible embedded finite-element mesh system, thus capturing the physics operating at km-scale yet capable of simulating geophysical quantities that are inherently of global scale with minimal computational cost. One obvious application is to compute evolution of sea level fingerprints and associated geodetic and astronomical observables (e.g., geoid height, gravity anomaly, solid-earth deformation, polar motion, and geocentric motion) as a companion to a numerical 3-D thermo-mechanical ice sheet simulation, thus capturing global signatures of climate driven mass redistribution. We evaluate some important time-varying signatures of GRACE inferred ice sheet mass balance and continental hydrological budget; for example, we identify dominant sources of ongoing sea-level change at the selected tide gauge stations, and explain the relative contribution of different sources to the observed polar drift. We also report our progress on ice-sheet/solid-earth/sea-level model coupling efforts toward realistic simulation of Pine Island Glacier over the past several hundred years.

  14. SUCCESS Evidence for Cirrus Cloud Ice Nucleation Mechanisms

    NASA Technical Reports Server (NTRS)

    Jensen, Eric; Gore, Warren J. Y. (Technical Monitor)

    1997-01-01

    During the SUCCESS mission, several measurements were made which should improve our understanding of ice nucleation processes in cirrus clouds. Temperature and water vapor concentration were made with a variety of instruments on the NASA DC-8. These observations should provide accurate upper tropospheric humidities. In particular, we will evaluate what humidities are required for ice nucleation. Preliminary results suggest that substantial supersaturations frequently exist in the upper troposphere. The leading-edge region of wave-clouds (where ice nucleation occurs) was sampled extensively at temperatures near -40 and -60C. These observations should give precise information about conditions required for ice nucleation. In addition, we will relate the observed aerosol composition and size distributions to the ice formation observed to evaluate the role of soot or mineral particles on ice nucleation. As an alternative technique for determining what particles act as ice nuclei, numerous samples of aerosols inside ice crystals were taken. In some cases, large numbers of aerosols were detected in each crystal, indicating that efficient scavenging occurred. Analysis of aerosols in ice crystals when only one particle per crystal was detected should help with the ice nucleation issue. Direct measurements of the ice nucleating activity of ambient aerosols drawn into airborne cloud chambers were also made. Finally, measurements of aerosols and ice crystals in contrails should indicate whether aircraft exhaust soot particles are effective ice nuclei.

  15. Extensive massive basal-ice structures in West Antarctica relate to ice-sheet anisotropy and ice-flow

    NASA Astrophysics Data System (ADS)

    Ross, N.; Bingham, R. G.; Corr, H. F. J.; Siegert, M. J.

    2016-12-01

    Complex structures identified within both the East Antarctic and Greenland ice sheets are thought to be generated by the action of basal water freezing to the ice-sheet base, evolving under ice flow. Here, we use ice-penetrating radar to image an extensive series of similarly complex basal ice facies in West Antarctica, revealing a thick (>500 m) tectonised unit in an area of cold-based and relatively slow-flowing ice. We show that major folding and overturning of the unit perpendicular to ice flow elevates deep, warm ice into the mid ice-sheet column. Fold axes align with present ice flow, and axis amplitudes increase down-ice, suggesting long-term consistency in the direction and convergence of flow. In the absence of basal water, and the draping of the tectonised unit over major subglacial mountain ranges, the formation of the unit must be solely through the deformation of meteoric ice. Internal layer radar reflectivity is consistently greater parallel to flow compared with the perpendicular direction, revealing ice-sheet crystal anisotropy is associated with the folding. By linking layers to the Byrd ice-core site, we show the basal ice dates to at least the last glacial cycle and may be as old as the last interglacial. Deformation of deep-ice in this sector of WAIS, and potentially elsewhere in Antarctica, may be caused by differential shearing at interglacial-glacial boundaries, in a process analogous to that proposed for interior Greenland. The scale and heterogeneity of the englacial structures, and their subsequent impact on ice sheet rheology, means that the nature of ice flow across the bulk of West Antarctica must be far more complex that is currently accounted for by any numerical ice sheet model.

  16. A Terminal Area Icing Remote Sensing System

    NASA Technical Reports Server (NTRS)

    Reehorst, Andrew L.; Serke, David J.

    2014-01-01

    NASA and the National Center for Atmospheric Research (NCAR) have developed an icing remote sensing technology that has demonstrated skill at detecting and classifying icing hazards in a vertical column above an instrumented ground station. This technology is now being extended to provide volumetric coverage surrounding an airport. With volumetric airport terminal area coverage, the resulting icing hazard information will be usable by aircrews, traffic control, and airline dispatch to make strategic and tactical decisions regarding routing when conditions are conducive to airframe icing. Building on the existing vertical pointing system, the new method for providing volumetric coverage will utilize cloud radar, microwave radiometry, and NEXRAD radar. This terminal area icing remote sensing system will use the data streams from these instruments to provide icing hazard classification along the defined approach paths into an airport. Strategies for comparison to in-situ instruments on aircraft and weather balloons for a planned NASA field test are discussed, as are possible future applications into the NextGen airspace system.

  17. Sea ice thickness derived from radar altimetry: achievements and future plans

    NASA Astrophysics Data System (ADS)

    Ricker, R.; Hendricks, S.; Paul, S.; Kaleschke, L.; Tian-Kunze, X.

    2017-12-01

    The retrieval of Arctic sea ice thickness is one of the major objectives of the European CryoSat-2 radar altimeter mission and the 7-year long period of operation has produced an unprecedented record of monthly sea ice thickness information. We present CryoSat-2 results that show changes and variability of Arctic sea ice from the winter season 2010/2011 until fall 2017. CryoSat-2, however, was designed to observe thick perennial sea ice, while an accurate retrieval of thin seasonal sea ice is more challenging. We have therefore developed a method of completing and improving Arctic sea ice thickness information within the ESA SMOS+ Sea Ice project by merging CryoSat-2 and SMOS sea ice thickness retrievals. Using these satellite missions together overcomes several issues of single-mission retrievals and provides a more accurate and comprehensive view on the state of Arctic sea-ice thickness at higher temporal resolution. However, stand-alone CryoSat-2 observations can be used as reference data for the exploitation of older pulse-limited radar altimetry data sets over sea ice. In order to observe trends in sea ice thickness, it is required to minimize inter-mission biases between subsequent satellite missions. Within the ESA Climate Change Initiative (CCI) on Sea Ice, a climate data record of sea ice thickness derived from satellite radar altimetry has been developed for both hemispheres, based on the 15-year (2002-2017) monthly retrievals from Envisat and CryoSat-2 and calibrated in the 2010-2012 overlap period. The next step in promoting the utilization of sea ice thickness information from radar altimetry is to provide products by a service that meets the requirements for climate applications and operational systems. This task will be pursued within a Copernicus Climate Change Service project (C3S). This framework also aims to include additional sensors such as onboard Sentinel-3 and we will show first results of Sentinel-3 Arctic sea-ice thickness. These

  18. High-Resolution Mapping of Sea Ice, Icebergs and Growlers in Kongsfjorden, Svalbard, using Ground Based Radar, Satellite, and UAV

    NASA Astrophysics Data System (ADS)

    Lauknes, T. R.; Rouyet, L.; Solbø, S. A.; Sivertsen, A.; Storvold, R.; Akbari, V.; Negrel, J.; Gerland, S.

    2016-12-01

    The dynamics of sea ­ice has a well­ recognized role in the climate system and its extent and evolution is impacted by the global warming. In addition, calving of icebergs and growlers at the tidewater glacier fronts is a component of the mass loss in polar regions. Understanding of calving and ice ­ocean interaction, in particular at tidewater glacier front remains elusive, and a problematic uncertainty in climate change projections. Studying the distribution, volumetry and motion of sea ­ice, icebergs and growlers is thus essential to understand their interactions with the environment in order to be able to predict at short­term their drifts, e.g. to mitigate the risk for shipping, and at longer term the multiple relations with climate changes. Here, we present the results from an arctic fieldwork campaign conducted in Kongsfjorden, Svalbard in April 2016, where we used different remote sensing instruments to observe dynamics of sea ice, icebergs, and growlers. We used a terrestrial radar system, imaging the study area every second minute during the observation period. At the front of the Kronebreen glacier, calving events can be detected and the drift of the generated icebergs and growlers tracked with unprecedented spatial and temporal resolution. During the field campaign, we collected four Radarsat-2 quad-pol images, that will be used to classify the different types of sea ice. In addition, we used small unmanned aircraft (UAS) instrumented with high resolution cameras capturing HD video and still pictures. This allows to map and measure the size of icebergs and ice floes. Such information is essential to validate sensitivity and detection limits from the ground and satellite based measurements.

  19. Ice Roughness in Short Duration SLD Icing Events

    NASA Technical Reports Server (NTRS)

    McClain, Stephen T.; Reed, Dana; Vargas, Mario; Kreeger, Richard E.; Tsao, Jen-Ching

    2014-01-01

    Ice accretion codes depend on models of roughness parameters to account for the enhanced heat transfer during the ice accretion process. While mitigating supercooled large droplet (SLD or Appendix O) icing is a significant concern for manufacturers seeking future vehicle certification due to the pending regulation, historical ice roughness studies have been performed using Appendix C icing clouds which exhibit mean volumetric diameters (MVD) much smaller than SLD clouds. Further, the historical studies of roughness focused on extracting parametric representations of ice roughness using multiple images of roughness elements. In this study, the ice roughness developed on a 21-in. NACA 0012 at 0deg angle of attack exposed to short duration SLD icing events was measured in the Icing Research Tunnel at the NASA Glenn Research Center. The MVD's used in the study ranged from 100 micrometer to 200 micrometers, in a 67 m/s flow, with liquid water contents of either 0.6 gm/cubic meters or 0.75 gm/cubic meters. The ice surfaces were measured using a Romer Absolute Arm laser scanning system. The roughness associated with each surface point cloud was measured using the two-dimensional self-organizing map approach developed by McClain and Kreeger (2013) resulting in statistical descriptions of the ice roughness.

  20. Mechanical and thermal properties of planetologically important ices

    NASA Technical Reports Server (NTRS)

    Croft, Steven K.

    1987-01-01

    Two squences of ice composition were proposed for the icy satellites: a dense nebula model and a solar nebula model. Careful modeling of the structure, composition, and thermal history of satellites composed of these various ices requires quantitative information on the density, compressibility, thermal expansion, heat capacity, and thermal conductivity. Equations of state were fitted to the density data of the molecular ices. The unusual thermal and mechanical properties of the molecular and binary ices suggest a larger range of phenomena than previously anticipated, sufficiently complex perhaps to account for many of the unusual geologic phenomena found on the icy satellites.

  1. An Arctic Ice/Ocean Coupled Model with Wave Interactions

    DTIC Science & Technology

    2013-09-30

    motion in the presence of currents and waves. In the wave attenuation experiments, between 35 and 80 ‘ice floes’ (0.99 m diameter wooden disks) were...moored with springs to the tank floor and plane waves were sent down, with an array of wave probes to measure the reflected and transmitted waves...waves propagating in the MIZ as opposed to the acoustic wave solution shown. This outcome offers significant new capabilities for tracking fully

  2. Neural Integration of Information Specifying Human Structure from Form, Motion, and Depth

    PubMed Central

    Jackson, Stuart; Blake, Randolph

    2010-01-01

    Recent computational models of biological motion perception operate on ambiguous two-dimensional representations of the body (e.g., snapshots, posture templates) and contain no explicit means for disambiguating the three-dimensional orientation of a perceived human figure. Are there neural mechanisms in the visual system that represent a moving human figure’s orientation in three dimensions? To isolate and characterize the neural mechanisms mediating perception of biological motion, we used an adaptation paradigm together with bistable point-light (PL) animations whose perceived direction of heading fluctuates over time. After exposure to a PL walker with a particular stereoscopically defined heading direction, observers experienced a consistent aftereffect: a bistable PL walker, which could be perceived in the adapted orientation or reversed in depth, was perceived predominantly reversed in depth. A phase-scrambled adaptor produced no aftereffect, yet when adapting and test walkers differed in size or appeared on opposite sides of fixation aftereffects did occur. Thus, this heading direction aftereffect cannot be explained by local, disparity-specific motion adaptation, and the properties of scale and position invariance imply higher-level origins of neural adaptation. Nor is disparity essential for producing adaptation: when suspended on top of a stereoscopically defined, rotating globe, a context-disambiguated “globetrotter” was sufficient to bias the bistable walker’s direction, as were full-body adaptors. In sum, these results imply that the neural signals supporting biomotion perception integrate information on the form, motion, and three-dimensional depth orientation of the moving human figure. Models of biomotion perception should incorporate mechanisms to disambiguate depth ambiguities in two-dimensional body representations. PMID:20089892

  3. Wave-Ice and Air-Ice-Ocean Interaction During the Chukchi Sea Ice Edge Advance

    DTIC Science & Technology

    2015-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Wave -Ice and Air-Ice-Ocean Interaction During the...Chukchi Sea in the late summer have potentially changed the impact of fall storms by creating wave fields in the vicinity of the advancing ice edge. A...first) wave -ice interaction field experiment that adequately documents the relationship of a growing pancake ice cover with a time and space varying

  4. 49 CFR 175.900 - Handling requirements for carbon dioxide, solid (dry ice).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... (dry ice). 175.900 Section 175.900 Transportation Other Regulations Relating to Transportation PIPELINE....900 Handling requirements for carbon dioxide, solid (dry ice). Carbon dioxide, solid (dry ice) when... operator must ensure that the ground staff is informed that the dry ice is being loaded or is on board the...

  5. 49 CFR 175.900 - Handling requirements for carbon dioxide, solid (dry ice).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... (dry ice). 175.900 Section 175.900 Transportation Other Regulations Relating to Transportation PIPELINE....900 Handling requirements for carbon dioxide, solid (dry ice). Carbon dioxide, solid (dry ice) when... operator must ensure that the ground staff is informed that the dry ice is being loaded or is on board the...

  6. 49 CFR 175.900 - Handling requirements for carbon dioxide, solid (dry ice).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... (dry ice). 175.900 Section 175.900 Transportation Other Regulations Relating to Transportation PIPELINE....900 Handling requirements for carbon dioxide, solid (dry ice). Carbon dioxide, solid (dry ice) when... operator must ensure that the ground staff is informed that the dry ice is being loaded or is on board the...

  7. 49 CFR 175.900 - Handling requirements for carbon dioxide, solid (dry ice).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... (dry ice). 175.900 Section 175.900 Transportation Other Regulations Relating to Transportation PIPELINE....900 Handling requirements for carbon dioxide, solid (dry ice). Carbon dioxide, solid (dry ice) when... operator must ensure that the ground staff is informed that the dry ice is being loaded or is on board the...

  8. 49 CFR 175.900 - Handling requirements for carbon dioxide, solid (dry ice).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... (dry ice). 175.900 Section 175.900 Transportation Other Regulations Relating to Transportation PIPELINE....900 Handling requirements for carbon dioxide, solid (dry ice). Carbon dioxide, solid (dry ice) when... operator must ensure that the ground staff is informed that the dry ice is being loaded or is on board the...

  9. Sea-level Fingerprinting, Vertical Crustal Motion from GIA, and Projections of Relative Sea-level Change in the Canadian Arctic

    NASA Astrophysics Data System (ADS)

    James, Thomas; Simon, Karen; Forbes, Donald; Dyke, Arthur; Mazzotti, Stephane

    2010-05-01

    We present projections of relative sea-level rise in the 21st century for communities in the Canadian Arctic. First, for selected communities, we determine the sea-level fingerprinting response from Antarctica, Greenland, and mountain glaciers and ice caps. Then, for various published projections of global sea-level change in the 21st century, we determine the local amount of "absolute" sea-level change. We next determine the vertical land motion arising from glacial isostatic adjustment (GIA) and incorporate this into the estimates of absolute sea-level change to obtain projections of relative sea-level change. The sea-level fingerprinting effect is especially important in the Canadian Arctic owing to proximity to Arctic ice caps and especially to the Greenland ice sheet. Its effect is to reduce the range of projected relative sea-level change compared to the range of global sea-level projections. Vertical crustal motion is assessed through empirically derived regional isobases, the Earth's predicted response to ice-sheet loading and unloading by the ICE-5G ice sheet reconstruction, and Global Positioning System vertical velocities. Owing to the large rates of crustal uplift from glacial isostatic adjustment across a large region of central Arctic Canada, many communities are projected to experience relative sea-level fall despite projections of global sea-level rise. Where uplift rates are smaller, such as eastern Baffin Island and the western Canadian Arctic, sea-level is projected to rise.

  10. Ice Flow in the North East Greenland Ice Stream

    NASA Technical Reports Server (NTRS)

    Joughin, Ian; Kwok, Ron; Fahnestock, M.; MacAyeal, Doug

    1999-01-01

    Early observations with ERS-1 SAR image data revealed a large ice stream in North East Greenland (Fahnestock 1993). The ice stream has a number of the characteristics of the more closely studied ice streams in Antarctica, including its large size and gross geometry. The onset of rapid flow close to the ice divide and the evolution of its flow pattern, however, make this ice stream unique. These features can be seen in the balance velocities for the ice stream (Joughin 1997) and its outlets. The ice stream is identifiable for more than 700 km, making it much longer than any other flow feature in Greenland. Our research goals are to gain a greater understanding of the ice flow in the northeast Greenland ice stream and its outlet glaciers in order to assess their impact on the past, present, and future mass balance of the ice sheet. We will accomplish these goals using a combination of remotely sensed data and ice sheet models. We are using satellite radar interferometry data to produce a complete maps of velocity and topography over the entire ice stream. We are in the process of developing methods to use these data in conjunction with existing ice sheet models similar to those that have been used to improve understanding of the mechanics of flow in Antarctic ice streams.

  11. A coupled ice-ocean model of ice breakup and banding in the marginal ice zone

    NASA Technical Reports Server (NTRS)

    Smedstad, O. M.; Roed, L. P.

    1985-01-01

    A coupled ice-ocean numerical model for the marginal ice zone is considered. The model consists of a nonlinear sea ice model and a two-layer (reduced gravity) ocean model. The dependence of the upwelling response on wind stress direction is discussed. The results confirm earlier analytical work. It is shown that there exist directions for which there is no upwelling, while other directions give maximum upwelling in terms of the volume of uplifted water. The ice and ocean is coupled directly through the stress at the ice-ocean interface. An interesting consequence of the coupling is found in cases when the ice edge is almost stationary. In these cases the ice tends to break up a few tenths of kilometers inside of the ice edge.

  12. Active and Passive Microwave Determination of the Circulation and Characteristics of Weddell and Ross Sea Ice

    NASA Technical Reports Server (NTRS)

    Drinkwater, Mark R.; Liu, Xiang

    2000-01-01

    A combination of satellite microwave data sets are used in conjunction with ECMWF (Medium Range Weather Forecasts) and NCEP (National Center for Environment Prediction) meteorological analysis fields to investigate seasonal variability in the circulation and sea-ice dynamics of the Weddell and Ross Seas. Results of sea-ice tracking using SSM/I (Special Sensor Microwave Imager), Scatterometer and SAR images are combined with in-situ data derived from Argos buoys and GPS drifters to validate observed drift patterns. Seasonal 3-month climatologies of ice motion and drift speed variance illustrate the response of the sea-ice system to seasonal forcing. A melt-detection algorithm is used to track the onset of seasonal melt, and to determine the extent and duration of atmospherically-led surface melting during austral summer. Results show that wind-driven drift regulates the seasonal distribution and characteristics of sea-ice and the intensity of the cyclonic Gyre circulation in these two regions.

  13. Icing flight research: Aerodynamic effects of ice and ice shape documentation with stereo photography

    NASA Technical Reports Server (NTRS)

    Mikkelsen, K. L.; Mcknight, R. C.; Ranaudo, R. J.; Perkins, P. J., Jr.

    1985-01-01

    Aircraft icing flight research was performed in natural icing conditions. A data base consisting of icing cloud measurements, ice shapes, and aerodynamic measurements is being developed. During research icing encounters the icing cloud was continuously measured. After the encounter, the ice accretion shapes on the wing were documented with a stereo camera system. The increase in wing section drag was measured with a wake survey probe. The overall aircraft performance loss in terms of lift and drag coefficient changes was obtained by steady level speed/power measurements. Selective deicing of the airframe components was performed to determine their contributions to the total drag increase. Engine out capability in terms of power available was analyzed for the iced aircraft. It was shown that the stereo photography system can be used to document ice shapes in flight and that the wake survey probe can measure increases in wing section drag caused by ice. On one flight, the wing section drag coefficient (c sub d) increased approximately 120 percent over the uniced baseline at an aircraft angle of attack of 6 deg. On another flight, the aircraft darg coefficient (c sub d) increased by 75 percent over the uniced baseline at an aircraft lift coefficient (C sub d) of 0.5.

  14. Icing flight research - Aerodynamic effects of ice and ice shape documentation with stereo photography

    NASA Technical Reports Server (NTRS)

    Mikkelsen, K. L.; Mcknight, R. C.; Ranaudo, R. J.; Perkins, P. J., Jr.

    1985-01-01

    Aircraft icing flight research was performed in natural icing conditions. A data base consisting of icing cloud measurements, ice shapes, and aerodynamic measurements is being developed. During research icing encounters the icing cloud was continuously measured. After the encounter, the ice accretion shapes on the wing were documented with a stereo camera system. The increase in wing section drag was measured with a wake survey probe. The overall aircraft performance loss in terms of lift and drag coefficient changes were obtained by steady level speed/power measurements. Selective deicing of the airframe components was performed to determine their contributions to the total drag increase. Engine out capability in terms of power available was analyzed for the iced aircraft. It was shown that the stereo photography system can be used to document ice shapes in flight and that the wake survey probe can measure increases in wing section drag caused by ice. On one flight, the wing section drag coefficient (c sub d) increased approximately 120 percent over the uniced baseline at an aircraft angle of attack of 6 deg. On another flight, the aircraft drag coefficient (c sub d) increased by 75 percent over the uniced baseline at an aircraft lift coefficient (c sub d) of 0.5.

  15. Ice Block Avalanche

    NASA Image and Video Library

    2018-06-25

    One of the most actively changing areas on Mars are the steep edges of the North Polar layered deposits. This image from NASA's Mars Reconnaissance Orbiter (MRO) shows many new ice blocks compared to an earlier image in December 2006. An animation shows one example, where a section of ice cliff collapsed. The older image (acquired in bin-2 mode) is not as sharp as the newer one. HiRISE has been re-imaging regions first photographed in 2006 through 2007, six Mars years ago. This long baseline allows us to see large, rare changes as well as many smaller changes. More information is available at https://photojournal.jpl.nasa.gov/catalog/PIA22535

  16. Increased Arctic sea ice drift alters adult female polar bear movements and energetics

    USGS Publications Warehouse

    Durner, George M.; Douglas, David C.; Albeke, Shannon; Whiteman, John P.; Amstrup, Steven C.; Richardson, Evan; Wilson, Ryan R.; Ben-David, Merav

    2017-01-01

    Recent reductions in thickness and extent have increased drift rates of Arctic sea ice. Increased ice drift could significantly affect the movements and the energy balance of polar bears (Ursus maritimus) which forage, nearly exclusively, on this substrate. We used radio-tracking and ice drift data to quantify the influence of increased drift on bear movements, and we modeled the consequences for energy demands of adult females in the Beaufort and Chukchi seas during two periods with different sea ice characteristics. Westward and northward drift of the sea ice used by polar bears in both regions increased between 1987–1998 and 1999–2013. To remain within their home ranges, polar bears responded to the higher westward ice drift with greater eastward movements, while their movements north in the spring and south in fall were frequently aided by ice motion. To compensate for more rapid westward ice drift in recent years, polar bears covered greater daily distances either by increasing their time spent active (7.6%–9.6%) or by increasing their travel speed (8.5%–8.9%). This increased their calculated annual energy expenditure by 1.8%–3.6% (depending on region and reproductive status), a cost that could be met by capturing an additional 1–3 seals/year. Polar bears selected similar habitats in both periods, indicating that faster drift did not alter habitat preferences. Compounding reduced foraging opportunities that result from habitat loss; changes in ice drift, and associated activity increases, likely exacerbate the physiological stress experienced by polar bears in a warming Arctic.

  17. Ice recrystallization inhibition in ice cream as affected by ice structuring proteins from winter wheat grass.

    PubMed

    Regand, A; Goff, H D

    2006-01-01

    Ice recrystallization in quiescently frozen sucrose solutions that contained some of the ingredients commonly found in ice cream and in ice cream manufactured under commercial conditions, with or without ice structuring proteins (ISP) from cold-acclimated winter wheat grass extract (AWWE), was assessed by bright field microscopy. In sucrose solutions, critical differences in moisture content, viscosity, ionic strength, and other properties derived from the presence of other ingredients (skim milk powder, corn syrup solids, locust bean gum) caused a reduction in ice crystal growth. Significant ISP activity in retarding ice crystal growth was observed in all solutions (44% for the most complex mix) containing 0.13% total protein from AWWE. In heat-shocked ice cream, ice recrystallization rates were significantly reduced 40 and 46% with the addition of 0.0025 and 0.0037% total protein from AWWE. The ISP activity in ice cream was not hindered by its inclusion in mix prior to pasteurization. A synergistic effect between ISP and stabilizer was observed, as ISP activity was reduced in the absence of stabilizer in ice cream formulations. A remarkably smoother texture for ice creams containing ISP after heat-shock storage was evident by sensory evaluation. The efficiency of ISP from AWWE in controlling ice crystal growth in ice cream has been demonstrated.

  18. X-Ray Absorption Spectra of Amorphous Ices from GW Quasiparticle Calculation

    NASA Astrophysics Data System (ADS)

    Kong, Lingzhu; Car, Roberto

    2013-03-01

    We use a GW approach[2] to compute the x-ray absorption spectra of model low- and high-density amorphous ice structures(LDA and HDA)[3]. We include the structural effects of quantum zero point motion using colored-noise Langevin molecular dynamics[4]. The calculated spectra differences in the main and post edge region between LDA and HDA agree well with experimental observations. We attribute these differences to the presence of interstitial molecules within the first coordination shell range in HDA. This assignment is further supported by a calculation of the spectrum of ice VIII, a high-pressure structure that maximizes the number of interstitial molecules and, accordingly, shows a much weaker post-edge feature. We further rationalize the spectral similarity between HDA and liquid water, and between LDA and ice Ih in terms of the respective similarities in the H-bond network topology and bond angle distributions. Supported by grants DOE-DE-SC0005180, DOE DE-SC0008626 and NSF-CHE-0956500.

  19. Atmosphere-Ice-Ocean-Ecosystem Processes in a Thinner Arctic Sea Ice Regime: The Norwegian Young Sea ICE (N-ICE2015) Expedition

    NASA Astrophysics Data System (ADS)

    Granskog, Mats A.; Fer, Ilker; Rinke, Annette; Steen, Harald

    2018-03-01

    Arctic sea ice has been in rapid decline the last decade and the Norwegian young sea ICE (N-ICE2015) expedition sought to investigate key processes in a thin Arctic sea ice regime, with emphasis on atmosphere-snow-ice-ocean dynamics and sea ice associated ecosystem. The main findings from a half-year long campaign are collected into this special section spanning the Journal of Geophysical Research: Atmospheres, Journal of Geophysical Research: Oceans, and Journal of Geophysical Research: Biogeosciences and provide a basis for a better understanding of processes in a thin sea ice regime in the high Arctic. All data from the campaign are made freely available to the research community.

  20. Uncertainty Quantification for Ice Sheet Science and Sea Level Projections

    NASA Astrophysics Data System (ADS)

    Boening, C.; Schlegel, N.; Limonadi, D.; Schodlok, M.; Seroussi, H. L.; Larour, E. Y.; Watkins, M. M.

    2017-12-01

    In order to better quantify uncertainties in global mean sea level rise projections and in particular upper bounds, we aim at systematically evaluating the contributions from ice sheets and potential for extreme sea level rise due to sudden ice mass loss. Here, we take advantage of established uncertainty quantification tools embedded within the Ice Sheet System Model (ISSM) as well as sensitivities to ice/ocean interactions using melt rates and melt potential derived from MITgcm/ECCO2. With the use of these tools, we conduct Monte-Carlo style sampling experiments on forward simulations of the Antarctic ice sheet, by varying internal parameters and boundary conditions of the system over both extreme and credible worst-case ranges. Uncertainty bounds for climate forcing are informed by CMIP5 ensemble precipitation and ice melt estimates for year 2100, and uncertainty bounds for ocean melt rates are derived from a suite of regional sensitivity experiments using MITgcm. Resulting statistics allow us to assess how regional uncertainty in various parameters affect model estimates of century-scale sea level rise projections. The results inform efforts to a) isolate the processes and inputs that are most responsible for determining ice sheet contribution to sea level; b) redefine uncertainty brackets for century-scale projections; and c) provide a prioritized list of measurements, along with quantitative information on spatial and temporal resolution, required for reducing uncertainty in future sea level rise projections. Results indicate that ice sheet mass loss is dependent on the spatial resolution of key boundary conditions - such as bedrock topography and melt rates at the ice-ocean interface. This work is performed at and supported by the California Institute of Technology's Jet Propulsion Laboratory. Supercomputing time is also supported through a contract with the National Aeronautics and Space Administration's Cryosphere program.

  1. Remote Sensing of Terrestrial Snow and Ice for Global Change Studies

    NASA Technical Reports Server (NTRS)

    Kelly, Richard; Hall, Dorothy K.

    2007-01-01

    Snow and ice play a significant role in the Earth's water cycle and are sensitive and informative indicators climate change. Significant changes in terrestrial snow and ice water storage are forecast, and while evidence of large-scale changes is emerging, in situ measurements alone are insufficient to help us understand and explain these changes. Imaging remote sensing systems are capable of successfully observing snow and ice in the cryosphere. This chapter examines how those remote sensing sensors, that now have more than 35 years of observation records, are capable of providing information about snow cover, snow water equivalent, snow melt, ice sheet temperature and ice sheet albedo. While significant progress has been made, especially in the last five years, a better understanding is required of the records of satellite observations of these cryospheric variables.

  2. An experimental study of icing control using DBD plasma actuator

    NASA Astrophysics Data System (ADS)

    Cai, Jinsheng; Tian, Yongqiang; Meng, Xuanshi; Han, Xuzhao; Zhang, Duo; Hu, Haiyang

    2017-08-01

    Ice accretion on aircraft or wind turbine has been widely recognized as a big safety threat in the past decades. This study aims to develop a new approach for icing control using an AC-DBD plasma actuator. The experiments of icing control (i.e., anti-/de-icing) on a cylinder model were conducted in an icing wind tunnel with controlled wind speed (i.e., 15 m/s) and temperature (i.e., -10°C). A digital camera was used to record the dynamic processes of plasma anti-icing and de-icing whilst an infrared imaging system was utilized to map the surface temperature variations during the anti-/de-icing processes. It was found that the AC-DBD plasma actuator is very effective in both anti-icing and de-icing operations. While no ice formation was observed when the plasma actuator served as an anti-icing device, a complete removal of the ice layer with a thickness of 5 mm was achieved by activating the plasma actuator for ˜150 s. Such information demonstrated the feasibility of plasma anti-/de-icing, which could potentially provide more effective and safer icing mitigation strategies.

  3. Common-midpoint radar surveys of ice sheets: a tool for better ice and bed property inversions

    NASA Astrophysics Data System (ADS)

    Holschuh, N.; Christianson, K.; Anandakrishnan, S.; Alley, R. B.; Jacobel, R. W.

    2016-12-01

    In response to the demand for observationally derived boundary conditions in ice-sheet models, geophysicists are striving to more quantitatively interpret the reflection amplitudes of ice penetrating radar data. Inversions for ice-flow parameters and basal properties typically use common-offset radar data, which contain a single observation of bed reflection amplitude at each location in the survey; however, the radar equation has more than one unknown - ice temperature, subglacial water content, and bedrock roughness cannot be uniquely determined without additional constraints. In this study, we adapt traditional seismic property inversion techniques to radar data, using additional information collected with a common-midpoint (CMP) radar survey geometry (which varies the source-receiver offset for each subsurface target). Using two of the first common-midpoint ice-penetrating radar data sets collected over thick ice in Antarctica and Greenland, we test the hypothesis that these data can be used to disentangle the contributions of ice conductivity and bed permittivity to the received reflection amplitudes. We focus specifically on the corrections for the angular dependence of antenna gain and surface reflectivity, refractive focusing effects, and surface scattering losses. Inferred temperature profiles, derived from the constrained ice conductivities at Kamb Ice Stream and the North East Greenland Ice Stream, suggest higher than expected depth-integrated temperatures, as well as non-physical depth trends (with elevated temperatures near the surface). We hypothesize that this is driven in part by offset-dependent interferences between the sub-wavelength layers that make up a single nadir reflection, and present a convolutional model that describes how this interference might systematically reduce reflection power with offset (thereby elevating the inferred attenuation rate). If these additional offset-dependent power losses can be isolated and removed, common

  4. Devon island ice cap: core stratigraphy and paleoclimate.

    PubMed

    Koerner, R M

    1977-04-01

    Valuable paleoclimatic information can be gained by studying the distribution of melt layers in deep ice cores. A profile representing the percentage of ice in melt layers in a core drilled from the Devon Island ice cap plotted against both time and depth shows that the ice cap has experienced a period of very warm summers since 1925, following a period of colder summers between about 1600 and 1925. The earlier period was coldest between 1680 and 1730. There is a high correlation between the melt-layer ice percentage and the mass balance of the ice cap. The relation between them suggests that the ice cap mass balance was zero (accumulation equaled ablation) during the colder period but is negative in the present warmer one. There is no firm evidence of a present cooling trend in the summer conditions on the ice cap. A comparison with the melt-layer ice percentage in cores from the other major Canadian Arctic ice caps shows that the variation of summer conditions found for the Devon Island ice cap is representative for all the large ice caps for about 90 percent of the time. There is also a good correlation between melt-layer percentage and summer sea-ice conditions in the archipelago. This suggests that the search for the northwest passage was influenced by changing climate, with the 19th-century peak of the often tragic exploration coinciding with a period of very cold summers.

  5. GenIce: Hydrogen-Disordered Ice Generator.

    PubMed

    Matsumoto, Masakazu; Yagasaki, Takuma; Tanaka, Hideki

    2018-01-05

    GenIce is an efficient and user-friendly tool to generate hydrogen-disordered ice structures. It makes ice and clathrate hydrate structures in various file formats. More than 100 kinds of structures are preset. Users can install their own crystal structures, guest molecules, and file formats as plugins. The algorithm certifies that the generated structures are completely randomized hydrogen-disordered networks obeying the ice rule with zero net polarization. © 2017 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc. © 2017 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc.

  6. Grounding Zone and Tidal Response of the Amery Ice Shelf, East Antarctica

    NASA Technical Reports Server (NTRS)

    Fricker, Helen A.; Sandwell, David; Coleman, Richard; Minster, Bernard

    2005-01-01

    This report summarizes the main findings of the research project. Unfortunately, it turned out that there was not a great deal of SAR data over the Amery Ice Shelf that we were able to work with on the project; nevertheless, we did make considerable progress on this project, with both the existing SAR data and new field measurements that were collected under this grant. In total we had constructed two SAR interferograms (SSIs), and four SSIs. The latter were combined them to construct two differential SAR interferograms (DSIs;). DSIs are useful because the contribution to the SAR phase from horizontal ice motion is eliminated, since the time difference between the first and second pass within both image pairs used to make the DSI is the same for each pair. The SSIs and DSIs have revealed several interesting glaciological features, and have added to our knowledge of the Amery Ice Shelf (AIS).

  7. Ecology of southern ocean pack ice.

    PubMed

    Brierley, Andrew S; Thomas, David N

    2002-01-01

    aggregating there. As a result, much of the Southern Ocean pelagic whaling was concentrated at the edge of the marginal ice zone. The extent and duration of sea ice fluctuate periodically under the influence of global climatic phenomena including the El Niño Southern Oscillation. Life cycles of some associated species may reflect this periodicity. With evidence for climatic warming in some regions of Antarctica, there is concern that ecosystem change may be induced by changes in sea-ice extent. The relative abundance of krill and salps appears to change interannually with sea-ice extent, and in warm years, when salps proliferate, krill are scarce and dependent predators suffer severely. Further research on the Southern Ocean sea-ice system is required, not only to further our basic understanding of the ecology, but also to provide ecosystem managers with the information necessary for the development of strategies in response to short- and medium-term environmental changes in Antarctica. Technological advances are delivering new sampling platforms such as autonomous underwater vehicles that are improving vastly our ability to sample the Antarctic under sea-ice environment. Data from such platforms will enhance greatly our understanding of the globally important Southern Ocean sea-ice ecosystem.

  8. Estimation of longitudinal stability and control derivatives for an icing research aircraft from flight data

    NASA Technical Reports Server (NTRS)

    Batterson, James G.; Omara, Thomas M.

    1989-01-01

    The results of applying a modified stepwise regression algorithm and a maximum likelihood algorithm to flight data from a twin-engine commuter-class icing research aircraft are presented. The results are in the form of body-axis stability and control derivatives related to the short-period, longitudinal motion of the aircraft. Data were analyzed for the baseline (uniced) and for the airplane with an artificial glaze ice shape attached to the leading edge of the horizontal tail. The results are discussed as to the accuracy of the derivative estimates and the difference between the derivative values found for the baseline and the iced airplane. Additional comparisons were made between the maximum likelihood results and the modified stepwise regression results with causes for any discrepancies postulated.

  9. Insights into Spatial Sensitivities of Ice Mass Response to Environmental Change from the SeaRISE Ice Sheet Modeling Project I: Antarctica

    NASA Technical Reports Server (NTRS)

    Nowicki, Sophie; Bindschadler, Robert A.; Abe-Ouchi, Ayako; Aschwanden, Andy; Bueler, Ed; Choi, Hyengu; Fastook, Jim; Granzow, Glen; Greve, Ralf; Gutowski, Gail; hide

    2013-01-01

    Atmospheric, oceanic, and subglacial forcing scenarios from the Sea-level Response to Ice Sheet Evolution (SeaRISE) project are applied to six three-dimensional thermomechanical ice-sheet models to assess Antarctic ice sheet sensitivity over a 500 year timescale and to inform future modeling and field studies. Results indicate (i) growth with warming, except within low-latitude basins (where inland thickening is outpaced by marginal thinning); (ii) mass loss with enhanced sliding (with basins dominated by high driving stresses affected more than basins with low-surface-slope streaming ice); and (iii) mass loss with enhanced ice shelf melting (with changes in West Antarctica dominating the signal due to its marine setting and extensive ice shelves; cf. minimal impact in the Terre Adelie, George V, Oates, and Victoria Land region of East Antarctica). Ice loss due to dynamic changes associated with enhanced sliding and/or sub-shelf melting exceeds the gain due to increased precipitation. Furthermore, differences in results between and within basins as well as the controlling impact of sub-shelf melting on ice dynamics highlight the need for improved understanding of basal conditions, grounding-zone processes, ocean-ice interactions, and the numerical representation of all three.

  10. Strong-Motion Program report, January-December 1985

    USGS Publications Warehouse

    Porcella, R. L.

    1989-01-01

    This Program Report contains preliminary information on the nature and availability of strong-motion data recorded by the U.S. Geological Survey (USGS). The Strong-Motion Program is operated by the USGS in cooperation with numerous Federal, State, and local agencies and private organizations. Major objective of this program are to record both strong ground motion and the response of various types of engineered structures during earthquakes, and to disseminate this information and data to the international earthquake-engineering research and design community. This volume contains a summary of the accelerograms recovered from the USGS National Strong-Motion Instrumentation Network during 1985, summaries of recent strong-motion publications, notes on the availability of digitized data, and general information related to the USGS and other strong-motion programs. The data summary in table 1 contains information on all USGS accelerograms recovered (though not necessarily recorded) during 1985; event data are taken from "Preliminary Determination of Epicenters," published by the USGS.

  11. Pack ice along the Kamchatka Peninsula, Russia as seen from STS-60

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Pack ice is documented in this photograph along the coast of the Kamchatka Peninsula of Russia in Zaliv Ozernoj. Detailed photographs of the ice provide information to scientists in both Russia and the United States about the location and fluctuation of ice edges, and how this new sea ice interacts with ocean and littoral currents.

  12. Simulations of Sea-Ice Dynamics Using the Material-Point Method

    NASA Technical Reports Server (NTRS)

    Sulsky, D.; Schreyer, H.; Peterson, K.; Nguyen, G.; Coon, G.; Kwok, R.

    2006-01-01

    In recent years, the availability of large volumes of recorded ice motion derived from high-resolution SAR data has provided an amazingly detailed look at the deformation of the ice cover. The deformation is dominated by the appearance of linear kinematic features that have been associated with the presence of leads. These remarkable data put us in a position to begin detailed evaluation of current coupled mechanical and thermodynamic models of sea ice. This presentation will describe the material point method (MPM) for solving these model equations. MPM is a numerical method for continuum mechanics that combines the best aspects of Lagrangian and Eulerian discretizations. The material points provide a Lagrangian description of the ice that models convection naturally. Thus, properties such as ice thickness and compactness are computed in a Lagrangian frame and do not suffer from errors associated with Eulerian advection schemes, such as artificial diffusion, dispersion, or oscillations near discontinuities. This desirable property is illustrated by solving transport of ice in uniform, rotational and convergent velocity fields. Moreover, the ice geometry is represented by unconnected material points rather than a grid. This representation facilitates modeling the large deformations observed in the Arctic, as well as localized deformation along leads, and admits a sharp representation of the ice edge. MPM also easily allows the use of any ice constitutive model. The versatility of MPM is demonstrated by using two constitutive models for simulations of wind-driven ice. The first model is a standard viscous-plastic model with two thickness categories. The MPM solution to the viscous-plastic model agrees with previously published results using finite elements. The second model is a new elastic-decohesive model that explicitly represents leads. The model includes a mechanism to initiate leads, and to predict their orientation and width. The elastic-decohesion model can

  13. Observed platelet ice distributions in Antarctic sea ice: An index for ocean-ice shelf heat flux

    NASA Astrophysics Data System (ADS)

    Langhorne, P. J.; Hughes, K. G.; Gough, A. J.; Smith, I. J.; Williams, M. J. M.; Robinson, N. J.; Stevens, C. L.; Rack, W.; Price, D.; Leonard, G. H.; Mahoney, A. R.; Haas, C.; Haskell, T. G.

    2015-07-01

    Antarctic sea ice that has been affected by supercooled Ice Shelf Water (ISW) has a unique crystallographic structure and is called platelet ice. In this paper we synthesize platelet ice observations to construct a continent-wide map of the winter presence of ISW at the ocean surface. The observations demonstrate that, in some regions of coastal Antarctica, supercooled ISW drives a negative oceanic heat flux of -30 Wm-2 that persists for several months during winter, significantly affecting sea ice thickness. In other regions, particularly where the thinning of ice shelves is believed to be greatest, platelet ice is not observed. Our new data set includes the longest ice-ocean record for Antarctica, which dates back to 1902 near the McMurdo Ice Shelf. These historical data indicate that, over the past 100 years, any change in the volume of very cold surface outflow from this ice shelf is less than the uncertainties in the measurements.

  14. Understanding the Sea Ice Zone: Scientists and Communities Partnering to Archive, Analyze and Disseminate Local Ice Observations

    NASA Astrophysics Data System (ADS)

    Collins, J. A.; Oldenburg, J.; Liu, M.; Pulsifer, P. L.; Kaufman, M.; Eicken, H.; Parsons, M. A.

    2012-12-01

    Knowledge of sea ice is critical to the hunting, whaling, and cultural activities of many Indigenous communities in Northern and Western Alaska. Experienced hunters have monitored seasonal changes of the sea ice over many years, giving them a unique expertise in assessing the current state of the sea ice as well as any anomalies in seasonal sea ice conditions. The Seasonal Ice Zone Observing Network (SIZONet), in collaboration with the Exchange for Local Observations and Knowledge of the Arctic (ELOKA), has developed an online application for collecting, storing, and analyzing sea ice observations contributed by local experts from coastal Alaskan communities. Here we present the current iteration of the application, outline future plans and discuss how the development process and resulting system have improved our collective understanding of sea ice processes and changes. The SIZONet application design is based on the needs of the research scientists responsible for entering observation data into the database, the needs of local sea ice experts contributing their observations and knowledge, and the information needs of Alaska coastal communities. Entry forms provide a variety of input methods, including menus, check boxes, and free text input. Input options strive to balance flexibility in capturing concepts and details with the need for analytical consistency. Currently, research staff at the University of Alaska Fairbanks use the application to enter observations received via written or electronic communications from local sea ice experts. Observation data include current weather conditions, snow and ice quantity and quality, and wildlife sighted or taken. Future plans call for direct use of the SIZONet interface by local sea ice experts as well as students, both as contributors to the data collection and as users seeking meaning in the data. This functionality is currently available to a limited number of community members as we extend the application to support

  15. The mass balance of the ice plain of Ice Stream B and Crary Ice Rise

    NASA Technical Reports Server (NTRS)

    Bindschadler, Robert

    1993-01-01

    The region in the mouth of Ice Stream B (the ice plain) and that in the vicinity of Crary Ice Rise are experiencing large and rapid changes. Based on velocity, ice thickness, and accumulation rate data, the patterns of net mass balance in these regions were calculated. Net mass balance, or the rate of ice thickness change, was calculated as the residual of all mass fluxes into and out of subregions (or boxes). Net mass balance provides a measure of the state of health of the ice sheet and clues to the current dynamics.

  16. Geodetic mass balance measurements on debris and clean-ice tropical glaciers in Ecuador

    NASA Astrophysics Data System (ADS)

    La Frenierre, J.; Decker, C. R.; Jordan, E.; Wigmore, O.; Hodge, B. E.; Niederriter, C.; Michels, A.

    2017-12-01

    Glaciers are recognized as highly sensitive indicators of climate change in high altitude, low latitude environments. In the tropical Andes, various analyses of glacier surface area change have helped illuminate the manifestation of climate change in this region, however, information about actual glacier mass balance behavior is much more limited given the relatively small glaciers, difficult access, poor weather, and/or limited local resources common here. Several new technologies, including aerial and terrestrial LIDAR and structure-from-motion photogrammetry using small unmanned aerial vehicles (UAVs), make mass balance measurements using geodetic approaches increasingly feasible in remote mountain locations, which can both further our understanding of changing climatic conditions, and improve our ability to evaluate the downstream hydrologic impacts of ice loss. At Volcán Chimborazo, Ecuador, these new technologies, combined with a unique, 5-meter resolution digital elevation model derived from 1997 aerial imagery, make possible an analysis of the magnitude and spatial patterns of mass balance behavior over the past two decades. Here, we evaluate ice loss between 1997 and 2017 at the tongues of two adjacent glaciers, one debris-covered and detached from its accumulation area (Reschreiter Glacier), and one debris-free and intact (Hans Meyer Glacier). Additionally, we incorporate data from 2012 and 2013 terrestrial LIDAR surveys to evaluate the behavior of the Reschreiter at a finer temporal resolution. We find that on the Hans Meyer, the mean surface deflation rate since 1997 at the present-day tongue has been nearly 3 m yr-1, while on the lower-elevation Reschreiter, the mean deflation rate has been approximately 1 m yr-1. However, the processes by which debris-covered ice becomes exposed results in highly heterogeneous patterns of ice loss, with some areas experiencing surface deflation rates approaching 15 m yr-1 when energy absorption is unimpeded.

  17. Sea-ice processes in the Laptev Sea and their importance for sediment export

    USGS Publications Warehouse

    Eicken, H.; Reimnitz, E.; Alexandrov, V.; Martin, T.; Kassens, H.; Viehoff, T.

    1997-01-01

    Based on remote-sensing data and an expedition during August-September 1993, the importance of the Laptev Sea as a source area for sediment-laden sea ice was studied. Ice-core analysis demonstrated the importance of dynamic ice-growth mechanisms as compared to the multi-year cover of the Arctic Basin. Ice-rafted sediment (IRS) was mostly associated with congealed frazil ice, although evidence for other entrainment mechanisms (anchor ice, entrainment into freshwater ice) was also found. Concentrations of suspended particulate matter (SPM) in patches of dirty ice averaged at 156 g m-3 (standard deviation ?? = 140 g m-3), with a background concentration of 5 g m-3. The potential for sediment entrainment over the broad, shallow Laptev Sea shelf during fall freeze-up was studied through analysis of remote-sensing data and weather-station records for the period 1979-1994. Freeze-up commences on 26 September (?? = 7 d) and is completed after 19 days (?? = 6 d). Meteorological conditions as well as ice extent prior to and during freeze-up vary considerably, the open-water area ranging between 107 x 103 and 447 x 103 km2. Ice motion and transport of IRS were derived from satellite imagery and drifting buoys for the period during and after the expedition (mean ice velocities of 0.04 and 0.05 m s-1, respectively). With a best-estimate sediment load of 16 t km-2 (ranging between 9 and 46 t km-2), sediment export from the eastern Laptev Sea amounts to 4 x 10-6 t yr-1, with extremes of 2 x 10-6 and 11 x 106 t yr-1. Implications for the sediment budget of the Laptev shelf, in particular with respect to riverine input of SPM, which may be of the same order of magnitude, are discussed.

  18. Melt-induced speed-up of Greenland ice sheet offset by efficient subglacial drainage.

    PubMed

    Sundal, Aud Venke; Shepherd, Andrew; Nienow, Peter; Hanna, Edward; Palmer, Steven; Huybrechts, Philippe

    2011-01-27

    Fluctuations in surface melting are known to affect the speed of glaciers and ice sheets, but their impact on the Greenland ice sheet in a warming climate remains uncertain. Although some studies suggest that greater melting produces greater ice-sheet acceleration, others have identified a long-term decrease in Greenland's flow despite increased melting. Here we use satellite observations of ice motion recorded in a land-terminating sector of southwest Greenland to investigate the manner in which ice flow develops during years of markedly different melting. Although peak rates of ice speed-up are positively correlated with the degree of melting, mean summer flow rates are not, because glacier slowdown occurs, on average, when a critical run-off threshold of about 1.4 centimetres a day is exceeded. In contrast to the first half of summer, when flow is similar in all years, speed-up during the latter half is 62 ± 16 per cent less in warmer years. Consequently, in warmer years, the period of fast ice flow is three times shorter and, overall, summer ice flow is slower. This behaviour is at odds with that expected from basal lubrication alone. Instead, it mirrors that of mountain glaciers, where melt-induced acceleration of flow ceases during years of high melting once subglacial drainage becomes efficient. A model of ice-sheet flow that captures switching between cavity and channel drainage modes is consistent with the run-off threshold, fast-flow periods, and later-summer speeds we have observed. Simulations of the Greenland ice-sheet flow under climate warming scenarios should account for the dynamic evolution of subglacial drainage; a simple model of basal lubrication alone misses key aspects of the ice sheet's response to climate warming.

  19. The geomorphic signature of past ice sheets in the marine record

    NASA Astrophysics Data System (ADS)

    Dowdeswell, J. A.

    2016-12-01

    The deglaciation of high-latitude continental shelves since the Last Glacial Maximum has revealed suites of subglacial and ice-contact landforms that have remained well-preserved beneath tens to hundreds of metres of water. Once ice has retreated, sedimentation is generally low on polar shelves during interglacials and the submarine landforms have not, therefore, been buried by subsequent sedimentation. By contrast, the beds of modern ice sheets are hidden by several thousand metres of ice, which is much more difficult than water to penetrate using geophysical methods. These submarine glacial landforms provide insights into past ice-sheet form and flow, and information on the processes that have taken place beneath former ice sheets. Examples will be shown of streamlined subglacial landforms that indicate the distribution and dimensions of former ice streams on high-latitde continental margins. Distinctive landform assemblages characterise ice stream and inter-ice stream areas. Landforms, including subglacially formed channel systems in inner- and mid-shelf areas, and the lack of them on sedimentary outer shelves, allow inferences to be made about subglacial hydrology. The distribution of grounding-zone wedges and other transverse moraine ridges also provides evidence on the nature of ice-sheet retreat - whether by rapid collapse, episodic retreat or by the slow retreat of grounded ice. Such information can be used to test the predictive capability of ice-sheet numerical models. These marine geophysical and geological observations of submarine glacial landforms enhance our understanding of the form and flow of past ice masses at scales ranging from ice sheets (1000s of km in flow-line and margin length), through ice streams (100s of km long), to surge-type glaciers (10s of km long).

  20. Evaluating the utility of 3D TRUS image information in guiding intra-procedure registration for motion compensation

    NASA Astrophysics Data System (ADS)

    De Silva, Tharindu; Cool, Derek W.; Romagnoli, Cesare; Fenster, Aaron; Ward, Aaron D.

    2014-03-01

    In targeted 3D transrectal ultrasound (TRUS)-guided biopsy, patient and prostate movement during the procedure can cause target misalignments that hinder accurate sampling of pre-planned suspicious tissue locations. Multiple solutions have been proposed for motion compensation via registration of intra-procedural TRUS images to a baseline 3D TRUS image acquired at the beginning of the biopsy procedure. While 2D TRUS images are widely used for intra-procedural guidance, some solutions utilize richer intra-procedural images such as bi- or multi-planar TRUS or 3D TRUS, acquired by specialized probes. In this work, we measured the impact of such richer intra-procedural imaging on motion compensation accuracy, to evaluate the tradeoff between cost and complexity of intra-procedural imaging versus improved motion compensation. We acquired baseline and intra-procedural 3D TRUS images from 29 patients at standard sextant-template biopsy locations. We used the planes extracted from the 3D intra-procedural scans to simulate 2D and 3D information available in different clinically relevant scenarios for registration. The registration accuracy was evaluated by calculating the target registration error (TRE) using manually identified homologous fiducial markers (micro-calcifications). Our results indicate that TRE improves gradually when the number of intra-procedural imaging planes used in registration is increased. Full 3D TRUS information helps the registration algorithm to robustly converge to more accurate solutions. These results can also inform the design of a fail-safe workflow during motion compensation in a system using a tracked 2D TRUS probe, by prescribing rotational acquisitions that can be performed quickly and easily by the physician immediately prior to needle targeting.

  1. Sea Ice

    NASA Technical Reports Server (NTRS)

    Parkinson, Claire L.; Cavalieri, Donald J.

    2005-01-01

    Sea ice covers vast areas of the polar oceans, with ice extent in the Northern Hemisphere ranging from approximately 7 x 10(exp 6) sq km in September to approximately 15 x 10(exp 6) sq km in March and ice extent in the Southern Hemisphere ranging from approximately 3 x 10(exp 6) sq km in February to approximately 18 x 10(exp 6) sq km in September. These ice covers have major impacts on the atmosphere, oceans, and ecosystems of the polar regions, and so as changes occur in them there are potential widespread consequences. Satellite data reveal considerable interannual variability in both polar sea ice covers, and many studies suggest possible connections between the ice and various oscillations within the climate system, such as the Arctic Oscillation, North Atlantic Oscillation, and Antarctic Oscillation, or Southern Annular Mode. Nonetheless, statistically significant long-term trends are also apparent, including overall trends of decreased ice coverage in the Arctic and increased ice coverage in the Antarctic from late 1978 through the end of 2003, with the Antarctic ice increases following marked decreases in the Antarctic ice during the 1970s. For a detailed picture of the seasonally varying ice cover at the start of the 21st century, this chapter includes ice concentration maps for each month of 2001 for both the Arctic and the Antarctic, as well as an overview of what the satellite record has revealed about the two polar ice covers from the 1970s through 2003.

  2. Motion transparency: making models of motion perception transparent.

    PubMed

    Snowden; Verstraten

    1999-10-01

    In daily life our visual system is bombarded with motion information. We see cars driving by, flocks of birds flying in the sky, clouds passing behind trees that are dancing in the wind. Vision science has a good understanding of the first stage of visual motion processing, that is, the mechanism underlying the detection of local motions. Currently, research is focused on the processes that occur beyond the first stage. At this level, local motions have to be integrated to form objects, define the boundaries between them, construct surfaces and so on. An interesting, if complicated case is known as motion transparency: the situation in which two overlapping surfaces move transparently over each other. In that case two motions have to be assigned to the same retinal location. Several researchers have tried to solve this problem from a computational point of view, using physiological and psychophysical results as a guideline. We will discuss two models: one uses the traditional idea known as 'filter selection' and the other a relatively new approach based on Bayesian inference. Predictions from these models are compared with our own visual behaviour and that of the neural substrates that are presumed to underlie these perceptions.

  3. Oculometric indices of simulator and aircraft motion

    NASA Technical Reports Server (NTRS)

    Comstock, J. R.

    1984-01-01

    The effects on eye scan behavior of both simulator and aircraft motion and sensitivity of an oculometric measure to motion effects was demonstrated. It was found that fixation time is sensitive to motion effects. Differences between simulator motion and no motion conditions during a series of simulated ILS approaches were studied. The mean fixation time for the no motion condition was found to be significantly longer than for the motion conditions. Eye scan parameters based on data collected in flight, and in fixed base simulation were investigated. Motion effects were evident when the subject was viewing a display supplying attitude and flight path information. The nature of the information provided by motion was examined. The mean fixation times for the no motion condition were significantly longer than for either motion condition, while the two motion conditions did not differ. It is shown that motion serves an alerting function, providing a cue or clue to the pilot that something happened. It is suggested that simulation without motion cues may represent an understatement of the true capacity of the pilot.

  4. Destabilisation of an Arctic ice cap triggered by a hydro-thermodynamic feedback to summer-melt

    NASA Astrophysics Data System (ADS)

    Dunse, T.; Schellenberger, T.; Kääb, A.; Hagen, J. O.; Schuler, T. V.; Reijmer, C. H.

    2014-05-01

    Mass loss from glaciers and ice sheets currently accounts for two-thirds of the observed global sea-level rise and has accelerated since the 1990s, coincident with strong atmospheric warming in the Polar Regions. Here we present continuous GPS measurements and satellite synthetic aperture radar based velocity maps from the Austfonna ice cap, Svalbard, that demonstrate strong links between surface-melt and multiannual ice-flow acceleration. We identify a hydro-thermodynamic feedback that successively mobilizes stagnant ice regions, initially frozen to their bed, thereby facilitating fast basal motion over an expanding area. By autumn 2012, successive destabilization of the marine terminus escalated in a surge of the ice cap's largest drainage basin, Basin-3. The resulting iceberg discharge of 4.2 ± 1.6 Gt a-1 over the period April 2012 to May 2013 triples the calving loss from the entire ice cap. After accounting for the terminus advance, the related sea-level rise contribution of 7.2 ± 2.6 Gt a-1 matches the recent annual ice-mass loss from the entire Svalbard archipelago. Our study highlights the importance of dynamic glacier wastage and illuminates mechanisms that may trigger a sustained increase in dynamic glacier wastage or the disintegration of ice-sheets in response to climate warming, which is acknowledged but not quantified in global projections of sea-level rise.

  5. Characterization of Ice Roughness From Simulated Icing Encounters

    NASA Technical Reports Server (NTRS)

    Anderson, David N.; Shin, Jaiwon

    1997-01-01

    Detailed measurements of the size of roughness elements on ice accreted on models in the NASA Lewis Icing Research Tunnel (IRT) were made in a previous study. Only limited data from that study have been published, but included were the roughness element height, diameter and spacing. In the present study, the height and spacing data were found to correlate with the element diameter, and the diameter was found to be a function primarily of the non-dimensional parameters freezing fraction and accumulation parameter. The width of the smooth zone which forms at the leading edge of the model was found to decrease with increasing accumulation parameter. Although preliminary, the success of these correlations suggests that it may be possible to develop simple relationships between ice roughness and icing conditions for use in ice-accretion-prediction codes. These codes now require an ice-roughness estimate to determine convective heat transfer. Studies using a 7.6-cm-diameter cylinder and a 53.3-cm-chord NACA 0012 airfoil were also performed in which a 1/2-min icing spray at an initial set of conditions was followed by a 9-1/2-min spray at a second set of conditions. The resulting ice shape was compared with that from a full 10-min spray at the second set of conditions. The initial ice accumulation appeared to have no effect on the final ice shape. From this result, it would appear the accreting ice is affected very little by the initial roughness or shape features.

  6. Ice Stars

    NASA Image and Video Library

    2017-12-08

    Ice Stars - August 4th, 2002 Description: Like distant galaxies amid clouds of interstellar dust, chunks of sea ice drift through graceful swirls of grease ice in the frigid waters of Foxe Basin near Baffin Island in the Canadian Arctic. Sea ice often begins as grease ice, a soupy slick of tiny ice crystals on the ocean's surface. As the temperature drops, grease ice thickens and coalesces into slabs of more solid ice. Credit: USGS/NASA/Landsat 7 To learn more about the Landsat satellite go to: landsat.gsfc.nasa.gov/ NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook

  7. Upper-Tropospheric Cloud Ice from IceCube

    NASA Astrophysics Data System (ADS)

    Wu, D. L.

    2017-12-01

    Cloud ice plays important roles in Earth's energy budget and cloud-precipitation processes. Knowledge of global cloud ice and its properties is critical for understanding and quantifying its roles in Earth's atmospheric system. It remains a great challenge to measure these variables accurately from space. Submillimeter (submm) wave remote sensing has capability of penetrating clouds and measuring ice mass and microphysical properties. In particular, the 883-GHz frequency is a highest spectral window in microwave frequencies that can be used to fill a sensitivity gap between thermal infrared (IR) and mm-wave sensors in current spaceborne cloud ice observations. IceCube is a cubesat spaceflight demonstration of 883-GHz radiometer technology. Its primary objective is to raise the technology readiness level (TRL) of 883-GHz cloud radiometer for future Earth science missions. By flying a commercial receiver on a 3U cubesat, IceCube is able to achieve fast-track maturation of space technology, by completing its development, integration and testing in 2.5 years. IceCube was successfully delivered to ISS in April 2017 and jettisoned from the International Space Station (ISS) in May 2017. The IceCube cloud-ice radiometer (ICIR) has been acquiring data since the jettison on a daytime-only operation. IceCube adopted a simple design without payload mechanism. It makes maximum utilization of solar power by spinning the spacecraft continuously about the Sun vector at a rate of 1.2° per second. As a result, the ICIR is operated under the limited resources (8.6 W without heater) and largely-varying (18°C-28°C) thermal environments. The spinning cubesat also allows ICIR to have periodical views between the Earth (atmosphere and clouds) and cold space (calibration), from which the first 883-GHz cloud map is obtained. The 883-GHz cloud radiance, sensitive to ice particle scattering, is proportional to cloud ice amount above 10 km. The ICIR cloud map acquired during June 20-July 2

  8. A New Way to Measure Cirrus Ice Water Content by Using Ice Raman Scatter with Raman Lidar

    NASA Technical Reports Server (NTRS)

    Wang, Zhien; Whiteman, David N.; Demoz, Belay; Veselovskii, Igor

    2004-01-01

    High and cold cirrus clouds mainly contain irregular ice crystals, such as, columns, hexagonal plates, bullet rosettes, and dendrites, and have different impacts on the climate system than low-level clouds, such as stratus, stratocumulus, and cumulus. The radiative effects of cirrus clouds on the current and future climate depend strongly on cirrus cloud microphysical properties including ice water content (IWC) and ice crystal sizes, which are mostly an unknown aspect of cinus clouds. Because of the natural complexity of cirrus clouds and their high locations, it is a challenging task to get them accurately by both remote sensing and in situ sampling. This study presents a new method to remotely sense cirrus microphysical properties by using ice Raman scatter with a Raman lidar. The intensity of Raman scattering is fundamentally proportional to the number of molecules involved. Therefore, ice Raman scattering signal provides a more direct way to measure IWC than other remote sensing methods. Case studies show that this method has the potential to provide essential information of cirrus microphysical properties to study cloud physical processes in cirrus clouds.

  9. UV IRRADIATION OF AROMATIC NITROGEN HETEROCYCLES IN INTERSTELLAR ICE ANALOGS

    NASA Technical Reports Server (NTRS)

    Elsila, J. E.; Bernstein, M. P.; Sanford, S. A.

    2005-01-01

    Here, we present information on the properties of the ANH quinoline frozen in interstellar water-ice analogs. Quinoline is a two-ring compound structurally analogous to the PAH naphthalene. In this work, binary mixtures of water and quinoline were frozen to create interstellar ice analogs, which were then subjected to ultraviolet photolysis. We will present the infrared spectra of the resulting ices at various temperatures, as well as chromatographic analysis of the residues remaining upon warm-up of these ices to room temperature.

  10. Motion perception: behavior and neural substrate.

    PubMed

    Mather, George

    2011-05-01

    Visual motion perception is vital for survival. Single-unit recordings in primate primary visual cortex (V1) have revealed the existence of specialized motion sensing neurons; perceptual effects such as the motion after-effect demonstrate their importance for motion perception. Human psychophysical data on motion detection can be explained by a computational model of cortical motion sensors. Both psychophysical and physiological data reveal at least two classes of motion sensor capable of sensing motion in luminance-defined and texture-defined patterns, respectively. Psychophysical experiments also reveal that motion can be seen independently of motion sensor output, based on attentive tracking of visual features. Sensor outputs are inherently ambiguous, due to the problem of univariance in neural responses. In order to compute stimulus direction and speed, the visual system must compare the responses of many different sensors sensitive to different directions and speeds. Physiological data show that this computation occurs in the visual middle temporal (MT) area. Recent psychophysical studies indicate that information about spatial form may also play a role in motion computations. Adaptation studies show that the human visual system is selectively sensitive to large-scale optic flow patterns, and physiological studies indicate that cells in the middle superior temporal (MST) area derive this sensitivity from the combined responses of many MT cells. Extraretinal signals used to control eye movements are an important source of signals to cancel out the retinal motion responses generated by eye movements, though visual information also plays a role. A number of issues remain to be resolved at all levels of the motion-processing hierarchy. WIREs Cogni Sci 2011 2 305-314 DOI: 10.1002/wcs.110 For further resources related to this article, please visit the WIREs website Additional Supporting Information may be found in http://www.lifesci.sussex.ac.uk/home/George_Mather/Motion

  11. Ice shelf fracture parameterization in an ice sheet model

    NASA Astrophysics Data System (ADS)

    Sun, Sainan; Cornford, Stephen L.; Moore, John C.; Gladstone, Rupert; Zhao, Liyun

    2017-11-01

    Floating ice shelves exert a stabilizing force onto the inland ice sheet. However, this buttressing effect is diminished by the fracture process, which on large scales effectively softens the ice, accelerating its flow, increasing calving, and potentially leading to ice shelf breakup. We add a continuum damage model (CDM) to the BISICLES ice sheet model, which is intended to model the localized opening of crevasses under stress, the transport of those crevasses through the ice sheet, and the coupling between crevasse depth and the ice flow field and to carry out idealized numerical experiments examining the broad impact on large-scale ice sheet and shelf dynamics. In each case we see a complex pattern of damage evolve over time, with an eventual loss of buttressing approximately equivalent to halving the thickness of the ice shelf. We find that it is possible to achieve a similar ice flow pattern using a simple rule of thumb: introducing an enhancement factor ˜ 10 everywhere in the model domain. However, spatially varying damage (or equivalently, enhancement factor) fields set at the start of prognostic calculations to match velocity observations, as is widely done in ice sheet simulations, ought to evolve in time, or grounding line retreat can be slowed by an order of magnitude.

  12. Gas exchange in the ice zone: the role of small waves and big animals

    NASA Astrophysics Data System (ADS)

    Loose, B.; Takahashi, A.; Bigdeli, A.

    2016-12-01

    The balance of air-sea gas exchange and net biological carbon fixation determine the transport and transformation of carbon dioxide and methane in the ocean. Air-sea gas exchange is mostly driven by upper ocean physics, but biology can also play a role. In the open ocean, gas exchange increases proportionate to the square of wind speed. When sea ice is present, this dependence breaks down in part because breaking waves and air bubble entrainment are damped out by interactions between sea ice and the wave field. At the same time, sea ice motions, formation, melt, and even sea ice-associated organisms can act to introduce turbulence and air bubbles into the upper ocean, thereby enhancing air-sea gas exchange. We take advantage of the knowledge advances of upper ocean physics including bubble dynamics to formulate a model for air-sea gas exchange in the sea ice zone. Here, we use the model to examine the role of small-scale waves and diving animals that trap air for insulation, including penguins, seals and polar bears. We compare these processes to existing parameterizations of wave and bubble dynamics in the open ocean, to observe how sea ice both mitigates and locally enhances air-sea gas transfer.

  13. Microbiological quality of ice and ice machines used in food establishments.

    PubMed

    Hampikyan, Hamparsun; Bingol, Enver Baris; Cetin, Omer; Colak, Hilal

    2017-06-01

    The ice used in the food industry has to be safe and the water used in ice production should have the quality of drinking water. The consumption of contaminated ice directly or indirectly may be a vehicle for transmission of pathogenic bacteria to humans producing outbreaks of gastrointestinal diseases. The objective of this study was to monitor the microbiological quality of ice, the water used in producing ice and the hygienic conditions of ice making machines in various food enterprises. Escherichia coli was detected in seven (6.7%) ice and 23 (21.9%) ice chest samples whereas E. coli was negative in all examined water samples. Psychrophilic bacteria were detected in 83 (79.0%) of 105 ice chest and in 68 (64.7%) of 105 ice samples, whereas Enterococci were detected only in 13 (12.4%) ice samples. Coliforms were detected in 13 (12.4%) water, 71 (67.6%) ice chest and 54 (51.4%) ice samples. In order to improve the microbiological quality of ice, the maintenance, cleaning and disinfecting of ice machines should be carried out effectively and periodically. Also, high quality water should be used for ice production.

  14. Summer 2007 and 2008 Arctic Sea Ice Loss in Context: OUTLOOK 2008

    NASA Astrophysics Data System (ADS)

    Overland, J. E.; Eicken, H.; Wiggins, H. V.

    2008-12-01

    The Arctic is changing faster than the publication cycle for new information. In response, the SEARCH and DAMOCLES Programs initiated an OUTLOOK 2008 to provide broad-based communication and assessment within the arctic science community on the causes of rapid summer sea ice loss, synthesizing information from Arctic observing networks and model simulations. The question for summer 2008 was whether the previous loss of multi-year sea ice and delay in sea ice formation in autumn 2007 would still allow sufficient winter growth of sea ice thickness to last through the summer 2008, potentially allowing for recovery from the 2007 minimum. The answer is no; summer 2008 was a second sequential year of extremely low minimum sea ice extent. To organize OUTLOOK 2008, respondents were asked in May, June and July to provide a rationale and semi-quantitative assessment of arctic sea ice extent anticipated for September 2008. OUTLOOK 2008 supplemented information maintained by ice centers, universities and other data providers. Using a range of methods, all of the approximately 20 groups responded that summer sea ice would not return to climatological mean conditions, with a median response near the 2007 extent. The range of responses depended on the relative weight given to "initial conditions," e.g., age and thickness of sea ice at the end of spring, versus whether summer winds in 2008 would be as supportive for ice loss as in 2007. Initial conditions turned out to be a primary factor for summer 2008, with implications for continued sea ice loss in future years. OUTLOOK 2008 highlighted aspects of the observation and modeling efforts that require further attention such as interpretation of summer microwave signatures, in situ buoy measurements, and data assimilation in models. We appreciate the contributions from respondents and reviewers who made OUTLOOK 2008 a success.

  15. Constraining ice sheet history in the Weddell Sea, West Antarctica, using ice fabric at Korff Ice Rise

    NASA Astrophysics Data System (ADS)

    Brisbourne, A.; Smith, A.; Kendall, J. M.; Baird, A. F.; Martin, C.; Kingslake, J.

    2017-12-01

    The grounding history of ice rises (grounded area of independent flow regime within a floating ice shelf) can be used to constrain large scale ice sheet history: ice fabric, resulting from the preferred orientation of ice crystals due to the stress regime, can be used to infer this grounding history. With the aim of measuring the present day ice fabric at Korff Ice Rise, West Antarctica, a multi-azimuth wide-angle seismic experiment was undertaken. Three wide-angle common-midpoint gathers were acquired centred on the apex of the ice rise, at azimuths of 60 degrees to one another, to measure variation in seismic properties with offset and azimuth. Both vertical and horizontal receivers were used to record P and S arrivals including converted phases. Measurements of the variation with offset and azimuth of seismic traveltimes, seismic attenuation and shear wave splitting have been used to quantify seismic anisotropy in the ice column. The observations cannot be reproduced using an isotropic ice column model. Anisotropic ray tracing has been used to test likely models of ice fabric by comparison with the data. A model with a weak girdle fabric overlying a strong cluster fabric provides the best fit to the observations. Fabric of this nature is consistent with Korff Ice Rise having been stable for the order of 10,000 years without any ungrounding or significant change in the ice flow configuration across the ice rise for this period. This observation has significant implications for the ice sheet history of the Weddell Sea sector.

  16. Effect of a sheared flow on iceberg motion and melting

    NASA Astrophysics Data System (ADS)

    FitzMaurice, A.; Straneo, F.; Cenedese, C.; Andres, M.

    2016-12-01

    Icebergs account for approximately half the freshwater flux into the ocean from the Greenland and Antarctic ice sheets and play a major role in the distribution of meltwater into the ocean. Global climate models distribute this freshwater by parameterizing iceberg motion and melt, but these parameterizations are presently informed by limited observations. Here we present a record of speed and draft for 90 icebergs from Sermilik Fjord, southeastern Greenland, collected in conjunction with wind and ocean velocity data over an 8 month period. It is shown that icebergs subject to strongly sheared flows predominantly move with the vertical average of the ocean currents. If, as typical in iceberg parameterizations, only the surface ocean velocity is taken into account, iceberg speed and basal melt may have errors in excess of 60%. These results emphasize the need for parameterizations to consider ocean properties over the entire iceberg draft.

  17. Snow and Ice Applications of AVHRR in Polar Regions: Report of a Workshop

    NASA Technical Reports Server (NTRS)

    Steffen, K.; Bindschadler, R.; Casassa, G.; Comiso, J.; Eppler, D.; Fetterer, F.; Hawkins, J.; Key, J.; Rothrock, D.; Thomas, R.; hide

    1993-01-01

    The third symposium on Remote Sensing of Snow and Ice, organized by the International Glaciological Society, took place in Boulder, Colorado, 17-22 May 1992. As part of this meeting a total of 21 papers was presented on snow and ice applications of Advanced Very High Resolution Radiometer (AVHRR) satellite data in polar regions. Also during this meeting a NASA sponsored Workshop was held to review the status of polar surface measurements from AVHRR. In the following we have summarized the ideas and recommendations from the workshop, and the conclusions of relevant papers given during the regular symposium sessions. The seven topics discussed include cloud masking, ice surface temperature, narrow-band albedo, ice concentration, lead statistics, sea-ice motion and ice-sheet studies with specifics on applications, algorithms and accuracy, following recommendations for future improvements. In general, we can affirm the strong potential of AVHRR for studying sea ice and snow covered surfaces, and we highly recommend this satellite data set for long-term monitoring of polar process studies. However, progress is needed to reduce the uncertainty of the retrieved parameters for all of the above mentioned topics to make this data set useful for direct climate applications such as heat balance studies and others. Further, the acquisition and processing of polar AVHRR data must become better coordinated between receiving stations, data centers and funding agencies to guarantee a long-term commitment to the collection and distribution of high quality data.

  18. Visual information transfer. 1: Assessment of specific information needs. 2: The effects of degraded motion feedback. 3: Parameters of appropriate instrument scanning behavior

    NASA Technical Reports Server (NTRS)

    Comstock, J. R., Jr.; Kirby, R. H.; Coates, G. D.

    1984-01-01

    Pilot and flight crew assessment of visually displayed information is examined as well as the effects of degraded and uncorrected motion feedback, and instrument scanning efficiency by the pilot. Computerized flight simulation and appropriate physiological measurements are used to collect data for standardization.

  19. A Non-Cut Cell Immersed Boundary Method for Use in Icing Simulations

    NASA Technical Reports Server (NTRS)

    Sarofeen, Christian M.; Noack, Ralph W.; Kreeger, Richard E.

    2013-01-01

    This paper describes a computational fluid dynamic method used for modelling changes in aircraft geometry due to icing. While an aircraft undergoes icing, the accumulated ice results in a geometric alteration of the aerodynamic surfaces. In computational simulations for icing, it is necessary that the corresponding geometric change is taken into consideration. The method used, herein, for the representation of the geometric change due to icing is a non-cut cell Immersed Boundary Method (IBM). Computational cells that are in a body fitted grid of a clean aerodynamic geometry that are inside a predicted ice formation are identified. An IBM is then used to change these cells from being active computational cells to having properties of viscous solid bodies. This method has been implemented in the NASA developed node centered, finite volume computational fluid dynamics code, FUN3D. The presented capability is tested for two-dimensional airfoils including a clean airfoil, an iced airfoil, and an airfoil in harmonic pitching motion about its quarter chord. For these simulations velocity contours, pressure distributions, coefficients of lift, coefficients of drag, and coefficients of pitching moment about the airfoil's quarter chord are computed and used for comparison against experimental results, a higher order panel method code with viscous effects, XFOIL, and the results from FUN3D's original solution process. The results of the IBM simulations show that the accuracy of the IBM compares satisfactorily with the experimental results, XFOIL results, and the results from FUN3D's original solution process.

  20. Increased Arctic sea ice drift alters adult female polar bear movements and energetics.

    PubMed

    Durner, George M; Douglas, David C; Albeke, Shannon E; Whiteman, John P; Amstrup, Steven C; Richardson, Evan; Wilson, Ryan R; Ben-David, Merav

    2017-09-01

    Recent reductions in thickness and extent have increased drift rates of Arctic sea ice. Increased ice drift could significantly affect the movements and the energy balance of polar bears (Ursus maritimus) which forage, nearly exclusively, on this substrate. We used radio-tracking and ice drift data to quantify the influence of increased drift on bear movements, and we modeled the consequences for energy demands of adult females in the Beaufort and Chukchi seas during two periods with different sea ice characteristics. Westward and northward drift of the sea ice used by polar bears in both regions increased between 1987-1998 and 1999-2013. To remain within their home ranges, polar bears responded to the higher westward ice drift with greater eastward movements, while their movements north in the spring and south in fall were frequently aided by ice motion. To compensate for more rapid westward ice drift in recent years, polar bears covered greater daily distances either by increasing their time spent active (7.6%-9.6%) or by increasing their travel speed (8.5%-8.9%). This increased their calculated annual energy expenditure by 1.8%-3.6% (depending on region and reproductive status), a cost that could be met by capturing an additional 1-3 seals/year. Polar bears selected similar habitats in both periods, indicating that faster drift did not alter habitat preferences. Compounding reduced foraging opportunities that result from habitat loss; changes in ice drift, and associated activity increases, likely exacerbate the physiological stress experienced by polar bears in a warming Arctic. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  1. Amazonian mid- to high-latitude glaciation on Mars: Supply-limited ice sources, ice accumulation patterns, and concentric crater fill glacial flow and ice sequestration

    NASA Astrophysics Data System (ADS)

    Fastook, James L.; Head, James W.

    2014-02-01

    Concentric crater fill (CCF) occurs in the interior of impact craters in mid- to high latitudes on Mars and is interpreted to have formed by glacial ice flow and debris covering. We use the characteristics and orientation of deposits comprising CCF, the thickness of pedestal deposits in mid- to high-latitude pedestal craters (Pd), the volumes of the current polar caps, and information about regional slopes and ice rheology to address questions about (1) the maximum thickness of regional ice deposits during the Late Amazonian, (2) the likelihood that these deposits flowed regionally, (3) the geological regions and features most likely to induce ice-flow, and (4) the locations and environments in which ice is likely to have been sequestered up to the present. We find that regional ice flow under Late Amazonian climate conditions requires ice thicknesses exceeding many hundreds of meters for slopes typical of the vast majority of the surface of Mars, a thickness for the mid-latitudes that is well in excess of the total volume available from polar ice reservoirs. This indicates that although conditions for mid- to high-latitude glaciation may have persisted for tens to hundreds of millions of years, the process is “supply limited”, with a steady state reached when the polar ice cap water ice supply becomes exhausted. Impact craters are by far the most abundant landform with associated slopes (interior wall and exterior rim) sufficiently high to induce glacial ice flow under Late Amazonian climate conditions, and topographic slope data show that Amazonian impact craters have been clearly modified, undergoing crater interior slope reduction and floor shallowing. We show that these trends are the predictable response of ice deposition and preferential accumulation and retention in mid- to high-latitude crater interiors during episodes of enhanced spin-axis obliquity. We demonstrate that flow from a single episode of an inter-crater terrain layer comparable to Pedestal

  2. 75 FR 33319 - Agency Information Collection Activities: New Information Collection; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-11

    ... Information Collection; ICE Mutual Agreement Between Government and Employers (IMAGE). The Department of... technological collection techniques or other forms of information technology, e.g., permitting electronic... information collection. (2) Title of the Form/Collection: ICE Mutual Agreement between Government and...

  3. Relative influences of the metocean forcings on the drifting ice pack and estimation of internal ice stress gradients in the Labrador Sea

    NASA Astrophysics Data System (ADS)

    Turnbull, I. D.; Torbati, R. Z.; Taylor, R. S.

    2017-07-01

    Understanding the relative influences of the metocean forcings on the drift of sea ice floes is a crucial component to the overall characterization of an ice environment and to developing an understanding of the factors controlling the ice dynamics. In addition, estimating the magnitude of the internal stress gradients on drifting sea ice floes generated by surrounding ice cover is important for modeling operations, informing the design of offshore structures and vessels in ice environments, and for the proper calibration of Discrete Element Models (DEM) of fields of drifting ice floes. In the spring of 2015 and 2016, four sea ice floes offshore Makkovik, Labrador were tagged with satellite-linked ice tracking buoys along with one satellite-linked weather station on each floe to transmit wind speed and direction. Twenty satellite-linked Lagrangian surface ocean current tracking buoys were also deployed in the open water adjacent to the targeted ice floes. In this paper, the dynamics of the four ice floes are explored in terms of the relative proportions which were forced by the wind, current, sea surface topography, Coriolis, and internal stress gradients. The internal ice stress gradients are calculated as residuals between the observed accelerations of the floes as measured by the tracking buoys and the sums of the other metocean forcings. Results show that internal ice stress gradients accounted for up to 50% of the observed forcing on the floes, and may have reached up to around 0.19 kPa.

  4. Ice Shape Characterization Using Self-Organizing Maps

    NASA Technical Reports Server (NTRS)

    McClain, Stephen T.; Tino, Peter; Kreeger, Richard E.

    2011-01-01

    A method for characterizing ice shapes using a self-organizing map (SOM) technique is presented. Self-organizing maps are neural-network techniques for representing noisy, multi-dimensional data aligned along a lower-dimensional and possibly nonlinear manifold. For a large set of noisy data, each element of a finite set of codebook vectors is iteratively moved in the direction of the data closest to the winner codebook vector. Through successive iterations, the codebook vectors begin to align with the trends of the higher-dimensional data. In information processing, the intent of SOM methods is to transmit the codebook vectors, which contains far fewer elements and requires much less memory or bandwidth, than the original noisy data set. When applied to airfoil ice accretion shapes, the properties of the codebook vectors and the statistical nature of the SOM methods allows for a quantitative comparison of experimentally measured mean or average ice shapes to ice shapes predicted using computer codes such as LEWICE. The nature of the codebook vectors also enables grid generation and surface roughness descriptions for use with the discrete-element roughness approach. In the present study, SOM characterizations are applied to a rime ice shape, a glaze ice shape at an angle of attack, a bi-modal glaze ice shape, and a multi-horn glaze ice shape. Improvements and future explorations will be discussed.

  5. Waterway Ice Thickness Measurements

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The ship on the opposite page is a U. S. Steel Corporation tanker cruising through the ice-covered waters of the Great Lakes in the dead of winter. The ship's crew is able to navigate safely by plotting courses through open water or thin ice, a technique made possible by a multi-agency technology demonstration program in which NASA is a leading participant. Traditionally, the Great Lakes-St. Lawrence Seaway System is closed to shipping for more than three months of winter season because of ice blockage, particularly fluctuations in the thickness and location of ice cover due to storms, wind, currents and variable temperatures. Shippers have long sought a system of navigation that would allow year-round operation on the Lakes and produce enormous economic and fuel conservation benefits. Interrupted operations require that industrial firms stockpile materials to carry them through the impassable months, which is costly. Alternatively, they must haul cargos by more expensive overland transportation. Studies estimate the economic benefits of year-round Great Lakes shipping in the hundreds of millions of dollars annually and fuel consumption savings in the tens of millions of gallons. Under Project Icewarn, NASA, the U.S. Coast Guard and the National Oceanic Atmospheric Administration collaborated in development and demonstration of a system that permits safe year-round operations. It employs airborne radars, satellite communications relay and facsimile transmission to provide shippers and ships' masters up-to-date ice charts. Lewis Research Center contributed an accurate methods of measuring ice thickness by means of a special "short-pulse" type of radar. In a three-year demonstration program, Coast Guard aircraft equipped with Side-Looking Airborne Radar (SLAR) flew over the Great Lakes three or four times a week. The SLAR, which can penetrate clouds, provided large area readings of the type and distribution of ice cover. The information was supplemented by short

  6. Extending permanent volcano monitoring networks into Iceland's ice caps

    NASA Astrophysics Data System (ADS)

    Vogfjörd, Kristín S.; Bergsson, Bergur H.; Kjartansson, Vilhjálmur; Jónsson, Thorsteinn; Ófeigsson, Benedikt G.; Roberts, Matthew J.; Jóhannesson, Tómas; Pálsson, Finnur; Magnússon, Eyjólfur; Erlendsson, Pálmi; Ingvarsson, Thorgils; Pálssson, Sighvatur K.

    2015-04-01

    sites in the ice started in early 2014, with the installation of windmills, solar panels and web camera to monitor snow accumulation and icing. The site locations were constrained by the availability of communication and locations of ice-divides to avoid significant lateral motion of the stations. At the onset of the Bárdarbunga dyke intrusion in August 2014, these sites were temporarily instrumented and transmitted real-time seismic data, important for tracking the dyke intrusion. In late 2014, a specially designed vault was installed at one of the sites and a Güralp broadband glacier seismometer installed. Since 2013, three GPS stations powered by solar energy have been operated on the ice, to monitor the movement of the glacier during an expected subglacial flood, when accumulated melt water at the Eastern Skaftá cauldron sub-glacial geothermal area will drain. One of the sites, located in the depression above the subglacial lake to monitor the onset of the flood, transmits the data to a repeater just outside the depression, from where the signal is transmitted by 3G to IMO. Maintaining the transmission through the winter months has required considerable maintenance. The experience gained through this operation proved crucial for the successful installation and operation of a real-time transmitting GPS and strong motion seismometer inside the Bárdarbunga cauldron in October 2014 to monitor the ongoing caldera subsidence.

  7. Explicit prediction of ice clouds in general circulation models

    NASA Astrophysics Data System (ADS)

    Kohler, Martin

    1999-11-01

    Although clouds play extremely important roles in the radiation budget and hydrological cycle of the Earth, there are large quantitative uncertainties in our understanding of their generation, maintenance and decay mechanisms, representing major obstacles in the development of reliable prognostic cloud water schemes for General Circulation Models (GCMs). Recognizing their relative neglect in the past, both observationally and theoretically, this work places special focus on ice clouds. A recent version of the UCLA - University of Utah Cloud Resolving Model (CRM) that includes interactive radiation is used to perform idealized experiments to study ice cloud maintenance and decay mechanisms under various conditions in term of: (1) background static stability, (2) background relative humidity, (3) rate of cloud ice addition over a fixed initial time-period and (4) radiation: daytime, nighttime and no-radiation. Radiation is found to have major effects on the life-time of layer-clouds. Optically thick ice clouds decay significantly slower than expected from pure microphysical crystal fall-out (taucld = 0.9--1.4 h as opposed to no-motion taumicro = 0.5--0.7 h). This is explained by the upward turbulent fluxes of water induced by IR destabilization, which partially balance the downward transport of water by snowfall. Solar radiation further slows the ice-water decay by destruction of the inversion above cloud-top and the resulting upward transport of water. Optically thin ice clouds, on the other hand, may exhibit even longer life-times (>1 day) in the presence of radiational cooling. The resulting saturation mixing ratio reduction provides for a constant cloud ice source. These CRM results are used to develop a prognostic cloud water scheme for the UCLA-GCM. The framework is based on the bulk water phase model of Ose (1993). The model predicts cloud liquid water and cloud ice separately, and which is extended to split the ice phase into suspended cloud ice (predicted

  8. Modeling Commercial Turbofan Engine Icing Risk With Ice Crystal Ingestion

    NASA Technical Reports Server (NTRS)

    Jorgenson, Philip C. E.; Veres, Joseph P.

    2013-01-01

    The occurrence of ice accretion within commercial high bypass aircraft turbine engines has been reported under certain atmospheric conditions. Engine anomalies have taken place at high altitudes that have been attributed to ice crystal ingestion, partially melting, and ice accretion on the compression system components. The result was degraded engine performance, and one or more of the following: loss of thrust control (roll back), compressor surge or stall, and flameout of the combustor. As ice crystals are ingested into the fan and low pressure compression system, the increase in air temperature causes a portion of the ice crystals to melt. It is hypothesized that this allows the ice-water mixture to cover the metal surfaces of the compressor stationary components which leads to ice accretion through evaporative cooling. Ice accretion causes a blockage which subsequently results in the deterioration in performance of the compressor and engine. The focus of this research is to apply an engine icing computational tool to simulate the flow through a turbofan engine and assess the risk of ice accretion. The tool is comprised of an engine system thermodynamic cycle code, a compressor flow analysis code, and an ice particle melt code that has the capability of determining the rate of sublimation, melting, and evaporation through the compressor flow path, without modeling the actual ice accretion. A commercial turbofan engine which has previously experienced icing events during operation in a high altitude ice crystal environment has been tested in the Propulsion Systems Laboratory (PSL) altitude test facility at NASA Glenn Research Center. The PSL has the capability to produce a continuous ice cloud which are ingested by the engine during operation over a range of altitude conditions. The PSL test results confirmed that there was ice accretion in the engine due to ice crystal ingestion, at the same simulated altitude operating conditions as experienced previously in

  9. WE-G-BRD-02: Characterizing Information Loss in a Sparse-Sampling-Based Dynamic MRI Sequence (k-T BLAST) for Lung Motion Monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arai, T; Nofiele, J; Sawant, A

    2015-06-15

    Purpose: Rapid MRI is an attractive, non-ionizing tool for soft-tissue-based monitoring of respiratory motion in thoracic and abdominal radiotherapy. One big challenge is to achieve high temporal resolution while maintaining adequate spatial resolution. K-t BLAST, sparse-sampling and reconstruction sequence based on a-priori information represents a potential solution. In this work, we investigated how much “true” motion information is lost as a-priori information is progressively added for faster imaging. Methods: Lung tumor motions in superior-inferior direction obtained from ten individuals were replayed into an in-house, MRI-compatible, programmable motion platform (50Hz refresh and 100microns precision). Six water-filled 1.5ml tubes were placed onmore » it as fiducial markers. Dynamic marker motion within a coronal slice (FOV: 32×32cm{sup 2}, resolution: 0.67×0.67mm{sup 2}, slice-thickness: 5mm) was collected on 3.0T body scanner (Ingenia, Philips). Balanced-FFE (TE/TR: 1.3ms/2.5ms, flip-angle: 40degrees) was used in conjunction with k-t BLAST. Each motion was repeated four times as four k-t acceleration factors 1, 2, 5, and 16 (corresponding frame rates were 2.5, 4.7, 9.8, and 19.1Hz, respectively) were compared. For each image set, one average motion trajectory was computed from six marker displacements. Root mean square error (RMS) was used as a metric of spatial accuracy where measured trajectories were compared to original data. Results: Tumor motion was approximately 10mm. The mean(standard deviation) of respiratory rates over ten patients was 0.28(0.06)Hz. Cumulative distributions of tumor motion frequency spectra (0–25Hz) obtained from the patients showed that 90% of motion fell on 3.88Hz or less. Therefore, the frame rate must be a double or higher for accurate monitoring. The RMS errors over patients for k-t factors of 1, 2, 5, and 16 were.10(.04),.17(.04), .21(.06) and.26(.06)mm, respectively. Conclusions: K-t factor of 5 or higher can

  10. Wave effects on ocean-ice interaction in the marginal ice zone

    NASA Technical Reports Server (NTRS)

    Liu, Antony K.; Hakkinen, Sirpa; Peng, Chih Y.

    1993-01-01

    The effects of wave train on ice-ocean interaction in the marginal ice zone are studied through numerical modeling. A coupled two-dimensional ice-ocean model has been developed to include wave effects and wind stress for the predictions of ice edge dynamics. The sea ice model is coupled to the reduced-gravity ocean model through interfacial stresses. The main dynamic balance in the ice momentum is between water-ice stress, wind stress, and wave radiation stresses. By considering the exchange of momentum between waves and ice pack through radiation stress for decaying waves, a parametric study of the effects of wave stress and wind stress on ice edge dynamics has been performed. The numerical results show significant effects from wave action. The ice edge is sharper, and ice edge meanders form in the marginal ice zone owing to forcing by wave action and refraction of swell system after a couple of days. Upwelling at the ice edge and eddy formation can be enhanced by the nonlinear effects of wave action; wave action sharpens the ice edge and can produce ice meandering, which enhances local Ekman pumping and pycnocline anomalies. The resulting ice concentration, pycnocline changes, and flow velocity field are shown to be consistent with previous observations.

  11. Monitoring Antarctic ice sheet surface melting with TIMESAT algorithm

    NASA Astrophysics Data System (ADS)

    Ye, Y.; Cheng, X.; Li, X.; Liang, L.

    2011-12-01

    Antarctic ice sheet contributes significantly to the global heat budget by controlling the exchange of heat, moisture, and momentum at the surface-atmosphere interface, which directly influence the global atmospheric circulation and climate change. Ice sheet melting will cause snow humidity increase, which will accelerate the disintegration and movement of ice sheet. As a result, detecting Antarctic ice sheet melting is essential for global climate change research. In the past decades, various methods have been proposed for extracting snowmelt information from multi-channel satellite passive microwave data. Some methods are based on brightness temperature values or a composite index of them, and others are based on edge detection. TIMESAT (Time-series of Satellite sensor data) is an algorithm for extracting seasonality information from time-series of satellite sensor data. With TIMESAT long-time series brightness temperature (SSM/I 19H) is simulated by Double Logistic function. Snow is classified to wet and dry snow with generalized Gaussian model. The results were compared with those from a wavelet algorithm. On this basis, Antarctic automatic weather station data were used for ground verification. It shows that this algorithm is effective in ice sheet melting detection. The spatial distribution of melting areas(Fig.1) shows that, the majority of melting areas are located on the edge of Antarctic ice shelf region. It is affected by land cover type, surface elevation and geographic location (latitude). In addition, the Antarctic ice sheet melting varies with seasons. It is particularly acute in summer, peaking at December and January, staying low in March. In summary, from 1988 to 2008, Ross Ice Shelf and Ronnie Ice Shelf have the greatest interannual variability in amount of melting, which largely determines the overall interannual variability in Antarctica. Other regions, especially Larsen Ice Shelf and Wilkins Ice Shelf, which is in the Antarctic Peninsula

  12. Motion control system of MAX IV Laboratory soft x-ray beamlines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sjöblom, Peter, E-mail: peter.sjoblom@maxlab.lu.se; Lindberg, Mirjam, E-mail: mirjam.lindberg@maxlab.lu.se; Forsberg, Johan, E-mail: johan.forsberg@maxlab.lu.se

    2016-07-27

    At the MAX IV Laboratory, five new soft x-ray beamlines are under development. The first is Species and it will be used to develop and set the standard of the control system, which will be common across the facility. All motion axes at MAX IV will be motorized using stepper motors steered by the IcePAP motion controller and a mixture of absolute and incremental encoders following a predefined coordinate system. The control system software is built in Tango and uses the Python-based Sardana framework. The user controls the entire beamline through a synoptic overview and Sardana is used to runmore » the scans.« less

  13. Spin Ice

    NASA Astrophysics Data System (ADS)

    Bramwell, Steven T.; Gingras, Michel J. P.; Holdsworth, Peter C. W.

    2013-03-01

    Pauling's model of hydrogen disorder in water ice represents the prototype of a frustrated system. Over the years it has spawned several analogous models, including Anderson's model antiferromagnet and the statistical "vertex" models. Spin Ice is a sixteen vertex model of "ferromagnetic frustration" that is approximated by real materials, most notably the rare earth pyrochlores Ho2Ti2O7, Dy2Ti2O7 and Ho2Sn2O7. These "spin ice materials" have the Pauling zero point entropy and in all respects represent almost ideal realisations of Pauling's model. They provide experimentalists with unprecedented access to a wide variety of novel magnetic states and phase transitions that are located in different regions of the field-temperature phase diagram. They afford theoreticians the opportunity to explore many new features of the magnetic interactions and statistical mechanics of frustrated systems. This chapter is a comprehensive review of the physics -- both experimental and theoretical -- of spin ice. It starts with a discussion of the historic problem of water ice and its relation to spin ice and other frustrated magnets. The properties of spin ice are then discussed in three sections that deal with the zero field spin ice state, the numerous field-induced states (including the recently identified "kagomé ice") and the magnetic dynamics. Some materials related to spin ice are briefly described and the chapter is concluded with a short summary of spin ice physics.

  14. Vapor deposition of water on graphitic surfaces: formation of amorphous ice, bilayer ice, ice I, and liquid water.

    PubMed

    Lupi, Laura; Kastelowitz, Noah; Molinero, Valeria

    2014-11-14

    Carbonaceous surfaces are a major source of atmospheric particles and could play an important role in the formation of ice. Here we investigate through molecular simulations the stability, metastability, and molecular pathways of deposition of amorphous ice, bilayer ice, and ice I from water vapor on graphitic and atomless Lennard-Jones surfaces as a function of temperature. We find that bilayer ice is the most stable ice polymorph for small cluster sizes, nevertheless it can grow metastable well above its region of thermodynamic stability. In agreement with experiments, the simulations predict that on increasing temperature the outcome of water deposition is amorphous ice, bilayer ice, ice I, and liquid water. The deposition nucleation of bilayer ice and ice I is preceded by the formation of small liquid clusters, which have two wetting states: bilayer pancake-like (wetting) at small cluster size and droplet-like (non-wetting) at larger cluster size. The wetting state of liquid clusters determines which ice polymorph is nucleated: bilayer ice nucleates from wetting bilayer liquid clusters and ice I from non-wetting liquid clusters. The maximum temperature for nucleation of bilayer ice on flat surfaces, T(B)(max) is given by the maximum temperature for which liquid water clusters reach the equilibrium melting line of bilayer ice as wetting bilayer clusters. Increasing water-surface attraction stabilizes the pancake-like wetting state of liquid clusters leading to larger T(B)(max) for the flat non-hydrogen bonding surfaces of this study. The findings of this study should be of relevance for the understanding of ice formation by deposition mode on carbonaceous atmospheric particles, including soot.

  15. Antartic sea ice, 1973 - 1976: Satellite passive-microwave observations

    NASA Technical Reports Server (NTRS)

    Zwally, H. J.; Comiso, J. C.; Parkinson, C. L.; Campbell, W. J.; Carsey, F. D.; Gloersen, P.

    1983-01-01

    Data from the Electrically Scanning Microwave Radiometer (ESMR) on the Nimbus 5 satellite are used to determine the extent and distribution of Antarctic sea ice. The characteristics of the southern ocean, the mathematical formulas used to obtain quantitative sea ice concentrations, the general characteristics of the seasonal sea ice growth/decay cycle and regional differences, and the observed seasonal growth/decay cycle for individual years and interannual variations of the ice cover are discussed. The sea ice data from the ESMR are presented in the form of color-coded maps of the Antarctic and the southern oceans. The maps show brightness temperatures and concentrations of pack ice averaged for each month, 4-year monthly averages, and month-to-month changes. Graphs summarizing the results, such as areas of sea ice as a function of time in the various sectors of the southern ocean are included. The images demonstrate that satellite microwave data provide unique information on large-scale sea ice conditions for determining climatic conditions in polar regions and possible global climatic changes.

  16. First Moderate Resolution Imaging Spectroradiometer (MODIS) Snow and Ice Workshop

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K. (Editor)

    1995-01-01

    This document is a compilation of summaries of talks presented at a 2-day workshop on Moderate Resolution maging Spectroradiometer (MODIS) snow and ice products. The objectives of the workshop were to: inform the snow and ce community of potential MODIS products, seek advice from the participants regarding the utility of the products, and letermine the needs for future post-launch MODIS snow and ice products. Four working groups were formed to discuss at-launch snow products, at-launch ice products, post-launch snow and ice products and utility of MODIS snow and ice products, respectively. Each working group presented recommendations at the conclusion of the workshop.

  17. The ICE-6G_C (VM5a) Global Model of the GIA Process: Antarctica at High Spatial Resolution

    NASA Astrophysics Data System (ADS)

    Peltier, W. R.; Drummond, R.; Argus, D. F.

    2016-12-01

    The ICE-6G_C (VM5a) global model of the glacial isostatic adjustment process (Argus et al., 2014 GJI 198, 537-563; Peltier et al. , 2015, JGR 119, doi:10.1002/2014JB011176) is the latest model in the ICE-nG (VMx) sequence. The model continues to be unique in that it is the only model whose properties are made freely available at each iterative step in its development. This latest version, which embodies detailed descriptions of the Laurentide , Fennoscandian/Barents Sea, Greenland and Antarctic ice sheets through the most recent glacial cycle, is a refinement based primarily upon the incorporation of the constraints being provided by GPS measurements of the vertical and horizontal motion of the crust as well as GRACE observations of the time dependent gravity field. The model has been shown to provide exceptionally accurate predictions of these space geodetic observations of the response to the most recent Late Quaternary glacial cycle. Particular attention has been paid to the Antarctic component as it is well known on the basis of analyses of the sedimentary stratigraphy off-shore and geomorphological characteristics of the continental shelf, that the Last Glacial Maximum state of the southern continent was one in which grounded ice extended out to the shelf break in most locations, including significant fractions of the Ross Sea and Weddell Sea embayments. In the latter regions especially, it is expected that grounded ice would have existed below sea level. In ICE-6G_C (VM5a) a grounding line tracking algorithm was employed (Stuhne and Peltier, 2015 JGR 120, 1841-1865) in order to describe the unloading of the solid surface by ice that was initially grounded below sea level, an apparently unique characteristic of this model. In the initially published version, in which the Sea Level Equation (SLE) was inverted on a basis of spherical harmonics truncated at degree and order 256, this led to "ringing" in the embayments when the Stokes coefficients of the model

  18. Climate-driven seasonal geocenter motion during the GRACE period

    NASA Astrophysics Data System (ADS)

    Zhang, Hongyue; Sun, Yu

    2018-03-01

    Annual cycles in the geocenter motion time series are primarily driven by mass changes in the Earth's hydrologic system, which includes land hydrology, atmosphere, and oceans. Seasonal variations of the geocenter motion have been reliably determined according to Sun et al. (J Geophys Res Solid Earth 121(11):8352-8370, 2016) by combining the Gravity Recovery And Climate Experiment (GRACE) data with an ocean model output. In this study, we reconstructed the observed seasonal geocenter motion with geophysical model predictions of mass variations in the polar ice sheets, continental glaciers, terrestrial water storage (TWS), and atmosphere and dynamic ocean (AO). The reconstructed geocenter motion time series is shown to be in close agreement with the solution based on GRACE data supporting with an ocean bottom pressure model. Over 85% of the observed geocenter motion time series, variance can be explained by the reconstructed solution, which allows a further investigation of the driving mechanisms. We then demonstrated that AO component accounts for 54, 62, and 25% of the observed geocenter motion variances in the X, Y, and Z directions, respectively. The TWS component alone explains 42, 32, and 39% of the observed variances. The net mass changes over oceans together with self-attraction and loading effects also contribute significantly (about 30%) to the seasonal geocenter motion in the X and Z directions. Other contributing sources, on the other hand, have marginal (less than 10%) impact on the seasonal variations but introduce a linear trend in the time series.

  19. Wave-Ice interaction in the Marginal Ice Zone: Toward a Wave-Ocean-Ice Coupled Modeling System

    DTIC Science & Technology

    2015-09-30

    MIZ using WW3 (3 frequency bins, ice retreat in August and ice advance in October); Blue (solid): Based on observations near Antarctica by Meylan...1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Wave- Ice interaction in the Marginal Ice Zone: Toward a...Wave-Ocean- Ice Coupled Modeling System W. E. Rogers Naval Research Laboratory, Code 7322 Stennis Space Center, MS 39529 phone: (228) 688-4727

  20. Fault-dominated deformation in an ice dam during annual filling and drainage of a marginal lake

    USGS Publications Warehouse

    Walder, J.S.; Trabant, D.C.; Cunico, M.; Anderson, S.P.; Anderson, R. Scott; Fountain, A.G.; Malm, A.

    2005-01-01

    Ice-dammed Hidden Creek Lake, Alaska, USA, outbursts annually in about 2-3 days. As the lake fills, a wedge of water penetrates beneath the glacier, and the surface of this 'ice dam' rises; the surface then falls as the lake drains. Detailed optical surveying of the glacier near the lake allows characterization of ice-dam deformation. Surface uplift rate is close to the rate of lake-level rise within about 400 m of the lake, then decreases by 90% over about 100 m. Such a steep gradient in uplift rate cannot be explained in terms of ice-dam flexure. Moreover, survey targets spanning the zone of steep uplift gradient move relative to one another in a nearly reversible fashion as the lake fills and drains. Evidently, the zone of steep uplift gradient is a fault zone, with the faults penetrating the entire thickness of the ice dam. Fault motion is in a reverse sense as the lake fills, but in a normal sense as the lake drains. As the overall fault pattern is the same from year to year, even though ice is lost by calving, the faults must be regularly regenerated, probably by linkage of surface and bottom crevasses as ice is advected toward the lake basin.