Sample records for ice pack ice

  1. Breakup of Pack Ice, Antarctic Ice Shelf

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Breakup of Pack Ice along the periphery of the Antarctic Ice Shelf (53.5S, 3.0E) produced this mosaic of ice floes off the Antarctic Ice Shelf. Strong offshore winds, probably associated with strong katabatic downdrafts from the interior of the continent, are seen peeling off the edges of the ice shelf into long filamets of sea ice, icebergs, bergy bits and growlers to flow northward into the South Atlantic Ocean. 53.5S, 3.0E

  2. SPH Modelling of Sea-ice Pack Dynamics

    NASA Astrophysics Data System (ADS)

    Staroszczyk, Ryszard

    2017-12-01

    The paper is concerned with the problem of sea-ice pack motion and deformation under the action of wind and water currents. Differential equations describing the dynamics of ice, with its very distinct mateFfigrial responses in converging and diverging flows, express the mass and linear momentum balances on the horizontal plane (the free surface of the ocean). These equations are solved by the fully Lagrangian method of smoothed particle hydrodynamics (SPH). Assuming that the ice behaviour can be approximated by a non-linearly viscous rheology, the proposed SPH model has been used to simulate the evolution of a sea-ice pack driven by wind drag stresses. The results of numerical simulations illustrate the evolution of an ice pack, including variations in ice thickness and ice area fraction in space and time. The effects of different initial ice pack configurations and of different conditions assumed at the coast-ice interface are examined. In particular, the SPH model is applied to a pack flow driven by a vortex wind to demonstrate how well the Lagrangian formulation can capture large deformations and displacements of sea ice.

  3. STS-48 ESC Earth observation of ice pack, Antarctic Ice Shelf

    NASA Technical Reports Server (NTRS)

    1991-01-01

    STS-48 Earth observation taken aboard Discovery, Orbiter Vehicle (OV) 103, is of the breakup of pack ice along the periphery of the Antarctic Ice Shelf. Strong offshore winds, probably associated with katabatic downdrafts from the interior of the continent, are seen peeling off the edges of the ice shelf into long filaments of sea ice, icebergs, bergy bits, and growlers to flow northward into the South Atlantic Ocean. These photos are used to study ocean wind, tide and current patterns. Similar views photographed during previous missions, when analyzed with these recent views may yield information about regional ice drift and breakup of ice packs. The image was captured using an electronic still camera (ESC), was stored on a removable hard disk or small optical disk, and was converted to a format suitable for downlink transmission. The ESC documentation was part of Development Test Objective (DTO) 648, Electronic Still Photography.

  4. Ice pack heat sink subsystem - Phase 1, Volume 1

    NASA Technical Reports Server (NTRS)

    Roebelen, G. J., Jr.

    1973-01-01

    The design, development, fabrication, and test at one-g of a functional laboratory model (non-flight) ice pack heat sink subsystem to be used eventually for astronaut cooling during manned space missions are discussed. In normal use, excess heat in the liquid cooling garment (LCG) coolant is transferred to a reusable/regenerable ice pack heat sink. For emergency operation, or for extension of extravehicular activity mission time after all the ice has melted, water from the ice pack is boiled to vacuum, thereby continuing to remove heat from the LCG coolant. This subsystem incorporates a quick connect/disconnect thermal interface between the ice pack heat sink and the subsystem heat exchanger.

  5. Mapping and Assessing Variability in the Antarctic Marginal Ice Zone, the Pack Ice and Coastal Polynyas

    NASA Astrophysics Data System (ADS)

    Stroeve, Julienne; Jenouvrier, Stephanie

    2016-04-01

    Sea ice variability within the marginal ice zone (MIZ) and polynyas plays an important role for phytoplankton productivity and krill abundance. Therefore mapping their spatial extent, seasonal and interannual variability is essential for understanding how current and future changes in these biological active regions may impact the Antarctic marine ecosystem. Knowledge of the distribution of different ice types to the total Antarctic sea ice cover may also help to shed light on the factors contributing towards recent expansion of the Antarctic ice cover in some regions and contraction in others. The long-term passive microwave satellite data record provides the longest and most consistent data record for assessing different ice types. However, estimates of the amount of MIZ, consolidated pack ice and polynyas depends strongly on what sea ice algorithm is used. This study uses two popular passive microwave sea ice algorithms, the NASA Team and Bootstrap to evaluate the distribution and variability in the MIZ, the consolidated pack ice and coastal polynyas. Results reveal the NASA Team algorithm has on average twice the MIZ and half the consolidated pack ice area as the Bootstrap algorithm. Polynya area is also larger in the NASA Team algorithm, and the timing of maximum polynya area may differ by as much as 5 months between algorithms. These differences lead to different relationships between sea ice characteristics and biological processes, as illustrated here with the breeding success of an Antarctic seabird.

  6. Ecology of southern ocean pack ice.

    PubMed

    Brierley, Andrew S; Thomas, David N

    2002-01-01

    Around Antarctica the annual five-fold growth and decay of sea ice is the most prominent physical process and has a profound impact on marine life there. In winter the pack ice canopy extends to cover almost 20 million square kilometres--some 8% of the southern hemisphere and an area larger than the Antarctic continent itself (13.2 million square kilometres)--and is one of the largest, most dynamic ecosystems on earth. Biological activity is associated with all physical components of the sea-ice system: the sea-ice surface; the internal sea-ice matrix and brine channel system; the underside of sea ice and the waters in the vicinity of sea ice that are modified by the presence of sea ice. Microbial and microalgal communities proliferate on and within sea ice and are grazed by a wide range of proto- and macrozooplankton that inhabit the sea ice in large concentrations. Grazing organisms also exploit biogenic material released from the sea ice at ice break-up or melt. Although rates of primary production in the underlying water column are often low because of shading by sea-ice cover, sea ice itself forms a substratum that provides standing stocks of bacteria, algae and grazers significantly higher than those in ice-free areas. Decay of sea ice in summer releases particulate and dissolved organic matter to the water column, playing a major role in biogeochemical cycling as well as seeding water column phytoplankton blooms. Numerous zooplankton species graze sea-ice algae, benefiting additionally because the overlying sea-ice ceiling provides a refuge from surface predators. Sea ice is an important nursery habitat for Antarctic krill, the pivotal species in the Southern Ocean marine ecosystem. Some deep-water fish migrate to shallow depths beneath sea ice to exploit the elevated concentrations of some zooplankton there. The increased secondary production associated with pack ice and the sea-ice edge is exploited by many higher predators, with seals, seabirds and whales

  7. Mapping and assessing variability in the Antarctic marginal ice zone, pack ice and coastal polynyas in two sea ice algorithms with implications on breeding success of snow petrels

    NASA Astrophysics Data System (ADS)

    Stroeve, Julienne C.; Jenouvrier, Stephanie; Campbell, G. Garrett; Barbraud, Christophe; Delord, Karine

    2016-08-01

    Sea ice variability within the marginal ice zone (MIZ) and polynyas plays an important role for phytoplankton productivity and krill abundance. Therefore, mapping their spatial extent as well as seasonal and interannual variability is essential for understanding how current and future changes in these biologically active regions may impact the Antarctic marine ecosystem. Knowledge of the distribution of MIZ, consolidated pack ice and coastal polynyas in the total Antarctic sea ice cover may also help to shed light on the factors contributing towards recent expansion of the Antarctic ice cover in some regions and contraction in others. The long-term passive microwave satellite data record provides the longest and most consistent record for assessing the proportion of the sea ice cover that is covered by each of these ice categories. However, estimates of the amount of MIZ, consolidated pack ice and polynyas depend strongly on which sea ice algorithm is used. This study uses two popular passive microwave sea ice algorithms, the NASA Team and Bootstrap, and applies the same thresholds to the sea ice concentrations to evaluate the distribution and variability in the MIZ, the consolidated pack ice and coastal polynyas. Results reveal that the seasonal cycle in the MIZ and pack ice is generally similar between both algorithms, yet the NASA Team algorithm has on average twice the MIZ and half the consolidated pack ice area as the Bootstrap algorithm. Trends also differ, with the Bootstrap algorithm suggesting statistically significant trends towards increased pack ice area and no statistically significant trends in the MIZ. The NASA Team algorithm on the other hand indicates statistically significant positive trends in the MIZ during spring. Potential coastal polynya area and amount of broken ice within the consolidated ice pack are also larger in the NASA Team algorithm. The timing of maximum polynya area may differ by as much as 5 months between algorithms. These

  8. Ice pack heat sink subsystem, phase 2. [astronaut life support cooling system

    NASA Technical Reports Server (NTRS)

    Roebelen, G. J., Jr.; Kellner, J. D.

    1975-01-01

    The report describes the design, development, fabrication, and test at one gravity of a prototype ice pack heat sink subsystem to be used eventually for astronaut cooling during manned space missions; the investigation of thermal storage material with the objective of uncovering materials with heats of fusion and/or solution in the range of 300 Btu/lb (700 kilojoules/kilogram); and the planned procedure for implementing an ice pack heat sink subsystem flight experiment. In normal use, excess heat in the liquid cooling garment (LCG) coolant is transferred to a reusable/regenerable ice pack heat sink. For emergency operation, or for extension of extravehicular activity mission time after all the ice has melted, water from the ice pack is boiled to vacuum, thereby continuing to remove heat from the LCG coolant. This subsystem incorporates a quick disconnect thermal interface between the ice pack heat sink and the subsystem heat exchanger.

  9. Simple Cloud Chambers Using Gel Ice Packs

    ERIC Educational Resources Information Center

    Kamata, Masahiro; Kubota, Miki

    2012-01-01

    Although cloud chambers are highly regarded as teaching aids for radiation education, school teachers have difficulty in using cloud chambers because they have to prepare dry ice or liquid nitrogen before the experiment. We developed a very simple and inexpensive cloud chamber that uses the contents of gel ice packs which can substitute for dry…

  10. Experimental Investigation of the Resistance Performance and Heave and Pitch Motions of Ice-Going Container Ship Under Pack Ice Conditions

    NASA Astrophysics Data System (ADS)

    Guo, Chun-yu; Xie, Chang; Zhang, Jin-zhao; Wang, Shuai; Zhao, Da-gang

    2018-04-01

    In order to analyze the ice-going ship's performance under the pack ice conditions, synthetic ice was introduced into a towing tank. A barrier using floating cylinder in the towing tank was designed to carry out the resistance experiment. The test results indicated that the encountering frequency between the ship model and the pack ice shifts towards a high-velocity point as the concentration of the pack ice increases, and this encountering frequency creates an unstable region of the resistance, and the unstable region shifts to the higher speed with the increasing concentration. The results also showed that for the same speed points, the ratio of the pack ice resistance to the open water resistance increases with the increasing concentration, and for the same concentrations, this ratio decreases as the speed increases. Motion characteristics showed that the mean value of the heave motion increases as the speed increases, and the pitch motion tends to increase with the increasing speed. In addition, the total resistance of the fullscale was predicted.

  11. Sea ice motions in the Central Arctic pack ice as inferred from AVHRR imagery

    NASA Technical Reports Server (NTRS)

    Emery, William; Maslanik, James; Fowler, Charles

    1995-01-01

    Synoptic observations of ice motion in the Arctic Basin are currently limited to those acquired by drifting buoys and, more recently, radar data from ERS-1. Buoys are not uniformly distributed throughout the Arctic, and SAR coverage is currently limited regionally and temporally due to the data volume, swath width, processing requirements, and power needs of the SAR. Additional ice-motion observations that can map ice responses simultaneously over large portions of the Arctic on daily to weekly time intervals are thus needed to augment the SAR and buoys data and to provide an intermediate-scale measure of ice drift suitable for climatological analyses and ice modeling. Principal objectives of this project were to: (1) demonstrate whether sufficient ice features and ice motion existed within the consolidated ice pack to permit motion tracking using AVHRR imagery; (2) determine the limits imposed on AVHRR mapping by cloud cover; and (3) test the applicability of AVHRR-derived motions in studies of ice-atmosphere interactions. Each of these main objectives was addressed. We conclude that AVHRR data, particularly when blended with other available observations, provide a valuable data set for studying sea ice processes. In a follow-on project, we are now extending this work to cover larger areas and to address science questions in more detail.

  12. Ice Pack Heat Sink Subsystem - Phase I. [astronaut liquid cooling garment design and testing

    NASA Technical Reports Server (NTRS)

    Roebelen, G. J., Jr.

    1973-01-01

    This paper describes the design and test at one-g of a functional laboratory model (non-flight) Ice Pack Heat Sink Subsystem to be used eventually for astronaut cooling during manned space missions. In normal use, excess heat in the liquid cooling garment (LCG) coolant is transferred to a reusable/regenerable ice pack heat sink. For emergency operation, or for extension of extravehicular activity mission time after all the ice has melted, water from the ice pack is boiled to vacuum, thereby continuing to remove heat from the LCG coolant. This subsystem incorporates a quick connect/disconnect thermal interface between the ice pack heat sink and the subsystem heat exchanger.

  13. Length of perineal pain relief after ice pack application: A quasi-experimental study.

    PubMed

    de Souza Bosco Paiva, Caroline; Junqueira Vasconcellos de Oliveira, Sonia Maria; Amorim Francisco, Adriana; da Silva, Renata Luana; de Paula Batista Mendes, Edilaine; Steen, Mary

    2016-04-01

    Ice pack is effective for alleviating postpartum perineal pain in primiparous women while multiparous women's levels of perineal pain appear to be poorly explored. Ice pack is a low-cost non-invasive localised treatment that can be used with no impact on breastfeeding. However, how long perineal analgesia persists after applying an ice pack is still unknown. To evaluate if perineal analgesia is maintained up to 2h after applying an ice pack to the perineum for 20min. A quasi-experimental study, using a pre and post-test design, was undertaken with a sample size of 50 multiparous women in Brazil. Data was collected by structured interview. The intervention involved a single application of an ice pack applied for 20min to the perineal area of women who reported perineal pain ≥3 by use of a numeric rating scale (0-10), with intact perineum, 1st or 2nd degree lacerations or episiotomy, between 6 and 24h after spontaneous vaginal birth. Perineal pain was evaluated at three points of time: before, immediately after and 2h after applying an ice pack. Immediately after applying an ice pack to the perineal area, there was a significant reduction in the severity of perineal pain reported (5.4 vs. 1.0, p<0.0005), which continued for 1h 35min up to 2h after the local application. Ice pack application for 20min is effective for alleviating postpartum perineal pain and continues to be effective between 1h 35min for up to 2h. Copyright © 2015 Australian College of Midwives. Published by Elsevier Ltd. All rights reserved.

  14. Comparisons of Cubed Ice, Crushed Ice, and Wetted Ice on Intramuscular and Surface Temperature Changes

    PubMed Central

    Dykstra, Joseph H; Hill, Holly M; Miller, Michael G; Cheatham, Christopher C; Michael, Timothy J; Baker, Robert J

    2009-01-01

    Context: Many researchers have investigated the effectiveness of different types of cold application, including cold whirlpools, ice packs, and chemical packs. However, few have investigated the effectiveness of different types of ice used in ice packs, even though ice is one of the most common forms of cold application. Objective: To evaluate and compare the cooling effectiveness of ice packs made with cubed, crushed, and wetted ice on intramuscular and skin surface temperatures. Design: Repeated-measures counterbalanced design. Setting: Human performance research laboratory. Patients or Other Participants: Twelve healthy participants (6 men, 6 women) with no history of musculoskeletal disease and no known preexisting inflammatory conditions or recent orthopaedic injuries to the lower extremities. Intervention(s): Ice packs made with cubed, crushed, or wetted ice were applied to a standardized area on the posterior aspect of the right gastrocnemius for 20 minutes. Each participant was given separate ice pack treatments, with at least 4 days between treatment sessions. Main Outcome Measure(s): Cutaneous and intramuscular (2 cm plus one-half skinfold measurement) temperatures of the right gastrocnemius were measured every 30 seconds during a 20-minute baseline period, a 20-minute treatment period, and a 120-minute recovery period. Results: Differences were observed among all treatments. Compared with the crushed-ice treatment, the cubed-ice and wetted-ice treatments produced lower surface and intramuscular temperatures. Wetted ice produced the greatest overall temperature change during treatment and recovery, and crushed ice produced the smallest change. Conclusions: As administered in our protocol, wetted ice was superior to cubed or crushed ice at reducing surface temperatures, whereas both cubed ice and wetted ice were superior to crushed ice at reducing intramuscular temperatures. PMID:19295957

  15. Leads in Arctic pack ice enable early phytoplankton blooms below snow-covered sea ice

    PubMed Central

    Assmy, Philipp; Fernández-Méndez, Mar; Duarte, Pedro; Meyer, Amelie; Randelhoff, Achim; Mundy, Christopher J.; Olsen, Lasse M.; Kauko, Hanna M.; Bailey, Allison; Chierici, Melissa; Cohen, Lana; Doulgeris, Anthony P.; Ehn, Jens K.; Fransson, Agneta; Gerland, Sebastian; Hop, Haakon; Hudson, Stephen R.; Hughes, Nick; Itkin, Polona; Johnsen, Geir; King, Jennifer A.; Koch, Boris P.; Koenig, Zoe; Kwasniewski, Slawomir; Laney, Samuel R.; Nicolaus, Marcel; Pavlov, Alexey K.; Polashenski, Christopher M.; Provost, Christine; Rösel, Anja; Sandbu, Marthe; Spreen, Gunnar; Smedsrud, Lars H.; Sundfjord, Arild; Taskjelle, Torbjørn; Tatarek, Agnieszka; Wiktor, Jozef; Wagner, Penelope M.; Wold, Anette; Steen, Harald; Granskog, Mats A.

    2017-01-01

    The Arctic icescape is rapidly transforming from a thicker multiyear ice cover to a thinner and largely seasonal first-year ice cover with significant consequences for Arctic primary production. One critical challenge is to understand how productivity will change within the next decades. Recent studies have reported extensive phytoplankton blooms beneath ponded sea ice during summer, indicating that satellite-based Arctic annual primary production estimates may be significantly underestimated. Here we present a unique time-series of a phytoplankton spring bloom observed beneath snow-covered Arctic pack ice. The bloom, dominated by the haptophyte algae Phaeocystis pouchetii, caused near depletion of the surface nitrate inventory and a decline in dissolved inorganic carbon by 16 ± 6 g C m−2. Ocean circulation characteristics in the area indicated that the bloom developed in situ despite the snow-covered sea ice. Leads in the dynamic ice cover provided added sunlight necessary to initiate and sustain the bloom. Phytoplankton blooms beneath snow-covered ice might become more common and widespread in the future Arctic Ocean with frequent lead formation due to thinner and more dynamic sea ice despite projected increases in high-Arctic snowfall. This could alter productivity, marine food webs and carbon sequestration in the Arctic Ocean. PMID:28102329

  16. SAR imagery of the Grand Banks (Newfoundland) pack ice pack and its relationship to surface features

    NASA Technical Reports Server (NTRS)

    Argus, S. D.; Carsey, F. D.

    1988-01-01

    Synthetic Aperture Radar (SAR) data and aerial photographs were obtained over pack ice off the East Coast of Canada in March 1987 as part of the Labrador Ice Margin Experiment (LIMEX) pilot project. Examination of this data shows that although the pack ice off the Canadian East Coast appears essentially homogeneous to visible light imagery, two clearly defined zones of ice are apparent on C-band SAR imagery. To identify factors that create the zones seen on the radar image, aerial photographs were compared to the SAR imagery. Floe size data from the aerial photographs was compared to digital number values taken from SAR imagery of the same ice. The SAR data of the inner zone acquired three days apart over the melt period was also examined. The studies indicate that the radar response is governed by floe size and meltwater distribution.

  17. Pack ice along the Kamchatka Peninsula, Russia as seen from STS-60

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Pack ice is documented in this photograph along the coast of the Kamchatka Peninsula of Russia in Zaliv Ozernoj. Detailed photographs of the ice provide information to scientists in both Russia and the United States about the location and fluctuation of ice edges, and how this new sea ice interacts with ocean and littoral currents.

  18. Method to estimate drag coefficient at the air/ice interface over drifting open pack ice from remotely sensed data

    NASA Technical Reports Server (NTRS)

    Feldman, U.

    1984-01-01

    A knowledge in near real time, of the surface drag coefficient for drifting pack ice is vital for predicting its motions. And since this is not routinely available from measurements it must be replaced by estimates. Hence, a method for estimating this variable, as well as the drag coefficient at the water/ice interface and the ice thickness, for drifting open pack ice was developed. These estimates were derived from three-day sequences of LANDSAT-1 MSS images and surface weather charts and from the observed minima and maxima of these variables. The method was tested with four data sets in the southeastern Beaufort sea. Acceptable results were obtained for three data sets. Routine application of the method depends on the availability of data from an all-weather air or spaceborne remote sensing system, producing images with high geometric fidelity and high resolution.

  19. Breakup of Pack Ice, Antarctic Ice Shelf

    NASA Image and Video Library

    1991-09-18

    STS048-152-007 (12-18 Sept 1991) --- The periphery of the Antarctic ice shelf and the Antarctic Peninsula were photographed by the STS 48 crew members. Strong offshore winds, probably associated with katabatic winds from the interior of the continent, are peeling off the edges of the ice shelf into ribbons of sea ice, icebergs, bergy bits and growlers into the cold waters of the circum-Antarctic southern ocean.

  20. There goes the sea ice: following Arctic sea ice parcels and their properties.

    NASA Astrophysics Data System (ADS)

    Tschudi, M. A.; Tooth, M.; Meier, W.; Stewart, S.

    2017-12-01

    Arctic sea ice distribution has changed considerably over the last couple of decades. Sea ice extent record minimums have been observed in recent years, the distribution of ice age now heavily favors younger ice, and sea ice is likely thinning. This new state of the Arctic sea ice cover has several impacts, including effects on marine life, feedback on the warming of the ocean and atmosphere, and on the future evolution of the ice pack. The shift in the state of the ice cover, from a pack dominated by older ice, to the current state of a pack with mostly young ice, impacts specific properties of the ice pack, and consequently the pack's response to the changing Arctic climate. For example, younger ice typically contains more numerous melt ponds during the melt season, resulting in a lower albedo. First-year ice is typically thinner and more fragile than multi-year ice, making it more susceptible to dynamic and thermodynamic forcing. To investigate the response of the ice pack to climate forcing during summertime melt, we have developed a database that tracks individual Arctic sea ice parcels along with associated properties as these parcels advect during the summer. Our database tracks parcels in the Beaufort Sea, from 1985 - present, along with variables such as ice surface temperature, albedo, ice concentration, and convergence. We are using this database to deduce how these thousands of tracked parcels fare during summer melt, i.e. what fraction of the parcels advect through the Beaufort, and what fraction melts out? The tracked variables describe the thermodynamic and dynamic forcing on these parcels during their journey. This database will also be made available to all interested investigators, after it is published in the near future. The attached image shows the ice surface temperature of all parcels (right) that advected through the Beaufort Sea region (left) in 2014.

  1. Is it worth packing the head with ice in patients undergoing deep hypothermic circulatory arrest?

    PubMed

    O'Neill, Bridie; Bilal, Haris; Mahmood, Sarah; Waterworth, Paul

    2012-10-01

    A best evidence topic in cardiac surgery was written according to a structured protocol. The question addressed was: Is it worth packing the head with ice in patients undergoing deep hypothermic circulatory arrest (DHCA)? Altogether more than 34 papers were found using the reported search, of which 7 represented the best evidence to answer the clinical question, 5 of which were animal studies, 1 was a theoretical laboratory study and 1 study looked at the ability to cool using circulating water 'jackets' in humans. There were no available human studies looking at the neurological outcome with or without topical head cooling with ice without further adjunct methods of cerebral protection. The authors, journal, date and country of publication, patient group studied, study type, relevant outcomes and results of these papers are tabulated. Four papers studied animals undergoing DHCA for 45 min-2 h depending on the study design, with or without packing the head with ice. The studies all demonstrated improved cerebral cooling when the head was packed with ice during DHCA. They also illustrated an improved neurological outcome, with better behavioural scores (P < 0.05), and in some, survival, when compared with animals whose heads were not packed in ice. One study examined selective head cooling with the use of packing the head with ice during rewarming after DHCA. However, they demonstrated worse neurological outcomes in these animals, possibly due to the loss of cerebral vasoregulation and cerebral oedema. One study involved a laboratory experiment showing improved cooling using circulating cool water in cryotherapy braces than by using packed ice. They extrapolated that newer devices to cool the head may improve cerebral cooling during DHCA. The final study discussed here demonstrated the use of circulating water to the head in humans undergoing pulmonary endarterectomy. They found that tympanic membrane temperatures could be maintained significantly lower than bladder

  2. Ice pack heat sink subsystem - phase 1, volume 2

    NASA Technical Reports Server (NTRS)

    Roebelen, G. J., Jr.

    1973-01-01

    The design, development, and test of a functional laboratory model ice pack heat sink subsystem are discussed. Operating instructions to include mechanical and electrical schematics, maintenance instructions, and equipment specifications are presented.

  3. Fifteen-second skin icing using a frozen gel pack is effective for reducing goserelin injection pain.

    PubMed

    Naya, Yoshio; Hagiwara, Nobuhisa; Takeuchi, Ichiro; Mori, Masaru; Inagaki, Akinori; Nakanouchi, Tsuneyuki; Mikami, Kazuya

    2014-01-01

    The efficacy of skin icing to reduce the pain of goserelin injection has been reported. We investigated the optimal icing time with a frozen gel pack and its effectiveness. Abdominal skin temperatures of 49 healthy volunteers were measured after application of the frozen gel pack for 10, 15 and 30 s, and it was decided that a 15-second icing was adequate. For 55 consecutive patients who received goserelin (10.8 mg) injection, pain was evaluated employing a visual analog scale (VAS). The first injection was administered routinely. A second injection was administered after skin icing in 27 of 55 patients who wanted to try icing. At the time of the third injection, all patient decided whether they were to receive icing or the routine method. After icing, VAS scores decreased in 20 of 27 patients. At the third injection, 18 patients requested icing. When a patient complains of injection pain, the icing method should be considered for pain reduction. 2014 S. Karger AG, Basel.

  4. Year-Round Pack Ice in the Weddell Sea, Antarctica: Response and Sensitivity to Atmospheric and Oceanic Forcing

    NASA Technical Reports Server (NTRS)

    Geiger, Cathleen A.; Ackley, Stephen F.; Hibler, William D., III

    1997-01-01

    Using a dynamic-thermodynamic numerical sea-ice model, external oceanic and atmospheric forcings on sea ice in the Weddell Sea are examined to identify physical processes associated with the seasonal cycle of pack ice, and to identify further the parameters that coupled models need to consider in predicting the response of the pack ice to climate and ocean-circulation changes. In agreement with earlier studies, the primary influence on the winter ice-edge maximum extent is air temperature. Ocean heat flux has more impact on the minimum-ice-edge extent and in reducing pack-ice thickness, especially in the eastern-Weddell Sea. Low relative humidity enhances ice growth in thin ice and open-water regions, producing a more realistic ice edge along the coastal areas of the western-Weddell Sea where dry continental air has an impact. The modeled extent of the Weddell summer pack is equally sensitive to ocean heat flux and atmospheric relative humidity variations with the more dynamic responses being from the atmosphere. Since the atmospheric regime in the eastern Weddell is dominated by marine intrusions from lower latitudes, with high humidity already, it is unlikely that either the moisture trans- port could be further raised or that it could be significantly lowered because of its distance from the continent (the lower humidity source). Ocean heat-transport variability is shown to lead to overall ice thinning in the model response and is a known feature of the actual system, as evidenced by the occurrence of the Weddell Polynya in the mid 1970s.

  5. Analysis of sea ice dynamics

    NASA Technical Reports Server (NTRS)

    Zwally, J.

    1988-01-01

    The ongoing work has established the basis for using multiyear sea ice concentrations from SMMR passive microwave for studies of largescale advection and convergence/divergence of the Arctic sea ice pack. Comparisons were made with numerical model simulations and buoy data showing qualitative agreement on daily to interannual time scales. Analysis of the 7-year SMMR data set shows significant interannual variations in the total area of multiyear ice. The scientific objective is to investigate the dynamics, mass balance, and interannual variability of the Arctic sea ice pack. The research emphasizes the direct application of sea ice parameters derived from passive microwave data (SMMR and SSMI) and collaborative studies using a sea ice dynamics model. The possible causes of observed interannual variations in the multiyear ice area are being examined. The relative effects of variations in the large scale advection and convergence/divergence within the ice pack on a regional and seasonal basis are investigated. The effects of anomolous atmospheric forcings are being examined, including the long-lived effects of synoptic events and monthly variations in the mean geostrophic winds. Estimates to be made will include the amount of new ice production within the ice pack during winter and the amount of ice exported from the pack.

  6. The zooplankton food web under East Antarctic pack ice - A stable isotope study

    NASA Astrophysics Data System (ADS)

    Jia, Zhongnan; Swadling, Kerrie M.; Meiners, Klaus M.; Kawaguchi, So; Virtue, Patti

    2016-09-01

    Understanding how sea ice serves zooplankton species during the food-limited season is crucial information to evaluate the potential responses of pelagic food webs to changes in sea-ice conditions in the Southern Ocean. Stable isotope analyses (13C/12C and 15N/14N) were used to compare the dietary preferences and trophic relationships of major zooplankton species under pack ice during two winter-spring transitions (2007 and 2012). During sampling, furcilia of Euphausia superba demonstrated dietary plasticity between years, herbivory when feeding on sea-ice biota, and with a more heterotrophic diet when feeding from both the sea ice and the water column. Carbon isotope signatures suggested that the pteropod Limacina helicina, small copepods Oithona spp., ostracods and amphipods relied heavily on sea-ice biota. Post larval E. superba and omnivorous krill Thysanoessa macrura consumed both water column and ice biota, but further investigations are needed to estimate the contribution from each source. Large copepods and chaetognaths overwintered on a water column-based diet. Our study suggests that warm and permeable sea ice is more likely to provide food for zooplankton species under the ice than the colder ice.

  7. Effect of local cooling on excitation-contraction coupling in myasthenic muscle: Another mechanism of ice-pack test in myasthenia gravis.

    PubMed

    Yamamoto, Daisuke; Imai, Tomihiro; Tsuda, Emiko; Hozuki, Takayoshi; Yamauchi, Rika; Hisahara, Shin; Kawamata, Jun; Shimohama, Shun

    2017-11-01

    The ice-pack test is a convenient diagnostic testing procedure for myasthenia gravis (MG). We investigated the underlying mechanism of the ice-pack test performed on bilateral masseters. We performed trigeminal repetitive nerve stimulation (RNS), excitation-contraction (E-C) coupling assessment (Imai's method) and bite force measurement before and after cooling of the masseters in MG patients and normal controls. After placing the ice-pack on the masseters for 3min, serial recordings of the three tests were performed at various time intervals during 10min after cooling. The bite force increased significantly after cooling in ice-pack-positive MG patients. The acceleration and acceleration ratio (acceleration at a given time to baseline acceleration) of jaw movement increased significantly after cooling of the masseters in ice-pack-positive MG patients compared to ice-pack-negative patients and normal controls. The prolonged effect of cooling continued until the end of recording even though decremental response to RNS had returned to baseline value. Cooling of myasthenic muscle may induce two effects. One is relatively short effect on electrical synaptic transmission at the endplate, and another is prolonged effect on E-C coupling in the muscle. The ice-pack test induces a prolonged effect of ameliorating impaired E-C coupling in MG. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  8. Pack ice along the Kamchatka Peninsula, Russia as seen from STS-60

    NASA Image and Video Library

    1994-02-09

    STS060-73-038 (3-11 Feb 1994) --- Pack ice is documented in this photograph along the coast of the Kamchatka Peninsula of Russia in Zaliv Ozernoj. Newly formed ice continually breaks away from the land and takes the form imposed by coastal currents. Detailed photographs of the ice provide information to scientists in both Russia and the united States about the location and fluctuation of ice edges, and how this new sea ice interacts with ocean and littoral currents. This information results in better ice warnings to shipping traffic and provides data points for long-range climate change research for both the Mission-To-Planet Earth and the Russian Priroda ("Nature") monitoring and assessment programs that are respectively coordinated by NASA and the Russian Academy of Sciences. This photography of ice development in the North Pacific, North Atlantic, the Southern Ocean, the Baltic and North Seas, and the Great Lakes is of great interest to the international scientific community. NASA scientists feel high-resolution analog and digital photography from the Space Shuttle and future craft can be a particularly important component in satisfying their data needs on both an operational and a long-term research basis.

  9. Parameterization and scaling of arctic ice conditions in the context of ice-atmospheric processes

    NASA Technical Reports Server (NTRS)

    Barry, R. G.; Steffen, K.; Heinrichs, J. F.; Key, J. R.; Maslanik, J. A.; Serreze, M. C.; Weaver, R. L.

    1995-01-01

    The goals of this project are to observe how the open water/thin ice fraction in a high-concentration ice pack responds to different short-period atmospheric forcings, and how this response is represented in different scales of observation. The objectives can be summarized as follows: determine the feasibility and accuracy of ice concentration and ice typing by ERS-1 SAR backscatter data, and whether SAR data might be used to calibrate concentration estimates from optical and massive-microwave sensors; investigate methods to integrate SAR data with other satellite data for turbulent heat flux parameterization at the ocean/atmosphere interface; determine how the development and evolution of open water/thin ice areas within the interior ice pack vary under different atmospheric synoptic regimes; compare how open-water/thin ice fractions estimated from large-area divergence measurements differ from fractions determined by summing localized openings in the pack; relate these questions of scale and process to methods of observation, modeling, and averaging over time and space.

  10. Comparisons of ice packs, hot water immersion, and analgesia injection for the treatment of centipede envenomations in Taiwan.

    PubMed

    Chaou, Chung-Hsien; Chen, Chian-Kuang; Chen, Jih-Chang; Chiu, Te-Fa; Lin, Chih-Chuan

    2009-08-01

    To compare the effectiveness of ice packs and hot water immersion for the treatment of centipede envenomations. Sixty patients envenomated by centipedes were randomized into three groups and were treated with ice packs, hot water immersion, or analgesia injection. The visual analog score (VAS) for pain was measured before the treatment and 15 min afterward. Demographic data and data on local and systemic effects after centipede bites were collected. The VAS scores and the pain decrease (DeltaVAS) were compared between the three groups. All patients suffered from pain at the affected sites; other local effects included redness (n = 49, 81.7%), swelling (n = 32, 53.3%), heat (n = 14, 23.3%), itchiness (n = 5, 8.3), and bullae formation (n = 3, 5.0%). Rare systemic effects were reported. All three groups had similar VAS scores before and after treatment. They also had similar effectiveness in reducing pain caused by centipedes bites (DeltaVAS = 2.55 +/- 1.88, 2.33 +/- 1.78, and 1.55 +/- 1.68, with ice packs, analgesia, and hot water immersion, respectively, p = 0.165). Ice packs, hot water immersion, and analgesics all improved the pain from centipede envenomation. Ice pack treatment is a safe, inexpensive, and non-invasive method for pre-hospital management in patients with centipede envenomation.

  11. CO2 flux over young and snow-covered Arctic pack ice in winter and spring

    NASA Astrophysics Data System (ADS)

    Nomura, Daiki; Granskog, Mats A.; Fransson, Agneta; Chierici, Melissa; Silyakova, Anna; Ohshima, Kay I.; Cohen, Lana; Delille, Bruno; Hudson, Stephen R.; Dieckmann, Gerhard S.

    2018-06-01

    Rare CO2 flux measurements from Arctic pack ice show that two types of ice contribute to the release of CO2 from the ice to the atmosphere during winter and spring: young, thin ice with a thin layer of snow and older (several weeks), thicker ice with thick snow cover. Young, thin sea ice is characterized by high salinity and high porosity, and snow-covered thick ice remains relatively warm ( > -7.5 °C) due to the insulating snow cover despite air temperatures as low as -40 °C. Therefore, brine volume fractions of these two ice types are high enough to provide favorable conditions for gas exchange between sea ice and the atmosphere even in mid-winter. Although the potential CO2 flux from sea ice decreased due to the presence of the snow, the snow surface is still a CO2 source to the atmosphere for low snow density and thin snow conditions. We found that young sea ice that is formed in leads without snow cover produces CO2 fluxes an order of magnitude higher than those in snow-covered older ice (+1.0 ± 0.6 mmol C m-2 day-1 for young ice and +0.2 ± 0.2 mmol C m-2 day-1 for older ice).

  12. Formation processes of sea ice floe size distribution in the interior pack and its relationship to the marginal ice zone off East Antarctica

    NASA Astrophysics Data System (ADS)

    Toyota, Takenobu; Kohout, Alison; Fraser, Alexander D.

    2016-09-01

    To understand the behavior of the Seasonal Ice Zone (SIZ), which is composed of sea-ice floes of various sizes, knowledge of the floe size distribution (FSD) is important. In particular, FSD in the Marginal Ice Zone (MIZ), controlled by wave-ice interaction, plays an important role in determining the retreating rates of sea-ice extent on a global scale because the cumulative perimeter of floes enhances melting. To improve the understanding of wave-ice interaction and subsequent effects on FSD in the MIZ, FSD measurements were conducted off East Antarctica during the second Sea Ice Physics and Ecosystems eXperiment (SIPEX-2) in late winter 2012. Since logistical reasons limited helicopter operations to two interior ice regions, FSD in the interior ice region was determined using a combination of heli-photos and MODIS satellite visible images. The possible effect of wave-ice interaction in the MIZ was examined by comparison with past results obtained in the same MIZ, with our analysis showing: (1) FSD in the interior ice region is basically scale invariant for both small- (<100 m) and large- (>1 km) scale regimes; (2) although fractal dimensions are quite different between these two regimes, they are both rather close to that in the MIZ; and (3) for floes <100 m in diameter, a regime shift which appeared at 20-40 m in the MIZ is absent. These results indicate that one role of wave-ice interaction is to modulate the FSD that already exists in the interior ice region, rather than directly determine it. The possibilities of floe-floe collisions and storm-induced lead formation are considered as possible formation processes of FSD in the interior pack.

  13. Effects of lead structure in Bering Sea pack ice on the flight costs of wintering spectacled eiders

    NASA Astrophysics Data System (ADS)

    Bump, Joseph K.; Lovvorn, James R.

    2004-10-01

    In polar regions, sea ice is critical habitat for many marine birds and mammals. The quality of pack ice habitat depends on the duration and spacing of leads (openings in the ice), which determine access to water and air for diving endotherms, and how often and how far they must move as leads open and close. Recent warming trends have caused major changes in the extent and nature of sea ice at large scales used in climate models. However, no studies have analyzed lead structure in terms of habitat for ice-dependent endotherms, or effects of climate on ice habitat at scales relevant to their daily movements. Based on observations from an icebreaker and synthetic aperture radar (SAR) images, we developed methods to describe the dynamics and thermodynamics of lead structure relative to use by spectacled eiders ( Somateria fischeri) wintering in pack ice of the Bering Sea. By correlating lead structure with weather variables, we then used these methods to estimate changes in lead dynamics from 1945 to 2002, and effects of such changes on flight costs of the eiders. For 1991-1992, when images were available about every 3 days throughout winter, SAR images were divided among five weather regimes defined by wind speed, wind direction, and air temperature. Based on 12.5-m pixels, lead shape, compass orientation, and fetch across leads did not differ among the weather regimes. However, the five regimes differed in total area of open water, leads per unit area, and distance between leads. Lead duration was modeled based on air temperature, wind, and fetch. Estimates of mean daily flight time for eiders, based on lead duration and distance between neighboring leads, differed among regimes by 0 to 15 min. Resulting flight costs varied from 0 to 158 kJ day -1, or from 0% to 11% of estimated field metabolic rate. Over 57 winters (1945-2002), variation among years in mean daily flight time was most influenced by the north-south wind component, which determined pack divergence

  14. Winter snow conditions on Arctic sea ice north of Svalbard during the Norwegian young sea ICE (N-ICE2015) expedition

    NASA Astrophysics Data System (ADS)

    Merkouriadi, Ioanna; Gallet, Jean-Charles; Graham, Robert M.; Liston, Glen E.; Polashenski, Chris; Rösel, Anja; Gerland, Sebastian

    2017-10-01

    Snow is a crucial component of the Arctic sea ice system. Its thickness and thermal properties control heat conduction and radiative fluxes across the ocean, ice, and atmosphere interfaces. Hence, observations of the evolution of snow depth, density, thermal conductivity, and stratigraphy are crucial for the development of detailed snow numerical models predicting energy transfer through the snow pack. Snow depth is also a major uncertainty in predicting ice thickness using remote sensing algorithms. Here we examine the winter spatial and temporal evolution of snow physical properties on first-year (FYI) and second-year ice (SYI) in the Atlantic sector of the Arctic Ocean, during the Norwegian young sea ICE (N-ICE2015) expedition (January to March 2015). During N-ICE2015, the snow pack consisted of faceted grains (47%), depth hoar (28%), and wind slab (13%), indicating very different snow stratigraphy compared to what was observed in the Pacific sector of the Arctic Ocean during the SHEBA campaign (1997-1998). Average snow bulk density was 345 kg m-3 and it varied with ice type. Snow depth was 41 ± 19 cm in January and 56 ± 17 cm in February, which is significantly greater than earlier suggestions for this region. The snow water equivalent was 14.5 ± 5.3 cm over first-year ice and 19 ± 5.4 cm over second-year ice.

  15. Time-dependence of sea-ice concentration and multiyear ice fraction in the Arctic Basin

    USGS Publications Warehouse

    Gloersen, P.; Zwally, H.J.; Chang, A.T.C.; Hall, D.K.; Campbell, W.J.; Ramseier, R.O.

    1978-01-01

    The time variation of the sea-ice concentration and multiyear ice fraction within the pack ice in the Arctic Basin is examined, using microwave images of sea ice recently acquired by the Nimbus-5 spacecraft and the NASA CV-990 airborne laboratory. The images used for these studies were constructed from data acquired from the Electrically Scanned Microwave Radiometer (ESMR) which records radiation from earth and its atmosphere at a wavelength of 1.55 cm. Data are analyzed for four seasons during 1973-1975 to illustrate some basic differences in the properties of the sea ice during those times. Spacecraft data are compared with corresponding NASA CV-990 airborne laboratory data obtained over wide areas in the Arctic Basin during the Main Arctic Ice Dynamics Joint Experiment (1975) to illustrate the applicability of passive-microwave remote sensing for monitoring the time dependence of sea-ice concentration (divergence). These observations indicate significant variations in the sea-ice concentration in the spring, late fall and early winter. In addition, deep in the interior of the Arctic polar sea-ice pack, heretofore unobserved large areas, several hundred kilometers in extent, of sea-ice concentrations as low as 50% are indicated. ?? 1978 D. Reidel Publishing Company.

  16. Ice interaction with offshore structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cammaert, A.B.; Muggeridge, D.B.

    1988-01-01

    Oil platforms and other offshore structures being built in the arctic regions must be able to withstand icebergs, ice islands, and pack ice. This reference explain the effect ice has on offshore structures and demonstrates design and construction methods that allow such structures to survive in harsh, ice-ridden environments. It analyzes the characteristics of sea ice as well as dynamic ice forces on structures. Techniques for ice modeling and field testing facilitate the design and construction of sturdy, offshore constructions. Computer programs included.

  17. The winter pack-ice zone provides a sheltered but food-poor habitat for larval Antarctic krill.

    PubMed

    Meyer, Bettina; Freier, Ulrich; Grimm, Volker; Groeneveld, Jürgen; Hunt, Brian P V; Kerwath, Sven; King, Rob; Klaas, Christine; Pakhomov, Evgeny; Meiners, Klaus M; Melbourne-Thomas, Jessica; Murphy, Eugene J; Thorpe, Sally E; Stammerjohn, Sharon; Wolf-Gladrow, Dieter; Auerswald, Lutz; Götz, Albrecht; Halbach, Laura; Jarman, Simon; Kawaguchi, So; Krumpen, Thomas; Nehrke, Gernot; Ricker, Robert; Sumner, Michael; Teschke, Mathias; Trebilco, Rowan; Yilmaz, Noyan I

    2017-12-01

    A dominant Antarctic ecological paradigm suggests that winter sea ice is generally the main feeding ground for krill larvae. Observations from our winter cruise to the southwest Atlantic sector of the Southern Ocean contradict this view and present the first evidence that the pack-ice zone is a food-poor habitat for larval development. In contrast, the more open marginal ice zone provides a more favourable food environment for high larval krill growth rates. We found that complex under-ice habitats are, however, vital for larval krill when water column productivity is limited by light, by providing structures that offer protection from predators and to collect organic material released from the ice. The larvae feed on this sparse ice-associated food during the day. After sunset, they migrate into the water below the ice (upper 20 m) and drift away from the ice areas where they have previously fed. Model analyses indicate that this behaviour increases both food uptake in a patchy food environment and the likelihood of overwinter transport to areas where feeding conditions are more favourable in spring.

  18. Wave effects on ocean-ice interaction in the marginal ice zone

    NASA Technical Reports Server (NTRS)

    Liu, Antony K.; Hakkinen, Sirpa; Peng, Chih Y.

    1993-01-01

    The effects of wave train on ice-ocean interaction in the marginal ice zone are studied through numerical modeling. A coupled two-dimensional ice-ocean model has been developed to include wave effects and wind stress for the predictions of ice edge dynamics. The sea ice model is coupled to the reduced-gravity ocean model through interfacial stresses. The main dynamic balance in the ice momentum is between water-ice stress, wind stress, and wave radiation stresses. By considering the exchange of momentum between waves and ice pack through radiation stress for decaying waves, a parametric study of the effects of wave stress and wind stress on ice edge dynamics has been performed. The numerical results show significant effects from wave action. The ice edge is sharper, and ice edge meanders form in the marginal ice zone owing to forcing by wave action and refraction of swell system after a couple of days. Upwelling at the ice edge and eddy formation can be enhanced by the nonlinear effects of wave action; wave action sharpens the ice edge and can produce ice meandering, which enhances local Ekman pumping and pycnocline anomalies. The resulting ice concentration, pycnocline changes, and flow velocity field are shown to be consistent with previous observations.

  19. Windows in Arctic sea ice: Light transmission and ice algae in a refrozen lead

    NASA Astrophysics Data System (ADS)

    Kauko, Hanna M.; Taskjelle, Torbjørn; Assmy, Philipp; Pavlov, Alexey K.; Mundy, C. J.; Duarte, Pedro; Fernández-Méndez, Mar; Olsen, Lasse M.; Hudson, Stephen R.; Johnsen, Geir; Elliott, Ashley; Wang, Feiyue; Granskog, Mats A.

    2017-06-01

    The Arctic Ocean is rapidly changing from thicker multiyear to thinner first-year ice cover, with significant consequences for radiative transfer through the ice pack and light availability for algal growth. A thinner, more dynamic ice cover will possibly result in more frequent leads, covered by newly formed ice with little snow cover. We studied a refrozen lead (≤0.27 m ice) in drifting pack ice north of Svalbard (80.5-81.8°N) in May-June 2015 during the Norwegian young sea ICE expedition (N-ICE2015). We measured downwelling incident and ice-transmitted spectral irradiance, and colored dissolved organic matter (CDOM), particle absorption, ultraviolet (UV)-protecting mycosporine-like amino acids (MAAs), and chlorophyll a (Chl a) in melted sea ice samples. We found occasionally very high MAA concentrations (up to 39 mg m-3, mean 4.5 ± 7.8 mg m-3) and MAA to Chl a ratios (up to 6.3, mean 1.2 ± 1.3). Disagreement in modeled and observed transmittance in the UV range let us conclude that MAA signatures in CDOM absorption spectra may be artifacts due to osmotic shock during ice melting. Although observed PAR (photosynthetically active radiation) transmittance through the thin ice was significantly higher than that of the adjacent thicker ice with deep snow cover, ice algal standing stocks were low (≤2.31 mg Chl a m-2) and similar to the adjacent ice. Ice algal accumulation in the lead was possibly delayed by the low inoculum and the time needed for photoacclimation to the high-light environment. However, leads are important for phytoplankton growth by acting like windows into the water column.

  20. Parameterization and scaling of Arctic ice conditions in the context of ice-atmosphere processes

    NASA Technical Reports Server (NTRS)

    Barry, R. G.; Heinrichs, J.; Steffen, K.; Maslanik, J. A.; Key, J.; Serreze, M. C.; Weaver, R. W.

    1994-01-01

    This report summarizes achievements during year three of our project to investigate the use of ERS-1 SAR data to study Arctic ice and ice/atmosphere processes. The project was granted a one year extension, and goals for the final year are outlined. The specific objects of the project are to determine how the development and evolution of open water/thin ice areas within the interior ice pack vary under different atmospheric synoptic regimes; compare how open water/thin ice fractions estimated from large-area divergence measurements differ from fractions determined by summing localized openings in the pack; relate these questions of scale and process to methods of observation, modeling, and averaging over time and space; determine whether SAR data might be used to calibrate ice concentration estimates from medium and low-rate bit sensors (AVHRR and DMSP-OLS) and the special sensor microwave imager (SSM/I); and investigate methods to integrate SAR data for turbulent heat flux parametrization at the atmosphere interface with other satellite data.

  1. Biogeochemical Impact of Snow Cover and Cyclonic Intrusions on the Winter Weddell Sea Ice Pack

    NASA Astrophysics Data System (ADS)

    Tison, J.-L.; Schwegmann, S.; Dieckmann, G.; Rintala, J.-M.; Meyer, H.; Moreau, S.; Vancoppenolle, M.; Nomura, D.; Engberg, S.; Blomster, L. J.; Hendrickx, S.; Uhlig, C.; Luhtanen, A.-M.; de Jong, J.; Janssens, J.; Carnat, G.; Zhou, J.; Delille, B.

    2017-12-01

    Sea ice is a dynamic biogeochemical reactor and a double interface actively interacting with both the atmosphere and the ocean. However, proper understanding of its annual impact on exchanges, and therefore potentially on the climate, notably suffer from the paucity of autumnal and winter data sets. Here we present the results of physical and biogeochemical investigations on winter Antarctic pack ice in the Weddell Sea (R. V. Polarstern AWECS cruise, June-August 2013) which are compared with those from two similar studies conducted in the area in 1986 and 1992. The winter 2013 was characterized by a warm sea ice cover due to the combined effects of deep snow and frequent warm cyclones events penetrating southward from the open Southern Ocean. These conditions were favorable to high ice permeability and cyclic events of brine movements within the sea ice cover (brine tubes), favoring relatively high chlorophyll-a (Chl-a) concentrations. We discuss the timing of this algal activity showing that arguments can be presented in favor of continued activity during the winter due to the specific physical conditions. Large-scale sea ice model simulations also suggest a context of increasingly deep snow, warm ice, and large brine fractions across the three observational years, despite the fact that the model is forced with a snowfall climatology. This lends support to the claim that more severe Antarctic sea ice conditions, characterized by a longer ice season, thicker, and more concentrated ice are sufficient to increase the snow depth and, somehow counterintuitively, to warm the ice.

  2. Consequences of long-distance swimming and travel over deep-water pack ice for a female polar bear during a year of extreme sea ice retreat

    USGS Publications Warehouse

    Durner, George M.; Whiteman, J.P.; Harlow, H.J.; Amstrup, Steven C.; Regehr, E.V.; Ben-David, M.

    2011-01-01

    Polar bears (Ursus maritimus) prefer to live on Arctic sea ice but may swim between ice floes or between sea ice and land. Although anecdotal observations suggest that polar bears are capable of swimming long distances, no data have been available to describe in detail long distance swimming events or the physiological and reproductive consequences of such behavior. Between an initial capture in late August and a recapture in late October 2008, a radio-collared adult female polar bear in the Beaufort Sea made a continuous swim of 687 km over 9 days and then intermittently swam and walked on the sea ice surface an additional 1,800 km. Measures of movement rate, hourly activity, and subcutaneous and external temperature revealed distinct profiles of swimming and walking. Between captures, this polar bear lost 22% of her body mass and her yearling cub. The extraordinary long distance swimming ability of polar bears, which we confirm here, may help them cope with reduced Arctic sea ice. Our observation, however, indicates that long distance swimming in Arctic waters, and travel over deep water pack ice, may result in high energetic costs and compromise reproductive fitness.

  3. Floating ice-algal aggregates below melting arctic sea ice.

    PubMed

    Assmy, Philipp; Ehn, Jens K; Fernández-Méndez, Mar; Hop, Haakon; Katlein, Christian; Sundfjord, Arild; Bluhm, Katrin; Daase, Malin; Engel, Anja; Fransson, Agneta; Granskog, Mats A; Hudson, Stephen R; Kristiansen, Svein; Nicolaus, Marcel; Peeken, Ilka; Renner, Angelika H H; Spreen, Gunnar; Tatarek, Agnieszka; Wiktor, Jozef

    2013-01-01

    During two consecutive cruises to the Eastern Central Arctic in late summer 2012, we observed floating algal aggregates in the melt-water layer below and between melting ice floes of first-year pack ice. The macroscopic (1-15 cm in diameter) aggregates had a mucous consistency and were dominated by typical ice-associated pennate diatoms embedded within the mucous matrix. Aggregates maintained buoyancy and accumulated just above a strong pycnocline that separated meltwater and seawater layers. We were able, for the first time, to obtain quantitative abundance and biomass estimates of these aggregates. Although their biomass and production on a square metre basis was small compared to ice-algal blooms, the floating ice-algal aggregates supported high levels of biological activity on the scale of the individual aggregate. In addition they constituted a food source for the ice-associated fauna as revealed by pigments indicative of zooplankton grazing, high abundance of naked ciliates, and ice amphipods associated with them. During the Arctic melt season, these floating aggregates likely play an important ecological role in an otherwise impoverished near-surface sea ice environment. Our findings provide important observations and measurements of a unique aggregate-based habitat during the 2012 record sea ice minimum year.

  4. Floating Ice-Algal Aggregates below Melting Arctic Sea Ice

    PubMed Central

    Assmy, Philipp; Ehn, Jens K.; Fernández-Méndez, Mar; Hop, Haakon; Katlein, Christian; Sundfjord, Arild; Bluhm, Katrin; Daase, Malin; Engel, Anja; Fransson, Agneta; Granskog, Mats A.; Hudson, Stephen R.; Kristiansen, Svein; Nicolaus, Marcel; Peeken, Ilka; Renner, Angelika H. H.; Spreen, Gunnar; Tatarek, Agnieszka; Wiktor, Jozef

    2013-01-01

    During two consecutive cruises to the Eastern Central Arctic in late summer 2012, we observed floating algal aggregates in the melt-water layer below and between melting ice floes of first-year pack ice. The macroscopic (1-15 cm in diameter) aggregates had a mucous consistency and were dominated by typical ice-associated pennate diatoms embedded within the mucous matrix. Aggregates maintained buoyancy and accumulated just above a strong pycnocline that separated meltwater and seawater layers. We were able, for the first time, to obtain quantitative abundance and biomass estimates of these aggregates. Although their biomass and production on a square metre basis was small compared to ice-algal blooms, the floating ice-algal aggregates supported high levels of biological activity on the scale of the individual aggregate. In addition they constituted a food source for the ice-associated fauna as revealed by pigments indicative of zooplankton grazing, high abundance of naked ciliates, and ice amphipods associated with them. During the Arctic melt season, these floating aggregates likely play an important ecological role in an otherwise impoverished near-surface sea ice environment. Our findings provide important observations and measurements of a unique aggregate-based habitat during the 2012 record sea ice minimum year. PMID:24204642

  5. Oral health-related quality of life following third molar surgery with or without application of ice pack therapy.

    PubMed

    Ibikunle, Adebayo A; Adeyemo, Wasiu L

    2016-09-01

    To evaluate the effect of ice pack therapy on oral health-related quality of life (OHRQoL) following third molar surgery. All consecutive subjects who required surgical extraction of lower third molars and satisfied the inclusion criteria were randomly allocated into two groups. Subjects in group A were instructed to apply ice packs directly over the masseteric region on the operated side intermittently after third molar surgery. This first application was supervised in the clinic and was repeated at the 24-h postoperative review. Subjects in group A were further instructed to apply the ice pack when at home every one and a half hours on postoperative days 0 and 1 while he/she was awake as described. Group B subjects did not apply ice pack therapy. Facial swelling, pain, trismus, and quality of life (using Oral Health Impact Profile-14 (OHIP-14) instrument) were evaluated both preoperatively and postoperatively. Postoperative scores in both groups were compared. A significant increase in the mean total and subscale scores of OHIP-14 was found in both groups postoperatively when compared with preoperative value. Subjects who received ice pack therapy had a better quality of life than those who did not. Subjects whose postoperative QoL were affected were statistically significantly higher in group B than in group A at all postoperative evaluation points (P < 0.05). Statistically significant differences were also observed between the groups in the various subscales analyzed, with better quality of life seen among subjects in group A. Quality of life after third molar surgery was significantly better in subjects who had cryotherapy after third molar than those who did not have cryotherapy. Cryotherapy is a viable alternative or adjunct to other established modes of improving the quality of life of patients following surgical extraction of third molars.

  6. Overview of Sea-Ice Properties, Distribution and Temporal Variations, for Application to Ice-Atmosphere Chemical Processes.

    NASA Astrophysics Data System (ADS)

    Moritz, R. E.

    2005-12-01

    The properties, distribution and temporal variation of sea-ice are reviewed for application to problems of ice-atmosphere chemical processes. Typical vertical structure of sea-ice is presented for different ice types, including young ice, first-year ice and multi-year ice, emphasizing factors relevant to surface chemistry and gas exchange. Time average annual cycles of large scale variables are presented, including ice concentration, ice extent, ice thickness and ice age. Spatial and temporal variability of these large scale quantities is considered on time scales of 1-50 years, emphasizing recent and projected changes in the Arctic pack ice. The amount and time evolution of open water and thin ice are important factors that influence ocean-ice-atmosphere chemical processes. Observations and modeling of the sea-ice thickness distribution function are presented to characterize the range of variability in open water and thin ice.

  7. Coupling of Waves, Turbulence and Thermodynamics Across the Marginal Ice Zone

    DTIC Science & Technology

    2013-09-30

    ice . The albedo of sea ice is large compared to open water, and most of the incoming solar radiation...ocean and the ice pack where the seasonal retreat of the main ice pack takes place. It is a highly variable sea ice environment, usually comprised of...many individual floes of variable shape and size and made of mixed ice types, from young forming ice to fragmented multiyear ice . The presence of sea

  8. Implications of fractured Arctic perennial ice cover on thermodynamic and dynamic sea ice processes

    NASA Astrophysics Data System (ADS)

    Asplin, Matthew G.; Scharien, Randall; Else, Brent; Howell, Stephen; Barber, David G.; Papakyriakou, Tim; Prinsenberg, Simon

    2014-04-01

    Decline of the Arctic summer minimum sea ice extent is characterized by large expanses of open water in the Siberian, Laptev, Chukchi, and Beaufort Seas, and introduces large fetch distances in the Arctic Ocean. Long waves can propagate deep into the pack ice, thereby causing flexural swell and failure of the sea ice. This process shifts the floe size diameter distribution smaller, increases floe surface area, and thereby affects sea ice dynamic and thermodynamic processes. The results of Radarsat-2 imagery analysis show that a flexural fracture event which occurred in the Beaufort Sea region on 6 September 2009 affected ˜40,000 km2. Open water fractional area in the area affected initially decreased from 3.7% to 2.7%, but later increased to ˜20% following wind-forced divergence of the ice pack. Energy available for lateral melting was assessed by estimating the change in energy entrainment from longwave and shortwave radiation in the mixed-layer of the ocean following flexural fracture. 11.54 MJ m-2 of additional energy for lateral melting of ice floes was identified in affected areas. The impact of this process in future Arctic sea ice melt seasons was assessed using estimations of earlier occurrences of fracture during the melt season, and is discussed in context with ocean heat fluxes, atmospheric mixing of the ocean mixed layer, and declining sea ice cover. We conclude that this process is an important positive feedback to Arctic sea ice loss, and timing of initiation is critical in how it affects sea ice thermodynamic and dynamic processes.

  9. Numerical model of ice melange expansion during abrupt ice-shelf collapse

    NASA Astrophysics Data System (ADS)

    Guttenberg, N.; Abbot, D. S.; Amundson, J. M.; Burton, J. C.; Cathles, L. M.; Macayeal, D. R.; Zhang, W.

    2010-12-01

    Satellite imagery of the February 2008 Wilkins Ice-Shelf Collapse event reveals that a large percentage of the involved ice shelf was converted to capsized icebergs and broken fragments of icebergs over a relatively short period of time, possibly less than 24 hours. The extreme violence and short time scale of the event, and the considerable reduction of gravitational potential energy between upright and capsized icebergs, suggests that iceberg capsize might be an important driving mechanism controlling both the rate and spatial extent of ice shelf collapse. To investigate this suggestion, we have constructed an idealized, 2-dimensional model of a disintegrating ice shelf composed of a large number (N~100 to >1000) of initially well-packed icebergs of rectangular cross section. The model geometry consists of a longitudinal cross section of the idealized ice shelf from grounding line (or the upstream extent of ice-shelf fragmentation) to seaward ice front, and includes the region beyond the initial ice front to cover the open, ice-free water into which the collapsing ice shelf expands. The seawater in which the icebergs float is treated as a hydrostatic fluid in the computation of iceberg orientation (e.g., the evaluation of buoyancy forces and torques), thereby eliminating the complexities of free-surface waves, but net horizontal drift of the icebergs is resisted by a linear drag law designed to energy dissipation by viscous forces and surface-gravity-wave radiation. Icebergs interact via both elastic and inelastic contacts (typically a corner of one iceberg will scrape along the face of its neighbor). Ice-shelf collapse in the model is embodied by the mass capsize of a large proportion of the initially packed icebergs and the consequent advancement of the ice front (leading edge). Model simulations are conducted to examine (a) the threshold of stability (e.g., what density of initially capsizable icebergs is needed to allow a small perturbation to the system

  10. Satellite remote sensing over ice

    NASA Technical Reports Server (NTRS)

    Thomas, R. H.

    1984-01-01

    Satellite remote sensing provides unique opportunities for observing ice-covered terrain. Passive-microwave data give information on snow extent on land, sea-ice extent and type, and zones of summer melting on the polar ice sheets, with the potential for estimating snow-accumulation rates on these ice sheets. All weather, high-resolution imagery of sea ice is obtained using synthetic aperture radars, and ice-movement vectors can be deduced by comparing sequential images of the same region. Radar-altimetry data provide highly detailed information on ice-sheet topography, with the potential for deducing thickening/thinning rates from repeat surveys. The coastline of Antarctica can be mapped accurately using altimetry data, and the size and spatial distribution of icebergs can be monitored. Altimetry data also distinguish open ocean from pack ice and they give an indication of sea-ice characteristics.

  11. Satellite remote sensing over ice

    NASA Technical Reports Server (NTRS)

    Thomas, R. H.

    1986-01-01

    Satellite remote sensing provides unique opportunities for observing ice-covered terrain. Passive-microwave data give information on snow extent on land, sea-ice extent and type, and zones of summer melting on the polar ice sheets, with the potential for estimating snow-accumulation rates on these ice sheets. All weather, high-resolution imagery of sea ice is obtained using synthetic aperture radars, and ice-movement vectors can be deduced by comparing sequential images of the same region. Radar-altimetry data provide highly detailed information on ice-sheet topography, with the potential for deducing thickening/thinning rates from repeat surveys. The coastline of Antarctica can be mapped accurately using altimetry data, and the size and spatial distribution of icebergs can be monitored. Altimetry data also distinguish open ocean from pack ice and they give an indication of sea-ice characteristics.

  12. Multiscale Models of Melting Arctic Sea Ice

    DTIC Science & Technology

    2013-09-30

    September 29, 2013 LONG-TERM GOALS Sea ice reflectance or albedo , a key parameter in climate modeling, is primarily determined by melt pond...and ice floe configurations. Ice - albedo feedback has played a major role in the recent declines of the summer Arctic sea ice pack. However...understanding the evolution of melt ponds and sea ice albedo remains a significant challenge to improving climate models. Our research is focused on

  13. Variational Ridging in Sea Ice Models

    NASA Astrophysics Data System (ADS)

    Roberts, A.; Hunke, E. C.; Lipscomb, W. H.; Maslowski, W.; Kamal, S.

    2017-12-01

    This work presents the results of a new development to make basin-scale sea ice models aware of the shape, porosity and extent of individual ridges within the pack. We have derived an analytic solution for the Euler-Lagrange equation of individual ridges that accounts for non-conservative forces, and therefore the compressive strength of individual ridges. Because a region of the pack is simply a collection of paths of individual ridges, we are able to solve the Euler-Lagrange equation for a large-scale sea ice field also, and therefore the compressive strength of a region of the pack that explicitly accounts for the macro-porosity of ridged debris. We make a number of assumptions that have simplified the problem, such as treating sea ice as a granular material in ridges, and assuming that bending moments associated with ridging are perturbations around an isostatic state. Regardless of these simplifications, the ridge model is remarkably predictive of macro-porosity and ridge shape, and, because our equations are analytic, they do not require costly computations to solve the Euler-Lagrange equation of ridges on the large scale. The new ridge model is therefore applicable to large-scale sea ice models. We present results from this theoretical development, as well as plans to apply it to the Regional Arctic System Model and a community sea ice code. Most importantly, the new ridging model is particularly useful for pinpointing gaps in our observational record of sea ice ridges, and points to the need for improved measurements of the evolution of porosity of deformed ice in the Arctic and Antarctic. Such knowledge is not only useful for improving models, but also for improving estimates of sea ice volume derived from altimetric measurements of sea ice freeboard.

  14. A Comparison of Sea Ice Type, Sea Ice Temperature, and Snow Thickness Distributions in the Arctic Seasonal Ice Zones with the DMSP SSM/I

    NASA Technical Reports Server (NTRS)

    St.Germain, Karen; Cavalieri, Donald J.; Markus, Thorsten

    1997-01-01

    Global climate studies have shown that sea ice is a critical component in the global climate system through its effect on the ocean and atmosphere, and on the earth's radiation balance. Polar energy studies have further shown that the distribution of thin ice and open water largely controls the distribution of surface heat exchange between the ocean and atmosphere within the winter Arctic ice pack. The thickness of the ice, the depth of snow on the ice, and the temperature profile of the snow/ice composite are all important parameters in calculating surface heat fluxes. In recent years, researchers have used various combinations of DMSP SSMI channels to independently estimate the thin ice type (which is related to ice thickness), the thin ice temperature, and the depth of snow on the ice. In each case validation efforts provided encouraging results, but taken individually each algorithm gives only one piece of the information necessary to compute the energy fluxes through the ice and snow. In this paper we present a comparison of the results from each of these algorithms to provide a more comprehensive picture of the seasonal ice zone using passive microwave observations.

  15. Radar image interpretation techniques applied to sea ice geophysical problems

    NASA Technical Reports Server (NTRS)

    Carsey, F. D.

    1983-01-01

    The geophysical science problems in the sea ice area which at present concern understanding the ice budget, where ice is formed, how thick it grows and where it melts, and the processes which control the interaction of air-sea and ice at the ice margins is discussed. The science problems relate to basic questions of sea ice: how much is there, thickness, drift rate, production rate, determination of the morphology of the ice margin, storms feeling for the ice, storms and influence at the margin to alter the pack, and ocean response to a storm at the margin. Some of these questions are descriptive and some require complex modeling of interactions between the ice, the ocean, the atmosphere and the radiation fields. All involve measurements of the character of the ice pack, and SAR plays a significant role in the measurements.

  16. Arctic multiyear ice classification and summer ice cover using passive microwave satellite data

    NASA Astrophysics Data System (ADS)

    Comiso, J. C.

    1990-08-01

    The ability to classify and monitor Arctic multiyear sea ice cover using multispectral passive microwave data is studied. Sea ice concentration maps during several summer minima have been analyzed to obtain estimates of ice surviving the summer. The results are compared with multiyear ice concentrations derived from data the following winter, using an algorithm that assumes a certain emissivity for multiyear ice. The multiyear ice cover inferred from the winter data is approximately 25 to 40% less than the summer ice cover minimum, suggesting that even during winter when the emissivity of sea ice is most stable, passive microwave data may account for only a fraction of the total multiyear ice cover. The difference of about 2×106 km2 is considerably more than estimates of advection through Fram Strait during the intervening period. It appears that as in the Antarctic, some multiyear ice floes in the Arctic, especially those near the summer marginal ice zone, have first-year ice or intermediate signatures in the subsequent winter. A likely mechanism for this is the intrusion of seawater into the snow-ice interface, which often occurs near the marginal ice zone or in areas where snow load is heavy. Spatial variations in melt and melt ponding effects also contribute to the complexity of the microwave emissivity of multiyear ice. Hence the multiyear ice data should be studied in conjunction with the previous summer ice data to obtain a more complete characterization of the state of the Arctic ice cover. The total extent and actual areas of the summertime Arctic pack ice were estimated to be 8.4×106 km2 and 6.2×106 km2, respectively, and exhibit small interannual variability during the years 1979 through 1985, suggesting a relatively stable ice cover.

  17. Sea ice and surface water circulation, Alaskan Continental Shelf

    NASA Technical Reports Server (NTRS)

    Wright, F. F. (Principal Investigator); Sharma, G. D.; Burn, J. J.

    1973-01-01

    The author has identified the following significant results. The boundaries of land-fast ice, distribution of pack ice, and major polynya were studied in the vicinity of the Bering Strait. Movement of pack ice during 24 hours was determined by plotting the distinctly identifiable ice floes on ERTS-1 imagery obtained from two consecutive passes. Considerably large shallow area along the western Seward Peninsula just north of the Bering Strait is covered by land fast ice. This ice hinders the movement of ice formed in eastern Chukchi Sea southward through the Bering Strait. The movement of ice along the Russian coast is relatively faster. Plotting of some of the ice floes indicated movement of ice in excess of 30 km in and south of the Bering Strait between 6 and 7 March, 1973. North of the Bering Strait the movement approached 18 km. The movement of ice observed during March 6 and 7 considerably altered the distribution and extent of polynya. These features when continually plotted should be of considerable aid in navigation of ice breakers. The movement of ice will also help delineate the migration and distribution of sea mammals.

  18. The phase diagram of high-pressure superionic ice

    DOE PAGES

    Sun, Jiming; Clark, Bryan K.; Torquato, Salvatore; ...

    2015-08-28

    Superionic ice is a special group of ice phases at high temperature and pressure, which may exist in ice-rich planets and exoplanets. In superionic ice liquid hydrogen coexists with a crystalline oxygen sublattice. At high pressures, the properties of superionic ice are largely unknown. Here we report evidence that from 280 GPa to 1.3 TPa, there are several competing phases within the close-packed oxygen sublattice. At even higher pressure, the close-packed structure of the oxygen sublattice becomes unstable to a new unusual superionic phase in which the oxygen sublattice takes the P2 1/c symmetry. We also discover that higher pressuremore » phases have lower transition temperatures. The diffusive hydrogen in the P2 1/c superionic phase shows strong anisotropic behaviour and forms a quasi-two-dimensional liquid. The ionic conductivity changes abruptly in the solid to close-packed superionic phase transition, but continuously in the solid to P2 1/c superionic phase transition.« less

  19. Variability of Antarctic Sea Ice 1979-1998

    NASA Technical Reports Server (NTRS)

    Zwally, H. Jay; Comiso, Josefino C.; Parkinson, Claire L.; Cavalieri, Donald J.; Gloersen, Per; Koblinsky, Chester J. (Technical Monitor)

    2001-01-01

    The principal characteristics of the variability of Antarctic sea ice cover as previously described from satellite passive-microwave observations are also evident in a systematically-calibrated and analyzed data set for 20.2 years (1979-1998). The total Antarctic sea ice extent (concentration > 15 %) increased by 13,440 +/- 4180 sq km/year (+1.18 +/- 0.37%/decade). The area of sea ice within the extent boundary increased by 16,960 +/- 3,840 sq km/year (+1.96 +/- 0.44%/decade). Regionally, the trends in extent are positive in the Weddell Sea (1.5 +/- 0.9%/decade), Pacific Ocean (2.4 +/- 1.4%/decade), and Ross (6.9 +/- 1.1 %/decade) sectors, slightly negative in the Indian Ocean (-1.5 +/- 1.8%/decade, and strongly negative in the Bellingshausen-Amundsen Seas sector (-9.5 +/- 1.5%/decade). For the entire ice pack, small ice increases occur in all seasons with the largest increase during autumn. On a regional basis, the trends differ season to season. During summer and fall, the trends are positive or near zero in all sectors except the Bellingshausen-Amundsen Seas sector. During winter and spring, the trends are negative or near zero in all sectors except the Ross Sea, which has positive trends in all seasons. Components of interannual variability with periods of about 3 to 5 years are regionally large, but tend to counterbalance each other in the total ice pack. The interannual variability of the annual mean sea-ice extent is only 1.6% overall, compared to 5% to 9% in each of five regional sectors. Analysis of the relation between regional sea ice extents and spatially-averaged surface temperatures over the ice pack gives an overall sensitivity between winter ice cover and temperature of -0.7% change in sea ice extent per K. For summer, some regional ice extents vary positively with temperature and others negatively. The observed increase in Antarctic sea ice cover is counter to the observed decreases in the Arctic. It is also qualitatively consistent with the

  20. Multiyear ice transport and small scale sea ice deformation near the Alaska coast measured by air-deployable Ice Trackers

    NASA Astrophysics Data System (ADS)

    Mahoney, A. R.; Kasper, J.; Winsor, P.

    2015-12-01

    Highly complex patterns of ice motion and deformation were captured by fifteen satellite-telemetered GPS buoys (known as Ice Trackers) deployed near Barrow, Alaska, in spring 2015. Two pentagonal clusters of buoys were deployed on pack ice by helicopter in the Beaufort Sea between 20 and 80 km offshore. During deployment, ice motion in the study region was effectively zero, but two days later the buoys captured a rapid transport event in which multiyear ice from the Beaufort Sea was flushed into the Chukchi Sea. During this event, westward ice motion began in the Chukchi Sea and propagated eastward. This created new openings in the ice and led to rapid elongation of the clusters as the westernmost buoys accelerated away from their neighbors to the east. The buoys tracked ice velocities of over 1.5 ms-1, with fastest motion occurring closest to the coast indicating strong current shear. Three days later, ice motion reversed and the two clusters became intermingled, rendering divergence calculations based on the area enclosed by clusters invalid. The data show no detectable difference in velocity between first year and multiyear ice floes, but Lagrangian timeseries of SAR imagery centered on each buoy show that first year ice underwent significant small-scale deformation during the event. The five remaining buoys were deployed by local residents on prominent ridges embedded in the landfast ice within 16 km of Barrow in order to track the fate of such features after they detached from the coast. Break-up of the landfast ice took place over a period of several days and, although the buoys each initially followed a similar eastward trajectory around Point Barrow into the Beaufort Sea, they rapidly dispersed over an area more than 50 km across. With rapid environmental and socio-economic change in the Arctic, understanding the complexity of nearshore ice motion is increasingly important for predict future changes in the ice and the tracking ice-related hazards

  1. The internal structure of the Brunt Ice Shelf, Antarctica from ice-penetrating radar

    NASA Astrophysics Data System (ADS)

    King, Edward; De Rydt, Jan; Gudmundsson, Hilmar

    2016-04-01

    The Brunt Ice Shelf is a small feature on the Coats Land Coast of the Weddell Sea, Antarctica. It is unusual among Antarctic ice shelves because the ice crossing the grounding line from the ice sheet retains no structural integrity, so the ice shelf comprises icebergs of continental ice cemented together by sea ice, with the whole blanketed by in-situ snowfall. The size and distribution of the icebergs is governed by the thickness profile along the grounding line. Where bedrock troughs discharge thick ice to the ice shelf, the icebergs are large and remain close together with little intervening sea ice. Where bedrock ridges mean the ice crossing the grounding line is thin, the icebergs are small and widely-scattered with large areas of sea ice between them. To better understand the internal structure of the Brunt Ice Shelf and how this might affect the flow dynamics we conducted ice-penetrating radar surveys during December 2015 and January 2016. Three different ground-based radar systems were used, operating at centre frequencies of 400, 50 and 10 MHz respectively. The 400 MHz system gave detailed firn structure and accumulation profiles as well as time-lapse profiles of the active propagation of a crevasse. The 50 MHz system provided intermediate-level detail of iceberg distribution and thickness as well as information on the degree of salt water infiltration into the accumulating snow pack. The 10 MHz system used a high-power transmitter in an attempt to measure ice thickness beneath salt-impregnated ice. In this poster we will present example data from each of the three radar systems which will demonstrate the variability of the internal structure of the ice shelf. We will also present preliminary correlations between the internal structure and the surface topography from satellite data.

  2. Estimation of Antarctic Land-Fast Sea Ice Algal Biomass and Snow Thickness From Under-Ice Radiance Spectra in Two Contrasting Areas

    NASA Astrophysics Data System (ADS)

    Wongpan, P.; Meiners, K. M.; Langhorne, P. J.; Heil, P.; Smith, I. J.; Leonard, G. H.; Massom, R. A.; Clementson, L. A.; Haskell, T. G.

    2018-03-01

    Fast ice is an important component of Antarctic coastal marine ecosystems, providing a prolific habitat for ice algal communities. This work examines the relationships between normalized difference indices (NDI) calculated from under-ice radiance measurements and sea ice algal biomass and snow thickness for Antarctic fast ice. While this technique has been calibrated to assess biomass in Arctic fast ice and pack ice, as well as Antarctic pack ice, relationships are currently lacking for Antarctic fast ice characterized by bottom ice algae communities with high algal biomass. We analyze measurements along transects at two contrasting Antarctic fast ice sites in terms of platelet ice presence: near and distant from an ice shelf, i.e., in McMurdo Sound and off Davis Station, respectively. Snow and ice thickness, and ice salinity and temperature measurements support our paired in situ optical and biological measurements. Analyses show that NDI wavelength pairs near the first chlorophyll a (chl a) absorption peak (≈440 nm) explain up to 70% of the total variability in algal biomass. Eighty-eight percent of snow thickness variability is explained using an NDI with a wavelength pair of 648 and 567 nm. Accounting for pigment packaging effects by including the ratio of chl a-specific absorption coefficients improved the NDI-based algal biomass estimation only slightly. Our new observation-based algorithms can be used to estimate Antarctic fast ice algal biomass and snow thickness noninvasively, for example, by using moored sensors (time series) or mapping their spatial distributions using underwater vehicles.

  3. Heated Debates: Hot-Water Immersion or Ice Packs as First Aid for Cnidarian Envenomations?

    PubMed Central

    Wilcox, Christie L.; Yanagihara, Angel A.

    2016-01-01

    Cnidarian envenomations are an important public health problem, responsible for more deaths than shark attacks annually. For this reason, optimization of first-aid care is essential. According to the published literature, cnidarian venoms and toxins are heat labile at temperatures safe for human application, which supports the use of hot-water immersion of the sting area(s). However, ice packs are often recommended and used by emergency personnel. After conducting a systematic review of the evidence for the use of heat or ice in the treatment of cnidarian envenomations, we conclude that the majority of studies to date support the use of hot-water immersion for pain relief and improved health outcomes. PMID:27043628

  4. Heated Debates: Hot-Water Immersion or Ice Packs as First Aid for Cnidarian Envenomations?

    PubMed

    Wilcox, Christie L; Yanagihara, Angel A

    2016-04-01

    Cnidarian envenomations are an important public health problem, responsible for more deaths than shark attacks annually. For this reason, optimization of first-aid care is essential. According to the published literature, cnidarian venoms and toxins are heat labile at temperatures safe for human application, which supports the use of hot-water immersion of the sting area(s). However, ice packs are often recommended and used by emergency personnel. After conducting a systematic review of the evidence for the use of heat or ice in the treatment of cnidarian envenomations, we conclude that the majority of studies to date support the use of hot-water immersion for pain relief and improved health outcomes.

  5. Variability in Arctic sea ice topography and atmospheric form drag: Combining IceBridge laser altimetry with ASCAT radar backscatter.

    NASA Astrophysics Data System (ADS)

    Petty, A.; Tsamados, M.; Kurtz, N. T.

    2016-12-01

    Here we present atmospheric form drag estimates over Arctic sea ice using high resolution, three-dimensional surface elevation data from NASA's Operation IceBridge Airborne Topographic Mapper (ATM), and surface roughness estimates from the Advanced Scatterometer (ASCAT). Surface features of the ice pack (e.g. pressure ridges) are detected using IceBridge ATM elevation data and a novel surface feature-picking algorithm. We use simple form drag parameterizations to convert the observed height and spacing of surface features into an effective atmospheric form drag coefficient. The results demonstrate strong regional variability in the atmospheric form drag coefficient, linked to variability in both the height and spacing of surface features. This includes form drag estimates around 2-3 times higher over the multiyear ice north of Greenland, compared to the first-year ice of the Beaufort/Chukchi seas. We compare results from both scanning and linear profiling to ensure our results are consistent with previous studies investigating form drag over Arctic sea ice. A strong correlation between ASCAT surface roughness estimates (using radar backscatter) and the IceBridge form drag results enable us to extrapolate the IceBridge data collected over the western-Arctic across the entire Arctic Ocean. While our focus is on spring, due to the timing of the primary IceBridge campaigns since 2009, we also take advantage of the autumn data collected by IceBridge in 2015 to investigate seasonality in Arctic ice topography and the resulting form drag coefficient. Our results offer the first large-scale assessment of atmospheric form drag over Arctic sea ice due to variable ice topography (i.e. within the Arctic pack ice). The analysis is being extended to the Antarctic IceBridge sea ice data, and the results are being used to calibrate a sophisticated form drag parameterization scheme included in the sea ice model CICE, to improve the representation of form drag over Arctic and

  6. Spaceborne SAR and sea ice

    NASA Technical Reports Server (NTRS)

    Weeks, W. F.

    1983-01-01

    A number of remote sensing systems deployed in satellites to view the Earth which are successful in gathering data on the behavior of the world's snow and ice covers are described. Considering sea ice which covers over 10% of the world ocean, systems that have proven capable to collect useful data include those operating in the visible, near-infrared, infrared, and microwave frequency ranges. The microwave systems have the essential advantage in observing the ice under all weather and lighting conditions. Without this capability data are lost during the long polar night and during times of storm passage, periods when ice activity can be intense. The margins of the ice pack, a region of particular interest, is shrouded in cloud between 80 and 90% of the time.

  7. Sea Ice, Climate and Fram Strait

    NASA Technical Reports Server (NTRS)

    Hunkins, K.

    1984-01-01

    When sea ice is formed the albedo of the ocean surface increases from its open water value of about 0.1 to a value as high as 0.8. This albedo change effects the radiation balance and thus has the potential to alter climate. Sea ice also partially seals off the ocean from the atmosphere, reducing the exchange of gases such as carbon dioxide. This is another possible mechanism by which climate might be affected. The Marginal Ice Zone Experiment (MIZEX 83 to 84) is an international, multidisciplinary study of processes controlling the edge of the ice pack in that area including the interactions between sea, air and ice.

  8. ICE stereocamera system - photogrammetric setup for retrieval and analysis of small scale sea ice topography

    NASA Astrophysics Data System (ADS)

    Divine, Dmitry; Pedersen, Christina; Karlsen, Tor Ivan; Aas, Harald; Granskog, Mats; Renner, Angelika; Spreen, Gunnar; Gerland, Sebastian

    2013-04-01

    A new thin-ice Arctic paradigm requires reconsideration of the set of parameterizations of mass and energy exchange within the ocean-sea-ice-atmosphere system used in modern CGCMs. Such a reassessment would require a comprehensive collection of measurements made specifically on first-year pack ice with a focus on summer melt season when the difference from typical conditions for the earlier multi-year Arctic sea ice cover becomes most pronounced. Previous in situ studies have demonstrated a crucial importance of smaller (i.e. less than 10 m) scale surface topography features for the seasonal evolution of pack ice. During 2011-2012 NPI developed a helicopter borne ICE stereocamera system intended for mapping the sea ice surface topography and aerial photography. The hardware component of the system comprises two Canon 5D Mark II cameras, combined GPS/INS unit by "Novatel" and a laser altimeter mounted in a single enclosure outside the helicopter. The unit is controlled by a PXI chassis mounted inside the helicopter cabin. The ICE stereocamera system was deployed for the first time during the 2012 summer field season. The hardware setup has proven to be highly reliable and was used in about 30 helicopter flights over Arctic sea-ice during July-September. Being highly automated it required a minimal human supervision during in-flight operation. The deployment of the camera system was mostly done in combination with the EM-bird, which measures sea-ice thickness, and this combination provides an integrated view of sea ice cover along the flight track. During the flight the cameras shot sequentially with a time interval of 1 second each to ensure sufficient overlap between subsequent images. Some 35000 images of sea ice/water surface captured per camera sums into 6 Tb of data collected during its first field season. The reconstruction of the digital elevation model of sea ice surface will be done using SOCET SET commercial software. Refraction at water/air interface can

  9. Observing Radiative Properties of a Thinner, Seasonal Arctic Ice Pack

    NASA Astrophysics Data System (ADS)

    Hudson, S. R.; Nicolaus, M.; Granskog, M.; Gerland, S.; Wang, C.

    2011-12-01

    The Arctic is coming to be dominated by young ice, much of it seasonal. Many of our observations of the radiative properties of sea ice come from drifting stations on thick, multi-year ice. To better understand the Arctic climate system in a warmer world, we need more data about the radiative properties and their seasonal and spatial variability on thinner, younger ice. Since this younger ice is not always thick enough to support lengthy drifting stations, there is a need for new technologies to help us get optical measurements on seasonal ice. One challenge is obtaining seasonal data on ice that is too weak to support even a ship-based camp, and especially to have these observations extend well into the melt season. For these situations, we have developed a spectral radiation monitoring buoy that can be deployed during a one-day ice station, and that can then autonomously observe the spectral albedo and transmittance of the sea ice, transmitting all data in near real time by satellite, until the buoy melts out. Similar installations at manned or regularly visited sites have provided good data, with surprisingly few data-quality problems due to frost, precipitation, or tilting. The buoys consist of 3 spectral radiometers, covering wavelengths 350 to 800 nm, and a datalogger with an Irridium modem. The datalogger and necessary batteries are inside a sealed housing which is frozen into a hole drilled in the ice. Arms extend from both the top and bottom of the housing, holding sensors that measure incident, reflected, and transmitted spectra. The under-ice radiometer is equipped with a bioshutter to avoid algal growth on the sensor. They will be deployed alongside ice mass balance buoys, providing data about the physical development of the ice and snow, as well as position. While the buoys provide an excellent record of diurnal, synoptic, and seasonal variability, they are fixed to one location in the ice, so other methods are still needed for measuring the spatial

  10. Delicious ice cream, why does salt thaw ice?

    NASA Astrophysics Data System (ADS)

    Bagnoli, Franco

    2016-03-01

    Plain Awful is an imaginary valley on the Andes populated by a highly-imitative, cubical people for which the most criminal offence is to exhibit round objects. The duck family (Scrooge, Donald and nephews) are teaming against Scrooge's worst enemy, Flintheart Glomgold, trying to buy the famous Plain Awful square eggs. Inadvertently, Scrooge violates the taboo, showing his Number One Dime, and is imprisoned in the stone quarries. He can be released only after the presentation of an ice cream soda to the President of Plain Awful. Donald and his nephews fly with Flintheart to deliver it, but Scrooge's enemy, of course, betrays the previous agreement after getting the ice cream, forcing the ducks into making an emergence replacement on the spot. Using dried milk, sugar and chocolate from their ration packs, plus some snow and salt for cooling they are able make the ice cream, and after dressing it with the carbonated water from a fire extinguisher they finally manage to produce the desired dessert. This comic may serve as an introduction to the "mysterious" phenomenon that added salt melts the ice and, even more surprising, does it by lowering the temperature of the mixture.

  11. Ice tracking techniques, implementation, performance, and applications

    NASA Technical Reports Server (NTRS)

    Rothrock, D. A.; Carsey, F. D.; Curlander, J. C.; Holt, B.; Kwok, R.; Weeks, W. F.

    1992-01-01

    Present techniques of ice tracking make use both of cross-correlation and of edge tracking, the former being more successful in heavy pack ice, the latter being critical for the broken ice of the pack margins. Algorithms must assume some constraints on the spatial variations of displacements to eliminate fliers, but must avoid introducing any errors into the spatial statistics of the measured displacement field. We draw our illustrations from the implementation of an automated tracking system for kinematic analyses of ERS-1 and JERS-1 SAR imagery at the University of Alaska - the Alaska SAR Facility's Geophysical Processor System. Analyses of the ice kinematic data that might have some general interest to analysts of cloud-derived wind fields are the spatial structure of the fields, and the evaluation and variability of average deformation and its invariants: divergence, vorticity and shear. Many problems in sea ice dynamics and mechanics can be addressed with the kinematic data from SAR.

  12. Antarctic Sea-Ice Freeboard and Estimated Thickness from NASA's ICESat and IceBridge Observations

    NASA Technical Reports Server (NTRS)

    Yi, Donghui; Kurtz, Nathan; Harbeck, Jeremy; Manizade, Serdar; Hofton, Michelle; Cornejo, Helen G.; Zwally, H. Jay; Robbins, John

    2016-01-01

    ICESat completed 18 observational campaigns during its lifetime from 2003 to 2009. Data from all of the 18 campaign periods are used in this study. Most of the operational periods were between 34 and 38 days long. Because of laser failure and orbit transition from 8-day to 91-day orbit, there were four periods lasting 57, 16, 23, and 12 days. IceBridge data from 2009, 2010, and 2011 are used in this study. Since 2009, there are 19 Airborne Topographic Mapper (ATM) campaigns, and eight Land, Vegetation, and Ice Sensor (LVIS) campaigns over the Antarctic sea ice. Freeboard heights are derived from ICESat, ATM and LVIS elevation and waveform data. With nominal densities of snow, water, and sea ice, combined with snow depth data from AMSR-E/AMSR2 passive microwave observation over the southern ocean, sea-ice thickness is derived from the freeboard. Combined with AMSR-E/AMSR2 ice concentration, sea-ice area and volume are also calculated. During the 2003-2009 period, sea-ice freeboard and thickness distributions show clear seasonal variations that reflect the yearly cycle of the growth and decay of the Antarctic pack ice. We found no significant trend of thickness or area for the Antarctic sea ice during the ICESat period. IceBridge sea ice freeboard and thickness data from 2009 to 2011 over the Weddell Sea and Amundsen and Bellingshausen Seas are compared with the ICESat results.

  13. An integrated approach to the remote sensing of floating ice

    NASA Technical Reports Server (NTRS)

    Campbell, W. J.; Ramseier, R. O.; Weeks, W. F.; Gloersen, P.

    1976-01-01

    Review article on remote sensing applications to glaciology. Ice parameters sensed include: ice cover vs open water, ice thickness, distribution and morphology of ice formations, vertical resolution of ice thickness, ice salinity (percolation and drainage of brine; flushing of ice body with fresh water), first-year ice and multiyear ice, ice growth rate and surface heat flux, divergence of ice packs, snow cover masking ice, behavior of ice shelves, icebergs, lake ice and river ice; time changes. Sensing techniques discussed include: satellite photographic surveys, thermal IR, passive and active microwave studies, microwave radiometry, microwave scatterometry, side-looking radar, and synthetic aperture radar. Remote sensing of large aquatic mammals and operational ice forecasting are also discussed.

  14. Under the sea ice: Exploring the relationship between sea ice and the foraging behaviour of southern elephant seals in East Antarctica

    NASA Astrophysics Data System (ADS)

    Labrousse, Sara; Sallée, Jean-Baptiste; Fraser, Alexander D.; Massom, Robert A.; Reid, Phillip; Sumner, Michael; Guinet, Christophe; Harcourt, Robert; McMahon, Clive; Bailleul, Frédéric; Hindell, Mark A.; Charrassin, Jean-Benoit

    2017-08-01

    Investigating ecological relationships between predators and their environment is essential to understand the response of marine ecosystems to climate variability and change. This is particularly true in polar regions, where sea ice (a sensitive climate variable) plays a crucial yet highly dynamic and variable role in how it influences the whole marine ecosystem, from phytoplankton to top predators. For mesopredators such as seals, sea ice both supports a rich (under-ice) food resource, access to which depends on local to regional coverage and conditions. Here, we investigate sex-specific relationships between the foraging strategies of southern elephant seals (Mirounga leonina) in winter and spatio-temporal variability in sea ice concentration (SIC) and coverage in East Antarctica. We satellite-tracked 46 individuals undertaking post-moult trips in winter from Kerguelen Islands to the peri-Antarctic shelf between 2004 and 2014. These data indicate distinct general patterns of sea ice usage: while females tended to follow the sea ice edge as it extended northward, the males remained on the continental shelf despite increasing sea ice. Seal hunting time, a proxy of foraging activity inferred from the diving behaviour, was longer for females in late autumn in the outer part of the pack ice, ∼150-370 km south of the ice edge. Within persistent regions of compact sea ice, females had a longer foraging activity (i) in the highest sea ice concentration at their position, but (ii) their foraging activity was longer when there were more patches of low concentration sea ice around their position (either in time or in space; 30 days & 50 km). The high spatio-temporal variability of sea ice around female positions is probably a key factor allowing them to exploit these concentrated patches. Despite lack of information on prey availability, females may exploit mesopelagic finfishes and squids that concentrate near the ice-water interface or within the water column (from

  15. Arctic landfast sea ice

    NASA Astrophysics Data System (ADS)

    Konig, Christof S.

    Landfast ice is sea ice which forms and remains fixed along a coast, where it is attached either to the shore, or held between shoals or grounded icebergs. Landfast ice fundamentally modifies the momentum exchange between atmosphere and ocean, as compared to pack ice. It thus affects the heat and freshwater exchange between air and ocean and impacts on the location of ocean upwelling and downwelling zones. Further, the landfast ice edge is essential for numerous Arctic mammals and Inupiat who depend on them for their subsistence. The current generation of sea ice models is not capable of reproducing certain aspects of landfast ice formation, maintenance, and disintegration even when the spatial resolution would be sufficient to resolve such features. In my work I develop a new ice model that permits the existence of landfast sea ice even in the presence of offshore winds, as is observed in mature. Based on viscous-plastic as well as elastic-viscous-plastic ice dynamics I add tensile strength to the ice rheology and re-derive the equations as well as numerical methods to solve them. Through numerical experiments on simplified domains, the effects of those changes are demonstrated. It is found that the modifications enable landfast ice modeling, as desired. The elastic-viscous-plastic rheology leads to initial velocity fluctuations within the landfast ice that weaken the ice sheet and break it up much faster than theoretically predicted. Solving the viscous-plastic rheology using an implicit numerical method avoids those waves and comes much closer to theoretical predictions. Improvements in landfast ice modeling can only verified in comparison to observed data. I have extracted landfast sea ice data of several decades from several sources to create a landfast sea ice climatology that can be used for that purpose. Statistical analysis of the data shows several factors that significantly influence landfast ice distribution: distance from the coastline, ocean depth, as

  16. Atmospheric forcing of sea ice leads in the Beaufort Sea

    NASA Astrophysics Data System (ADS)

    Lewis, B. J.; Hutchings, J.; Mahoney, A. R.; Shapiro, L. H.

    2016-12-01

    Leads in sea ice play an important role in the polar marine environment where they allow heat and moisture transfer between the oceans and atmosphere and act as travel pathways for both marine mammals and ships. Examining AVHRR thermal imagery of the Beaufort Sea, collected between 1994 and 2010, sea ice leads appear in repeating patterns and locations (Eicken et al 2005). The leads, resolved by AVHRR, are at least 250m wide (Mahoney et al 2012), thus the patterns described are for lead systems that extend up to hundreds of kilometers across the Beaufort Sea. We describe how these patterns are associated with the location of weather systems relative to the coastline. Mean sea level pressure and 10m wind fields from ECMWF ERA-Interim reanalysis are used to identify if particular lead patterns can be uniquely forecast based on the location of weather systems. Ice drift data from the NSIDC's Polar Pathfinder Daily 25km EASE-Grid Sea Ice Motion Vectors indicates the role shear along leads has on the motion of ice in the Beaufort Gyre. Lead formation is driven by 4 main factors: (i) coastal features such as promontories and islands influence the origin of leads by concentrating stresses within the ice pack; (ii) direction of the wind forcing on the ice pack determines the type of fracture, (iii) the location of the anticyclone (or cyclone) center determines the length of the fracture for certain patterns; and (iv) duration of weather conditions affects the width of the ice fracture zones. Movement of the ice pack on the leeward side of leads originating at promontories and islands increases, creating shear zones that control ice transport along the Alaska coast in winter. . Understanding how atmospheric conditions influence the large-scale motion of the ice pack is needed to design models that predict variability of the gyre and export of multi-year ice to lower latitudes.

  17. Arctic Ice Dynamics Joint Experiment (AIDJEX) assumptions revisited and found inadequate

    NASA Astrophysics Data System (ADS)

    Coon, Max; Kwok, Ron; Levy, Gad; Pruis, Matthew; Schreyer, Howard; Sulsky, Deborah

    2007-11-01

    This paper revisits the Arctic Ice Dynamics Joint Experiment (AIDJEX) assumptions about pack ice behavior with an eye to modeling sea ice dynamics. The AIDJEX assumptions were that (1) enough leads were present in a 100 km by 100 km region to make the ice isotropic on that scale; (2) the ice had no tensile strength; and (3) the ice behavior could be approximated by an isotropic yield surface. These assumptions were made during the development of the AIDJEX model in the 1970s, and are now found inadequate. The assumptions were made in part because of insufficient large-scale (10 km) deformation and stress data, and in part because of computer capability limitations. Upon reviewing deformation and stress data, it is clear that a model including deformation on discontinuities and an anisotropic failure surface with tension would better describe the behavior of pack ice. A model based on these assumptions is needed to represent the deformation and stress in pack ice on scales from 10 to 100 km, and would need to explicitly resolve discontinuities. Such a model would require a different class of metrics to validate discontinuities against observations.

  18. Mixed ice accretion on aircraft wings

    NASA Astrophysics Data System (ADS)

    Janjua, Zaid A.; Turnbull, Barbara; Hibberd, Stephen; Choi, Kwing-So

    2018-02-01

    Ice accretion is a problematic natural phenomenon that affects a wide range of engineering applications including power cables, radio masts, and wind turbines. Accretion on aircraft wings occurs when supercooled water droplets freeze instantaneously on impact to form rime ice or runback as water along the wing to form glaze ice. Most models to date have ignored the accretion of mixed ice, which is a combination of rime and glaze. A parameter we term the "freezing fraction" is defined as the fraction of a supercooled droplet that freezes on impact with the top surface of the accretion ice to explore the concept of mixed ice accretion. Additionally we consider different "packing densities" of rime ice, mimicking the different bulk rime densities observed in nature. Ice accretion is considered in four stages: rime, primary mixed, secondary mixed, and glaze ice. Predictions match with existing models and experimental data in the limiting rime and glaze cases. The mixed ice formulation however provides additional insight into the composition of the overall ice structure, which ultimately influences adhesion and ice thickness, and shows that for similar atmospheric parameter ranges, this simple mixed ice description leads to very different accretion rates. A simple one-dimensional energy balance was solved to show how this freezing fraction parameter increases with decrease in atmospheric temperature, with lower freezing fraction promoting glaze ice accretion.

  19. Effects of an Arctic under-ice phytoplankton bloom on bio-optical properties of surface waters during the Norwegian Young Sea Ice Cruise (N-ICE2015)

    NASA Astrophysics Data System (ADS)

    Pavlov, A. K.; Granskog, M. A.; Hudson, S. R.; Taskjelle, T.; Kauko, H.; Hamre, B.; Assmy, P.; Mundy, C. J.; Nicolaus, M.; Kowalczuk, P.; Stedmon, C. A.; Fernandez Mendez, M.

    2016-02-01

    A thinner and younger Arctic sea-ice cover has led to an increase in solar light transmission into the surface ocean, especially during late spring and summer. A description of the seasonal evolution of polar surface water optical properties is essential, in order to understand how changes are affecting light availability for photosynthetic organisms and the surface ocean energy budget. The development of the bio-optical properties of Arctic surface waters under predominantly first-year sea ice in the southern Nansen Basin were studied from January to June 2015 during the Norwegian Young Sea Ice Cruise (N-ICE2015). Observations included inherent optical properties, absorption by colored dissolved organic matter and particles, as well as radiometric measurements. We documented a rapid transition from relatively clear and transparent waters in winter to turbid waters in late May and June. This transition was associated with a strong under-ice phytoplankton bloom detected first under the compact ice pack and then monitored during drift across the marginal ice zone. We discuss potential implications of underwater light availability for photosynthesis, heat redistribution in the upper ocean layer, and energy budget of the sea-ice - ocean system.

  20. Design, development, and fabrication of a prototype ice pack heat sink subsystem. Flight experiment physical phenomena experiment chest

    NASA Technical Reports Server (NTRS)

    Roebelen, G. J., Jr.; Dean, W. C., II

    1975-01-01

    The concept of a flight experiment physical phenomena experiment chest, to be used eventually for investigating and demonstrating ice pack heat sink subsystem physical phenomena during a zero gravity flight experiment, is described.

  1. Remote sensing of the Fram Strait marginal ice zone

    USGS Publications Warehouse

    Shuchman, R.A.; Burns, B.A.; Johannessen, O.M.; Josberger, E.G.; Campbell, W.J.; Manley, T.O.; Lannelongue, N.

    1987-01-01

    Sequential remote sensing images of the Fram Strait marginal ice zone played a key role in elucidating the complex interactions of the atmosphere, ocean, and sea ice. Analysis of a subset of these images covering a 1-week period provided quantitative data on the mesoscale ice morphology, including ice edge positions, ice concentrations, floe size distribution, and ice kinematics. The analysis showed that, under light to moderate wind conditions, the morphology of the marginal ice zone reflects the underlying ocean circulation. High-resolution radar observations showed the location and size of ocean eddies near the ice edge. Ice kinematics from sequential radar images revealed an ocean eddy beneath the interior pack ice that was verified by in situ oceanographic measurements.

  2. Modeling Wave-Ice Interactions in the Marginal Ice Zone

    NASA Astrophysics Data System (ADS)

    Orzech, Mark; Shi, Fengyan; Bateman, Sam; Veeramony, Jay; Calantoni, Joe

    2015-04-01

    The small-scale (O(m)) interactions between waves and ice floes in the marginal ice zone (MIZ) are investigated with a coupled model system. Waves are simulated with the non-hydrostatic finite-volume model NHWAVE (Ma et al., 2012) and ice floes are represented as bonded collections of smaller particles with the discrete element system LIGGGHTS (Kloss et al., 2012). The physics of fluid and ice are recreated as authentically as possible, to allow the coupled system to supplement and/or substitute for more costly and demanding field experiments. The presentation will first describe the development and validation of the coupled system, then discuss the results of a series of virtual experiments in which ice floe and wave characteristics are varied to examine their effects on energy dissipation, MIZ floe size distribution, and ice pack retreat rates. Although Wadhams et al. (1986) suggest that only a small portion (roughly 10%) of wave energy entering the MIZ is reflected, dissipation mechanisms for the remaining energy have yet to be delineated or measured. The virtual experiments are designed to focus on specific properties and processes - such as floe size and shape, collision and fracturing events, and variations in wave climate - and measure their relative roles the transfer of energy and momentum from waves to ice. Questions to be examined include: How is energy dissipated by ice floe collisions, fracturing, and drag, and how significant is the wave attenuation associated with each process? Do specific wave/floe length scale ratios cause greater wave attenuation? How does ice material strength affect the rate of wave energy loss? The coupled system will ultimately be used to test and improve upon wave-ice parameterizations for large-scale climate models. References: >Kloss, C., C. Goniva, A. Hager, S. Amberger, and S. Pirker (2012). Models, algorithms and validation for opensource DEM and CFD-DEM. Progress in Computational Fluid Dynamics 12(2/3), 140-152. >Ma, G

  3. Antarctic Sea ice--a habitat for extremophiles.

    PubMed

    Thomas, D N; Dieckmann, G S

    2002-01-25

    The pack ice of Earth's polar oceans appears to be frozen white desert, devoid of life. However, beneath the snow lies a unique habitat for a group of bacteria and microscopic plants and animals that are encased in an ice matrix at low temperatures and light levels, with the only liquid being pockets of concentrated brines. Survival in these conditions requires a complex suite of physiological and metabolic adaptations, but sea-ice organisms thrive in the ice, and their prolific growth ensures they play a fundamental role in polar ecosystems. Apart from their ecological importance, the bacterial and algae species found in sea ice have become the focus for novel biotechnology, as well as being considered proxies for possible life forms on ice-covered extraterrestrial bodies.

  4. Ice Shelf-Ocean Interactions Near Ice Rises and Ice Rumples

    NASA Astrophysics Data System (ADS)

    Lange, M. A.; Rückamp, M.; Kleiner, T.

    2013-12-01

    The stability of ice shelves depends on the existence of embayments and is largely influenced by ice rises and ice rumples, which act as 'pinning-points' for ice shelf movement. Of additional critical importance are interactions between ice shelves and the water masses underlying them in ice shelf cavities, particularly melting and refreezing processes. The present study aims to elucidate the role of ice rises and ice rumples in the context of climate change impacts on Antarctic ice shelves. However, due to their smaller spatial extent, ice rumples react more sensitively to climate change than ice rises. Different forcings are at work and need to be considered separately as well as synergistically. In order to address these issues, we have decided to deal with the following three issues explicitly: oceanographic-, cryospheric and general topics. In so doing, we paid particular attention to possible interrelationships and feedbacks in a coupled ice-shelf-ocean system. With regard to oceanographic issues, we have applied the ocean circulation model ROMBAX to ocean water masses adjacent to and underneath a number of idealized ice shelf configurations: wide and narrow as well as laterally restrained and unrestrained ice shelves. Simulations were performed with and without small ice rises located close to the calving front. For larger configurations, the impact of the ice rises on melt rates at the ice shelf base is negligible, while for smaller configurations net melting rates at the ice-shelf base differ by a factor of up to eight depending on whether ice rises are considered or not. We employed the thermo-coupled ice flow model TIM-FD3 to simulate the effects of several ice rises and one ice rumple on the dynamics of ice shelf flow. We considered the complete un-grounding of the ice shelf in order to investigate the effect of pinning points of different characteristics (interior or near calving front, small and medium sized) on the resulting flow and stress fields

  5. Wind-Driven Formation of Ice Bridges in Straits.

    PubMed

    Rallabandi, Bhargav; Zheng, Zhong; Winton, Michael; Stone, Howard A

    2017-03-24

    Ice bridges are static structures composed of tightly packed sea ice that can form during the course of its flow through a narrow strait. Despite their important role in local ecology and climate, the formation and breakup of ice bridges is not well understood and has proved difficult to predict. Using long-wave approximations and a continuum description of sea ice dynamics, we develop a one-dimensional theory for the wind-driven formation of ice bridges in narrow straits, which is verified against direct numerical simulations. We show that for a given wind stress and minimum and maximum channel widths, a steady-state ice bridge can only form beyond a critical value of the thickness and the compactness of the ice field. The theory also makes quantitative predictions for ice fluxes, which are particularly useful to estimate the ice export associated with the breakup of ice bridges. We note that similar ideas are applicable to dense granular flows in confined geometries.

  6. Upper Ocean Evolution Across the Beaufort Sea Marginal Ice Zone

    NASA Astrophysics Data System (ADS)

    Lee, C.; Rainville, L.; Gobat, J. I.; Perry, M. J.; Freitag, L. E.; Webster, S.

    2016-12-01

    The observed reduction of Arctic summertime sea ice extent and expansion of the marginal ice zone (MIZ) have profound impacts on the balance of processes controlling sea ice evolution, including the introduction of several positive feedback mechanisms that may act to accelerate melting. Examples of such feedbacks include increased upper ocean warming though absorption of solar radiation, elevated internal wave energy and mixing that may entrain heat stored in subsurface watermasses (e.g., the relatively warm Pacific Summer and Atlantic waters), and elevated surface wave energy that acts to deform and fracture sea ice. Spatial and temporal variability in ice properties and open water fraction impact these processes. To investigate how upper ocean structure varies with changing ice cover, how the balance of processes shift as a function of ice fraction and distance from open water, and how these processes impact sea ice evolution, a network of autonomous platforms sampled the atmosphere-ice-ocean system in the Beaufort, beginning in spring, well before the start of melt, and ending with the autumn freeze-up. Four long-endurance autonomous Seagliders occupied sections that extended from open water, through the marginal ice zone, deep into the pack during summer 2014 in the Beaufort Sea. Gliders penetrated up to 200 km into the ice pack, under complete ice cover for up to 10 consecutive days. Sections reveal strong fronts where cold, ice-covered waters meet waters that have been exposed to solar warming, and O(10 km) scale eddies near the ice edge. In the pack, Pacific Summer Water and a deep chlorophyll maximum form distinct layers at roughly 60 m and 80 m, respectively, which become increasingly diffuse late in the season as they progress through the MIZ and into open water. Stratification just above the Pacific Summer Water rapidly weakens near the ice edge and temperature variance increases, likely due to mixing or energetic vertical exchange associated with strong

  7. Relative influences of the metocean forcings on the drifting ice pack and estimation of internal ice stress gradients in the Labrador Sea

    NASA Astrophysics Data System (ADS)

    Turnbull, I. D.; Torbati, R. Z.; Taylor, R. S.

    2017-07-01

    Understanding the relative influences of the metocean forcings on the drift of sea ice floes is a crucial component to the overall characterization of an ice environment and to developing an understanding of the factors controlling the ice dynamics. In addition, estimating the magnitude of the internal stress gradients on drifting sea ice floes generated by surrounding ice cover is important for modeling operations, informing the design of offshore structures and vessels in ice environments, and for the proper calibration of Discrete Element Models (DEM) of fields of drifting ice floes. In the spring of 2015 and 2016, four sea ice floes offshore Makkovik, Labrador were tagged with satellite-linked ice tracking buoys along with one satellite-linked weather station on each floe to transmit wind speed and direction. Twenty satellite-linked Lagrangian surface ocean current tracking buoys were also deployed in the open water adjacent to the targeted ice floes. In this paper, the dynamics of the four ice floes are explored in terms of the relative proportions which were forced by the wind, current, sea surface topography, Coriolis, and internal stress gradients. The internal ice stress gradients are calculated as residuals between the observed accelerations of the floes as measured by the tracking buoys and the sums of the other metocean forcings. Results show that internal ice stress gradients accounted for up to 50% of the observed forcing on the floes, and may have reached up to around 0.19 kPa.

  8. Particulate matter in pack ice of the Beaufort Gyre

    USGS Publications Warehouse

    Reimnitz, E.; Barnes, P.W.; Weber, W.S.

    1993-01-01

    Fine sediment occurred in very small patches of turbid ice, as thin spotty surface layers, in mud pellets or in old snowdrifts. The latter were widespread south of 74??N, containing an estimated 22 tonnes of silt and clay km-2. Average particle concentration in sea ice (40 mg1-1) was much higher than in sea water (0.8 mg 1 -1) or in new snow. Assuming one-third of the load is released each year, the estimated deposition rate would equal the measured Holocene rate (~2cm 1000 year-1). Therefore, modern sea-ice rafting represents a substantial fraction of the total Arctic Ocean sediment budget. -from Authors

  9. Variations of mesoscale and large-scale sea ice morphology in the 1984 Marginal Ice Zone Experiment as observed by microwave remote sensing

    NASA Technical Reports Server (NTRS)

    Campbell, W. J.; Josberger, E. G.; Gloersen, P.; Johannessen, O. M.; Guest, P. S.

    1987-01-01

    The data acquired during the summer 1984 Marginal Ice Zone Experiment in the Fram Strait-Greenland Sea marginal ice zone, using airborne active and passive microwave sensors and the Nimbus 7 SMMR, were analyzed to compile a sequential description of the mesoscale and large-scale ice morphology variations during the period of June 6 - July 16, 1984. Throughout the experiment, the long ice edge between northwest Svalbard and central Greenland meandered; eddies were repeatedly formed, moved, and disappeared but the ice edge remained within a 100-km-wide zone. The ice pack behind this alternately diffuse and compact edge underwent rapid and pronounced variations in ice concentration over a 200-km-wide zone. The high-resolution ice concentration distributions obtained in the aircraft images agree well with the low-resolution distributions of SMMR images.

  10. Characterization of the mechanical behavior of sea ice as a frictional material

    NASA Astrophysics Data System (ADS)

    Lade, Poul V.

    2002-12-01

    The mechanical properties of sea ice are determined by the formation process, and the consequent material behavior at the element scale exhibits viscoelastic behavior at the early loading stages, followed by brittle fracture or ductile, irrecoverable deformation that may be captured by hardening/softening plasticity models with nonassociated flow. Failure of sea ice under different loading conditions follows a pattern that demonstrates its highly cross-anisotropic nature as well as its behavior as a frictional material. The interactions between the floes in the pack ice resemble those observed in granular materials. These materials are frictional in nature, they exhibit both contractive and dilative volume changes, the plastic flow is nonassociated, and their stiffnesses and strengths increase with confining pressure, but they do not have any strength when unconfined. The overall behavior of the pack ice may be close to isotropic. Constitutive modeling of this behavior may be achieved by models used in geotechnical engineering. Formation of leads and subsequent freezing of the water results in cementation between the ice floes, and the pack ice becomes stronger. The behavior of the pack ice may now be compared with that observed in cemented soils or concrete. For these materials, increasing amounts of cementation result in increasing rates of dilation when sheared, and this accounts for the largest contribution to the increase in shear strength.

  11. Ice swimming - 'Ice Mile' and '1 km Ice event'.

    PubMed

    Knechtle, Beat; Rosemann, Thomas; Rüst, Christoph A

    2015-01-01

    Ice swimming for 1 mile and 1 km is a new discipline in open-water swimming since 2009. This study examined female and male performances in swimming 1 mile ('Ice Mile') and 1 km ('1 km Ice event') in water of 5 °C or colder between 2009 and 2015 with the hypothesis that women would be faster than men. Between 2009 and 2015, 113 men and 38 women completed one 'Ice Mile' and 26 men and 13 completed one '1 km Ice event' in water colder than +5 °C following the rules of International Ice Swimming Association (IISA). Differences in performance between women and men were determined. Sex difference (%) was calculated using the equation ([time for women] - [time for men]/[time for men] × 100). For 'Ice Mile', a mixed-effects regression model with interaction analyses was used to investigate the influence of sex and environmental conditions on swimming speed. The association between water temperature and swimming speed was assessed using Pearson correlation analyses. For 'Ice Mile' and '1 km Ice event', the best men were faster than the best women. In 'Ice Mile', calendar year, number of attempts, water temperature and wind chill showed no association with swimming speed for both women and men. For both women and men, water temperature was not correlated to swimming speed in both 'Ice Mile' and '1 km Ice event'. In water colder than 5 °C, men were faster than women in 'Ice Mile' and '1 km Ice event'. Water temperature showed no correlation to swimming speed.

  12. Study of Cold Heat Energy Release Characteristics of Flowing Ice Water Slurry in a Pipe

    NASA Astrophysics Data System (ADS)

    Inaba, Hideo; Horibe, Akihiko; Ozaki, Koichi; Yokota, Maki

    This paper has dealt with melting heat transfer characteristics of ice water slurry in an inside tube of horizontal double tube heat exchanger in which a hot water circulated in an annular gap between the inside and outside tubes. Two kinds of heat exchangers were used; one is made of acrylic resin tube for flow visualization and the other is made of stainless steel tube for melting heat transfer measurement. The result of flow visualization revealed that ice particles flowed along the top of inside tube in the ranges of small ice packing factor and low ice water slurry velocity, while ice particles diffused into the whole of tube and flowed like a plug built up by ice particles for large ice packing factor and high velocity. Moreover, it was found that the flowing ice plug was separated into numbers of small ice clusters by melting phenomenon. Experiments of melting heat transfer were carried out under some parameters of ice packing factor, ice water slurry flow rate and hot water temperature. Consequently, the correlation equation of melting heat transfer was derived as a function of those experimental parameters.

  13. Ice Bridge Antarctic Sea Ice

    NASA Image and Video Library

    2009-10-21

    Sea ice is seen out the window of NASA's DC-8 research aircraft as it flies 2,000 feet above the Bellingshausen Sea in West Antarctica on Wednesday, Oct., 21, 2009. This was the fourth science flight of NASA’s Operation Ice Bridge airborne Earth science mission to study Antarctic ice sheets, sea ice, and ice shelves. Photo Credit: (NASA/Jane Peterson)

  14. CICE, The Los Alamos Sea Ice Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunke, Elizabeth; Lipscomb, William; Jones, Philip

    The Los Alamos sea ice model (CICE) is the result of an effort to develop a computationally efficient sea ice component for a fully coupled atmosphere–land–ocean–ice global climate model. It was originally designed to be compatible with the Parallel Ocean Program (POP), an ocean circulation model developed at Los Alamos National Laboratory for use on massively parallel computers. CICE has several interacting components: a vertical thermodynamic model that computes local growth rates of snow and ice due to vertical conductive, radiative and turbulent fluxes, along with snowfall; an elastic-viscous-plastic model of ice dynamics, which predicts the velocity field of themore » ice pack based on a model of the material strength of the ice; an incremental remapping transport model that describes horizontal advection of the areal concentration, ice and snow volume and other state variables; and a ridging parameterization that transfers ice among thickness categories based on energetic balances and rates of strain. It also includes a biogeochemical model that describes evolution of the ice ecosystem. The CICE sea ice model is used for climate research as one component of complex global earth system models that include atmosphere, land, ocean and biogeochemistry components. It is also used for operational sea ice forecasting in the polar regions and in numerical weather prediction models.« less

  15. Square ice in graphene nanocapillaries.

    PubMed

    Algara-Siller, G; Lehtinen, O; Wang, F C; Nair, R R; Kaiser, U; Wu, H A; Geim, A K; Grigorieva, I V

    2015-03-26

    Bulk water exists in many forms, including liquid, vapour and numerous crystalline and amorphous phases of ice, with hexagonal ice being responsible for the fascinating variety of snowflakes. Much less noticeable but equally ubiquitous is water adsorbed at interfaces and confined in microscopic pores. Such low-dimensional water determines aspects of various phenomena in materials science, geology, biology, tribology and nanotechnology. Theory suggests many possible phases for adsorbed and confined water, but it has proved challenging to assess its crystal structure experimentally. Here we report high-resolution electron microscopy imaging of water locked between two graphene sheets, an archetypal example of hydrophobic confinement. The observations show that the nanoconfined water at room temperature forms 'square ice'--a phase having symmetry qualitatively different from the conventional tetrahedral geometry of hydrogen bonding between water molecules. Square ice has a high packing density with a lattice constant of 2.83 Å and can assemble in bilayer and trilayer crystallites. Molecular dynamics simulations indicate that square ice should be present inside hydrophobic nanochannels independently of their exact atomic nature.

  16. Square ice in graphene nanocapillaries

    NASA Astrophysics Data System (ADS)

    Algara-Siller, G.; Lehtinen, O.; Wang, F. C.; Nair, R. R.; Kaiser, U.; Wu, H. A.; Geim, A. K.; Grigorieva, I. V.

    2015-03-01

    Bulk water exists in many forms, including liquid, vapour and numerous crystalline and amorphous phases of ice, with hexagonal ice being responsible for the fascinating variety of snowflakes. Much less noticeable but equally ubiquitous is water adsorbed at interfaces and confined in microscopic pores. Such low-dimensional water determines aspects of various phenomena in materials science, geology, biology, tribology and nanotechnology. Theory suggests many possible phases for adsorbed and confined water, but it has proved challenging to assess its crystal structure experimentally. Here we report high-resolution electron microscopy imaging of water locked between two graphene sheets, an archetypal example of hydrophobic confinement. The observations show that the nanoconfined water at room temperature forms `square ice'--a phase having symmetry qualitatively different from the conventional tetrahedral geometry of hydrogen bonding between water molecules. Square ice has a high packing density with a lattice constant of 2.83 Å and can assemble in bilayer and trilayer crystallites. Molecular dynamics simulations indicate that square ice should be present inside hydrophobic nanochannels independently of their exact atomic nature.

  17. Pain Intensity after an Ice Pack Application Prior to Venipuncture among School-Age Children: An Experimental Study

    ERIC Educational Resources Information Center

    Alalo, Fadeelah Mansour Ahmed; Ahmad, Awatef El Sayed; El Sayed, Hoda Mohamed Nafee

    2016-01-01

    Venipuncture and other invasive procedures as blood draws, intramuscular injections or heel pricks are the most commonly performed painful procedures in children. These can be a terrifying and painful experience for children and their families. The present study aimed to identify Pain intensity after an ice pack application prior to venipuncture…

  18. Ice Crystal Icing Research at NASA

    NASA Technical Reports Server (NTRS)

    Flegel, Ashlie B.

    2017-01-01

    Ice crystals found at high altitude near convective clouds are known to cause jet engine power-loss events. These events occur due to ice crystals entering a propulsion system's core flowpath and accreting ice resulting in events such as uncommanded loss of thrust (rollback), engine stall, surge, and damage due to ice shedding. As part of a community with a growing need to understand the underlying physics of ice crystal icing, NASA has been performing experimental efforts aimed at providing datasets that can be used to generate models to predict the ice accretion inside current and future engine designs. Fundamental icing physics studies on particle impacts, accretion on a single airfoil, and ice accretions observed during a rollback event inside a full-scale engine in the Propulsion Systems Laboratory are summarized. Low fidelity code development using the results from the engine tests which identify key parameters for ice accretion risk and the development of high fidelity codes are described. These activities have been conducted internal to NASA and through collaboration efforts with industry, academia, and other government agencies. The details of the research activities and progress made to date in addressing ice crystal icing research challenges are discussed.

  19. Ice Crystal Icing Research at NASA

    NASA Technical Reports Server (NTRS)

    Flegel, Ashlie B.

    2017-01-01

    Ice crystals found at high altitude near convective clouds are known to cause jet engine power-loss events. These events occur due to ice crystals entering a propulsion systems core flowpath and accreting ice resulting in events such as uncommanded loss of thrust (rollback), engine stall, surge, and damage due to ice shedding. As part of a community with a growing need to understand the underlying physics of ice crystal icing, NASA has been performing experimental efforts aimed at providing datasets that can be used to generate models to predict the ice accretion inside current and future engine designs. Fundamental icing physics studies on particle impacts, accretion on a single airfoil, and ice accretions observed during a rollback event inside a full-scale engine in the Propulsion Systems Laboratory are summarized. Low fidelity code development using the results from the engine tests which identify key parameters for ice accretion risk and the development of high fidelity codes are described. These activities have been conducted internal to NASA and through collaboration efforts with industry, academia, and other government agencies. The details of the research activities and progress made to date in addressing ice crystal icing research challenges are discussed.

  20. Ice shelf breaking and increase velocity of glacier: the view from analogue experiment

    NASA Astrophysics Data System (ADS)

    Corti, Giacomo; Iandelli, Irene

    2013-04-01

    Collapse of the Larsen II platform during the late 90s has generated an increase in velocity if ice sheet discharge, highlighting that these processes may strongly destabilize large ice masses speeding up the plateau discharge toward the sea. Parameters such as ice thickness, valley width and slope, ice pack dimensions may contribute to modulate the effect of increase in ice flow velocity following the removal of ice. We analyze this process through scale analogue models, aimed at reproducing the flow of ice from a plateau into the sea through a narrow valley. The ice is reproduced with a transparent silicone (Polydimethisiloxane), flowing at velocities of a few centimeters per hour and simulating natural velocities in the range of a few meters per year. Having almost the same density of the ice, PDMS floats on water and simulate the ice-shelf formation. Results of preliminary experimental series support that this methodology is able to reasonably reproduce the process and support a significant increase in velocity discharge following the removal of ice pack. Additional tests are designed to verify the influence of the above-mentioned parameters on the increase in ice velocity.

  1. The Preservation and Recycling of Snow Pack Nitrate at the West Antarctic Ice Sheet (WAIS) Divide Ice Core Site from the Present Day to the Last Glacial Period.

    NASA Astrophysics Data System (ADS)

    Robinson, J. W.; Buffen, A.; Hastings, M. G.; Schauer, A. J.; Moore, L.; Isaacs, A.; Geng, L.; Savarino, J. P.; Alexander, B.

    2017-12-01

    We use observations of the nitrogen isotopic composition of nitrate (δ15N(NO3-)) from snow and ice collected at the West Antarctic ice sheet (WAIS) divide ice core site to quantify the preservation and recycling of snow nitrate. Ice-core samples cover a continuous section from 36 to 52 thousand years ago and discrete samples from the Holocene, the last glacial maximum (LGM), and the glacial-Holocene transition. Higher δ15N of nitrate is consistently associated with lower temperatures with δ15N(NO3-) varying from 26 to 45 ‰ during the last glacial period and from 1 to 45 ‰ between the Holocene and glacial periods, respectively. We attribute the higher δ15N in colder periods to lower snow accumulation rates which lead to greater loss of snow nitrate via photolysis before burial beneath the snow photic zone. Modeling of nitrate preservation in snow pack was performed for modern and LGM conditions. The model is used in conjunction with observations to estimate the fraction of snow nitrate that is photolyzed, re-oxidized, and re-deposited over WAIS divide versus the fraction of primary nitrate that is deposited via long range transport. We used these estimates of fractional loss of snow nitrate in different time periods to determine the variation in the deposition flux of primary nitrate at WAIS divide with climate. Our findings have implications for the climate sensitivity of the oxidizing capacity of the polar atmosphere and the interpretation of ice-core records of nitrate in terms of past atmospheric composition.

  2. Ice sheet margins and ice shelves

    NASA Technical Reports Server (NTRS)

    Thomas, R. H.

    1984-01-01

    The effect of climate warming on the size of ice sheet margins in polar regions is considered. Particular attention is given to the possibility of a rapid response to warming on the order of tens to hundreds of years. It is found that the early response of the polar regions to climate warming would be an increase in the area of summer melt on the ice sheets and ice shelves. For sufficiently large warming (5-10C) the delayed effects would include the breakup of the ice shelves by an increase in ice drainage rates, particularly from the ice sheets. On the basis of published data for periodic changes in the thickness and melting rates of the marine ice sheets and fjord glaciers in Greenland and Antarctica, it is shown that the rate of retreat (or advance) of an ice sheet is primarily determined by: bedrock topography; the basal conditions of the grounded ice sheet; and the ice shelf condition downstream of the grounding line. A program of satellite and ground measurements to monitor the state of ice sheet equilibrium is recommended.

  3. Sea-ice eukaryotes of the Gulf of Finland, Baltic Sea, and evidence for herbivory on weakly shade-adapted ice algae.

    PubMed

    Majaneva, Markus; Blomster, Jaanika; Müller, Susann; Autio, Riitta; Majaneva, Sanna; Hyytiäinen, Kirsi; Nagai, Satoshi; Rintala, Janne-Markus

    2017-02-01

    To determine community composition and physiological status of early spring sea-ice organisms, we collected sea-ice, slush and under-ice water samples from the Baltic Sea. We combined light microscopy, HPLC pigment analysis and pyrosequencing, and related the biomass and physiological status of sea-ice algae with the protistan community composition in a new way in the area. In terms of biomass, centric diatoms including a distinct Melosira arctica bloom in the upper intermediate section of the fast ice, dinoflagellates, euglenoids and the cyanobacterium Aphanizomenon sp. predominated in the sea-ice sections and unidentified flagellates in the slush. Based on pigment analyses, the ice-algal communities showed no adjusted photosynthetic pigment pools throughout the sea ice, and the bottom-ice communities were not shade-adapted. The sea ice included more characteristic phototrophic taxa (49%) than did slush (18%) and under-ice water (37%). Cercozoans and ciliates were the richest taxon groups, and the differences among the communities arose mainly from the various phagotrophic protistan taxa inhabiting the communities. The presence of pheophytin a coincided with an elevated ciliate biomass and read abundance in the drift ice and with a high Eurytemora affinis read abundance in the pack ice, indicating that ciliates and Eurytemora affinis were grazing on algae. Copyright © 2016 Elsevier GmbH. All rights reserved.

  4. Ice, Ice, Baby!

    NASA Astrophysics Data System (ADS)

    Hamilton, C.

    2008-12-01

    The Center for Remote Sensing of Ice Sheets (CReSIS) has developed an outreach program based on hands-on activities called "Ice, Ice, Baby". These lessons are designed to teach the science principles of displacement, forces of motion, density, and states of matter. These properties are easily taught through the interesting topics of glaciers, icebergs, and sea level rise in K-8 classrooms. The activities are fun, engaging, and simple enough to be used at science fairs and family science nights. Students who have participated in "Ice, Ice, Baby" have successfully taught these to adults and students at informal events. The lessons are based on education standards which are available on our website www.cresis.ku.edu. This presentation will provide information on the activities, survey results from teachers who have used the material, and other suggested material that can be used before and after the activities.

  5. Measuring the sea ice floe size distribution

    NASA Technical Reports Server (NTRS)

    Rothrock, D. A.; Thorndike, A. S.

    1984-01-01

    The sea ice covering the Arctic Ocean is broken into distinct pieces,called floes. In the summer, these floes, which have diameters ranging up to 100 km, are separated from each other by a region of open water. In the winter, floes still exist, but they are less easily identified. An understanding of the geometry of the ice pack is of interest for a number of practical applications associated with transportation in ice-covered seas and with the design of offshore structures intended to survive in the presence of ice. The present investigation has the objective to clarify ideas about floe sizes and to propose techniques for measuring them. Measurements are presented with the primary aim to illustrate points of technique or approach. A preliminary discussion of the floe size distribution of sea ice is devoted to questions of definition and of measurement.

  6. Europa Ice Rafts

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This high resolution image shows the ice-rich crust of Europa, one of the moons of Jupiter. Seen here are crustal plates ranging up to 13 kilometers (8 miles) across, which have been broken apart and 'rafted' into new positions, superficially resembling the disruption of pack-ice on polar seas during spring thaws on Earth. The size and geometry of these features suggest that motion was enabled by ice-crusted water or soft ice close to the surface at the time of disruption.

    The area shown is about 34 kilometers by 42 kilometers (21 miles by 26 miles), centered at 9.4 degrees north latitude, 274 degrees west longitude, and the resolution is 54 meters (59 yards). This picture was taken by the Solid State Imaging system on board the Galileo spacecraft on February 20, 1997, from a distance of 5,340 kilometers (3,320 miles) during the spacecraft's close flyby of Europa.

    The Jet Propulsion Laboratory, Pasadena, CA, manages the mission for NASA's Office of Space Science, Washington D.C. This image and other images and data received from Galileo are posted on the World Wide Web Galileo mission home page at: http://galileo.jpl.nasa.gov.

  7. Ice stream activity scaled to ice sheet volume during Laurentide Ice Sheet deglaciation.

    PubMed

    Stokes, C R; Margold, M; Clark, C D; Tarasov, L

    2016-02-18

    The contribution of the Greenland and West Antarctic ice sheets to sea level has increased in recent decades, largely owing to the thinning and retreat of outlet glaciers and ice streams. This dynamic loss is a serious concern, with some modelling studies suggesting that the collapse of a major ice sheet could be imminent or potentially underway in West Antarctica, but others predicting a more limited response. A major problem is that observations used to initialize and calibrate models typically span only a few decades, and, at the ice-sheet scale, it is unclear how the entire drainage network of ice streams evolves over longer timescales. This represents one of the largest sources of uncertainty when predicting the contributions of ice sheets to sea-level rise. A key question is whether ice streams might increase and sustain rates of mass loss over centuries or millennia, beyond those expected for a given ocean-climate forcing. Here we reconstruct the activity of 117 ice streams that operated at various times during deglaciation of the Laurentide Ice Sheet (from about 22,000 to 7,000 years ago) and show that as they activated and deactivated in different locations, their overall number decreased, they occupied a progressively smaller percentage of the ice sheet perimeter and their total discharge decreased. The underlying geology and topography clearly influenced ice stream activity, but--at the ice-sheet scale--their drainage network adjusted and was linked to changes in ice sheet volume. It is unclear whether these findings can be directly translated to modern ice sheets. However, contrary to the view that sees ice streams as unstable entities that can accelerate ice-sheet deglaciation, we conclude that ice streams exerted progressively less influence on ice sheet mass balance during the retreat of the Laurentide Ice Sheet.

  8. Improved method for sea ice age computation based on combination of sea ice drift and concentration

    NASA Astrophysics Data System (ADS)

    Korosov, Anton; Rampal, Pierre; Lavergne, Thomas; Aaboe, Signe

    2017-04-01

    Sea Ice Age is one of the components of the Sea Ice ECV as defined by the Global Climate Observing System (GCOS) [WMO, 2015]. It is an important climate indicator describing the sea ice state in addition to sea ice concentration (SIC) and thickness (SIT). The amount of old/thick ice in the Arctic Ocean has been decreasing dramatically [Perovich et al. 2015]. Kwok et al. [2009] reported significant decline in the MYI share and consequent loss of thickness and therefore volume. Today, there is only one acknowledged sea ice age climate data record [Tschudi, et al. 2015], based on Maslanik et al. [2011] provided by National Snow and Ice Data Center (NSIDC) [http://nsidc.org/data/docs/daac/nsidc0611-sea-ice-age/]. The sea ice age algorithm [Fowler et al., 2004] is using satellite-derived ice drift for Lagrangian tracking of individual ice parcels (12-km grid cells) defined by areas of sea ice concentration > 15% [Maslanik et al., 2011], i.e. sea ice extent, according to the NASA Team algorithm [Cavalieri et al., 1984]. This approach has several drawbacks. (1) Using sea ice extent instead of sea ice concentration leads to overestimation of the amount of older ice. (2) The individual ice parcels are not advected uniformly over (long) time. This leads to undersampling in areas of consistent ice divergence. (3) The end product grid cells are assigned the age of the oldest ice parcel within that cell, and the frequency distribution of the ice age is not taken into account. In addition, the base sea ice drift product (https://nsidc.org/data/docs/daac/nsidc0116_icemotion.gd.html) is known to exhibit greatly reduced accuracy during the summer season [Sumata et al 2014, Szanyi, 2016] as it only relies on a combination of sea ice drifter trajectories and wind-driven "free-drift" motion during summer. This results in a significant overestimate of old-ice content, incorrect shape of the old-ice pack, and lack of information about the ice age distribution within the grid cells. We

  9. Quantification of ikaite in Antarctic sea ice

    NASA Astrophysics Data System (ADS)

    Fischer, M.; Thomas, D. N.; Krell, A.; Nehrke, G.; Göttlicher, J.; Norman, L.; Riaux-Gobin, C.; Dieckmann, G. S.

    2012-02-01

    Calcium carbonate precipitation in sea ice can increase pCO2 during precipitation in winter and decrease pCO2 during dissolution in spring. CaCO3 precipitation in sea ice is thought to potentially drive significant CO2 uptake by the ocean. However, little is known about the quantitative spatial and temporal distribution of CaCO3 within sea ice. This is the first quantitative study of hydrous calcium carbonate, as ikaite, in sea ice and discusses its potential significance for the carbon cycle in polar oceans. Ice cores and brine samples were collected from pack and land fast sea ice between September and December 2007 during an expedition in the East Antarctic and another off Terre Adélie, Antarctica. Samples were analysed for CaCO3, Salinity, DOC, DON, Phosphate, and total alkalinity. A relationship between the measured parameters and CaCO3 precipitation could not be observed. We found calcium carbonate, as ikaite, mostly in the top layer of sea ice with values up to 126 mg ikaite per liter melted sea ice. This potentially represents a contribution between 0.12 and 9 Tg C to the annual carbon flux in polar oceans. The horizontal distribution of ikaite in sea ice was heterogenous. We also found the precipitate in the snow on top of the sea ice.

  10. Under the Sea Ice: Exploration of the Relationships Between Sea Ice Patterns and Foraging Movements of a Marine Predator in East Antarctica.

    NASA Astrophysics Data System (ADS)

    Labrousse, S.; Sallee, J. B.; Fraser, A. D.; Massom, R. A.; Reid, P.; Sumner, M.; Guinet, C.; Harcourt, R.; Bailleul, F.; Hindell, M.; Charrassin, J. B.

    2016-02-01

    Investigating ecological relationships between top predators and their environment is essential to understand the response of marine ecosystems to climate variability. Specifically, variability and changes in sea ice, which is known as an important habitat for marine ecosystems, presents complex patterns in East Antarctic. The impact for ecosystems of such changes of their habitat is however still unknown. Acting as an ecological double-edged sword, sea ice can impede access to marine resources while harboring a rich ecosystem during winter. Here, we investigated which type of sea ice habitat is used by male and female southern elephant seals during winter and examine if and how the spatio-temporal variability of sea ice concentration (SIC) influence their foraging strategies. We also examined over a 10 years time-series the impact of SIC and sea ice advance anomaly on foraging activity. To do this, we studied 46 individuals equipped with Satellite linked data recorders between 2004 and 2014, undertaking post-moult trips in winter from Kerguelen to the peri-Antarctic shelf. The general patterns of sea ice use by males and females are clearly distinct; while females tended to follow the sea ice edge as it extended northward, males remained on the continental shelf. Female foraging activity was higher in late autumn in the outer part of the pack ice in concentrated SIC and spatially stable. They remained in areas of variable SIC over time and low persistence. The seal hunting time, a proxy of foraging activity inferred from the diving behaviour, was much higher during earlier advance of sea ice over female time-series. The females were possibly taking advantage of the ice algal autumn bloom sustaining krill and an under ice ecosystem without being trapped in sea ice. Males foraging activity increased when they remained deep inside sea ice over the shelf using variable SIC in time and space, presumably in polynyas or flaw leads between fast and pack ice. This strategy

  11. Geophysics of an Oceanic Ice Shell on Snowball Earth

    NASA Technical Reports Server (NTRS)

    Gaidos, E. J.

    2000-01-01

    Kirschvink proposed Precambrian low-latitude glaciation could result in an albedo-driven catastrophic runaway to a "Snowball Earth" state in which pack ice up to 1 km thick covered the world ocean. The geophysical state of an ice crust on a Snowball Earth is examined.

  12. Ice Bridge Antarctic Sea Ice

    NASA Image and Video Library

    2009-10-21

    An iceberg is seen out the window of NASA's DC-8 research aircraft as it flies 2,000 feet above the Amundsen Sea in West Antarctica on Wednesday, Oct., 21, 2009. This was the fourth science flight of NASA’s Operation Ice Bridge airborne Earth science mission to study Antarctic ice sheets, sea ice, and ice shelves. Photo Credit: (NASA/Jane Peterson)

  13. Polar bears and sea ice habitat change

    USGS Publications Warehouse

    Durner, George M.; Atwood, Todd C.; Butterworth, Andy

    2017-01-01

    The polar bear (Ursus maritimus) is an obligate apex predator of Arctic sea ice and as such can be affected by climate warming-induced changes in the extent and composition of pack ice and its impacts on their seal prey. Sea ice declines have negatively impacted some polar bear subpopulations through reduced energy input because of loss of hunting habitats, higher energy costs due to greater ice drift, ice fracturing and open water, and ultimately greater challenges to recruit young. Projections made from the output of global climate models suggest that polar bears in peripheral Arctic and sub-Arctic seas will be reduced in numbers or become extirpated by the end of the twenty-first century if the rate of climate warming continues on its present trajectory. The same projections also suggest that polar bears may persist in the high-latitude Arctic where heavy multiyear sea ice that has been typical in that region is being replaced by thinner annual ice. Underlying physical and biological oceanography provides clues as to why polar bear in some regions are negatively impacted, while bears in other regions have shown no apparent changes. However, continued declines in sea ice will eventually challenge the survival of polar bears and efforts to conserve them in all regions of the Arctic.

  14. Ice cream structure modification by ice-binding proteins.

    PubMed

    Kaleda, Aleksei; Tsanev, Robert; Klesment, Tiina; Vilu, Raivo; Laos, Katrin

    2018-04-25

    Ice-binding proteins (IBPs), also known as antifreeze proteins, were added to ice cream to investigate their effect on structure and texture. Ice recrystallization inhibition was assessed in the ice cream mixes using a novel accelerated microscope assay and the ice cream microstructure was studied using an ice crystal dispersion method. It was found that adding recombinantly produced fish type III IBPs at a concentration 3 mg·L -1 made ice cream hard and crystalline with improved shape preservation during melting. Ice creams made with IBPs (both from winter rye, and type III IBP) had aggregates of ice crystals that entrapped pockets of the ice cream mixture in a rigid network. Larger individual ice crystals and no entrapment in control ice creams was observed. Based on these results a model of ice crystals aggregates formation in the presence of IBPs was proposed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Is snow-ice now a major contributor to sea ice mass balance in the western Transpolar Drift region?

    NASA Astrophysics Data System (ADS)

    Graham, R. M.; Merkouriadi, I.; Cheng, B.; Rösel, A.; Granskog, M. A.

    2017-12-01

    During the Norwegian young sea ICE (N-ICE2015) campaign, which took place in the first half of 2015 north of Svalbard, a deep winter snow pack (50 cm) on sea ice was observed, that was 50% thicker than earlier climatological studies suggested for this region. Moreover, a significant fraction of snow contributed to the total ice mass in second-year ice (SYI) (9% on average). Interestingly, very little snow (3% snow by mass) was present in first-year ice (FYI). The combination of sea ice thinning and increased precipitation north of Svalbard is expected to promote the formation of snow-ice. Here we use the 1-D snow/ice thermodynamic model HIGHTSI forced with reanalysis data, to show that for the case study of N-ICE2015, snow-ice would even form over SYI with an initial thickness of 2 m. In current conditions north of Svalbard, snow-ice is ubiquitous and contributes to the thickness growth up to 30%. This contribution is important, especially in the absence of any bottom thermodynamic growth due to the thick insulating snow cover. Growth of FYI north of Svalbard is mainly controlled by the timing of growth onset relative to snow precipitation events and cold spells. These usually short-lived conditions are largely determined by the frequency of storms entering the Arctic from the Atlantic Ocean. In our case, a later freeze onset was favorable for FYI growth due to less snow accumulation in early autumn. This limited snow-ice formation but promoted bottom thermodynamic growth. We surmise these findings are related to a regional phenomenon in the Atlantic sector of the Arctic, with frequent storm events which bring increasing amounts of precipitation in autumn and winter, and also affect the duration of cold temperatures required for ice growth in winter. We discuss the implications for the importance of snow-ice in the future Arctic, formerly believed to be non-existent in the central Arctic due to thick perennial ice.

  16. Landward and eastward shift of Alaskan polar bear denning associated with recent sea ice changes

    USGS Publications Warehouse

    Fischbach, Anthony S.; Amstrup, Steven C.; Douglas, David C.

    2007-01-01

    Polar bears (Ursus maritimus) in the northern Alaska region den in coastal areas and on offshore drifting ice. We evaluated changes in the distribution of polar bear maternal dens between 1985 and 2005, using satellite telemetry. We determined the distribution of maternal dens occupied by 89 satellite collared female polar bears between 137°W and 167°W longitude. The proportion of dens on pack ice declined from 62% in 1985–1994 to 37% in 1998–2004 (P = 0.044) and among pack ice dens fewer occurred in the western Beaufort Sea after 1998. We evaluated whether hunting, attraction to bowhead whale remains, or changes in sea ice could explain changes in den distribution. We concluded that denning distribution changed in response to reductions in stable old ice, increases in unconsolidated ice, and lengthening of the melt season. In consort, these changes have likely reduced the availability and quality of pack ice denning habitat. Further declines in sea ice availability are predicted. Therefore, we expect the proportion of polar bears denning in coastal areas will continue to increase, until such time as the autumn ice retreats far enough from shore that it precludes offshore pregnant females from reaching the Alaska coast in advance of denning.

  17. Peopling of the high Arctic - induced by sea ice?

    NASA Astrophysics Data System (ADS)

    Funder, Svend

    2010-05-01

    'We travelled in the winter after the return of daylight and did not go into fixed camp until spring, when the ice broke up. There was good hunting on the way, seals, beluga, walrus, bear.' (From Old Merkrusârk's account of his childhood's trek from Baffin Island to Northwest Greenland, told to Knud Rasmussen on Saunders Island in 1904) Five thousand years ago people moving eastwards from Beringia spread over the barrens of the Canadian high Arctic. This was the first of three waves of prehistoric Arctic 'cultures', which eventually reached Greenland. The passage into Greenland has to go through the northernmost and most hostile part of the country with a 5 month Polar night, and to understand this extraordinary example of human behaviour and endurance, it has been customary to invoke a more favourable (warmer) climate. This presentation suggests that land-fast sea ice, i.e. stationary sea ice anchored to the coast, is among the most important environmental factors behind the spread of prehistoric polar cultures. The ice provides the road for travelling and social communion - and access to the most important source of food, the ocean. In the LongTerm Project (2006 and 2007) we attempted to establish a Holocene record for sea ice variations along oceanic coasts in northernmost Greenland. Presently the coasts north of 80° N are beleaguered by year-round sea ice - for ten months this is land-fast ice, and only for a period in the stormy autumn months are the coasts exposed to pack-ice. This presentation Land-fast ice - as opposed to pack-ice - is a product of local temperatures, but its duration over the year, and especially into the daylight season, is also conditioned by other factors, notably wind strength. In the geological record we recognize long lasting land-fast ice by two absences: absence of traces of wave action (no beach formation), which, however, can also be a result of pack-ice along the coast; - and absence of driftwood on the shore (land-fast ice

  18. Physical processes contributing to an ice free Beaufort Sea during September 2012

    NASA Astrophysics Data System (ADS)

    Babb, D. G.; Galley, R. J.; Barber, D. G.; Rysgaard, S.

    2016-01-01

    During the record September 2012 sea ice minimum, the Beaufort Sea became ice free for the first time during the observational record. Increased dynamic activity during late winter enabled increased open water and seasonal ice coverage that contributed to negative sea ice anomalies and positive solar absorption anomalies which drove rapid bottom melt and sea ice loss. As had happened in the Beaufort Sea during previous years of exceptionally low September sea ice extent, anomalous solar absorption developed during May, increased during June, peaked during July, and persisted into October. However in situ observations from a single floe reveal less than 78% of the energy required for bottom melt during 2012 was available from solar absorption. We show that the 2012 sea ice minimum in the Beaufort was the result of anomalously large solar absorption that was compounded by an arctic cyclone and other sources of heat such as solar transmission, oceanic upwelling, and riverine inputs, but was ultimately made possible through years of preconditioning toward a younger, thinner ice pack. Significant negative trends in sea ice concentration between 1979 and 2012 from June to October, coupled with a tendency toward earlier sea ice reductions have fostered a significant trend of +12.9 MJ m-2 yr-1 in cumulative solar absorption, sufficient to melt an additional 4.3 cm m-2 yr-1. Overall through preconditioning toward a younger, thinner ice pack the Beaufort Sea has become increasingly susceptible to increased sea ice loss that may render it ice free more frequently in coming years.

  19. Physical Processes contributing to an ice free Beaufort Sea during September 2012

    NASA Astrophysics Data System (ADS)

    Babb, D.; Galley, R.; Barber, D. G.; Rysgaard, S.

    2016-12-01

    During the record September 2012 sea ice minimum the Beaufort Sea became ice free for the first time during the observational record. Increased dynamic activity during late winter enabled increased open water and seasonal ice coverage that contributed to negative sea ice anomalies and positive solar absorption anomalies which drove rapid bottom melt and sea ice loss. As had happened in the Beaufort Sea during previous years of exceptionally low September sea ice extent, anomalous solar absorption developed during May, increased during June, peaked during July and persisted into October. However in situ observations from a single floe reveal less than 78% of the energy required for bottom melt during 2012 was available from solar absorption. We show that the 2012 sea ice minimum in the Beaufort was the result of anomalously large solar absorption that was compounded by an arctic cyclone and other sources of heat such as solar transmission, oceanic upwelling and riverine inputs, but was ultimately made possible through years of preconditioning towards a younger, thinner ice pack. Significant negative trends in sea ice concentration between 1979 and 2012 from June to October, coupled with a tendency towards earlier sea ice reductions have fostered a significant trend of +12.9 MJ m-2 year-1 in cumulative solar absorption, sufficient to melt an additional 4.3 cm m-2 year-1. Overall through preconditioning towards a younger, thinner ice pack the Beaufort Sea has become increasingly susceptible to increased sea ice loss that may render it ice free more frequently in coming years.

  20. Sea Ice Topography Profiling using Laser Altimetry from Small Unmanned Aircraft Systems

    NASA Astrophysics Data System (ADS)

    Crocker, Roger Ian

    Arctic sea ice is undergoing a dramatic transition from a perennial ice pack with a high prevalence of old multiyear ice, to a predominantly seasonal ice pack comprised primarily of young first-year and second-year ice. This transition has brought about changes in the sea ice thickness and topography characteristics, which will further affect the evolution and survivability of the ice pack. The varying ice conditions have substantial implications for commercial operations, international affairs, regional and global climate, our ability to model climate dynamics, and the livelihood of Arctic inhabitants. A number of satellite and airborne missions are dedicated to monitoring sea ice, but they are limited by their spatial and temporal resolution and coverage. Given the fast rate of sea ice change and its pervasive implications, enhanced observational capabilities are needed to augment the current strategies. The CU Laser Profilometer and Imaging System (CULPIS) is designed specifically for collecting fine-resolution elevation data and imagery from small unmanned aircraft systems (UAS), and has a great potential to compliment ongoing missions. This altimeter system has been integrated into four different UAS, and has been deployed during Arctic and Antarctic science campaigns. The CULPIS elevation measurement accuracy is shown to be 95±25 cm, and is limited primarily by GPS positioning error (<25 cm), aircraft attitude determination error (<20 cm), and sensor misalignment error (<20 cm). The relative error is considerably smaller over short flight distances, and the measurement precision is shown to be <10 cm over a distance of 200 m. Given its fine precision, the CULPIS is well suited for measuring sea ice topography, and observed ridge height and ridge separation distributions are found to agree with theoretical distributions to within 5%. Simulations demonstrate the inability of course-resolution measurements to accurately represent the theoretical distributions

  1. Arctic continental shelf morphology related to sea-ice zonation, Beaufort Sea, Alaska

    USGS Publications Warehouse

    Reimnitz, E.; Toimil, L.; Barnes, P.

    1978-01-01

    Landsat-1 and NOAA satellite imagery for the winter 1972-1973, and a variety of ice and sea-floor data were used to study sea-ice zonation and dynamics and their relation to bottom morphology and geology on the Beaufort Sea continental shelf of arctic Alaska. In early winter the location of the boundary between undeformed fast ice and westward-drifting pack ice of the Pacific Gyre is controlled by major coastal promontories. Pronounced linear pressure- and shear-ridges, as well as hummock fields, form along this boundary and are stabilized by grounding, generally between the 10- and 20-m isobaths. Slippage along this boundary occurs intermittently at or seaward of the grounded ridges, forming new grounded ridges in a widening zone, the stamukhi zone, which by late winter extends out to the 40-m isobath. Between intermittent events along the stamukhi zone, pack-ice drift and slippage is continuous along the shelf edge, at average rates of 3-10 km/day. Whether slippage occurs along the stamukhi zone or along the shelf edge, it is restricted to a zone several hundred meters wide, and ice seaward of the slip face moves at uniform rates without discernible drag effects. A causal relationship is seen between the spatial distribution of major ice-ridge systems and offshore shoals downdrift of major coastal promontories. The shoals appear to have migrated shoreward under the influence of ice up to 400 m in the last 25 years. The sea floor seaward of these shoals within the stamukhi zone shows high ice-gouge density, large incision depths, and a high degree of disruption of internal sedimentary structures. The concentration of large ice ridges and our sea floor data in the stamukhi zone indicate that much of the available marine energy is expended here, while the inner shelf and coast, where the relatively undeformed fast ice grows, are sheltered. There is evidence that anomalies in the overall arctic shelf profile are related to sea-ice zonation, ice dynamics, and bottom

  2. Experimental provocation of 'ice-cream headache' by ice cubes and ice water.

    PubMed

    Mages, Stephan; Hensel, Ole; Zierz, Antonia Maria; Kraya, Torsten; Zierz, Stephan

    2017-04-01

    Background There are various studies on experimentally provoked 'ice-cream headache' or 'headache attributed to ingestion or inhalation of a cold stimulus' (HICS) using different provocation protocols. The aim of this study was to compare two provocation protocols. Methods Ice cubes pressed to the palate and fast ingestion of ice water were used to provoke HICS and clinical features were compared. Results The ice-water stimulus provoked HICS significantly more often than the ice-cube stimulus (9/77 vs. 39/77). Ice-water-provoked HICS had a significantly shorter latency (median 15 s, range 4-97 s vs. median 68 s, range 27-96 s). There was no difference in pain localisation. Character after ice-cube stimulation was predominantly described as pressing and after ice-water stimulation as stabbing. A second HICS followed in 10/39 (26%) of the headaches provoked by ice water. Lacrimation occurred significantly more often in volunteers with than in those without HICS. Discussion HICS provoked by ice water was more frequent, had a shorter latency, different pain character and higher pain intensity than HICS provoked by ice cubes. The finding of two subsequent HICS attacks in the same volunteers supports the notion that two types of HICS exist. Lacrimation during HICS indicates involvement of the trigeminal-autonomic reflex.

  3. The Seasonal Evolution of Sea Ice Floe Size Distribution

    DTIC Science & Technology

    2013-09-30

    the summer breakup of the ice cover . Large-scale, lower resolution imagery from MODIS and other platforms will also be analyzed to determine changes...control number. 1. REPORT DATE 30 SEP 2013 2. REPORT TYPE 3. DATES COVERED 00-00-2013 to 00-00-2013 4. TITLE AND SUBTITLE The Seasonal Evolution...appearance and morphology of the Arctic sea ice cover over and annual cycle. These photos were taken over the pack ice near SHEBA in May (left) and

  4. Managing IceBridge Airborne Mission Data at the National Snow and Ice Data Center

    NASA Astrophysics Data System (ADS)

    Brodzik, M.; Kaminski, M. L.; Deems, J. S.; Scambos, T. A.

    2010-12-01

    Operation IceBridge (OIB) is a NASA airborne geophysical survey mission conducting laser altimetry, ice-penetrating radar profiling, gravimetry and other geophysical measurements to monitor and characterize the Earth's cryosphere. The IceBridge mission will operate from 2009 until after the launch of ICESat-II (currently planned for 2015), and provides continuity of measurements between that mission and its predecessor. Data collection sites include the Greenland and Antarctic Ice Sheets and the sea ice pack regions of both poles. These regions include some of the most rapidly changing areas of the cryosphere. IceBridge is also collecting data in East Antarctica via the University of Texas ICECAP program and in Alaska via the University of Alaska, Fairbanks glacier mapping program. The NSIDC Distributed Active Archive Center at the University of Colorado at Boulder provides data archive and distribution support for the IceBridge mission. Our IceBridge work is based on two guiding principles: ensuring preservation of the data, and maximizing usage of the data. This broadens our work beyond the typical scope of a data archive. In addition to the necessary data management, discovery, distribution, and outreach functions, we are also developing tools that will enable broader use of the data, and integrating diverse data types to enable new science research. Researchers require expeditious access to data collected from the IceBridge missions; our archive approach balances that need with our long-term preservation goal. We have adopted a "fast-track" approach to publish data quickly after collection and make it available via FTP download. Subsequently, data sets are archived in the NASA EOSDIS ECS system, which enables data discovery and distribution with the appropriate backup, documentation, and metadata to assure its availability for future research purposes. NSIDC is designing an IceBridge data portal to allow interactive data search, exploration, and subsetting via

  5. Sea ice and polar climate in the NCAR CSM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weatherly, J.W.; Briegleb, B.P.; Large, W.G.

    The Climate System Model (CSM) consists of atmosphere, ocean, land, and sea-ice components linked by a flux coupler, which computes fluxes of energy and momentum between components. The sea-ice component consists of a thermodynamic formulation for ice, snow, and leads within the ice pack, and ice dynamics using the cavitating-fluid ice rheology, which allows for the compressive strength of ice but ignores shear viscosity. The results of a 300-yr climate simulation are presented, with the focus on sea ice and the atmospheric forcing over sea ice in the polar regions. The atmospheric model results are compared to analyses from themore » European Centre for Medium-Range Weather Forecasts and other observational sources. The sea-ice concentrations and velocities are compared to satellite observational data. The atmospheric sea level pressure (SLP) in CSM exhibits a high in the central Arctic displaced poleward from the observed Beaufort high. The Southern Hemisphere SLP over sea ice is generally 5 mb lower than observed. Air temperatures over sea ice in both hemispheres exhibit cold biases of 2--4 K. The precipitation-minus-evaporation fields in both hemispheres are greatly improved over those from earlier versions of the atmospheric GCM.« less

  6. Statistical Analyses of High-Resolution Aircraft and Satellite Observations of Sea Ice: Applications for Improving Model Simulations

    NASA Astrophysics Data System (ADS)

    Farrell, S. L.; Kurtz, N. T.; Richter-Menge, J.; Harbeck, J. P.; Onana, V.

    2012-12-01

    Satellite-derived estimates of ice thickness and observations of ice extent over the last decade point to a downward trend in the basin-scale ice volume of the Arctic Ocean. This loss has broad-ranging impacts on the regional climate and ecosystems, as well as implications for regional infrastructure, marine navigation, national security, and resource exploration. New observational datasets at small spatial and temporal scales are now required to improve our understanding of physical processes occurring within the ice pack and advance parameterizations in the next generation of numerical sea-ice models. High-resolution airborne and satellite observations of the sea ice are now available at meter-scale resolution or better that provide new details on the properties and morphology of the ice pack across basin scales. For example the NASA IceBridge airborne campaign routinely surveys the sea ice of the Arctic and Southern Oceans with an advanced sensor suite including laser and radar altimeters and digital cameras that together provide high-resolution measurements of sea ice freeboard, thickness, snow depth and lead distribution. Here we present statistical analyses of the ice pack primarily derived from the following IceBridge instruments: the Digital Mapping System (DMS), a nadir-looking, high-resolution digital camera; the Airborne Topographic Mapper, a scanning lidar; and the University of Kansas snow radar, a novel instrument designed to estimate snow depth on sea ice. Together these instruments provide data from which a wide range of sea ice properties may be derived. We provide statistics on lead distribution and spacing, lead width and area, floe size and distance between floes, as well as ridge height, frequency and distribution. The goals of this study are to (i) identify unique statistics that can be used to describe the characteristics of specific ice regions, for example first-year/multi-year ice, diffuse ice edge/consolidated ice pack, and convergent

  7. [Ice application for reducing pain associated with goserelin acetate injection].

    PubMed

    Ishii, Kaname; Nagata, Chika; Koshizaki, Eiko; Nishiuchi, Satoko

    2013-10-01

    We investigated the effectiveness of using an ice pack for reducing the pain associated with goserelin acetate injection. In this study, 39 patients with prostate cancer and 1 patient with breast cancer receiving hormonal therapy with goserelin acetate were enrolled. All patients completed a questionnaire regarding the use of ice application. We used the numerical rating scale (NRS) to assess the pain associated with injection. The NRS scores indicated that the pain was significantly less with ice application than with the usual method (p < 0.001). Further, ice application could decrease the duration of pain sensation. Ice application at the injection site is safe and effective for reducing pain.

  8. Spatial scales of light transmission through Antarctic pack ice: Surface flooding vs. floe-size distribution

    NASA Astrophysics Data System (ADS)

    Arndt, S.; Meiners, K.; Krumpen, T.; Ricker, R.; Nicolaus, M.

    2016-12-01

    Snow on sea ice plays a crucial role for interactions between the ocean and atmosphere within the climate system of polar regions. Antarctic sea ice is covered with snow during most of the year. The snow contributes substantially to the sea-ice mass budget as the heavy snow loads can depress the ice below water level causing flooding. Refreezing of the snow and seawater mixture results in snow-ice formation on the ice surface. The snow cover determines also the amount of light being reflected, absorbed, and transmitted into the upper ocean, determining the surface energy budget of ice-covered oceans. The amount of light penetrating through sea ice into the upper ocean is of critical importance for the timing and amount of bottom sea-ice melt, biogeochemical processes and under-ice ecosystems. Here, we present results of several recent observations in the Weddell Sea measuring solar radiation under Antarctic sea ice with instrumented Remotely Operated Vehicles (ROV). The combination of under-ice optical measurements with simultaneous characterization of surface properties, such as sea-ice thickness and snow depth, allows the identification of key processes controlling the spatial distribution of the under-ice light. Thus, our results show how the distinction between flooded and non-flooded sea-ice regimes dominates the spatial scales of under-ice light variability for areas smaller than 100-by-100m. In contrast, the variability on larger scales seems to be controlled by the floe-size distribution and the associated lateral incidence of light. These results are related to recent studies on the spatial variability of Arctic under-ice light fields focusing on the distinctly differing dominant surface properties between the northern (e.g. summer melt ponds) and southern (e.g. year-round snow cover, surface flooding) hemisphere sea-ice cover.

  9. Microbiological quality of cuttlefish (Sepia pharaonis) fillets stored in dry and wet ice.

    PubMed

    Jeyasekaran, G; Jeya Shakila, R; Sukumar, D

    2012-10-01

    Microbiological quality of cuttlefish (Sepia pharaonis) fillets stored in three different ice conditions was studied. Fillets stored in wet ice at a ratio of 1:1 (package III) were sensorially acceptable for only 18 h, while that stored in dry ice at 1:1 (package I) and combination of dry ice and wet ice at 1:0.2:0.5 (package II) were in acceptable condition up to 24 h without re-icing and thus there was an extension of shelf life by about 33%. Total bacterial load was 7 log₁₀ cfu/g at the end of the storage period. Total psychrophilic population increased from zero to 7 log₁₀ cfu/g while total lactic acid bacteria from zero to 5 log₁₀ cfu/g. H₂S producers were detected only at 18 h, with a count of 1 log₁₀ cfu/g. Sulphite-reducing Clostridia increased gradually from zero to 110 most probable number count/g. Fresh cuttlefish fillets carried a bacterial flora of Micrococcus, Planococcus, Streptococcus, Moraxella, Proteus and Aeromonas. Pseudomonas was dominant in wet ice pack, while Aeromonas was dominant in both the dry ice and combination pack. Immediately after packing, the temperatures recorded in packages I, II and III were 10.5, 1.2 and 3.0 °C, respectively, which drastically decreased in 1 h and then maintained and finally increased gradually. The results indicate that use of combination of dry ice and wet ice is economical and very much useful to seafood industries, as this package considerably reduced the cost of air freight, as well as improved the quality and shelf life of cuttlefish.

  10. Ice-shell purification of ice-binding proteins.

    PubMed

    Marshall, Craig J; Basu, Koli; Davies, Peter L

    2016-06-01

    Ice-affinity purification is a simple and efficient method of purifying to homogeneity both natural and recombinant ice-binding proteins. The purification involves the incorporation of ice-binding proteins into slowly-growing ice and the exclusion of other proteins and solutes. In previous approaches, the ice was grown around a hollow brass finger through which coolant was circulated. We describe here an easily-constructed apparatus that employs ice affinity purification that not only shortens the time for purification from 1-2 days to 1-2 h, but also enhances yield and purity. In this apparatus, the surface area for the separation was increased by extracting the ice-binding proteins into an ice-shell formed inside a rotating round-bottom flask partially submerged in a sub-zero bath. In principle, any ice-binding compound can be recovered from liquid solution, and the method is readily scalable. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Quantification of Ice Accretions for Icing Scaling Evaluations

    NASA Technical Reports Server (NTRS)

    Ruff, Gary A.; Anderson, David N.

    2003-01-01

    The comparison of ice accretion characteristics is an integral part of aircraft icing research. It is often necessary to compare an ice accretion obtained from a flight test or numerical simulation to one produced in an icing wind tunnel or for validation of an icing scaling method. Traditionally, this has been accomplished by overlaying two-dimensional tracings of ice accretion shapes. This paper addresses the basic question of how to compare ice accretions using more quantitative methods. For simplicity, geometric characteristics of the ice accretions are used for the comparison. One method evaluated is a direct comparison of the percent differences of the geometric measurements. The second method inputs these measurements into a fuzzy inference system to obtain a single measure of the goodness of the comparison. The procedures are demonstrated by comparing ice shapes obtained in the Icing Research Tunnel at NASA Glenn Research Center during recent icing scaling tests. The results demonstrate that this type of analysis is useful in quantifying the similarity of ice accretion shapes and that the procedures should be further developed by expanding the analysis to additional icing data sets.

  12. Ice Accretions and Icing Effects for Modern Airfoils

    NASA Technical Reports Server (NTRS)

    Addy, Harold E., Jr.

    2000-01-01

    Icing tests were conducted to document ice shapes formed on three different two-dimensional airfoils and to study the effects of the accreted ice on aerodynamic performance. The models tested were representative of airfoil designs in current use for each of the commercial transport, business jet, and general aviation categories of aircraft. The models were subjected to a range of icing conditions in an icing wind tunnel. The conditions were selected primarily from the Federal Aviation Administration's Federal Aviation Regulations 25 Appendix C atmospheric icing conditions. A few large droplet icing conditions were included. To verify the aerodynamic performance measurements, molds were made of selected ice shapes formed in the icing tunnel. Castings of the ice were made from the molds and placed on a model in a dry, low-turbulence wind tunnel where precision aerodynamic performance measurements were made. Documentation of all the ice shapes and the aerodynamic performance measurements made during the icing tunnel tests is included in this report. Results from the dry, low-turbulence wind tunnel tests are also presented.

  13. Sunlight, Sea Ice, and the Ice Albedo Feedback in a Changing Arctic Sea Ice Cover

    DTIC Science & Technology

    2013-09-30

    Sea Ice , and the Ice Albedo Feedback in a...COVERED 00-00-2013 to 00-00-2013 4. TITLE AND SUBTITLE Sunlight, Sea Ice , and the Ice Albedo Feedback in a Changing Arctic Sea Ice Cover 5a...during a period when incident solar irradiance is large increasing solar heat input to the ice . Seasonal sea ice typically has a smaller albedo

  14. The Seasonal Evolution of Sea Ice Floe Size Distribution

    DTIC Science & Technology

    2014-09-30

    summer breakup of the ice cover . Large-scale, lower resolution imagery from MODIS and other platforms will also be analyzed to determine changes in floe...number. 1. REPORT DATE 30 SEP 2014 2. REPORT TYPE 3. DATES COVERED 00-00-2014 to 00-00-2014 4. TITLE AND SUBTITLE The Seasonal Evolution of Sea...morphology of the Arctic sea ice cover over and annual cycle. These photos were taken over the pack ice near SHEBA in May (left) and August (right

  15. On the 2012 Record Low Arctic Sea Ice Cover: Combined Impact of Preconditioning and an August Storm

    NASA Technical Reports Server (NTRS)

    Parkinson, Claire L.; Comiso, Josefino C.

    2013-01-01

    A new record low Arctic sea ice extent for the satellite era, 3.4 x 10(exp 6) square kilometers, was reached on 13 September 2012; and a new record low sea ice area, 3.01 x 10(exp 6) square kilometers was reached on the same date. Preconditioning through decades of overall ice reductions made the ice pack more vulnerable to a strong storm that entered the central Arctic in early August 2012. The storm caused the separation of an expanse of 0.4 x 10(exp 6) square kilometers of ice that melted in total, while its removal left the main pack more exposed to wind and waves, facilitating the main pack's further decay. Future summer storms could lead to a further acceleration of the decline in the Arctic sea ice cover and should be carefully monitored.

  16. Antartic sea ice, 1973 - 1976: Satellite passive-microwave observations

    NASA Technical Reports Server (NTRS)

    Zwally, H. J.; Comiso, J. C.; Parkinson, C. L.; Campbell, W. J.; Carsey, F. D.; Gloersen, P.

    1983-01-01

    Data from the Electrically Scanning Microwave Radiometer (ESMR) on the Nimbus 5 satellite are used to determine the extent and distribution of Antarctic sea ice. The characteristics of the southern ocean, the mathematical formulas used to obtain quantitative sea ice concentrations, the general characteristics of the seasonal sea ice growth/decay cycle and regional differences, and the observed seasonal growth/decay cycle for individual years and interannual variations of the ice cover are discussed. The sea ice data from the ESMR are presented in the form of color-coded maps of the Antarctic and the southern oceans. The maps show brightness temperatures and concentrations of pack ice averaged for each month, 4-year monthly averages, and month-to-month changes. Graphs summarizing the results, such as areas of sea ice as a function of time in the various sectors of the southern ocean are included. The images demonstrate that satellite microwave data provide unique information on large-scale sea ice conditions for determining climatic conditions in polar regions and possible global climatic changes.

  17. Impacts of Organic Macromolecules, Chlorophyll and Soot on Arctic Sea Ice

    NASA Astrophysics Data System (ADS)

    Ogunro, O. O.; Wingenter, O. W.; Elliott, S.; Flanner, M.; Dubey, M. K.

    2014-12-01

    Recent intensification of Arctic amplification can be strongly connected to positive feedback relating black carbon deposition to sea ice surface albedo. In addition to soot deposition on the ice and snow pack, ice algal chlorophyll is likely to compete as an absorber and redistributor of energy. Hence, solar radiation absorption by chlorophyll and some components of organic macromolecules in/under the ice column is currently being examined to determine the level of influence on predicted rate of ice loss. High amounts of organic macromolecules and chlorophyll are produced in global sea ice by the bottom microbial community and also in vertically distributed layers where substantial biological activities take place. Brine channeling in columnar ice can allow for upward flow of nutrients which leads to greater primary production in the presence of moderate light. Modeling of the sea-ice processes in tandem with experiments and field observations promises rapid progress in enhancing Arctic ice predictions. We are designing and conducting global climate model experiments to determine the impact of organic macromolecules and chlorophyll on Arctic sea ice. Influences on brine network permeability and radiation/albedo will be considered in this exercise. Absorption by anthropogenic materials such as soot and black carbon will be compared with that of natural pigments. We will indicate areas of soot and biological absorption dominance in the sense of single scattering, then couple into a full radiation transfer scheme to attribute the various contributions to polar climate change amplification. The work prepares us to study more traditional issues such as chlorophyll warming of the pack periphery and chemical effects of the flow of organics from ice internal communities. The experiments started in the Arctic will broaden to include Antarctic sea ice and shelves. Results from the Arctic simulations will be presented.

  18. Acoustic effects of oil-production activities on bowhead and white whales visible during spring migration near Pt. Barrow, Alaska-1990 phase: sound propagation and whale responses to playbacks of continuous drilling noise from an ice platform, as studied in pack ice conditions. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richardson, W.J.; Greene, C.R.; Koski, W.R.

    1991-10-01

    The report concerns the effects of underwater noise from simulated oil production operations on the movements and behavior of bowhead and white whales migrating around northern Alaska in spring. An underwater sound projector suspended from pack ice was used to introduce recorded drilling noise and other test sounds into leads through the pack ice. These sounds were received and measured at various distances to determine the rate of sound attenuation with distance and frequency. The movements and behavior of bowhead and white whales approaching the operating projector were studied by aircraft- and ice-based observers. Some individuals of both species weremore » observed to approach well within the ensonified area. However, behavioral changes and avoidance reactions were evident when the received sound level became sufficiently high. Reactions to aircraft are also discussed.« less

  19. Laboratory Studies of Sea-Ice-Wave Interactions

    NASA Astrophysics Data System (ADS)

    Monty, J.; Meylan, M. H.; Babanin, A. V.; Toffoli, A.; Bennetts, L.

    2016-12-01

    A world-first facility for studying the Marginal Ice Zone has been constructed in the Michell Hydrodynamics Laboratory at the University of Melbourne. A 14m long wave tank (0.75m wide, 0.6m deep) resides in a freezer, where air temperature can be controlled down to -15C. This permits the freezing of the water surface. Large stainless steel ice-making trays (up to 4 m long) are also available to create ice of desired thickness and microstructure, which can be lowered onto the water surface. A computer controlled wave generator is capable of creating waves of any desired form. The temperature of the water in the tank can also be controlled between 2 and 30C. The tank frame is constructed of marine-treated wood and the entire tank is glass and acrylic, permitting the use of corrosive fluids, such as salt water. Here we present the first laboratory experiments of break-up of a controlled thickness, fresh water ice sheet impacted by regular and JONSWAP spectrum surface waves. The geometry of the resultant ice-floes is measured with high-resolution, time-resolved imaging, providing the crucial data of floe size distribution. Initial observations show that, in the case of high steepness waves, the primary mechanisms of ice break-up at the ice edge are overwash and rafting, both of which put weight on the ice interior to the ice-water interface. This additional weight (and impact in the case of rafting) breaks more ice, which allows overwash and rafting deeper into the ice sheet, breaking more ice and so on. For lower steepness waves, overwash and rafting are still present but far less significant. Finally, results of vertical ice movement using laser height gauges will be presented showing the attenuation of waves into an ice sheet and through a pack of ice floes. These results are compared with field data and theory available (e.g. Squire & Moore, Nature, 1980 and Kohout et al., Nature, 2014).

  20. Sea-Ice Conditions in the Norwegian, Barents, and White Seas

    DTIC Science & Technology

    1976-08-01

    pack, aided by relatively warm water from the Murman coast current, would reduce the maximum ice thickness predicted by the equation used for...THICKNESS With the aid of the ice growth model in the appendix, it is pos- sible to relate the maximum ice thickness attained during a winter season to a...inserted merely to aid the reader in discerning differences between individual winter seasons. As was the case for the 12-month mean temperatures

  1. Advances in Measuring Antarctic Sea-Ice Thickness and Ice-Sheet Elevations with ICESat Laser Altimetry

    NASA Technical Reports Server (NTRS)

    Zwally, H. Jay

    2004-01-01

    elevation changes over select areas of the ice sheet is demonstrated with using both crossover analysis and precise-repeat track analysis. Sea ice freeboard-height distributions over the Antarctic sea pack are derived over distances of 50 km and converted into maps of average freeboard thickness and sea-ice thickness.

  2. Snow depth evolution on sea ice from Snow Buoy measurement

    NASA Astrophysics Data System (ADS)

    Nicolaus, M.; Arndt, S.; Hendricks, S.; Hoppmann, M.; Katlein, C.; König-Langlo, G.; Nicolaus, A.; Rossmann, H. L.; Schiller, M.; Schwegmann, S.; Langevin, D.

    2016-12-01

    Snow cover is an Essential Climate Variable. On sea ice, snow dominates the energy and momentum exchanges across the atmosphere-ice-ocean interfaces, and actively contributes to sea ice mass balance. Yet, snow depth on sea ice is one of the least known and most difficult to observe parameters of the Arctic and Antarctic; mainly due to its exceptionally high spatial and temporal variability. In this study; we present a unique time series dataset of snow depth and air temperature evolution on Arctic and Antarctic sea ice recorded by autonomous instruments. Snow Buoys record snow depth with four independent ultrasonic sensors, increasing the reliability of the measurements and allowing for additional analyses. Auxiliary measurements include surface and air temperature, barometric pressure and GPS position. 39 deployments of such Snow Buoys were achieved over the last three years either on drifting pack ice, on landfast sea ice or on an ice shelf. Here we highlight results from two pairs of Snow Buoys installed on drifting pack ice in the Weddell Sea. The data reveals large regional differences in the annual cycle of snow depth. Almost no reduction in snow depth (snow melt) was observed in the inner and southern part of the Weddell Sea, allowing a net snow accumulation of 0.2 to 0.9 m per year. In contrast, summer snow melt close to the ice edge resulted in a decrease of about 0.5 m during the summer 2015/16. Another array of eight Snow Buoys was installed on central Arctic sea ice in September 2015. Their air temperature record revealed exceptionally high air temperatures in the subsequent winter, even exceeding the melting point but with almost no impact on snow depth at that time. Future applications of Snow Buoys on Arctic and Antarctic sea ice will allow additional inter-annual studies of snow depth and snow processes, e.g. to support the development of snow depth data products from airborne and satellite data or though assimilation in numerical models.

  3. 1. DETAIL OF TUBE ICE MACHINE OUTLET AT SOUTHWEST CORNER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. DETAIL OF TUBE ICE MACHINE OUTLET AT SOUTHWEST CORNER OF BUILDING 162; ICE MANUFACTURED INSIDE THE BUILDING WAS AUGURED THROUGH THE WALL AND DROPPED INTO COMPARTMENTS IN REFIGERATED RAIL CARS - Rath Packing Company, Cooler Building, Sycamore Street between Elm & Eighteenth Streets, Waterloo, Black Hawk County, IA

  4. Sea-Ice Freeboard Retrieval Using Digital Photon-Counting Laser Altimetry

    NASA Technical Reports Server (NTRS)

    Farrell, Sinead L.; Brunt, Kelly M.; Ruth, Julia M.; Kuhn, John M.; Connor, Laurence N.; Walsh, Kaitlin M.

    2015-01-01

    Airborne and spaceborne altimeters provide measurements of sea-ice elevation, from which sea-ice freeboard and thickness may be derived. Observations of the Arctic ice pack by satellite altimeters indicate a significant decline in ice thickness, and volume, over the last decade. NASA's Ice, Cloud and land Elevation Satellite-2 (ICESat-2) is a next-generation laser altimeter designed to continue key sea-ice observations through the end of this decade. An airborne simulator for ICESat-2, the Multiple Altimeter Beam Experimental Lidar (MABEL), has been deployed to gather pre-launch data for mission development. We present an analysis of MABEL data gathered over sea ice in the Greenland Sea and assess the capabilities of photon-counting techniques for sea-ice freeboard retrieval. We compare freeboard estimates in the marginal ice zone derived from MABEL photon-counting data with coincident data collected by a conventional airborne laser altimeter. We find that freeboard estimates agree to within 0.03m in the areas where sea-ice floes were interspersed with wide leads, and to within 0.07m elsewhere. MABEL data may also be used to infer sea-ice thickness, and when compared with coincident but independent ice thickness estimates, MABEL ice thicknesses agreed to within 0.65m or better.

  5. Airborne gravity measurement over sea-ice: The western Weddel Sea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brozena, J.; Peters, M.; LaBrecque, J.

    1990-10-01

    An airborne gravity study of the western Weddel Sea, east of the Antarctic Peninsula, has shown that floating pack-ice provides a useful radar altimetric reference surface for altitude and vertical acceleration corrections surface for alititude and vertical acceleration corrections to airborne gravimetry. Airborne gravimetry provides an important alternative to satellite altimetry for the sea-ice covered regions of the world since satellite alimeters are not designed or intended to provide accurate geoidal heights in areas where significant sea-ice is present within the radar footprint. Errors in radar corrected airborne gravimetry are primarily sensitive to the variations in the second derivative ofmore » the sea-ice reference surface in the frequency pass-band of interest. With the exception of imbedded icebergs the second derivative of the pack-ice surface closely approximates that of the mean sea-level surface at wavelengths > 10-20 km. With the airborne method the percentage of ice coverage, the mixture of first and multi-year ice and the existence of leads and pressure ridges prove to be unimportant in determining gravity anomalies at scales of geophysical and geodetic interest, provided that the ice is floating and not grounded. In the Weddell study an analysis of 85 crosstrack miss-ties distributed over 25 data tracks yields an rms error of 2.2 mGals. Significant structural anomalies including the continental shelf and offsets and lineations interpreted as fracture zones recording the early spreading directions within the Weddell Sea are observed in the gravity map.« less

  6. A Decade of Arctic Sea Ice Thickness Change from Airborne and Satellite Altimetry (Invited)

    NASA Astrophysics Data System (ADS)

    Farrell, S. L.; Richter-Menge, J.; Kurtz, N. T.; McAdoo, D. C.; Newman, T.; Zwally, H.; Ruth, J.

    2013-12-01

    Altimeters on both airborne and satellite platforms provide direct measurements of sea ice freeboard from which sea ice thickness may be calculated. Satellite altimetry observations of Arctic sea ice from ICESat and CryoSat-2 indicate a significant decline in ice thickness, and volume, over the last decade. During this time the ice pack has experienced a rapid change in its composition, transitioning from predominantly thick, multi-year ice to thinner, increasingly seasonal ice. We will discuss the regional trends in ice thickness derived from ICESat and IceBridge altimetry between 2003 and 2013, contrasting observations of the multi-year ice pack with seasonal ice zones. ICESat ceased operation in 2009, and the final, reprocessed data set became available recently. We extend our analysis to April 2013 using data from the IceBridge airborne mission, which commenced operations in 2009. We describe our current efforts to more accurately convert from freeboard to ice thickness, with a modified methodology that corrects for range errors, instrument biases, and includes an enhanced treatment of snow depth, with respect to ice type. With the planned launch by NASA of ICESat-2 in 2016 we can expect continuity of the sea ice thickness time series through the end of this decade. Data from the ICESat-2 mission, together with ongoing observations from CryoSat-2, will allow us to understand both the decadal trends and inter-annual variability in the Arctic sea ice thickness record. We briefly present the status of planned ICESat-2 sea ice data products, and demonstrate the utility of micro-pulse, photon-counting laser altimetry over sea ice.

  7. Wave-Ice and Air-Ice-Ocean Interaction During the Chukchi Sea Ice Edge Advance

    DTIC Science & Technology

    2014-09-30

    During cruise CU-B UAF UW Airborne expendable Ice Buoy (AXIB) Ahead, at and inside ice edge Surface meteorology T, SLP ~1 year CU-B UW...Balance (IMB) buoys Inside ice edge w/ >50cm thickness Ice mass balance T in snow-ice-ocean, T, SLP at surface ~1 year WHOI CRREL (SeaState DRI

  8. Ice Front at Venable Ice Shelf

    NASA Image and Video Library

    2013-06-13

    This photo, taken onboard the Chilean Navy P3 aircraft, shows the ice front of Venable Ice Shelf, West Antarctica, in October 2008. It is an example of a small-size ice shelf that is a large melt water producer.

  9. Looking Into and Through the Ross Ice Shelf - ROSETTA-ICE

    NASA Astrophysics Data System (ADS)

    Bell, R. E.

    2015-12-01

    Our current understanding of the structure and stability of the Ross Ice Shelf is based on satellite studies of the ice surface and the 1970's RIGGS program. The study of the flowlines evident in the MODIS imagery combined with surface geophysics has revealed a complex history with ice streams Mercer, Whillans and Kamb changing velocity over the past 1000 years. Here, we present preliminary IcePod and IceBridge radar data acquired in December 2014 and November 2013 across the Ross Ice Shelf that show clearly, for the first time, the structure of the ice shelf and provide insights into ice-ocean interaction. The three major layers of the ice shelf are (1) the continental meteoric ice layer), ice formed on the grounded ice sheet that entered the ice shelf where ice streams and outlet glaciers crossed the grounding line (2) the locally accumulating meteoric ice layer, ice and snow that forms from snowfall on the floating ice shelf and (3) a basal marine ice layer. The locally accumulating meteoric ice layer contains well-defined internal layers that are generally parallel to the ice surface and thickens away from the grounding line and reaches a maximum thickness of 220m along the line crossing Roosevelt Island. The continental meteoric layer is located below a broad irregular internal reflector, and is characterized by irregular internal layers. These internal layers are often folded, likely a result of deformation as the ice flowed across the grounding line. The basal marine ice layer, up to 50m thick, is best resolved in locations where basal crevasses are present, and appears to thicken along the flow at rates of decimeters per year. Each individual flowband of the ice shelf contains layers that are distinct in their structure. For example, the thickness of the locally accumulated layer is a function of both the time since crossing the grounding line and the thickness of the incoming ice. Features in the meteoric ice, such as distinct folds, can be traced between

  10. Extensive massive basal-ice structures in West Antarctica relate to ice-sheet anisotropy and ice-flow

    NASA Astrophysics Data System (ADS)

    Ross, N.; Bingham, R. G.; Corr, H. F. J.; Siegert, M. J.

    2016-12-01

    Complex structures identified within both the East Antarctic and Greenland ice sheets are thought to be generated by the action of basal water freezing to the ice-sheet base, evolving under ice flow. Here, we use ice-penetrating radar to image an extensive series of similarly complex basal ice facies in West Antarctica, revealing a thick (>500 m) tectonised unit in an area of cold-based and relatively slow-flowing ice. We show that major folding and overturning of the unit perpendicular to ice flow elevates deep, warm ice into the mid ice-sheet column. Fold axes align with present ice flow, and axis amplitudes increase down-ice, suggesting long-term consistency in the direction and convergence of flow. In the absence of basal water, and the draping of the tectonised unit over major subglacial mountain ranges, the formation of the unit must be solely through the deformation of meteoric ice. Internal layer radar reflectivity is consistently greater parallel to flow compared with the perpendicular direction, revealing ice-sheet crystal anisotropy is associated with the folding. By linking layers to the Byrd ice-core site, we show the basal ice dates to at least the last glacial cycle and may be as old as the last interglacial. Deformation of deep-ice in this sector of WAIS, and potentially elsewhere in Antarctica, may be caused by differential shearing at interglacial-glacial boundaries, in a process analogous to that proposed for interior Greenland. The scale and heterogeneity of the englacial structures, and their subsequent impact on ice sheet rheology, means that the nature of ice flow across the bulk of West Antarctica must be far more complex that is currently accounted for by any numerical ice sheet model.

  11. Space/Time Statistics of Polar Ice Motion

    NASA Technical Reports Server (NTRS)

    Emery, William J.; Fowler, Charles; Maslanik, James A.

    2003-01-01

    ice pack and lead to an ice-free Arctic Ocean.

  12. Lower limb ice application alters ground reaction force during gait initiation

    PubMed Central

    Muniz, Thiago B.; Moraes, Renato; Guirro, Rinaldo R. J.

    2015-01-01

    BACKGROUND: Cryotherapy is a widely used technique in physical therapy clinics and sports. However, the effects of cryotherapy on dynamic neuromuscular control are incompletely explained. OBJECTIVES: To evaluate the effects of cryotherapy applied to the calf, ankle and sole of the foot in healthy young adults on ground reaction forces during gait initiation. METHOD: This study evaluated the gait initiation forces, maximum propulsion, braking forces and impulses of 21 women volunteers through a force platform, which provided maximum and minimum ground reaction force values. To assess the effects of cooling, the task - gait initiation - was performed before ice application, immediately after and 30 minutes after removal of the ice pack. Ice was randomly applied on separate days to the calf, ankle and sole of the foot of the participants. RESULTS: It was demonstrated that ice application for 30 minutes to the sole of the foot and calf resulted in significant changes in the vertical force variables, which returned to their pre-application values 30 minutes after the removal of the ice pack. Ice application to the ankle only reduced propulsion impulse. CONCLUSIONS: These results suggest that although caution is necessary when performing activities that require good gait control, the application of ice to the ankle, sole of the foot or calf in 30-minute intervals may be safe even preceding such activities. PMID:25993625

  13. Lower limb ice application alters ground reaction force during gait initiation.

    PubMed

    Muniz, Thiago B; Moraes, Renato; Guirro, Rinaldo R J

    2015-01-01

    Cryotherapy is a widely used technique in physical therapy clinics and sports. However, the effects of cryotherapy on dynamic neuromuscular control are incompletely explained. To evaluate the effects of cryotherapy applied to the calf, ankle and sole of the foot in healthy young adults on ground reaction forces during gait initiation. This study evaluated the gait initiation forces, maximum propulsion, braking forces and impulses of 21 women volunteers through a force platform, which provided maximum and minimum ground reaction force values. To assess the effects of cooling, the task--gait initiation--was performed before ice application, immediately after and 30 minutes after removal of the ice pack. Ice was randomly applied on separate days to the calf, ankle and sole of the foot of the participants. It was demonstrated that ice application for 30 minutes to the sole of the foot and calf resulted in significant changes in the vertical force variables, which returned to their pre-application values 30 minutes after the removal of the ice pack. Ice application to the ankle only reduced propulsion impulse. These results suggest that although caution is necessary when performing activities that require good gait control, the application of ice to the ankle, sole of the foot or calf in 30-minute intervals may be safe even preceding such activities.

  14. Simple Cloud Chambers Using a Freezing Mixture of Ice and Cooking Salt

    ERIC Educational Resources Information Center

    Yoshinaga, Kyohei; Kubota, Miki; Kamata, Masahiro

    2015-01-01

    We have developed much simpler cloud chambers that use only ice and cooking salt instead of the dry ice or ice gel pack needed for the cloud chambers produced in our previous work. The observed alpha-ray particle tracks are as clear as those observed using our previous cloud chambers. The tracks can be observed continuously for about 20?min, and…

  15. Ice Roughness in Short Duration SLD Icing Events

    NASA Technical Reports Server (NTRS)

    McClain, Stephen T.; Reed, Dana; Vargas, Mario; Kreeger, Richard E.; Tsao, Jen-Ching

    2014-01-01

    Ice accretion codes depend on models of roughness parameters to account for the enhanced heat transfer during the ice accretion process. While mitigating supercooled large droplet (SLD or Appendix O) icing is a significant concern for manufacturers seeking future vehicle certification due to the pending regulation, historical ice roughness studies have been performed using Appendix C icing clouds which exhibit mean volumetric diameters (MVD) much smaller than SLD clouds. Further, the historical studies of roughness focused on extracting parametric representations of ice roughness using multiple images of roughness elements. In this study, the ice roughness developed on a 21-in. NACA 0012 at 0deg angle of attack exposed to short duration SLD icing events was measured in the Icing Research Tunnel at the NASA Glenn Research Center. The MVD's used in the study ranged from 100 micrometer to 200 micrometers, in a 67 m/s flow, with liquid water contents of either 0.6 gm/cubic meters or 0.75 gm/cubic meters. The ice surfaces were measured using a Romer Absolute Arm laser scanning system. The roughness associated with each surface point cloud was measured using the two-dimensional self-organizing map approach developed by McClain and Kreeger (2013) resulting in statistical descriptions of the ice roughness.

  16. Help, I don’t know which sea ice algorithm to use?!: Developing an authoritative sea ice climate data record

    NASA Astrophysics Data System (ADS)

    Meier, W.; Stroeve, J.; Duerr, R. E.; Fetterer, F. M.

    2009-12-01

    The declining Arctic sea ice is one of the most dramatic indicators of climate change and is being recognized as a key factor in future climate impacts on biology, human activities, and global climate change. As such, the audience for sea ice data is expanding well beyond the sea ice community. The most comprehensive sea ice data are from a series of satellite-borne passive microwave sensors. They provide a near-complete daily timeseries of sea ice concentration and extent since late-1978. However, there are many complicating issues in using such data, particularly for novice users. First, there is not one single, definitive algorithm, but several. And even for a given algorithm, different processing and quality-control methods may be used, depending on the source. Second, for all algorithms, there are uncertainties in any retrieved value. In general, these limitations are well-known: low spatial-resolution results in an imprecise ice edge determination and lack of small-scale detail (e.g., lead detection) within the ice pack; surface melt depresses concentration values during summer; thin ice is underestimated in some algorithms; some algorithms are sensitive to physical surface temperature; other surface features (e.g., snow) can influence retrieved data. While general error estimates are available for concentration values, currently the products do not carry grid-cell level or even granule level data quality information. Finally, metadata and data provenance information are limited, both of which are essential for future reprocessing. Here we describe the progress to date toward development of sea ice concentration products and outline the future steps needed to complete a sea ice climate data record.

  17. Meteorological conditions in a thinner Arctic sea ice regime from winter to summer during the Norwegian Young Sea Ice expedition (N-ICE2015)

    NASA Astrophysics Data System (ADS)

    Cohen, Lana; Hudson, Stephen R.; Walden, Von P.; Graham, Robert M.; Granskog, Mats A.

    2017-07-01

    Atmospheric measurements were made over Arctic sea ice north of Svalbard from winter to early summer (January-June) 2015 during the Norwegian Young Sea Ice (N-ICE2015) expedition. These measurements, which are available publicly, represent a comprehensive meteorological data set covering the seasonal transition in the Arctic Basin over the new, thinner sea ice regime. Winter was characterized by a succession of storms that produced short-lived (less than 48 h) temperature increases of 20 to 30 K at the surface. These storms were driven by the hemispheric scale circulation pattern with a large meridional component of the polar jet stream steering North Atlantic storms into the high Arctic. Nonstorm periods during winter were characterized by strong surface temperature inversions due to strong radiative cooling ("radiatively clear state"). The strength and depth of these inversions were similar to those during the Surface Heat Budget of the Arctic Ocean (SHEBA) campaign. In contrast, atmospheric profiles during the "opaquely cloudy state" were different to those from SHEBA due to differences in the synoptic conditions and location within the ice pack. Storm events observed during spring/summer were the result of synoptic systems located in the Barents Sea and the Arctic Basin rather than passing directly over N-ICE2015. These synoptic systems were driven by a large-scale circulation pattern typical of recent years, with an Arctic Dipole pattern developing during June. Surface temperatures became near-constant 0°C on 1 June marking the beginning of summer. Atmospheric profiles during the spring and early summer show persistent lifted temperature and moisture inversions that are indicative of clouds and cloud processes.

  18. Direct observations of atmosphere - sea ice - ocean interactions during Arctic winter and spring storms

    NASA Astrophysics Data System (ADS)

    Graham, R. M.; Itkin, P.; Granskog, M. A.; Assmy, P.; Cohen, L.; Duarte, P.; Doble, M. J.; Fransson, A.; Fer, I.; Fernandez Mendez, M.; Frey, M. M.; Gerland, S.; Haapala, J. J.; Hudson, S. R.; Liston, G. E.; Merkouriadi, I.; Meyer, A.; Muilwijk, M.; Peterson, A.; Provost, C.; Randelhoff, A.; Rösel, A.; Spreen, G.; Steen, H.; Smedsrud, L. H.; Sundfjord, A.

    2017-12-01

    To study the thinner and younger sea ice that now dominates the Arctic the Norwegian Young Sea ICE expedition (N-ICE2015) was launched in the ice-covered region north of Svalbard, from January to June 2015. During this time, eight local and remote storms affected the region and rare direct observations of the atmosphere, snow, ice and ocean were conducted. Six of these winter storms passed directly over the expedition and resulted in air temperatures rising from below -30oC to near 0oC, followed by abrupt cooling. Substantial snowfall prior to the campaign had already formed a snow pack of approximately 50 cm, to which the February storms contributed an additional 6 cm. The deep snow layer effectively isolated the ice cover and prevented bottom ice growth resulting in low brine fluxes. Peak wind speeds during winter storms exceeded 20 m/s, causing strong snow re-distribution, release of sea salt aerosol and sea ice deformation. The heavy snow load caused widespread negative freeboard; during sea ice deformation events, level ice floes were flooded by sea water, and at least 6-10 cm snow-ice layer was formed. Elevated deformation rates during the most powerful winter storms damaged the ice cover permanently such that the response to wind forcing increased by 60 %. As a result of a remote storm in April deformation processes opened about 4 % of the total area into leads with open water, while a similar amount of ice was deformed into pressure ridges. The strong winds also enhanced ocean mixing and increased ocean heat fluxes three-fold in the pycnocline from 4 to 12 W/m2. Ocean heat fluxes were extremely large (over 300 W/m2) during storms in regions where the warm Atlantic inflow is located close to surface over shallow topography. This resulted in very large (5-25 cm/day) bottom ice melt and in cases flooding due to heavy snow load. Storm events increased the carbon dioxide exchange between the atmosphere and ocean but also affected the pCO2 in surface waters

  19. Wave-Ice and Air-Ice-Ocean Interaction During the Chukchi Sea Ice Edge Advance

    DTIC Science & Technology

    2015-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Wave -Ice and Air-Ice-Ocean Interaction During the...Chukchi Sea in the late summer have potentially changed the impact of fall storms by creating wave fields in the vicinity of the advancing ice edge. A...first) wave -ice interaction field experiment that adequately documents the relationship of a growing pancake ice cover with a time and space varying

  20. Ice Flow in the North East Greenland Ice Stream

    NASA Technical Reports Server (NTRS)

    Joughin, Ian; Kwok, Ron; Fahnestock, M.; MacAyeal, Doug

    1999-01-01

    Early observations with ERS-1 SAR image data revealed a large ice stream in North East Greenland (Fahnestock 1993). The ice stream has a number of the characteristics of the more closely studied ice streams in Antarctica, including its large size and gross geometry. The onset of rapid flow close to the ice divide and the evolution of its flow pattern, however, make this ice stream unique. These features can be seen in the balance velocities for the ice stream (Joughin 1997) and its outlets. The ice stream is identifiable for more than 700 km, making it much longer than any other flow feature in Greenland. Our research goals are to gain a greater understanding of the ice flow in the northeast Greenland ice stream and its outlet glaciers in order to assess their impact on the past, present, and future mass balance of the ice sheet. We will accomplish these goals using a combination of remotely sensed data and ice sheet models. We are using satellite radar interferometry data to produce a complete maps of velocity and topography over the entire ice stream. We are in the process of developing methods to use these data in conjunction with existing ice sheet models similar to those that have been used to improve understanding of the mechanics of flow in Antarctic ice streams.

  1. A coupled ice-ocean model of ice breakup and banding in the marginal ice zone

    NASA Technical Reports Server (NTRS)

    Smedstad, O. M.; Roed, L. P.

    1985-01-01

    A coupled ice-ocean numerical model for the marginal ice zone is considered. The model consists of a nonlinear sea ice model and a two-layer (reduced gravity) ocean model. The dependence of the upwelling response on wind stress direction is discussed. The results confirm earlier analytical work. It is shown that there exist directions for which there is no upwelling, while other directions give maximum upwelling in terms of the volume of uplifted water. The ice and ocean is coupled directly through the stress at the ice-ocean interface. An interesting consequence of the coupling is found in cases when the ice edge is almost stationary. In these cases the ice tends to break up a few tenths of kilometers inside of the ice edge.

  2. Icing flight research: Aerodynamic effects of ice and ice shape documentation with stereo photography

    NASA Technical Reports Server (NTRS)

    Mikkelsen, K. L.; Mcknight, R. C.; Ranaudo, R. J.; Perkins, P. J., Jr.

    1985-01-01

    Aircraft icing flight research was performed in natural icing conditions. A data base consisting of icing cloud measurements, ice shapes, and aerodynamic measurements is being developed. During research icing encounters the icing cloud was continuously measured. After the encounter, the ice accretion shapes on the wing were documented with a stereo camera system. The increase in wing section drag was measured with a wake survey probe. The overall aircraft performance loss in terms of lift and drag coefficient changes was obtained by steady level speed/power measurements. Selective deicing of the airframe components was performed to determine their contributions to the total drag increase. Engine out capability in terms of power available was analyzed for the iced aircraft. It was shown that the stereo photography system can be used to document ice shapes in flight and that the wake survey probe can measure increases in wing section drag caused by ice. On one flight, the wing section drag coefficient (c sub d) increased approximately 120 percent over the uniced baseline at an aircraft angle of attack of 6 deg. On another flight, the aircraft darg coefficient (c sub d) increased by 75 percent over the uniced baseline at an aircraft lift coefficient (C sub d) of 0.5.

  3. Icing flight research - Aerodynamic effects of ice and ice shape documentation with stereo photography

    NASA Technical Reports Server (NTRS)

    Mikkelsen, K. L.; Mcknight, R. C.; Ranaudo, R. J.; Perkins, P. J., Jr.

    1985-01-01

    Aircraft icing flight research was performed in natural icing conditions. A data base consisting of icing cloud measurements, ice shapes, and aerodynamic measurements is being developed. During research icing encounters the icing cloud was continuously measured. After the encounter, the ice accretion shapes on the wing were documented with a stereo camera system. The increase in wing section drag was measured with a wake survey probe. The overall aircraft performance loss in terms of lift and drag coefficient changes were obtained by steady level speed/power measurements. Selective deicing of the airframe components was performed to determine their contributions to the total drag increase. Engine out capability in terms of power available was analyzed for the iced aircraft. It was shown that the stereo photography system can be used to document ice shapes in flight and that the wake survey probe can measure increases in wing section drag caused by ice. On one flight, the wing section drag coefficient (c sub d) increased approximately 120 percent over the uniced baseline at an aircraft angle of attack of 6 deg. On another flight, the aircraft drag coefficient (c sub d) increased by 75 percent over the uniced baseline at an aircraft lift coefficient (c sub d) of 0.5.

  4. An active bacterial community linked to high chl-a concentrations in Antarctic winter-pack ice and evidence for the development of an anaerobic sea-ice bacterial community.

    PubMed

    Eronen-Rasimus, Eeva; Luhtanen, Anne-Mari; Rintala, Janne-Markus; Delille, Bruno; Dieckmann, Gerhard; Karkman, Antti; Tison, Jean-Louis

    2017-10-01

    Antarctic sea-ice bacterial community composition and dynamics in various developmental stages were investigated during the austral winter in 2013. Thick snow cover likely insulated the ice, leading to high (<4 μg l -1 ) chlorophyll-a (chl-a) concentrations and consequent bacterial production. Typical sea-ice bacterial genera, for example, Octadecabacter, Polaribacter and Glaciecola, often abundant in spring and summer during the sea-ice algal bloom, predominated in the communities. The variability in bacterial community composition in the different ice types was mainly explained by the chl-a concentrations, suggesting that as in spring and summer sea ice, the sea-ice bacteria and algae may also be coupled during the Antarctic winter. Coupling between the bacterial community and sea-ice algae was further supported by significant correlations between bacterial abundance and production with chl-a. In addition, sulphate-reducing bacteria (for example, Desulforhopalus) together with odour of H 2 S were observed in thick, apparently anoxic ice, suggesting that the development of the anaerobic bacterial community may occur in sea ice under suitable conditions. In all, the results show that bacterial community in Antarctic sea ice can stay active throughout the winter period and thus possible future warming of sea ice and consequent increase in bacterial production may lead to changes in bacteria-mediated processes in the Antarctic sea-ice zone.

  5. Ice recrystallization inhibition in ice cream as affected by ice structuring proteins from winter wheat grass.

    PubMed

    Regand, A; Goff, H D

    2006-01-01

    Ice recrystallization in quiescently frozen sucrose solutions that contained some of the ingredients commonly found in ice cream and in ice cream manufactured under commercial conditions, with or without ice structuring proteins (ISP) from cold-acclimated winter wheat grass extract (AWWE), was assessed by bright field microscopy. In sucrose solutions, critical differences in moisture content, viscosity, ionic strength, and other properties derived from the presence of other ingredients (skim milk powder, corn syrup solids, locust bean gum) caused a reduction in ice crystal growth. Significant ISP activity in retarding ice crystal growth was observed in all solutions (44% for the most complex mix) containing 0.13% total protein from AWWE. In heat-shocked ice cream, ice recrystallization rates were significantly reduced 40 and 46% with the addition of 0.0025 and 0.0037% total protein from AWWE. The ISP activity in ice cream was not hindered by its inclusion in mix prior to pasteurization. A synergistic effect between ISP and stabilizer was observed, as ISP activity was reduced in the absence of stabilizer in ice cream formulations. A remarkably smoother texture for ice creams containing ISP after heat-shock storage was evident by sensory evaluation. The efficiency of ISP from AWWE in controlling ice crystal growth in ice cream has been demonstrated.

  6. Atmosphere-Ice-Ocean-Ecosystem Processes in a Thinner Arctic Sea Ice Regime: The Norwegian Young Sea ICE (N-ICE2015) Expedition

    NASA Astrophysics Data System (ADS)

    Granskog, Mats A.; Fer, Ilker; Rinke, Annette; Steen, Harald

    2018-03-01

    Arctic sea ice has been in rapid decline the last decade and the Norwegian young sea ICE (N-ICE2015) expedition sought to investigate key processes in a thin Arctic sea ice regime, with emphasis on atmosphere-snow-ice-ocean dynamics and sea ice associated ecosystem. The main findings from a half-year long campaign are collected into this special section spanning the Journal of Geophysical Research: Atmospheres, Journal of Geophysical Research: Oceans, and Journal of Geophysical Research: Biogeosciences and provide a basis for a better understanding of processes in a thin sea ice regime in the high Arctic. All data from the campaign are made freely available to the research community.

  7. Correlation studies of passive and active microwave data in the marginal ice zone

    NASA Technical Reports Server (NTRS)

    Comiso, J. C.

    1991-01-01

    The microwave radiative and backscatter characteristics of sea ice in an Arctic marginal ice zone have been studied using near-simultaneous passive and active synthetic aperture radar microwave data. Intermediate-resolution multichannel passive microwave data were registered and analyzed. Passive and active microwave data generally complement each other as the two sensors are especially sensitive to different physical properties of the sea ice. In the inner pack, undeformed first-year ice is observed to have low backscatter values but high brightness temperatures while multiyear ice has generally high backscatter values and low brightness temperatures. However, in the marginal ice zone, the signature and backscatter for multiyear ice are considerably different and closer to those of first-year ice. Some floes identified by photography as snow-covered thick ice have backscatter similar to that of new ice or open water while brash ice has backscatter similar to or higher than that of ridged ice.

  8. GenIce: Hydrogen-Disordered Ice Generator.

    PubMed

    Matsumoto, Masakazu; Yagasaki, Takuma; Tanaka, Hideki

    2018-01-05

    GenIce is an efficient and user-friendly tool to generate hydrogen-disordered ice structures. It makes ice and clathrate hydrate structures in various file formats. More than 100 kinds of structures are preset. Users can install their own crystal structures, guest molecules, and file formats as plugins. The algorithm certifies that the generated structures are completely randomized hydrogen-disordered networks obeying the ice rule with zero net polarization. © 2017 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc. © 2017 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc.

  9. Collar temperature sensor data reveal long-term patterns in southern Beaufort Sea polar bear den distribution on pack ice and land

    USGS Publications Warehouse

    Olson, Jay W; Rode, Karyn D.; Eggett, Dennis L.; Smith, T.S.; Wilson, R. R.; Durner, George M.; Fischbach, Anthony S.; Atwood, Todd C.; Douglas, David C.

    2017-01-01

    In response to a changing climate, many species alter habitat use. Polar bears Ursus maritimus in the southern Beaufort Sea have increasingly used land for maternal denning. To aid in detecting denning behavior, we developed an objective method to identify polar bear denning events using temperature sensor data collected by satellite-linked transmitters deployed on adult females between 1985 and 2013. We then applied this method to determine whether southern Beaufort Sea polar bears have continued to increase land denning with recent sea-ice loss and examined whether sea-ice conditions affect the distribution of dens between pack-ice and coastal substrates. Because land use in summer and autumn has also increased, we examined potential associations between summering substrate and denning substrate. Statistical process control methods applied to temperature-sensor data identified denning events with 94.5% accuracy in comparison to direct observations (n = 73) and 95.7% accuracy relative to subjective classifications based on temperature, location, and activity sensor data (n = 116). We found an increase in land-based denning during the study period. The frequency of land denning was directly related to the distance that sea ice retreated from the coast. Among females that denned, all 14 that summered on land subsequently denned there, whereas 29% of the 69 bears summering on ice denned on land. These results suggest that denning on land may continue to increase with further loss of sea ice. While the effects that den substrate have on nutrition, energetics, and reproduction are unclear, more polar bears denning onshore will likely increase human-bear interactions.

  10. Shuttle Imaging Radar B (SIR-B) Weddell Sea ice observations - A comparison of SIR-B and scanning multichannel microwave radiometer ice concentrations

    NASA Technical Reports Server (NTRS)

    Martin, Seelye; Holt, Benjamin; Cavalieri, Donald J.; Squire, Vernon

    1987-01-01

    Ice concentrations over the Weddell Sea were studied using SIR-B data obtained during the October 1984 mission, with special attention given to the effect of ocean waves on the radar return at the ice edge. Sea ice concentrations were derived from the SIR-B data using two image processing methods: the classification scheme at JPL and the manual classification method at Scott Polar Research Institute (SPRI), England. The SIR ice concentrations were compared with coincident concentrations from the Nimbus-7 SMMR. For concentrations greater than 40 percent, which was the smallest concentration observed jointly by SIR-B and the SMMR, the mean difference between the two data sets for 12 points was 2 percent. A comparison between the JPL and the SPRI SIR-B algorithms showed that the algorithms agree to within 1 percent in the interior ice pack, but the JPL algorithm gives slightly greater concentrations at the ice edge (due to the fact that the algorithm is affected by the wind waves in these areas).

  11. Observed platelet ice distributions in Antarctic sea ice: An index for ocean-ice shelf heat flux

    NASA Astrophysics Data System (ADS)

    Langhorne, P. J.; Hughes, K. G.; Gough, A. J.; Smith, I. J.; Williams, M. J. M.; Robinson, N. J.; Stevens, C. L.; Rack, W.; Price, D.; Leonard, G. H.; Mahoney, A. R.; Haas, C.; Haskell, T. G.

    2015-07-01

    Antarctic sea ice that has been affected by supercooled Ice Shelf Water (ISW) has a unique crystallographic structure and is called platelet ice. In this paper we synthesize platelet ice observations to construct a continent-wide map of the winter presence of ISW at the ocean surface. The observations demonstrate that, in some regions of coastal Antarctica, supercooled ISW drives a negative oceanic heat flux of -30 Wm-2 that persists for several months during winter, significantly affecting sea ice thickness. In other regions, particularly where the thinning of ice shelves is believed to be greatest, platelet ice is not observed. Our new data set includes the longest ice-ocean record for Antarctica, which dates back to 1902 near the McMurdo Ice Shelf. These historical data indicate that, over the past 100 years, any change in the volume of very cold surface outflow from this ice shelf is less than the uncertainties in the measurements.

  12. Sea-ice evaluation of NEMO-Nordic 1.0: a NEMO-LIM3.6-based ocean-sea-ice model setup for the North Sea and Baltic Sea

    NASA Astrophysics Data System (ADS)

    Pemberton, Per; Löptien, Ulrike; Hordoir, Robinson; Höglund, Anders; Schimanke, Semjon; Axell, Lars; Haapala, Jari

    2017-08-01

    The Baltic Sea is a seasonally ice-covered marginal sea in northern Europe with intense wintertime ship traffic and a sensitive ecosystem. Understanding and modeling the evolution of the sea-ice pack is important for climate effect studies and forecasting purposes. Here we present and evaluate the sea-ice component of a new NEMO-LIM3.6-based ocean-sea-ice setup for the North Sea and Baltic Sea region (NEMO-Nordic). The setup includes a new depth-based fast-ice parametrization for the Baltic Sea. The evaluation focuses on long-term statistics, from a 45-year long hindcast, although short-term daily performance is also briefly evaluated. We show that NEMO-Nordic is well suited for simulating the mean sea-ice extent, concentration, and thickness as compared to the best available observational data set. The variability of the annual maximum Baltic Sea ice extent is well in line with the observations, but the 1961-2006 trend is underestimated. Capturing the correct ice thickness distribution is more challenging. Based on the simulated ice thickness distribution we estimate the undeformed and deformed ice thickness and concentration in the Baltic Sea, which compares reasonably well with observations.

  13. The mass balance of the ice plain of Ice Stream B and Crary Ice Rise

    NASA Technical Reports Server (NTRS)

    Bindschadler, Robert

    1993-01-01

    The region in the mouth of Ice Stream B (the ice plain) and that in the vicinity of Crary Ice Rise are experiencing large and rapid changes. Based on velocity, ice thickness, and accumulation rate data, the patterns of net mass balance in these regions were calculated. Net mass balance, or the rate of ice thickness change, was calculated as the residual of all mass fluxes into and out of subregions (or boxes). Net mass balance provides a measure of the state of health of the ice sheet and clues to the current dynamics.

  14. Weddell-Scotia sea marginal ice zone observations from space, October 1984

    NASA Technical Reports Server (NTRS)

    Carsey, F. D.; Holt, B.; Martin, S.; Rothrock, D. A.; Mcnutt, L.

    1986-01-01

    Imagery from the Shuttle imaging radar-B experiment as well as other satellite and meteorological data are examined to learn more about the open sea ice margin of the Weddell-Scotia Seas region. At the ice edge, the ice forms into bandlike aggregates of small ice floes similar to those observed in the Bering Sea. The radar backscatter characteristics of these bands suggest that their upper surface is wet. Further into the pack, the radar imagery shows a transition to large floes. In the open sea, large icebergs and long surface gravity waves are discernable in the radar images.

  15. Operationally Monitoring Sea Ice at the Canadian Ice Service

    NASA Astrophysics Data System (ADS)

    de Abreu, R.; Flett, D.; Carrieres, T.; Falkingham, J.

    2004-05-01

    The Canadian Ice Service (CIS) of the Meteorological Service of Canada promotes safe and efficient maritime operations and protects Canada's environment by providing reliable and timely information about ice and iceberg conditions in Canadian waters. Daily and seasonal charts describing the extent, type and concentration of sea ice and icebergs are provided to support navigation and other activities (e.g. oil and gas) in coastal waters. The CIS relies on a suite of spaceborne visible, infrared and microwave sensors to operationally monitor ice conditions in Canadian coastal and inland waterways. These efforts are complemented by operational sea ice models that are customized and run at the CIS. The archive of these data represent a 35 year archive of ice conditions and have proven to be a valuable dataset for historical sea ice analysis. This presentation will describe the daily integration of remote sensing observations and modelled ice conditions used to produce ice and iceberg products. A review of the decadal evolution of this process will be presented, as well as a glimpse into the future of ice and iceberg monitoring. Examples of the utility of the CIS digital sea ice archive for climate studies will also be presented.

  16. Long-Term Observations of Atmospheric CO2, O3 and BrO over the Transitioning Arctic Ocean Pack-ice: The O-Buoy Chemical Network

    NASA Astrophysics Data System (ADS)

    Matrai, P.

    2016-02-01

    Autonomous, sea ice-tethered O-Buoys have been deployed (2009-2016) across the Arctic sea ice for long-term atmospheric measurements (http://www.o-buoy.org). O-Buoys (15) provide in-situ concentrations of three sentinel atmospheric chemicals, ozone, CO2 and BrO, as well as meteorological parameters and imagery, over the frozen ocean. O-Buoys were designed to transmit daily data over a period of 2 years while deployed in sea ice, as part of automated ice-drifting stations that include snow/ice measurement systems (e.g. Ice Mass Balance buoys) and oceanographic measurements (e.g. Ice Tethered Profilers). Seasonal changes in Arctic atmospheric chemistry are influenced by changes in the characteristics and presence of the sea ice vs. open water as well as air mass trajectories, especially during the winter-spring and summer-fall transitions when sea ice is melting and freezing, respectively. The O-Buoy Chemical Network provides the unique opportunity to observe these transition periods in real-time with high temporal resolution, and to compare them with those collected on land-based monitoring stations located. Due to the logistical challenges of measurements over the Arctic Ocean region, most long term, in-situ observations of atmospheric chemistry have been made at coastal or island sites around the periphery of the Arctic Ocean, leaving large spatial and temporal gaps that O-Buoys overcome. Advances in floatation, communications, power management, and sensor hardware have been made to overcome the challenges of diminished Arctic sea ice. O-Buoy data provide insights into enhanced seasonal, interannual and spatial variability in atmospheric composition, atmospheric boundary layer control on the amount of halogen activation, enhancement of the atmospheric CO2 signal over the more variable and porous pack ice, and to develop an integrated picture of the coupled ocean/ice/atmosphere system. As part of the Arctic Observing Network, we provide data to the community (www.aoncadis.org).

  17. Sea Ice and Hydrographic Variability in the Northwest North Atlantic

    NASA Astrophysics Data System (ADS)

    Fenty, I. G.; Heimbach, P.; Wunsch, C. I.

    2010-12-01

    Sea ice anomalies in the Northwest North Atlantic's Labrador Sea are of climatic interest because of known and hypothesized feedbacks with hydrographic anomalies, deep convection/mode water formation, and Northern Hemisphere atmospheric patterns. As greenhouse gas concentrations increase, hydrographic anomalies formed in the Arctic Ocean associated with warming will propagate into the Labrador Sea via the Fram Strait/West Greenland Current and the Canadian Archipelago/Baffin Island Current. Therefore, understanding the dynamical response of sea ice in the basin to hydrographic anomalies is essential for the prediction and interpretation of future high-latitude climate change. Historically, efforts to quantify the link between the observed sea ice and hydrographic variability in the region has been limited due to in situ observation paucity and technical challenges associated with synthesizing ocean and sea ice observations with numerical models. To elaborate the relationship between sea ice and ocean variability, we create three one-year (1992-1993, 1996-1997, 2003-2004) three-dimensional time-varying reconstructions of the ocean and sea ice state in Labrador Sea and Baffin Bay. The reconstructions are syntheses of a regional coupled 32 km ocean-sea ice model with a suite of contemporary in situ and satellite hydrographic and ice data using the adjoint method. The model and data are made consistent, in a least-squares sense, by iteratively adjusting several model control variables (e.g., ocean initial and lateral boundary conditions and the atmospheric state) to minimize an uncertainty-weighted model-data misfit cost function. The reconstructions reveal that the ice pack attains a state of quasi-equilibrium in mid-March (the annual sea ice maximum) in which the total ice-covered area reaches a steady state -ice production and dynamical divergence along the coasts balances dynamical convergence and melt along the pack’s seaward edge. Sea ice advected to the

  18. Sea Ice

    NASA Technical Reports Server (NTRS)

    Parkinson, Claire L.; Cavalieri, Donald J.

    2005-01-01

    Sea ice covers vast areas of the polar oceans, with ice extent in the Northern Hemisphere ranging from approximately 7 x 10(exp 6) sq km in September to approximately 15 x 10(exp 6) sq km in March and ice extent in the Southern Hemisphere ranging from approximately 3 x 10(exp 6) sq km in February to approximately 18 x 10(exp 6) sq km in September. These ice covers have major impacts on the atmosphere, oceans, and ecosystems of the polar regions, and so as changes occur in them there are potential widespread consequences. Satellite data reveal considerable interannual variability in both polar sea ice covers, and many studies suggest possible connections between the ice and various oscillations within the climate system, such as the Arctic Oscillation, North Atlantic Oscillation, and Antarctic Oscillation, or Southern Annular Mode. Nonetheless, statistically significant long-term trends are also apparent, including overall trends of decreased ice coverage in the Arctic and increased ice coverage in the Antarctic from late 1978 through the end of 2003, with the Antarctic ice increases following marked decreases in the Antarctic ice during the 1970s. For a detailed picture of the seasonally varying ice cover at the start of the 21st century, this chapter includes ice concentration maps for each month of 2001 for both the Arctic and the Antarctic, as well as an overview of what the satellite record has revealed about the two polar ice covers from the 1970s through 2003.

  19. 2. DETAIL OF DISCHARGE CHUTES FROM VOGT AUTOMATIC TUBE ICE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. DETAIL OF DISCHARGE CHUTES FROM VOGT AUTOMATIC TUBE ICE MACHINE IN SOUTHWEST CORNER OF LEVEL 5; ICE DROPPED INTO HOLDING BIN BEFORE BEING TRANSFERRED TO RAIL CARS OUTSIDE BUILDING (HENRY VOGT MACHINE COMPANY, LOUISVILLE, USA, PATENT NO. 2,200,424 - Rath Packing Company, Cooler Building, Sycamore Street between Elm & Eighteenth Streets, Waterloo, Black Hawk County, IA

  20. Validation and Interpretation of a new sea ice GlobIce dataset using buoys and the CICE sea ice model

    NASA Astrophysics Data System (ADS)

    Flocco, D.; Laxon, S. W.; Feltham, D. L.; Haas, C.

    2012-04-01

    The GlobIce project has provided high resolution sea ice product datasets over the Arctic derived from SAR data in the ESA archive. The products are validated sea ice motion, deformation and fluxes through straits. GlobIce sea ice velocities, deformation data and sea ice concentration have been validated using buoy data provided by the International Arctic Buoy Program (IABP). Over 95% of the GlobIce and buoy data analysed fell within 5 km of each other. The GlobIce Eulerian image pair product showed a high correlation with buoy data. The sea ice concentration product was compared to SSM/I data. An evaluation of the validity of the GlobICE data will be presented in this work. GlobICE sea ice velocity and deformation were compared with runs of the CICE sea ice model: in particular the mass fluxes through the straits were used to investigate the correlation between the winter behaviour of sea ice and the sea ice state in the following summer.

  1. Characterization of Ice Roughness From Simulated Icing Encounters

    NASA Technical Reports Server (NTRS)

    Anderson, David N.; Shin, Jaiwon

    1997-01-01

    Detailed measurements of the size of roughness elements on ice accreted on models in the NASA Lewis Icing Research Tunnel (IRT) were made in a previous study. Only limited data from that study have been published, but included were the roughness element height, diameter and spacing. In the present study, the height and spacing data were found to correlate with the element diameter, and the diameter was found to be a function primarily of the non-dimensional parameters freezing fraction and accumulation parameter. The width of the smooth zone which forms at the leading edge of the model was found to decrease with increasing accumulation parameter. Although preliminary, the success of these correlations suggests that it may be possible to develop simple relationships between ice roughness and icing conditions for use in ice-accretion-prediction codes. These codes now require an ice-roughness estimate to determine convective heat transfer. Studies using a 7.6-cm-diameter cylinder and a 53.3-cm-chord NACA 0012 airfoil were also performed in which a 1/2-min icing spray at an initial set of conditions was followed by a 9-1/2-min spray at a second set of conditions. The resulting ice shape was compared with that from a full 10-min spray at the second set of conditions. The initial ice accumulation appeared to have no effect on the final ice shape. From this result, it would appear the accreting ice is affected very little by the initial roughness or shape features.

  2. Submesoscale sea ice-ocean interactions in marginal ice zones

    NASA Astrophysics Data System (ADS)

    Thompson, A. F.; Manucharyan, G.

    2017-12-01

    Signatures of ocean eddies, fronts and filaments are commonly observed within the marginal ice zones (MIZ) from satellite images of sea ice concentration, in situ observations via ice-tethered profilers or under-ice gliders. Localized and intermittent sea ice heating and advection by ocean eddies are currently not accounted for in climate models and may contribute to their biases and errors in sea ice forecasts. Here, we explore mechanical sea ice interactions with underlying submesoscale ocean turbulence via a suite of numerical simulations. We demonstrate that the release of potential energy stored in meltwater fronts can lead to energetic submesoscale motions along MIZs with sizes O(10 km) and Rossby numbers O(1). In low-wind conditions, cyclonic eddies and filaments efficiently trap the sea ice and advect it over warmer surface ocean waters where it can effectively melt. The horizontal eddy diffusivity of sea ice mass and heat across the MIZ can reach O(200 m2 s-1). Submesoscale ocean variability also induces large vertical velocities (order of 10 m day-1) that can bring relatively warm subsurface waters into the mixed layer. The ocean-sea ice heat fluxes are localized over cyclonic eddies and filaments reaching about 100 W m-2. We speculate that these submesoscale-driven intermittent fluxes of heat and sea ice can potentially contribute to the seasonal evolution of MIZs. With continuing global warming and sea ice thickness reduction in the Arctic Ocean, as well as the large expanse of thin sea ice in the Southern Ocean, submesoscale sea ice-ocean processes are expected to play a significant role in the climate system.

  3. The interaction of propionic and butyric acids with ice and HNO₃-doped ice surfaces at 195-212 K.

    PubMed

    Romanias, Manolis N; Papadimitriou, Vassileios C; Papagiannakopoulos, Panos

    2014-12-04

    The interaction of propionic and butyric acids on ice and HNO3-doped ice were studied between 195 and 212 K and low concentrations, using a Knudsen flow reactor coupled with a quadrupole mass spectrometer. The initial uptake coefficients (γ0) of propionic and butyric acids on ice as a function of temperature are given by the expressions: γ0(T) = (7.30 ± 1.0) × 10(-10) exp[(3216 ± 478)/T] and γ0(T) = (6.36 ± 0.76) × 10(-11) exp[(3810 ± 434)/T], respectively; the quoted error limits are at 95% level of confidence. Similarly, γ0 of propionic acid on 1.96 wt % (A) and 7.69 wt % (B) HNO3-doped ice with temperature are given as γ(0,A)(T) = (2.89 ± 0.26) × 10(-8) exp[(2517 ± 266)/T] and γ(0,B)(T) = (2.77 ± 0.29) × 10(-7) exp[(2126 ± 206)/T], respectively. The results show that γ0 of C1 to C4 n-carboxylic acids on ice increase with the alkyl-group length, due to lateral interactions between alkyl-groups that favor a more perpendicular orientation and well packing of H-bonded monomers on ice. The high uptakes (>10(15) molecules cm(-2)) and long recovery signals indicate efficient growth of random multilayers above the first monolayer driven by significant van der Waals interactions. The heterogeneous loss of both acids on ice and HNO3-doped ice particles in dense cirrus clouds is estimated to take a few minutes, signifying rapid local heterogeneous removal by dense cirrus clouds.

  4. Ice Stars

    NASA Image and Video Library

    2017-12-08

    Ice Stars - August 4th, 2002 Description: Like distant galaxies amid clouds of interstellar dust, chunks of sea ice drift through graceful swirls of grease ice in the frigid waters of Foxe Basin near Baffin Island in the Canadian Arctic. Sea ice often begins as grease ice, a soupy slick of tiny ice crystals on the ocean's surface. As the temperature drops, grease ice thickens and coalesces into slabs of more solid ice. Credit: USGS/NASA/Landsat 7 To learn more about the Landsat satellite go to: landsat.gsfc.nasa.gov/ NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook

  5. Dissolved iron and iron(II) distributions beneath the pack ice in the East Antarctic (120°E) during the winter/spring transition

    NASA Astrophysics Data System (ADS)

    Schallenberg, Christina; van der Merwe, Pier; Chever, Fanny; Cullen, Jay T.; Lannuzel, Delphine; Bowie, Andrew R.

    2016-09-01

    Distributions of dissolved iron (dFe) and its reduced form, Fe(II), to a depth of 1000 m were investigated under the seasonal pack ice off East Antarctica during the Sea Ice Physics and Ecosystem experiment (SIPEX-2) sea-ice voyage in September-October 2012. Concentrations of dFe were elevated up to five-fold relative to Southern Ocean background concentrations and were spatially variable. The mean dFe concentration was 0.44±0.4 nM, with a range from 0.09 to 3.05 nM. Profiles of dFe were more variable within and among stations than were macronutrients, suggesting that coupling between these biologically-essential elements was weak at the time of the study. Brine rejection and drainage from sea ice are estimated to be the dominant contributors to elevated dFe concentrations in the mixed layer, but mass budget considerations indicate that estimated dFe fluxes from brine input alone are insufficient to account for all observed dFe. Melting icebergs and shelf sediments are suspected to provide the additional dFe. Fe(II) was mostly below the detection limit but elevated at depth near the continental shelf, implying that benthic processes are a source of reduced Fe in bottom waters. The data indicate that dFe builds up under the seasonal sea-ice cover during winter and that reduction of Fe may be hampered in early spring by several factors such as lack of electron donors, low biological productivity and inadequate light below the sea ice. The accumulated dFe pool in the mixed layer is expected to contribute to the formation of the spring bloom as the ice retreats.

  6. Upper-Tropospheric Cloud Ice from IceCube

    NASA Astrophysics Data System (ADS)

    Wu, D. L.

    2017-12-01

    Cloud ice plays important roles in Earth's energy budget and cloud-precipitation processes. Knowledge of global cloud ice and its properties is critical for understanding and quantifying its roles in Earth's atmospheric system. It remains a great challenge to measure these variables accurately from space. Submillimeter (submm) wave remote sensing has capability of penetrating clouds and measuring ice mass and microphysical properties. In particular, the 883-GHz frequency is a highest spectral window in microwave frequencies that can be used to fill a sensitivity gap between thermal infrared (IR) and mm-wave sensors in current spaceborne cloud ice observations. IceCube is a cubesat spaceflight demonstration of 883-GHz radiometer technology. Its primary objective is to raise the technology readiness level (TRL) of 883-GHz cloud radiometer for future Earth science missions. By flying a commercial receiver on a 3U cubesat, IceCube is able to achieve fast-track maturation of space technology, by completing its development, integration and testing in 2.5 years. IceCube was successfully delivered to ISS in April 2017 and jettisoned from the International Space Station (ISS) in May 2017. The IceCube cloud-ice radiometer (ICIR) has been acquiring data since the jettison on a daytime-only operation. IceCube adopted a simple design without payload mechanism. It makes maximum utilization of solar power by spinning the spacecraft continuously about the Sun vector at a rate of 1.2° per second. As a result, the ICIR is operated under the limited resources (8.6 W without heater) and largely-varying (18°C-28°C) thermal environments. The spinning cubesat also allows ICIR to have periodical views between the Earth (atmosphere and clouds) and cold space (calibration), from which the first 883-GHz cloud map is obtained. The 883-GHz cloud radiance, sensitive to ice particle scattering, is proportional to cloud ice amount above 10 km. The ICIR cloud map acquired during June 20-July 2

  7. Ice shelf fracture parameterization in an ice sheet model

    NASA Astrophysics Data System (ADS)

    Sun, Sainan; Cornford, Stephen L.; Moore, John C.; Gladstone, Rupert; Zhao, Liyun

    2017-11-01

    Floating ice shelves exert a stabilizing force onto the inland ice sheet. However, this buttressing effect is diminished by the fracture process, which on large scales effectively softens the ice, accelerating its flow, increasing calving, and potentially leading to ice shelf breakup. We add a continuum damage model (CDM) to the BISICLES ice sheet model, which is intended to model the localized opening of crevasses under stress, the transport of those crevasses through the ice sheet, and the coupling between crevasse depth and the ice flow field and to carry out idealized numerical experiments examining the broad impact on large-scale ice sheet and shelf dynamics. In each case we see a complex pattern of damage evolve over time, with an eventual loss of buttressing approximately equivalent to halving the thickness of the ice shelf. We find that it is possible to achieve a similar ice flow pattern using a simple rule of thumb: introducing an enhancement factor ˜ 10 everywhere in the model domain. However, spatially varying damage (or equivalently, enhancement factor) fields set at the start of prognostic calculations to match velocity observations, as is widely done in ice sheet simulations, ought to evolve in time, or grounding line retreat can be slowed by an order of magnitude.

  8. Modeling Sea Ice Trajectories for Oil Spill Tracking.

    DTIC Science & Technology

    1981-06-01

    is compared with sea ice motions observed during the AIDJEX main field experiment in the Beaufort Sea from April 1975 to February 1976. The average ...more recently grown on leads formed as the floes fracture and divide. The large-scale average thickness of the pack ice is roughly 3 m. As an...opposite extreme, during the summer when air temperatures rise above freezing, melting and offshore winds combine to form an approximately 300-km-wide swath

  9. Microbiological quality of ice and ice machines used in food establishments.

    PubMed

    Hampikyan, Hamparsun; Bingol, Enver Baris; Cetin, Omer; Colak, Hilal

    2017-06-01

    The ice used in the food industry has to be safe and the water used in ice production should have the quality of drinking water. The consumption of contaminated ice directly or indirectly may be a vehicle for transmission of pathogenic bacteria to humans producing outbreaks of gastrointestinal diseases. The objective of this study was to monitor the microbiological quality of ice, the water used in producing ice and the hygienic conditions of ice making machines in various food enterprises. Escherichia coli was detected in seven (6.7%) ice and 23 (21.9%) ice chest samples whereas E. coli was negative in all examined water samples. Psychrophilic bacteria were detected in 83 (79.0%) of 105 ice chest and in 68 (64.7%) of 105 ice samples, whereas Enterococci were detected only in 13 (12.4%) ice samples. Coliforms were detected in 13 (12.4%) water, 71 (67.6%) ice chest and 54 (51.4%) ice samples. In order to improve the microbiological quality of ice, the maintenance, cleaning and disinfecting of ice machines should be carried out effectively and periodically. Also, high quality water should be used for ice production.

  10. Constraining ice sheet history in the Weddell Sea, West Antarctica, using ice fabric at Korff Ice Rise

    NASA Astrophysics Data System (ADS)

    Brisbourne, A.; Smith, A.; Kendall, J. M.; Baird, A. F.; Martin, C.; Kingslake, J.

    2017-12-01

    The grounding history of ice rises (grounded area of independent flow regime within a floating ice shelf) can be used to constrain large scale ice sheet history: ice fabric, resulting from the preferred orientation of ice crystals due to the stress regime, can be used to infer this grounding history. With the aim of measuring the present day ice fabric at Korff Ice Rise, West Antarctica, a multi-azimuth wide-angle seismic experiment was undertaken. Three wide-angle common-midpoint gathers were acquired centred on the apex of the ice rise, at azimuths of 60 degrees to one another, to measure variation in seismic properties with offset and azimuth. Both vertical and horizontal receivers were used to record P and S arrivals including converted phases. Measurements of the variation with offset and azimuth of seismic traveltimes, seismic attenuation and shear wave splitting have been used to quantify seismic anisotropy in the ice column. The observations cannot be reproduced using an isotropic ice column model. Anisotropic ray tracing has been used to test likely models of ice fabric by comparison with the data. A model with a weak girdle fabric overlying a strong cluster fabric provides the best fit to the observations. Fabric of this nature is consistent with Korff Ice Rise having been stable for the order of 10,000 years without any ungrounding or significant change in the ice flow configuration across the ice rise for this period. This observation has significant implications for the ice sheet history of the Weddell Sea sector.

  11. Upper Ocean Evolution Across the Beaufort Sea Marginal Ice Zone from Autonomous Gliders

    NASA Astrophysics Data System (ADS)

    Lee, Craig; Rainville, Luc; Perry, Mary Jane

    2016-04-01

    The observed reduction of Arctic summertime sea ice extent and expansion of the marginal ice zone (MIZ) have profound impacts on the balance of processes controlling sea ice evolution, including the introduction of several positive feedback mechanisms that may act to accelerate melting. Examples of such feedbacks include increased upper ocean warming though absorption of solar radiation, elevated internal wave energy and mixing that may entrain heat stored in subsurface watermasses (e.g., the relatively warm Pacific Summer (PSW) and Atlantic (AW) waters), and elevated surface wave energy that acts to deform and fracture sea ice. Spatial and temporal variability in ice properties and open water fraction impact these processes. To investigate how upper ocean structure varies with changing ice cover, and how the balance of processes shift as a function of ice fraction and distance from open water, four long-endurance autonomous Seagliders occupied sections that extended from open water, through the marginal ice zone, deep into the pack during summer 2014 in the Beaufort Sea. Sections reveal strong fronts where cold, ice-covered waters meet waters that have been exposed to solar warming, and O(10 km) scale eddies near the ice edge. In the pack, Pacific Summer Water and a deep chlorophyll maximum form distinct layers at roughly 60 m and 80 m, respectively, which become increasingly diffuse as they progress through the MIZ and into open water. The isopynal layer between 1023 and 1024 kgm-3, just above the PSW, consistently thickens near the ice edge, likely due to mixing or energetic vertical exchange associated with strong lateral gradients in this region. This presentation will discuss the upper ocean variability, its relationship to sea ice extent, and evolution over the summer to the start of freeze up.

  12. Upper Ocean Evolution Across the Beaufort Sea Marginal Ice Zone from Autonomous Gliders

    NASA Astrophysics Data System (ADS)

    Lee, C.; Rainville, L.; Perry, M. J.

    2016-02-01

    The observed reduction of Arctic summertime sea ice extent and expansion of the marginal ice zone (MIZ) have profound impacts on the balance of processes controlling sea ice evolution, including the introduction of several positive feedback mechanisms that may act to accelerate melting. Examples of such feedbacks include increased upper ocean warming though absorption of solar radiation, elevated internal wave energy and mixing that may entrain heat stored in subsurface watermasses (e.g., the relatively warm Pacific Summer (PSW) and Atlantic (AW) waters), and elevated surface wave energy that acts to deform and fracture sea ice. Spatial and temporal variability in ice properties and open water fraction impact these processes. To investigate how upper ocean structure varies with changing ice cover, and how the balance of processes shift as a function of ice fraction and distance from open water, four long-endurance autonomous Seagliders occupied sections that extended from open water, through the marginal ice zone, deep into the pack during summer 2014 in the Beaufort Sea. Sections reveal strong fronts where cold, ice-covered waters meet waters that have been exposed to solar warming, and O(10 km) scale eddies near the ice edge. In the pack, Pacific Summer Water and a deep chlorophyll maximum form distinct layers at roughly 60 m and 80 m, respectively, which become increasingly diffuse as they progress through the MIZ and into open water. The isopynal layer between 1023 and 1024 kg m-3, just above the PSW, consistently thickens near the ice edge, likely due to mixing or energetic vertical exchange associated with strong lateral gradients in this region. This presentation will discuss the upper ocean variability, its relationship to sea ice extent, and evolution over the summer to the start of freeze up.

  13. Submesoscale Sea Ice-Ocean Interactions in Marginal Ice Zones

    NASA Astrophysics Data System (ADS)

    Manucharyan, Georgy E.; Thompson, Andrew F.

    2017-12-01

    Signatures of ocean eddies, fronts, and filaments are commonly observed within marginal ice zones (MIZs) from satellite images of sea ice concentration, and in situ observations via ice-tethered profilers or underice gliders. However, localized and intermittent sea ice heating and advection by ocean eddies are currently not accounted for in climate models and may contribute to their biases and errors in sea ice forecasts. Here, we explore mechanical sea ice interactions with underlying submesoscale ocean turbulence. We demonstrate that the release of potential energy stored in meltwater fronts can lead to energetic submesoscale motions along MIZs with spatial scales O(10 km) and Rossby numbers O(1). In low-wind conditions, cyclonic eddies and filaments efficiently trap the sea ice and advect it over warmer surface ocean waters where it can effectively melt. The horizontal eddy diffusivity of sea ice mass and heat across the MIZ can reach O(200 m2 s-1). Submesoscale ocean variability also induces large vertical velocities (order 10 m d-1) that can bring relatively warm subsurface waters into the mixed layer. The ocean-sea ice heat fluxes are localized over cyclonic eddies and filaments reaching about 100 W m-2. We speculate that these submesoscale-driven intermittent fluxes of heat and sea ice can contribute to the seasonal evolution of MIZs. With the continuing global warming and sea ice thickness reduction in the Arctic Ocean, submesoscale sea ice-ocean processes are expected to become increasingly prominent.

  14. Local Effects of Ice Floes on Skin Sea Surface Temperature in the Marginal Ice Zone from UAVs

    NASA Astrophysics Data System (ADS)

    Zappa, C. J.; Brown, S.; Emery, W. J.; Adler, J.; Wick, G. A.; Steele, M.; Palo, S. E.; Walker, G.; Maslanik, J. A.

    2013-12-01

    downstream the skin SST is mixed within the turbulent wake over 10s of meters. We compare the structure of circulation and mixing of the influx of cold skin SST driven by surface currents and wind. In-situ temperature measurements provide the context for the vertical structure of the mixing and its impact on the skin SST. Furthermore, comparisons to satellite-derived sea surface temperature of the region are presented. The accuracy of satellite derived SST products and how well the observed skin SSTs represent ocean bulk temperatures in polar regions is not well understood, due in part to lack of observations. Estimated error in the polar seas is relatively high at up to 0.4 deg. C compared to less than 0.2 deg. C for other areas. The goal of these and future analyses of the MIZOPEX data set is to elucidate a basic question that is significant for the entire Earth system. Have these regions passed a tipping point, such that they are now essentially acting as sub-Arctic seas where ice disappears in summer, or instead whether the changes are transient, with the potential for the ice pack to recover?

  15. Modeling Commercial Turbofan Engine Icing Risk With Ice Crystal Ingestion

    NASA Technical Reports Server (NTRS)

    Jorgenson, Philip C. E.; Veres, Joseph P.

    2013-01-01

    The occurrence of ice accretion within commercial high bypass aircraft turbine engines has been reported under certain atmospheric conditions. Engine anomalies have taken place at high altitudes that have been attributed to ice crystal ingestion, partially melting, and ice accretion on the compression system components. The result was degraded engine performance, and one or more of the following: loss of thrust control (roll back), compressor surge or stall, and flameout of the combustor. As ice crystals are ingested into the fan and low pressure compression system, the increase in air temperature causes a portion of the ice crystals to melt. It is hypothesized that this allows the ice-water mixture to cover the metal surfaces of the compressor stationary components which leads to ice accretion through evaporative cooling. Ice accretion causes a blockage which subsequently results in the deterioration in performance of the compressor and engine. The focus of this research is to apply an engine icing computational tool to simulate the flow through a turbofan engine and assess the risk of ice accretion. The tool is comprised of an engine system thermodynamic cycle code, a compressor flow analysis code, and an ice particle melt code that has the capability of determining the rate of sublimation, melting, and evaporation through the compressor flow path, without modeling the actual ice accretion. A commercial turbofan engine which has previously experienced icing events during operation in a high altitude ice crystal environment has been tested in the Propulsion Systems Laboratory (PSL) altitude test facility at NASA Glenn Research Center. The PSL has the capability to produce a continuous ice cloud which are ingested by the engine during operation over a range of altitude conditions. The PSL test results confirmed that there was ice accretion in the engine due to ice crystal ingestion, at the same simulated altitude operating conditions as experienced previously in

  16. First Principles Simulations of Ice Nucleation at Metal Surfaces

    NASA Astrophysics Data System (ADS)

    Michaelides, Angelos

    2005-03-01

    Ice nucleation at solid surfaces is of relevance to countless scientific and technological processes. In particular the nucleation of ice nano-crystals on metal surfaces is often a key first step in cloud formation and corrosion [1]. Yet unfortunately this remains one of the most poorly understood natural phenomena; severely lacking in atomic level understanding. Here, we discuss detailed density functional theory studies aimed at putting our understanding of ice nucleation at metals on a much firmer footing. Specifically the properties of H2O hexamers - the smallest `building blocks' of ice - adsorbed on a number of close-packed transition metal surfaces have been examined. We find that the competing influences of substrate reactivity and hexamer-substrate epitaxial mismatch conspire to yield a rich variety of (novel) hexameric ice structures, some of which have been observed by recent scanning tunnelling microscopy experiments [2]. [1] H.R. Pruppacher and J.D. Klett, Microphysics of Clouds and Precipitation, (Kluwer, Dordrecht, 2003). [2] K. Morgenstern, et al., (To be published).

  17. Autonomous Ice Mass Balance Buoys for Seasonal Sea Ice

    NASA Astrophysics Data System (ADS)

    Whitlock, J. D.; Planck, C.; Perovich, D. K.; Parno, J. T.; Elder, B. C.; Richter-Menge, J.; Polashenski, C. M.

    2017-12-01

    The ice mass-balance represents the integration of all surface and ocean heat fluxes and attributing the impact of these forcing fluxes on the ice cover can be accomplished by increasing temporal and spatial measurements. Mass balance information can be used to understand the ongoing changes in the Arctic sea ice cover and to improve predictions of future ice conditions. Thinner seasonal ice in the Arctic necessitates the deployment of Autonomous Ice Mass Balance buoys (IMB's) capable of long-term, in situ data collection in both ice and open ocean. Seasonal IMB's (SIMB's) are free floating IMB's that allow data collection in thick ice, thin ice, during times of transition, and even open water. The newest generation of SIMB aims to increase the number of reliable IMB's in the Arctic by leveraging inexpensive commercial-grade instrumentation when combined with specially developed monitoring hardware. Monitoring tasks are handled by a custom, expandable data logger that provides low-cost flexibility for integrating a large range of instrumentation. The SIMB features ultrasonic sensors for direct measurement of both snow depth and ice thickness and a digital temperature chain (DTC) for temperature measurements every 2cm through both snow and ice. Air temperature and pressure, along with GPS data complete the Arctic picture. Additionally, the new SIMB is more compact to maximize deployment opportunities from multiple types of platforms.

  18. Phytoplankton standing crops within an Antarctic ice edge assessed by satellite remote sensing

    NASA Technical Reports Server (NTRS)

    Sullivan, C. W.; Mcclain, C. R.; Comiso, J. C.; Smith, W. O., Jr.

    1988-01-01

    The dynamic interactions between the pack-ice recession and the occurrence of ice blooms of phytoplankton in waters of the marginal ice zone within an Antarctic ice edge were investigated using CZCS and SMMR imageries from the Nimbus 7 satellite (September 16-December 17, 1983), together with in situ measurements of pigments and sea ice concentration carried out from November 7 to December 2. A substantial amount of spatial variability in pigment concentration was observed to occur along the ice edge in the Weddell Sea. The relationships among light, ice distribution, and vertical stability and their effects on observed spatial variations in phytoplankton biomass are discussed. The results of this investigation suggest that the retreat of ice provides an input of significant volumes of meltwater which creates vertical stability for a period necessary to permit growth and accumulation of phytoplankton.

  19. Spin Ice

    NASA Astrophysics Data System (ADS)

    Bramwell, Steven T.; Gingras, Michel J. P.; Holdsworth, Peter C. W.

    2013-03-01

    Pauling's model of hydrogen disorder in water ice represents the prototype of a frustrated system. Over the years it has spawned several analogous models, including Anderson's model antiferromagnet and the statistical "vertex" models. Spin Ice is a sixteen vertex model of "ferromagnetic frustration" that is approximated by real materials, most notably the rare earth pyrochlores Ho2Ti2O7, Dy2Ti2O7 and Ho2Sn2O7. These "spin ice materials" have the Pauling zero point entropy and in all respects represent almost ideal realisations of Pauling's model. They provide experimentalists with unprecedented access to a wide variety of novel magnetic states and phase transitions that are located in different regions of the field-temperature phase diagram. They afford theoreticians the opportunity to explore many new features of the magnetic interactions and statistical mechanics of frustrated systems. This chapter is a comprehensive review of the physics -- both experimental and theoretical -- of spin ice. It starts with a discussion of the historic problem of water ice and its relation to spin ice and other frustrated magnets. The properties of spin ice are then discussed in three sections that deal with the zero field spin ice state, the numerous field-induced states (including the recently identified "kagomé ice") and the magnetic dynamics. Some materials related to spin ice are briefly described and the chapter is concluded with a short summary of spin ice physics.

  20. Vapor deposition of water on graphitic surfaces: formation of amorphous ice, bilayer ice, ice I, and liquid water.

    PubMed

    Lupi, Laura; Kastelowitz, Noah; Molinero, Valeria

    2014-11-14

    Carbonaceous surfaces are a major source of atmospheric particles and could play an important role in the formation of ice. Here we investigate through molecular simulations the stability, metastability, and molecular pathways of deposition of amorphous ice, bilayer ice, and ice I from water vapor on graphitic and atomless Lennard-Jones surfaces as a function of temperature. We find that bilayer ice is the most stable ice polymorph for small cluster sizes, nevertheless it can grow metastable well above its region of thermodynamic stability. In agreement with experiments, the simulations predict that on increasing temperature the outcome of water deposition is amorphous ice, bilayer ice, ice I, and liquid water. The deposition nucleation of bilayer ice and ice I is preceded by the formation of small liquid clusters, which have two wetting states: bilayer pancake-like (wetting) at small cluster size and droplet-like (non-wetting) at larger cluster size. The wetting state of liquid clusters determines which ice polymorph is nucleated: bilayer ice nucleates from wetting bilayer liquid clusters and ice I from non-wetting liquid clusters. The maximum temperature for nucleation of bilayer ice on flat surfaces, T(B)(max) is given by the maximum temperature for which liquid water clusters reach the equilibrium melting line of bilayer ice as wetting bilayer clusters. Increasing water-surface attraction stabilizes the pancake-like wetting state of liquid clusters leading to larger T(B)(max) for the flat non-hydrogen bonding surfaces of this study. The findings of this study should be of relevance for the understanding of ice formation by deposition mode on carbonaceous atmospheric particles, including soot.

  1. Accretion growth of water-ice grains in astrophysically-relevant dusty plasma experiment

    NASA Astrophysics Data System (ADS)

    Chai, Kil-Byoung; Marshall, Ryan; Bellan, Paul

    2016-10-01

    The grain growth process in the Caltech water-ice dusty plasma experiment has been studied using a high-speed camera equipped with a long-distance microscope lens. It is found that (i) the ice grain number density decreases four-fold as the average grain length increases from 20 to 80 um, (ii) the ice grain length has a log-normal distribution rather than a power-law dependence, and (iii) no collisions between ice grains are apparent. The grains have a large negative charge so the agglomeration growth is prevented by their strong mutual repulsion. It is concluded that direct accretion of water molecules is in good agreement with the observed ice grain growth. The volumetric packing factor of the ice grains must be less than 0.25 in order for the grain kinetic energy to be sufficiently small to prevent collisions between ice grains; this conclusion is consistent with ice grain images showing a fractal character.

  2. Wave-Ice interaction in the Marginal Ice Zone: Toward a Wave-Ocean-Ice Coupled Modeling System

    DTIC Science & Technology

    2015-09-30

    MIZ using WW3 (3 frequency bins, ice retreat in August and ice advance in October); Blue (solid): Based on observations near Antarctica by Meylan...1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Wave- Ice interaction in the Marginal Ice Zone: Toward a...Wave-Ocean- Ice Coupled Modeling System W. E. Rogers Naval Research Laboratory, Code 7322 Stennis Space Center, MS 39529 phone: (228) 688-4727

  3. Bacterial activity in sea ice and open water of the Weddell Sea, Antarctica: A microautoradiographic study.

    PubMed

    Grossmann, S

    1994-07-01

    Metabolic activity of bacteria was investigated in open water, newly forming sea ice, and successive stages of pack ice in the Weddell Sea. Microautoradiography, using [(3)H]leucine as substrate, was compared with incorporation rates of [(3)H]leucine into proteins. Relation of [(3)H]leucine incorporation to the biomass of active bacteria provides information about changes of specific metabolic activity of cells. During a phytoplankton bloom in an ice-free, stratified water column, total numbers of bacteria in the euphotic zone averaged 2.3 × 10(5) ml(-1), but only about 13% showed activity via leucine uptake. Growth rate of the active bacteria was estimated as 0.3-0.4 days(-1). Total cell concentration of bacteria in 400 m depth was 6.6 × 10(4) ml(-1). Nearly 50% of these cells were active, although biomass production and specific growth rate were only about one-tenth that of the surface populations. When sea ice was forming in high concentrations of phytoplankton, bacterial biomass in the newly formed ice was 49.1 ng C ml(-1), exceeding that in open water by about one order of magnitude. Attachment of large bacteria to algal cells seems to cause their enrichment in the new ice, since specific bacterial activity was reduced during ice formation, and enrichment of bacteria was not observed when ice formed at low algal concentration. During growth of pack ice, biomass of bacteria increased within the brine channel system. Specific activity was still reduced at these later stages of ice development, and percentages of active cells were as low as 3-5%. In old, thick pack ice, bacterial activity was high and about 30% of cells were active. However, biomass-specific activity of bacteria remained significantly lower than that in open water. It is concluded that bacterial assemblages different to those of open water developed within the ice and were dominated by bacteria with lower average metabolic activity than those of ice-free water.

  4. Mechanical sea-ice strength parameterized as a function of ice temperature

    NASA Astrophysics Data System (ADS)

    Hata, Yukie; Tremblay, Bruno

    2016-04-01

    Mechanical sea-ice strength is key for a better simulation of the timing of landlock ice onset and break-up in the Canadian Arctic Archipelago (CAA). We estimate the mechanical strength of sea ice in the CAA by analyzing the position record measured by the several buoys deployed in the CAA between 2008 and 2013, and wind data from the Canadian Meteorological Centre's Global Deterministic Prediction System (CMC_GDPS) REforecasts (CGRF). First, we calculate the total force acting on the ice using the wind data. Next, we estimate upper (lower) bounds on the sea-ice strength by identifying cases when the sea ice deforms (does not deform) under the action of a given total force. Results from this analysis show that the ice strength of landlock sea ice in the CAA is approximately 40 kN/m on the landfast ice onset (in ice growth season). Additionally, it becomes approximately 10 kN/m on the landfast ice break-up (in melting season). The ice strength decreases with ice temperature increase, which is in accord with results from Johnston [2006]. We also include this new parametrization of sea-ice strength as a function of ice temperature in a coupled slab ocean sea ice model. The results from the model with and without the new parametrization are compared with the buoy data from the International Arctic Buoy Program (IABP).

  5. Advances in Airborne Altimetric Techniques for the Measurement of Snow on Arctic Sea Ice

    NASA Astrophysics Data System (ADS)

    Newman, T.; Farrell, S. L.; Richter-Menge, J.; Elder, B. C.; Ruth, J.; Connor, L. N.

    2014-12-01

    Current sea ice observations and models indicate a transition towards a more seasonal Arctic ice pack with a smaller, and geographically more variable, multiyear ice component. To gain a comprehensive understanding of the processes governing this transition it is important to include the impact of the snow cover, determining the mechanisms by which snow is both responding to and forcing changes to the sea ice pack. Data from NASA's Operation IceBridge (OIB) snow radar system, which has been making yearly surveys of the western Arctic since 2009, offers a key resource for investigating the snow cover. In this work, we characterize the OIB snow radar instrument response to ascertain the location of 'side-lobes', aiding the interpretation of snow radar data. We apply novel wavelet-based techniques to identify the primary reflecting interfaces within the snow pack from which snow depth estimates are derived. We apply these techniques to the range of available snow radar data collected over the last 6 years during the NASA OIB mission. Our results are validated through comparison with a range of in-situ data. We discuss the impact of sea ice surface morphology on snow radar returns (with respect to ice type) and the topographic conditions over which accurate snow-radar-derived snow depths may be obtained. Finally we present improvements to in situ survey design that will allow for both an improved sampling of the snow radar footprint and more accurate assessment of the uncertainties in radar-derived snow depths in the future.

  6. Space Radar Image of Weddell Sea Ice

    NASA Image and Video Library

    1999-04-15

    This is the first calibrated, multi-frequency, multi-polarization spaceborne radar image of the seasonal sea-ice cover in the Weddell Sea, Antarctica. The multi-channel data provide scientists with details about the ice pack they cannot see any other way and indicates that the large expanse of sea-ice is, in fact, comprised of many smaller rounded ice floes, shown in blue-gray. These data are particularly useful in helping scientists estimate the thickness of the ice cover which is often extremely difficult to measure with other remote sensing systems. The extent, and especially thickness, of the polar ocean's sea-ice cover together have important implications for global climate by regulating the loss of heat from the ocean to the cold polar atmosphere. The image was acquired on October 3, 1994, by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) onboard the space shuttle Endeavour. This image is produced by overlaying three channels of radar data in the following colors: red (C-band, HH-polarization), green (L-band HV-polarization), and blue (L-band, HH-polarization). The image is oriented almost east-west with a center location of 58.2 degrees South and 21.6 degrees East. Image dimensions are 45 kilometers by 18 kilometers (28 miles by 11 miles). Most of the ice cover is composed of rounded, undeformed blue-gray floes, about 0.7 meters (2 feet) thick, which are surrounded by a jumble of red-tinged deformed ice pieces which are up to 2 meters (7 feet) thick. The winter cycle of ice growth and deformation often causes this ice cover to split apart, exposing open water or "leads." Ice growth within these openings is rapid due to the cold, brisk Antarctic atmosphere. Different stages of new-ice growth can be seen within the linear leads, resulting from continuous opening and closing. The blue lines within the leads are open water areas in new fractures which are roughened by wind. The bright red lines are an intermediate stage of new-ice

  7. Sensitivity of open-water ice growth and ice concentration evolution in a coupled atmosphere-ocean-sea ice model

    NASA Astrophysics Data System (ADS)

    Shi, Xiaoxu; Lohmann, Gerrit

    2017-09-01

    A coupled atmosphere-ocean-sea ice model is applied to investigate to what degree the area-thickness distribution of new ice formed in open water affects the ice and ocean properties. Two sensitivity experiments are performed which modify the horizontal-to-vertical aspect ratio of open-water ice growth. The resulting changes in the Arctic sea-ice concentration strongly affect the surface albedo, the ocean heat release to the atmosphere, and the sea-ice production. The changes are further amplified through a positive feedback mechanism among the Arctic sea ice, the Atlantic Meridional Overturning Circulation (AMOC), and the surface air temperature in the Arctic, as the Fram Strait sea ice import influences the freshwater budget in the North Atlantic Ocean. Anomalies in sea-ice transport lead to changes in sea surface properties of the North Atlantic and the strength of AMOC. For the Southern Ocean, the most pronounced change is a warming along the Antarctic Circumpolar Current (ACC), owing to the interhemispheric bipolar seasaw linked to AMOC weakening. Another insight of this study lies on the improvement of our climate model. The ocean component FESOM is a newly developed ocean-sea ice model with an unstructured mesh and multi-resolution. We find that the subpolar sea-ice boundary in the Northern Hemisphere can be improved by tuning the process of open-water ice growth, which strongly influences the sea ice concentration in the marginal ice zone, the North Atlantic circulation, salinity and Arctic sea ice volume. Since the distribution of new ice on open water relies on many uncertain parameters and the knowledge of the detailed processes is currently too crude, it is a challenge to implement the processes realistically into models. Based on our sensitivity experiments, we conclude a pronounced uncertainty related to open-water sea ice growth which could significantly affect the climate system sensitivity.

  8. Greenland ice sheet retreat since the Little Ice Age

    NASA Astrophysics Data System (ADS)

    Beitch, Marci J.

    Late 20th century and 21st century satellite imagery of the perimeter of the Greenland Ice Sheet (GrIS) provide high resolution observations of the ice sheet margins. Examining changes in ice margin positions over time yield measurements of GrIS area change and rates of margin retreat. However, longer records of ice sheet margin change are needed to establish more accurate predictions of the ice sheet's future response to global conditions. In this study, the trimzone, the area of deglaciated terrain along the ice sheet edge that lacks mature vegetation cover, is used as a marker of the maximum extent of the ice from its most recent major advance during the Little Ice Age. We compile recently acquired Landsat ETM+ scenes covering the perimeter of the GrIS on which we map area loss on land-, lake-, and marine-terminating margins. We measure an area loss of 13,327 +/- 830 km2, which corresponds to 0.8% shrinkage of the ice sheet. This equates to an averaged horizontal retreat of 363 +/- 69 m across the entire GrIS margin. Mapping the areas exposed since the Little Ice Age maximum, circa 1900 C.E., yields a century-scale rate of change. On average the ice sheet lost an area of 120 +/- 16 km 2/yr, or retreated at a rate of 3.3 +/- 0.7 m/yr since the LIA maximum.

  9. Wilkins Ice Shelf

    NASA Image and Video Library

    2009-04-20

    The Wilkins Ice Shelf, as seen by NASA Terra spacecraft, on the western side of the Antarctic Peninsula, experienced multiple disintegration events in 2008. By the beginning of 2009, a narrow ice bridge was all that remained to connect the ice shelf to ice fragments fringing nearby Charcot Island. That bridge gave way in early April 2009. Days after the ice bridge rupture, on April 12, 2009, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite acquired this image of the southern base of the ice bridge, where it connected with the remnant ice shelf. Although the ice bridge has played a role in stabilizing the ice fragments in the region, its rupture doesn't guarantee the ice will immediately move away. http://photojournal.jpl.nasa.gov/catalog/PIA11991

  10. Microalgal photophysiology and macronutrient distribution in summer sea ice in the Amundsen and Ross Seas, Antarctica

    PubMed Central

    Fransson, Agneta; Currie, Kim; Wulff, Angela; Chierici, Melissa

    2018-01-01

    Our study addresses how environmental variables, such as macronutrients concentrations, snow cover, carbonate chemistry and salinity affect the photophysiology and biomass of Antarctic sea-ice algae. We have measured vertical profiles of inorganic macronutrients (phosphate, nitrite + nitrate and silicic acid) in summer sea ice and photophysiology of ice algal assemblages in the poorly studied Amundsen and Ross Seas sectors of the Southern Ocean. Brine-scaled bacterial abundance, chl a and macronutrient concentrations were often high in the ice and positively correlated with each other. Analysis of photosystem II rapid light curves showed that microalgal cells in samples with high phosphate and nitrite + nitrate concentrations had reduced maximum relative electron transport rate and photosynthetic efficiency. We also observed strong couplings of PSII parameters to snow depth, ice thickness and brine salinity, which highlights a wide range of photoacclimation in Antarctic pack-ice algae. It is likely that the pack ice was in a post-bloom situation during the late sea-ice season, with low photosynthetic efficiency and a high degree of nutrient accumulation occurring in the ice. In order to predict how key biogeochemical processes are affected by future changes in sea ice cover, such as in situ photosynthesis and nutrient cycling, we need to understand how physicochemical properties of sea ice affect the microbial community. Our results support existing hypothesis about sea-ice algal photophysiology, and provide additional observations on high nutrient concentrations in sea ice that could influence the planktonic communities as the ice is retreating. PMID:29634756

  11. A review of sea ice proxy information from polar ice cores

    NASA Astrophysics Data System (ADS)

    Abram, Nerilie J.; Wolff, Eric W.; Curran, Mark A. J.

    2013-11-01

    Sea ice plays an important role in Earth's climate system. The lack of direct indications of past sea ice coverage, however, means that there is limited knowledge of the sensitivity and rate at which sea ice dynamics are involved in amplifying climate changes. As such, there is a need to develop new proxy records for reconstructing past sea ice conditions. Here we review the advances that have been made in using chemical tracers preserved in ice cores to determine past changes in sea ice cover around Antarctica. Ice core records of sea salt concentration show promise for revealing patterns of sea ice extent particularly over glacial-interglacial time scales. In the coldest climates, however, the sea salt signal appears to lose sensitivity and further work is required to determine how this proxy can be developed into a quantitative sea ice indicator. Methane sulphonic acid (MSA) in near-coastal ice cores has been used to reconstruct quantified changes and interannual variability in sea ice extent over shorter time scales spanning the last ˜160 years, and has potential to be extended to produce records of Antarctic sea ice changes throughout the Holocene. However the MSA ice core proxy also requires careful site assessment and interpretation alongside other palaeoclimate indicators to ensure reconstructions are not biased by non-sea ice factors, and we summarise some recommended strategies for the further development of sea ice histories from ice core MSA. For both proxies the limited information about the production and transfer of chemical markers from the sea ice zone to the Antarctic ice sheets remains an issue that requires further multidisciplinary study. Despite some exploratory and statistical work, the application of either proxy as an indicator of sea ice change in the Arctic also remains largely unknown. As information about these new ice core proxies builds, so too does the potential to develop a more comprehensive understanding of past changes in sea

  12. Ice recrystallization inhibition in ice cream by propylene glycol monostearate.

    PubMed

    Aleong, J M; Frochot, S; Goff, H D

    2008-11-01

    The effectiveness of propylene glycol monostearate (PGMS) to inhibit ice recrystallization was evaluated in ice cream and frozen sucrose solutions. PGMS (0.3%) dramatically reduced ice crystal sizes in ice cream and in sucrose solutions frozen in a scraped-surface freezer before and after heat shock, but had no effect in quiescently frozen solutions. PGMS showed limited emulsifier properties by promoting smaller fat globule size distributions and enhanced partial coalescence in the mix and ice cream, respectively, but at a much lower level compared to conventional ice cream emulsifier. Low temperature scanning electron microscopy revealed highly irregular crystal morphology in both ice cream and sucrose solutions frozen in a scraped-surface freezer. There was strong evidence to suggest that PGMS directly interacts with ice crystals and interferes with normal surface propagation. Shear during freezing may be required for its distribution around the ice and sufficient surface coverage.

  13. Snow contribution to first-year and second-year Arctic sea ice mass balance north of Svalbard

    NASA Astrophysics Data System (ADS)

    Granskog, Mats A.; Rösel, Anja; Dodd, Paul A.; Divine, Dmitry; Gerland, Sebastian; Martma, Tõnu; Leng, Melanie J.

    2017-03-01

    The salinity and water oxygen isotope composition (δ18O) of 29 first-year (FYI) and second-year (SYI) Arctic sea ice cores (total length 32.0 m) from the drifting ice pack north of Svalbard were examined to quantify the contribution of snow to sea ice mass. Five cores (total length 6.4 m) were analyzed for their structural composition, showing variable contribution of 10-30% by granular ice. In these cores, snow had been entrained in 6-28% of the total ice thickness. We found evidence of snow contribution in about three quarters of the sea ice cores, when surface granular layers had very low δ18O values. Snow contributed 7.5-9.7% to sea ice mass balance on average (including also cores with no snow) based on δ18O mass balance calculations. In SYI cores, snow fraction by mass (12.7-16.3%) was much higher than in FYI cores (3.3-4.4%), while the bulk salinity of FYI (4.9) was distinctively higher than for SYI (2.7). We conclude that oxygen isotopes and salinity profiles can give information on the age of the ice and enables distinction between FYI and SYI (or older) ice in the area north of Svalbard.Plain Language SummaryThe role of snow in sea <span class="hlt">ice</span> mass balance is largely two fold. Firstly, it can slow down growth and melt due to its high insulation and high reflectance, but secondly it can actually contribute to sea <span class="hlt">ice</span> growth if the snow cover is turned into <span class="hlt">ice</span>. The latter is largely a consequence of high mass of snow on top of sea <span class="hlt">ice</span> that can push the surface of the sea <span class="hlt">ice</span> below sea level and seawater can flood the <span class="hlt">ice</span>. This mixture of seawater and snow can then freeze and add to the growth of sea <span class="hlt">ice</span>. This is very typical in the Antarctic but not believed to be so important in the Arctic. In this work we show, for the first time, that snow actually contributes significantly to the growth of Arctic sea <span class="hlt">ice</span>. This is likely a consequence of the thinning of the Arctic sea <span class="hlt">ice</span>. The conditions in the Arctic, with</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/6091444','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/6091444"><span>Arctic <span class="hlt">ice</span> islands</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Sackinger, W.M.; Jeffries, M.O.; Lu, M.C.</p> <p>1988-01-01</p> <p>The development of offshore oil and gas resources in the Arctic waters of Alaska requires offshore structures which successfully resist the lateral forces due to moving, drifting <span class="hlt">ice</span>. <span class="hlt">Ice</span> islands are floating, a tabular icebergs, up to 60 meters thick, of solid <span class="hlt">ice</span> throughout their thickness. The <span class="hlt">ice</span> islands are thus regarded as the strongest <span class="hlt">ice</span> features in the Arctic; fixed offshore structures which can directly withstand the impact of <span class="hlt">ice</span> islands are possible but in some locations may be so expensive as to make oilfield development uneconomic. The resolution of the <span class="hlt">ice</span> island problem requires two research steps: (1)more » calculation of the probability of interaction between an <span class="hlt">ice</span> island and an offshore structure in a given region; and (2) if the probability if sufficiently large, then the study of possible interactions between <span class="hlt">ice</span> island and structure, to discover mitigative measures to deal with the moving <span class="hlt">ice</span> island. The <span class="hlt">ice</span> island research conducted during the 1983-1988 interval, which is summarized in this report, was concerned with the first step. Monte Carlo simulations of <span class="hlt">ice</span> island generation and movement suggest that <span class="hlt">ice</span> island lifetimes range from 0 to 70 years, and that 85% of the lifetimes are less then 35 years. The simulation shows a mean value of 18 <span class="hlt">ice</span> islands present at any time in the Arctic Ocean, with a 90% probability of less than 30 <span class="hlt">ice</span> islands. At this time, approximately 34 <span class="hlt">ice</span> islands are known, from observations, to exist in the Arctic Ocean, not including the 10-meter thick class of <span class="hlt">ice</span> islands. Return interval plots from the simulation show that coastal zones of the Beaufort and Chukchi Seas, already leased for oil development, have <span class="hlt">ice</span> island recurrences of 10 to 100 years. This implies that the <span class="hlt">ice</span> island hazard must be considered thoroughly, and appropriate safety measures adopted, when offshore oil production plans are formulated for the Alaskan Arctic offshore. 132 refs., 161 figs., 17 tabs.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17769826','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17769826"><span>Oil and <span class="hlt">ice</span> in the arctic ocean: possible large-scale interactions.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Campbell, W J; Martin, S</p> <p>1973-07-06</p> <p>The diffusion and transport mechanisms generated by the <span class="hlt">pack</span> <span class="hlt">ice</span> dynamics of the Beaufort Sea, combined with the slow rate of biodegradation of oil under Arctic conditions, would combine to diffuse an oil spill over the sea and eventually deposit the oil on the <span class="hlt">ice</span> surface, where it would lower the natural albedo over a large area.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1917705S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1917705S"><span><span class="hlt">Ice</span> particle collisions</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sampara, Naresh; Turnbull, Barbara; Hill, Richard; Swift, Michael</p> <p>2017-04-01</p> <p> becomes more likely when the particles are new and rough, but also after they have been through many collisions. Experiment 2: To create an even higher collision density and to understand the collective behaviour of these <span class="hlt">ice</span> particles, a sample of them were placed to cover the tray of an electromagnetic shaker, mounted in an environment controlled chamber at -2°C. Continuous shaking of this system permitted observation of a spontaneous transition from dry granular behaviour to that of wetted granules. Vibrating with a fixed acceleration, image sequences were recorded every 10 min to show that at early stage (<15min) the particles adopted the dry granular flow (particles are free to bounce on the vibrating plate). After circa 40 min 90% particles became spontaneously immobile in an approximately hexagonally <span class="hlt">packed</span> 2 dimensional sheet.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003JGRC..108.3296M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003JGRC..108.3296M"><span>Observations and analyses of an intense waves-in-<span class="hlt">ice</span> event in the Sea of Okhotsk</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Marko, John R.</p> <p>2003-09-01</p> <p><span class="hlt">Ice</span> draft, <span class="hlt">ice</span> velocity, <span class="hlt">ice</span> concentration, and current profile data gathered at an array of eight continental shelf monitoring sites east of Sakhalin Island were analyzed in conjunction with regional meteorological data to document and explain intense wave occurrences several hundred kilometers inside the Sea of Okhotsk <span class="hlt">ice</span> <span class="hlt">pack</span>. The studied event was associated with the 19-21 March 1998 passage of an intense cyclone, which produced waves with amplitudes in excess of 1 m at the most offshore monitoring location. The relatively monochromatic character of the waves allowed extraction of wave intensity time series from <span class="hlt">ice</span> draft time series data. Spatial and temporal variations in these data were used to establish directions and speeds of wave energy propagation for comparisons with an earlier interpretation [, 1988] of an Antarctic intense waves-in-<span class="hlt">ice</span> event. It was concluded that although both events are compatible with a two-stage process in which initially slowly advancing wave activity increases subsequent <span class="hlt">ice</span> cover wave transmissivity, the first stage of the Sea of Okhotsk event was not explicable in terms of the static stress-induced changes in the waves-in-<span class="hlt">ice</span> dispersion relationship proposed by Liu and Mollo-Christensen. An alternative explanation is offered that eschews the linkage between wave group velocities and the observed slow rates of wave energy propagation and attributes the subsequent transition to more normal wave propagation behavior to <span class="hlt">ice</span> <span class="hlt">pack</span> divergence.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17781630','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17781630"><span>The surface of the <span class="hlt">ice</span>-age Earth.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p></p> <p>1976-03-19</p> <p>In the Northern Hemisphere the 18,000 B.P. world differed strikingly from the present in the huge land-based <span class="hlt">ice</span> sheets, reaching approximately 3 km in thickness, and in a dramatic increase in the extent of <span class="hlt">pack</span> <span class="hlt">ice</span> and marine-based <span class="hlt">ice</span> sheets. In the Southern Hemisphere the most striking contrast was the greater extent of sea <span class="hlt">ice</span>. On land, grasslands, steppes, and deserts spread at the expense of forests. This change in vegetation, together with extensive areas of permanent <span class="hlt">ice</span> and sandy outwash plains, caused an increase in global surface albedo over modern values. Sea level was lower by at least 85 m. The 18,000 B.P. oceans were characterized by: (i) marked steepening of thermal gradients along polar frontal systems, particularly in the North Atlantic and Antarctic; (ii) an equatorward displacement of polar frontal systems; (iii) general cooling of most surface waters, with a global average of -2.3 degrees C; (iv) increased cooling and up-welling along equatorial divergences in the Pacific and Atlantic; (v) low temperatures extending equatorward along the western coast of Africa, Australia, and South America, indicating increased upwelling and advection of cool waters; and (vi) nearly stable positions and temperatures of the central gyres in the subtropical Atlantic, Pacific, and Indian oceans.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20010047828','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20010047828"><span><span class="hlt">Icing</span> Cloud Calibration of the NASA Glenn <span class="hlt">Icing</span> Research Tunnel</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ide, Robert F.; Oldenburg, John R.</p> <p>2001-01-01</p> <p>The <span class="hlt">icing</span> research tunnel at the NASA Glenn Research Center underwent a major rehabilitation in 1999, necessitating recalibration of the <span class="hlt">icing</span> clouds. This report describes the methods used in the recalibration, including the procedure used to establish a uniform <span class="hlt">icing</span> cloud and the use of a standard <span class="hlt">icing</span> blade technique for measurement of liquid water content. The instruments and methods used to perform the droplet size calibration are also described. The liquid water content/droplet size operating envelopes of the <span class="hlt">icing</span> tunnel are shown for a range of airspeeds and compared to the FAA <span class="hlt">icing</span> certification criteria. The capabilities of the IRT to produce large droplet <span class="hlt">icing</span> clouds is also detailed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001AGUFM.U42A0010M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001AGUFM.U42A0010M"><span>The Rapidly Diminishing Arctic <span class="hlt">ice</span> Cover and its Potential Impact on Navy Operational Considerations</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Muench, R. D.; Conlon, D.; Lamb, D.</p> <p>2001-12-01</p> <p>Observations made from U.S. Navy Fleet submarines during the 1990s have revealed a dramatic decrease in thickness, when compared to historical values, of the central Arctic Ocean <span class="hlt">pack</span> <span class="hlt">ice</span> cover. Estimates of this decrease have been as high as 40%. Remote sensing observations have shown a coincident decrease in the areal extent of the <span class="hlt">pack</span>. The areal decrease has been especially apparent during winter. The overall loss of <span class="hlt">ice</span> appears to have accelerated over the past decade, raising the possibility that the Northwest Passage and the Northern Sea Route may become seasonally navigable on a regular basis in the coming decade. The <span class="hlt">ice</span> loss has been most evident in the peripheral seas and continental shelf areas. For example, during winter 2000-2001 the Bering Sea was effectively <span class="hlt">ice</span>-free, with strong and immediate impacts on the surrounding indigenous populations. Lessening of the peripheral <span class="hlt">pack</span> <span class="hlt">ice</span> cover will presumably, lead to accelerated development of the resource-rich regions that surround the deep, central Arctic Ocean basin. This raises potential issues with respect to national security and commercial interests, and has implicit strategic concerns for the Navy. The timeline for a significantly navigable Arctic may extend decades into the future; however, operational requirements must be identified in the nearer term to ensure that the necessary capabilities exist when future Arctic missions do present themselves. A first step is to improve the understanding of the coupled atmosphere/<span class="hlt">ice</span>/ocean system. Current environmental measurement and prediction, including Arctic weather and <span class="hlt">ice</span> prediction, shallow water acoustic performance prediction, dynamic ocean environmental changes and data to support navigation is inadequate to support sustained naval operations in the Arctic. A new focus on data collection is required in order to measure, map, monitor and model Arctic weather, <span class="hlt">ice</span> and oceanographic conditions.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_11 --> <div id="page_12" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="221"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26787386','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26787386"><span>Interaction of <span class="hlt">ice</span> binding proteins with <span class="hlt">ice</span>, water and ions.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Oude Vrielink, Anneloes S; Aloi, Antonio; Olijve, Luuk L C; Voets, Ilja K</p> <p>2016-03-19</p> <p><span class="hlt">Ice</span> binding proteins (IBPs) are produced by various cold-adapted organisms to protect their body tissues against freeze damage. First discovered in Antarctic fish living in shallow waters, IBPs were later found in insects, microorganisms, and plants. Despite great structural diversity, all IBPs adhere to growing <span class="hlt">ice</span> crystals, which is essential for their extensive repertoire of biological functions. Some IBPs maintain liquid inclusions within <span class="hlt">ice</span> or inhibit recrystallization of <span class="hlt">ice</span>, while other types suppress freezing by blocking further <span class="hlt">ice</span> growth. In contrast, <span class="hlt">ice</span> nucleating proteins stimulate <span class="hlt">ice</span> nucleation just below 0 °C. Despite huge commercial interest and major scientific breakthroughs, the precise working mechanism of IBPs has not yet been unraveled. In this review, the authors outline the state-of-the-art in experimental and theoretical IBP research and discuss future scientific challenges. The interaction of IBPs with <span class="hlt">ice</span>, water and ions is examined, focusing in particular on <span class="hlt">ice</span> growth inhibition mechanisms.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150002337','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150002337"><span>Possible Mechanisms for Turbofan Engine <span class="hlt">Ice</span> Crystal <span class="hlt">Icing</span> at High Altitude</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Tsao, Jen-Ching; Struk, Peter M.; Oliver, Michael</p> <p>2014-01-01</p> <p>A thermodynamic model is presented to describe possible mechanisms of <span class="hlt">ice</span> formation on unheated surfaces inside a turbofan engine compression system from fully glaciated <span class="hlt">ice</span> crystal clouds often formed at high altitude near deep convective weather systems. It is shown from the analysis that generally there could be two distinct types of <span class="hlt">ice</span> formation: (1) when the "surface freezing fraction" is in the range of 0 to 1, dominated by the freezing of water melt from fully or partially melted <span class="hlt">ice</span> crystals, the <span class="hlt">ice</span> structure is formed from accretion with strong adhesion to the surface, and (2) when the "surface melting fraction" is the range of 0 to 1, dominated by the further melting of <span class="hlt">ice</span> crystals, the <span class="hlt">ice</span> structure is formed from accumulation of un-melted <span class="hlt">ice</span> crystals with relatively weak bonding to the surface. The model captures important qualitative trends of the fundamental <span class="hlt">ice</span>-crystal <span class="hlt">icing</span> phenomenon reported earlier1,2 from the research collaboration work by NASA and the National Research Council (NRC) of Canada. Further, preliminary analysis of test data from the 2013 full scale turbofan engine <span class="hlt">ice</span> crystal <span class="hlt">icing</span> test3 conducted in the NASA Glenn Propulsion Systems Laboratory (PSL) has also suggested that (1) both types of <span class="hlt">ice</span> formation occurred during the test, and (2) the model has captured some important qualitative trend of turning on (or off) the <span class="hlt">ice</span> crystal <span class="hlt">ice</span> formation process in the tested engine low pressure compressor (LPC) targeted area under different <span class="hlt">icing</span> conditions that ultimately would lead to (or suppress) an engine core roll back (RB) event.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20160011109','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20160011109"><span>Possible Mechanisms for Turbofan Engine <span class="hlt">Ice</span> Crystal <span class="hlt">Icing</span> at High Altitude</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Tsao, Jen-Ching; Struk, Peter M.; Oliver, Michael J.</p> <p>2016-01-01</p> <p>A thermodynamic model is presented to describe possible mechanisms of <span class="hlt">ice</span> formation on unheated surfaces inside a turbofan engine compression system from fully glaciated <span class="hlt">ice</span> crystal clouds often formed at high altitude near deep convective weather systems. It is shown from the analysis that generally there could be two distinct types of <span class="hlt">ice</span> formation: (1) when the "surface freezing fraction" is in the range of 0 to 1, dominated by the freezing of water melt from fully or partially melted <span class="hlt">ice</span> crystals, the <span class="hlt">ice</span> structure is formed from accretion with strong adhesion to the surface, and (2) when the "surface melting fraction" is the range of 0 to 1, dominated by the further melting of <span class="hlt">ice</span> crystals, the <span class="hlt">ice</span> structure is formed from accumulation of un-melted <span class="hlt">ice</span> crystals with relatively weak bonding to the surface. The model captures important qualitative trends of the fundamental <span class="hlt">ice</span>-crystal <span class="hlt">icing</span> phenomenon reported earlier (Refs. 1 and 2) from the research collaboration work by NASA and the National Research Council (NRC) of Canada. Further, preliminary analysis of test data from the 2013 full scale turbofan engine <span class="hlt">ice</span> crystal <span class="hlt">icing</span> test (Ref. 3) conducted in the NASA Glenn Propulsion Systems Laboratory (PSL) has also suggested that (1) both types of <span class="hlt">ice</span> formation occurred during the test, and (2) the model has captured some important qualitative trend of turning on (or off) the <span class="hlt">ice</span> crystal <span class="hlt">ice</span> formation process in the tested engine low pressure compressor (LPC) targeted area under different <span class="hlt">icing</span> conditions that ultimately would lead to (or suppress) an engine core roll back (RB) event.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.C51A0955L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.C51A0955L"><span>Sea <span class="hlt">ice</span> roughness: the key for predicting Arctic summer <span class="hlt">ice</span> albedo</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Landy, J.; Ehn, J. K.; Tsamados, M.; Stroeve, J.; Barber, D. G.</p> <p>2017-12-01</p> <p>Although melt ponds on Arctic sea <span class="hlt">ice</span> evolve in stages, <span class="hlt">ice</span> with smoother surface topography typically allows the pond water to spread over a wider area, reducing the <span class="hlt">ice</span>-albedo and accelerating further melt. Building on this theory, we simulated the distribution of meltwater on a range of statistically-derived topographies to develop a quantitative relationship between premelt sea <span class="hlt">ice</span> surface roughness and summer <span class="hlt">ice</span> albedo. Our method, previously applied to ICESat observations of the end-of-winter sea <span class="hlt">ice</span> roughness, could account for 85% of the variance in AVHRR observations of the summer <span class="hlt">ice</span>-albedo [Landy et al., 2015]. Consequently, an Arctic-wide reduction in sea <span class="hlt">ice</span> roughness over the ICESat operational period (from 2003 to 2008) explained a drop in <span class="hlt">ice</span>-albedo that resulted in a 16% increase in solar heat input to the sea <span class="hlt">ice</span> cover. Here we will review this work and present new research linking pre-melt sea <span class="hlt">ice</span> surface roughness observations from Cryosat-2 to summer sea <span class="hlt">ice</span> albedo over the past six years, examining the potential of winter roughness as a significant new source of sea <span class="hlt">ice</span> predictability. We will further evaluate the possibility for high-resolution (kilometre-scale) forecasts of summer sea <span class="hlt">ice</span> albedo from waveform-level Cryosat-2 roughness data in the landfast sea <span class="hlt">ice</span> zone of the Canadian Arctic. Landy, J. C., J. K. Ehn, and D. G. Barber (2015), Albedo feedback enhanced by smoother Arctic sea <span class="hlt">ice</span>, Geophys. Res. Lett., 42, 10,714-10,720, doi:10.1002/2015GL066712.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.C43B0759V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.C43B0759V"><span>Future Interannual Variability of Arctic Sea <span class="hlt">Ice</span> Area and its Implications for Marine Navigation</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vavrus, S. J.; Mioduszewski, J.; Holland, M. M.; Wang, M.; Landrum, L.</p> <p>2016-12-01</p> <p>As both a symbol and driver of ongoing climate change, the diminishing Arctic sea <span class="hlt">ice</span> <span class="hlt">pack</span> has been widely studied in a variety of contexts. Most research, however, has focused on time-mean changes in sea <span class="hlt">ice</span>, rather than on short-term variations that also have important physical and societal consequences. In this study we test the hypothesis that interannual Arctic sea <span class="hlt">ice</span> variability will increase in the future by utilizing a set of 40 independent simulations from the Community Earth System Model's Large Ensemble for the 1920-2100 period. The model projects that <span class="hlt">ice</span> variability will indeed grow substantially in all months but with a strong seasonal dependence in magnitude and timing. The variability increases most during late autumn (November-December) and least during spring. This increase proceeds in a time-transgressive manner over the course of the year, peaking soonest (2020s) in late-summer months and latest (2090s) during late spring. The variability in every month is inversely correlated with the average melt rate, resulting in an eventual decline in both terms as the <span class="hlt">ice</span> <span class="hlt">pack</span> becomes seasonal by late century. These projected changes in sea <span class="hlt">ice</span> variations will likely have significant consequences for marine navigation, which we assess with the empirical <span class="hlt">Ice</span> Numeral (IN) metric. A function of <span class="hlt">ice</span> concentration and thickness, the IN quantifies the difficulty in traversing a transect of sea <span class="hlt">ice</span>-covered ocean as a function of vessel strength. Our results show that although increasingly open Arctic seas will mean generally more favorable conditions for navigation, the concurrent rise in the variability of <span class="hlt">ice</span> cover poses a competing risk. In particular, future intervals featuring the most rapid declines in <span class="hlt">ice</span> area that coincide with the highest interannual <span class="hlt">ice</span> variations will offer more inviting shipping opportunities tempered by less predictable navigational conditions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMGC13I0797F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMGC13I0797F"><span><span class="hlt">ICE</span>911 Research: Preserving and Rebuilding Reflective <span class="hlt">Ice</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Field, L. A.; Chetty, S.; Manzara, A.; Venkatesh, S.</p> <p>2014-12-01</p> <p>We have developed a localized surface albedo modification technique that shows promise as a method to increase reflective multi-year <span class="hlt">ice</span> using floating materials, chosen so as to have low subsidiary environmental impact. It is now well-known that multi-year reflective <span class="hlt">ice</span> has diminished rapidly in the Arctic over the past 3 decades and this plays a part in the continuing rapid decrease of summer-time <span class="hlt">ice</span>. As summer-time bright <span class="hlt">ice</span> disappears, the Arctic is losing its ability to reflect summer insolation, and this has widespread climatic effects, as well as a direct effect on sea level rise, as oceans heat and once-land-based <span class="hlt">ice</span> melts into the sea. We have tested the albedo modification technique on a small scale over six Winter/Spring seasons at sites including California's Sierra Nevada Mountains, a Canadian lake, and a small man-made lake in Minnesota, using various materials and an evolving array of instrumentation. The materials can float and can be made to minimize effects on marine habitat and species. The instrumentation is designed to be deployed in harsh and remote locations. Localized snow and <span class="hlt">ice</span> preservation, and reductions in water heating, have been quantified in small-scale testing. We have continued to refine our material and deployment approaches, and we have had laboratory confirmation by NASA. In the field, the materials were successfully deployed to shield underlying snow and <span class="hlt">ice</span> from melting; applications of granular materials remained stable in the face of local wind and storms. We are evaluating the effects of snow and <span class="hlt">ice</span> preservation for protection of infrastructure and habitat stabilization, and we are concurrently developing our techniques to aid in water conservation. Localized albedo modification options such as those being studied in this work may act to preserve <span class="hlt">ice</span>, glaciers, permafrost and seasonal snow areas, and perhaps aid natural <span class="hlt">ice</span> formation processes. If this method is deployed on a large enough scale, it could conceivably</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19940030014&hterms=marginal&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dmarginal','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19940030014&hterms=marginal&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dmarginal"><span>Ocean-<span class="hlt">ice</span> interaction in the marginal <span class="hlt">ice</span> zone</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Liu, Antony K.; Peng, Chich Y.</p> <p>1994-01-01</p> <p>Ocean <span class="hlt">ice</span> interaction processes in the Marginal <span class="hlt">Ice</span> Zone (MIZ) by wind, waves, and mesoscale features, such as upwelling and eddies, are studied using ERS-1 Synthetic Aperture Radar (SAR) images and ocean <span class="hlt">ice</span> interaction model. A sequence of SAR images of the Chukchi Sea MIZ with three days interval are studied for <span class="hlt">ice</span> edge advance/retreat. Simultaneous current measurements from the northeast Chukchi Sea as well as the Barrow wind record are used to interpret the MIZ dynamics.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.C14B..04B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.C14B..04B"><span>Understanding <span class="hlt">Ice</span> Shelf Basal Melting Using Convergent ICEPOD Data Sets: ROSETTA-<span class="hlt">Ice</span> Study of Ross <span class="hlt">Ice</span> Shelf</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bell, R. E.; Frearson, N.; Tinto, K. J.; Das, I.; Fricker, H. A.; Siddoway, C. S.; Padman, L.</p> <p>2017-12-01</p> <p>The future stability of the <span class="hlt">ice</span> shelves surrounding Antarctica will be susceptible to increases in both surface and basal melt as the atmosphere and ocean warm. The ROSETTA-<span class="hlt">Ice</span> program is targeted at using the ICEPOD airborne technology to produce new constraints on Ross <span class="hlt">Ice</span> Shelf, the underlying ocean, bathymetry, and geologic setting, using radar sounding, gravimetry and laser altimetry. This convergent approach to studying the <span class="hlt">ice</span>-shelf and basal processes enables us to develop an understanding of the fundamental controls on <span class="hlt">ice</span>-shelf evolution. This work leverages the stratigraphy of the <span class="hlt">ice</span> shelf, which is detected as individual reflectors by the shallow-<span class="hlt">ice</span> radar and is often associated with surface scour, form close to the grounding line or pinning points on the <span class="hlt">ice</span> shelf. Surface accumulation on the <span class="hlt">ice</span> shelf buries these reflectors as the <span class="hlt">ice</span> flows towards the calving front. This distinctive stratigraphy can be traced across the <span class="hlt">ice</span> shelf for the major East Antarctic outlet glaciers and West Antarctic <span class="hlt">ice</span> streams. Changes in the <span class="hlt">ice</span> thickness below these reflectors are a result of strain and basal melting and freezing. Correcting the estimated thickness changes for strain using RIGGS strain measurements, we can develop decadal-resolution flowline distributions of basal melt. Close to East Antarctica elevated melt-rates (>1 m/yr) are found 60-100 km from the calving front. On the West Antarctic side high melt rates primarily develop within 10 km of the calving front. The East Antarctic side of Ross <span class="hlt">Ice</span> Shelf is dominated by melt driven by saline water masses that develop in Ross Sea polynyas, while the melting on the West Antarctic side next to Hayes Bank is associated with modified Continental Deep Water transported along the continental shelf. The two sides of Ross <span class="hlt">Ice</span> Shelf experience differing basal melt in part due to the duality in the underlying geologic structure: the East Antarctic side consists of relatively dense crust, with low amplitude</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=STS048-151-164&hterms=5S&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3D5S','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=STS048-151-164&hterms=5S&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3D5S"><span>Ross <span class="hlt">Ice</span> Shelf, Antarctic <span class="hlt">Ice</span> and Clouds</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1991-01-01</p> <p>In this view of Antarctic <span class="hlt">ice</span> and clouds, (56.5S, 152.0W), the Ross <span class="hlt">Ice</span> Shelf of Antarctica is almost totally clear, showing stress cracks in the <span class="hlt">ice</span> surface caused by wind and tidal drift. Clouds on the eastern edge of the picture are associated with an Antarctic cyclone. Winds stirred up these storms have been known to reach hurricane force.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19890004057','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19890004057"><span>Analytical <span class="hlt">ice</span> shape predictions for flight in natural <span class="hlt">icing</span> conditions</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Berkowitz, Brian M.; Riley, James T.</p> <p>1988-01-01</p> <p>LEWICE is an analytical <span class="hlt">ice</span> prediction code that has been evaluated against <span class="hlt">icing</span> tunnel data, but on a more limited basis against flight data. <span class="hlt">Ice</span> shapes predicted by LEWICE is compared with experimental <span class="hlt">ice</span> shapes accreted on the NASA Lewis <span class="hlt">Icing</span> Research Aircraft. The flight data selected for comparison includes liquid water content recorded using a hot wire device and droplet distribution data from a laser spectrometer; the <span class="hlt">ice</span> shape is recorded using stereo photography. The main findings are as follows: (1) An equivalent sand grain roughness correlation different from that used for LEWICE tunnel comparisons must be employed to obtain satisfactory results for flight; (2) Using this correlation and making no other changes in the code, the comparisons to <span class="hlt">ice</span> shapes accreted in flight are in general as good as the comparisons to <span class="hlt">ice</span> shapes accreted in the tunnel (as in the case of tunnel <span class="hlt">ice</span> shapes, agreement is least reliable for large glaze <span class="hlt">ice</span> shapes at high angles of attack); (3) In some cases comparisons can be somewhat improved by utilizing the code so as to take account of the variation of parameters such as liquid water content, which may vary significantly in flight.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/419613-classification-baltic-sea-ice-types-airborne-multifrequency-microwave-radiometer','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/419613-classification-baltic-sea-ice-types-airborne-multifrequency-microwave-radiometer"><span>Classification of Baltic Sea <span class="hlt">ice</span> types by airborne multifrequency microwave radiometer</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Kurvonen, L.; Hallikainen, M.</p> <p></p> <p>An airborne multifrequency radiometer (24, 34, 48, and 94 GHz, vertical polarization) was used to investigate the behavior of the brightness temperature of different sea <span class="hlt">ice</span> types in the Gulf of Bothnia (Baltic Sea). The measurements and the main results of the analysis are presented. The measurements were made in dry and wet conditions (air temperature above and below 0 C). The angle of incidence was 45{degree} in all measurements. The following topics are evaluated: (a) frequency dependency of the brightness temperature of different <span class="hlt">ice</span> types, (b) the capability of the multifrequency radiometer to classify <span class="hlt">ice</span> types for winter navigationmore » purposes, and (c) the optimum measurement frequencies for mapping sea <span class="hlt">ice</span>. The weather conditions had a significant impact on the radiometric signatures of some <span class="hlt">ice</span> types (snow-covered compact <span class="hlt">pack</span> <span class="hlt">ice</span> and frost-covered new <span class="hlt">ice</span>); the impact was the highest at 94 GHz. In all cases the overall classification accuracy was around 90% (the kappa coefficient was from 0.86 to 0.96) when the optimum channel combination (24/34 GHz and 94 GHz) was used.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19990071136&hterms=balance+sheet&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dbalance%2Bsheet','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19990071136&hterms=balance+sheet&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dbalance%2Bsheet"><span>Large <span class="hlt">Ice</span> Discharge From the Greenland <span class="hlt">Ice</span> Sheet</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Rignot, Eric</p> <p>1999-01-01</p> <p>The objectives of this work are to measure the <span class="hlt">ice</span> discharge of the Greenland <span class="hlt">Ice</span> Sheet close to the grounding line and/or calving front, and compare the results with mass accumulation and ablation in the interior to estimate the <span class="hlt">ice</span> sheet mass balance.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.C23B0613H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.C23B0613H"><span>Polar <span class="hlt">Ice</span> Caps: a Canary for the Greenland <span class="hlt">Ice</span> Sheet</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Honsaker, W.; Lowell, T. V.; Sagredo, E.; Kelly, M. A.; Hall, B. L.</p> <p>2010-12-01</p> <p><span class="hlt">Ice</span> caps are glacier masses that are highly sensitive to climate change. Because of their hypsometry they can have a binary state. When relatively slight changes in the equilibrium line altitude (ELA) either intersect or rise above the land the <span class="hlt">ice</span> can become established or disappear. Thus these upland <span class="hlt">ice</span> masses have a fast response time. Here we consider a way to extract the ELA signal from independent <span class="hlt">ice</span> caps adjacent to the Greenland <span class="hlt">Ice</span> Sheet margin. It may be that these <span class="hlt">ice</span> caps are sensitive trackers of climate change that also impact the <span class="hlt">ice</span> sheet margin. One example is the Istorvet <span class="hlt">Ice</span> Cap located in Liverpool Land, East Greenland (70.881°N, 22.156°W). The <span class="hlt">ice</span> cap topography and the underlying bedrock surface dips to the north, with peak elevation of the current <span class="hlt">ice</span> ranging in elevation from 1050 to 745 m.a.s.l. On the eastern side of the <span class="hlt">ice</span> mass the outlet glaciers extending down to sea level. The western margin has several small lobes in topographic depressions, with the margin reaching down to 300 m.a.s.l. Topographic highs separate the <span class="hlt">ice</span> cap into at least 5 main catchments, each having a pair of outlet lobes toward either side of the <span class="hlt">ice</span> cap. Because of the regional bedrock slope each catchment has its own elevation range. Therefore, as the ELA changes it is possible for some catchments of the <span class="hlt">ice</span> cap to experience positive mass balance while others have a negative balance. Based on weather observations we estimate the present day ELA to be ~1000 m.a.s.l, meaning mass balance is negative for the majority of the <span class="hlt">ice</span> cap. By tracking glacier presence/absence in these different catchments, we can reconstruct small changes in the ELA. Another example is the High <span class="hlt">Ice</span> Cap (informal name) in Milne Land (70.903°N, 25.626°W, 1080 m), East Greenland. Here at least 4 unconformities in <span class="hlt">ice</span> layers found near the southern margin of the <span class="hlt">ice</span> cap record changing intervals of accumulation and ablation. Therefore, this location may also be sensitive to slight</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-GSFC_20171208_Archive_e001604.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-GSFC_20171208_Archive_e001604.html"><span>Broken <span class="hlt">ice</span></span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2017-12-08</p> <p>An area of broken glacier <span class="hlt">ice</span> seen from the <span class="hlt">Ice</span>Bridge DC-8 on Oct. 22, 2012. Credit: NASA / George Hale NASA's Operation <span class="hlt">Ice</span>Bridge is an airborne science mission to study Earth's polar <span class="hlt">ice</span>. For more information about <span class="hlt">Ice</span>Bridge, visit: www.nasa.gov/icebridge NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19980237537','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19980237537"><span>Spatial Distribution of Trends and Seasonality in the Hemispheric Sea <span class="hlt">Ice</span> Covers</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gloersen, P.; Parkinson, C. L.; Cavalieri, D. J.; Cosmiso, J. C.; Zwally, H. J.</p> <p>1998-01-01</p> <p>We extend earlier analyses of a 9-year sea <span class="hlt">ice</span> data set that described the local seasonal and trend variations in each of the hemispheric sea <span class="hlt">ice</span> covers to the recently merged 18.2-year sea <span class="hlt">ice</span> record from four satellite instruments. The seasonal cycle characteristics remain essentially the same as for the shorter time series, but the local trends are markedly different, in some cases reversing sign. The sign reversal reflects the lack of a consistent long-term trend and could be the result of localized long-term oscillations in the hemispheric sea <span class="hlt">ice</span> covers. By combining the separate hemispheric sea <span class="hlt">ice</span> records into a global one, we have shown that there are statistically significant net decreases in the sea <span class="hlt">ice</span> coverage on a global scale. The change in the global sea <span class="hlt">ice</span> extent, is -0.01 +/- 0.003 x 10(exp 6) sq km per decade. The decrease in the areal coverage of the sea <span class="hlt">ice</span> is only slightly smaller, so that the difference in the two, the open water within the <span class="hlt">packs</span>, has no statistically significant change.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70176362','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70176362"><span>The study of fresh-water lake <span class="hlt">ice</span> using multiplexed imaging radar</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Leonard, Bryan M.; Larson, R.W.</p> <p>1975-01-01</p> <p>The study of <span class="hlt">ice</span> in the upper Great Lakes, both from the operational and the scientific points of view, is receiving continued attention. Quantitative and qualitative field work is being conducted to provide the needed background for accurate interpretation of remotely sensed data. The data under discussion in this paper were obtained by a side-looking multiplexed airborne radar (SLAR) supplemented with ground-truth data.Because of its ability to penetrate adverse weather, radar is an especially important instrument for monitoring <span class="hlt">ice</span> in the upper Great Lakes. It has previously been shown that imaging radars can provide maps of <span class="hlt">ice</span> cover in these areas. However, questions concerning both the nature of the surfaces reflecting radar energy and the interpretation of the radar imagery continually arise.Our analysis of <span class="hlt">ice</span> in Whitefish Bay (Lake Superior) indicates that the combination of the <span class="hlt">ice</span>/water interlace and the <span class="hlt">ice</span>/air interface is the major contributor to the radar backscatter as seen on the imagery At these frequencies the <span class="hlt">ice</span> has a very low relative dielectric permittivity (< 3.0) and a low loss tangent Thus, this <span class="hlt">ice</span> is somewhat transparent to the energy used by the imaging SLAR system. The <span class="hlt">ice</span> types studied include newly formed black <span class="hlt">ice</span>, pancake <span class="hlt">ice</span>, and frozen and consolidated <span class="hlt">pack</span> and brash <span class="hlt">ice</span>.Although <span class="hlt">ice</span> thickness cannot be measured directly from the received signals, it is suspected that by combining the information pertaining to radar backscatter with data on the meteorological and sea-state history of the area, together with some basic ground truth, better estimates of the <span class="hlt">ice</span> thickness may be provided. In addition, certain <span class="hlt">ice</span> features (e.g. ridges, <span class="hlt">ice</span>-foot formation, areas of brash <span class="hlt">ice</span>) may be identified with reasonable confidence. There is a continued need for additional ground work to verify the validity of imaging radars for these types of interpretations.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA102093','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA102093"><span>Western Ross Sea and McMurdo Sound <span class="hlt">Ice</span> Forecasting Guide.</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1975-06-01</p> <p>areal <span class="hlt">ice</span> distribution and follow the sane historical proqression of <span class="hlt">pack</span> disintergration . This technique assumes that environmental conditions...30-day) are based on historical <span class="hlt">ice</span> data which cxnbine averaae disintergration rates as well as averace wind and current drift. Iong-range wind...original 2 to 3 okta area and its new cnfiguration remains the same, the products of ocnoentrations and widths at the verifying time must equal the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JGRC..123.1406T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JGRC..123.1406T"><span>An Examination of the Sea <span class="hlt">Ice</span> Rheology for Seasonal <span class="hlt">Ice</span> Zones Based on <span class="hlt">Ice</span> Drift and Thickness Observations</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Toyota, Takenobu; Kimura, Noriaki</p> <p>2018-02-01</p> <p>The validity of the sea <span class="hlt">ice</span> rheological model formulated by Hibler (1979), which is widely used in present numerical sea <span class="hlt">ice</span> models, is examined for the Sea of Okhotsk as an example of the seasonal <span class="hlt">ice</span> zone (SIZ), based on satellite-derived sea <span class="hlt">ice</span> velocity, concentration and thickness. Our focus was the formulation of the yield curve, the shape of which can be estimated from <span class="hlt">ice</span> drift pattern based on the energy equation of deformation, while the strength of the <span class="hlt">ice</span> cover that determines its magnitude was evaluated using <span class="hlt">ice</span> concentration and thickness data. <span class="hlt">Ice</span> drift was obtained with a grid spacing of 37.5 km from the AMSR-E 89 GHz brightness temperature using a maximum cross-correlation method. The <span class="hlt">ice</span> thickness was obtained with a spatial resolution of 100 m from a regression of the PALSAR backscatter coefficients with <span class="hlt">ice</span> thickness. To assess scale dependence, the <span class="hlt">ice</span> drift data derived from a coastal radar covering a 70 km range in the southernmost Sea of Okhotsk were similarly analyzed. The results obtained were mostly consistent with Hibler's formulation that was based on the Arctic Ocean on both scales with no dependence on a time scale, and justify the treatment of sea <span class="hlt">ice</span> as a plastic material, with an elliptical shaped yield curve to some extent. However, it also highlights the difficulty in parameterizing sub-grid scale ridging in the model because grid scale <span class="hlt">ice</span> velocities reduce the deformation magnitude by half due to the large variation of the deformation field in the SIZ.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20170007926','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20170007926"><span>Preliminary Evaluation of Altitude Scaling for Turbofan Engine <span class="hlt">Ice</span> Crystal <span class="hlt">Icing</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Tsao, Jen-Ching</p> <p>2017-01-01</p> <p>Preliminary evaluation of altitude scaling for turbofan engine <span class="hlt">ice</span> crystal <span class="hlt">icing</span> simulation was conducted during the 2015 LF11 engine <span class="hlt">icing</span> test campaign in PSL.The results showed that a simplified approach for altitude scaling to simulate the key reference engine <span class="hlt">ice</span> growth feature and associated <span class="hlt">icing</span> effects to the engine is possible. But special considerations are needed to address the facility operation limitation for lower altitude engine <span class="hlt">icing</span> simulation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20170000244','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20170000244"><span>Characterization of <span class="hlt">Ice</span> Roughness Variations in Scaled Glaze <span class="hlt">Icing</span> Conditions</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>McClain, Stephen T.; Vargas, Mario; Tsao, Jen-Ching</p> <p>2016-01-01</p> <p>Because of the significant influence of surface tension in governing the stability and breakdown of the liquid film in flooded stagnation regions of airfoils exposed to glaze <span class="hlt">icing</span> conditions, the Weber number is expected to be a significant parameter governing the formation and evolution of <span class="hlt">ice</span> roughness. To investigate the influence of the Weber number on roughness formation, 53.3-cm (21-in.) and 182.9-cm (72-in.) NACA 0012 airfoils were exposed to flow conditions with essentially the same Weber number and varying stagnation collection efficiency to illuminate similarities of the <span class="hlt">ice</span> roughness created on the different airfoils. The airfoils were exposed to <span class="hlt">icing</span> conditions in the <span class="hlt">Icing</span> Research Tunnel (IRT) at the NASA Glenn Research Center. Following exposure to the <span class="hlt">icing</span> event, the airfoils were then scanned using a ROMER Absolute Arm scanning system. The resulting point clouds were then analyzed using the self-organizing map approach of McClain and Kreeger (2013) to determine the spatial roughness variations along the surfaces of the <span class="hlt">iced</span> airfoils. The roughness characteristics on each airfoil were then compared using the relative geometries of the airfoil. The results indicate that features of the <span class="hlt">ice</span> shape and roughness such as glaze-<span class="hlt">ice</span> plateau limits and maximum airfoil roughness were captured well by Weber number and collection efficiency scaling of glaze <span class="hlt">icing</span> conditions. However, secondary <span class="hlt">ice</span> roughness features relating the instability and waviness of the liquid film on the glaze-<span class="hlt">ice</span> plateau surface are scaled based on physics that were not captured by the local collection efficiency variations.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_12 --> <div id="page_13" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="241"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017TCry...11.2491T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017TCry...11.2491T"><span>Dark <span class="hlt">ice</span> dynamics of the south-west Greenland <span class="hlt">Ice</span> Sheet</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tedstone, Andrew J.; Bamber, Jonathan L.; Cook, Joseph M.; Williamson, Christopher J.; Fettweis, Xavier; Hodson, Andrew J.; Tranter, Martyn</p> <p>2017-11-01</p> <p>Runoff from the Greenland <span class="hlt">Ice</span> Sheet (GrIS) has increased in recent years due largely to changes in atmospheric circulation and atmospheric warming. Albedo reductions resulting from these changes have amplified surface melting. Some of the largest declines in GrIS albedo have occurred in the ablation zone of the south-west sector and are associated with the development of dark <span class="hlt">ice</span> surfaces. Field observations at local scales reveal that a variety of light-absorbing impurities (LAIs) can be present on the surface, ranging from inorganic particulates to cryoconite materials and <span class="hlt">ice</span> algae. Meanwhile, satellite observations show that the areal extent of dark <span class="hlt">ice</span> has varied significantly between recent successive melt seasons. However, the processes that drive such large interannual variability in dark <span class="hlt">ice</span> extent remain essentially unconstrained. At present we are therefore unable to project how the albedo of bare <span class="hlt">ice</span> sectors of the GrIS will evolve in the future, causing uncertainty in the projected sea level contribution from the GrIS over the coming decades. Here we use MODIS satellite imagery to examine dark <span class="hlt">ice</span> dynamics on the south-west GrIS each year from 2000 to 2016. We quantify dark <span class="hlt">ice</span> in terms of its annual extent, duration, intensity and timing of first appearance. Not only does dark <span class="hlt">ice</span> extent vary significantly between years but so too does its duration (from 0 to > 80 % of June-July-August, JJA), intensity and the timing of its first appearance. Comparison of dark <span class="hlt">ice</span> dynamics with potential meteorological drivers from the regional climate model MAR reveals that the JJA sensible heat flux, the number of positive minimum-air-temperature days and the timing of bare <span class="hlt">ice</span> appearance are significant interannual synoptic controls. We use these findings to identify the surface processes which are most likely to explain recent dark <span class="hlt">ice</span> dynamics. We suggest that whilst the spatial distribution of dark <span class="hlt">ice</span> is best explained by outcropping of particulates from</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://icecube.lbl.gov/Pub_Press.html','SCIGOVWS'); return false;" href="http://icecube.lbl.gov/Pub_Press.html"><span><span class="hlt">Ice</span>Cube</span></a></p> <p><a target="_blank" href="http://www.science.gov/aboutsearch.html">Science.gov Websites</a></p> <p></p> <p></p> <p>Press and Public <em>Interest</em> <span class="hlt">Ice</span>Cube Acronym Dictionary Articles about <span class="hlt">Ice</span>Cube "Inside Story the End of the Earth" LBNL CRD Report Education/ Public <em>Interest</em> A New Window on the Universe <span class="hlt">Ice</span></p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19830045130&hterms=marginal&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dmarginal','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19830045130&hterms=marginal&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dmarginal"><span>A coupled <span class="hlt">ice</span>-ocean model of upwelling in the marginal <span class="hlt">ice</span> zone</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Roed, L. P.; Obrien, J. J.</p> <p>1983-01-01</p> <p>A dynamical coupled <span class="hlt">ice</span>-ocean numerical model for the marginal <span class="hlt">ice</span> zone (MIZ) is suggested and used to study upwelling dynamics in the MIZ. The nonlinear sea <span class="hlt">ice</span> model has a variable <span class="hlt">ice</span> concentration and includes internal <span class="hlt">ice</span> stress. The model is forced by stresses on the air/ocean and air/<span class="hlt">ice</span> surfaces. The main coupling between the <span class="hlt">ice</span> and the ocean is in the form of an interfacial stress on the <span class="hlt">ice</span>/ocean interface. The ocean model is a linear reduced gravity model. The wind stress exerted by the atmosphere on the ocean is proportional to the fraction of open water, while the interfacial stress <span class="hlt">ice</span>/ocean is proportional to the concentration of <span class="hlt">ice</span>. A new mechanism for <span class="hlt">ice</span> edge upwelling is suggested based on a geostrophic equilibrium solution for the sea <span class="hlt">ice</span> medium. The upwelling reported in previous models invoking a stationary <span class="hlt">ice</span> cover is shown to be replaced by a weak downwelling due to the <span class="hlt">ice</span> motion. Most of the upwelling dynamics can be understood by analysis of the divergence of the across <span class="hlt">ice</span> edge upper ocean transport. On the basis of numerical model, an analytical model is suggested that reproduces most of the upwelling dynamics of the more complex numerical model.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110007903','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110007903"><span>Mixed Phase Modeling in Glenn<span class="hlt">ICE</span> with Application to Engine <span class="hlt">Icing</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wright, William B.; Jorgenson, Philip C. E.; Veres, Joseph P.</p> <p>2011-01-01</p> <p>A capability for modeling <span class="hlt">ice</span> crystals and mixed phase <span class="hlt">icing</span> has been added to Glenn<span class="hlt">ICE</span>. Modifications have been made to the particle trajectory algorithm and energy balance to model this behavior. This capability has been added as part of a larger effort to model <span class="hlt">ice</span> crystal ingestion in aircraft engines. Comparisons have been made to four mixed phase <span class="hlt">ice</span> accretions performed in the Cox <span class="hlt">icing</span> tunnel in order to calibrate an <span class="hlt">ice</span> erosion model. A sample <span class="hlt">ice</span> ingestion case was performed using the Energy Efficient Engine (E3) model in order to illustrate current capabilities. Engine performance characteristics were supplied using the Numerical Propulsion System Simulation (NPSS) model for this test case.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24015900','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24015900"><span>Sea <span class="hlt">ice</span> ecosystems.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Arrigo, Kevin R</p> <p>2014-01-01</p> <p>Polar sea <span class="hlt">ice</span> is one of the largest ecosystems on Earth. The liquid brine fraction of the <span class="hlt">ice</span> matrix is home to a diverse array of organisms, ranging from tiny archaea to larger fish and invertebrates. These organisms can tolerate high brine salinity and low temperature but do best when conditions are milder. Thriving <span class="hlt">ice</span> algal communities, generally dominated by diatoms, live at the <span class="hlt">ice</span>/water interface and in recently flooded surface and interior layers, especially during spring, when temperatures begin to rise. Although protists dominate the sea <span class="hlt">ice</span> biomass, heterotrophic bacteria are also abundant. The sea <span class="hlt">ice</span> ecosystem provides food for a host of animals, with crustaceans being the most conspicuous. Uneaten organic matter from the <span class="hlt">ice</span> sinks through the water column and feeds benthic ecosystems. As sea <span class="hlt">ice</span> extent declines, <span class="hlt">ice</span> algae likely contribute a shrinking fraction of the total amount of organic matter produced in polar waters.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28207305','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28207305"><span>Heavy Metal Presence in Two Different Types of <span class="hlt">Ice</span> Cream: Artisanal <span class="hlt">Ice</span> Cream (Italian Gelato) and Industrial <span class="hlt">Ice</span> Cream.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Conficoni, D; Alberghini, L; Bissacco, E; Ferioli, M; Giaccone, V</p> <p>2017-03-01</p> <p><span class="hlt">Ice</span> cream, a popular product worldwide, is usually a milk-based product with other types of ingredients (fruit, eggs, cocoa, dried fruit, additives, and others). Different materials are used to obtain the desired taste, texture, consistency, and appearance of the final product. This study surveyed <span class="hlt">ice</span> cream products available in Italy for heavy metals (lead, cadmium, chromium, tin, and arsenic). The differences between artisanal and industrial <span class="hlt">ice</span> cream were also investigated because of the importance in the Italian diet and the diffusion of this ready-to-eat food. <span class="hlt">Ice</span> cream sampling was performed between October 2010 and February 2011 in the northeast of Italy. A total of 100 samples were randomly collected from different sources: 50 industrial samples produced by 19 different brands were collected in coffee bars and supermarkets; 50 artisanal <span class="hlt">ice</span> cream samples were gathered at nine different artisanal <span class="hlt">ice</span> cream shops. Ten wooden sticks of industrial <span class="hlt">ice</span> cream were analyzed in parallel to the <span class="hlt">ice</span> cream. All samples were negative for arsenic and mercury. None of the artisanal <span class="hlt">ice</span> cream samples were positive for lead and tin; 18% of the industrial <span class="hlt">ice</span> cream samples were positive. All positive lead samples were higher than the legal limit stated for milk (0.02 mg/kg). All industrial <span class="hlt">ice</span> cream samples were negative for cadmium, but cadmium was present in 10% of the artisanal <span class="hlt">ice</span> cream samples. Chromium was found in 26% of the artisanal and in 58% of the industrial <span class="hlt">ice</span> cream samples. The heavy metals found in the wooden sticks were different from the corresponding <span class="hlt">ice</span> cream, pointing out the lack of cross-contamination between the products. Considering the results and the amount of <span class="hlt">ice</span> cream consumed during the year, contamination through <span class="hlt">ice</span> cream is a low risk for the Italian population, even though there is need for further analysis.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70186594','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70186594"><span>Diminishing sea <span class="hlt">ice</span> in the western Arctic Ocean</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Stone, R.S.; Belchansky, G.I.; Drobot, Sheldon; Douglas, David C.; Levinson, D.H.; Waple, A.M.</p> <p>2004-01-01</p> <p>Since the advent of satellite passive microwave radiometry (1978), variations in sea <span class="hlt">ice</span> extent and concentration have been carefully monitored from space. An estimated 7.4% decrease in sea <span class="hlt">ice</span> extent has occurred in the last 25 yr (Johannessen et al. 2004), with recent record minima (e.g., Maslanik et al. 1999; Serreze et al. 2003) accounting for much of the decline. Comparisons between the time series of Arctic sea <span class="hlt">ice</span> melt dynamics and snowmelt dates at the NOAA–CMDL Barrow Observatory (BRW) reveal intriguing correlations.Melt-onset dates over sea <span class="hlt">ice</span> (Drobot and Anderson 2001) were cross correlated with the melt-date time series from BRW, and a prominent region of high correlation between snowmelt onset over sea <span class="hlt">ice</span> and the BRW record of melt dates was approximately aligned with the climatological center of the Beaufort Sea Anticyclone (BSA). The BSA induces anticyclonic <span class="hlt">ice</span> motion in the region, effectively forcing the Beaufort gyre. A weak gyre caused by a breakdown of the BSA diminishes transport of multiyear <span class="hlt">ice</span> into this region (Drobot and Maslanik 2003). Similarly, the annual snow cycle at BRW varies with the position and intensity of the BSA (Stone et al. 2002, their Fig. 6). Thus, variations in the BSA appear to have far-reaching effects on the annual accumulation and subsequent melt of snow over a large region of the western Arctic.A dramatic increase in melt season duration (Belchansky et al. 2004) was also observed within the same region of high correlation between onset of melt over the <span class="hlt">ice</span> <span class="hlt">pack</span> and snowmelt at BRW (Fig. 5.7). By inference, this suggests linkages between factors that modulate the annual cycle of snow on land and processes that influence melting of snow and <span class="hlt">ice</span> in the western Arctic Ocean.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.C13D..06G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.C13D..06G"><span>The response of grounded <span class="hlt">ice</span> to ocean temperature forcing in a coupled <span class="hlt">ice</span> sheet-<span class="hlt">ice</span> shelf-ocean cavity model</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Goldberg, D. N.; Little, C. M.; Sergienko, O. V.; Gnanadesikan, A.</p> <p>2010-12-01</p> <p><span class="hlt">Ice</span> shelves provide a pathway for the heat content of the ocean to influence continental <span class="hlt">ice</span> sheets. Changes in the rate or location of basal melting can alter their geometry and effect changes in stress conditions at the grounding line, leading to a grounded <span class="hlt">ice</span> response. Recent observations of <span class="hlt">ice</span> streams and <span class="hlt">ice</span> shelves in the Amundsen Sea sector of West Antarctica have been consistent with this story. On the other hand, <span class="hlt">ice</span> dynamics in the grounding zone control flux into the shelf and thus <span class="hlt">ice</span> shelf geometry, which has a strong influence on the circulation in the cavity beneath the shelf. Thus the coupling between the two systems, ocean and <span class="hlt">ice</span> sheet-<span class="hlt">ice</span> shelf, can be quite strong. We examine the response of the <span class="hlt">ice</span> sheet-<span class="hlt">ice</span> shelf-ocean cavity system to changes in ocean temperature using a recently developed coupled model. The coupled model consists a 3-D ocean model (GFDL's Generalized Ocean Layered Dynamics model, or GOLD) to a two-dimensional <span class="hlt">ice</span> sheet-<span class="hlt">ice</span> shelf model (Goldberg et al, 2009), and allows for changing cavity geometry and a migrating grounding line. Steady states of the coupled system are found even under considerable forcing. The <span class="hlt">ice</span> shelf morphology and basal melt rate patterns of the steady states exhibit detailed structure, and furthermore seem to be unique and robust. The relationship between temperature forcing and area-averaged melt rate is influenced by the response of <span class="hlt">ice</span> shelf morphology to thermal forcing, and is found to be sublinear in the range of forcing considered. However, results suggest that area-averaged melt rate is not the best predictor of overall system response, as grounding line stability depends on local aspects of the basal melt field. Goldberg, D N, D M Holland and C G Schoof, 2009. Grounding line movement and <span class="hlt">ice</span> shelf buttressing in marine <span class="hlt">ice</span> sheets, Journal of Geophysical Research-Earth Surfaces, 114, F04026.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017NatSR...741890D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017NatSR...741890D"><span>Boreal pollen contain <span class="hlt">ice</span>-nucleating as well as <span class="hlt">ice</span>-binding ‘antifreeze’ polysaccharides</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dreischmeier, Katharina; Budke, Carsten; Wiehemeier, Lars; Kottke, Tilman; Koop, Thomas</p> <p>2017-02-01</p> <p><span class="hlt">Ice</span> nucleation and growth is an important and widespread environmental process. Accordingly, nature has developed means to either promote or inhibit <span class="hlt">ice</span> crystal formation, for example <span class="hlt">ice</span>-nucleating proteins in bacteria or <span class="hlt">ice</span>-binding antifreeze proteins in polar fish. Recently, it was found that birch pollen release <span class="hlt">ice</span>-nucleating macromolecules when suspended in water. Here we show that birch pollen washing water exhibits also <span class="hlt">ice</span>-binding properties such as <span class="hlt">ice</span> shaping and <span class="hlt">ice</span> recrystallization inhibition, similar to antifreeze proteins. We present spectroscopic evidence that both the <span class="hlt">ice</span>-nucleating as well as the <span class="hlt">ice</span>-binding molecules are polysaccharides bearing carboxylate groups. The spectra suggest that both polysaccharides consist of very similar chemical moieties, but centrifugal filtration indicates differences in molecular size: <span class="hlt">ice</span> nucleation occurs only in the supernatant of a 100 kDa filter, while <span class="hlt">ice</span> shaping is strongly enhanced in the filtrate. This finding may suggest that the larger <span class="hlt">ice</span>-nucleating polysaccharides consist of clusters of the smaller <span class="hlt">ice</span>-binding polysaccharides, or that the latter are fragments of the <span class="hlt">ice</span>-nucleating polysaccharides. Finally, similar polysaccharides released from pine and alder pollen also display both <span class="hlt">ice</span>-nucleating as well as <span class="hlt">ice</span>-binding ability, suggesting a common mechanism of interaction with <span class="hlt">ice</span> among several boreal pollen with implications for atmospheric processes and antifreeze protection.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5291224','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5291224"><span>Boreal pollen contain <span class="hlt">ice</span>-nucleating as well as <span class="hlt">ice</span>-binding ‘antifreeze’ polysaccharides</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Dreischmeier, Katharina; Budke, Carsten; Wiehemeier, Lars; Kottke, Tilman; Koop, Thomas</p> <p>2017-01-01</p> <p><span class="hlt">Ice</span> nucleation and growth is an important and widespread environmental process. Accordingly, nature has developed means to either promote or inhibit <span class="hlt">ice</span> crystal formation, for example <span class="hlt">ice</span>-nucleating proteins in bacteria or <span class="hlt">ice</span>-binding antifreeze proteins in polar fish. Recently, it was found that birch pollen release <span class="hlt">ice</span>-nucleating macromolecules when suspended in water. Here we show that birch pollen washing water exhibits also <span class="hlt">ice</span>-binding properties such as <span class="hlt">ice</span> shaping and <span class="hlt">ice</span> recrystallization inhibition, similar to antifreeze proteins. We present spectroscopic evidence that both the <span class="hlt">ice</span>-nucleating as well as the <span class="hlt">ice</span>-binding molecules are polysaccharides bearing carboxylate groups. The spectra suggest that both polysaccharides consist of very similar chemical moieties, but centrifugal filtration indicates differences in molecular size: <span class="hlt">ice</span> nucleation occurs only in the supernatant of a 100 kDa filter, while <span class="hlt">ice</span> shaping is strongly enhanced in the filtrate. This finding may suggest that the larger <span class="hlt">ice</span>-nucleating polysaccharides consist of clusters of the smaller <span class="hlt">ice</span>-binding polysaccharides, or that the latter are fragments of the <span class="hlt">ice</span>-nucleating polysaccharides. Finally, similar polysaccharides released from pine and alder pollen also display both <span class="hlt">ice</span>-nucleating as well as <span class="hlt">ice</span>-binding ability, suggesting a common mechanism of interaction with <span class="hlt">ice</span> among several boreal pollen with implications for atmospheric processes and antifreeze protection. PMID:28157236</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015PhRvL.115n8501T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015PhRvL.115n8501T"><span>Theory of the Sea <span class="hlt">Ice</span> Thickness Distribution</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Toppaladoddi, Srikanth; Wettlaufer, J. S.</p> <p>2015-10-01</p> <p>We use concepts from statistical physics to transform the original evolution equation for the sea <span class="hlt">ice</span> thickness distribution g (h ) from Thorndike et al. into a Fokker-Planck-like conservation law. The steady solution is g (h )=N (q )hqe-h /H, where q and H are expressible in terms of moments over the transition probabilities between thickness categories. The solution exhibits the functional form used in observational fits and shows that for h ≪1 , g (h ) is controlled by both thermodynamics and mechanics, whereas for h ≫1 only mechanics controls g (h ). Finally, we derive the underlying Langevin equation governing the dynamics of the <span class="hlt">ice</span> thickness h , from which we predict the observed g (h ). The genericity of our approach provides a framework for studying the geophysical-scale structure of the <span class="hlt">ice</span> <span class="hlt">pack</span> using methods of broad relevance in statistical mechanics.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26551827','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26551827"><span>Theory of the Sea <span class="hlt">Ice</span> Thickness Distribution.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Toppaladoddi, Srikanth; Wettlaufer, J S</p> <p>2015-10-02</p> <p>We use concepts from statistical physics to transform the original evolution equation for the sea <span class="hlt">ice</span> thickness distribution g(h) from Thorndike et al. into a Fokker-Planck-like conservation law. The steady solution is g(h)=N(q)h(q)e(-h/H), where q and H are expressible in terms of moments over the transition probabilities between thickness categories. The solution exhibits the functional form used in observational fits and shows that for h≪1, g(h) is controlled by both thermodynamics and mechanics, whereas for h≫1 only mechanics controls g(h). Finally, we derive the underlying Langevin equation governing the dynamics of the <span class="hlt">ice</span> thickness h, from which we predict the observed g(h). The genericity of our approach provides a framework for studying the geophysical-scale structure of the <span class="hlt">ice</span> <span class="hlt">pack</span> using methods of broad relevance in statistical mechanics.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.C51B0989T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.C51B0989T"><span>Duality of Ross <span class="hlt">Ice</span> Shelf systems: crustal boundary, <span class="hlt">ice</span> sheet processes and ocean circulation from ROSETTA-<span class="hlt">Ice</span> surveys</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tinto, K. J.; Siddoway, C. S.; Padman, L.; Fricker, H. A.; Das, I.; Porter, D. F.; Springer, S. R.; Siegfried, M. R.; Caratori Tontini, F.; Bell, R. E.</p> <p>2017-12-01</p> <p>Bathymetry beneath Antarctic <span class="hlt">ice</span> shelves controls sub-<span class="hlt">ice</span>-shelf ocean circulation and has a major influence on the stability and dynamics of the <span class="hlt">ice</span> sheets. Beneath the Ross <span class="hlt">Ice</span> Shelf, the sea-floor bathymetry is a product of both tectonics and glacial processes, and is influenced by the processes it controls. New aerogeophysical surveys have revealed a fundamental crustal boundary bisecting the Ross <span class="hlt">Ice</span> Shelf and imparting a duality to the Ross <span class="hlt">Ice</span> Shelf systems, encompassing bathymetry, ocean circulation and <span class="hlt">ice</span> flow history. The ROSETTA-<span class="hlt">Ice</span> surveys were designed to increase the resolution of Ross <span class="hlt">Ice</span> Shelf mapping from the 55 km RIGGS survey of the 1970s to a 10 km survey grid, flown over three years from New York Air National Guard LC130s. Radar, LiDAR, gravity and magnetic instruments provide a top to bottom profile of the <span class="hlt">ice</span> shelf and the underlying seafloor, with 20 km resolution achieved in the first two survey seasons (2015 and 2016). ALAMO ocean-profiling floats deployed in the 2016 season are measuring the temperature and salinity of water entering and exiting the sub-<span class="hlt">ice</span> water cavity. A significant east-west contrast in the character of the magnetic and gravity fields reveals that the lithospheric boundary between East and West Antarctica exists not at the base of the Transantarctic Mountains (TAM), as previously thought, but 300 km further east. The newly-identified boundary spatially coincides with the southward extension of the Central High, a rib of shallow basement identified in the Ross Sea. The East Antarctic side is characterized by lower amplitude magnetic anomalies and denser TAM-type lithosphere compared to the West Antarctic side. The crustal structure imparts a fundamental duality on the overlying <span class="hlt">ice</span> and ocean, with deeper bathymetry and thinner <span class="hlt">ice</span> on the East Antarctic side creating a larger sub-<span class="hlt">ice</span> cavity for ocean circulation. The West Antarctic side has a shallower seabed, more restricted ocean access and a more complex history of</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19970017671','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19970017671"><span>Modern Airfoil <span class="hlt">Ice</span> Accretions</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Addy, Harold E., Jr.; Potapczuk, Mark G.; Sheldon, David W.</p> <p>1997-01-01</p> <p>This report presents results from the first <span class="hlt">icing</span> tests performed in the Modem Airfoils program. Two airfoils have been subjected to <span class="hlt">icing</span> tests in the NASA Lewis <span class="hlt">Icing</span> Research Tunnel (IRT). Both airfoils were two dimensional airfoils; one was representative of a commercial transport airfoil while the other was representative of a business jet airfoil. The <span class="hlt">icing</span> test conditions were selected from the FAR Appendix C envelopes. Effects on aerodynamic performance are presented including the effects of varying amounts of glaze <span class="hlt">ice</span> as well as the effects of approximately the same amounts of glaze, mixed, and rime <span class="hlt">ice</span>. Actual <span class="hlt">ice</span> shapes obtained in these tests are also presented for these cases. In addition, comparisons are shown between <span class="hlt">ice</span> shapes from the tests and <span class="hlt">ice</span> shapes predicted by the computer code, LEWICE for similar conditions. Significant results from the tests are that relatively small amounts of <span class="hlt">ice</span> can have nearly as much effect on airfoil lift coefficient as much greater amounts of <span class="hlt">ice</span> and that glaze <span class="hlt">ice</span> usually has a more detrimental effect than either rime or mixed <span class="hlt">ice</span>. LEWICE predictions of <span class="hlt">ice</span> shapes, in general, compared reasonably well with <span class="hlt">ice</span> shapes obtained in the IRT, although differences in details of the <span class="hlt">ice</span> shapes were observed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-GSFC_20171208_Archive_e001527.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-GSFC_20171208_Archive_e001527.html"><span>Blue Beaufort Sea <span class="hlt">Ice</span> from Operation <span class="hlt">Ice</span>Bridge</span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2017-12-08</p> <p>Mosaic image of sea <span class="hlt">ice</span> in the Beaufort Sea created by the Digital Mapping System (DMS) instrument aboard the <span class="hlt">Ice</span>Bridge P-3B. The dark area in the middle of the image is open water seen through a lead, or opening, in the <span class="hlt">ice</span>. Light blue areas are thick sea <span class="hlt">ice</span> and dark blue areas are thinner <span class="hlt">ice</span> formed as water in the lead refreezes. Leads are formed when cracks develop in sea <span class="hlt">ice</span> as it moves in response to wind and ocean currents. DMS uses a modified digital SLR camera that points down through a window in the underside of the plane, capturing roughly one frame per second. These images are then combined into an image mosaic using specialized computer software. Credit: NASA/DMS NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4906384','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4906384"><span>Massive subsurface <span class="hlt">ice</span> formed by refreezing of <span class="hlt">ice</span>-shelf melt ponds</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Hubbard, Bryn; Luckman, Adrian; Ashmore, David W.; Bevan, Suzanne; Kulessa, Bernd; Kuipers Munneke, Peter; Philippe, Morgane; Jansen, Daniela; Booth, Adam; Sevestre, Heidi; Tison, Jean-Louis; O'Leary, Martin; Rutt, Ian</p> <p>2016-01-01</p> <p>Surface melt ponds form intermittently on several Antarctic <span class="hlt">ice</span> shelves. Although implicated in <span class="hlt">ice</span>-shelf break up, the consequences of such ponding for <span class="hlt">ice</span> formation and <span class="hlt">ice</span>-shelf structure have not been evaluated. Here we report the discovery of a massive subsurface <span class="hlt">ice</span> layer, at least 16 km across, several kilometres long and tens of metres deep, located in an area of intense melting and intermittent ponding on Larsen C <span class="hlt">Ice</span> Shelf, Antarctica. We combine borehole optical televiewer logging and radar measurements with remote sensing and firn modelling to investigate the layer, found to be ∼10 °C warmer and ∼170 kg m−3 denser than anticipated in the absence of ponding and hitherto used in models of <span class="hlt">ice</span>-shelf fracture and flow. Surface ponding and <span class="hlt">ice</span> layers such as the one we report are likely to form on a wider range of Antarctic <span class="hlt">ice</span> shelves in response to climatic warming in forthcoming decades. PMID:27283778</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20170003112&hterms=core&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dcore','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20170003112&hterms=core&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dcore"><span>Holocene Accumulation and <span class="hlt">Ice</span> Flow near the West Antarctic <span class="hlt">Ice</span> Sheet Divide <span class="hlt">Ice</span> Core Site</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Koutnik, Michelle R.; Fudge, T.J.; Conway, Howard; Waddington, Edwin D.; Neumann, Thomas A.; Cuffey, Kurt M.; Buizert, Christo; Taylor, Kendrick C.</p> <p>2016-01-01</p> <p>The West Antarctic <span class="hlt">Ice</span> Sheet Divide Core (WDC) provided a high-resolution climate record from near the Ross-Amundsen Divide in Central West Antarctica. In addition, radar-detected internal layers in the vicinity of the WDC site have been dated directly from the <span class="hlt">ice</span> core to provide spatial variations in the age structure of the region. Using these two data sets together, we first infer a high-resolution Holocene accumulation-rate history from 9.2 thousand years of the <span class="hlt">ice</span>-core timescale and then confirm that this climate history is consistent with internal layers upstream of the core site. Even though the WDC was drilled only 24 kilometers from the modern <span class="hlt">ice</span> divide, advection of <span class="hlt">ice</span> from upstream must be taken into account. We evaluate histories of accumulation rate by using a flowband model to generate internal layers that we compare to observed layers. Results show that the centennially averaged accumulation rate was over 20 percent lower than modern at 9.2 thousand years before present (B.P.), increased by 40 percent from 9.2 to 2.3 thousand years B.P., and decreased by at least 10 percent over the past 2 thousand years B.P. to the modern values; these Holocene accumulation-rate changes in Central West Antarctica are larger than changes inferred from East Antarctic <span class="hlt">ice</span>-core records. Despite significant changes in accumulation rate, throughout the Holocene the regional accumulation pattern has likely remained similar to today, and the <span class="hlt">ice</span>-divide position has likely remained on average within 5 kilometers of its modern position. Continent-scale <span class="hlt">ice</span>-sheet models used for reconstructions of West Antarctic <span class="hlt">ice</span> volume should incorporate this accumulation history.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.C43B0393W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.C43B0393W"><span>Arctic Sea <span class="hlt">Ice</span> Predictability and the Sea <span class="hlt">Ice</span> Prediction Network</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wiggins, H. V.; Stroeve, J. C.</p> <p>2014-12-01</p> <p>Drastic reductions in Arctic sea <span class="hlt">ice</span> cover have increased the demand for Arctic sea <span class="hlt">ice</span> predictions by a range of stakeholders, including local communities, resource managers, industry and the public. The science of sea-<span class="hlt">ice</span> prediction has been challenged to keep up with these developments. Efforts such as the SEARCH Sea <span class="hlt">Ice</span> Outlook (SIO; http://www.arcus.org/sipn/sea-<span class="hlt">ice</span>-outlook) and the Sea <span class="hlt">Ice</span> for Walrus Outlook have provided a forum for the international sea-<span class="hlt">ice</span> prediction and observing community to explore and compare different approaches. The SIO, originally organized by the Study of Environmental Change (SEARCH), is now managed by the new Sea <span class="hlt">Ice</span> Prediction Network (SIPN), which is building a collaborative network of scientists and stakeholders to improve arctic sea <span class="hlt">ice</span> prediction. The SIO synthesizes predictions from a variety of methods, including heuristic and from a statistical and/or dynamical model. In a recent study, SIO data from 2008 to 2013 were analyzed. The analysis revealed that in some years the predictions were very successful, in other years they were not. Years that were anomalous compared to the long-term trend have proven more difficult to predict, regardless of which method was employed. This year, in response to feedback from users and contributors to the SIO, several enhancements have been made to the SIO reports. One is to encourage contributors to provide spatial probability maps of sea <span class="hlt">ice</span> cover in September and the first day each location becomes <span class="hlt">ice</span>-free; these are an example of subseasonal to seasonal, local-scale predictions. Another enhancement is a separate analysis of the modeling contributions. In the June 2014 SIO report, 10 of 28 outlooks were produced from models that explicitly simulate sea <span class="hlt">ice</span> from dynamic-thermodynamic sea <span class="hlt">ice</span> models. Half of the models included fully-coupled (atmosphere, <span class="hlt">ice</span>, and ocean) models that additionally employ data assimilation. Both of these subsets (models and coupled models with data</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.4621R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.4621R"><span>State of Arctic Sea <span class="hlt">Ice</span> North of Svalbard during N-<span class="hlt">ICE</span>2015</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rösel, Anja; King, Jennifer; Gerland, Sebastian</p> <p>2016-04-01</p> <p>The N-<span class="hlt">ICE</span>2015 cruise, led by the Norwegian Polar Institute, was a drift experiment with the research vessel R/V Lance from January to June 2015, where the ship started the drift North of Svalbard at 83°14.45' N, 21°31.41' E. The drift was repeated as soon as the vessel drifted free. Altogether, 4 <span class="hlt">ice</span> stations where installed and the complex ocean-sea <span class="hlt">ice</span>-atmosphere system was studied with an interdisciplinary Approach. During the N-<span class="hlt">ICE</span>2015 cruise, extensive <span class="hlt">ice</span> thickness and snow depth measurements were performed during both, winter and summer conditions. Total <span class="hlt">ice</span> and snow thickness was measured with ground-based and airborne electromagnetic instruments; snow depth was measured with a GPS snow depth probe. Additionally, <span class="hlt">ice</span> mass balance and snow buoys were deployed. Snow and <span class="hlt">ice</span> thickness measurements were performed on repeated transects to quantify the <span class="hlt">ice</span> growth or loss as well as the snow accumulation and melt rate. Additionally, we collected independent values on surveys to determine the general <span class="hlt">ice</span> thickness distribution. Average snow depths of 32 cm on first year <span class="hlt">ice</span>, and 52 cm on multi-year <span class="hlt">ice</span> were measured in January, the mean snow depth on all <span class="hlt">ice</span> types even increased until end of March to 49 cm. The average total <span class="hlt">ice</span> and snow thickness in winter conditions was 1.92 m. During winter we found a small growth rate on multi-year <span class="hlt">ice</span> of about 15 cm in 2 months, due to above-average snow depths and some extraordinary storm events that came along with mild temperatures. In contrast thereto, we also were able to study new <span class="hlt">ice</span> formation and thin <span class="hlt">ice</span> on newly formed leads. In summer conditions an enormous melt rate, mainly driven by a warm Atlantic water inflow in the marginal <span class="hlt">ice</span> zone, was observed during two <span class="hlt">ice</span> stations with melt rates of up to 20 cm per 24 hours. To reinforce the local measurements around the ship and to confirm their significance on a larger scale, we compare them to airborne thickness measurements and classified SAR-satellite scenes. The</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.C51E..07C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.C51E..07C"><span>Investigation of Controls on <span class="hlt">Ice</span> Dynamics in Northeast Greenland from <span class="hlt">Ice</span>-Thickness Change Record Using <span class="hlt">Ice</span> Sheet System Model (ISSM)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Csatho, B. M.; Larour, E. Y.; Schenk, A. F.; Schlegel, N.; Duncan, K.</p> <p>2015-12-01</p> <p>We present a new, complete <span class="hlt">ice</span> thickness change reconstruction of the NE sector of the Greenland <span class="hlt">Ice</span> Sheet for 1978-2014, partitioned into changes due to surface processes and <span class="hlt">ice</span> dynamics. Elevation changes are computed from all available stereoscopic DEMs, and laser altimetry data (ICESat, ATM, LVIS). Surface Mass Balance and firn-compaction estimates are from RACMO2.3. Originating nearly at the divide of the Greenland <span class="hlt">Ice</span> Sheet (GrIS), the dynamically active North East <span class="hlt">Ice</span> Stream (NEGIS) is capable of rapidly transmitting <span class="hlt">ice</span>-marginal forcing far inland. Thus, NEGIS provides a possible mechanism for a rapid drawdown of <span class="hlt">ice</span> from the <span class="hlt">ice</span> sheet interior as marginal warming, thinning and retreat continues. Our altimetry record shows accelerating dynamic thinning of Zachariæ Isstrom, initially limited to the deepest part of the fjord near the calving front (1978-2000) and then extending at least 75 km inland. At the same time, changes over the Nioghalvfjerdsfjorden (N79) Glacier are negligible. We also detect localized large dynamic changes at higher elevations on the <span class="hlt">ice</span> sheet. These thickness changes, often occurring at the onset of fast flow, could indicate rapid variations of basal lubrication due to rerouting of subglacial drainage. We investigate the possible causes of the observed spatiotemporal pattern of <span class="hlt">ice</span> sheet elevation changes using the <span class="hlt">Ice</span> Sheet System Model (ISSM). This work build on our previous studies examining the sensitivity of <span class="hlt">ice</span> flow within the Northeast Greenland <span class="hlt">Ice</span> Stream (NEGIS) to key fields, including <span class="hlt">ice</span> viscosity, basal drag. We assimilate the new altimetry record into ISSM to improve the reconstruction of basal friction and <span class="hlt">ice</span> viscosity. Finally, airborne geophysical (gravity, magnetic) and <span class="hlt">ice</span>-penetrating radar data is examined to identify the potential geologic controls on the <span class="hlt">ice</span> thickness change pattern. Our study provides the first comprehensive reconstruction of <span class="hlt">ice</span> thickness changes for the entire NEGIS drainage basin during</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_13 --> <div id="page_14" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="261"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018QSRv..189....1M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018QSRv..189....1M"><span>Reconciling records of <span class="hlt">ice</span> streaming and <span class="hlt">ice</span> margin retreat to produce a palaeogeographic reconstruction of the deglaciation of the Laurentide <span class="hlt">Ice</span> Sheet</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Margold, Martin; Stokes, Chris R.; Clark, Chris D.</p> <p>2018-06-01</p> <p>This paper reconstructs the deglaciation of the Laurentide <span class="hlt">Ice</span> Sheet (LIS; including the Innuitian <span class="hlt">Ice</span> Sheet) from the Last Glacial Maximum (LGM), with a particular focus on the spatial and temporal variations in <span class="hlt">ice</span> streaming and the associated changes in flow patterns and <span class="hlt">ice</span> divides. We build on a recent inventory of Laurentide <span class="hlt">ice</span> streams and use an existing <span class="hlt">ice</span> margin chronology to produce the first detailed transient reconstruction of the <span class="hlt">ice</span> stream drainage network in the LIS, which we depict in a series of palaeogeographic maps. Results show that the drainage network at the LGM was similar to modern-day Antarctica. The majority of the <span class="hlt">ice</span> streams were marine terminating and topographically-controlled and many of these continued to function late into the deglaciation, until the <span class="hlt">ice</span> sheet lost its marine margin. <span class="hlt">Ice</span> streams with a terrestrial <span class="hlt">ice</span> margin in the west and south were more transient and <span class="hlt">ice</span> flow directions changed with the build-up, peak-phase and collapse of the Cordilleran-Laurentide <span class="hlt">ice</span> saddle. The south-eastern marine margin in Atlantic Canada started to retreat relatively early and some of the <span class="hlt">ice</span> streams in this region switched off at or shortly after the LGM. In contrast, the <span class="hlt">ice</span> streams draining towards the north-western and north-eastern marine margins in the Beaufort Sea and in Baffin Bay appear to have remained stable throughout most of the Late Glacial, and some of them continued to function until after the Younger Dryas (YD). The YD influenced the dynamics of the deglaciation, but there remains uncertainty about the response of the <span class="hlt">ice</span> sheet in several sectors. We tentatively ascribe the switching-on of some major <span class="hlt">ice</span> streams during this period (e.g. M'Clintock Channel <span class="hlt">Ice</span> Stream at the north-west margin), but for other large <span class="hlt">ice</span> streams whose timing partially overlaps with the YD, the drivers are less clear and <span class="hlt">ice</span>-dynamical processes, rather than effects of climate and surface mass balance are viewed as more likely drivers. Retreat</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JGRC..123..864J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JGRC..123..864J"><span>Ocean-Forced <span class="hlt">Ice</span>-Shelf Thinning in a Synchronously Coupled <span class="hlt">Ice</span>-Ocean Model</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jordan, James R.; Holland, Paul R.; Goldberg, Dan; Snow, Kate; Arthern, Robert; Campin, Jean-Michel; Heimbach, Patrick; Jenkins, Adrian</p> <p>2018-02-01</p> <p>The first fully synchronous, coupled <span class="hlt">ice</span> shelf-ocean model with a fixed grounding line and imposed upstream <span class="hlt">ice</span> velocity has been developed using the MITgcm (Massachusetts Institute of Technology general circulation model). Unlike previous, asynchronous, approaches to coupled modeling our approach is fully conservative of heat, salt, and mass. Synchronous coupling is achieved by continuously updating the <span class="hlt">ice</span>-shelf thickness on the ocean time step. By simulating an idealized, warm-water <span class="hlt">ice</span> shelf we show how raising the pycnocline leads to a reduction in both <span class="hlt">ice</span>-shelf mass and back stress, and hence buttressing. Coupled runs show the formation of a western boundary channel in the <span class="hlt">ice</span>-shelf base due to increased melting on the western boundary due to Coriolis enhanced flow. Eastern boundary <span class="hlt">ice</span> thickening is also observed. This is not the case when using a simple depth-dependent parameterized melt, as the <span class="hlt">ice</span> shelf has relatively thinner sides and a thicker central "bulge" for a given <span class="hlt">ice</span>-shelf mass. <span class="hlt">Ice</span>-shelf geometry arising from the parameterized melt rate tends to underestimate backstress (and therefore buttressing) for a given <span class="hlt">ice</span>-shelf mass due to a thinner <span class="hlt">ice</span> shelf at the boundaries when compared to coupled model simulations.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20080040137&hterms=AES&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DAES','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20080040137&hterms=AES&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DAES"><span>Comparison of NASA Team2 and AES-York <span class="hlt">Ice</span> Concentration Algorithms Against Operational <span class="hlt">Ice</span> Charts From the Canadian <span class="hlt">Ice</span> Service</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Shokr, Mohammed; Markus, Thorsten</p> <p>2006-01-01</p> <p><span class="hlt">Ice</span> concentration retrieved from spaceborne passive-microwave observations is a prime input to operational sea-<span class="hlt">ice</span>-monitoring programs, numerical weather prediction models, and global climate models. Atmospheric Environment Service (AES)- York and the Enhanced National Aeronautics and Space Administration Team (NT2) are two algorithms that calculate <span class="hlt">ice</span> concentration from Special Sensor Microwave/Imager observations. This paper furnishes a comparison between <span class="hlt">ice</span> concentrations (total, thin, and thick types) output from NT2 and AES-York algorithms against the corresponding estimates from the operational analysis of Radarsat images in the Canadian <span class="hlt">Ice</span> Service (CIS). A new data fusion technique, which incorporates the actual sensor's footprint, was developed to facilitate this study. Results have shown that the NT2 and AES-York algorithms underestimate total <span class="hlt">ice</span> concentration by 18.35% and 9.66% concentration counts on average, with 16.8% and 15.35% standard deviation, respectively. However, the retrieved concentrations of thin and thick <span class="hlt">ice</span> are in much more discrepancy with the operational CIS estimates when either one of these two types dominates the viewing area. This is more likely to occur when the total <span class="hlt">ice</span> concentration approaches 100%. If thin and thick <span class="hlt">ice</span> types coexist in comparable concentrations, the algorithms' estimates agree with CIS'S estimates. In terms of <span class="hlt">ice</span> concentration retrieval, thin <span class="hlt">ice</span> is more problematic than thick <span class="hlt">ice</span>. The concept of using a single tie point to represent a thin <span class="hlt">ice</span> surface is not realistic and provides the largest error source for retrieval accuracy. While AES-York provides total <span class="hlt">ice</span> concentration in slightly more agreement with CIS'S estimates, NT2 provides better agreement in retrieving thin and thick <span class="hlt">ice</span> concentrations.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19910044116&hterms=marginal&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dmarginal','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19910044116&hterms=marginal&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dmarginal"><span>Wave propagation in the marginal <span class="hlt">ice</span> zone - Model predictions and comparisons with buoy and synthetic aperture radar data</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Liu, Antony K.; Holt, Benjamin; Vachon, Paris W.</p> <p>1991-01-01</p> <p>Ocean wave dispersion relation and viscous attenuation by a sea <span class="hlt">ice</span> cover are studied for waves propagating into the marginal <span class="hlt">ice</span> zone (MIZ). The Labrador <span class="hlt">ice</span> margin experiment (LIMEX), conducted on the MIZ off the east coast of Newfoundland, Canada in March 1987, provided aircraft SAR imagery, <span class="hlt">ice</span> property and wave buoy data. Wave energy attenuation rates are estimated from SAR data and the <span class="hlt">ice</span> motion package data that were deployed at the <span class="hlt">ice</span> edge and into the <span class="hlt">ice</span> <span class="hlt">pack</span>, and compared with a model. It is shown that the model data comparisons are quite good for the <span class="hlt">ice</span> conditions observed during LIMEX 1987.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.7879K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.7879K"><span>Tropospheric characteristics over sea <span class="hlt">ice</span> during N-<span class="hlt">ICE</span>2015</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kayser, Markus; Maturilli, Marion; Graham, Robert; Hudson, Stephen; Cohen, Lana; Rinke, Annette; Kim, Joo-Hong; Park, Sang-Jong; Moon, Woosok; Granskog, Mats</p> <p>2017-04-01</p> <p>Over recent years, the Arctic Ocean region has shifted towards a younger and thinner sea-<span class="hlt">ice</span> regime. The Norwegian young sea <span class="hlt">ICE</span> (N-<span class="hlt">ICE</span>2015) expedition was designed to investigate the atmosphere-snow-<span class="hlt">ice</span>-ocean interactions in this new <span class="hlt">ice</span> regime north of Svalbard. Here we analyze upper-air measurements made by radiosondes launched twice daily together with surface meteorology observations during N-<span class="hlt">ICE</span>2015 from January to June 2015. We study the multiple cyclonic events observed during N-<span class="hlt">ICE</span>2015 with respect to changes in the vertical thermodynamic structure, sudden increases in moisture content and temperature, temperature inversions and boundary layer dynamics. The influence of synoptic cyclones is strongest under polar night conditions, when radiative cooling is most effective and the moisture content is low. We find that transitions between the radiatively clear and opaque state are the largest drivers of changes to temperature inversion and stability characteristics in the boundary layer during winter. In spring radiative fluxes warm the surface leading to lifted temperature inversions and a statically unstable boundary layer. The unique N-<span class="hlt">ICE</span>2015 dataset is used for case studies investigating changes in the vertical structure of the atmosphere under varying synoptic conditions. The goal is to deepen our understanding of synoptic interactions within the Arctic climate system, to improve model performance, as well as to identify gaps in instrumentation, which precludes further investigations.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMPP13D1106W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMPP13D1106W"><span>Wave inhibition by sea <span class="hlt">ice</span> enables trans-Atlantic <span class="hlt">ice</span> rafting of debris during Heinrich Events</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wagner, T. J. W.; Dell, R.; Eisenman, I.; Keeling, R. F.; Padman, L.; Severinghaus, J. P.</p> <p>2017-12-01</p> <p>The thickness of the <span class="hlt">ice</span>-rafted debris (IRD) layers that signal Heinrich Events declines far more gradually with distance from the iceberg sources than would be expected based on present-day iceberg trajectories. Here we model icebergs as passive Lagrangian tracers driven by ocean currents, winds, and sea surface temperatures. The icebergs are released in a comprehensive climate model simulation of the last glacial maximum (LGM), as well as a simulation of the modern climate. The two simulated climates result in qualitatively similar distributions of iceberg meltwater and hence debris, with the colder temperatures of the LGM having only a relatively small effect on meltwater spread. In both scenarios, meltwater flux falls off rapidly with zonal distance from the source, in contrast with the more uniform spread of IRD in sediment cores. In order to address this discrepancy, we propose a physical mechanism that could have prolonged the lifetime of icebergs during Heinrich events. The mechanism involves a surface layer of cold and fresh meltwater formed from, and retained around, densely <span class="hlt">packed</span> armadas of icebergs. This leads to wintertime sea <span class="hlt">ice</span> formation even in relatively low latitudes. The sea <span class="hlt">ice</span> in turn shields the icebergs from wave erosion, which is the main source of iceberg ablation. We find that allowing sea <span class="hlt">ice</span> to form around all icebergs during four months each winter causes the model to approximately agree with the distribution of IRD in sediment cores.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20020004347','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20020004347"><span>Sea <span class="hlt">Ice</span> Remote Sensing Using Surface Reflected GPS Signals</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Komjathy, Attila; Maslanik, James; Zavorotny, Valery U.; Axelrad, Penina; Katzberg, Stephen J.</p> <p>2000-01-01</p> <p>This paper describes a new research effort to extend the application of Global Positioning System (GPS) signal reflections, received by airborne instruments, to cryospheric remote sensing. Our experimental results indicate that reflected GPS signals have potential to provide information on the presence and condition of sea and freshwater <span class="hlt">ice</span> as well as the freeze/thaw state of frozen ground. In this paper we show results from aircraft experiments over the <span class="hlt">ice</span> <span class="hlt">pack</span> near Barrow, Alaska indicating correlation between forward-scattered GPS returns and RADARSAT backscattered measurements.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110023761','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110023761"><span>An Overview of NASA Engine <span class="hlt">Ice</span>-Crystal <span class="hlt">Icing</span> Research</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Addy, Harold E., Jr.; Veres, Joseph P.</p> <p>2011-01-01</p> <p><span class="hlt">Ice</span> accretions that have formed inside gas turbine engines as a result of flight in clouds of high concentrations of <span class="hlt">ice</span> crystals in the atmosphere have recently been identified as an aviation safety hazard. NASA s Aviation Safety Program (AvSP) has made plans to conduct research in this area to address the hazard. This paper gives an overview of NASA s engine <span class="hlt">ice</span>-crystal <span class="hlt">icing</span> research project plans. Included are the rationale, approach, and details of various aspects of NASA s research.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19980151107','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19980151107"><span>West-Antarctic <span class="hlt">Ice</span> Streams: Analog to <span class="hlt">Ice</span> Flow in Channels on Mars</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lucchitta, B. K.</p> <p>1997-01-01</p> <p>Sounding of the sea floor in front of the Ross <span class="hlt">Ice</span> Shelf in Antarctica recently revealed large persistent patterns of longitudinal megaflutes and drumlinoid forms, which are interpreted to have formed at the base of <span class="hlt">ice</span> streams during the list glacial advance. The flutes bear remarkable resemblance to longitudinal grooves and highly elongated streamlined islands found on the floors of some large martian channels, called outflow channels. ln addition, other similarities exist between Antarctic <span class="hlt">ice</span> streams and outflow channels. <span class="hlt">Ice</span> streams are 30 to 80 km wide and hundreds of kilometers long, as are the martian channels. <span class="hlt">Ice</span> stream beds are below sea level. Floors of many martian outflow channels lie below martian datum, which may have been close to or below past martian sea levels. The Antarctic <span class="hlt">ice</span> stream bed gradient is flat and locally may go uphill, and surface slopes are exceptionally low. So are gradients of martian channels. The depth to the bed in <span class="hlt">ice</span> streams is 1 to 1.5 km. At bankful stage, the depth of the fluid in outflow channels would have been 1 to 2 km. These similarities suggest that the martian outflow channels, whose origin is commonly attributed to gigantic catastrophic floods, were locally filled by <span class="hlt">ice</span> that left a conspicuous morphologic imprint. Unlike the West-Antarctic-<span class="hlt">ice</span> streams, which discharge <span class="hlt">ice</span> from an <span class="hlt">ice</span> sheet, <span class="hlt">ice</span> in the martian channels came from water erupting from the ground. In the cold martian environment, this water, if of moderate volume, would eventually freeze. Thus it may have formed <span class="hlt">icings</span> on springs, <span class="hlt">ice</span> dams and jams on constrictions in the channel path, or frozen pools. Given sufficient thickness and downhill surface gradient, these <span class="hlt">ice</span> masses would have moved; and given the right conditions, they could have moved like Antarctic <span class="hlt">ice</span> streams.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.C42A..02G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.C42A..02G"><span>Channelized melting drives thinning under Dotson <span class="hlt">ice</span> shelf, Western Antarctic <span class="hlt">Ice</span> Sheet</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gourmelen, N.; Goldberg, D.; Snow, K.; Henley, S. F.; Bingham, R. G.; Kimura, S.; Hogg, A.; Shepherd, A.; Mouginot, J.; Lenaerts, J.; Ligtenberg, S.; Van De Berg, W. J.</p> <p>2017-12-01</p> <p>The majority of meteoric <span class="hlt">ice</span> that forms in West Antarctica leaves the <span class="hlt">ice</span> sheet through floating <span class="hlt">ice</span> shelves, many of which have been thinning substantially over the last 25 years. A significant proportion of <span class="hlt">ice</span>-shelf thinning has been driven by submarine melting facilitated by increased access of relatively warm (>0.6oC) modified Circumpolar Deep Water to sub-shelf cavities. <span class="hlt">Ice</span> shelves play a significant role in stabilising the <span class="hlt">ice</span> sheet from runaway retreat and regulating its contribution to sea level change. <span class="hlt">Ice</span>-shelf melting has also been implicated in sustaining high primary productivity in Antarctica's coastal seas. However, these processes vary regionally and are not fully understood. Under some <span class="hlt">ice</span> shelves, concentrated melting leads to the formation of inverted channels. These channels guide buoyant melt-laden outflow, which can lead to localised melting of the sea <span class="hlt">ice</span> cover. The channels may also potentially lead to heightened crevassing, which in turn affects <span class="hlt">ice</span>-shelf stability. Meanwhile, numerical studies suggest that buttressing loss is sensitive to the location of <span class="hlt">ice</span> removal within an <span class="hlt">ice</span>-shelf. Thus it is important that we observe spatial patterns, as well as magnitudes, of <span class="hlt">ice</span>-shelf thinning, in order to improve understanding of the ocean drivers of thinning and of their impacts on <span class="hlt">ice</span>-shelf stability. Here we show from high-resolution altimetry measurements acquired between 2010 to 2016 that Dotson <span class="hlt">Ice</span> Shelf, West Antarctica, thins in response to basal melting focussed along a single 5 km-wide and 60 km-long channel extending from the <span class="hlt">ice</span> shelf's grounding zone to its calving front. The coupled effect of geostrophic circulation and <span class="hlt">ice</span>-shelf topography leads to the observed concentration of basal melting. Analysis of previous datasets suggests that this process has been ongoing for at least the last 25 years. If focused thinning continues at present rates, the channel would melt through within 40-50 years, almost two centuries before it is</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20060046146&hterms=glacier+melt&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dglacier%2Bmelt','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20060046146&hterms=glacier+melt&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dglacier%2Bmelt"><span>Basal melt beneath whillans <span class="hlt">ice</span> stream and <span class="hlt">ice</span> streams A and C</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Joughin, I.; Teluezyk, S.; Engelhardt, H.</p> <p>2002-01-01</p> <p>We have used a recently derived map of the velocity of Whillans <span class="hlt">Ice</span> Stream and <span class="hlt">Ice</span> Streams A and C to help estimate basal melt. Temperature was modeled with a simple vertical advection-diffusion equation, 'tuned' to match temperature profiles. We find that most of the melt occurs beneath the tributaries where larger basal shear stresses and thicker <span class="hlt">ice</span> favors greater melt (e.g., 10-20 mm/yr). The occurrence of basal freezing is predicted beneath much of the <span class="hlt">ice</span> plains of <span class="hlt">Ice</span> Stream C and Whillans <span class="hlt">Ice</span> Stream. Modelled melt rates for when <span class="hlt">Ice</span> Stream C was active suggest there was just enough melt water generated in its tributaries to balance basal freezing on its <span class="hlt">ice</span> plain. Net basal melt for Whillans <span class="hlt">Ice</span> Stream is positive due to smaller basal temperature gradients. Modelled temperatures on Whillans <span class="hlt">Ice</span> Stream, however, were constrained by a single temperature profile at UpB. Basal temperature gradients for Whillans B1 and <span class="hlt">Ice</span> Stream A may have conditions more similar to those beneath <span class="hlt">Ice</span> Streams C and D, in which case, there may not be sufficient melt to sustain motion. This would be consistent with the steady deceleration of Whillans stream over the last few decades.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4435194','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4435194"><span>Development of a Capacitive <span class="hlt">Ice</span> Sensor to Measure <span class="hlt">Ice</span> Growth in Real Time</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Zhi, Xiang; Cho, Hyo Chang; Wang, Bo; Ahn, Cheol Hee; Moon, Hyeong Soon; Go, Jeung Sang</p> <p>2015-01-01</p> <p>This paper presents the development of the capacitive sensor to measure the growth of <span class="hlt">ice</span> on a fuel pipe surface in real time. The <span class="hlt">ice</span> sensor consists of pairs of electrodes to detect the change in capacitance and a thermocouple temperature sensor to examine the <span class="hlt">ice</span> formation situation. In addition, an environmental chamber was specially designed to control the humidity and temperature to simulate the <span class="hlt">ice</span> formation conditions. From the humidity, a water film is formed on the <span class="hlt">ice</span> sensor, which results in an increase in capacitance. <span class="hlt">Ice</span> nucleation occurs, followed by the rapid formation of frost <span class="hlt">ice</span> that decreases the capacitance suddenly. The capacitance is saturated. The developed <span class="hlt">ice</span> sensor explains the <span class="hlt">ice</span> growth providing information about the <span class="hlt">icing</span> temperature in real time. PMID:25808770</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19900060082&hterms=classification+passive&qs=N%3D0%26Ntk%3DTitle%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dclassification%2Bpassive','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19900060082&hterms=classification+passive&qs=N%3D0%26Ntk%3DTitle%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dclassification%2Bpassive"><span>Arctic multiyear <span class="hlt">ice</span> classification and summer <span class="hlt">ice</span> cover using passive microwave satellite data</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Comiso, J. C.</p> <p>1990-01-01</p> <p>Passive microwave data collected by Nimbus 7 were used to classify and monitor the Arctic multilayer sea <span class="hlt">ice</span> cover. Sea <span class="hlt">ice</span> concentration maps during several summer minima are analyzed to obtain estimates of <span class="hlt">ice</span> floes that survived summer, and the results are compared with multiyear-<span class="hlt">ice</span> concentrations derived from these data by using an algorithm that assumes a certain emissivity for multiyear <span class="hlt">ice</span>. The multiyear <span class="hlt">ice</span> cover inferred from the winter data was found to be about 25 to 40 percent less than the summer <span class="hlt">ice</span>-cover minimum, indicating that the multiyear <span class="hlt">ice</span> cover in winter is inadequately represented by the passive microwave winter data and that a significant fraction of the Arctic multiyear <span class="hlt">ice</span> floes exhibits a first-year <span class="hlt">ice</span> signature.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25808770','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25808770"><span>Development of a capacitive <span class="hlt">ice</span> sensor to measure <span class="hlt">ice</span> growth in real time.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhi, Xiang; Cho, Hyo Chang; Wang, Bo; Ahn, Cheol Hee; Moon, Hyeong Soon; Go, Jeung Sang</p> <p>2015-03-19</p> <p>This paper presents the development of the capacitive sensor to measure the growth of <span class="hlt">ice</span> on a fuel pipe surface in real time. The <span class="hlt">ice</span> sensor consists of pairs of electrodes to detect the change in capacitance and a thermocouple temperature sensor to examine the <span class="hlt">ice</span> formation situation. In addition, an environmental chamber was specially designed to control the humidity and temperature to simulate the <span class="hlt">ice</span> formation conditions. From the humidity, a water film is formed on the <span class="hlt">ice</span> sensor, which results in an increase in capacitance. <span class="hlt">Ice</span> nucleation occurs, followed by the rapid formation of frost <span class="hlt">ice</span> that decreases the capacitance suddenly. The capacitance is saturated. The developed <span class="hlt">ice</span> sensor explains the <span class="hlt">ice</span> growth providing information about the <span class="hlt">icing</span> temperature in real time.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AdAtS..35..106Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AdAtS..35..106Z"><span>Record low sea-<span class="hlt">ice</span> concentration in the central Arctic during summer 2010</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhao, Jinping; Barber, David; Zhang, Shugang; Yang, Qinghua; Wang, Xiaoyu; Xie, Hongjie</p> <p>2018-01-01</p> <p>The Arctic sea-<span class="hlt">ice</span> extent has shown a declining trend over the past 30 years. <span class="hlt">Ice</span> coverage reached historic minima in 2007 and again in 2012. This trend has recently been assessed to be unique over at least the last 1450 years. In the summer of 2010, a very low sea-<span class="hlt">ice</span> concentration (SIC) appeared at high Arctic latitudes—even lower than that of surrounding <span class="hlt">pack</span> <span class="hlt">ice</span> at lower latitudes. This striking low <span class="hlt">ice</span> concentration—referred to here as a record low <span class="hlt">ice</span> concentration in the central Arctic (CARLIC)—is unique in our analysis period of 2003-15, and has not been previously reported in the literature. The CARLIC was not the result of <span class="hlt">ice</span> melt, because sea <span class="hlt">ice</span> was still quite thick based on in-situ <span class="hlt">ice</span> thickness measurements. Instead, divergent <span class="hlt">ice</span> drift appears to have been responsible for the CARLIC. A high correlation between SIC and wind stress curl suggests that the sea <span class="hlt">ice</span> drift during the summer of 2010 responded strongly to the regional wind forcing. The drift trajectories of <span class="hlt">ice</span> buoys exhibited a transpolar drift in the Atlantic sector and an eastward drift in the Pacific sector, which appeared to benefit the CARLIC in 2010. Under these conditions, more solar energy can penetrate into the open water, increasing melt through increased heat flux to the ocean. We speculate that this divergence of sea <span class="hlt">ice</span> could occur more often in the coming decades, and impact on hemispheric SIC and feed back to the climate.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017TCry...11.2033D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017TCry...11.2033D"><span><span class="hlt">Ice</span> bridges and ridges in the Maxwell-EB sea <span class="hlt">ice</span> rheology</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dansereau, Véronique; Weiss, Jérôme; Saramito, Pierre; Lattes, Philippe; Coche, Edmond</p> <p>2017-09-01</p> <p>This paper presents a first implementation of a new rheological model for sea <span class="hlt">ice</span> on geophysical scales. This continuum model, called Maxwell elasto-brittle (Maxwell-EB), is based on a Maxwell constitutive law, a progressive damage mechanism that is coupled to both the elastic modulus and apparent viscosity of the <span class="hlt">ice</span> cover and a Mohr-Coulomb damage criterion that allows for pure (uniaxial and biaxial) tensile strength. The model is tested on the basis of its capability to reproduce the complex mechanical and dynamical behaviour of sea <span class="hlt">ice</span> drifting through a narrow passage. Idealized as well as realistic simulations of the flow of <span class="hlt">ice</span> through Nares Strait are presented. These demonstrate that the model reproduces the formation of stable <span class="hlt">ice</span> bridges as well as the stoppage of the flow, a phenomenon occurring within numerous channels of the Arctic. In agreement with observations, the model captures the propagation of damage along narrow arch-like kinematic features, the discontinuities in the velocity field across these features dividing the <span class="hlt">ice</span> cover into floes, the strong spatial localization of the thickest, ridged <span class="hlt">ice</span>, the presence of landfast <span class="hlt">ice</span> in bays and fjords and the opening of polynyas downstream of the strait. The model represents various dynamical behaviours linked to an overall weakening of the <span class="hlt">ice</span> cover and to the shorter lifespan of <span class="hlt">ice</span> bridges, with implications in terms of increased <span class="hlt">ice</span> export through narrow outflow pathways of the Arctic.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.8433B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.8433B"><span>Dynamic behaviour of <span class="hlt">ice</span> streams: the North East Greenland <span class="hlt">Ice</span> Stream</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bons, Paul D.; Jansen, Daniela; Schaufler, Svenja; de Riese, Tamara; Sachau, Till; Weikusat, Ilka</p> <p>2017-04-01</p> <p>The flow of <span class="hlt">ice</span> towards the margins of <span class="hlt">ice</span> sheets is far from homogeneous. <span class="hlt">Ice</span> streams show much higher flow velocities than their surroundings and may extend, for example the North East Greenland <span class="hlt">Ice</span> Stream (NEGIS), towards the centre of the sheet. The elevated flow velocity inside an <span class="hlt">ice</span> stream causes marginal shearing and convergent flow, which in turn leads to folding of <span class="hlt">ice</span> layers. Such folding was documented in the Petermann Glacier in northern Greenland (Bons et al., 2016). 3-dimensional structural modelling using radargrams shows that folding is more intense adjacent to NEGIS than inside it, despite the strong flow perturbation at NEGIS. Analysis of fold amplitude as a function of stratigraphic level indicates that folding adjacent to NEGIS ceased in the early Holocene, while it is currently active inside NEGIS. The presence of folds adjacent of NEGIS, but also at other sites far in the interior of the Greenland <span class="hlt">Ice</span> Sheet with no direct connection to the present-day surface velocity field, indicates that <span class="hlt">ice</span> flow is not only heterogeneous in space (as the present-day flow velocity field shows), but also in time. The observations suggest that <span class="hlt">ice</span> streams are dynamic, ephemeral structures that emerge and die out, and may possibly shift during their existence, but leave traces within the stratigraphic layering of the <span class="hlt">ice</span>. The dynamic nature of <span class="hlt">ice</span> streams such as NEGIS speaks against deterministic models for their accelerated flow rates, such as bedrock topography or thermal perturbations at their base. Instead, we suggest that <span class="hlt">ice</span> streams can also result from strain localisation induced inside the <span class="hlt">ice</span> sheet by the complex coupling of rheology, anisotropy, grain-size changes and possibly shear heating. Bons, P.D., Jansen, D., Mundel, F., Bauer, C.C., Binder, T., Eisen, O., Jessell, M.W., Llorens, M.-G, Steinbach, F., Steinhage, D. & Weikusat, I. 2016. Converging flow and anisotropy cause large-scale folding in Greenland's <span class="hlt">ice</span> sheet. Nature Communications 7</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110020439','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110020439"><span>Preparing and Analyzing <span class="hlt">Iced</span> Airfoils</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Vickerman, Mary B.; Baez, Marivell; Braun, Donald C.; Cotton, Barbara J.; Choo, Yung K.; Coroneos, Rula M.; Pennline, James A.; Hackenberg, Anthony W.; Schilling, Herbert W.; Slater, John W.; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20110020439'); toggleEditAbsImage('author_20110020439_show'); toggleEditAbsImage('author_20110020439_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20110020439_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20110020439_hide"></p> <p>2004-01-01</p> <p>Smagg<span class="hlt">Ice</span> version 1.2 is a computer program for preparing and analyzing <span class="hlt">iced</span> airfoils. It includes interactive tools for (1) measuring <span class="hlt">ice</span>-shape characteristics, (2) controlled smoothing of <span class="hlt">ice</span> shapes, (3) curve discretization, (4) generation of artificial <span class="hlt">ice</span> shapes, and (5) detection and correction of input errors. Measurements of <span class="hlt">ice</span> shapes are essential for establishing relationships between characteristics of <span class="hlt">ice</span> and effects of <span class="hlt">ice</span> on airfoil performance. The shape-smoothing tool helps prepare <span class="hlt">ice</span> shapes for use with already available grid-generation and computational-fluid-dynamics software for studying the aerodynamic effects of smoothed <span class="hlt">ice</span> on airfoils. The artificial <span class="hlt">ice</span>-shape generation tool supports parametric studies since <span class="hlt">ice</span>-shape parameters can easily be controlled with the artificial <span class="hlt">ice</span>. In such studies, artificial shapes generated by this program can supplement simulated <span class="hlt">ice</span> obtained from <span class="hlt">icing</span> research tunnels and real <span class="hlt">ice</span> obtained from flight test under <span class="hlt">icing</span> weather condition. Smagg<span class="hlt">Ice</span> also automatically detects geometry errors such as tangles or duplicate points in the boundary which may be introduced by digitization and provides tools to correct these. By use of interactive tools included in Smagg<span class="hlt">Ice</span> version 1.2, one can easily characterize <span class="hlt">ice</span> shapes and prepare <span class="hlt">iced</span> airfoils for grid generation and flow simulations.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013GMDD....6.1689G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013GMDD....6.1689G"><span>Capabilities and performance of Elmer/<span class="hlt">Ice</span>, a new generation <span class="hlt">ice</span>-sheet model</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gagliardini, O.; Zwinger, T.; Gillet-Chaulet, F.; Durand, G.; Favier, L.; de Fleurian, B.; Greve, R.; Malinen, M.; Martín, C.; Råback, P.; Ruokolainen, J.; Sacchettini, M.; Schäfer, M.; Seddik, H.; Thies, J.</p> <p>2013-03-01</p> <p>The Fourth IPCC Assessment Report concluded that <span class="hlt">ice</span>-sheet flow models are unable to forecast the current increase of polar <span class="hlt">ice</span> sheet discharge and the associated contribution to sea-level rise. Since then, the glaciological community has undertaken a huge effort to develop and improve a new generation of <span class="hlt">ice</span>-flow models, and as a result, a significant number of new <span class="hlt">ice</span>-sheet models have emerged. Among them is the parallel finite-element model Elmer/<span class="hlt">Ice</span>, based on the open-source multi-physics code Elmer. It was one of the first full-Stokes models used to make projections for the evolution of the whole Greenland <span class="hlt">ice</span> sheet for the coming two centuries. Originally developed to solve local <span class="hlt">ice</span> flow problems of high mechanical and physical complexity, Elmer/<span class="hlt">Ice</span> has today reached the maturity to solve larger scale problems, earning the status of an <span class="hlt">ice</span>-sheet model. Here, we summarise almost 10 yr of development performed by different groups. We present the components already included in Elmer/<span class="hlt">Ice</span>, its numerical performance, selected applications, as well as developments planned for the future.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70175240','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70175240"><span>Arctic sea <span class="hlt">ice</span> decline contributes to thinning lake <span class="hlt">ice</span> trend in northern Alaska</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Alexeev, Vladimir; Arp, Christopher D.; Jones, Benjamin M.; Cai, Lei</p> <p>2016-01-01</p> <p>Field measurements, satellite observations, and models document a thinning trend in seasonal Arctic lake <span class="hlt">ice</span> growth, causing a shift from bedfast to floating <span class="hlt">ice</span> conditions. September sea <span class="hlt">ice</span> concentrations in the Arctic Ocean since 1991 correlate well (r = +0.69,p < 0.001) to this lake regime shift. To understand how and to what extent sea <span class="hlt">ice</span> affects lakes, we conducted model experiments to simulate winters with years of high (1991/92) and low (2007/08) sea <span class="hlt">ice</span> extent for which we also had field measurements and satellite imagery characterizing lake <span class="hlt">ice</span> conditions. A lake <span class="hlt">ice</span> growth model forced with Weather Research and Forecasting model output produced a 7% decrease in lake <span class="hlt">ice</span> growth when 2007/08 sea <span class="hlt">ice</span> was imposed on 1991/92 climatology and a 9% increase in lake <span class="hlt">ice</span> growth for the opposing experiment. Here, we clearly link early winter 'ocean-effect' snowfall and warming to reduced lake <span class="hlt">ice</span> growth. Future reductions in sea <span class="hlt">ice</span> extent will alter hydrological, biogeochemical, and habitat functioning of Arctic lakes and cause sub-lake permafrost thaw.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_14 --> <div id="page_15" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="281"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19850005139','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19850005139"><span>Dynamics of coupled <span class="hlt">ice</span>-ocean system in the marginal <span class="hlt">ice</span> zone: Study of the mesoscale processes and of constitutive equations for sea <span class="hlt">ice</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hakkinen, S.</p> <p>1984-01-01</p> <p>This study is aimed at the modelling of mesoscale processed such as up/downwelling and <span class="hlt">ice</span> edge eddies in the marginal <span class="hlt">ice</span> zones. A 2-dimensional coupled <span class="hlt">ice</span>-ocean model is used for the study. The <span class="hlt">ice</span> model is coupled to the reduced gravity ocean model (f-plane) through interfacial stresses. The constitutive equations of the sea <span class="hlt">ice</span> are formulated on the basis of the Reiner-Rivlin theory. The internal <span class="hlt">ice</span> stresses are important only at high <span class="hlt">ice</span> concentrations (90-100%), otherwise the <span class="hlt">ice</span> motion is essentially free drift, where the air-<span class="hlt">ice</span> stress is balanced by the <span class="hlt">ice</span>-water stress. The model was tested by studying the upwelling dynamics. Winds parallel to the <span class="hlt">ice</span> edge with the <span class="hlt">ice</span> on the right produce upwilling because the air-<span class="hlt">ice</span> momentum flux is much greater that air-ocean momentum flux, and thus the Ekman transport is bigger under the <span class="hlt">ice</span> than in the open water. The upwelling simulation was extended to include temporally varying forcing, which was chosen to vary sinusoidally with a 4 day period. This forcing resembles successive cyclone passings. In the model with a thin oceanic upper layer, <span class="hlt">ice</span> bands were formed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18044830','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18044830"><span>Inhibition of <span class="hlt">ice</span> crystal growth in <span class="hlt">ice</span> cream mix by gelatin hydrolysate.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Damodaran, Srinivasan</p> <p>2007-12-26</p> <p>The inhibition of <span class="hlt">ice</span> crystal growth in <span class="hlt">ice</span> cream mix by gelatin hydrolysate produced by papain action was studied. The <span class="hlt">ice</span> crystal growth was monitored by thermal cycling between -14 and -12 degrees C at a rate of one cycle per 3 min. It is shown that the hydrolysate fraction containing peptides in the molecular weight range of about 2000-5000 Da exhibited the highest inhibitory activity on <span class="hlt">ice</span> crystal growth in <span class="hlt">ice</span> cream mix, whereas fractions containing peptides greater than 7000 Da did not inhibit <span class="hlt">ice</span> crystal growth. The size distribution of gelatin peptides formed in the hydrolysate was influenced by the pH of hydrolysis. The optimum hydrolysis conditions for producing peptides with maximum <span class="hlt">ice</span> crystal growth inhibitory activity was pH 7 at 37 degrees C for 10 min at a papain to gelatin ratio of 1:100. However, this may depend on the type and source of gelatin. The possible mechanism of <span class="hlt">ice</span> crystal growth inhibition by peptides from gelatin is discussed. Molecular modeling of model gelatin peptides revealed that they form an oxygen triad plane at the C-terminus with oxygen-oxygen distances similar to those found in <span class="hlt">ice</span> nuclei. Binding of this oxygen triad plane to the prism face of <span class="hlt">ice</span> nuclei via hydrogen bonding appears to be the mechanism by which gelatin hydrolysate might be inhibiting <span class="hlt">ice</span> crystal growth in <span class="hlt">ice</span> cream mix.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70159863','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70159863"><span>Depth, <span class="hlt">ice</span> thickness, and <span class="hlt">ice</span>-out timing cause divergent hydrologic responses among Arctic lakes</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Arp, Christopher D.; Jones, Benjamin M.; Liljedahl, Anna K.; Hinkel, Kenneth M.; Welker, Jeffery A.</p> <p>2015-01-01</p> <p>Lakes are prevalent in the Arctic and thus play a key role in regional hydrology. Since many Arctic lakes are shallow and <span class="hlt">ice</span> grows thick (historically 2-m or greater), seasonal <span class="hlt">ice</span> commonly freezes to the lake bed (bedfast <span class="hlt">ice</span>) by winter's end. Bedfast <span class="hlt">ice</span> fundamentally alters lake energy balance and melt-out processes compared to deeper lakes that exceed the maximum <span class="hlt">ice</span> thickness (floating <span class="hlt">ice</span>) and maintain perennial liquid water below floating <span class="hlt">ice</span>. Our analysis of lakes in northern Alaska indicated that <span class="hlt">ice</span>-out of bedfast <span class="hlt">ice</span> lakes occurred on average 17 days earlier (22-June) than <span class="hlt">ice</span>-out on adjacent floating <span class="hlt">ice</span> lakes (9-July). Earlier <span class="hlt">ice</span>-free conditions in bedfast <span class="hlt">ice</span> lakes caused higher open-water evaporation, 28% on average, relative to floating <span class="hlt">ice</span> lakes and this divergence increased in lakes closer to the coast and in cooler summers. Water isotopes (18O and 2H) indicated similar differences in evaporation between these lake types. Our analysis suggests that <span class="hlt">ice</span> regimes created by the combination of lake depth relative to <span class="hlt">ice</span> thickness and associated <span class="hlt">ice</span>-out timing currently cause a strong hydrologic divergence among Arctic lakes. Thus understanding the distribution and dynamics of lakes by <span class="hlt">ice</span> regime is essential for predicting regional hydrology. An observed regime shift in lakes to floating <span class="hlt">ice</span> conditions due to thinner <span class="hlt">ice</span> growth may initially offset lake drying because of lower evaporative loss from this lake type. This potential negative feedback caused by winter processes occurs in spite of an overall projected increase in evapotranspiration as the Arctic climate warms.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4928985','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4928985"><span>Laser vaporization of cirrus-like <span class="hlt">ice</span> particles with secondary <span class="hlt">ice</span> multiplication</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Matthews, Mary; Pomel, François; Wender, Christiane; Kiselev, Alexei; Duft, Denis; Kasparian, Jérôme; Wolf, Jean-Pierre; Leisner, Thomas</p> <p>2016-01-01</p> <p>We investigate the interaction of ultrashort laser filaments with individual 90-μm <span class="hlt">ice</span> particles, representative of cirrus particles. The <span class="hlt">ice</span> particles fragment under laser illumination. By monitoring the evolution of the corresponding <span class="hlt">ice</span>/vapor system at up to 140,000 frames per second over 30 ms, we conclude that a shockwave vaporization supersaturates the neighboring region relative to <span class="hlt">ice</span>, allowing the nucleation and growth of new <span class="hlt">ice</span> particles, supported by laser-induced plasma photochemistry. This process constitutes the first direct observation of filament-induced secondary <span class="hlt">ice</span> multiplication, a process that strongly modifies the particle size distribution and, thus, the albedo of typical cirrus clouds. PMID:27386537</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27386537','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27386537"><span>Laser vaporization of cirrus-like <span class="hlt">ice</span> particles with secondary <span class="hlt">ice</span> multiplication.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Matthews, Mary; Pomel, François; Wender, Christiane; Kiselev, Alexei; Duft, Denis; Kasparian, Jérôme; Wolf, Jean-Pierre; Leisner, Thomas</p> <p>2016-05-01</p> <p>We investigate the interaction of ultrashort laser filaments with individual 90-μm <span class="hlt">ice</span> particles, representative of cirrus particles. The <span class="hlt">ice</span> particles fragment under laser illumination. By monitoring the evolution of the corresponding <span class="hlt">ice</span>/vapor system at up to 140,000 frames per second over 30 ms, we conclude that a shockwave vaporization supersaturates the neighboring region relative to <span class="hlt">ice</span>, allowing the nucleation and growth of new <span class="hlt">ice</span> particles, supported by laser-induced plasma photochemistry. This process constitutes the first direct observation of filament-induced secondary <span class="hlt">ice</span> multiplication, a process that strongly modifies the particle size distribution and, thus, the albedo of typical cirrus clouds.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AGUFMMR13A1698A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AGUFMMR13A1698A"><span>The <span class="hlt">ice</span> VII-<span class="hlt">ice</span> X phase transition with implications for planetary interiors</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Aarestad, B.; Frank, M. R.; Scott, H.; Bricker, M.; Prakapenka, V.</p> <p>2008-12-01</p> <p>A significant amount of research on the high pressure polymorphs of H2O have detailed the lattice structure and density of these phases, namely <span class="hlt">ice</span> VI, <span class="hlt">ice</span> VII, and <span class="hlt">ice</span> X. These high pressure <span class="hlt">ices</span> are noteworthy as they may comprise a considerable part of the interior of large icy planets and satellites. However, there is a dearth of data on how the incorporation of an impurity, charged or non-charged, affects the <span class="hlt">ice</span> VII-<span class="hlt">ice</span> X transition. This study examined the <span class="hlt">ice</span> VII-<span class="hlt">ice</span> X transition that occurs at approximately 62 GPa with a pure system and two select impure systems. Solutions of pure H2O, 1.6 mole percent NaCl in H2O, and 1.60 mole percent CH3OH in H2O were compressed in a diamond anvil cell (DAC). The experiments were performed at the GSECARS 13-BM-D beam line at the Advanced Photon Source at Argonne National Laboratory. Powder diffraction data of the <span class="hlt">ice</span> samples were collected using monochromatic X-ray radiation, 0.2755 Å, and a MAR 345 online imaging system at intervals of approximately 2 GPa up to ~71.5, ~74.5, and ~68 GPa, respectively. Analyses of the data provided volume-pressure relations (at 298 K) which were used to detail the <span class="hlt">ice</span> VII-<span class="hlt">ice</span> X phase transition. The pressure of the phase transition, based upon an interpretation of the X-ray diffraction data, was found to vary as a function of the impurity type. Thus, the depth of the <span class="hlt">ice</span> VII-<span class="hlt">ice</span> X phase transition within an <span class="hlt">ice</span>-rich planetary body can be influenced by trace-level impurities.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://icecube.lbl.gov/Presentations.html','SCIGOVWS'); return false;" href="http://icecube.lbl.gov/Presentations.html"><span><span class="hlt">Ice</span>Cube</span></a></p> <p><a target="_blank" href="http://www.science.gov/aboutsearch.html">Science.gov Websites</a></p> <p></p> <p></p> <p>. <em>PDF</em> file High pT muons in Cosmic-Ray Air Showers with <span class="hlt">Ice</span>Cube. <em>PDF</em> file <span class="hlt">Ice</span>Cube Performance with Artificial Light Sources: the road to a Cascade Analyses + Energy scale calibration for EHE. <em>PDF</em> file , 2006. <em>PDF</em> file Thorsten Stetzelberger "<span class="hlt">Ice</span>Cube DAQ Design & Performance" Nov 2005 PPT</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JHyDy..30..336W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JHyDy..30..336W"><span>Revisit submergence of <span class="hlt">ice</span> blocks in front of <span class="hlt">ice</span> cover—an experimental study</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Jun; Wu, Yi-fan; Sui, Jueyi</p> <p>2018-04-01</p> <p>The present paper studies the stabilities of <span class="hlt">ice</span> blocks in front of an <span class="hlt">ice</span> cover based on experiments carried out in laboratory by using four types of <span class="hlt">ice</span> blocks with different dimensions. The forces acting on the <span class="hlt">ice</span> blocks in front of the <span class="hlt">ice</span> cover are analyzed. The critical criteria for the entrainment of <span class="hlt">ice</span> blocks in front of the <span class="hlt">ice</span> cover are established by considering the drag force caused by the flowing water, the collision force, and the hydraulic pressure force. Formula for determining whether or not an <span class="hlt">ice</span> block will be entrained under the <span class="hlt">ice</span> cover is derived. All three dimensions of the <span class="hlt">ice</span> block are considered in the proposed formula. The velocities calculated by using the developed formula are compared with those of calculated by other formulas proposed by other researchers, as well as the measured flow velocities for the entrainment of <span class="hlt">ice</span> blocks in laboratory. The fitting values obtained by using the derived formula agree well with the experimental results.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.P34A..05S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.P34A..05S"><span>Breaking <span class="hlt">Ice</span>: Fracture Processes in Floating <span class="hlt">Ice</span> on Earth and Elsewhere</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Scambos, T. A.</p> <p>2016-12-01</p> <p>Rapid, intense fracturing events in the <span class="hlt">ice</span> shelves of the Antarctic Peninsula reveal a set of processes that were not fully appreciated prior to the series of <span class="hlt">ice</span> shelf break-ups observed in the late 1990s and early 2000s. A series of studies have uncovered a fascinating array of relationships between climate, ocean, and <span class="hlt">ice</span>: intense widespread hydrofracture; repetitive hydrofracture induced by <span class="hlt">ice</span> plate bending; the ability for sub-surface flooded firn to support hydrofracture; potential triggering by long-period wave action; accelerated fracturing by trapped tsunamic waves; iceberg disintegration, and a remarkable <span class="hlt">ice</span> rebound process from lake drainage that resembles runaway nuclear fission. The events and subsequent studies have shown that rapid regional warming in <span class="hlt">ice</span> shelf areas leads to catastrophic changes in a previously stable <span class="hlt">ice</span> mass. More typical fracturing of thick <span class="hlt">ice</span> plates is a natural consequence of <span class="hlt">ice</span> flow in a complex geographic setting, i.e., it is induced by shear and divergence of spreading plate flow around obstacles. While these are not a result of climate or ocean change, weather and ocean processes may impact the exact timing of final separation of an iceberg from a shelf. Taking these terrestrial perspectives to other <span class="hlt">ice</span>-covered ocean worlds, cautiously, provides an observational framework for interpreting features on Europa and Enceladus.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GeCoA.213...17B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GeCoA.213...17B"><span>Gypsum and hydrohalite dynamics in sea <span class="hlt">ice</span> brines</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Butler, Benjamin M.; Papadimitriou, Stathys; Day, Sarah J.; Kennedy, Hilary</p> <p>2017-09-01</p> <p> experimental solubility in this system. Incorporation of hydrohalite solubility into a 1D thermodynamic model of the growth of first-year Arctic sea <span class="hlt">ice</span> showed its precipitation to initiate once the incoming shortwave radiation dropped to 0 W m-2, and that it can reach concentrations of 9.9 g kg-1 within the upper and coldest layers of the <span class="hlt">ice</span> <span class="hlt">pack</span>. This suggests a limited effect of hydrohalite on the albedo of sea <span class="hlt">ice</span>. The insights provided by the solubility measurements into the behaviour of gypsum and hydrohalite in the <span class="hlt">ice</span>-brine system cannot be gleaned from field investigations at present.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19950008483','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19950008483"><span><span class="hlt">Icing</span>: Accretion, Detection, Protection</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Reinmann, John J.</p> <p>1994-01-01</p> <p>The global aircraft industry and its regulatory agencies are currently involved in three major <span class="hlt">icing</span> efforts: ground <span class="hlt">icing</span>; advanced technologies for in-flight <span class="hlt">icing</span>; and tailplane <span class="hlt">icing</span>. These three major <span class="hlt">icing</span> topics correspondingly support the three major segments of any aircraft flight profile: takeoff; cruise and hold; and approach and land. This lecture addressess these three topics in the same sequence as they appear in flight, starting with ground deicing, followed by advanced technologies for in-flight <span class="hlt">ice</span> protection, and ending with tailplane <span class="hlt">icing</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140005670','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140005670"><span>Sea <span class="hlt">Ice</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Perovich, D.; Gerland, S.; Hendricks, S.; Meier, Walter N.; Nicolaus, M.; Richter-Menge, J.; Tschudi, M.</p> <p>2013-01-01</p> <p>During 2013, Arctic sea <span class="hlt">ice</span> extent remained well below normal, but the September 2013 minimum extent was substantially higher than the record-breaking minimum in 2012. Nonetheless, the minimum was still much lower than normal and the long-term trend Arctic September extent is -13.7 per decade relative to the 1981-2010 average. The less extreme conditions this year compared to 2012 were due to cooler temperatures and wind patterns that favored retention of <span class="hlt">ice</span> through the summer. Sea <span class="hlt">ice</span> thickness and volume remained near record-low levels, though indications are of slightly thicker <span class="hlt">ice</span> compared to the record low of 2012.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017TCry...11.2137T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017TCry...11.2137T"><span>Modelling radiative transfer through ponded first-year Arctic sea <span class="hlt">ice</span> with a plane-parallel model</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Taskjelle, Torbjørn; Hudson, Stephen R.; Granskog, Mats A.; Hamre, Børge</p> <p>2017-09-01</p> <p>Under-<span class="hlt">ice</span> irradiance measurements were done on ponded first-year <span class="hlt">pack</span> <span class="hlt">ice</span> along three transects during the <span class="hlt">ICE</span>12 expedition north of Svalbard. Bulk transmittances (400-900 nm) were found to be on average 0.15-0.20 under bare <span class="hlt">ice</span>, and 0.39-0.46 under ponded <span class="hlt">ice</span>. Radiative transfer modelling was done with a plane-parallel model. While simulated transmittances deviate significantly from measured transmittances close to the edge of ponds, spatially averaged bulk transmittances agree well. That is, transect-average bulk transmittances, calculated using typical simulated transmittances for ponded and bare <span class="hlt">ice</span> weighted by the fractional coverage of the two surface types, are in good agreement with the measured values. Radiative heating rates calculated from model output indicates that about 20 % of the incident solar energy is absorbed in bare <span class="hlt">ice</span>, and 50 % in ponded <span class="hlt">ice</span> (35 % in pond itself, 15 % in the underlying <span class="hlt">ice</span>). This large difference is due to the highly scattering surface scattering layer (SSL) increasing the albedo of the bare <span class="hlt">ice</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017CliPa..13...39M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017CliPa..13...39M"><span>Sea <span class="hlt">ice</span> and pollution-modulated changes in Greenland <span class="hlt">ice</span> core methanesulfonate and bromine</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Maselli, Olivia J.; Chellman, Nathan J.; Grieman, Mackenzie; Layman, Lawrence; McConnell, Joseph R.; Pasteris, Daniel; Rhodes, Rachael H.; Saltzman, Eric; Sigl, Michael</p> <p>2017-01-01</p> <p>Reconstruction of past changes in Arctic sea <span class="hlt">ice</span> extent may be critical for understanding its future evolution. Methanesulfonate (MSA) and bromine concentrations preserved in <span class="hlt">ice</span> cores have both been proposed as indicators of past sea <span class="hlt">ice</span> conditions. In this study, two <span class="hlt">ice</span> cores from central and north-eastern Greenland were analysed at sub-annual resolution for MSA (CH3SO3H) and bromine, covering the time period 1750-2010. We examine correlations between <span class="hlt">ice</span> core MSA and the HadISST1 <span class="hlt">ICE</span> sea <span class="hlt">ice</span> dataset and consult back trajectories to infer the likely source regions. A strong correlation between the low-frequency MSA and bromine records during pre-industrial times indicates that both chemical species are likely linked to processes occurring on or near sea <span class="hlt">ice</span> in the same source regions. The positive correlation between <span class="hlt">ice</span> core MSA and bromine persists until the mid-20th century, when the acidity of Greenland <span class="hlt">ice</span> begins to increase markedly due to increased fossil fuel emissions. After that time, MSA levels decrease as a result of declining sea <span class="hlt">ice</span> extent but bromine levels increase. We consider several possible explanations and ultimately suggest that increased acidity, specifically nitric acid, of snow on sea <span class="hlt">ice</span> stimulates the release of reactive Br from sea <span class="hlt">ice</span>, resulting in increased transport and deposition on the Greenland <span class="hlt">ice</span> sheet.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005AGUFM.U44A..01A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005AGUFM.U44A..01A"><span>Recent Changes in Arctic Glaciers, <span class="hlt">Ice</span> Caps, and the Greenland <span class="hlt">Ice</span> Sheet: Cold Facts About Warm <span class="hlt">Ice</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Abdalati, W.</p> <p>2005-12-01</p> <p>One of the major manifestations of Arctic change can be observed in the state of balance of Arctic glaciers and <span class="hlt">ice</span> caps and the Greenland <span class="hlt">ice</span> sheet. These <span class="hlt">ice</span> masses are estimated to contain nearly 3 million cubic kilometers of <span class="hlt">ice</span>, which is more than six times greater than all the water stored in the Earth's lakes, rivers, and snow combined and is the equivalent of over 7 meters of sea level. Most of these <span class="hlt">ice</span> masses have been shrinking in recent in years, but their mass balance is highly variable on a wide range of spatial and temporal scales. On the Greenland <span class="hlt">ice</span> sheet most of the coastal regions have thinned substantially as melt has increased and some of its outlet glaciers have accelerated. Near the equilibrium line in West Greenland, we have seen evidence of summer acceleration that is linked to surface meltwater production, suggesting a relatively rapid response mechanism of the <span class="hlt">ice</span> sheet change to a warming climate. At the same time, however, the vast interior regions of the Greenland <span class="hlt">ice</span> sheet have shown little change or slight growth, as accumulation in these areas may have increased. Throughout much of the rest of the Arctic, many glaciers and <span class="hlt">ice</span> caps have been shrinking in the past few decades, and in Canada and Alaska, the rate of <span class="hlt">ice</span> loss seems to have accelerated during the late 1990s. These recent observations offer only a snapshot in time of the long-term behavior, but they are providing crucial information about the current state of <span class="hlt">ice</span> mass balance and the mechanisms that control it in one of the most climatically sensitive regions on Earth. As we continue to learn more through a combination of remote sensing observations, in situ measurements and improved modeling capabilities, it is important that we coordinate and integrate these approaches effectively in order to predict future changes and their impact on sea level, freshwater discharge, and ocean circulation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22538614','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22538614"><span>Antarctic <span class="hlt">ice</span>-sheet loss driven by basal melting of <span class="hlt">ice</span> shelves.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Pritchard, H D; Ligtenberg, S R M; Fricker, H A; Vaughan, D G; van den Broeke, M R; Padman, L</p> <p>2012-04-25</p> <p>Accurate prediction of global sea-level rise requires that we understand the cause of recent, widespread and intensifying glacier acceleration along Antarctic <span class="hlt">ice</span>-sheet coastal margins. Atmospheric and oceanic forcing have the potential to reduce the thickness and extent of floating <span class="hlt">ice</span> shelves, potentially limiting their ability to buttress the flow of grounded tributary glaciers. Indeed, recent <span class="hlt">ice</span>-shelf collapse led to retreat and acceleration of several glaciers on the Antarctic Peninsula. But the extent and magnitude of <span class="hlt">ice</span>-shelf thickness change, the underlying causes of such change, and its link to glacier flow rate are so poorly understood that its future impact on the <span class="hlt">ice</span> sheets cannot yet be predicted. Here we use satellite laser altimetry and modelling of the surface firn layer to reveal the circum-Antarctic pattern of <span class="hlt">ice</span>-shelf thinning through increased basal melt. We deduce that this increased melt is the primary control of Antarctic <span class="hlt">ice</span>-sheet loss, through a reduction in buttressing of the adjacent <span class="hlt">ice</span> sheet leading to accelerated glacier flow. The highest thinning rates occur where warm water at depth can access thick <span class="hlt">ice</span> shelves via submarine troughs crossing the continental shelf. Wind forcing could explain the dominant patterns of both basal melting and the surface melting and collapse of Antarctic <span class="hlt">ice</span> shelves, through ocean upwelling in the Amundsen and Bellingshausen seas, and atmospheric warming on the Antarctic Peninsula. This implies that climate forcing through changing winds influences Antarctic <span class="hlt">ice</span>-sheet mass balance, and hence global sea level, on annual to decadal timescales.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28301759','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28301759"><span><span class="hlt">Ice</span> Surfaces.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Shultz, Mary Jane</p> <p>2017-05-05</p> <p><span class="hlt">Ice</span> is a fundamental solid with important environmental, biological, geological, and extraterrestrial impact. The stable form of <span class="hlt">ice</span> at atmospheric pressure is hexagonal <span class="hlt">ice</span>, I h . Despite its prevalence, I h remains an enigmatic solid, in part due to challenges in preparing samples for fundamental studies. Surfaces of <span class="hlt">ice</span> present even greater challenges. Recently developed methods for preparation of large single-crystal samples make it possible to reproducibly prepare any chosen face to address numerous fundamental questions. This review describes preparation methods along with results that firmly establish the connection between the macroscopic structure (observed in snowflakes, microcrystallites, or etch pits) and the molecular-level configuration (detected with X-ray or electron scattering techniques). Selected results of probing interactions at the <span class="hlt">ice</span> surface, including growth from the melt, surface vibrations, and characterization of the quasi-liquid layer, are discussed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22259152','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22259152"><span>Arctic <span class="hlt">ice</span> cover, <span class="hlt">ice</span> thickness and tipping points.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wadhams, Peter</p> <p>2012-02-01</p> <p>We summarize the latest results on the rapid changes that are occurring to Arctic sea <span class="hlt">ice</span> thickness and extent, the reasons for them, and the methods being used to monitor the changing <span class="hlt">ice</span> thickness. Arctic sea <span class="hlt">ice</span> extent had been shrinking at a relatively modest rate of 3-4% per decade (annually averaged) but after 1996 this speeded up to 10% per decade and in summer 2007 there was a massive collapse of <span class="hlt">ice</span> extent to a new record minimum of only 4.1 million km(2). Thickness has been falling at a more rapid rate (43% in the 25 years from the early 1970s to late 1990s) with a specially rapid loss of mass from pressure ridges. The summer 2007 event may have arisen from an interaction between the long-term retreat and more rapid thinning rates. We review thickness monitoring techniques that show the greatest promise on different spatial and temporal scales, and for different purposes. We show results from some recent work from submarines, and speculate that the trends towards retreat and thinning will inevitably lead to an eventual loss of all <span class="hlt">ice</span> in summer, which can be described as a 'tipping point' in that the former situation, of an Arctic covered with mainly multi-year <span class="hlt">ice</span>, cannot be retrieved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFMPP31A1300S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFMPP31A1300S"><span>Little <span class="hlt">Ice</span> Age Fluctuations of Quelccaya <span class="hlt">Ice</span> Cap, Peru</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stroup, J. S.; Kelly, M. A.; Lowell, T.</p> <p>2009-12-01</p> <p>A record of the past extents of Quelccaya <span class="hlt">Ice</span> Cap (QIC) provides valuable information about tropical climate change from late glacial to recent time. Here, we examine the timing and regional significance of fluctuations of QIC during the Little <span class="hlt">Ice</span> Age (LIA; ~1300-1850 AD). One prominent set of moraines, known as the Huancane I moraines, is located ~1 km from the present-day western <span class="hlt">ice</span> cap margin and provides a near-continuous outline of the most recent advance of QIC. This moraine set was radiocarbon dated (~298 ± 134 and 831 ± 87 yr BP) by Mercer and Palacios (1977) and presented as some of the first evidence for cooling in the tropics during the Little <span class="hlt">Ice</span> Age. Recent field investigations in the QIC region focused on refining the chronology of the Huancane I moraines. In 2008, new stratigraphic sections exposed by local lake-flooding events revealed multiple layers of peat within the Huancane I moraines. In both 2008 and 2009, samples were obtained for 10Be dating of boulders on Huancane I moraines. A combination of radiocarbon and 10Be ages indicate that the Huancane I moraines were deposited by <span class="hlt">ice</span> cap expansion after ~3800 yr BP and likely by multiple advances at approximately 1000, 600, 400, and 200 yr BP. Radiocarbon and 10Be chronologies of the Huancane I moraines are compared with the Quelccaya <span class="hlt">ice</span> core records (Thompson et al., 1985; 1986; 2006). Accumulation data from the <span class="hlt">ice</span> core records are interpreted to indicate a significant wet period at ~1500-1700 AD followed by a significant drought at ~1720-1860 AD. We examine <span class="hlt">ice</span> marginal fluctuations during these times to determine influence of such events on the <span class="hlt">ice</span> cap extent.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011PhDT.......110D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011PhDT.......110D"><span>Alaska shorefast <span class="hlt">ice</span>: Interfacing geophysics with local sea <span class="hlt">ice</span> knowledge and use</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Druckenmiller, Matthew L.</p> <p></p> <p>This thesis interfaces geophysical techniques with local and traditional knowledge (LTK) of indigenous <span class="hlt">ice</span> experts to track and evaluate coastal sea <span class="hlt">ice</span> conditions over annual and inter-annual timescales. A novel approach is presented for consulting LTK alongside a systematic study of where, when, and how the community of Barrow, Alaska uses the <span class="hlt">ice</span> cover. The goal of this research is to improve our understanding of and abilities to monitor the processes that govern the state and dynamics of shorefast sea <span class="hlt">ice</span> in the Chukchi Sea and use of <span class="hlt">ice</span> by the community. Shorefast <span class="hlt">ice</span> stability and community strategies for safe hunting provide a framework for data collection and knowledge sharing that reveals how nuanced observations by Inupiat <span class="hlt">ice</span> experts relate to identifying hazards. In particular, shorefast <span class="hlt">ice</span> break-out events represent a significant threat to the lives of hunters. Fault tree analysis (FTA) is used to combine local and time-specific observations of <span class="hlt">ice</span> conditions by both geophysical instruments and local experts, and to evaluate how <span class="hlt">ice</span> features, atmospheric and oceanic forces, and local to regional processes interact to cause break-out events. Each year, the Barrow community builds trails across shorefast <span class="hlt">ice</span> for use during the spring whaling season. In collaboration with hunters, a systematic multi-year survey (2007--2011) was performed to map these trails and measure <span class="hlt">ice</span> thickness along them. Relationships between <span class="hlt">ice</span> conditions and hunter strategies that guide trail placement and risk assessment are explored. In addition, trail surveys provide a meaningful and consistent approach to monitoring the thickness distribution of shorefast <span class="hlt">ice</span>, while establishing a baseline for assessing future environmental change and potential impacts to the community. Coastal communities in the region have proven highly adaptive in their ability to safely and successfully hunt from sea <span class="hlt">ice</span> over the last 30 years as significant changes have been observed in the <span class="hlt">ice</span> zone</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_15 --> <div id="page_16" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="301"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.C21E..02I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.C21E..02I"><span>Measurements of sea <span class="hlt">ice</span> mass redistribution during <span class="hlt">ice</span> deformation event in Arctic winter</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Itkin, P.; Spreen, G.; King, J.; Rösel, A.; Skourup, H.; Munk Hvidegaard, S.; Wilkinson, J.; Oikkonen, A.; Granskog, M. A.; Gerland, S.</p> <p>2016-12-01</p> <p>Sea-<span class="hlt">ice</span> growth during high winter is governed by <span class="hlt">ice</span> dynamics. The highest growth rates are found in leads that open under divergent conditions, where exposure to the cold atmosphere promotes thermodynamic growth. Additionally <span class="hlt">ice</span> thickens dynamically, where convergence causes rafting and ridging. We present a local study of sea-<span class="hlt">ice</span> growth and mass redistribution between two consecutive airborne measurements, on 19 and 24 April 2015, during the N-<span class="hlt">ICE</span>2015 expedition in the area north of Svalbard. Between the two overflights an <span class="hlt">ice</span> deformation event was observed. Airborne laser scanner (ALS) measurements revisited the same sea-<span class="hlt">ice</span> area of approximately 3x3 km. By identifying the sea surface within the ALS measurements as a reference the sea <span class="hlt">ice</span> plus snow freeboard was obtained with a spatial resolution of 5 m. By assuming isostatic equilibrium of level floes, the freeboard heights can be converted to <span class="hlt">ice</span> thickness. The snow depth is estimated from in-situ measurements. Sea <span class="hlt">ice</span> thickness measurements were made in the same area as the ALS measurements by electromagnetic sounding from a helicopter (HEM), and with a ground-based device (EM31), which allows for cross-validation of the sea-<span class="hlt">ice</span> thickness estimated from all 3 procedures. Comparison of the ALS snow freeboard distributions between the first and second overflight shows a decrease in the thin <span class="hlt">ice</span> classes and an increase of the thick <span class="hlt">ice</span> classes. While there was no observable snowfall and a very low sea-<span class="hlt">ice</span> growth of older level <span class="hlt">ice</span> during this period, an autonomous buoy array deployed in the surroundings of the area measured by the ALS shows first divergence followed by convergence associated with shear. To quantify and link the sea <span class="hlt">ice</span> deformation with the associated sea-<span class="hlt">ice</span> thickness change and mass redistribution we identify over 100 virtual buoys in the ALS data from both overflights. We triangulate the area between the buoys and calculate the strain rates and freeboard change for each individual triangle</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16349347','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16349347"><span>Bacterial Standing Stock, Activity, and Carbon Production during Formation and Growth of Sea <span class="hlt">Ice</span> in the Weddell Sea, Antarctica.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Grossmann, S; Dieckmann, G S</p> <p>1994-08-01</p> <p>Bacterial response to formation and growth of sea <span class="hlt">ice</span> was investigated during autumn in the northeastern Weddell Sea. Changes in standing stock, activity, and carbon production of bacteria were determined in successive stages of <span class="hlt">ice</span> development. During initial <span class="hlt">ice</span> formation, concentrations of bacterial cells, in the order of 1 x 10 to 3 x 10 liter, were not enhanced within the <span class="hlt">ice</span> matrix. This suggests that physical enrichment of bacteria by <span class="hlt">ice</span> crystals is not effective. Due to low concentrations of phytoplankton in the water column during freezing, incorporation of bacteria into newly formed <span class="hlt">ice</span> via attachment to algal cells or aggregates was not recorded in this study. As soon as the <span class="hlt">ice</span> had formed, the general metabolic activity of bacterial populations was strongly suppressed. Furthermore, the ratio of [H]leucine incorporation into proteins to [H]thymidine incorporation into DNA changed during <span class="hlt">ice</span> growth. In thick <span class="hlt">pack</span> <span class="hlt">ice</span>, bacterial activity recovered and growth rates up to 0.6 day indicated actively dividing populations. However, biomass-specific utilization of organic compounds remained lower than in open water. Bacterial concentrations of up to 2.8 x 10 cells liter along with considerably enlarged cell volumes accumulated within thick <span class="hlt">pack</span> <span class="hlt">ice</span>, suggesting reduced mortality rates of bacteria within the small brine pores. In the course of <span class="hlt">ice</span> development, bacterial carbon production increased from about 0.01 to 0.4 mug of C liter h. In thick <span class="hlt">ice</span>, bacterial secondary production exceeded primary production of microalgae.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28518108','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28518108"><span>Identification of Plant <span class="hlt">Ice</span>-binding Proteins Through Assessment of <span class="hlt">Ice</span>-recrystallization Inhibition and Isolation Using <span class="hlt">Ice</span>-affinity Purification.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bredow, Melissa; Tomalty, Heather E; Walker, Virginia K</p> <p>2017-05-05</p> <p><span class="hlt">Ice</span>-binding proteins (IBPs) belong to a family of stress-induced proteins that are synthesized by certain organisms exposed to subzero temperatures. In plants, freeze damage occurs when extracellular <span class="hlt">ice</span> crystals grow, resulting in the rupture of plasma membranes and possible cell death. Adsorption of IBPs to <span class="hlt">ice</span> crystals restricts further growth by a process known as <span class="hlt">ice</span>-recrystallization inhibition (IRI), thereby reducing cellular damage. IBPs also demonstrate the ability to depress the freezing point of a solution below the equilibrium melting point, a property known as thermal hysteresis (TH) activity. These protective properties have raised interest in the identification of novel IBPs due to their potential use in industrial, medical and agricultural applications. This paper describes the identification of plant IBPs through 1) the induction and extraction of IBPs in plant tissue, 2) the screening of extracts for IRI activity, and 3) the isolation and purification of IBPs. Following the induction of IBPs by low temperature exposure, extracts are tested for IRI activity using a 'splat assay', which allows the observation of <span class="hlt">ice</span> crystal growth using a standard light microscope. This assay requires a low protein concentration and generates results that are quickly obtained and easily interpreted, providing an initial screen for <span class="hlt">ice</span> binding activity. IBPs can then be isolated from contaminating proteins by utilizing the property of IBPs to adsorb to <span class="hlt">ice</span>, through a technique called '<span class="hlt">ice</span>-affinity purification'. Using cell lysates collected from plant extracts, an <span class="hlt">ice</span> hemisphere can be slowly grown on a brass probe. This incorporates IBPs into the crystalline structure of the polycrystalline <span class="hlt">ice</span>. Requiring no a priori biochemical or structural knowledge of the IBP, this method allows for recovery of active protein. <span class="hlt">Ice</span>-purified protein fractions can be used for downstream applications including the identification of peptide sequences by mass spectrometry and the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-GSFC_20171208_Archive_e001118.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-GSFC_20171208_Archive_e001118.html"><span>Persistent <span class="hlt">Ice</span> on Lake Superior</span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2017-12-08</p> <p>Though North America is a full month into astronomical spring, the Great Lakes have been slow to give up on winter. As of April 22, 2014, the Great Lakes were 33.9 percent <span class="hlt">ice</span> covered. The lake they call Superior dominated the <span class="hlt">pack</span>. In the early afternoon on April 20, 2014, the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Aqua satellite captured this natural-color image of Lake Superior, which straddles the United States–Canada border. At the time Aqua passed over, the lake was 63.5 percent <span class="hlt">ice</span> covered, according to the NOAA Great Lakes Environmental Research Lab (GLERL). Averaged across Lake Superior, <span class="hlt">ice</span> was 22.6 centimeters (8.9 inches) thick; it was as much as twice that thickness in some locations. GLERL researcher George Leshkevich affirmed that <span class="hlt">ice</span> cover this spring is significantly above normal. For comparison, Lake Superior had 3.6 percent <span class="hlt">ice</span> cover on April 20, 2013; in 2012, <span class="hlt">ice</span> was completely gone by April 12. In the last winter that <span class="hlt">ice</span> cover grew so thick on Lake Superior (2009), it reached 93.7 percent on March 2 but was down to 6.7 percent by April 21. Average water temperatures on all of the Great Lakes have been rising over the past 30 to 40 years and <span class="hlt">ice</span> cover has generally been shrinking. (Lake Superior <span class="hlt">ice</span> was down about 79 percent since the 1970s.) But chilled by persistent polar air masses throughout the 2013-14 winter, <span class="hlt">ice</span> cover reached 88.4 percent on February 13 and 92.2 percent on March 6, 2014, the second highest level in four decades of record-keeping. Air temperatures in the Great Lakes region were well below normal for March, and the cool pattern is being reinforced along the coasts because the water is absorbing less sunlight and warming less than in typical spring conditions. The graph below, based on data from Environment Canada, shows the 2014 conditions for all of the Great Lakes in mid-April compared to the past 33 years. Lake Superior <span class="hlt">ice</span> cover got as high as 95.3 percent on March 19. By April 22, it was</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20160004215&hterms=sea&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dsea','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20160004215&hterms=sea&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dsea"><span>How Will Sea <span class="hlt">Ice</span> Loss Affect the Greenland <span class="hlt">Ice</span> Sheet? On the Puzzling Features of Greenland <span class="hlt">Ice</span>-Core Isotopic Composition</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Pausata, Francesco S. R.; Legrande, Allegra N.; Roberts, William H. G.</p> <p>2016-01-01</p> <p>The modern cryosphere, Earth's frozen water regime, is in fast transition. Greenland <span class="hlt">ice</span> cores show how fast theses changes can be, presenting evidence of up to 15 C warming events over timescales of less than a decade. These events, called Dansgaard/Oeschger (D/O) events, are believed to be associated with rapid changes in Arctic sea <span class="hlt">ice</span>, although the underlying mechanisms are still unclear. The modern demise of Arctic sea <span class="hlt">ice</span> may, in turn, instigate abrupt changes on the Greenland <span class="hlt">Ice</span> Sheet. The Arctic Sea <span class="hlt">Ice</span> and Greenland <span class="hlt">Ice</span> Sheet Sensitivity (<span class="hlt">Ice</span>2<span class="hlt">Ice</span> Chttps://<span class="hlt">ice</span>2<span class="hlt">ice</span>.b.uib.noD) initiative, sponsored by the European Research Council, seeks to quantify these past rapid changes to improve our understanding of what the future may hold for the Arctic. Twenty scientists gathered in Copenhagen as part of this initiative to discuss the most recent observational, technological, and model developments toward quantifying the mechanisms behind past climate changes in Greenland. Much of the discussion focused on the causes behind the changes in stable water isotopes recorded in <span class="hlt">ice</span> cores. The participants discussed sources of variability for stable water isotopes and framed ways that new studies could improve understanding of modern climate. The participants also discussed how climate models could provide insights into the relative roles of local and nonlocal processes in affecting stable water isotopes within the Greenland <span class="hlt">Ice</span> Sheet. Presentations of modeling results showed how a change in the source or seasonality of precipitation could occur not only between glacial and modern climates but also between abrupt events. Recent fieldwork campaigns illustrate an important role of stable isotopes in atmospheric vapor and diffusion in the final stable isotope signal in <span class="hlt">ice</span>. Further, indications from recent fieldwork campaigns illustrate an important role of stable isotopes in atmospheric vapor and diffusion in the final stable isotope signal in <span class="hlt">ice</span>. This feature complicates</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010EGUGA..12..761D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010EGUGA..12..761D"><span>Compression experiments on artificial, alpine and marine <span class="hlt">ice</span>: implications for <span class="hlt">ice</span>-shelf/continental interactions</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dierckx, Marie; Goossens, Thomas; Samyn, Denis; Tison, Jean-Louis</p> <p>2010-05-01</p> <p>Antarctic <span class="hlt">ice</span> shelves are important components of continental <span class="hlt">ice</span> dynamics, in that they control grounded <span class="hlt">ice</span> flow towards the ocean. As such, Antarctic <span class="hlt">ice</span> shelves are a key parameter to the stability of the Antarctic <span class="hlt">ice</span> sheet in the context of global change. Marine <span class="hlt">ice</span>, formed by sea water accretion beneath some <span class="hlt">ice</span> shelves, displays distinct physical (grain textures, bubble content, ...) and chemical (salinity, isotopic composition, ...) characteristics as compared to glacier <span class="hlt">ice</span> and sea <span class="hlt">ice</span>. The aim is to refine Glen's flow relation (generally used for <span class="hlt">ice</span> behaviour in deformation) under various parameters (temperature, salinity, debris, grain size ...) to improve deformation laws used in dynamic <span class="hlt">ice</span> shelf models, which would then give more accurate and / or realistic predictions on <span class="hlt">ice</span> shelf stability. To better understand the mechanical properties of natural <span class="hlt">ice</span>, deformation experiments were performed on <span class="hlt">ice</span> samples in laboratory, using a pneumatic compression device. To do so, we developed a custom built compression rig operated by pneumatic drives. It has been designed for performing uniaxial compression tests at constant load and under unconfined conditions. The operating pressure ranges from about 0.5 to 10 Bars. This allows modifying the experimental conditions to match the conditions found at the grounding zone (in the 1 Bar range). To maintain the <span class="hlt">ice</span> at low temperature, the samples are immersed in a Silicone oil bath connected to an external refrigeration system. During the experiments, the vertical displacement of the piston and the applied force is measured by sensors which are connected to a digital acquisition system. We started our experiments with artificial <span class="hlt">ice</span> and went on with continental <span class="hlt">ice</span> samples from glaciers in the Alps. The first results allowed us to acquire realistic mechanical data for natural <span class="hlt">ice</span>. <span class="hlt">Ice</span> viscosity was calculated for different types of artificial <span class="hlt">ice</span>, using Glen's flow law, and showed the importance of impurities</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011TRACE...5..143O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011TRACE...5..143O"><span><span class="hlt">Ice</span>-Nucleating Bacteria</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Obata, Hitoshi</p> <p></p> <p>Since the discovery of <span class="hlt">ice</span>-nucleating bacteria in 1974 by Maki et al., a large number of studies on the biological characteristics, <span class="hlt">ice</span>-nucleating substance, <span class="hlt">ice</span> nucleation gene and frost damage etc. of the bacteria have been carried out. <span class="hlt">Ice</span>-nucleating bacteria can cause the freezing of water at relatively warm temperature (-2.3°C). Tween 20 was good substrates for <span class="hlt">ice</span>-nucleating activity of Pseudomonas fluorescens KUIN-1. Major fatty acids of Isolate (Pseudomonas fluorescens) W-11 grown at 30°C were palmitic, cis-9-hexadecenoic and cis-11-octadecenoic which amounted to 90% of the total fatty acids. Sequence analysis shows that an <span class="hlt">ice</span> nucleation gene from Pseudomonas fluorescens is related to the gene of Pseudomonas syringae.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22977068','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22977068"><span>Retention of <span class="hlt">ice</span>-associated amphipods: possible consequences for an <span class="hlt">ice</span>-free Arctic Ocean.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Berge, J; Varpe, O; Moline, M A; Wold, A; Renaud, P E; Daase, M; Falk-Petersen, S</p> <p>2012-12-23</p> <p>Recent studies predict that the Arctic Ocean will have <span class="hlt">ice</span>-free summers within the next 30 years. This poses a significant challenge for the marine organisms associated with the Arctic sea <span class="hlt">ice</span>, such as marine mammals and, not least, the <span class="hlt">ice</span>-associated crustaceans generally considered to spend their entire life on the underside of the Arctic sea <span class="hlt">ice</span>. Based upon unique samples collected within the Arctic Ocean during the polar night, we provide a new conceptual understanding of an intimate connection between these under-<span class="hlt">ice</span> crustaceans and the deep Arctic Ocean currents. We suggest that downwards vertical migrations, followed by polewards transport in deep ocean currents, are an adaptive trait of <span class="hlt">ice</span> fauna that both increases survival during <span class="hlt">ice</span>-free periods of the year and enables re-colonization of sea <span class="hlt">ice</span> when they ascend within the Arctic Ocean. From an evolutionary perspective, this may have been an adaptation allowing success in a seasonally <span class="hlt">ice</span>-covered Arctic. Our findings may ultimately change the perception of <span class="hlt">ice</span> fauna as a biota imminently threatened by the predicted disappearance of perennial sea <span class="hlt">ice</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23574610','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23574610"><span>Impact of early and late winter <span class="hlt">icing</span> events on sub-arctic dwarf shrubs.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Preece, C; Phoenix, G K</p> <p>2014-01-01</p> <p>Polar regions are predicted to undergo large increases in winter temperature and an increased frequency of freeze-thaw cycles, which can cause <span class="hlt">ice</span> layers in the snow <span class="hlt">pack</span> and <span class="hlt">ice</span> encasement of vegetation. Early or late winter timing of <span class="hlt">ice</span> encasement could, however, modify the extent of damage caused to plants. To determine impacts of the date of <span class="hlt">ice</span> encasement, a novel field experiment was established in sub-arctic Sweden, with <span class="hlt">icing</span> events simulated in January and March 2008 and 2009. In the subsequent summers, reproduction, phenology, growth and mortality, as well as physiological indicators of leaf damage were measured in the three dominant dwarf shrubs: Vaccinium uliginosum, Vaccinium vitis-idaea and Empetrum nigrum. It was hypothesised that January <span class="hlt">icing</span> would be more damaging compared to March <span class="hlt">icing</span> due to the longer duration of <span class="hlt">ice</span> encasement. Following 2 years of <span class="hlt">icing</span>, E. nigrum berry production was 83% lower in January-<span class="hlt">iced</span> plots compared to controls, and V. vitis-idaea electrolyte leakage was increased by 69%. Conversely, electrolyte leakage of E. nigrum was 25% lower and leaf emergence of V. vitis-idaea commenced 11 days earlier in March-<span class="hlt">iced</span> plots compared to control plots in 2009. There was no effect of <span class="hlt">icing</span> on any of the other parameters measured, indicating that overall these study species have moderate to high tolerance to <span class="hlt">ice</span> encasement. Even much longer exposure under the January <span class="hlt">icing</span> treatment does not clearly increase damage. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3081589','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3081589"><span><span class="hlt">ICE</span> SLURRY APPLICATIONS</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Kauffeld, M.; WANG, M. J.; Goldstein, V.; Kasza, K. E.</p> <p>2011-01-01</p> <p>The role of secondary refrigerants is expected to grow as the focus on the reduction of greenhouse gas emissions increases. The effectiveness of secondary refrigerants can be improved when phase changing media are introduced in place of single phase media. Operating at temperatures below the freezing point of water, <span class="hlt">ice</span> slurry facilitates several efficiency improvements such as reductions in pumping energy consumption as well as lowering the required temperature difference in heat exchangers due to the beneficial thermo-physical properties of <span class="hlt">ice</span> slurry. Research has shown that <span class="hlt">ice</span> slurry can be engineered to have ideal <span class="hlt">ice</span> particle characteristics so that it can be easily stored in tanks without agglomeration and then be extractable for pumping at very high <span class="hlt">ice</span> fraction without plugging. In addition <span class="hlt">ice</span> slurry can be used in many direct contact food and medical protective cooling applications. This paper provides an overview of the latest developments in <span class="hlt">ice</span> slurry technology. PMID:21528014</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011TRACE..25...29W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011TRACE..25...29W"><span>Factors Affecting the Changes of <span class="hlt">Ice</span> Crystal Form in <span class="hlt">Ice</span> Cream</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Xin; Watanabe, Manabu; Suzuki, Toru</p> <p></p> <p>In this study, the shape of <span class="hlt">ice</span> crystals in <span class="hlt">ice</span> cream was quantitatively evaluated by introducing fractal analysis. A small droplet of commercial <span class="hlt">ice</span> cream mix was quickly cooled to about -30°C on the cold stage of microscope. Subsequently, it was heated to -5°C or -10°C and then held for various holding time. Based on the captured images at each holding time, the cross-sectional area and the length of circumference for each <span class="hlt">ice</span> crystal were measured to calculate fractal dimension using image analysis software. The results showed that the <span class="hlt">ice</span> crystals were categorized into two groups, e.g. simple-shape and complicated-shape, according to their fractal dimensions. The fractal dimension of <span class="hlt">ice</span> crystals became lower with increasing holding time and holding temperature. It was also indicated that the growing rate of complicated-shape <span class="hlt">ice</span> crystals was relatively higher because of aggregation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19790068799&hterms=atmospheric+rivers&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Datmospheric%2Brivers','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19790068799&hterms=atmospheric+rivers&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Datmospheric%2Brivers"><span>Evaporation of <span class="hlt">ice</span> in planetary atmospheres - <span class="hlt">Ice</span>-covered rivers on Mars</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wallace, D.; Sagan, C.</p> <p>1979-01-01</p> <p>The existence of <span class="hlt">ice</span> covered rivers on Mars is considered. It is noted that the evaporation rate of water <span class="hlt">ice</span> on the surface of a planet with an atmosphere involves an equilibrium between solar heating and radiative and evaporative cooling of the <span class="hlt">ice</span> layer. It is determined that even with a mean Martian insolation rate above the <span class="hlt">ice</span> of approximately 10 to the -8th g per sq cm/sec, a flowing channel of liquid water will be covered by <span class="hlt">ice</span> which evaporates sufficiently slowly that the water below can flow for hundreds of kilometers even with modest discharges. Evaporation rates are calculated for a range of frictional velocities, atmospheric pressures, and insolations and it is suggested that some subset of observed Martian channels may have formed as <span class="hlt">ice</span>-choked rivers. Finally, the exobiological implications of <span class="hlt">ice</span> covered channels or lakes on Mars are discussed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.C51A0967B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.C51A0967B"><span>Mapping Ross <span class="hlt">Ice</span> Shelf with ROSETTA-<span class="hlt">Ice</span> airborne laser altimetry</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Becker, M. K.; Fricker, H. A.; Padman, L.; Bell, R. E.; Siegfried, M. R.; Dieck, C. C. M.</p> <p>2017-12-01</p> <p>The Ross Ocean and <span class="hlt">ice</span> Shelf Environment and Tectonic setting Through Aerogeophysical surveys and modeling (ROSETTA-<span class="hlt">Ice</span>) project combines airborne glaciological, geological, and oceanographic observations to enhance our understanding of the history and dynamics of the large ( 500,000 square km) Ross <span class="hlt">Ice</span> Shelf (RIS). Here, we focus on the Light Detection And Ranging (LiDAR) data collected in 2015 and 2016. This data set represents a significant advance in resolution: Whereas the last attempt to systematically map RIS (the surface-based RIGGS program in the 1970s) was at 55 km grid spacing, the ROSETTA-<span class="hlt">Ice</span> grid has 10-20 km line spacing and much higher along-track resolution. We discuss two different strategies for processing the raw LiDAR data: one that requires proprietary software (Riegl's RiPROCESS package), and one that employs open-source programs and libraries. With the processed elevation data, we are able to resolve fine-scale <span class="hlt">ice</span>-shelf features such as the "rampart-moat" <span class="hlt">ice</span>-front morphology, which has previously been observed on and modeled for icebergs. This feature is also visible in the ROSETTA-<span class="hlt">Ice</span> shallow-<span class="hlt">ice</span> radar data; comparing the laser data with radargrams provides insight into the processes leading to their formation. Near-surface firn state and total firn air content can also be investigated through combined analysis of laser altimetry and radar data. By performing similar analyses with data from the radar altimeter aboard CryoSat-2, we demonstrate the utility of the ROSETTA-<span class="hlt">Ice</span> LiDAR data set in satellite validation efforts. The incorporation of the LiDAR data from the third and final field season (December 2017) will allow us to construct a DEM and an <span class="hlt">ice</span> thickness map of RIS for the austral summers of 2015-2017. These products will be used to validate and extend observations of height changes from satellite radar and laser altimetry, as well as to update regional models of ocean circulation and <span class="hlt">ice</span> dynamics.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/1239510-sph-non-newtonian-model-ice-sheet-ice-shelf-dynamics','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1239510-sph-non-newtonian-model-ice-sheet-ice-shelf-dynamics"><span>SPH non-Newtonian Model for <span class="hlt">Ice</span> Sheet and <span class="hlt">Ice</span> Shelf Dynamics</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Tartakovsky, Alexandre M.; Pan, Wenxiao; Monaghan, Joseph J.</p> <p>2012-07-07</p> <p>We propose a new three-dimensional smoothed particle hydrodynamics (SPH) non-Newtonian model to study coupled <span class="hlt">ice</span> sheet and <span class="hlt">ice</span> shelf dynamics. Most existing <span class="hlt">ice</span> sheet numerical models use a grid-based Eulerian approach, and are usually restricted to shallow <span class="hlt">ice</span> sheet and <span class="hlt">ice</span> shelf approximations of the momentum conservation equation. SPH, a fully Lagrangian particle method, solves the full momentum conservation equation. SPH method also allows modeling of free-surface flows, large material deformation, and material fragmentation without employing complex front-tracking schemes, and does not require re-meshing. As a result, SPH codes are highly scalable. Numerical accuracy of the proposed SPH model ismore » first verified by simulating a plane shear flow with a free surface and the propagation of a blob of <span class="hlt">ice</span> along a horizontal surface. Next, the SPH model is used to investigate the grounding line dynamics of <span class="hlt">ice</span> sheet/shelf. The steady position of the grounding line, obtained from our SPH simulations, is in good agreement with laboratory observations for a wide range of bedrock slopes, <span class="hlt">ice</span>-to-fluid density ratios, and flux. We examine the effect of non-Newtonian behavior of <span class="hlt">ice</span> on the grounding line dynamics. The non-Newtonian constitutive model is based on Glen's law for a creeping flow of a polycrystalline <span class="hlt">ice</span>. Finally, we investigate the effect of a bedrock geometry on a steady-state position of the grounding line.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013GMD.....6.1299G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013GMD.....6.1299G"><span>Capabilities and performance of Elmer/<span class="hlt">Ice</span>, a new-generation <span class="hlt">ice</span> sheet model</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gagliardini, O.; Zwinger, T.; Gillet-Chaulet, F.; Durand, G.; Favier, L.; de Fleurian, B.; Greve, R.; Malinen, M.; Martín, C.; Råback, P.; Ruokolainen, J.; Sacchettini, M.; Schäfer, M.; Seddik, H.; Thies, J.</p> <p>2013-08-01</p> <p>The Fourth IPCC Assessment Report concluded that <span class="hlt">ice</span> sheet flow models, in their current state, were unable to provide accurate forecast for the increase of polar <span class="hlt">ice</span> sheet discharge and the associated contribution to sea level rise. Since then, the glaciological community has undertaken a huge effort to develop and improve a new generation of <span class="hlt">ice</span> flow models, and as a result a significant number of new <span class="hlt">ice</span> sheet models have emerged. Among them is the parallel finite-element model Elmer/<span class="hlt">Ice</span>, based on the open-source multi-physics code Elmer. It was one of the first full-Stokes models used to make projections for the evolution of the whole Greenland <span class="hlt">ice</span> sheet for the coming two centuries. Originally developed to solve local <span class="hlt">ice</span> flow problems of high mechanical and physical complexity, Elmer/<span class="hlt">Ice</span> has today reached the maturity to solve larger-scale problems, earning the status of an <span class="hlt">ice</span> sheet model. Here, we summarise almost 10 yr of development performed by different groups. Elmer/<span class="hlt">Ice</span> solves the full-Stokes equations, for isotropic but also anisotropic <span class="hlt">ice</span> rheology, resolves the grounding line dynamics as a contact problem, and contains various basal friction laws. Derived fields, like the age of the <span class="hlt">ice</span>, the strain rate or stress, can also be computed. Elmer/<span class="hlt">Ice</span> includes two recently proposed inverse methods to infer badly known parameters. Elmer is a highly parallelised code thanks to recent developments and the implementation of a block preconditioned solver for the Stokes system. In this paper, all these components are presented in detail, as well as the numerical performance of the Stokes solver and developments planned for the future.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19910031156&hterms=marginal&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dmarginal','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19910031156&hterms=marginal&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dmarginal"><span>Wave evolution in the marginal <span class="hlt">ice</span> zone - Model predictions and comparisons with on-site and remote data</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Liu, A. K.; Holt, B.; Vachon, P. W.</p> <p>1989-01-01</p> <p>The ocean-wave dispersion relation and viscous attenuation by a sea <span class="hlt">ice</span> cover were studied for waves in the marginal <span class="hlt">ice</span> zone (MIZ). The Labrador <span class="hlt">ice</span> margin experiment (Limex), conducted off the east coast of Newfoundland, Canada in March 1987, provided aircraft SAR, wave buoy, and <span class="hlt">ice</span> property data. Based on the wave number spectrum from SAR data, the concurrent wave frequency spectrum from ocean buoy data, and accelerometer data on the <span class="hlt">ice</span> during Limex '87, the dispersion relation has been derived and compared with the model. Accelerometers were deployed at the <span class="hlt">ice</span> edge and into the <span class="hlt">ice</span> <span class="hlt">pack</span>. Data from the accelerometers were used to estimate wave energy attenuation rates and compared with the model. The model-data comparisons are reasonably good for the <span class="hlt">ice</span> conditions observed during Limex' 87.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19880019765','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19880019765"><span><span class="hlt">Ice</span> detector</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Weinstein, Leonard M. (Inventor)</p> <p>1988-01-01</p> <p>An <span class="hlt">ice</span> detector is provided for the determination of the thickness of <span class="hlt">ice</span> on the outer surface on an object (e.g., aircraft) independently of temperature or the composition of the <span class="hlt">ice</span>. First capacitive gauge, second capacitive gauge, and temperature gauge are embedded in embedding material located within a hollowed out portion of the outer surface. This embedding material is flush with the outer surface to prevent undesirable drag. The first capacitive gauge, second capacitive gauge, and the temperature gauge are respectively connected to first capacitive measuring circuit, second capacitive measuring circuit, and temperature measuring circuit. The geometry of the first and second capacitive gauges is such that the ratio of the voltage outputs of the first and second capacitance measuring circuits is proportional to the thickness of <span class="hlt">ice</span>, regardless of <span class="hlt">ice</span> temperature or composition. This ratio is determined by offset and dividing circuit.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1248935','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1248935"><span>Norwegian Young Sea <span class="hlt">Ice</span> Experiment (N-<span class="hlt">ICE</span>) Field Campaign Report</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Walden, V. P.; Hudson, S. R.; Cohen, L.</p> <p></p> <p>The Norwegian Young Sea <span class="hlt">Ice</span> (N-<span class="hlt">ICE</span>) experiment was conducted aboard the R/V Lance research vessel from January through June 2015. The primary purpose of the experiment was to better understand thin, first-year sea <span class="hlt">ice</span>. This includes understanding of how different components of the Arctic system affect sea <span class="hlt">ice</span>, but also how changing sea <span class="hlt">ice</span> affects the system. A major part of this effort is to characterize the atmospheric conditions throughout the experiment. A micropulse lidar (MPL) (S/N: 108) was deployed from the U.S. Department of Energy’s (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility as part of the atmospheric suitemore » of instruments. The MPL operated successfully throughout the entire experiment, acquiring data from 21 January 2015 through 23 June 2015. The MPL was the essential instrument for determining the phase (water, <span class="hlt">ice</span> or mixed) of the lower-level clouds over the sea <span class="hlt">ice</span>. Data obtained from the MPL during the N-<span class="hlt">ICE</span> experiment show large cloud fractions over young, thin Arctic sea <span class="hlt">ice</span> from January through June 2015 (north of Svalbard). The winter season was characterized by frequent synoptic storms and large fluctuations in the near-surface temperature. There was much less synoptic activity in spring and summer as the near-surface temperature rose to 0 C. The cloud fraction was lower in winter (60%) than in the spring and summer (80%). Supercooled liquid clouds were observed for most of the deployment, appearing first in mid-February. Spring and summer clouds were characterized by low, thick, uniform clouds.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.C41E..01H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.C41E..01H"><span><span class="hlt">Ice</span> shelf structure and stability: Larsen C <span class="hlt">Ice</span> Shelf, Antarctica</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hubbard, B. P.; Ashmore, D.; Bevan, S. L.; Booth, A. D.; Holland, P.; Jansen, D.; Kuipers Munneke, P.; Kulessa, B.; Luckman, A. J.; Sevestre, H.; O'Leary, M.</p> <p>2017-12-01</p> <p>We report on recent empirical investigations of the internal structure and stability (or otherwise) of Larsen C <span class="hlt">Ice</span> Shelf (LCIS), Antarctica, focusing on research carried out for the MIDAS research project between 2014 and 2017. Borehole- and surface geophysics-based fieldwork carried out in austral springs 2014 and 2015 revealed that ephemeral surface ponds, preferentially located within the major inlets within the northern sector of the <span class="hlt">ice</span> shelf, result in the formation of several tens of metres of (relatively dense) subsurface <span class="hlt">ice</span> within what would otherwise have been a progressively densifying snow and firn column. Five boreholes were drilled throughout the sector and logged by optical televiewer, showing this refrozen <span class="hlt">ice</span> to be extensive and of variable composition depending on its process of formation. Mapping the depth-distribution of the resulting <span class="hlt">ice</span> types and associating each with a simple flow-line model of <span class="hlt">ice</span> motion and accumulation indicates that this area of LCIS has experienced substantial melting for some centuries but that surface ponding has only occurred in recent decades, possibly restricted to the past 20 years. We also present near-surface temperature data that reveal surprising temporal patterns in foehn wind activity and intensity. Finally, we report on the geometrical extension and widening of a rift that was responsible for calving a 5,800 km^2 iceberg from the LCIS in July 2017. The nature of rift propagation through `suture' <span class="hlt">ice</span> bands, widely considered to be composed of marine <span class="hlt">ice</span>, is contrasted with that of its propagation through meteoric <span class="hlt">ice</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20170003146','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20170003146"><span>Characterizing Arctic Sea <span class="hlt">Ice</span> Topography Using High-Resolution <span class="hlt">Ice</span>Bridge Data</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Petty, Alek; Tsamados, Michel; Kurtz, Nathan; Farrell, Sinead; Newman, Thomas; Harbeck, Jeremy; Feltham, Daniel; Richter-Menge, Jackie</p> <p>2016-01-01</p> <p>We present an analysis of Arctic sea <span class="hlt">ice</span> topography using high resolution, three-dimensional, surface elevation data from the Airborne Topographic Mapper, flown as part of NASA's Operation <span class="hlt">Ice</span>Bridge mission. Surface features in the sea <span class="hlt">ice</span> cover are detected using a newly developed surface feature picking algorithm. We derive information regarding the height, volume and geometry of surface features from 2009-2014 within the Beaufort/Chukchi and Central Arctic regions. The results are delineated by <span class="hlt">ice</span> type to estimate the topographic variability across first-year and multi-year <span class="hlt">ice</span> regimes.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_16 --> <div id="page_17" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="321"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19870007787&hterms=marginal&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dmarginal','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19870007787&hterms=marginal&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dmarginal"><span>Microwave properties of sea <span class="hlt">ice</span> in the marginal <span class="hlt">ice</span> zone</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Onstott, R. G.; Larson, R. W.</p> <p>1986-01-01</p> <p>Active microwave properties of summer sea <span class="hlt">ice</span> were measured. Backscatter data were acquired at frequencies from 1 to 17 GHz, at angles from 0 to 70 deg from vertical, and with like and cross antenna polarizations. Results show that melt-water, snow thickness, snowpack morphology, snow surface roughness, <span class="hlt">ice</span> surface roughness, and deformation characteristics are the fundamental scene parameters which govern the summer sea <span class="hlt">ice</span> backscatter response. A thick, wet snow cover dominates the backscatter response and masks any <span class="hlt">ice</span> sheet features below. However, snow and melt-water are not distributed uniformly and the stage of melt may also be quite variable. These nonuniformities related to <span class="hlt">ice</span> type are not necessarily well understood and produce unique microwave signature characteristics.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.C31B0591G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.C31B0591G"><span>Capabilities and performance of the new generation <span class="hlt">ice</span>-sheet model Elmer/<span class="hlt">Ice</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gagliardini, O.; Zwinger, T.; Durand, G.; Favier, L.; de Fleurian, B.; Gillet-chaulet, F.; Seddik, H.; Greve, R.; Mallinen, M.; Martin, C.; Raback, P.; Ruokolainen, J.; Schäfer, M.; Thies, J.</p> <p>2012-12-01</p> <p>Since the Fourth IPCC Assessment Report, and its conclusion about the inability of <span class="hlt">ice</span>-sheet flow models to forecast the current increase of polar <span class="hlt">ice</span> sheet discharge and associated contribution to sea-level rise, a huge development effort has been undertaken by the glaciological community. All around the world, models have been improved and, interestingly, a significant number of new <span class="hlt">ice</span>-sheet models have emerged. Among them, the parallel finite-element model Elmer/<span class="hlt">Ice</span> (based on the open-source multi-physics code Elmer) was one of the first full-Stokes models used to make projections of the future of the whole Greenland <span class="hlt">ice</span> sheet for the coming two centuries. Originally developed to solve dedicated local <span class="hlt">ice</span> flow problems of high mechanical and physical complexity, Elmer/<span class="hlt">Ice</span> has today reached the maturity to solve larger scale problems, earning the status of an <span class="hlt">ice</span>-sheet model. In this presentation, we summarise the almost 10 years of development performed by different groups. We present the components already included in Elmer/<span class="hlt">Ice</span>, its numerical performance, selected applications, as well as developments planed for the future.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.C33A0684F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.C33A0684F"><span><span class="hlt">Ice</span>911 Research: Preserving and Rebuilding Multi-Year <span class="hlt">Ice</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Field, L. A.; Chetty, S.; Manzara, A.</p> <p>2013-12-01</p> <p>A localized surface albedo modification technique is being developed that shows promise as a method to increase multi-year <span class="hlt">ice</span> using reflective floating materials, chosen so as to have low subsidiary environmental impact. Multi-year <span class="hlt">ice</span> has diminished rapidly in the Arctic over the past 3 decades (Riihela et al, Nature Climate Change, August 4, 2013) and this plays a part in the continuing rapid decrease of summer-time <span class="hlt">ice</span>. As summer-time <span class="hlt">ice</span> disappears, the Arctic is losing its ability to act as the earth's refrigeration system, and this has widespread climatic effects, as well as a direct effect on sea level rise, as oceans heat, and once-land-based <span class="hlt">ice</span> melts into the sea. We have tested the albedo modification technique on a small scale over five Winter/Spring seasons at sites including California's Sierra Nevada Mountains, a Canadian lake, and a small man-made lake in Minnesota, using various materials and an evolving array of instrumentation. The materials can float and can be made to minimize effects on marine habitat and species. The instrumentation is designed to be deployed in harsh and remote locations. Localized snow and <span class="hlt">ice</span> preservation, and reductions in water heating, have been quantified in small-scale testing. Climate modeling is underway to analyze the effects of this method of surface albedo modification in key areas on the rate of oceanic and atmospheric temperature rise. We are also evaluating the effects of snow and <span class="hlt">ice</span> preservation for protection of infrastructure and habitat stabilization. This paper will also discuss a possible reduction of sea level rise with an eye to quantification of cost/benefit. The most recent season's experimentation on a man-made private lake in Minnesota saw further evolution in the material and deployment approach. The materials were successfully deployed to shield underlying snow and <span class="hlt">ice</span> from melting; applications of granular materials remained stable in the face of local wind and storms. Localized albedo</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950038689&hterms=glacier+melt&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dglacier%2Bmelt','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950038689&hterms=glacier+melt&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dglacier%2Bmelt"><span>Radar measurements of melt zones on the Greenland <span class="hlt">Ice</span> Sheet</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Jezek, Kenneth C.; Gogineni, Prasad; Shanableh, M.</p> <p>1994-01-01</p> <p>Surface-based microwave radar measurements were performed at a location on the western flank of the Greenland <span class="hlt">Ice</span> Sheet. Here, firn metamorphasis is dominated by seasonal melt, which leads to marked contrasts in the vertical structure of winter and summer firn. This snow regime is also one of the brightest radar targets on Earth with an average backscatter coefficient of 0 dB at 5.3 GHz and an incidence angle of 25 deg. By combining detailed observations of firn physical properties with ranging radar measurements we find that the glaciological mechanism associated with this strong electromagnetic response is summer <span class="hlt">ice</span> lens formation within the previous winter's snow <span class="hlt">pack</span>. This observation has important implications for monitoring and understanding changes in <span class="hlt">ice</span> sheet volume using spaceborne microwave sensors.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19950024430','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19950024430"><span>A laser-based <span class="hlt">ice</span> shape profilometer for use in <span class="hlt">icing</span> wind tunnels</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hovenac, Edward A.; Vargas, Mario</p> <p>1995-01-01</p> <p>A laser-based profilometer was developed to measure the thickness and shape of <span class="hlt">ice</span> accretions on the leading edge of airfoils and other models in <span class="hlt">icing</span> wind tunnels. The instrument is a hand held device that is connected to a desk top computer with a 10 meter cable. It projects a laser line onto an <span class="hlt">ice</span> shape and used solid state cameras to detect the light scattered by the <span class="hlt">ice</span>. The instrument corrects the image for camera angle distortions, displays an outline of the <span class="hlt">ice</span> shape on the computer screen, saves the data on a disk, and can print a full scale drawing of the <span class="hlt">ice</span> shape. The profilometer has undergone extensive testing in the laboratory and in the NASA Lewis <span class="hlt">Icing</span> Research Tunnel. Results of the tests show very good agreement between profilometer measurements and known simulated <span class="hlt">ice</span> shapes and fair agreement between profilometer measurements and hand tracing techniques.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GeoRL..44.4186B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GeoRL..44.4186B"><span>Fracture propagation and stability of <span class="hlt">ice</span> shelves governed by <span class="hlt">ice</span> shelf heterogeneity</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Borstad, Chris; McGrath, Daniel; Pope, Allen</p> <p>2017-05-01</p> <p>Tabular iceberg calving and <span class="hlt">ice</span> shelf retreat occurs after full-thickness fractures, known as rifts, propagate across an <span class="hlt">ice</span> shelf. A quickly evolving rift signals a threat to the stability of Larsen C, the Antarctic Peninsula's largest <span class="hlt">ice</span> shelf. Here we reveal the influence of <span class="hlt">ice</span> shelf heterogeneity on the growth of this rift, with implications that challenge existing notions of <span class="hlt">ice</span> shelf stability. Most of the rift extension has occurred in bursts after overcoming the resistance of suture zones that bind together neighboring glacier inflows. We model the stresses in the <span class="hlt">ice</span> shelf to determine potential rift trajectories. Calving perturbations to <span class="hlt">ice</span> flow will likely reach the grounding line. The stability of Larsen C may hinge on a single suture zone that stabilizes numerous upstream rifts. Elevated fracture toughness of suture zones may be the most important property that allows <span class="hlt">ice</span> shelves to modulate Antarctica's contribution to sea level rise.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004DSRI...51.1601M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004DSRI...51.1601M"><span>Effects of summer <span class="hlt">ice</span> coverage on phytoplankton assemblages in the Ross Sea, Antarctica</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mangoni, O.; Modigh, M.; Conversano, F.; Carrada, G. C.; Saggiomo, V.</p> <p>2004-11-01</p> <p>An oceanographic cruise was conducted in the Ross Sea (Antarctica) during summer 2001 as part of the Italian National Program for Antarctic Research (PNRA). Extensive areas of <span class="hlt">pack</span> <span class="hlt">ice</span> occurred over the Ross Sea, atypical for summer when offshore waters are normally free of <span class="hlt">ice</span>. The present study focuses on the effects of increased <span class="hlt">ice</span> coverage on phytoplankton assemblages. Water samples collected at various depths at 72 hydrographical stations in offshore and coastal waters were used to determine size-fractionated phytoplankton biomass as chlorophyll a (chla) concentrations, and HPLC photosynthetic pigments. For the offshore waters, the average chla concentration was 57.8 mg m-2, approximately three times the values recorded under <span class="hlt">ice</span>-free conditions during summer 1996. In coastal waters, the average chla concentrations were 102 and 206 mg m-2 during January and February, respectively, i.e., up to 2.5 times those of 1996. Micro- and nano-phytoplankton size fractions made up about 90% of the phytoplankton biomass over the entire study area and were composed primarily of diatoms with a pico-phytoplankton fraction dominated by prymnesiophyceans. The broken <span class="hlt">pack</span> and melting <span class="hlt">ice</span> was strongly coloured by an extensive algal biomass suggesting that the phytoplankton was a result of seeding from <span class="hlt">ice</span> algal communities. The Ross Sea considered to be one of the most productive areas of the Southern Ocean, had primary production values about four-fold those of other areas. The lengthening of the <span class="hlt">ice</span> season observed in the Western Ross Sea, associated with a considerable increase in phytoplankton biomass as observed in summer 2001, would have a major impact on the trophic structure of the entire ecosystem, and presumably, also on carbon export.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4987822','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4987822"><span>Stochastic <span class="hlt">ice</span> stream dynamics</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Bertagni, Matteo Bernard; Ridolfi, Luca</p> <p>2016-01-01</p> <p><span class="hlt">Ice</span> streams are narrow corridors of fast-flowing <span class="hlt">ice</span> that constitute the arterial drainage network of <span class="hlt">ice</span> sheets. Therefore, changes in <span class="hlt">ice</span> stream flow are key to understanding paleoclimate, sea level changes, and rapid disintegration of <span class="hlt">ice</span> sheets during deglaciation. The dynamics of <span class="hlt">ice</span> flow are tightly coupled to the climate system through atmospheric temperature and snow recharge, which are known exhibit stochastic variability. Here we focus on the interplay between stochastic climate forcing and <span class="hlt">ice</span> stream temporal dynamics. Our work demonstrates that realistic climate fluctuations are able to (i) induce the coexistence of dynamic behaviors that would be incompatible in a purely deterministic system and (ii) drive <span class="hlt">ice</span> stream flow away from the regime expected in a steady climate. We conclude that environmental noise appears to be crucial to interpreting the past behavior of <span class="hlt">ice</span> sheets, as well as to predicting their future evolution. PMID:27457960</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19990026834','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19990026834"><span>[Tail Plane <span class="hlt">Icing</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1997-01-01</p> <p>The Aviation Safety Program initiated by NASA in 1997 has put greater emphasis in safety related research activities. <span class="hlt">Ice</span>-contaminated-tailplane stall (ICTS) has been identified by the NASA Lewis <span class="hlt">Icing</span> Technology Branch as an important activity for aircraft safety related research. The ICTS phenomenon is characterized as a sudden, often uncontrollable aircraft nose- down pitching moment, which occurs due to increased angle-of-attack of the horizontal tailplane resulting in tailplane stall. Typically, this phenomenon occurs when lowering the flaps during final approach while operating in or recently departing from <span class="hlt">icing</span> conditions. <span class="hlt">Ice</span> formation on the tailplane leading edge can reduce tailplane angle-of-attack range and cause flow separation resulting in a significant reduction or complete loss of aircraft pitch control. In 1993, the Federal Aviation Authority (FAA) and NASA embarked upon a four-year research program to address the problem of tailplane stall and to quantify the effect of tailplane <span class="hlt">ice</span> accretion on aircraft performance and handling characteristics. The goals of this program, which was completed in March 1998, were to collect aerodynamic data for an aircraft tail with and without <span class="hlt">ice</span> contamination and to develop analytical methods for predicting the effects of tailplane <span class="hlt">ice</span> contamination. Extensive dry air and <span class="hlt">icing</span> tunnel tests which resulted in a database of the aerodynamic effects associated with tailplane <span class="hlt">ice</span> contamination. Although the FAA/NASA tailplane <span class="hlt">icing</span> program generated some answers regarding <span class="hlt">ice</span>-contaminated-tailplane stall (ICTS) phenomena, NASA researchers have found many open questions that warrant further investigation into ICTS. In addition, several aircraft manufacturers have expressed interest in a second research program to expand the database to other tail configurations and to develop experimental and computational methodologies for evaluating the ICTS phenomenon. In 1998, the <span class="hlt">icing</span> branch at NASA Lewis initiated a second</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFM.C41C0478A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFM.C41C0478A"><span>Controls on Arctic sea <span class="hlt">ice</span> from first-year and multi-year <span class="hlt">ice</span> survival rates</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Armour, K.; Bitz, C. M.; Hunke, E. C.; Thompson, L.</p> <p>2009-12-01</p> <p>The recent decrease in Arctic sea <span class="hlt">ice</span> cover has transpired with a significant loss of multi-year (MY) <span class="hlt">ice</span>. The transition to an Arctic that is populated by thinner first-year (FY) sea <span class="hlt">ice</span> has important implications for future trends in area and volume. We develop a reduced model for Arctic sea <span class="hlt">ice</span> with which we investigate how the survivability of FY and MY <span class="hlt">ice</span> control various aspects of the sea-<span class="hlt">ice</span> system. We demonstrate that Arctic sea-<span class="hlt">ice</span> area and volume behave approximately as first-order autoregressive processes, which allows for a simple interpretation of September sea-<span class="hlt">ice</span> in which its mean state, variability, and sensitivity to climate forcing can be described naturally in terms of the average survival rates of FY and MY <span class="hlt">ice</span>. This model, used in concert with a sea-<span class="hlt">ice</span> simulation that traces FY and MY <span class="hlt">ice</span> areas to estimate the survival rates, reveals that small trends in the <span class="hlt">ice</span> survival rates explain the decline in total Arctic <span class="hlt">ice</span> area, and the relatively larger loss of MY <span class="hlt">ice</span> area, over the period 1979-2006. Additionally, our model allows for a calculation of the persistence time scales of September area and volume anomalies. A relatively short memory time scale for <span class="hlt">ice</span> area (~ 1 year) implies that Arctic <span class="hlt">ice</span> area is nearly in equilibrium with long-term climate forcing at all times, and therefore observed trends in area are a clear indication of a changing climate. A longer memory time scale for <span class="hlt">ice</span> volume (~ 5 years) suggests that volume can be out of equilibrium with climate forcing for long periods of time, and therefore trends in <span class="hlt">ice</span> volume are difficult to distinguish from its natural variability. With our reduced model, we demonstrate the connection between memory time scale and sensitivity to climate forcing, and discuss the implications that a changing memory time scale has on the trajectory of <span class="hlt">ice</span> area and volume in a warming climate. Our findings indicate that it is unlikely that a “tipping point” in September <span class="hlt">ice</span> area and volume will be</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24579057','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24579057"><span>Bacterial <span class="hlt">ice</span> crystal controlling proteins.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lorv, Janet S H; Rose, David R; Glick, Bernard R</p> <p>2014-01-01</p> <p>Across the world, many <span class="hlt">ice</span> active bacteria utilize <span class="hlt">ice</span> crystal controlling proteins for aid in freezing tolerance at subzero temperatures. <span class="hlt">Ice</span> crystal controlling proteins include both antifreeze and <span class="hlt">ice</span> nucleation proteins. Antifreeze proteins minimize freezing damage by inhibiting growth of large <span class="hlt">ice</span> crystals, while <span class="hlt">ice</span> nucleation proteins induce formation of embryonic <span class="hlt">ice</span> crystals. Although both protein classes have differing functions, these proteins use the same <span class="hlt">ice</span> binding mechanisms. Rather than direct binding, it is probable that these protein classes create an <span class="hlt">ice</span> surface prior to <span class="hlt">ice</span> crystal surface adsorption. Function is differentiated by molecular size of the protein. This paper reviews the similar and different aspects of bacterial antifreeze and <span class="hlt">ice</span> nucleation proteins, the role of these proteins in freezing tolerance, prevalence of these proteins in psychrophiles, and current mechanisms of protein-<span class="hlt">ice</span> interactions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AGUFM.C11A0465M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AGUFM.C11A0465M"><span>Characteristics of basal <span class="hlt">ice</span> and subglacial water at Dome Fuji, Antarctica <span class="hlt">ice</span> sheet</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Motoyama, H.; Uemura, R.; Hirabayashi, M.; Miyake, T.; Kuramoto, T.; Tanaka, Y.; Dome Fuji Ice Core Project, M.</p> <p>2008-12-01</p> <p>(Introduction): The second deep <span class="hlt">ice</span> coring project at Dome Fuji, Antarctica reached a depth of 3035.22 m during the austral summer season in 2006/2007. The recovered <span class="hlt">ice</span> cores contain records of global environmental changes going back about 720,000 years. (Estimation of basal <span class="hlt">ice</span> melt): The borehole measurement was carried out on January 2nd in 2007 when the temperature disturbance in the borehole calmed down by the rest of drilling for 2 days. Temperature measurement was performed after 0 C thermometer test was done in the ground. The temperature sensor of pt100 installed in the skate-like anti-torque was used. We did not have the enough time until the temperature of thermometer was matched with the temperature of <span class="hlt">ice</span> sheet. Some error was included in <span class="hlt">ice</span> temperature data. The resistance of pt100 sensor was converted to temperature in the borehole measurement machine. But we used only two electrical lines for pt100 sensor. Rate of heat flow in the <span class="hlt">ice</span> sheet was calculated using the vertical temperature gradient of the <span class="hlt">ice</span> sheet and rate of heat conductivity of <span class="hlt">ice</span>. The deepest part of heat flux using temperatures at 3000m and 3030m was about 45mW/m2. We assumed that this value was the heat flux from the bedrock in the <span class="hlt">ice</span> sheet. Heat flux to the bedrock surface in the ground was assumed 54.6mW/m2 adopted by <span class="hlt">ice</span> sheet model (P. Huybrechts, 2006). Then the heat flux for basal <span class="hlt">ice</span> melt was about 10mW/m2. This value was equaled to melting of 1.1mm of <span class="hlt">ice</span> thickness per year. On the other hand, the annual layer thickness under 2500m was not changed so much and its average was 1.3mm of <span class="hlt">ice</span> thickness. So the annual layer thickness and melting rate of basal <span class="hlt">ice</span> was the same in ordering way. Or <span class="hlt">ice</span> equivalent in annual layer is melting every year. The age of the deepest part of <span class="hlt">ice</span> core is guessed at 720,000 years old and the <span class="hlt">ice</span> older than basal <span class="hlt">ice</span> has melted away. (The state of basal <span class="hlt">ice</span>): When the <span class="hlt">ice</span> core drilling depth passed 3031.44m, amount of <span class="hlt">ice</span> chip more abundant</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70020441','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70020441"><span>Greenland Sea Odden sea <span class="hlt">ice</span> feature: Intra-annual and interannual variability</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Shuchman, R.A.; Josberger, E.G.; Russel, C.A.; Fischer, K.W.; Johannessen, O.M.; Johannessen, J.; Gloersen, P.</p> <p>1998-01-01</p> <p>The "Odden" is a large sea <span class="hlt">ice</span> feature that forms in the east Greenland Sea that may protrude eastward to 5??E from the main sea <span class="hlt">ice</span> <span class="hlt">pack</span> (at about 8??W) between 73?? and 77??N. It generally forms at the beginning of the winter season and can cover 300,000 km2. Throughout the winter the outer edge of the Odden may advance and retreat by several hundred kilometers on timescales of a few days to weeks. Satellite passive microwave observations from 1978 through 1995 provide a continuous record of the spatial and temporal variations of this extremely dynamic phenomenon. Aircraft synthetic aperture radar, satellite passive microwave, and ship observations in the Odden show that the Odden consists of new <span class="hlt">ice</span> types, rather than older <span class="hlt">ice</span> types advected eastward from the main <span class="hlt">pack</span>. The 17-year record shows both strong interannual and intra-annual variations in Odden extent and temporal behavior. For example, in 1983 the Odden was weak, in 1984 the Odden did not occur, and in 1985 the Odden returned late in the season. An analysis of the <span class="hlt">ice</span> area and extent time series derived from the satellite passive microwave observations along with meteorological data from the International Arctic Buoy Program (IABP) determined the meteorological forcing associated with Odden growth, maintenance, and decay. The key meteorological parameters that are related to the rapid <span class="hlt">ice</span> formation and decay associated with the Odden are, in order of importance, air temperature, wind speed, and wind direction. Oceanographic parameters must play an important role in controlling Odden formation, but it is not yet possible to quantify this role because of a lack of long-term oceanographic observations. Copyright 1998 by the American Geophysical Union.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.C11E..05F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.C11E..05F"><span>Eastern Ross <span class="hlt">Ice</span> Sheet Deglacial History inferred from the Roosevelt Island <span class="hlt">Ice</span> Core</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fudge, T. J.; Buizert, C.; Lee, J.; Waddington, E. D.; Bertler, N. A. N.; Conway, H.; Brook, E.; Severinghaus, J. P.</p> <p>2017-12-01</p> <p>The Ross <span class="hlt">Ice</span> Sheet drains large portions of both West and East Antarctica. Understanding the retreat of the Ross <span class="hlt">Ice</span> Sheet following the Last Glacial Maximum is particularly difficult in the eastern Ross area where there is no exposed rock and the Ross <span class="hlt">Ice</span> Shelf prevents extensive bathymetric mapping. Coastal domes, by preserving old <span class="hlt">ice</span>, can be used to infer the establishment of grounded <span class="hlt">ice</span> and be used to infer past <span class="hlt">ice</span> thickness. Here we focus on Roosevelt Island, in the eastern Ross Sea, where the Roosevelt Island Climate Evolution project recently completed an <span class="hlt">ice</span> core to bedrock. Using <span class="hlt">ice</span>-flow modeling constrained by the depth-age relationship and an independent estimate of accumulation rate from firn-densification measurements and modeling, we infer <span class="hlt">ice</span> thickness histories for the LGM (20ka) to present. Preliminary results indicate thinning of 300m between 15ka and 12ka is required. This is similar to the amount and timing of thinning inferred at Siple Dome, in the central Ross Sea (Waddington et al., 2005; Price et al., 2007) and supports the presence of active <span class="hlt">ice</span> streams throughout the Ross <span class="hlt">Ice</span> Sheet advance during the LGM.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19820016728','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19820016728"><span>SEASAT views oceans and sea <span class="hlt">ice</span> with synthetic aperture radar</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Fu, L. L.; Holt, B.</p> <p>1982-01-01</p> <p>Fifty-one SEASAT synthetic aperture radar (SAR) images of the oceans and sea <span class="hlt">ice</span> are presented. Surface and internal waves, the Gulf Stream system and its rings and eddies, the eastern North Pacific, coastal phenomena, bathymetric features, atmospheric phenomena, and ship wakes are represented. Images of arctic <span class="hlt">pack</span> and shore-fast <span class="hlt">ice</span> are presented. The characteristics of the SEASAT SAR system and its image are described. Maps showing the area covered, and tables of key orbital information, and listing digitally processed images are provided.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19884496','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19884496"><span>The future of <span class="hlt">ice</span> sheets and sea <span class="hlt">ice</span>: between reversible retreat and unstoppable loss.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Notz, Dirk</p> <p>2009-12-08</p> <p>We discuss the existence of cryospheric "tipping points" in the Earth's climate system. Such critical thresholds have been suggested to exist for the disappearance of Arctic sea <span class="hlt">ice</span> and the retreat of <span class="hlt">ice</span> sheets: Once these <span class="hlt">ice</span> masses have shrunk below an anticipated critical extent, the <span class="hlt">ice</span>-albedo feedback might lead to the irreversible and unstoppable loss of the remaining <span class="hlt">ice</span>. We here give an overview of our current understanding of such threshold behavior. By using conceptual arguments, we review the recent findings that such a tipping point probably does not exist for the loss of Arctic summer sea <span class="hlt">ice</span>. Hence, in a cooler climate, sea <span class="hlt">ice</span> could recover rapidly from the loss it has experienced in recent years. In addition, we discuss why this recent rapid retreat of Arctic summer sea <span class="hlt">ice</span> might largely be a consequence of a slow shift in <span class="hlt">ice</span>-thickness distribution, which will lead to strongly increased year-to-year variability of the Arctic summer sea-<span class="hlt">ice</span> extent. This variability will render seasonal forecasts of the Arctic summer sea-<span class="hlt">ice</span> extent increasingly difficult. We also discuss why, in contrast to Arctic summer sea <span class="hlt">ice</span>, a tipping point is more likely to exist for the loss of the Greenland <span class="hlt">ice</span> sheet and the West Antarctic <span class="hlt">ice</span> sheet.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20080022412','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20080022412"><span><span class="hlt">Ice</span>Val DatAssistant: An Interactive, Automated <span class="hlt">Icing</span> Data Management System</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Levinson, Laurie H.; Wright, William B.</p> <p>2008-01-01</p> <p>As with any scientific endeavor, the foundation of <span class="hlt">icing</span> research at the NASA Glenn Research Center (GRC) is the data acquired during experimental testing. In the case of the GRC <span class="hlt">Icing</span> Branch, an important part of this data consists of <span class="hlt">ice</span> tracings taken following tests carried out in the GRC <span class="hlt">Icing</span> Research Tunnel (IRT), as well as the associated operational and environmental conditions documented during these tests. Over the years, the large number of experimental runs completed has served to emphasize the need for a consistent strategy for managing this data. To address the situation, the <span class="hlt">Icing</span> Branch has recently elected to implement the <span class="hlt">Ice</span>Val DatAssistant automated data management system. With the release of this system, all publicly available IRT-generated experimental <span class="hlt">ice</span> shapes with complete and verifiable conditions have now been compiled into one electronically-searchable database. Simulation software results for the equivalent conditions, generated using the latest version of the LEWICE <span class="hlt">ice</span> shape prediction code, are likewise included and are linked to the corresponding experimental runs. In addition to this comprehensive database, the <span class="hlt">Ice</span>Val system also includes a graphically-oriented database access utility, which provides reliable and easy access to all data contained in the database. In this paper, the issues surrounding historical <span class="hlt">icing</span> data management practices are discussed, as well as the anticipated benefits to be achieved as a result of migrating to the new system. A detailed description of the software system features and database content is also provided; and, finally, known issues and plans for future work are presented.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20070031804','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20070031804"><span><span class="hlt">Ice</span>Val DatAssistant: An Interactive, Automated <span class="hlt">Icing</span> Data Management System</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Levinson, Laurie H.; Wright, William B.</p> <p>2008-01-01</p> <p>As with any scientific endeavor, the foundation of <span class="hlt">icing</span> research at the NASA Glenn Research Center (GRC) is the data acquired during experimental testing. In the case of the GRC <span class="hlt">Icing</span> Branch, an important part of this data consists of <span class="hlt">ice</span> tracings taken following tests carried out in the GRC <span class="hlt">Icing</span> Research Tunnel (IRT), as well as the associated operational and environmental conditions during those tests. Over the years, the large number of experimental runs completed has served to emphasize the need for a consistent strategy to manage the resulting data. To address this situation, the <span class="hlt">Icing</span> Branch has recently elected to implement the <span class="hlt">Ice</span>Val DatAssistant automated data management system. With the release of this system, all publicly available IRT-generated experimental <span class="hlt">ice</span> shapes with complete and verifiable conditions have now been compiled into one electronically-searchable database; and simulation software results for the equivalent conditions, generated using the latest version of the LEWICE <span class="hlt">ice</span> shape prediction code, are likewise included and linked to the corresponding experimental runs. In addition to this comprehensive database, the <span class="hlt">Ice</span>Val system also includes a graphically-oriented database access utility, which provides reliable and easy access to all data contained in the database. In this paper, the issues surrounding historical <span class="hlt">icing</span> data management practices are discussed, as well as the anticipated benefits to be achieved as a result of migrating to the new system. A detailed description of the software system features and database content is also provided; and, finally, known issues and plans for future work are presented.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20080010685','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20080010685"><span>Smagg<span class="hlt">Ice</span> 2.0: Additional Capabilities for Interactive Grid Generation of <span class="hlt">Iced</span> Airfoils</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kreeger, Richard E.; Baez, Marivell; Braun, Donald C.; Schilling, Herbert W.; Vickerman, Mary B.</p> <p>2008-01-01</p> <p>The Surface Modeling and Grid Generation for <span class="hlt">Iced</span> Airfoils (Smagg<span class="hlt">Ice</span>) software toolkit has been extended to allow interactive grid generation for multi-element <span class="hlt">iced</span> airfoils. The essential phases of an <span class="hlt">icing</span> effects study include geometry preparation, block creation and grid generation. Smagg<span class="hlt">Ice</span> Version 2.0 now includes these main capabilities for both single and multi-element airfoils, plus an improved flow solver interface and a variety of additional tools to enhance the efficiency and accuracy of <span class="hlt">icing</span> effects studies. An overview of these features is given, especially the new multi-element blocking strategy using the multiple wakes method. Examples are given which illustrate the capabilities of Smagg<span class="hlt">Ice</span> for conducting an <span class="hlt">icing</span> effects study for both single and multi-element airfoils.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..1614162B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..1614162B"><span>The role of <span class="hlt">ice</span> shelves in the Holocene evolution of the Antarctic <span class="hlt">ice</span> sheet</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bernales, Jorge; Rogozhina, Irina; Thomas, Maik</p> <p>2014-05-01</p> <p>Using the continental-scale <span class="hlt">ice</span> sheet-shelf model SICOPOLIS (Greve, 1997 [1]; Sato and Greve, 2012 [2]), we assess the influence of <span class="hlt">ice</span> shelves on the Holocene evolution and present-day geometry of the Antarctic <span class="hlt">ice</span> sheet. We have designed a series of paleoclimate simulations driven by a time-evolved climate forcing that couples the surface temperature record from the Vostok <span class="hlt">ice</span> core with precipitation pattern using an empirical relation of Dahl-Jensen et al., (1998) [3]. Our numerical experiments show that the geometry of <span class="hlt">ice</span> shelves is determined by the evolution of climate and ocean conditions over time scales of 15 to 25 kyr. This implies that the initial configuration of <span class="hlt">ice</span> shelves at the Last Glacial Maximum (LGM, about 21 kyr before present) has a significant effect on the modelled Early Holocene volume of <span class="hlt">ice</span> shelves (up to 20%) that gradually diminishes to a negligible level for the present-day <span class="hlt">ice</span> shelf configuration. Thus, the present-day geometry of the Antarctic <span class="hlt">ice</span> shelves can be attained even if an <span class="hlt">ice</span>-shelf-free initial condition is chosen at the LGM. However, the grounded <span class="hlt">ice</span> volume, thickness and dynamic states are found to be sensitive to the <span class="hlt">ice</span> shelf dynamics over a longer history spanning several tens of thousands of years. A presence of extensive marine <span class="hlt">ice</span> at the LGM, supported by sediment core reconstructions (e.g. Naish et al., 2009 [4]), has a clear buttressing effect on the grounded <span class="hlt">ice</span> that remains significant over a period of 30 to 50 kyr. If <span class="hlt">ice</span>-shelf-free conditions are prescribed at the LGM, the modelled Early Holocene and present-day grounded <span class="hlt">ice</span> volumes are underestimated by up to 10%, as opposed to simulations incorporating <span class="hlt">ice</span> shelf dynamics over longer periods. The use of <span class="hlt">ice</span>-shelf-free LGM conditions thus results in 50 to over 200 meters thinner <span class="hlt">ice</span> sheet across much of East Antarctica. References [1] Greve, R. (1997). Application of a polythermal three-dimensional <span class="hlt">ice</span> sheet model to the Greenland <span class="hlt">ice</span> sheet: response to</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_17 --> <div id="page_18" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="341"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17731883','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17731883"><span><span class="hlt">Ice</span> core evidence for extensive melting of the greenland <span class="hlt">ice</span> sheet in the last interglacial.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Koerner, R M</p> <p>1989-05-26</p> <p>Evidence from <span class="hlt">ice</span> at the bottom of <span class="hlt">ice</span> cores from the Canadian Arctic Islands and Camp Century and Dye-3 in Greenland suggests that the Greenland <span class="hlt">ice</span> sheet melted extensively or completely during the last interglacial period more than 100 ka (thousand years ago), in contrast to earlier interpretations. The presence of dirt particles in the basal <span class="hlt">ice</span> has previously been thought to indicate that the base of the <span class="hlt">ice</span> sheets had melted and that the evidence for the time of original growth of these <span class="hlt">ice</span> masses had been destroyed. However, the particles most likely blew onto the <span class="hlt">ice</span> when the dimensions of the <span class="hlt">ice</span> caps and <span class="hlt">ice</span> sheets were much smaller. <span class="hlt">Ice</span> texture, gas content, and other evidence also suggest that the basal <span class="hlt">ice</span> at each drill site is superimposed <span class="hlt">ice</span>, a type of <span class="hlt">ice</span> typical of the early growth stages of an <span class="hlt">ice</span> cap or <span class="hlt">ice</span> sheet. If the present-day <span class="hlt">ice</span> masses began their growth during the last interglacial, the <span class="hlt">ice</span> sheet from the earlier (Illinoian) glacial period must have competely or largely melted during the early part of the same interglacial period. If such melting did occur, the 6-meter higher-than-present sea level during the Sangamon cannot be attributed to disintegration of the West Antarctic <span class="hlt">ice</span> sheet, as has been suggested.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3918373','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3918373"><span>Bacterial <span class="hlt">Ice</span> Crystal Controlling Proteins</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Lorv, Janet S. H.; Rose, David R.; Glick, Bernard R.</p> <p>2014-01-01</p> <p>Across the world, many <span class="hlt">ice</span> active bacteria utilize <span class="hlt">ice</span> crystal controlling proteins for aid in freezing tolerance at subzero temperatures. <span class="hlt">Ice</span> crystal controlling proteins include both antifreeze and <span class="hlt">ice</span> nucleation proteins. Antifreeze proteins minimize freezing damage by inhibiting growth of large <span class="hlt">ice</span> crystals, while <span class="hlt">ice</span> nucleation proteins induce formation of embryonic <span class="hlt">ice</span> crystals. Although both protein classes have differing functions, these proteins use the same <span class="hlt">ice</span> binding mechanisms. Rather than direct binding, it is probable that these protein classes create an <span class="hlt">ice</span> surface prior to <span class="hlt">ice</span> crystal surface adsorption. Function is differentiated by molecular size of the protein. This paper reviews the similar and different aspects of bacterial antifreeze and <span class="hlt">ice</span> nucleation proteins, the role of these proteins in freezing tolerance, prevalence of these proteins in psychrophiles, and current mechanisms of protein-<span class="hlt">ice</span> interactions. PMID:24579057</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018CliPa..14..619B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018CliPa..14..619B"><span>Simulation of the Greenland <span class="hlt">Ice</span> Sheet over two glacial-interglacial cycles: investigating a sub-<span class="hlt">ice</span>-shelf melt parameterization and relative sea level forcing in an <span class="hlt">ice-sheet-ice</span>-shelf model</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bradley, Sarah L.; Reerink, Thomas J.; van de Wal, Roderik S. W.; Helsen, Michiel M.</p> <p>2018-05-01</p> <p>Observational evidence, including offshore moraines and sediment cores, confirm that at the Last Glacial Maximum (LGM) the Greenland <span class="hlt">ice</span> sheet (GrIS) expanded to a significantly larger spatial extent than seen at present, grounding into Baffin Bay and out onto the continental shelf break. Given this larger spatial extent and its close proximity to the neighbouring Laurentide <span class="hlt">Ice</span> Sheet (LIS) and Innuitian <span class="hlt">Ice</span> Sheet (IIS), it is likely these <span class="hlt">ice</span> sheets will have had a strong non-local influence on the spatial and temporal behaviour of the GrIS. Most previous paleo <span class="hlt">ice</span>-sheet modelling simulations recreated an <span class="hlt">ice</span> sheet that either did not extend out onto the continental shelf or utilized a simplified marine <span class="hlt">ice</span> parameterization which did not fully include the effect of <span class="hlt">ice</span> shelves or neglected the sensitivity of the GrIS to this non-local bedrock signal from the surrounding <span class="hlt">ice</span> sheets. In this paper, we investigated the evolution of the GrIS over the two most recent glacial-interglacial cycles (240 ka BP to the present day) using the <span class="hlt">ice-sheet-ice</span>-shelf model IMAU-<span class="hlt">ICE</span>. We investigated the solid earth influence of the LIS and IIS via an offline relative sea level (RSL) forcing generated by a glacial isostatic adjustment (GIA) model. The RSL forcing governed the spatial and temporal pattern of sub-<span class="hlt">ice</span>-shelf melting via changes in the water depth below the <span class="hlt">ice</span> shelves. In the ensemble of simulations, at the glacial maximums, the GrIS coalesced with the IIS to the north and expanded to the continental shelf break to the southwest but remained too restricted to the northeast. In terms of the global mean sea level contribution, at the Last Interglacial (LIG) and LGM the <span class="hlt">ice</span> sheet added 1.46 and -2.59 m, respectively. This LGM contribution by the GrIS is considerably higher (˜ 1.26 m) than most previous studies whereas the contribution to the LIG highstand is lower (˜ 0.7 m). The spatial and temporal behaviour of the northern margin was highly variable in all simulations</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.P31B2063B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.P31B2063B"><span>Astronomical <span class="hlt">Ice</span>: The Effects of Treating <span class="hlt">Ice</span> as a Porous Media on the Dynamics and Evolution of Extraterrestrial <span class="hlt">Ice</span>-Ocean Environments</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Buffo, J.; Schmidt, B. E.</p> <p>2015-12-01</p> <p>With the prevalence of water and <span class="hlt">ice</span> rich environments in the solar system, and likely the universe, becoming more apparent, understanding the evolutionary dynamics and physical processes of such locales is of great importance. Piqued interest arises from the understanding that the persistence of all known life depends on the presence of liquid water. As in situ investigation is currently infeasible, accurate numerical modeling is the best technique to demystify these environments. We will discuss an evolving model of <span class="hlt">ice</span>-ocean interaction aimed at realistically describing the behavior of the <span class="hlt">ice</span>-ocean interface by treating basal <span class="hlt">ice</span> as a porous media, and its possible implications on the formation of astrobiological niches. Treating <span class="hlt">ice</span> as a porous media drastically affects the thermodynamic properties it exhibits. Thus inclusion of this phenomenon is critical in accurately representing the dynamics and evolution of all <span class="hlt">ice</span>-ocean environments. This model utilizes equations that describe the dynamics of sea <span class="hlt">ice</span> when it is treated as a porous media (Hunke et. al. 2011), coupled with a basal melt and accretion model (Holland and Jenkins 1999). Combined, these two models produce the most accurate description of the processes occurring at the base of terrestrial sea <span class="hlt">ice</span> and <span class="hlt">ice</span> shelves, capable of resolving variations within the <span class="hlt">ice</span> due to environmental pressures. While these models were designed for application to terrestrial environments, the physics occurring at any <span class="hlt">ice</span>-water interface is identical, and these models can be used to represent the evolution of a variety of icy astronomical bodies. As terrestrial <span class="hlt">ice</span> shelves provide a close analog to planetary <span class="hlt">ice</span>-ocean environments, we truth test the models validity against observations of <span class="hlt">ice</span> shelves. We apply this model to the <span class="hlt">ice</span>-ocean interface of the icy Galilean moon Europa. We include profiles of temperature, salinity, solid fraction, and Darcy velocity, as well as temporally and spatially varying melt and</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27650478','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27650478"><span>Canadian Arctic sea <span class="hlt">ice</span> reconstructed from bromine in the Greenland NEEM <span class="hlt">ice</span> core.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Spolaor, Andrea; Vallelonga, Paul; Turetta, Clara; Maffezzoli, Niccolò; Cozzi, Giulio; Gabrieli, Jacopo; Barbante, Carlo; Goto-Azuma, Kumiko; Saiz-Lopez, Alfonso; Cuevas, Carlos A; Dahl-Jensen, Dorthe</p> <p>2016-09-21</p> <p>Reconstructing the past variability of Arctic sea <span class="hlt">ice</span> provides an essential context for recent multi-year sea <span class="hlt">ice</span> decline, although few quantitative reconstructions cover the Holocene period prior to the earliest historical records 1,200 years ago. Photochemical recycling of bromine is observed over first-year, or seasonal, sea <span class="hlt">ice</span> in so-called "bromine explosions" and we employ a 1-D chemistry transport model to quantify processes of bromine enrichment over first-year sea <span class="hlt">ice</span> and depositional transport over multi-year sea <span class="hlt">ice</span> and land <span class="hlt">ice</span>. We report bromine enrichment in the Northwest Greenland Eemian NEEM <span class="hlt">ice</span> core since the end of the Eemian interglacial 120,000 years ago, finding the maximum extension of first-year sea <span class="hlt">ice</span> occurred approximately 9,000 years ago during the Holocene climate optimum, when Greenland temperatures were 2 to 3 °C above present values. First-year sea <span class="hlt">ice</span> extent was lowest during the glacial stadials suggesting complete coverage of the Arctic Ocean by multi-year sea <span class="hlt">ice</span>. These findings demonstrate a clear relationship between temperature and first-year sea <span class="hlt">ice</span> extent in the Arctic and suggest multi-year sea <span class="hlt">ice</span> will continue to decline as polar amplification drives Arctic temperatures beyond the 2 °C global average warming target of the recent COP21 Paris climate agreement.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.C21C0622M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.C21C0622M"><span>Meteorological conditions influencing the formation of level <span class="hlt">ice</span> within the Baltic Sea</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mazur, A. K.; Krezel, A.</p> <p>2012-12-01</p> <p>The Baltic Sea is covered by <span class="hlt">ice</span> every winter and on average, the <span class="hlt">ice</span>-covered area is 45% of the total area of the Baltic Sea. The beginning of <span class="hlt">ice</span> season usually starts in the end of November, <span class="hlt">ice</span> extent is the largest between mid-February and mid-March and sea <span class="hlt">ice</span> disappears completely in May. The <span class="hlt">ice</span> covered areas during a typical winter are the Gulf of Bothnia, the Gulf of Finland and the Gulf of Riga. The studies of sea <span class="hlt">ice</span> in the Baltic Sea are related to two aspects: climate and marine transport. Depending on the local weather conditions during the winter different types of sea <span class="hlt">ice</span> can be formed. From the point of winter shipping it is important to locate level and deformed <span class="hlt">ice</span> areas (rafted <span class="hlt">ice</span>, ridged <span class="hlt">ice</span>, and hummocked <span class="hlt">ice</span>). Because of cloud and daylight independency as well as good spatial resolution, SAR data seems to be the most suitable source of data for sea <span class="hlt">ice</span> observation in the comparatively small area of the Baltic Sea. We used ASAR Wide Swath Mode data with spatial resolution 150 m. We analyzed data from the three winter seasons which were examples of severe, typical and mild winters. To remove the speckle effect the data were resampled to 250 m pixel size and filtred using Frost filter 5x5. To detect edges we used Sobel filter. The data were also converted into grayscale. Sea <span class="hlt">ice</span> classification was based on Object-Based Image Analysis (OBIA). Object-based methods are not a common tool in sea <span class="hlt">ice</span> studies but they seem to accurately separate level <span class="hlt">ice</span> within the <span class="hlt">ice</span> <span class="hlt">pack</span>. The data were segmented and classified using eCognition Developer software. Level <span class="hlt">ice</span> were classified based on texture features defined by Haralick (Grey Level Co-Occurrence Matrix homogeneity, GLCM contrast, GLCM entropy and GLCM correlation). The long-term changes of the Baltic Sea <span class="hlt">ice</span> conditions have been already studied. They include date of freezing, date of break-up, sea <span class="hlt">ice</span> extent and some of work also <span class="hlt">ice</span> thickness. There is a little knowledge about the relationship of</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.C33E..08N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.C33E..08N"><span>Arctic Sea <span class="hlt">Ice</span> Classification and Mapping for Surface Albedo Parameterization in Sea <span class="hlt">Ice</span> Modeling</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nghiem, S. V.; Clemente-Colón, P.; Perovich, D. K.; Polashenski, C.; Simpson, W. R.; Rigor, I. G.; Woods, J. E.; Nguyen, D. T.; Neumann, G.</p> <p>2016-12-01</p> <p>A regime shift of Arctic sea <span class="hlt">ice</span> from predominantly perennial sea <span class="hlt">ice</span> (multi-year <span class="hlt">ice</span> or MYI) to seasonal sea <span class="hlt">ice</span> (first-year <span class="hlt">ice</span> or FYI) has occurred in recent decades. This shift has profoundly altered the proportional composition of different sea <span class="hlt">ice</span> classes and the surface albedo distribution pertaining to each sea <span class="hlt">ice</span> class. Such changes impacts physical, chemical, and biological processes in the Arctic atmosphere-<span class="hlt">ice</span>-ocean system. The drastic changes upset the traditional geophysical representation of surface albedo of the Arctic sea <span class="hlt">ice</span> cover in current models. A critical science issue is that these profound changes must be rigorously and systematically observed and characterized to enable a transformative re-parameterization of key model inputs, such as <span class="hlt">ice</span> surface albedo, to <span class="hlt">ice</span>-ocean-atmosphere climate modeling in order to obtain re-analyses that accurately reproduce Arctic changes and also to improve sea <span class="hlt">ice</span> and weather forecast models. Addressing this challenge is a strategy identified by the National Research Council study on "Seasonal to Decadal Predictions of Arctic Sea <span class="hlt">Ice</span> - Challenges and Strategies" to replicate the new Arctic reality. We review results of albedo characteristics associated with different sea <span class="hlt">ice</span> classes such as FYI and MYI. Then we demonstrate the capability for sea <span class="hlt">ice</span> classification and mapping using algorithms developed by the Jet Propulsion Laboratory and by the U.S. National <span class="hlt">Ice</span> Center for use with multi-sourced satellite radar data at L, C, and Ku bands. Results obtained with independent algorithms for different radar frequencies consistently identify sea <span class="hlt">ice</span> classes and thereby cross-verify the sea <span class="hlt">ice</span> classification methods. Moreover, field observations obtained from buoy webcams and along an extensive trek across Elson Lagoon and a sector of the Beaufort Sea during the BRomine, Ozone, and Mercury EXperiment (BROMEX) in March 2012 are used to validate satellite products of sea <span class="hlt">ice</span> classes. This research enables the mapping</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..1513402T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..1513402T"><span>Export of <span class="hlt">Ice</span>-Cavity Water from Pine Island <span class="hlt">Ice</span> Shelf, West Antarctica</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Thurnherr, Andreas; Jacobs, Stanley; Dutrieux, Pierre</p> <p>2013-04-01</p> <p>Stability of the West Antarctic <span class="hlt">Ice</span> Sheet is sensitive to changes in melting at the bottom of floating <span class="hlt">ice</span> shelves that form the seaward extensions of Antarctic glaciers flowing into the ocean. Not least because observations in the cavities beneath <span class="hlt">ice</span> shelves are difficult, heat fluxes and melt rates have been inferred from oceanographic measurements obtained near the <span class="hlt">ice</span> edge (calving fronts). Here, we report on a set of hydrographic and velocity data collected in early 2009 near the calving front of the Amundsen Sea's fast-moving and (until recently) accelerating Pine Island Glacier and its associated <span class="hlt">ice</span> shelf. CTD profiles collected along the southern half of the meridionally-trending <span class="hlt">ice</span> front show clear evidence for export of <span class="hlt">ice</span>-cavity water. That water was carried in the upper ocean along the <span class="hlt">ice</span> front by a southward current that is possibly related to a striking clockwise gyre that dominated the (summertime) upper-ocean circulation in Pine Island Bay. Signatures of <span class="hlt">ice</span>-cavity water appear unrelated to current direction along most of the <span class="hlt">ice</span> front, suggesting that cross-frontal exchange is dominated by temporal variability. However, repeated hydrographic and velocity measurements in a small "<span class="hlt">ice</span> cove" at the southern end of the calving front show a persistent strong (mean velocity peaking near 0.5 ms-1) outflow of <span class="hlt">ice</span>-cavity water in the upper 500 m. While surface features (boils) suggested upwelling from deep below the <span class="hlt">ice</span> shelf, vertical velocity measurements reveal 1) that the mean upwelling within the confines of the cove was too weak to feed the observed outflow, and 2) that large high-frequency internal waves dominated the vertical motion of water inside the cove. These observations indicate that water exchange between the Pine Island <span class="hlt">Ice</span> Shelf cavity and the Amundsen sea is strongly asymmetric with weak broad inflow at depth and concentrated surface-intensified outflow of melt-laden deep water at the southern edge of the calving front. The lack of</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSHE44B1516R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSHE44B1516R"><span>Turbulent heat exchange between water and <span class="hlt">ice</span> at an evolving <span class="hlt">ice</span>-water interface</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ramudu, E.; Hirsh, B.; Olson, P.; Gnanadesikan, A.</p> <p>2016-02-01</p> <p>Experimental results are presented on the time evolution of <span class="hlt">ice</span> subject to a turbulent shear flow in a layer of water of uniform depth. Our study is motivated by observations in the ocean cavity beneath Antarctic <span class="hlt">ice</span> shelves, where shoaling of Circumpolar Deep Water into the cavity has been implicated in the accelerated melting of the <span class="hlt">ice</span> shelf base. Measurements of inflow and outflow at the <span class="hlt">ice</span> shelf front have shown that not all of the heat entering the cavity is delivered to the <span class="hlt">ice</span> shelf, suggesting that turbulent transfer to the <span class="hlt">ice</span> represents an important bottleneck. Given that a range of turbulent transfer coefficients has been used in models it is important to better constrain this parameter. We measure as a function of time in our experiments the thickness of the <span class="hlt">ice</span>, temperatures in the <span class="hlt">ice</span> and water, and fluid velocity in the shear flow, starting from an initial condition in which the water is at rest and the <span class="hlt">ice</span> has grown by conduction above a cold plate. The strength of the applied turbulent shear flow is represented in terms of a Reynolds number Re, which is varied over the range 3.5 × 103 ≤ Re ≤ 1.9 × 104. Transient partial melting of the <span class="hlt">ice</span> occurs at the lower end of this range of Re and complete transient melting of the <span class="hlt">ice</span> occurs at the higher end of the range. Following these melting transients, the <span class="hlt">ice</span> reforms at a rate that is independent of Re. We fit to our experimental measurements of <span class="hlt">ice</span> thickness and temperature a one-dimensional model for the evolution of the <span class="hlt">ice</span> thickness in which the turbulent heat transfer is parameterized in terms of the friction velocity of the shear flow. Comparison with the Pine Island Glacier <span class="hlt">Ice</span> Shelf yields qualitative agreement between the transient <span class="hlt">ice</span> melting rates predicted by our model and the shelf melting rate inferred from the field observations.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/AD1013760','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/AD1013760"><span><span class="hlt">Ice</span>, Ocean and Atmosphere Interactions in the Arctic Marginal <span class="hlt">Ice</span> Zone</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2015-09-30</p> <p>the northward retreat of the <span class="hlt">ice</span> edge. Through the long-term measurement of the key oceanic, atmospheric, and sea <span class="hlt">ice</span> processes that...began to move southward towards the Alaskan coast. In 2104 the anomalous areas of <span class="hlt">ice</span> retreat were the region north of Alaska...and Siberia. (see figures below). This is not uncommon as these regions have seen the greatest retreat in sea <span class="hlt">ice</span>. See http://nsidc.org</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JGRC..120.8327H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JGRC..120.8327H"><span>Short-term sea <span class="hlt">ice</span> forecasting: An assessment of <span class="hlt">ice</span> concentration and <span class="hlt">ice</span> drift forecasts using the U.S. Navy's Arctic Cap Nowcast/Forecast System</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hebert, David A.; Allard, Richard A.; Metzger, E. Joseph; Posey, Pamela G.; Preller, Ruth H.; Wallcraft, Alan J.; Phelps, Michael W.; Smedstad, Ole Martin</p> <p>2015-12-01</p> <p>In this study the forecast skill of the U.S. Navy operational Arctic sea <span class="hlt">ice</span> forecast system, the Arctic Cap Nowcast/Forecast System (ACNFS), is presented for the period February 2014 to June 2015. ACNFS is designed to provide short term, 1-7 day forecasts of Arctic sea <span class="hlt">ice</span> and ocean conditions. Many quantities are forecast by ACNFS; the most commonly used include <span class="hlt">ice</span> concentration, <span class="hlt">ice</span> thickness, <span class="hlt">ice</span> velocity, sea surface temperature, sea surface salinity, and sea surface velocities. <span class="hlt">Ice</span> concentration forecast skill is compared to a persistent <span class="hlt">ice</span> state and historical sea <span class="hlt">ice</span> climatology. Skill scores are focused on areas where <span class="hlt">ice</span> concentration changes by ±5% or more, and are therefore limited to primarily the marginal <span class="hlt">ice</span> zone. We demonstrate that ACNFS forecasts are skilful compared to assuming a persistent <span class="hlt">ice</span> state, especially beyond 24 h. ACNFS is also shown to be particularly skilful compared to a climatologic state for forecasts up to 102 h. Modeled <span class="hlt">ice</span> drift velocity is compared to observed buoy data from the International Arctic Buoy Programme. A seasonal bias is shown where ACNFS is slower than IABP velocity in the summer months and faster in the winter months. In February 2015, ACNFS began to assimilate a blended <span class="hlt">ice</span> concentration derived from Advanced Microwave Scanning Radiometer 2 (AMSR2) and the Interactive Multisensor Snow and <span class="hlt">Ice</span> Mapping System (IMS). Preliminary results show that assimilating AMSR2 blended with IMS improves the short-term forecast skill and <span class="hlt">ice</span> edge location compared to the independently derived National <span class="hlt">Ice</span> Center <span class="hlt">Ice</span> Edge product.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.C53C0799H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.C53C0799H"><span>Validation of Modelled <span class="hlt">Ice</span> Dynamics of the Greenland <span class="hlt">Ice</span> Sheet using Historical Forcing</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hoffman, M. J.; Price, S. F.; Howat, I. M.; Bonin, J. A.; Chambers, D. P.; Tezaur, I.; Kennedy, J. H.; Lenaerts, J.; Lipscomb, W. H.; Neumann, T.; Nowicki, S.; Perego, M.; Saba, J. L.; Salinger, A.; Guerber, J. R.</p> <p>2015-12-01</p> <p>Although <span class="hlt">ice</span> sheet models are used for sea level rise projections, the degree to which these models have been validated by observations is fairly limited, due in part to the limited duration of the satellite observation era and the long adjustment time scales of <span class="hlt">ice</span> sheets. Here we describe a validation framework for the Greenland <span class="hlt">Ice</span> Sheet applied to the Community <span class="hlt">Ice</span> Sheet Model by forcing the model annually with flux anomalies at the major outlet glaciers (Enderlin et al., 2014, observed from Landsat/ASTER/Operation <span class="hlt">Ice</span>Bridge) and surface mass balance (van Angelen et al., 2013, calculated from RACMO2) for the period 1991-2012. The <span class="hlt">ice</span> sheet model output is compared to <span class="hlt">ice</span> surface elevation observations from ICESat and <span class="hlt">ice</span> sheet mass change observations from GRACE. Early results show promise for assessing the performance of different model configurations. Additionally, we explore the effect of <span class="hlt">ice</span> sheet model resolution on validation skill.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2808820','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2808820"><span>The effect of <span class="hlt">ice</span>-cream-scoop water on the hygiene of <span class="hlt">ice</span> cream.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Wilson, I. G.; Heaney, J. C.; Weatherup, S. T.</p> <p>1997-01-01</p> <p>A survey of unopened <span class="hlt">ice</span> cream, <span class="hlt">ice</span> cream in use, and <span class="hlt">ice</span>-cream-scoop water (n = 91) was conducted to determine the effect of scoop water hygiene on the microbiological quality of <span class="hlt">ice</span> cream. An aerobic plate count around 10(6) c.f.u. ml-1 was the modal value for scoop waters. Unopened <span class="hlt">ice</span> creams generally had counts around 10(3)-10(4) c.f.u. ml-1 and this increased by one order of magnitude when in use. Many scoop waters had low coliform counts, but almost half contained > 100 c.f.u. ml-1. E. coli was isolated in 18% of <span class="hlt">ice</span> creams in use, and in 10% of unopened <span class="hlt">ice</span> creams. S. aureus was not detected in any sample. Statistical analysis showed strong associations between indicator organisms and increased counts in <span class="hlt">ice</span> cream in use. EC guidelines for indicator organisms in <span class="hlt">ice</span> cream were exceeded by up to 56% of samples. PMID:9287941</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/9287941','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/9287941"><span>The effect of <span class="hlt">ice</span>-cream-scoop water on the hygiene of <span class="hlt">ice</span> cream.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wilson, I G; Heaney, J C; Weatherup, S T</p> <p>1997-08-01</p> <p>A survey of unopened <span class="hlt">ice</span> cream, <span class="hlt">ice</span> cream in use, and <span class="hlt">ice</span>-cream-scoop water (n = 91) was conducted to determine the effect of scoop water hygiene on the microbiological quality of <span class="hlt">ice</span> cream. An aerobic plate count around 10(6) c.f.u. ml-1 was the modal value for scoop waters. Unopened <span class="hlt">ice</span> creams generally had counts around 10(3)-10(4) c.f.u. ml-1 and this increased by one order of magnitude when in use. Many scoop waters had low coliform counts, but almost half contained > 100 c.f.u. ml-1. E. coli was isolated in 18% of <span class="hlt">ice</span> creams in use, and in 10% of unopened <span class="hlt">ice</span> creams. S. aureus was not detected in any sample. Statistical analysis showed strong associations between indicator organisms and increased counts in <span class="hlt">ice</span> cream in use. EC guidelines for indicator organisms in <span class="hlt">ice</span> cream were exceeded by up to 56% of samples.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMGC23D1173L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMGC23D1173L"><span>Sparse <span class="hlt">ice</span>: Geophysical, biological and Indigenous knowledge perspectives on a habitat for <span class="hlt">ice</span>-associated fauna</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lee, O. A.; Eicken, H.; Weyapuk, W., Jr.; Adams, B.; Mohoney, A. R.</p> <p>2015-12-01</p> <p>The significance of highly dispersed, remnant Arctic sea <span class="hlt">ice</span> as a platform for marine mammals and indigenous hunters in spring and summer may have increased disproportionately with changes in the <span class="hlt">ice</span> cover. As dispersed remnant <span class="hlt">ice</span> becomes more common in the future it will be increasingly important to understand its ecological role for upper trophic levels such as marine mammals and its role for supporting primary productivity of <span class="hlt">ice</span>-associated algae. Potential sparse <span class="hlt">ice</span> habitat at sea <span class="hlt">ice</span> concentrations below 15% is difficult to detect using remote sensing data alone. A combination of high resolution satellite imagery (including Synthetic Aperture Radar), data from the Barrow sea <span class="hlt">ice</span> radar, and local observations from indigenous sea <span class="hlt">ice</span> experts was used to detect sparse sea <span class="hlt">ice</span> in the Alaska Arctic. Traditional knowledge on sea <span class="hlt">ice</span> use by marine mammals was used to delimit the scales where sparse <span class="hlt">ice</span> could still be used as habitat for seals and walrus. Potential sparse <span class="hlt">ice</span> habitat was quantified with respect to overall spatial extent, size of <span class="hlt">ice</span> floes, and density of floes. Sparse <span class="hlt">ice</span> persistence offshore did not prevent the occurrence of large coastal walrus haul outs, but the lack of sparse <span class="hlt">ice</span> and early sea <span class="hlt">ice</span> retreat coincided with local observations of ringed seal pup mortality. Observations from indigenous hunters will continue to be an important source of information for validating remote sensing detections of sparse <span class="hlt">ice</span>, and improving understanding of marine mammal adaptations to sea <span class="hlt">ice</span> change.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140008934','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140008934"><span>Evaluation of Arctic Sea <span class="hlt">Ice</span> Thickness Simulated by Arctic Ocean Model Intercomparison Project Models</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Johnson, Mark; Proshuntinsky, Andrew; Aksenov, Yevgeny; Nguyen, An T.; Lindsay, Ron; Haas, Christian; Zhang, Jinlun; Diansky, Nikolay; Kwok, Ron; Maslowski, Wieslaw; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20140008934'); toggleEditAbsImage('author_20140008934_show'); toggleEditAbsImage('author_20140008934_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20140008934_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20140008934_hide"></p> <p>2012-01-01</p> <p>Six Arctic Ocean Model Intercomparison Project model simulations are compared with estimates of sea <span class="hlt">ice</span> thickness derived from pan-Arctic satellite freeboard measurements (2004-2008); airborne electromagnetic measurements (2001-2009); <span class="hlt">ice</span> draft data from moored instruments in Fram Strait, the Greenland Sea, and the Beaufort Sea (1992-2008) and from submarines (1975-2000); and drill hole data from the Arctic basin, Laptev, and East Siberian marginal seas (1982-1986) and coastal stations (1998-2009). Despite an assessment of six models that differ in numerical methods, resolution, domain, forcing, and boundary conditions, the models generally overestimate the thickness of measured <span class="hlt">ice</span> thinner than approximately 2 mand underestimate the thickness of <span class="hlt">ice</span> measured thicker than about approximately 2m. In the regions of flat immobile landfast <span class="hlt">ice</span> (shallow Siberian Seas with depths less than 25-30 m), the models generally overestimate both the total observed sea <span class="hlt">ice</span> thickness and rates of September and October <span class="hlt">ice</span> growth from observations by more than 4 times and more than one standard deviation, respectively. The models do not reproduce conditions of fast <span class="hlt">ice</span> formation and growth. Instead, the modeled fast <span class="hlt">ice</span> is replaced with <span class="hlt">pack</span> <span class="hlt">ice</span> which drifts, generating ridges of increasing <span class="hlt">ice</span> thickness, in addition to thermodynamic <span class="hlt">ice</span> growth. Considering all observational data sets, the better correlations and smaller differences from observations are from the Estimating the Circulation and Climate of the Ocean, Phase II and Pan-Arctic <span class="hlt">Ice</span> Ocean Modeling and Assimilation System models.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016NPPP..279...47G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016NPPP..279...47G"><span>Primary spectrum and composition with <span class="hlt">IceCube/Ice</span>Top</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gaisser, Thomas K.; IceCube Collaboration</p> <p>2016-10-01</p> <p><span class="hlt">Ice</span>Cube, with its surface array <span class="hlt">Ice</span>Top, detects three different components of extensive air showers: the total signal at the surface, GeV muons in the periphery of the showers and TeV muons in the deep array of <span class="hlt">Ice</span>Cube. The spectrum is measured with high resolution from the knee to the ankle with <span class="hlt">Ice</span>Top. Composition and spectrum are extracted from events seen in coincidence by the surface array and the deep array of <span class="hlt">Ice</span>Cube. The muon lateral distribution at the surface is obtained from the data and used to provide a measurement of the muon density at 600 meters from the shower core up to 30 PeV. Results are compared to measurements from other experiments to obtain an overview of the spectrum and composition over an extended range of energy. Consistency of the surface muon measurements with hadronic interaction models and with measurements at higher energy is discussed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005AGUFM.C41A..02R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005AGUFM.C41A..02R"><span>Leakage of the Greenland <span class="hlt">Ice</span> Sheet through accelerated <span class="hlt">ice</span> flow</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rignot, E.</p> <p>2005-12-01</p> <p>A map of coastal velocities of the Greenland <span class="hlt">ice</span> sheet was produced from Radarsat-1 acquired during the background mission of 2000 and combined with radio echo sounding data to estimate the <span class="hlt">ice</span> discharge from the <span class="hlt">ice</span> sheet. On individual glaciers, <span class="hlt">ice</span> discharge was compared with snow input from the interior and melt above the flux gate to determine the glacier mass balance. Time series of velocities on several glaciers at different latitudes reveal seasonal fluctuations of only 7-8 percent so that winter velocities are only 2 percent less than the yearly mean. The results show the northern Greenland glaciers to be close to balance yet losing mass. No change in <span class="hlt">ice</span> flow is detected on Petermann, 79north and Zachariae Isstrom in 2000-2004. East Greenland glaciers are in balance and flowing steadily north of Kangerdlussuaq, but Kangerdlussuaq, Helheim and all the southeastern glaciers are thinning dramatically. All these glaciers accelerated, Kangerdlussuaq in 2000, Helheim prior to 2004, and southeast Greenland glaciers accelerated 10 to 50 percent in 2000-2004. Glacier acceleration is generally brutal, probably once the glacier reached a threshold, and sustained. In the northwest, most glaciers are largely out of balance. Jakobshavn accelerated significantly in 2002, and glaciers in its immediate vicinity accelerated more than 50 percent in 2000-2004. Less is known about southwest Greenland glaciers due to a lack of <span class="hlt">ice</span> thickness data but the glaciers have accelerated there as well and are likely to be strongly out of balance despite thickening of the interior. Overall, I estimate the mass balance of the Greenland <span class="hlt">ice</span> sheet to be about -80 +/-10 cubic km of <span class="hlt">ice</span> per year in 2000 and -110 +/-15 cubic km of <span class="hlt">ice</span> per year in 2004, i.e. more negative than based on partial altimetry surveys of the outlet glaciers. As climate continues to warm, more glaciers will accelerate, and the mass balance will become increasingly negative, regardless of the evolution of the <span class="hlt">ice</span> sheet</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2791593','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2791593"><span>The future of <span class="hlt">ice</span> sheets and sea <span class="hlt">ice</span>: Between reversible retreat and unstoppable loss</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Notz, Dirk</p> <p>2009-01-01</p> <p>We discuss the existence of cryospheric “tipping points” in the Earth's climate system. Such critical thresholds have been suggested to exist for the disappearance of Arctic sea <span class="hlt">ice</span> and the retreat of <span class="hlt">ice</span> sheets: Once these <span class="hlt">ice</span> masses have shrunk below an anticipated critical extent, the ice–albedo feedback might lead to the irreversible and unstoppable loss of the remaining <span class="hlt">ice</span>. We here give an overview of our current understanding of such threshold behavior. By using conceptual arguments, we review the recent findings that such a tipping point probably does not exist for the loss of Arctic summer sea <span class="hlt">ice</span>. Hence, in a cooler climate, sea <span class="hlt">ice</span> could recover rapidly from the loss it has experienced in recent years. In addition, we discuss why this recent rapid retreat of Arctic summer sea <span class="hlt">ice</span> might largely be a consequence of a slow shift in <span class="hlt">ice</span>-thickness distribution, which will lead to strongly increased year-to-year variability of the Arctic summer sea-<span class="hlt">ice</span> extent. This variability will render seasonal forecasts of the Arctic summer sea-<span class="hlt">ice</span> extent increasingly difficult. We also discuss why, in contrast to Arctic summer sea <span class="hlt">ice</span>, a tipping point is more likely to exist for the loss of the Greenland <span class="hlt">ice</span> sheet and the West Antarctic <span class="hlt">ice</span> sheet. PMID:19884496</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26808844','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26808844"><span>Off-<span class="hlt">Ice</span> Anaerobic Power Does Not Predict On-<span class="hlt">Ice</span> Repeated Shift Performance in Hockey.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Peterson, Ben J; Fitzgerald, John S; Dietz, Calvin C; Ziegler, Kevin S; Baker, Sarah E; Snyder, Eric M</p> <p>2016-09-01</p> <p>Peterson, BJ, Fitzgerald, JS, Dietz, CC, Ziegler, KS, Baker, SE, and Snyder, EM. Off-<span class="hlt">ice</span> anaerobic power does not predict on-<span class="hlt">ice</span> repeated shift performance in hockey. J Strength Cond Res 30(9): 2375-2381, 2016-Anaerobic power is a significant predictor of acceleration and top speed in team sport athletes. Historically, these findings have been applied to <span class="hlt">ice</span> hockey although recent research has brought their validity for this sport into question. As <span class="hlt">ice</span> hockey emphasizes the ability to repeatedly produce power, single bout anaerobic power tests should be examined to determine their ability to predict on-<span class="hlt">ice</span> performance. We tested whether conventional off-<span class="hlt">ice</span> anaerobic power tests could predict on-<span class="hlt">ice</span> acceleration, top speed, and repeated shift performance. Forty-five hockey players, aged 18-24 years, completed anthropometric, off-<span class="hlt">ice</span>, and on-<span class="hlt">ice</span> tests. Anthropometric and off-<span class="hlt">ice</span> testing included height, weight, body composition, vertical jump, and Wingate tests. On-<span class="hlt">ice</span> testing consisted of acceleration, top speed, and repeated shift fatigue tests. Vertical jump (VJ) (r = -0.42; r = -0.58), Wingate relative peak power (WRPP) (r = -0.32; r = -0.43), and relative mean power (WRMP) (r = -0.34; r = -0.48) were significantly correlated (p ≤ 0.05) to on-<span class="hlt">ice</span> acceleration and top speed, respectively. Conversely, none of the off-<span class="hlt">ice</span> tests correlated with on-<span class="hlt">ice</span> repeated shift performance, as measured by first gate, second gate, or total course fatigue; VJ (r = 0.06; r = 0.13; r = 0.09), WRPP (r = 0.06; r = 0.14; r = 0.10), or WRMP (r = -0.10; r = -0.01; r = -0.01). Although conventional off-<span class="hlt">ice</span> anaerobic power tests predict single bout on-<span class="hlt">ice</span> acceleration and top speed, they neither predict the repeated shift ability of the player, nor are good markers for performance in <span class="hlt">ice</span> hockey.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19790005809','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19790005809"><span>Evaporation of <span class="hlt">ice</span> in planetary atmospheres: <span class="hlt">Ice</span>-covered rivers on Mars</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wallace, D.; Sagan, C.</p> <p>1978-01-01</p> <p>The evaporation rate of water <span class="hlt">ice</span> on the surface of a planet with an atmosphere involves an equilibrium between solar heating and radiative and evaporative cooling of the <span class="hlt">ice</span> layer. The thickness of the <span class="hlt">ice</span> is governed principally by the solar flux which penetrates the <span class="hlt">ice</span> layer and then is conducted back to the surface. Evaporation from the surface is governed by wind and free convection. In the absence of wind, eddy diffusion is caused by the lower density of water vapor in comparison to the density of the Martian atmosphere. For mean martian insolations, the evaporation rate above the <span class="hlt">ice</span> is approximately 10 to the minus 8th power gm/sq cm/s. Evaporation rates are calculated for a wide range of frictional velocities, atmospheric pressures, and insolations and it seems clear that at least some subset of observed Martian channels may have formed as <span class="hlt">ice</span>-chocked rivers. Typical equilibrium thicknesses of such <span class="hlt">ice</span> covers are approximately 10m to 30 m; typical surface temperatures are 210 to 235 K.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005AGUFM.V12B..01G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005AGUFM.V12B..01G"><span><span class="hlt">Ice</span> Thickness, Melting Rates and Styles of Activity in <span class="hlt">Ice</span>-Volcano Interaction</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gudmundsson, M. T.</p> <p>2005-12-01</p> <p>In most cases when eruptions occur within glaciers they lead to rapid <span class="hlt">ice</span> melting, jokulhlaups and/or lahars. Many parameters influence the style of activity and its impact on the environment. These include <span class="hlt">ice</span> thickness (size of glacier), bedrock geometry, magma flow rate and magma composition. The eruptions that have been observed can roughly be divided into: (1) eruptions under several hundred meters thick <span class="hlt">ice</span> on a relatively flat bedrock, (2) eruptions on flat or sloping bed through relatively thin <span class="hlt">ice</span>, and (3) volcanism where effects are limitied to confinement of lava flows or melting of <span class="hlt">ice</span> by pyroclastic flows or surges. This last category (<span class="hlt">ice</span>-contact volcanism) need not cause much <span class="hlt">ice</span> melting. Many of the deposits formed by Pleistocene volcanism in Iceland, British Columbia and Antarctica belong to the first category. An important difference between this type of activity and submarine activity (where pressure is hydrostatic) is that pressure at vents may in many cases be much lower than glaciostatic due to partial support of <span class="hlt">ice</span> cover over vents by the surrounding glacier. Reduced pressure favours explosive activity. Thus the effusive/explosive transition may occur several hundred metres underneath the <span class="hlt">ice</span> surface. Explosive fragmentation of magma leads to much higher rates of heat transfer than does effusive eruption of pillow lavas, and hence much higher melting rates. This effect of reduced pressure at vents will be less pronounced in a large <span class="hlt">ice</span> sheet than in a smaller glacier or <span class="hlt">ice</span> cap, since the hydraulic gradient that drives water away from an eruption site will be lower in the large glacier. This may have implications for form and type of eruption deposits and their relationship with <span class="hlt">ice</span> thickness and glacier size.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.C21A0650P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.C21A0650P"><span>Sea <span class="hlt">Ice</span> Summer Camp: Bringing Together Arctic Sea <span class="hlt">Ice</span> Modelers and Observers</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Perovich, D. K.; Holland, M. M.</p> <p>2016-12-01</p> <p>The Arctic sea <span class="hlt">ice</span> has undergone dramatic change and numerical models project this to continue for the foreseeable future. Understanding the mechanisms behind sea <span class="hlt">ice</span> loss and its consequences for the larger Arctic and global systems is of critical importance if we are to anticipate and plan for the future. One impediment to progress is a disconnect between the observational and modeling communities. A sea <span class="hlt">ice</span> summer camp was held in Barrow Alaska from 26 May to 1 June 2016 to overcome this impediment and better integrate the sea <span class="hlt">ice</span> community. The 25 participants were a mix of modelers and observers from 13 different institutions at career stages from graduate student to senior scientist. The summer camp provided an accelerated program on sea <span class="hlt">ice</span> observations and models and also fostered future collaborative interdisciplinary activities. Each morning was spent in the classroom with a daily lecture on an aspect of modeling or remote sensing followed by practical exercises. Topics included using models to assess sensitivity, to test hypotheses and to explore sources of uncertainty in future Arctic sea <span class="hlt">ice</span> loss. The afternoons were spent on the <span class="hlt">ice</span> making observations. There were four observational activities; albedo observations, <span class="hlt">ice</span> thickness measurements, <span class="hlt">ice</span> coring and physical properties, and <span class="hlt">ice</span> morphology surveys. The last field day consisted of a grand challenge where the group formulated a hypothesis, developed an observational and modeling strategy to test the hypothesis, and then integrated the observations and model results. The impacts of changing sea <span class="hlt">ice</span> are being felt today in Barrow Alaska. We opened a dialog with Barrow community members to further understand these changes. This included an evening discussion with two Barrow sea <span class="hlt">ice</span> experts and a community presentation of our work in a public lecture at the Inupiat Heritage Center.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19840025839&hterms=marginal&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dmarginal','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19840025839&hterms=marginal&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dmarginal"><span>Remote sensing of the marginal <span class="hlt">ice</span> zone during Marginal <span class="hlt">Ice</span> Zone Experiment (MIZEX) 83</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Shuchman, R. A.; Campbell, W. J.; Burns, B. A.; Ellingsen, E.; Farrelly, B. A.; Gloersen, P.; Grenfell, T. C.; Hollinger, J.; Horn, D.; Johannessen, J. A.</p> <p>1984-01-01</p> <p>The remote sensing techniques utilized in the Marginal <span class="hlt">Ice</span> Zone Experiment (MIZEX) to study the physical characteristics and geophysical processes of the Fram Strait Region of the Greenland Sea are described. The studies, which utilized satellites, aircraft, helicopters, and ship and ground-based remote sensors, focused on the use of microwave remote sensors. Results indicate that remote sensors can provide marginal <span class="hlt">ice</span> zone characteristics which include <span class="hlt">ice</span> edge and <span class="hlt">ice</span> boundary locations, <span class="hlt">ice</span> types and concentration, <span class="hlt">ice</span> deformation, <span class="hlt">ice</span> kinematics, gravity waves and swell (in the water and the <span class="hlt">ice</span>), location of internal wave fields, location of eddies and current boundaries, surface currents and sea surface winds.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20020082883','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20020082883"><span><span class="hlt">Ice</span> Shelves and Landfast <span class="hlt">Ice</span> on the Antarctic Perimeter: Revised Scope of Work</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Scambos, Ted</p> <p>2002-01-01</p> <p><span class="hlt">Ice</span> shelves respond quickly and profoundly to a warming climate. Within a decade after mean summertime temperature reaches approx. O C and persistent melt pending is observed, a rapid retreat and disintegration occurs. This link was documented for <span class="hlt">ice</span> shelves in the Antarctic Peninsula region (the Larsen 'A', 'B' and Wilkins <span class="hlt">Ice</span> shelves) by the results of a previous grant under ADRO-1. Modeling of <span class="hlt">ice</span> flow and the effects of meltwater indicated that melt pending accelerates shelf breakup by increasing fracture penetration. SAR data supplemented an AVHRR- and SSM/I-based image analysis of extent and surface characteristic changes. This funded grant is a revised, scaled-down version of an earlier proposal under the ADRO-2 NRA. The overall objective remains the same: we propose to build on the previous study by examining other <span class="hlt">ice</span> shelves of the Antarctic and incorporate an examination of the climate-related characteristics of landfast <span class="hlt">ice</span>. The study now considers just a few shelf and fast <span class="hlt">ice</span> areas for study, and is funded for two years. The study regions are the northeastern Ross <span class="hlt">Ice</span> Shelf, the Larsen 'B' and 'C' shelves, fast <span class="hlt">ice</span> and floating shelf <span class="hlt">ice</span> in the Pine Island Glacier area, and fast <span class="hlt">ice</span> along the Wilkes Land coast. Further, rather than investigating a host of shelf and fast <span class="hlt">ice</span> processes, we will home in on developing a series of characteristics associated with climate change over shelf and fast <span class="hlt">ice</span> areas. Melt pending and break-up are the end stages of a response to a warming climate that may begin with increased melt event frequency (which changes both albedo and emissivity temporarily), changing firn backscatter (due to percolation features), and possibly increased rifting of the shelf surface. Fast <span class="hlt">ice</span> may show some of these same processes on a seasonal timescale, providing insight into shelf evolution.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFMED13B0590H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFMED13B0590H"><span><span class="hlt">Ice</span>, <span class="hlt">Ice</span>, Baby: A Program for Sustained, Classroom-Based K-8 Teacher Professional Development</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hamilton, C.</p> <p>2009-12-01</p> <p><span class="hlt">Ice</span>, <span class="hlt">Ice</span>, Baby is a K-8 science program created by the education team at the Center for the Remote Sensing of <span class="hlt">Ice</span> Sheets (CReSIS), an NSF-funded science and technology center headquartered at the University of Kansas. The twenty-four hands-on activities, which constitute the <span class="hlt">Ice</span>, <span class="hlt">Ice</span>, Baby curriculum, were developed to help students understand the role of polar <span class="hlt">ice</span> sheets in sea level rise. These activities, presented in classrooms by CReSIS' Educational Outreach Coordinator, demonstrate many of the scientific properties of <span class="hlt">ice</span>, including displacement and density. Student journals are utilized with each lesson as a strategy for improving students' science process skills. Journals also help the instructor identify misconceptions, assess comprehension, and provide students with a year-long science reference log. Pre- and post- assessments are given to both teachers and students before and after the program, providing data for evaluation and improvement of the <span class="hlt">Ice</span>, <span class="hlt">Ice</span>, Baby program. While students are actively engaged in hands-on learning about the unusual topics of <span class="hlt">ice</span> sheets, glaciers, icebergs and sea <span class="hlt">ice</span>, the CReSIS' Educational Coordinator is able to model best practices in science education, such as questioning and inquiry-based methods of instruction. In this way, the <span class="hlt">Ice</span>, <span class="hlt">Ice</span>, Baby program also serves as ongoing, in-class, professional development for teachers. Teachers are also provided supplemental activities to do with their classes between CReSIS' visits to encourage additional science lessons, reinforce concepts taught in the <span class="hlt">Ice</span>, <span class="hlt">Ice</span>, Baby program, and to foster teachers' progression toward more reform-based science instruction.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5324094','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5324094"><span>Variability in sea <span class="hlt">ice</span> cover and climate elicit sex specific responses in an Antarctic predator</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Labrousse, Sara; Sallée, Jean-Baptiste; Fraser, Alexander D.; Massom, Rob A.; Reid, Phillip; Hobbs, William; Guinet, Christophe; Harcourt, Robert; McMahon, Clive; Authier, Matthieu; Bailleul, Frédéric; Hindell, Mark A.; Charrassin, Jean-Benoit</p> <p>2017-01-01</p> <p>Contrasting regional changes in Southern Ocean sea <span class="hlt">ice</span> have occurred over the last 30 years with distinct regional effects on ecosystem structure and function. Quantifying how Antarctic predators respond to such changes provides the context for predicting how climate variability/change will affect these assemblages into the future. Over an 11-year time-series, we examine how inter-annual variability in sea <span class="hlt">ice</span> concentration and advance affect the foraging behaviour of a top Antarctic predator, the southern elephant seal. Females foraged longer in <span class="hlt">pack</span> <span class="hlt">ice</span> in years with greatest sea <span class="hlt">ice</span> concentration and earliest sea <span class="hlt">ice</span> advance, while males foraged longer in polynyas in years of lowest sea <span class="hlt">ice</span> concentration. There was a positive relationship between near-surface meridional wind anomalies and female foraging effort, but not for males. This study reveals the complexities of foraging responses to climate forcing by a poleward migratory predator through varying sea <span class="hlt">ice</span> property and dynamic anomalies. PMID:28233791</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28233791','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28233791"><span>Variability in sea <span class="hlt">ice</span> cover and climate elicit sex specific responses in an Antarctic predator.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Labrousse, Sara; Sallée, Jean-Baptiste; Fraser, Alexander D; Massom, Rob A; Reid, Phillip; Hobbs, William; Guinet, Christophe; Harcourt, Robert; McMahon, Clive; Authier, Matthieu; Bailleul, Frédéric; Hindell, Mark A; Charrassin, Jean-Benoit</p> <p>2017-02-24</p> <p>Contrasting regional changes in Southern Ocean sea <span class="hlt">ice</span> have occurred over the last 30 years with distinct regional effects on ecosystem structure and function. Quantifying how Antarctic predators respond to such changes provides the context for predicting how climate variability/change will affect these assemblages into the future. Over an 11-year time-series, we examine how inter-annual variability in sea <span class="hlt">ice</span> concentration and advance affect the foraging behaviour of a top Antarctic predator, the southern elephant seal. Females foraged longer in <span class="hlt">pack</span> <span class="hlt">ice</span> in years with greatest sea <span class="hlt">ice</span> concentration and earliest sea <span class="hlt">ice</span> advance, while males foraged longer in polynyas in years of lowest sea <span class="hlt">ice</span> concentration. There was a positive relationship between near-surface meridional wind anomalies and female foraging effort, but not for males. This study reveals the complexities of foraging responses to climate forcing by a poleward migratory predator through varying sea <span class="hlt">ice</span> property and dynamic anomalies.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19890018779','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19890018779"><span><span class="hlt">Ice</span> sheet radar altimetry</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Zwally, J.</p> <p>1988-01-01</p> <p>The surface topography of the Greenland and Antarctic <span class="hlt">ice</span> sheets between 72 degrees north and south was mapped using radar altimetry data from the U.S. Navy GEOSAT. The glaciological objectives of this activity were to study the dynamics of the <span class="hlt">ice</span> flow, changes in the position of floating <span class="hlt">ice</span>-shelf fronts, and ultimately to measure temporal changes in <span class="hlt">ice</span> surface elevation indicative of <span class="hlt">ice</span> sheet mass balance.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/1001578','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/1001578"><span><span class="hlt">Ice</span> on waterfowl markers</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Greenwood, R.J.; Bair, W.C.</p> <p>1974-01-01</p> <p>Wild and captive giant Canada geese (Branta canadensis maxima) and captive mallards (Anas platyrhynchos) accumulated <span class="hlt">ice</span> on neck collars and/or nasal saddles during winter storm periods in 1971 and 1972. Weather conditions associated with <span class="hlt">icing</span> were documented, and characteristics of <span class="hlt">icing</span> are discussed. Severe marker <span class="hlt">icing</span> occurred during subfreezing weather when the windchill reached approximately -37 deg.C. Birds appeared able to de-<span class="hlt">ice</span> nasal saddles in most instances.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140010302','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140010302"><span><span class="hlt">Ice</span>-Shelf Flexure and Tidal Forcing of Bindschadler <span class="hlt">Ice</span> Stream, West Antarctica</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Walker, Ryan T.; Parizek, Bryron R.; Alley, Richard B.; Brunt, Kelly M.; Anandakrishnan, Sridhar</p> <p>2014-01-01</p> <p>Viscoelastic models of <span class="hlt">ice</span>-shelf flexure and <span class="hlt">ice</span>-stream velocity perturbations are combined into a single efficient flowline model to study tidal forcing of grounded <span class="hlt">ice</span>. The magnitude and timing of icestream response to tidally driven changes in hydrostatic pressure and/or basal drag are found to depend significantly on bed rheology, with only a perfectly plastic bed allowing instantaneous velocity response at the grounding line. The model can reasonably reproduce GPS observations near the grounding zone of Bindschadler <span class="hlt">Ice</span> Stream (formerly <span class="hlt">Ice</span> Stream D) on semidiurnal time scales; however, other forcings such as tidally driven <span class="hlt">ice</span>-shelf slope transverse to the flowline and flexurally driven till deformation must also be considered if diurnal motion is to be matched</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19990026767&hterms=vertigo&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dvertigo','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19990026767&hterms=vertigo&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dvertigo"><span><span class="hlt">Ice</span> as a Construction Material</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Zuppero, Anthony; Lewis, J.</p> <p>1998-01-01</p> <p>This presentation shows how water and <span class="hlt">ice</span> can enable exceptionally simple ways to construct structures in deep space. Practicality is underscored by applying advanced tank methods being developed for Mars missions. Water or <span class="hlt">ice</span> is now known to be present or abundant on most objects in the solar system, starting with the planet Mercury. Thermal processes alone can be used to melt <span class="hlt">ice</span> . The cold of space can refreeze water back into <span class="hlt">ice</span>. The anomalous low vapor pressure of water, about 7 mm Hg, permits bladder containers. Tanks or bladders made with modern polymer fiber and film can exhibit very small (<0.1 %) equivalent tankage and ullage fractions and thus hold thousands of tons of water per ton bladder. Injecting water into a bladder whose shape when inflated is the desired final shape, such as a space vehicle, provides a convenient way to construct large structures. In space, structures of 1O,OOO-T mass become feasible because the bladder mass is low enough to be launched. The bladder can weigh 1OOO times less than its contents, or 10 T. The bladder would be <span class="hlt">packed</span> like a parachute. Shaped memory materials and/or gas inflation could reestablish the desired structure shape after unpacking. The water comes from space resources. An example examines construction of torus space vehicle with 100-m nominal dimension. People would live inside the torus. A torus, like a tire on an automobile, would spin and provide synthetic gravity at its inner surface. A torus of order 100 m across would provide a gravity with gradients low enough to mitigate against vertigo.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1913308B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1913308B"><span>Longwave radiative effects of Saharan dust during the <span class="hlt">ICE-D</span> campaign</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Brooke, Jennifer; Havemann, Stephan; Ryder, Claire; O'Sullivan, Debbie</p> <p>2017-04-01</p> <p>The Havemann-Taylor Fast Radiative Transfer Code (HT-FRTC) is a fast radiative transfer model based on Principal Components. Scattering has been incorporated into HT-FRTC which allows simulations of aerosol as well as clear-sky atmospheres. This work evaluates the scattering scheme in HT-FRTC and investigates dust-affected brightness temperatures using in-situ observations from <span class="hlt">Ice</span> in Clouds Experiment - Dust (<span class="hlt">ICE-D</span>) campaign. The <span class="hlt">ICE-D</span> campaign occurred during August 2015 and was based from Cape Verde. The <span class="hlt">ICE-D</span> campaign is a multidisciplinary project which achieved measurements of in-situ mineral dust properties of the dust advected from the Sahara, and on the aerosol-cloud interactions using the FAAM BAe-146 research aircraft. <span class="hlt">ICE-D</span> encountered a range of low (0.3), intermediate (0.8) and high (1.3) aerosol optical depths, AODs, and therefore provides a range of atmospheric dust loadings in the assessment of dust scattering in HT-FRTC. Spectral radiances in the thermal infrared window region (800 - 1200 cm-1) are sensitive to the presence of mineral dust; mineral dust acts to reduce the upwelling infrared radiation caused by the absorption and re-emission of radiation by the dust layer. ARIES (Airborne Research Interferometer Evaluation System) is a nadir-facing interferometer, measuring infrared radiances between 550 and 3000 cm-1. The ARIES spectral radiances are converted to brightness temperatures by inversion of the Planck function. The mineral dust size distribution is important for radiative transfer applications as it provides a measure of aerosol scattering. The longwave spectral mineral dust optical properties including the mass extinction coefficients, single scattering albedos and the asymmetry parameter have been derived from the mean <span class="hlt">ICE-D</span> size distribution. HT-FRTC scattering simulations are initialised with vertical mass fractions which can be derived from extinction profiles from the lidar along with the specific extinction coefficient, kext (m2</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GeoRL..4411463S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GeoRL..4411463S"><span>Algae Drive Enhanced Darkening of Bare <span class="hlt">Ice</span> on the Greenland <span class="hlt">Ice</span> Sheet</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stibal, Marek; Box, Jason E.; Cameron, Karen A.; Langen, Peter L.; Yallop, Marian L.; Mottram, Ruth H.; Khan, Alia L.; Molotch, Noah P.; Chrismas, Nathan A. M.; Calı Quaglia, Filippo; Remias, Daniel; Smeets, C. J. P. Paul; van den Broeke, Michiel R.; Ryan, Jonathan C.; Hubbard, Alun; Tranter, Martyn; van As, Dirk; Ahlstrøm, Andreas P.</p> <p>2017-11-01</p> <p>Surface ablation of the Greenland <span class="hlt">ice</span> sheet is amplified by surface darkening caused by light-absorbing impurities such as mineral dust, black carbon, and pigmented microbial cells. We present the first quantitative assessment of the microbial contribution to the <span class="hlt">ice</span> sheet surface darkening, based on field measurements of surface reflectance and concentrations of light-absorbing impurities, including pigmented algae, during the 2014 melt season in the southwestern part of the <span class="hlt">ice</span> sheet. The impact of algae on bare <span class="hlt">ice</span> darkening in the study area was greater than that of nonalgal impurities and yielded a net albedo reduction of 0.038 ± 0.0035 for each algal population doubling. We argue that algal growth is a crucial control of bare <span class="hlt">ice</span> darkening, and incorporating the algal darkening effect will improve mass balance and sea level projections of the Greenland <span class="hlt">ice</span> sheet and <span class="hlt">ice</span> masses elsewhere.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16782604','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16782604"><span>Changes in <span class="hlt">ice</span> dynamics and mass balance of the Antarctic <span class="hlt">ice</span> sheet.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Rignot, Eric</p> <p>2006-07-15</p> <p>The concept that the Antarctic <span class="hlt">ice</span> sheet changes with eternal slowness has been challenged by recent observations from satellites. Pronounced regional warming in the Antarctic Peninsula triggered <span class="hlt">ice</span> shelf collapse, which led to a 10-fold increase in glacier flow and rapid <span class="hlt">ice</span> sheet retreat. This chain of events illustrated the vulnerability of <span class="hlt">ice</span> shelves to climate warming and their buffering role on the mass balance of Antarctica. In West Antarctica, the Pine Island Bay sector is draining far more <span class="hlt">ice</span> into the ocean than is stored upstream from snow accumulation. This sector could raise sea level by 1m and trigger widespread retreat of <span class="hlt">ice</span> in West Antarctica. Pine Island Glacier accelerated 38% since 1975, and most of the speed up took place over the last decade. Its neighbour Thwaites Glacier is widening up and may double its width when its weakened eastern <span class="hlt">ice</span> shelf breaks up. Widespread acceleration in this sector may be caused by glacier ungrounding from <span class="hlt">ice</span> shelf melting by an ocean that has recently warmed by 0.3 degrees C. In contrast, glaciers buffered from oceanic change by large <span class="hlt">ice</span> shelves have only small contributions to sea level. In East Antarctica, many glaciers are close to a state of mass balance, but sectors grounded well below sea level, such as Cook <span class="hlt">Ice</span> Shelf, Ninnis/Mertz, Frost and Totten glaciers, are thinning and losing mass. Hence, East Antarctica is not immune to changes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20030001036','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20030001036"><span><span class="hlt">Ice</span> Accretion Formations on a NACA 0012 Swept Wing Tip in Natural <span class="hlt">Icing</span> Conditions</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Vargas, Mario; Giriunas, Julius A.; Ratvasky, Thomas P.</p> <p>2002-01-01</p> <p>An experiment was conducted in the DeHavilland DHC-6 Twin Otter <span class="hlt">Icing</span> Research Aircraft at NASA Glenn Research Center to study the formation of <span class="hlt">ice</span> accretions on swept wings in natural <span class="hlt">icing</span> conditions. The experiment was designed to obtain <span class="hlt">ice</span> accretion data to help determine if the mechanisms of <span class="hlt">ice</span> accretion formation observed in the <span class="hlt">Icing</span> Research Tunnel are present in natural <span class="hlt">icing</span> conditions. The experiment in the Twin Otter was conducted using a NACA 0012 swept wing tip. The model enabled data acquisition at 0 deg, 15 deg, 25 deg, 30 deg, and 45 deg sweep angles. Casting data, <span class="hlt">ice</span> shape tracings, and close-up photographic data were obtained. The results showed that the mechanisms of <span class="hlt">ice</span> accretion formation observed in-flight agree well with the ones observed in the <span class="hlt">Icing</span> Research Tunnel. Observations on the end cap of the airfoil showed the same strong effect of the local sweep angle on the formation of scallops as observed in the tunnel.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29058767','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29058767"><span>Bioinspired Surfaces with Superwettability for Anti-<span class="hlt">Icing</span> and <span class="hlt">Ice</span>-Phobic Application: Concept, Mechanism, and Design.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhang, Songnan; Huang, Jianying; Cheng, Yan; Yang, Hui; Chen, Zhong; Lai, Yuekun</p> <p>2017-12-01</p> <p><span class="hlt">Ice</span> accumulation poses a series of severe issues in daily life. Inspired by the nature, superwettability surfaces have attracted great interests from fundamental research to anti-<span class="hlt">icing</span> and <span class="hlt">ice</span>-phobic applications. Here, recently published literature about the mechanism of <span class="hlt">ice</span> prevention is reviewed, with a focus on the anti-<span class="hlt">icing</span> and <span class="hlt">ice</span>-phobic mechanisms, encompassing the behavior of condensate microdrops on the surface, wetting, <span class="hlt">ice</span> nucleation, and freezing. Then, a detailed account of the innovative fabrication and fundamental research of anti-<span class="hlt">icing</span> materials with special wettability is summarized with a focus on recent progresses including low-surface energy coatings and liquid-infused layered coatings. Finally, special attention is paid to a discussion about advantages and disadvantages of the technologies, as well as factors that affect the anti-<span class="hlt">icing</span> and <span class="hlt">ice</span>-phobic efficiency. Outlooks and the challenges for future development of the anti-<span class="hlt">icing</span> and <span class="hlt">ice</span>-phobic technology are presented and discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19880015729','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19880015729"><span>National plans for aircraft <span class="hlt">icing</span> and improved aircraft <span class="hlt">icing</span> forecasts and associated warning services</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Pass, Ralph P.</p> <p>1988-01-01</p> <p>Recently, the United States has increased its activities related to aircraft <span class="hlt">icing</span> in numerous fields: <span class="hlt">ice</span> phobics, revised characterization of <span class="hlt">icing</span> conditions, instrument development/evaluation, de-<span class="hlt">ice/anti-ice</span> devices, simulated supercooled clouds, computer simulation and flight tests. The Federal Coordinator for Meteorology is involved in two efforts, one a National Plan on Aircraft <span class="hlt">Icing</span> and the other a plan for Improved Aircraft <span class="hlt">Icing</span> Forecasts and Associated Warning Services. These two plans will provide an approved structure for future U.S. activities related to aircraft <span class="hlt">icing</span>. The recommended activities will significantly improve the position of government agencies to perform mandated activities and to enable U.S. manufacturers to be competitive in the world market.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110014708','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110014708"><span>Subsurface <span class="hlt">Ice</span> Probe</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hecht, Michael; Carsey, Frank</p> <p>2005-01-01</p> <p>The subsurface <span class="hlt">ice</span> probe (SIPR) is a proposed apparatus that would bore into <span class="hlt">ice</span> to depths as great as hundreds of meters by melting the <span class="hlt">ice</span> and pumping the samples of meltwater to the surface. Originally intended for use in exploration of subsurface <span class="hlt">ice</span> on Mars and other remote planets, the SIPR could also be used on Earth as an alternative to coring, drilling, and melting apparatuses heretofore used to sample Arctic and Antarctic <span class="hlt">ice</span> sheets. The SIPR would include an assembly of instrumentation and electronic control equipment at the surface, connected via a tether to a compact assembly of boring, sampling, and sensor equipment in the borehole (see figure). Placing as much equipment as possible at the surface would help to attain primary objectives of minimizing power consumption, sampling with high depth resolution, and unobstructed imaging of the borehole wall. To the degree to which these requirements would be satisfied, the SIPR would offer advantages over the aforementioned <span class="hlt">ice</span>-probing systems.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.C33C1202F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.C33C1202F"><span>Determination of a Critical Sea <span class="hlt">Ice</span> Thickness Threshold for the Central Arctic Ocean</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ford, V.; Frauenfeld, O. W.; Nowotarski, C. J.</p> <p>2017-12-01</p> <p>While sea <span class="hlt">ice</span> extent is readily measurable from satellite observations and can be used to assess the overall survivability of the Arctic sea <span class="hlt">ice</span> <span class="hlt">pack</span>, determining the spatial variability of sea <span class="hlt">ice</span> thickness remains a challenge. Turbulent and conductive heat fluxes are extremely sensitive to <span class="hlt">ice</span> thickness but are dominated by the sensible heat flux, with energy exchange expected to increase with thinner <span class="hlt">ice</span> cover. Fluxes over open water are strongest and have the greatest influence on the atmosphere, while fluxes over thick sea <span class="hlt">ice</span> are minimal as heat conduction from the ocean through thick <span class="hlt">ice</span> cannot reach the atmosphere. We know that turbulent energy fluxes are strongest over open ocean, but is there a "critical thickness of <span class="hlt">ice</span>" where fluxes are considered non-negligible? Through polar-optimized Weather Research and Forecasting model simulations, this study assesses how the wintertime Arctic surface boundary layer, via sensible heat flux exchange and surface air temperature, responds to sea <span class="hlt">ice</span> thinning. The region immediately north of Franz Josef Land is characterized by a thickness gradient where sea <span class="hlt">ice</span> transitions from the thickest multi-year <span class="hlt">ice</span> to the very thin marginal <span class="hlt">ice</span> seas. This provides an ideal location to simulate how the diminishing Arctic sea <span class="hlt">ice</span> interacts with a warming atmosphere. Scenarios include both fixed sea surface temperature domains for idealized thickness variability, and fixed <span class="hlt">ice</span> fields to detect changes in the ocean-<span class="hlt">ice</span>-atmosphere energy exchange. Results indicate that a critical thickness threshold exists below 1 meter. The threshold is between 0.4-1 meters thinner than the critical thickness for melt season survival - the difference between first year and multi-year <span class="hlt">ice</span>. Turbulent heat fluxes and surface air temperature increase as sea <span class="hlt">ice</span> thickness transitions from perennial <span class="hlt">ice</span> to seasonal <span class="hlt">ice</span>. While models predict a sea <span class="hlt">ice</span> free Arctic at the end of the warm season in future decades, sea <span class="hlt">ice</span> will continue to transform</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19910044115&hterms=marginal&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dmarginal','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19910044115&hterms=marginal&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dmarginal"><span>Microwave and physical properties of sea <span class="hlt">ice</span> in the winter marginal <span class="hlt">ice</span> zone</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Tucker, W. B., III; Perovich, D. K.; Gow, A. J.; Grenfell, T. C.; Onstott, R. G.</p> <p>1991-01-01</p> <p>Surface-based active and passive microwave measurements were made in conjunction with <span class="hlt">ice</span> property measurements for several distinct <span class="hlt">ice</span> types in the Fram Strait during March and April 1987. Synthesis aperture radar imagery downlinked from an aircraft was used to select study sites. The surface-based radar scattering cross section and emissivity spectra generally support previously inferred qualitative relationships between <span class="hlt">ice</span> types, exhibiting expected separation between young, first-year and multiyear <span class="hlt">ice</span>. Gradient ratios, calculated for both active and passive data, appear to allow clear separation of <span class="hlt">ice</span> types when used jointly. Surface flooding of multiyear floes, resulting from excessive loading and perhaps wave action, causes both active and passive signatures to resemble those of first-year <span class="hlt">ice</span>. This effect could possibly cause estimates of <span class="hlt">ice</span> type percentages in the marginal <span class="hlt">ice</span> zone to be in error when derived from aircraft- or satellite-born sensors.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.C41D0434C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.C41D0434C"><span><span class="hlt">Ice</span> Sheet and Sea <span class="hlt">Ice</span> Observations from Unmanned Aircraft Systems</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Crocker, R. I.; Maslanik, J. A.</p> <p>2011-12-01</p> <p>A suite of sensors has been assembled to map <span class="hlt">ice</span> sheet and sea <span class="hlt">ice</span> surface topography with fine-resolution from small unmanned aircraft systems (UAS). This payload is optimized to provide coincident surface elevation and imagery data, and with its low cost and ease of reproduction, it has the potential to become a widely-distributed observational resource to complement polar manned-aircraft and satellite missions. To date, it has been deployed to map <span class="hlt">ice</span> sheet elevations near Jakobshavn Isbræ in Greenland, and to measure sea <span class="hlt">ice</span> freeboard and roughness in Fram Strait off the coast of Svalbard. Data collected during these campaigns have facilitate a detailed assessment of the system's surface elevation measurement accuracy, and provide a glimpse of the summer 2009 Fram Strait sea <span class="hlt">ice</span> conditions. These findings are presented, along with a brief overview of our future Arctic UAS operations.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70018390','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70018390"><span>Active volcanism beneath the West Antarctic <span class="hlt">ice</span> sheet and implications for <span class="hlt">ice</span>-sheet stability</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Blankenship, D.D.; Bell, R.E.; Hodge, S.M.; Brozena, J.M.; Behrendt, John C.; Finn, C.A.</p> <p>1993-01-01</p> <p>IT is widely understood that the collapse of the West Antarctic <span class="hlt">ice</span> sheet (WAIS) would cause a global sea level rise of 6 m, yet there continues to be considerable debate about the detailed response of this <span class="hlt">ice</span> sheet to climate change1-3. Because its bed is grounded well below sea level, the stability of the WAIS may depend on geologically controlled conditions at the base which are independent of climate. In particular, heat supplied to the base of the <span class="hlt">ice</span> sheet could increase basal melting and thereby trigger <span class="hlt">ice</span> streaming, by providing the water for a lubricating basal layer of till on which <span class="hlt">ice</span> streams are thought to slide4,5. <span class="hlt">Ice</span> streams act to protect the reservoir of slowly moving inland <span class="hlt">ice</span> from exposure to oceanic degradation, thus enhancing <span class="hlt">ice</span>-sheet stability. Here we present aerogeophysical evidence for active volcanism and associated elevated heat flow beneath the WAIS near the critical region where <span class="hlt">ice</span> streaming begins. If this heat flow is indeed controlling <span class="hlt">ice</span>-stream formation, then penetration of ocean waters inland of the thin hot crust of the active portion of the West Antarctic rift system could lead to the disappearance of <span class="hlt">ice</span> streams, and possibly trigger a collapse of the inland <span class="hlt">ice</span> reservoir.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.C41B0701R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.C41B0701R"><span>The Relationship Between Arctic Sea <span class="hlt">Ice</span> Albedo and the Geophysical Parameters of the <span class="hlt">Ice</span> Cover</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Riihelä, A.</p> <p>2015-12-01</p> <p>The Arctic sea <span class="hlt">ice</span> cover is thinning and retreating. Remote sensing observations have also shown that the mean albedo of the remaining <span class="hlt">ice</span> cover is decreasing on decadal time scales, albeit with significant annual variability (Riihelä et al., 2013, Pistone et al., 2014). Attribution of the albedo decrease between its different drivers, such as decreasing <span class="hlt">ice</span> concentration and enhanced surface melt of the <span class="hlt">ice</span>, remains an important research question for the forecasting of future conditions of the <span class="hlt">ice</span> cover. A necessary step towards this goal is understanding the relationships between Arctic sea <span class="hlt">ice</span> albedo and the geophysical parameters of the <span class="hlt">ice</span> cover. Particularly the question of the relationship between sea <span class="hlt">ice</span> albedo and <span class="hlt">ice</span> age is both interesting and not widely studied. The recent changes in the Arctic sea <span class="hlt">ice</span> zone have led to a substantial decrease of its multi-year sea <span class="hlt">ice</span>, as old <span class="hlt">ice</span> melts and is replaced by first-year <span class="hlt">ice</span> during the next freezing season. It is generally known that younger sea <span class="hlt">ice</span> tends to have a lower albedo than older <span class="hlt">ice</span> because of several reasons, such as wetter snow cover and enhanced melt ponding. However, the quantitative correlation between sea <span class="hlt">ice</span> age and sea <span class="hlt">ice</span> albedo has not been extensively studied to date, excepting in-situ measurement based studies which are, by necessity, focused on a limited area of the Arctic Ocean (Perovich and Polashenski, 2012).In this study, I analyze the dependencies of Arctic sea <span class="hlt">ice</span> albedo relative to the geophysical parameters of the <span class="hlt">ice</span> field. I use remote sensing datasets such as the CM SAF CLARA-A1 (Karlsson et al., 2013) and the NASA MeaSUREs (Anderson et al., 2014) as data sources for the analysis. The studied period is 1982-2009. The datasets are spatiotemporally collocated and analysed. The changes in sea <span class="hlt">ice</span> albedo as a function of sea <span class="hlt">ice</span> age are presented for the whole Arctic Ocean and for potentially interesting marginal sea cases. This allows us to see if the the albedo of the older sea</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70037558','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70037558"><span>On the nature of the dirty <span class="hlt">ice</span> at the bottom of the GISP2 <span class="hlt">ice</span> core</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Bender, Michael L.; Burgess, Edward; Alley, Richard B.; Barnett, Bruce; Clow, Gary D.</p> <p>2010-01-01</p> <p>We present data on the triple Ar isotope composition in trapped gas from clean, stratigraphically disturbed <span class="hlt">ice</span> between 2800 and 3040m depth in the GISP2 <span class="hlt">ice</span> core, and from basal dirty <span class="hlt">ice</span> from 3040 to 3053m depth. We also present data for the abundance and isotopic composition of O2 and N2, and abundance of Ar, in the basal dirty <span class="hlt">ice</span>. The Ar/N2 ratio of dirty basal <span class="hlt">ice</span>, the heavy isotope enrichment (reflecting gravitational fractionation), and the total gas content all indicate that the gases in basal dirty <span class="hlt">ice</span> originate from the assimilation of clean <span class="hlt">ice</span> of the overlying glacier, which comprises most of the <span class="hlt">ice</span> in the dirty bottom layer. O2 is partly to completely depleted in basal <span class="hlt">ice</span>, reflecting active metabolism. The gravitationally corrected ratio of 40Ar/38Ar, which decreases with age in the global atmosphere, is compatible with an age of 100-250ka for clean disturbed <span class="hlt">ice</span>. In basal <span class="hlt">ice</span>, 40Ar is present in excess due to injection of radiogenic 40Ar produced in the underlying continental crust. The weak depth gradient of 40Ar in the dirty basal <span class="hlt">ice</span>, and the distribution of dirt, indicate mixing within the basal <span class="hlt">ice</span>, while various published lines of evidence indicate mixing within the overlying clean, disturbed <span class="hlt">ice</span>. Excess CH4, which reaches thousands of ppm in basal dirty <span class="hlt">ice</span> at GRIP, is virtually absent in overlying clean disturbed <span class="hlt">ice</span>, demonstrating that mixing of dirty basal <span class="hlt">ice</span> into the overlying clean <span class="hlt">ice</span>, if it occurs at all, is very slow. Order-of-magnitude estimates indicate that the mixing rate of clean <span class="hlt">ice</span> into dirty <span class="hlt">ice</span> is sufficient to maintain a steady thickness of dirty <span class="hlt">ice</span> against thinning from the mean <span class="hlt">ice</span> flow. The dirty <span class="hlt">ice</span> appears to consist of two or more basal components in addition to clean glacial <span class="hlt">ice</span>. A small amount of soil or permafrost, plus preglacial snow, lake or ground <span class="hlt">ice</span> could explain the observations.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1301618','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1301618"><span>Intercellular <span class="hlt">ice</span> propagation: experimental evidence for <span class="hlt">ice</span> growth through membrane pores.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Acker, J P; Elliott, J A; McGann, L E</p> <p>2001-01-01</p> <p>Propagation of intracellular <span class="hlt">ice</span> between cells significantly increases the prevalence of intracellular <span class="hlt">ice</span> in confluent monolayers and tissues. It has been proposed that gap junctions facilitate <span class="hlt">ice</span> propagation between cells. This study develops an equation for capillary freezing-point depression to determine the effect of temperature on the equilibrium radius of an <span class="hlt">ice</span> crystal sufficiently small to grow through gap junctions. Convection cryomicroscopy and video image analysis were used to examine the incidence and pattern of intracellular <span class="hlt">ice</span> formation (IIF) in the confluent monolayers of cell lines that do (MDCK) and do not (V-79W) form gap junctions. The effect of gap junctions on intracellular <span class="hlt">ice</span> propagation was strongly temperature-dependent. For cells with gap junctions, IIF occurred in a directed wave-like pattern in 100% of the cells below -3 degrees C. At temperatures above -3 degrees C, there was a marked drop in the incidence of IIF, with isolated individual cells initially freezing randomly throughout the sample. This random pattern of IIF was also observed in the V-79W monolayers and in MDCK monolayers treated to prevent gap junction formation. The significant change in the low temperature behavior of confluent MDCK monolayers at -3 degrees C is likely the result of the inhibition of gap junction-facilitated <span class="hlt">ice</span> propagation, and supports the theory that gap junctions facilitate <span class="hlt">ice</span> nucleation between cells. PMID:11509353</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.P53H..03K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.P53H..03K"><span>Water <span class="hlt">ice</span> is water <span class="hlt">ice</span>: some applications and limitations of Earth analogues to Mars</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Koutnik, M.; Pathare, A.; Waddington, E. D.; Winebrenner, D. P.</p> <p>2017-12-01</p> <p>Quantitative and qualitative analyses of <span class="hlt">ice</span> on Mars have advanced with the acquisition of abundant topography, imagery, and radar data, which have enabled the planetary-science community to tackle sophisticated questions about the martian cryosphere. Over the past decades, many studies have applied knowledge of terrestrial <span class="hlt">ice</span>-sheet and glacier flow to improve understanding of <span class="hlt">ice</span> behavior on Mars. A key question for both planets is how we can robustly interpret past climate from glaciological and glacial geomorphological features. Doing this requires deciphering how the history of accumulation, ablation, dust/debris deposition, and flow led to the shape and internal structure of present-day <span class="hlt">ice</span>. Terrestrial glaciology and glacial geomorphology provide physical relationships that can be extended across environmental conditions to characterize related processes that may act at different rates or on different timescales. However, there remain fundamental unknowns about martian <span class="hlt">ice</span> rheology and history that often limit our ability to directly apply understanding of <span class="hlt">ice</span> dynamics learned from Antarctica, Greenland, terrestrial glaciers, and laboratory <span class="hlt">ice</span> experiments. But the field is rich with opportunity because the constitutive relationship for water <span class="hlt">ice</span> depends on quantities that can typically be reasonably estimated; water <span class="hlt">ice</span> is water <span class="hlt">ice</span>. We reflect on progress to understand the history of the <span class="hlt">ice</span>-rich North Polar Layered Deposits (NPLD) and of select mid-latitude Lobate Debris Aprons (LDAs), and the utility of terrestrial <span class="hlt">ice</span>-sheet and glacier analogues for these problems. Our work on Earth and Mars has focused on constraining surface accumulation/ablation patterns and <span class="hlt">ice</span>-flow histories from topography and radar observations. We present on the challenge of interpreting internal-layer shapes when both accumulation/ablation and <span class="hlt">ice</span>-flow histories are unknown, and how this non-uniqueness can be broken only by making assumptions about one or the other. In</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19980107899','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19980107899"><span><span class="hlt">Ice</span> in Channels and <span class="hlt">Ice</span>-Rock Mixtures in Valleys on Mars: Did They Slide on Deformable Rubble Like Antarctic <span class="hlt">Ice</span> Streams?</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lucchitta, B. K.</p> <p>1997-01-01</p> <p>Recent studies of <span class="hlt">ice</span> streams in Antarctica reveal a mechanism of basal motion that may apply to channels and valleys on Mars. The mechanism is sliding of the <span class="hlt">ice</span> on deformable water-saturated till under high pore pressures. It has been suggested by Lucchitta that <span class="hlt">ice</span> was present in outflow channels on Mars and gave them their distinctive morphology. This <span class="hlt">ice</span> may have slid like Antarctic <span class="hlt">ice</span> streams but on rubbly weathering products rather than till. However, to generate water under high pore pressures, elevated heatflow is needed to melt the base of the <span class="hlt">ice</span>. Either volcanism or higher heatflow more than 2 b.y. ago could have raised the basal temperature. Regarding valley networks, higher heatflow 3 b.y. ago could have allowed sliding of <span class="hlt">ice</span>-saturated overburden at a few hundred meters depth. If the original, pristine valleys were somewhat deeper than they are now, they could have formed by the same mechanism. Recent sounding of the seafloor in front of the Ross <span class="hlt">Ice</span> Shelf in Antarctica reveals large persistent patterns of longitudinal megaflutes and drumlinoid forms, which bear remarkable resemblance to longitudinal grooves and highly elongated streamlined islands found on the floors of martian outflow channels. The flutes are interpreted to have formed at the base of <span class="hlt">ice</span> streams during the last glacial advance. Additional similarities of Antarctic <span class="hlt">ice</span> streams with martian outflow channels are apparent. Antarctic <span class="hlt">ice</span> streams are 30 to 80 km wide and hundreds of kilometers long. Martian outflow channels have similar dimensions. <span class="hlt">Ice</span> stream beds are below sea level. Carr determined that most common floor elevations of martian outflow channels lie below martian datum, which may have been close to or below past martian sea levels. The Antarctic <span class="hlt">ice</span> stream bed gradient is flat and locally may go uphill, and surface slopes are exceptionally. Martian channels also have floor gradients that are shallow or go uphill locally and have low surface gradients. The depth to the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23222446','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23222446"><span>Females roam while males patrol: divergence in breeding season movements of <span class="hlt">pack-ice</span> polar bears (Ursus maritimus).</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Laidre, Kristin L; Born, Erik W; Gurarie, Eliezer; Wiig, Øystein; Dietz, Rune; Stern, Harry</p> <p>2013-02-07</p> <p>Intraspecific differences in movement behaviour reflect different tactics used by individuals or sexes to favour strategies that maximize fitness. We report movement data collected from n = 23 adult male polar bears with novel ear-attached transmitters in two separate <span class="hlt">pack</span> <span class="hlt">ice</span> subpopulations over five breeding seasons. We compared movements with n = 26 concurrently tagged adult females, and analysed velocities, movement tortuosity, range sizes and habitat selection with respect to sex, reproductive status and body mass. There were no differences in 4-day displacements or sea <span class="hlt">ice</span> habitat selection for sex or population. By contrast, adult females in all years and both populations had significantly more linear movements and significantly larger breeding range sizes than males. We hypothesized that differences were related to encounter rates, and used observed movement metrics to parametrize a simulation model of male-male and male-female encounter. The simulation showed that the more tortuous movement of males leads to significantly longer times to male-male encounter, while having little impact on male-female encounter. By contrast, linear movements of females are consistent with a prioritized search for sparsely distributed prey. These results suggest a possible mechanism for explaining the smaller breeding range sizes of some solitary male carnivores compared to females.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA238040','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA238040"><span>Aircraft <span class="hlt">Icing</span> Handbook. Volume 2</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1991-03-01</p> <p>an airfoil surface. icenhobig - A surface property exhibiting a reduced adhesion to <span class="hlt">ice</span>; literally, "<span class="hlt">ice</span>-hating." light <span class="hlt">icing</span> - The rate of...power, and are a light weight system of reasonable cost. K. ill I-I1 1.I.2 Pneumatic Impulse <span class="hlt">Ice</span> Protection A Pneumatic Impulse <span class="hlt">Ice</span> Protection System...should be about 5 to 6 seconds. During moderate <span class="hlt">icing</span> a 60 second cycle is suggested, while for light <span class="hlt">icing</span>, longer accretion times of 3 to 4 minutes</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19880011759','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19880011759"><span>An experimental and theoretical study of the <span class="hlt">ice</span> accretion process during artificial and natural <span class="hlt">icing</span> conditions</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kirby, Mark S.; Hansman, R. John</p> <p>1988-01-01</p> <p>Real-time measurements of <span class="hlt">ice</span> growth during artificial and natural <span class="hlt">icing</span> conditions were conducted using an ultrasonic pulse-echo technique. This technique allows <span class="hlt">ice</span> thickness to be measured with an accuracy of + or - 0.5 mm; in addition, the ultrasonic signal characteristics may be used to detect the presence of liquid on the <span class="hlt">ice</span> surface and hence discern wet and dry <span class="hlt">ice</span> growth behavior. <span class="hlt">Ice</span> growth was measured on the stagnation line of a cylinder exposed to artificial <span class="hlt">icing</span> conditions in the NASA Lewis <span class="hlt">Icing</span> Research Tunnel (IRT), and similarly for a cylinder exposed in flight to natural <span class="hlt">icing</span> conditions. <span class="hlt">Ice</span> thickness was observed to increase approximately linearly with exposure time during the initial <span class="hlt">icing</span> period. The <span class="hlt">ice</span> accretion rate was found to vary with cloud temperature during wet <span class="hlt">ice</span> growth, and liquid runback from the stagnation region was inferred. A steady-state energy balance model for the <span class="hlt">icing</span> surface was used to compare heat transfer characteristics for IRT and natural <span class="hlt">icing</span> conditions. Ultrasonic measurements of wet and dry <span class="hlt">ice</span> growth observed in the IRT and in flight were compared with <span class="hlt">icing</span> regimes predicted by a series of heat transfer coefficients. The heat transfer magnitude was generally inferred to be higher for the IRT than for the natural <span class="hlt">icing</span> conditions encountered in flight. An apparent variation in the heat transfer magnitude was also observed for flights conducted through different natural <span class="hlt">icing</span>-cloud formations.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ISPAr41B7..585X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ISPAr41B7..585X"><span>Extraction of <span class="hlt">Ice</span> Sheet Layers from Two Intersected Radar Echograms Near Neem <span class="hlt">Ice</span> Core in Greenland</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xiong, S.; Muller, J.-P.</p> <p>2016-06-01</p> <p>Accumulation of snow and <span class="hlt">ice</span> over time result in <span class="hlt">ice</span> sheet layers. These can be remotely sensed where there is a contrast in electromagnetic properties, which reflect variations of the <span class="hlt">ice</span> density, acidity and fabric orientation. Internal <span class="hlt">ice</span> layers are assumed to be isochronous, deep beneath the <span class="hlt">ice</span> surface, and parallel to the direction of <span class="hlt">ice</span> flow. The distribution of internal layers is related to <span class="hlt">ice</span> sheet dynamics, such as the basal melt rate, basal elevation variation and changes in <span class="hlt">ice</span> flow mode, which are important parameters to model the <span class="hlt">ice</span> sheet. Radar echo sounder is an effective instrument used to study the sedimentology of the Earth and planets. <span class="hlt">Ice</span> Penetrating Radar (IPR) is specific kind of radar echo sounder, which extends studies of <span class="hlt">ice</span> sheets from surface to subsurface to deep internal <span class="hlt">ice</span> sheets depending on the frequency utilised. In this study, we examine a study site where folded <span class="hlt">ice</span> occurs in the internal <span class="hlt">ice</span> sheet south of the North Greenland Eemian <span class="hlt">ice</span> drilling (NEEM) station, where two intersected radar echograms acquired by the Multi-channel Coherent Radar Depth Sounder (MCoRDS) employed in the NASA's Operation <span class="hlt">Ice</span>Bridge (OIB) mission imaged this folded <span class="hlt">ice</span>. We propose a slice processing flow based on a Radon Transform to trace and extract these two sets of curved <span class="hlt">ice</span> sheet layers, which can then be viewed in 3-D, demonstrating the 3-D structure of the <span class="hlt">ice</span> folds.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018TCry...12.1921M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018TCry...12.1921M"><span>Reflective properties of melt ponds on sea <span class="hlt">ice</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Malinka, Aleksey; Zege, Eleonora; Istomina, Larysa; Heygster, Georg; Spreen, Gunnar; Perovich, Donald; Polashenski, Chris</p> <p>2018-06-01</p> <p>Melt ponds occupy a large part of the Arctic sea <span class="hlt">ice</span> in summer and strongly affect the radiative budget of the atmosphere-<span class="hlt">ice</span>-ocean system. In this study, the melt pond reflectance is considered in the framework of radiative transfer theory. The melt pond is modeled as a plane-parallel layer of pure water upon a layer of sea <span class="hlt">ice</span> (the pond bottom). We consider pond reflection as comprising Fresnel reflection by the water surface and multiple reflections between the pond surface and its bottom, which is assumed to be Lambertian. In order to give a description of how to find the pond bottom albedo, we investigate the inherent optical properties of sea <span class="hlt">ice</span>. Using the Wentzel-Kramers-Brillouin approximation approach to light scattering by non-spherical particles (brine inclusions) and Mie solution for spherical particles (air bubbles), we conclude that the transport scattering coefficient in sea <span class="hlt">ice</span> is a spectrally independent value. Then, within the two-stream approximation of the radiative transfer theory, we show that the under-pond <span class="hlt">ice</span> spectral albedo is determined by two independent scalar values: the transport scattering coefficient and <span class="hlt">ice</span> layer thickness. Given the pond depth and bottom albedo values, the bidirectional reflectance factor (BRF) and albedo of a pond can be calculated with analytical formulas. Thus, the main reflective properties of the melt pond, including their spectral dependence, are determined by only three independent parameters: pond depth z, <span class="hlt">ice</span> layer thickness H, and transport scattering coefficient of <span class="hlt">ice</span> σt.The effects of the incident conditions and the atmosphere state are examined. It is clearly shown that atmospheric correction is necessary even for in situ measurements. The atmospheric correction procedure has been used in the model verification. The optical model developed is verified with data from in situ measurements made during three field campaigns performed on landfast and <span class="hlt">pack</span> <span class="hlt">ice</span> in the Arctic. The measured pond albedo</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://eric.ed.gov/?q=analysis+AND+climatic&pg=2&id=EJ321613','ERIC'); return false;" href="https://eric.ed.gov/?q=analysis+AND+climatic&pg=2&id=EJ321613"><span>The Antarctic <span class="hlt">Ice</span>.</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Radok, Uwe</p> <p>1985-01-01</p> <p>The International Antarctic Glaciological Project has collected information on the East Antarctic <span class="hlt">ice</span> sheet since 1969. Analysis of <span class="hlt">ice</span> cores revealed climatic history, and radar soundings helped map bedrock of the continent. Computer models of the <span class="hlt">ice</span> sheet and its changes over time will aid in predicting the future. (DH)</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20070021400&hterms=relationships&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DTitle%26N%3D0%26No%3D50%26Ntt%3Drelationships','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20070021400&hterms=relationships&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DTitle%26N%3D0%26No%3D50%26Ntt%3Drelationships"><span>Spatial Variability of Barrow-Area Shore-Fast Sea <span class="hlt">Ice</span> and Its Relationships to Passive Microwave Emissivity</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Maslanik, J. A.; Rivas, M. Belmonte; Holmgren, J.; Gasiewski, A. J.; Heinrichs, J. F.; Stroeve, J. C.; Klein, M.; Markus, T.; Perovich, D. K.; Sonntag, J. G.; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20070021400'); toggleEditAbsImage('author_20070021400_show'); toggleEditAbsImage('author_20070021400_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20070021400_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20070021400_hide"></p> <p>2006-01-01</p> <p>Aircraft-acquired passive microwave data, laser radar height observations, RADARSAT synthetic aperture radar imagery, and in situ measurements obtained during the AMSR-<span class="hlt">Ice</span>03 experiment are used to investigate relationships between microwave emission and <span class="hlt">ice</span> characteristics over several space scales. The data fusion allows delineation of the shore-fast <span class="hlt">ice</span> and <span class="hlt">pack</span> <span class="hlt">ice</span> in the Barrow area, AK, into several <span class="hlt">ice</span> classes. Results show good agreement between observed and Polarimetric Scanning Radiometer (PSR)-derived snow depths over relatively smooth <span class="hlt">ice</span>, with larger differences over ridged and rubbled <span class="hlt">ice</span>. The PSR results are consistent with the effects on snow depth of the spatial distribution and nature of <span class="hlt">ice</span> roughness, ridging, and other factors such as <span class="hlt">ice</span> age. Apparent relationships exist between <span class="hlt">ice</span> roughness and the degree of depolarization of emission at 10,19, and 37 GHz. This depolarization .would yield overestimates of total <span class="hlt">ice</span> concentration using polarization-based algorithms, with indications of this seen when the NT-2 algorithm is applied to the PSR data. Other characteristics of the microwave data, such as effects of grounding of sea <span class="hlt">ice</span> and large contrast between sea <span class="hlt">ice</span> and adjacent land, are also apparent in the PSR data. Overall, the results further demonstrate the importance of macroscale <span class="hlt">ice</span> roughness conditions such as ridging and rubbling on snow depth and microwave emissivity.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010JGRC..115.2005V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010JGRC..115.2005V"><span>Modeling brine and nutrient dynamics in Antarctic sea <span class="hlt">ice</span>: The case of dissolved silica</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vancoppenolle, Martin; Goosse, Hugues; de Montety, Anne; Fichefet, Thierry; Tremblay, Bruno; Tison, Jean-Louis</p> <p>2010-02-01</p> <p>Sea <span class="hlt">ice</span> ecosystems are characterized by microalgae living in brine inclusions. The growth rate of <span class="hlt">ice</span> algae depends on light and nutrient supply. Here, the interactions between nutrients and brine dynamics under the influence of algae are investigated using a one-dimensional model. The model includes snow and <span class="hlt">ice</span> thermodynamics with brine physics and an idealized sea <span class="hlt">ice</span> biological component, characterized by one nutrient, namely, dissolved silica (DSi). In the model, DSi follows brine motion and is consumed by <span class="hlt">ice</span> algae. Depending on physical <span class="hlt">ice</span> characteristics, the brine flow is either advective, diffusive, or turbulent. The vertical profiles of <span class="hlt">ice</span> salinity and DSi concentration are solutions of advection-diffusion equations. The model is configured to simulate the typical thermodynamic regimes of first-year Antarctic <span class="hlt">pack</span> <span class="hlt">ice</span>. The simulated vertical profiles of salinity and DSi qualitatively reproduce observations. Analysis of results highlights the role of convection in the lowermost 5-10 cm of <span class="hlt">ice</span>. Convection mixes saline, nutrient-poor brine with comparatively fresh, nutrient-rich seawater. This implies a rejection of salt to the ocean and a flux of DSi to the <span class="hlt">ice</span>. In the presence of growing algae, the simulated ocean-to-<span class="hlt">ice</span> DSi flux increases by 0-115% compared to an abiotic situation. In turn, primary production and brine convection act in synergy to form a nutrient pump. The other important processes are the flooding of the surface by seawater and the percolation of meltwater. The former refills nutrients near the <span class="hlt">ice</span> surface in spring. The latter, if present, tends to expell nutrients from the <span class="hlt">ice</span> in summer.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120003985','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120003985"><span>Seafloor Control on Sea <span class="hlt">Ice</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Nghiem, S. V.; Clemente-Colon, P.; Rigor, I. G.; Hall, D. K.; Neumann, G.</p> <p>2011-01-01</p> <p>The seafloor has a profound role in Arctic sea <span class="hlt">ice</span> formation and seasonal evolution. Ocean bathymetry controls the distribution and mixing of warm and cold waters, which may originate from different sources, thereby dictating the pattern of sea <span class="hlt">ice</span> on the ocean surface. Sea <span class="hlt">ice</span> dynamics, forced by surface winds, are also guided by seafloor features in preferential directions. Here, satellite mapping of sea <span class="hlt">ice</span> together with buoy measurements are used to reveal the bathymetric control on sea <span class="hlt">ice</span> growth and dynamics. Bathymetric effects on sea <span class="hlt">ice</span> formation are clearly observed in the conformation between sea <span class="hlt">ice</span> patterns and bathymetric characteristics in the peripheral seas. Beyond local features, bathymetric control appears over extensive <span class="hlt">ice</span>-prone regions across the Arctic Ocean. The large-scale conformation between bathymetry and patterns of different synoptic sea <span class="hlt">ice</span> classes, including seasonal and perennial sea <span class="hlt">ice</span>, is identified. An implication of the bathymetric influence is that the maximum extent of the total sea <span class="hlt">ice</span> cover is relatively stable, as observed by scatterometer data in the decade of the 2000s, while the minimum <span class="hlt">ice</span> extent has decreased drastically. Because of the geologic control, the sea <span class="hlt">ice</span> cover can expand only as far as it reaches the seashore, the continental shelf break, or other pronounced bathymetric features in the peripheral seas. Since the seafloor does not change significantly for decades or centuries, sea <span class="hlt">ice</span> patterns can be recurrent around certain bathymetric features, which, once identified, may help improve short-term forecast and seasonal outlook of the sea <span class="hlt">ice</span> cover. Moreover, the seafloor can indirectly influence cloud cover by its control on sea <span class="hlt">ice</span> distribution, which differentially modulates the latent heat flux through <span class="hlt">ice</span> covered and open water areas.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20130013431','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20130013431"><span>On the <span class="hlt">Ice</span> Nucleation Spectrum</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Barahona, D.</p> <p>2012-01-01</p> <p>This work presents a novel formulation of the <span class="hlt">ice</span> nucleation spectrum, i.e. the function relating the <span class="hlt">ice</span> crystal concentration to cloud formation conditions and aerosol properties. The new formulation is physically-based and explicitly accounts for the dependency of the <span class="hlt">ice</span> crystal concentration on temperature, supersaturation, cooling rate, and particle size, surface area and composition. This is achieved by introducing the concepts of <span class="hlt">ice</span> nucleation coefficient (the number of <span class="hlt">ice</span> germs present in a particle) and nucleation probability dispersion function (the distribution of <span class="hlt">ice</span> nucleation coefficients within the aerosol population). The new formulation is used to generate <span class="hlt">ice</span> nucleation parameterizations for the homogeneous freezing of cloud droplets and the heterogeneous deposition <span class="hlt">ice</span> nucleation on dust and soot <span class="hlt">ice</span> nuclei. For homogeneous freezing, it was found that by increasing the dispersion in the droplet volume distribution the fraction of supercooled droplets in the population increases. For heterogeneous <span class="hlt">ice</span> nucleation the new formulation consistently describes singular and stochastic behavior within a single framework. Using a fundamentally stochastic approach, both cooling rate independence and constancy of the <span class="hlt">ice</span> nucleation fraction over time, features typically associated with singular behavior, were reproduced. Analysis of the temporal dependency of the <span class="hlt">ice</span> nucleation spectrum suggested that experimental methods that measure the <span class="hlt">ice</span> nucleation fraction over few seconds would tend to underestimate the <span class="hlt">ice</span> nuclei concentration. It is shown that inferring the aerosol heterogeneous <span class="hlt">ice</span> nucleation properties from measurements of the onset supersaturation and temperature may carry significant error as the variability in <span class="hlt">ice</span> nucleation properties within the aerosol population is not accounted for. This work provides a simple and rigorous <span class="hlt">ice</span> nucleation framework where theoretical predictions, laboratory measurements and field campaign data can be</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1913441D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1913441D"><span><span class="hlt">ICE</span> CONTROL - Towards optimizing wind energy production during <span class="hlt">icing</span> events</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dorninger, Manfred; Strauss, Lukas; Serafin, Stefano; Beck, Alexander; Wittmann, Christoph; Weidle, Florian; Meier, Florian; Bourgeois, Saskia; Cattin, René; Burchhart, Thomas; Fink, Martin</p> <p>2017-04-01</p> <p>Forecasts of wind power production loss caused by <span class="hlt">icing</span> weather conditions are produced by a chain of physical models. The model chain consists of a numerical weather prediction model, an <span class="hlt">icing</span> model and a production loss model. Each element of the model chain is affected by significant uncertainty, which can be quantified using targeted observations and a probabilistic forecasting approach. In this contribution, we present preliminary results from the recently launched project <span class="hlt">ICE</span> CONTROL, an Austrian research initiative on measurements, probabilistic forecasting, and verification of <span class="hlt">icing</span> on wind turbine blades. <span class="hlt">ICE</span> CONTROL includes an experimental field phase, consisting of measurement campaigns in a wind park in Rhineland-Palatinate, Germany, in the winters 2016/17 and 2017/18. Instruments deployed during the campaigns consist of a conventional <span class="hlt">icing</span> detector on the turbine hub and newly devised <span class="hlt">ice</span> sensors (eologix Sensor System) on the turbine blades, as well as meteorological sensors for wind, temperature, humidity, visibility, and precipitation type and spectra. Liquid water content and spectral characteristics of super-cooled water droplets are measured using a Fog Monitor FM-120. Three cameras document the <span class="hlt">icing</span> conditions on the instruments and on the blades. Different modelling approaches are used to quantify the components of the model-chain uncertainties. The uncertainty related to the initial conditions of the weather prediction is evaluated using the existing global ensemble prediction system (EPS) of the European Centre for Medium-Range Weather Forecasts (ECMWF). Furthermore, observation system experiments are conducted with the AROME model and its 3D-Var data assimilation to investigate the impact of additional observations (such as Mode-S aircraft data, SCADA data and MSG cloud mask initialization) on the numerical <span class="hlt">icing</span> forecast. The uncertainty related to model formulation is estimated from multi-physics ensembles based on the Weather Research</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMED13F..14U','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMED13F..14U"><span>Little <span class="hlt">ice</span> bodies, huge <span class="hlt">ice</span> lands, and the up-going of the big water body</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ultee, E.; Bassis, J. N.</p> <p>2017-12-01</p> <p><span class="hlt">Ice</span> moving out of the huge <span class="hlt">ice</span> lands causes the big water body to go up. That can cause bad things to happen in places close to the big water body - the land might even disappear! If that happens, people living close to the big water body might lose their homes. Knowing how much <span class="hlt">ice</span> will come out of the huge <span class="hlt">ice</span> lands, and when, can help the world plan for the up-going of the big water body. We study the huge <span class="hlt">ice</span> land closest to us. All around the edge of that huge <span class="hlt">ice</span> land, there are smaller <span class="hlt">ice</span> bodies that control how much <span class="hlt">ice</span> makes it into the big water body. Most ways of studying the huge <span class="hlt">ice</span> land with computers struggle to tell the computer about those little <span class="hlt">ice</span> bodies, but we have found a new way. We will talk about our way of studying little <span class="hlt">ice</span> bodies and how their moving brings about up-going of the big water.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28626650','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28626650"><span>Recrystallization inhibition in <span class="hlt">ice</span> due to <span class="hlt">ice</span> binding protein activity detected by nuclear magnetic resonance.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Brown, Jennifer R; Seymour, Joseph D; Brox, Timothy I; Skidmore, Mark L; Wang, Chen; Christner, Brent C; Luo, Bing-Hao; Codd, Sarah L</p> <p>2014-09-01</p> <p>Liquid water present in polycrystalline <span class="hlt">ice</span> at the interstices between <span class="hlt">ice</span> crystals results in a network of liquid-filled veins and nodes within a solid <span class="hlt">ice</span> matrix, making <span class="hlt">ice</span> a low porosity porous media. Here we used nuclear magnetic resonance (NMR) relaxation and time dependent self-diffusion measurements developed for porous media applications to monitor three dimensional changes to the vein network in <span class="hlt">ices</span> with and without a bacterial <span class="hlt">ice</span> binding protein (IBP). Shorter effective diffusion distances were detected as a function of increased irreversible <span class="hlt">ice</span> binding activity, indicating inhibition of <span class="hlt">ice</span> recrystallization and persistent small crystal structure. The modification of <span class="hlt">ice</span> structure by the IBP demonstrates a potential mechanism for the microorganism to enhance survivability in <span class="hlt">ice</span>. These results highlight the potential of NMR techniques in evaluation of the impact of IBPs on vein network structure and recrystallization processes; information useful for continued development of <span class="hlt">ice</span>-interacting proteins for biotechnology applications.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.2064S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.2064S"><span>Using the glacial geomorphology of palaeo-<span class="hlt">ice</span> streams to understand mechanisms of <span class="hlt">ice</span> sheet collapse</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stokes, Chris R.; Margold, Martin; Clark, Chris; Tarasov, Lev</p> <p>2017-04-01</p> <p>Processes which bring about <span class="hlt">ice</span> sheet deglaciation are critical to our understanding of glacial-interglacial cycles and <span class="hlt">ice</span> sheet sensitivity to climate change. The precise mechanisms of deglaciation are also relevant to our understanding of modern-day <span class="hlt">ice</span> sheet stability and concerns over global sea level rise. Mass loss from <span class="hlt">ice</span> sheets can be broadly partitioned between melting and a 'dynamic' component whereby rapidly-flowing <span class="hlt">ice</span> streams/outlet glaciers transfer <span class="hlt">ice</span> from the interior to the oceans. Surface and basal melting (e.g. of <span class="hlt">ice</span> shelves) are closely linked to atmospheric and oceanic conditions, but the mechanisms that drive dynamic changes in <span class="hlt">ice</span> stream discharge are more complex, which generates much larger uncertainties about their future contribution to <span class="hlt">ice</span> sheet mass loss and sea level rise. A major problem is that observations of modern-day <span class="hlt">ice</span> streams typically span just a few decades and, at the <span class="hlt">ice</span>-sheet scale, it is unclear how the entire drainage network of <span class="hlt">ice</span> streams evolves during deglaciation. A key question is whether <span class="hlt">ice</span> streams might increase and sustain rates of mass loss over centuries or millennia, beyond those expected for a given ocean-climate forcing. To address this issue, numerous workers have sought to understand <span class="hlt">ice</span> stream dynamics over longer time-scales using their glacial geomorphology in the palaeo-record. Indeed, our understanding of their geomorphology has grown rapidly in the last three decades, from almost complete ignorance to a detailed knowledge of their geomorphological products. Building on this body of work, this paper uses the glacial geomorphology of 117 <span class="hlt">ice</span> streams in the North American Laurentide <span class="hlt">Ice</span> Sheet to reconstruct their activity during its deglaciation ( 22,000 to 7,000 years ago). <span class="hlt">Ice</span> stream activity was characterised by high variability in both time and space, with <span class="hlt">ice</span> streams switching on and off in different locations. During deglaciation, we find that their overall number decreased, they occupied a</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015PhDT.......484S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015PhDT.......484S"><span>Sea-<span class="hlt">ice</span> habitat preference of the Pacific walrus (Odobenus rosmarus divergens) in the Bering Sea: A multiscaled approach</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sacco, Alexander Edward</p> <p></p> <p>, walruses were preferentially occupying fragmented <span class="hlt">pack</span> <span class="hlt">ice</span> seascapes range 50 -- 89% of the time, when, all throughout the Bering Sea, only range 41 -- 46% of seascapes consisted of fragmented <span class="hlt">pack</span> <span class="hlt">ice</span>. Traditional knowledge of a walrus' use of sea <span class="hlt">ice</span> is investigated through semi-directed interviews conducted with subsistence hunters and elders from Savoonga and Gambell, two Alaskan Native communities on St. Lawrence Island, Alaska. Informants were provided with a large nautical map of the land and ocean surrounding St. Lawrence Island and 45 printed large-format aerial photographs of walruses on sea <span class="hlt">ice</span> to stimulate discussion as questions were asked to direct the topics of conversation. Informants discussed change in sea <span class="hlt">ice</span> conditions over time, walrus behaviors during the fall and spring subsistence hunts, and sea-<span class="hlt">ice</span> characteristics that walruses typically occupy. These observations are compared with <span class="hlt">ice</span>-patch preferences analyzed from aerial imagery. Floe size was found to agree with remotely-sensed <span class="hlt">ice</span>-patch analysis results, while floe shape was not distinguishable to informants during the hunt. <span class="hlt">Ice</span>-patch arrangement descriptors concentration and density generally agreed with <span class="hlt">ice</span>-patch analysis results. Results include possible preference of <span class="hlt">ice</span>-patch descriptors at the <span class="hlt">ice</span>-patch scale and fragmented <span class="hlt">pack</span> <span class="hlt">ice</span> preference at the seascape scale. Traditional knowledge suggests large <span class="hlt">ice</span> ridges are preferential sea-<span class="hlt">ice</span> features at the <span class="hlt">ice</span>-patch scale, which are rapidly becoming less common during the fall and spring migration of sea <span class="hlt">ice</span> through the Bering Sea. Traditional knowledge, combined with a scientific analysis and field work to study species habitat preferences and, ultimately, habitat partitioning, can stem from these results. Future work includes increased sophistication of the synthetic aperture radar classification algorithm, experimentation with various spatial scales to determine the optimal scale for walrus' life-cycle events, and incorporation of</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150019656','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150019656"><span>Method to Generate Full-Span <span class="hlt">Ice</span> Shape on Swept Wing Using <span class="hlt">Icing</span> Tunnel Data</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lee, Sam; Camello, Stephanie</p> <p>2015-01-01</p> <p>There is a collaborative research program by NASA, FAA, ONERA, and university partners to improve the fidelity of experimental and computational simulation methods for swept-wing <span class="hlt">ice</span> accretion formulations and resultant aerodynamic effects on large transport aircraft. This research utilizes a 65 scale Common Research Model as the baseline configuration. In order to generate the <span class="hlt">ice</span> shapes for the aerodynamic testing, <span class="hlt">ice</span>-accretion testing will be conducted in the NASA <span class="hlt">Icing</span> Research Tunnel utilizing hybrid model from the 20, 64, and 83 spanwise locations. The models will have full-scale leading edges with truncated chord in order to fit the IRT test section. The <span class="hlt">ice</span> shapes from the IRT tests will be digitized using a commercially available articulated-arm 3D laser scanning system. The methodology to acquire 3D <span class="hlt">ice</span> shapes using a laser scanner was developed and validated in a previous research effort. Each of these models will yield a 1.5ft span of <span class="hlt">ice</span> than can be used. However, a full-span <span class="hlt">ice</span> accretion will require 75 ft span of <span class="hlt">ice</span>. This means there will be large gaps between these spanwise <span class="hlt">ice</span> sections that must be filled, while maintaining all of the important aerodynamic features. A method was developed to generate a full-span <span class="hlt">ice</span> shape from the three 1.5 ft span <span class="hlt">ice</span> shapes from the three models.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24457629','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24457629"><span>Determining the <span class="hlt">ice</span>-binding planes of antifreeze proteins by fluorescence-based <span class="hlt">ice</span> plane affinity.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Basu, Koli; Garnham, Christopher P; Nishimiya, Yoshiyuki; Tsuda, Sakae; Braslavsky, Ido; Davies, Peter</p> <p>2014-01-15</p> <p>Antifreeze proteins (AFPs) are expressed in a variety of cold-hardy organisms to prevent or slow internal <span class="hlt">ice</span> growth. AFPs bind to specific planes of <span class="hlt">ice</span> through their <span class="hlt">ice</span>-binding surfaces. Fluorescence-based <span class="hlt">ice</span> plane affinity (FIPA) analysis is a modified technique used to determine the <span class="hlt">ice</span> planes to which the AFPs bind. FIPA is based on the original <span class="hlt">ice</span>-etching method for determining AFP-bound <span class="hlt">ice</span>-planes. It produces clearer images in a shortened experimental time. In FIPA analysis, AFPs are fluorescently labeled with a chimeric tag or a covalent dye then slowly incorporated into a macroscopic single <span class="hlt">ice</span> crystal, which has been preformed into a hemisphere and oriented to determine the a- and c-axes. The AFP-bound <span class="hlt">ice</span> hemisphere is imaged under UV light to visualize AFP-bound planes using filters to block out nonspecific light. Fluorescent labeling of the AFPs allows real-time monitoring of AFP adsorption into <span class="hlt">ice</span>. The labels have been found not to influence the planes to which AFPs bind. FIPA analysis also introduces the option to bind more than one differently tagged AFP on the same single <span class="hlt">ice</span> crystal to help differentiate their binding planes. These applications of FIPA are helping to advance our understanding of how AFPs bind to <span class="hlt">ice</span> to halt its growth and why many AFP-producing organisms express multiple AFP isoforms.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4089408','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4089408"><span>Determining the <span class="hlt">Ice</span>-binding Planes of Antifreeze Proteins by Fluorescence-based <span class="hlt">Ice</span> Plane Affinity</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Basu, Koli; Garnham, Christopher P.; Nishimiya, Yoshiyuki; Tsuda, Sakae; Braslavsky, Ido; Davies, Peter</p> <p>2014-01-01</p> <p>Antifreeze proteins (AFPs) are expressed in a variety of cold-hardy organisms to prevent or slow internal <span class="hlt">ice</span> growth. AFPs bind to specific planes of <span class="hlt">ice</span> through their <span class="hlt">ice</span>-binding surfaces. Fluorescence-based <span class="hlt">ice</span> plane affinity (FIPA) analysis is a modified technique used to determine the <span class="hlt">ice</span> planes to which the AFPs bind. FIPA is based on the original <span class="hlt">ice</span>-etching method for determining AFP-bound <span class="hlt">ice</span>-planes. It produces clearer images in a shortened experimental time. In FIPA analysis, AFPs are fluorescently labeled with a chimeric tag or a covalent dye then slowly incorporated into a macroscopic single <span class="hlt">ice</span> crystal, which has been preformed into a hemisphere and oriented to determine the a- and c-axes. The AFP-bound <span class="hlt">ice</span> hemisphere is imaged under UV light to visualize AFP-bound planes using filters to block out nonspecific light. Fluorescent labeling of the AFPs allows real-time monitoring of AFP adsorption into <span class="hlt">ice</span>. The labels have been found not to influence the planes to which AFPs bind. FIPA analysis also introduces the option to bind more than one differently tagged AFP on the same single <span class="hlt">ice</span> crystal to help differentiate their binding planes. These applications of FIPA are helping to advance our understanding of how AFPs bind to <span class="hlt">ice</span> to halt its growth and why many AFP-producing organisms express multiple AFP isoforms. PMID:24457629</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017jwst.prop.1309M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017jwst.prop.1309M"><span><span class="hlt">Ice</span>Age: Chemical Evolution of <span class="hlt">Ices</span> during Star Formation</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>McClure, Melissa; Bailey, J.; Beck, T.; Boogert, A.; Brown, W.; Caselli, P.; Chiar, J.; Egami, E.; Fraser, H.; Garrod, R.; Gordon, K.; Ioppolo, S.; Jimenez-Serra, I.; Jorgensen, J.; Kristensen, L.; Linnartz, H.; McCoustra, M.; Murillo, N.; Noble, J.; Oberg, K.; Palumbo, M.; Pendleton, Y.; Pontoppidan, K.; Van Dishoeck, E.; Viti, S.</p> <p>2017-11-01</p> <p>Icy grain mantles are the main reservoir for volatile elements in star-forming regions across the Universe, as well as the formation site of pre-biotic complex organic molecules (COMs) seen in our Solar System. We propose to trace the evolution of pristine and complex <span class="hlt">ice</span> chemistry in a representative low-mass star-forming region through observations of a: pre-stellar core, Class 0 protostar, Class I protostar, and protoplanetary disk. Comparing high spectral resolution (R 1500-3000) and sensitivity (S/N 100-300) observations from 3 to 15 um to template spectra, we will map the spatial distribution of <span class="hlt">ices</span> down to 20-50 AU in these targets to identify when, and at what visual extinction, the formation of each <span class="hlt">ice</span> species begins. Such high-resolution spectra will allow us to search for new COMs, as well as distinguish between different <span class="hlt">ice</span> morphologies,thermal histories, and mixing environments. The analysis of these data will result in science products beneficial to Cycle 2 proposers. A newly updated public laboratory <span class="hlt">ice</span> database will provide feature identifications for all of the expected <span class="hlt">ices</span>, while a chemical model fit to the observed <span class="hlt">ice</span> abundances will be released publically as a grid, with varied metallicity and UV fields to simulate other environments. We will create improved algorithms to extract NIRCAM WFSS spectra in crowded fields with extended sources as well as optimize the defringing of MIRI LRS spectra in order to recover broad spectral features. We anticipate that these resources will be particularly useful for astrochemistry and spectroscopy of fainter, extended targets like star forming regions of the SMC/LMC or more distant galaxies.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27660738','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27660738"><span>Influence of <span class="hlt">ice</span> thickness and surface properties on light transmission through Arctic sea <span class="hlt">ice</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Katlein, Christian; Arndt, Stefanie; Nicolaus, Marcel; Perovich, Donald K; Jakuba, Michael V; Suman, Stefano; Elliott, Stephen; Whitcomb, Louis L; McFarland, Christopher J; Gerdes, Rüdiger; Boetius, Antje; German, Christopher R</p> <p>2015-09-01</p> <p>The observed changes in physical properties of sea <span class="hlt">ice</span> such as decreased thickness and increased melt pond cover severely impact the energy budget of Arctic sea <span class="hlt">ice</span>. Increased light transmission leads to increased deposition of solar energy in the upper ocean and thus plays a crucial role for amount and timing of sea-<span class="hlt">ice</span>-melt and under-<span class="hlt">ice</span> primary production. Recent developments in underwater technology provide new opportunities to study light transmission below the largely inaccessible underside of sea <span class="hlt">ice</span>. We measured spectral under-<span class="hlt">ice</span> radiance and irradiance using the new Nereid Under-<span class="hlt">Ice</span> (NUI) underwater robotic vehicle, during a cruise of the R/V Polarstern to 83°N 6°W in the Arctic Ocean in July 2014. NUI is a next generation hybrid remotely operated vehicle (H-ROV) designed for both remotely piloted and autonomous surveys underneath land-fast and moving sea <span class="hlt">ice</span>. Here we present results from one of the first comprehensive scientific dives of NUI employing its interdisciplinary sensor suite. We combine under-<span class="hlt">ice</span> optical measurements with three dimensional under-<span class="hlt">ice</span> topography (multibeam sonar) and aerial images of the surface conditions. We investigate the influence of spatially varying <span class="hlt">ice</span>-thickness and surface properties on the spatial variability of light transmittance during summer. Our results show that surface properties such as melt ponds dominate the spatial distribution of the under-<span class="hlt">ice</span> light field on small scales (<1000 m 2 ), while sea <span class="hlt">ice</span>-thickness is the most important predictor for light transmission on larger scales. In addition, we propose the use of an algorithm to obtain histograms of light transmission from distributions of sea <span class="hlt">ice</span> thickness and surface albedo.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.3020R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.3020R"><span>Determining the <span class="hlt">ice</span> seasons severity during 1982-2015 using the <span class="hlt">ice</span> extents sum as a new characteristic</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rjazin, Jevgeni; Pärn, Ove</p> <p>2016-04-01</p> <p>Sea <span class="hlt">ice</span> is a key climate factor and it restricts considerably the winter navigation in sever seasons on the Baltic Sea. So determining <span class="hlt">ice</span> conditions severity and describing <span class="hlt">ice</span> cover behaviour at severe seasons interests scientists, engineers and navigation managers. The present study is carried out to determine the <span class="hlt">ice</span> seasons severity degree basing on the <span class="hlt">ice</span> seasons 1982 to 2015. A new integrative characteristic is introduced to describe the <span class="hlt">ice</span> season severity. It is the sum of <span class="hlt">ice</span> extents of the <span class="hlt">ice</span> season id est the daily <span class="hlt">ice</span> extents of the season are summed. The commonly used procedure to determine the <span class="hlt">ice</span> season severity degree by the maximal <span class="hlt">ice</span> extent is in this research compared to the new characteristic values. The remote sensing data on the <span class="hlt">ice</span> concentrations on the Baltic Sea published in the European Copernicus Programme are used to obtain the severity characteristic values. The <span class="hlt">ice</span> extents are calculated on these <span class="hlt">ice</span> concentration data. Both the maximal <span class="hlt">ice</span> extent of the season and a newly introduced characteristic - the <span class="hlt">ice</span> extents sum are used to classify the winters with respect of severity. The most severe winter of the reviewed period is 1986/87. Also the <span class="hlt">ice</span> seasons 1981/82, 1984/85, 1985/86, 1995/96 and 2002/03 are classified as severe. Only three seasons of this list are severe by both the criteria. They are 1984/85, 1985/86 and 1986/87. We interpret this coincidence as the evidence of enough-during extensive <span class="hlt">ice</span> cover in these three seasons. In several winters, for example 2010/11 <span class="hlt">ice</span> cover extended enough for some time, but did not endure. At few other <span class="hlt">ice</span> seasons as 2002/03 the Baltic Sea was <span class="hlt">ice</span>-covered in moderate extent, but the <span class="hlt">ice</span> cover stayed long time. At 11 winters the <span class="hlt">ice</span> extents sum differed considerably (> 10%) from the maximal <span class="hlt">ice</span> extent. These winters yield one third of the studied <span class="hlt">ice</span> seasons. The maximal <span class="hlt">ice</span> extent of the season is simple to use and enables to reconstruct the <span class="hlt">ice</span> cover history and to predict maximal <span class="hlt">ice</span></p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19740002260','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19740002260"><span>Microwave maps of the polar <span class="hlt">ice</span> of the earth. [from Nimbus-5 satellite</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gloersen, P.; Wilheit, T. T.; Chang, T. C.; Nordberg, W.; Campbell, W. J.</p> <p>1973-01-01</p> <p>Synoptic views of the entire polar regions of earth were obtained free of the usual persistent cloud cover using a scanning microwave radiometer operating at a wavelength of 1.55 cm on board the Nimbus-5 satellite. Three different views at each pole are presented utilizing data obtained at approximately one-month intervals during the winter of 1972-1973. The major discoveries resulting from an analysis of these data are as follows: (1) Large discrepancies exist between the climatic norm <span class="hlt">ice</span> cover depicted in various atlases and the actual extent of the canopies. (2) The distribution of multiyear <span class="hlt">ice</span> in the north polar region is markedly different from that predicted by existing <span class="hlt">ice</span> dynamics models. (3) Irregularities in the edge of the Antarctic sea <span class="hlt">ice</span> <span class="hlt">pack</span> occur that have neither been observed previously nor anticipated. (4) The brightness temperatures of the Greenland and Antarctica glaciers show interesting contours probably related to the <span class="hlt">ice</span> and snow morphologic structure.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.C44A..02B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.C44A..02B"><span>connecting the dots between Greenland <span class="hlt">ice</span> sheet surface melting and <span class="hlt">ice</span> flow dynamics (Invited)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Box, J. E.; Colgan, W. T.; Fettweis, X.; Phillips, T. P.; Stober, M.</p> <p>2013-12-01</p> <p>This presentation is of a 'unified theory' in glaciology that first identifies surface albedo as a key factor explaining total <span class="hlt">ice</span> sheet mass balance and then surveys a mechanistic self-reinforcing interaction between melt water and <span class="hlt">ice</span> flow dynamics. The theory is applied in a near-real time total Greenland mass balance retrieval based on surface albedo, a powerful integrator of the competing effects of accumulation and ablation. New snowfall reduces sunlight absorption and increases meltwater retention. Melting amplifies absorbed sunlight through thermal metamorphism and bare <span class="hlt">ice</span> expansion in space and time. By ';following the melt'; we reveal mechanisms linking existing science into a unified theory. Increasing meltwater softens the <span class="hlt">ice</span> sheet in three ways: 1.) sensible heating given the water temperature exceeds that of the <span class="hlt">ice</span> sheet interior; 2.) Some infiltrating water refreezes, transferring latent heat to the <span class="hlt">ice</span>; 3.) Friction from water turbulence heats the <span class="hlt">ice</span>. It has been shown that for a point on the <span class="hlt">ice</span> sheet, basal lubrication increases <span class="hlt">ice</span> flow speed to a time when an efficient sub-glacial drainage network develops that reduces this effect. Yet, with an increasing melt duration the point where the <span class="hlt">ice</span> sheet glides on a wet bed increases inland to a larger area. This effect draws down the <span class="hlt">ice</span> surface elevation, contributing to the ';elevation feedback'. In a perpetual warming scenario, the elevation feedback ultimately leads to <span class="hlt">ice</span> sheet loss reversible only through much slower <span class="hlt">ice</span> sheet growth in an <span class="hlt">ice</span> age environment. As the inland <span class="hlt">ice</span> sheet accelerates, the horizontal extension pulls cracks and crevasses open, trapping more sunlight, amplifying the effect of melt accelerated <span class="hlt">ice</span>. As the bare <span class="hlt">ice</span> area increases, the direct sun-exposed crevassed and infiltration area increases further allowing the <span class="hlt">ice</span> warming process to occur more broadly. Considering hydrofracture [a.k.a. hydrofracking]; surface meltwater fills cracks, attacking the <span class="hlt">ice</span> integrity</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140010420','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140010420"><span>Sea <span class="hlt">Ice</span> Thickness, Freeboard, and Snow Depth products from Operation <span class="hlt">Ice</span>Bridge Airborne Data</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kurtz, N. T.; Farrell, S. L.; Studinger, M.; Galin, N.; Harbeck, J. P.; Lindsay, R.; Onana, V. D.; Panzer, B.; Sonntag, J. G.</p> <p>2013-01-01</p> <p>The study of sea <span class="hlt">ice</span> using airborne remote sensing platforms provides unique capabilities to measure a wide variety of sea <span class="hlt">ice</span> properties. These measurements are useful for a variety of topics including model evaluation and improvement, assessment of satellite retrievals, and incorporation into climate data records for analysis of interannual variability and long-term trends in sea <span class="hlt">ice</span> properties. In this paper we describe methods for the retrieval of sea <span class="hlt">ice</span> thickness, freeboard, and snow depth using data from a multisensor suite of instruments on NASA's Operation <span class="hlt">Ice</span>Bridge airborne campaign. We assess the consistency of the results through comparison with independent data sets that demonstrate that the <span class="hlt">Ice</span>Bridge products are capable of providing a reliable record of snow depth and sea <span class="hlt">ice</span> thickness. We explore the impact of inter-campaign instrument changes and associated algorithm adaptations as well as the applicability of the adapted algorithms to the ongoing <span class="hlt">Ice</span>Bridge mission. The uncertainties associated with the retrieval methods are determined and placed in the context of their impact on the retrieved sea <span class="hlt">ice</span> thickness. Lastly, we present results for the 2009 and 2010 <span class="hlt">Ice</span>Bridge campaigns, which are currently available in product form via the National Snow and <span class="hlt">Ice</span> Data Center</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.C43B0750J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.C43B0750J"><span>Landfast Sea <span class="hlt">Ice</span> Breakouts: Stabilizing <span class="hlt">Ice</span> Features, Oceanic and Atmospheric Forcing at Barrow, Alaska</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jones, J.; Eicken, H.; Mahoney, A. R.; MV, R.; Kambhamettu, C.; Fukamachi, Y.; Ohshima, K. I.; George, C.</p> <p>2016-12-01</p> <p>Landfast sea <span class="hlt">ice</span> is an important seasonal feature along most Arctic coastlines, such as that of the Chukchi Sea near Barrow, Alaska. Its stability throughout the <span class="hlt">ice</span> season is determined by many factors but grounded pressure ridges are the primary stabilizing component. Landfast <span class="hlt">ice</span> breakouts occur when these grounded ridges fail or unground, and previously stationary <span class="hlt">ice</span> detaches from the coast and drifts away. Using ground-based radar imagery from a coastal <span class="hlt">ice</span> and ocean observatory at Barrow, we have developed a method to estimate the extent of grounded ridges by tracking <span class="hlt">ice</span> motion and deformation over the course of winter and have derived <span class="hlt">ice</span> keel depth and potential for grounding from cumulative convergent <span class="hlt">ice</span> motion. Estimates of landfast <span class="hlt">ice</span> grounding strength have been compared to the atmospheric and oceanic stresses acting on the landfast <span class="hlt">ice</span> before and during breakout events to determine prevailing causes for the failure of stabilizing features. Applying this approach to two case studies in 2008 and 2010, we conclude that a combination of atmospheric and oceanic stresses may have caused the breakouts analyzed in this study, with the latter as the dominant force. Preconditioning (as weakening) of grounded ridges by sea level variations may facilitate failure of the <span class="hlt">ice</span> sheet leading to breakout events.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016CSR...126...50J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016CSR...126...50J"><span>Landfast sea <span class="hlt">ice</span> breakouts: Stabilizing <span class="hlt">ice</span> features, oceanic and atmospheric forcing at Barrow, Alaska</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jones, Joshua; Eicken, Hajo; Mahoney, Andrew; MV, Rohith; Kambhamettu, Chandra; Fukamachi, Yasushi; Ohshima, Kay I.; George, J. Craig</p> <p>2016-09-01</p> <p>Landfast sea <span class="hlt">ice</span> is an important seasonal feature along most Arctic coastlines, such as that of the Chukchi Sea near Barrow, Alaska. Its stability throughout the <span class="hlt">ice</span> season is determined by many factors but grounded pressure ridges are the primary stabilizing component. Landfast <span class="hlt">ice</span> breakouts occur when these grounded ridges fail or unground, and previously stationary <span class="hlt">ice</span> detaches from the coast and drifts away. Using ground-based radar imagery from a coastal <span class="hlt">ice</span> and ocean observatory at Barrow, we have developed a method to estimate the extent of grounded ridges by tracking <span class="hlt">ice</span> motion and deformation over the course of winter and have derived <span class="hlt">ice</span> keel depth and potential for grounding from cumulative convergent <span class="hlt">ice</span> motion. Estimates of landfast <span class="hlt">ice</span> grounding strength have been compared to the atmospheric and oceanic stresses acting on the landfast <span class="hlt">ice</span> before and during breakout events to determine prevailing causes for the failure of stabilizing features. Applying this approach to two case studies in 2008 and 2010, we conclude that a combination of atmospheric and oceanic stresses may have caused the breakouts analyzed in this study, with the latter as the dominant force. Preconditioning (as weakening) of grounded ridges by sea level variations may facilitate failure of the <span class="hlt">ice</span> sheet leading to breakout events.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.C21A0690W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.C21A0690W"><span>Impact of <span class="hlt">ice</span>-shelf sediment content on the dynamics of plumes under melting <span class="hlt">ice</span> shelves</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wells, A.</p> <p>2015-12-01</p> <p>When a floating <span class="hlt">ice</span> shelf melts into an underlying warm salty ocean, the resulting fresh meltwater can rise in a buoyant <span class="hlt">Ice</span>-Shelf-Water plume under the <span class="hlt">ice</span>. In certain settings, <span class="hlt">ice</span> flowing across the grounding line carries a basal layer of debris rich <span class="hlt">ice</span>, entrained via basal freezing around till in the upstream <span class="hlt">ice</span> sheet. Melting of this debris-laden <span class="hlt">ice</span> from floating <span class="hlt">ice</span> shelves provides a flux of dense sediment to the ocean, in addition to the release of fresh buoyant meltwater. This presentation considers the impact of the resulting suspended sediment on the dynamics of <span class="hlt">ice</span> shelf water plumes, and identifies two key flow regimes depending on the sediment concentration frozen into the basal <span class="hlt">ice</span> layer. For large sediment concentration, melting of the debris-laden <span class="hlt">ice</span> shelf generates dense convectively unstable waters that drive convective overturning into the underlying ocean. For lower sediment concentration, the sediment initially remains suspended in a buoyant meltwater plume rising along the underside of the <span class="hlt">ice</span> shelf, before slowly depositing into the underlying ocean. A theoretical plume model is used to evaluate the significance of the negatively buoyant sediment on circulation strength and the feedbacks on melting rate, along with the expected depositional patterns under the <span class="hlt">ice</span> shelf.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://eric.ed.gov/?q=Rock+AND+formations&pg=4&id=EJ721524','ERIC'); return false;" href="https://eric.ed.gov/?q=Rock+AND+formations&pg=4&id=EJ721524"><span><span class="hlt">Ice</span> Versus Rock</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Rule, Audrey C.; Olson, Eric A.; Dehm, Janet</p> <p>2005-01-01</p> <p>During a snow bank exploration, students noticed "<span class="hlt">ice</span> caves," or pockets, in some of the larger snow banks, usually below darker layers. Most of these caves had many icicles hanging inside. Students offered reasonable explanations of <span class="hlt">ice</span> cave formation--squirrels, kids, snow blowers--and a few students came close to the true <span class="hlt">ice</span> cave-formation…</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFM.C41C0467V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFM.C41C0467V"><span>Modeling brine and nutrient dynamics in Antarctic sea <span class="hlt">ice</span>: the case of dissolved silica</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vancoppenolle, M.; Goosse, H.; de Montety, A.; Fichefet, T.; Tremblay, B.; Tison, J.</p> <p>2009-12-01</p> <p>Sea <span class="hlt">ice</span> ecosystems are characterized by micro-algae living in brine inclusions. The growth rate of <span class="hlt">ice</span> algae depends on light and nutrient supply. Here, the interactions between nutrients and brine dynamics under the influence of algae are investigated using a one-dimensional model. The model includes snow and <span class="hlt">ice</span> thermodynamics with brine physics and an idealized sea <span class="hlt">ice</span> biological component, characterized by one nutrient, namely dissolved silica (DSi). In the model, DSi follows brine motion and is consumed by <span class="hlt">ice</span> algae. Depending on physical <span class="hlt">ice</span> characteristics, the brine flow is either advective, diffusive or turbulent. The vertical profiles of <span class="hlt">ice</span> salinity and DSi concentration are solutions of advection-diffusion equations. The model is configured to simulate the typical thermodynamic regimes of first-year Antarctic <span class="hlt">pack</span> <span class="hlt">ice</span>. The simulated vertical profiles of salinity and DSi qualitatively reproduce observations. Analysis of results highlights the role of convection in the lowermost 5-10 cm of <span class="hlt">ice</span>. Convection mixes saline, nutrient-poor brine with comparatively fresh, nutrient-rich seawater. This implies a rejection of salt to the ocean and a flux of DSi to the <span class="hlt">ice</span>. In presence of growing algae, the simulated ocean-to-<span class="hlt">ice</span> DSi flux increases by 0-115% compared to an abiotic situation. In turn, primary production and brine convection act in synergy to form a nutrient pump. The other important processes are the flooding of the surface by seawater and the percolation of meltwater. The former refills nutrients near the <span class="hlt">ice</span> surface in spring. The latter, if present, tends to expell nutrients from the <span class="hlt">ice</span> in summer. Sketch of salt (left) and nutrient (right) exchanges at the <span class="hlt">ice</span>-ocean interface proposed in this paper.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A53G2348C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A53G2348C"><span>The De-<span class="hlt">Icing</span> Comparison Experiment (D-<span class="hlt">ICE</span>): A campaign for improving data retention rates of radiometric measurements under <span class="hlt">icing</span> conditions in cold regions</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cox, C. J.; Morris, S. M.</p> <p>2017-12-01</p> <p>Longwave and shortwave radiative fluxes are fundamental quantities regularly observed globally using broadband radiometers. In cold climates, frost, rime, snow and <span class="hlt">ice</span> (collectively, "<span class="hlt">icing</span>") frequently builds up on sensor windows, contaminating measurements. Since <span class="hlt">icing</span> occurs under particular meteorological conditions, associated data losses constitutes a climatological bias. Furthermore, the signal caused by <span class="hlt">ice</span> is difficult to distinguish from that of clouds, hampering efforts to identify contaminated from real data in post-processing. Because of the sensitivity of radiometers to internal temperature instabilities, there are limitations to using heat as a de-<span class="hlt">icing</span> method. The magnitude of this problem is indicated by the large number of research institutions and commercial vendors that have developed various de-<span class="hlt">icing</span> strategies. The D-<span class="hlt">ICE</span> campaign has been designed to bring together a large number of currently available systems to quantitatively evaluate and compare <span class="hlt">ice</span>-migration strategies and also to characterize the potentially adverse effects of the techniques themselves. For D-<span class="hlt">ICE</span>, a variety of automated approaches making use of ventilation, heating, modified housings and alcohol spray are being evaluated alongside standard units operating with only the regularly scheduled manual cleaning by human operators at the NOAA Baseline Surface Radiation Network (BSRN) station in Utqiaġvik (formerly Barrow), Alaska. Previous experience within the BSRN community suggests that aspiration of ambient air alone may be sufficient to maintain <span class="hlt">ice</span>-free radiometers without increasing measurement uncertainty during <span class="hlt">icing</span> conditions, forming the main guiding hypothesis of the experiment. <span class="hlt">Icing</span> on the sensors is monitored visually using cameras recording images every 15 minutes and quantitatively using an <span class="hlt">icing</span> probe and met station. The effects of applied heat on infrared loss in pyranometers will be analyzed and the integrated effect of <span class="hlt">icing</span> on monthly averages will be</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19990084033&hterms=divergent+series&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Ddivergent%2Bseries','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19990084033&hterms=divergent+series&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Ddivergent%2Bseries"><span>C-Band Backscatter Measurements of Winter Sea-<span class="hlt">Ice</span> in the Weddell Sea, Antarctica</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Drinkwater, M. R.; Hosseinmostafa, R.; Gogineni, P.</p> <p>1995-01-01</p> <p>During the 1992 Winter Weddell Gyre Study, a C-band scatterometer was used from the German <span class="hlt">ice</span>-breaker R/V Polarstern to obtain detailed shipborne measurement scans of Antarctic sea-<span class="hlt">ice</span>. The frequency-modulated continuous-wave (FM-CW) radar operated at 4-3 GHz and acquired like- (VV) and cross polarization (HV) data at a variety of incidence angles (10-75 deg). Calibrated backscatter data were recorded for several <span class="hlt">ice</span> types as the icebreaker crossed the Weddell Sea and detailed measurements were made of corresponding snow and sea-<span class="hlt">ice</span> characteristics at each measurement site, together with meteorological information, radiation budget and oceanographic data. The primary scattering contributions under cold winter conditions arise from the air/snow and snow/<span class="hlt">ice</span> interfaces. Observations indicate so e similarities with Arctic sea-<span class="hlt">ice</span> scattering signatures, although the main difference is generally lower mean backscattering coefficients in the Weddell Sea. This is due to the younger mean <span class="hlt">ice</span> age and thickness, and correspondingly higher mean salinities. In particular, smooth white <span class="hlt">ice</span> found in 1992 in divergent areas within the Weddell Gyre <span class="hlt">ice</span> <span class="hlt">pack</span> was generally extremely smooth and undeformed. Comparisons of field scatterometer data with calibrated 20-26 deg incidence ERS-1 radar image data show close correspondence, and indicate that rough Antarctic first-year and older second-year <span class="hlt">ice</span> forms do not produce as distinctively different scattering signatures as observed in the Arctic. Thick deformed first-year and second-year <span class="hlt">ice</span> on the other hand are clearly discriminated from younger undeformed <span class="hlt">ice</span>. thereby allowing successful separation of thick and thin <span class="hlt">ice</span>. Time-series data also indicate that C-band is sensitive to changes in snow and <span class="hlt">ice</span> conditions resulting from atmospheric and oceanographic forcing and the local heat flux environment. Variations of several dB in 45 deg incidence backscatter occur in response to a combination of thermally-regulated parameters</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20010027899','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20010027899"><span>Studies of Antarctic Sea <span class="hlt">Ice</span> Concentrations from Satellite Data and Their Applications</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Comiso, Josefino C.; Steffen, Konrad; Zukor, Dorothy J. (Technical Monitor)</p> <p>2001-01-01</p> <p>Large changes in the sea <span class="hlt">ice</span> cover have been observed recently. Because of the relevance of such changes to climate change studies it is important that key <span class="hlt">ice</span> concentration data sets used for evaluating such changes are interpreted properly. High and medium resolution visible and infrared satellite data are used in conjunction with passive microwave data to study the true characteristics of the Antarctic sea <span class="hlt">ice</span> cover, assess errors in currently available <span class="hlt">ice</span> concentration products, and evaluate the applications and limitations of the latter in polar process studies. Cloud-free high resolution data provide valuable information about the natural distribution, stage of formation, and composition of the <span class="hlt">ice</span> cover that enables interpretation of the large spatial and temporal variability of the microwave emissivity of Antarctic sea <span class="hlt">ice</span>. Comparative analyses of co-registered visible, infrared and microwave data were used to evaluate <span class="hlt">ice</span> concentrations derived from standard <span class="hlt">ice</span> algorithms (i.e., Bootstrap and Team) and investigate the 10 to 35% difference in derived values from large areas within the <span class="hlt">ice</span> <span class="hlt">pack</span>, especially in the Weddell Sea, Amundsen Sea, and Ross Sea regions. Landsat and OLS data show a predominance of thick consolidated <span class="hlt">ice</span> in these areas and show good agreement with the Bootstrap Algorithm. While direct measurements were not possible, the lower values from the Team Algorithm results are likely due to layering within the <span class="hlt">ice</span> and snow and/or surface flooding, which are known to affect the polarization ratio. In predominantly new <span class="hlt">ice</span> regions, the derived <span class="hlt">ice</span> concentration from passive microwave data is usually lower than the true percentage because the emissivity of new <span class="hlt">ice</span> changes with age and thickness and is lower than that of thick <span class="hlt">ice</span>. However, the product provides a more realistic characterization of the sea <span class="hlt">ice</span> cover, and are more useful in polar process studies since it allows for the identification of areas of significant divergence and polynya</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19820022421','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19820022421"><span>Aircraft <span class="hlt">icing</span> research at NASA</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Reinmann, J. J.; Shaw, R. J.; Olsen, W. A., Jr.</p> <p>1982-01-01</p> <p>Research activity is described for: <span class="hlt">ice</span> protection systems, <span class="hlt">icing</span> instrumentation, experimental methods, analytical modeling for the above, and in flight research. The renewed interest in aircraft <span class="hlt">icing</span> has come about because of the new need for All-Weather Helicopters and General Aviation aircraft. Because of increased fuel costs, tomorrow's Commercial Transport aircraft will also require new types of <span class="hlt">ice</span> protection systems and better estimates of the aeropenalties caused by <span class="hlt">ice</span> on unprotected surfaces. The physics of aircraft <span class="hlt">icing</span> is very similar to the <span class="hlt">icing</span> that occurs on ground structures and structures at sea; all involve droplets that freeze on the surfaces because of the cold air. Therefore all <span class="hlt">icing</span> research groups will benefit greatly by sharing their research information.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.1573J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.1573J"><span>Coupled <span class="hlt">ice</span> sheet-ocean modelling to investigate ocean driven melting of marine <span class="hlt">ice</span> sheets in Antarctica</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jong, Lenneke; Gladstone, Rupert; Galton-Fenzi, Ben</p> <p>2017-04-01</p> <p>Ocean induced melting below the <span class="hlt">ice</span> shelves of marine <span class="hlt">ice</span> sheets is a major source of uncertainty for predictions of <span class="hlt">ice</span> mass loss and Antarctica's resultant contribution to future sea level rise. The floating <span class="hlt">ice</span> shelves provide a buttressing force against the flow of <span class="hlt">ice</span> across the grounding line into the ocean. Thinning of these <span class="hlt">ice</span> shelves due to an increase in melting reduces this force and can lead to an increase in the discharge of grounded <span class="hlt">ice</span>. Fully coupled modelling of <span class="hlt">ice</span> sheet-ocean interactions is key to improving understanding the influence of the Southern ocean on the evolution of the Antarctic <span class="hlt">ice</span> sheet, and to predicting its future behaviour under changing climate conditions. Coupling of ocean and <span class="hlt">ice</span> sheet models is needed to provide more realistic melt rates at the base of <span class="hlt">ice</span> shelves and hence make better predictions of the behaviour of the grounding line and the shape of the <span class="hlt">ice</span>-shelf cavity as the <span class="hlt">ice</span> sheet evolves. The Framework for <span class="hlt">Ice</span> Sheet - Ocean Coupling (FISOC) has been developed to provide a flexible platform for performing coupled <span class="hlt">ice</span> sheet - ocean modelling experiments. We present preliminary results using FISOC to couple the Regional Ocean Modelling System (ROMS) with Elmer/<span class="hlt">Ice</span> in idealised experiments Marine <span class="hlt">Ice</span> Sheet-Ocean Model Intercomparison Project (MISOMIP). These experiments use an idealised geometry motivated by that of Pine Island glacier and the adjacent Amundsen Sea in West Antarctica, a region which has shown shown signs of thinning <span class="hlt">ice</span> and grounding line retreat.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.C11D0699A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.C11D0699A"><span>Programme for Monitoring of the Greenland <span class="hlt">Ice</span> Sheet - <span class="hlt">Ice</span> Surface Velocities</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Andersen, S. B.; Ahlstrom, A. P.; Boncori, J. M.; Dall, J.</p> <p>2011-12-01</p> <p>In 2007, the Danish Ministry of Climate and Energy launched the Programme for Monitoring of the Greenland <span class="hlt">Ice</span> Sheet (PROMICE) as an ongoing effort to assess changes in the mass budget of the Greenland <span class="hlt">Ice</span> Sheet. Iceberg calving from the outlet glaciers of the Greenland <span class="hlt">Ice</span> Sheet, often termed the <span class="hlt">ice</span>-dynamic mass loss, is responsible for an important part of the mass loss during the last decade. To quantify this part of the mass loss, we combine airborne surveys yielding <span class="hlt">ice</span>-sheet thickness along the entire margin, with surface velocities derived from satellite synthetic-aperture radar (SAR). In order to derive <span class="hlt">ice</span> sheet surface velocities from SAR a processing chain has been developed for GEUS by DTU Space based on a commercial software package distributed by GAMMA Remote Sensing. The processor, named SUSIE (Scripts and Utilities for SAR <span class="hlt">Ice</span>-motion Estimation), can use both differential SAR interferometry and offset-tracking techniques to measure the horizontal velocity components, providing also an estimate of the corresponding measurement error. So far surface velocities have been derived for a number of sites including Nioghalvfjerdsfjord Glacier, the Kangerlussuaq region, the Nuuk region, Helheim Glacier and Daugaard-Jensen Glacier using data from ERS-1/ERS-2, ENVISAT ASAR and ALOS Palsar. Here we will present these first results.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19910013870','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19910013870"><span>Advanced <span class="hlt">ice</span> protection systems test in the NASA Lewis <span class="hlt">icing</span> research tunnel</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bond, Thomas H.; Shin, Jaiwon; Mesander, Geert A.</p> <p>1991-01-01</p> <p>Tests of eight different deicing systems based on variations of three different technologies were conducted in the NASA Lewis Research Center <span class="hlt">Icing</span> Research Tunnel (IRT) in June and July 1990. The systems used pneumatic, eddy current repulsive, and electro-expulsive means to shed <span class="hlt">ice</span>. The tests were conducted on a 1.83 m span, 0.53 m chord NACA 0012 airfoil operated at a 4 degree angle of attack. The models were tested at two temperatures: a glaze condition at minus 3.9 C and a rime condition at minus 17.2 C. The systems were tested through a range of <span class="hlt">icing</span> spray times and cycling rates. Characterization of the deicers was accomplished by monitoring power consumption, <span class="hlt">ice</span> shed particle size, and residual <span class="hlt">ice</span>. High speed video motion analysis was performed to quantify <span class="hlt">ice</span> particle size.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.C31A..01G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.C31A..01G"><span>Seasonal Changes of Arctic Sea <span class="hlt">Ice</span> Physical Properties Observed During N-<span class="hlt">ICE</span>2015: An Overview</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gerland, S.; Spreen, G.; Granskog, M. A.; Divine, D.; Ehn, J. K.; Eltoft, T.; Gallet, J. C.; Haapala, J. J.; Hudson, S. R.; Hughes, N. E.; Itkin, P.; King, J.; Krumpen, T.; Kustov, V. Y.; Liston, G. E.; Mundy, C. J.; Nicolaus, M.; Pavlov, A.; Polashenski, C.; Provost, C.; Richter-Menge, J.; Rösel, A.; Sennechael, N.; Shestov, A.; Taskjelle, T.; Wilkinson, J.; Steen, H.</p> <p>2015-12-01</p> <p>Arctic sea <span class="hlt">ice</span> is changing, and for improving the understanding of the cryosphere, data is needed to describe the status and processes controlling current seasonal sea <span class="hlt">ice</span> growth, change and decay. We present preliminary results from in-situ observations on sea <span class="hlt">ice</span> in the Arctic Basin north of Svalbard from January to June 2015. Over that time, the Norwegian research vessel «Lance» was moored to in total four <span class="hlt">ice</span> floes, drifting with the sea <span class="hlt">ice</span> and allowing an international group of scientists to conduct detailed research. Each drift lasted until the ship reached the marginal <span class="hlt">ice</span> zone and <span class="hlt">ice</span> started to break up, before moving further north and starting the next drift. The ship stayed within the area approximately 80°-83° N and 5°-25° E. While the expedition covered measurements in the atmosphere, the snow and sea <span class="hlt">ice</span> system, and in the ocean, as well as biological studies, in this presentation we focus on physics of snow and sea <span class="hlt">ice</span>. Different <span class="hlt">ice</span> types could be investigated: young <span class="hlt">ice</span> in refrozen leads, first year <span class="hlt">ice</span>, and old <span class="hlt">ice</span>. Snow surveys included regular snow pits with standardized measurements of physical properties and sampling. Snow and <span class="hlt">ice</span> thickness were measured at stake fields, along transects with electromagnetics, and in drillholes. For quantifying <span class="hlt">ice</span> physical properties and texture, <span class="hlt">ice</span> cores were obtained regularly and analyzed. Optical properties of snow and <span class="hlt">ice</span> were measured both with fixed installed radiometers, and from mobile systems, a sledge and an ROV. For six weeks, the surface topography was scanned with a ground LIDAR system. Spatial scales of surveys ranged from spot measurements to regional surveys from helicopter (<span class="hlt">ice</span> thickness, photography) during two months of the expedition, and by means of an array of autonomous buoys in the region. Other regional information was obtained from SAR satellite imagery and from satellite based radar altimetry. The analysis of the data collected has started, and first results will be</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110015207','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110015207"><span>Regional Changes in the Sea <span class="hlt">Ice</span> Cover and <span class="hlt">Ice</span> Production in the Antarctic</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Comiso, Josefino C.</p> <p>2011-01-01</p> <p>Coastal polynyas around the Antarctic continent have been regarded as sea <span class="hlt">ice</span> factories because of high <span class="hlt">ice</span> production rates in these regions. The observation of a positive trend in the extent of Antarctic sea <span class="hlt">ice</span> during the satellite era has been intriguing in light of the observed rapid decline of the <span class="hlt">ice</span> extent in the Arctic. The results of analysis of the time series of passive microwave data indicate large regional variability with the trends being strongly positive in the Ross Sea, strongly negative in the Bellingshausen/Amundsen Seas and close to zero in the other regions. The atmospheric circulation in the Antarctic is controlled mainly by the Southern Annular Mode (SAM) and the marginal <span class="hlt">ice</span> zone around the continent shows an alternating pattern of advance and retreat suggesting the presence of a propagating wave (called Antarctic Circumpolar Wave) around the circumpolar region. The results of analysis of the passive microwave data suggest that the positive trend in the Antarctic sea <span class="hlt">ice</span> cover could be caused primarily by enhanced <span class="hlt">ice</span> production in the Ross Sea that may be associated with more persistent and larger coastal polynyas in the region. Over the Ross Sea shelf, analysis of sea <span class="hlt">ice</span> drift data from 1992 to 2008 yields a positive rate-of-increase in the net <span class="hlt">ice</span> export of about 30,000 km2 per year. For a characteristic <span class="hlt">ice</span> thickness of 0.6 m, this yields a volume transport of about 20 km3/year, which is almost identical, within error bars, to our estimate of the trend in <span class="hlt">ice</span> production. In addition to the possibility of changes in SAM, modeling studies have also indicated that the ozone hole may have a role in that it causes the deepening of the lows in the western Antarctic region thereby causing strong winds to occur offthe Ross-<span class="hlt">ice</span> shelf.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20070016598&hterms=sea+ice+albedo&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dsea%2Bice%2Balbedo','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20070016598&hterms=sea+ice+albedo&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dsea%2Bice%2Balbedo"><span>Observational Evidence of a Hemispheric-wide <span class="hlt">Ice</span>-ocean Albedo Feedback Effect on Antarctic Sea-<span class="hlt">ice</span> Decay</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Nihashi, Sohey; Cavalieri, Donald J.</p> <p>2007-01-01</p> <p>The effect of <span class="hlt">ice</span>-ocean albedo feedback (a kind of <span class="hlt">ice</span>-albedo feedback) on sea-<span class="hlt">ice</span> decay is demonstrated over the Antarctic sea-<span class="hlt">ice</span> zone from an analysis of satellite-derived hemispheric sea <span class="hlt">ice</span> concentration and European Centre for Medium-Range Weather Forecasts (ERA-40) atmospheric data for the period 1979-2001. Sea <span class="hlt">ice</span> concentration in December (time of most active melt) correlates better with the meridional component of the wind-forced <span class="hlt">ice</span> drift (MID) in November (beginning of the melt season) than the MID in December. This 1 month lagged correlation is observed in most of the Antarctic sea-<span class="hlt">ice</span> covered ocean. Daily time series of <span class="hlt">ice</span> , concentration show that the <span class="hlt">ice</span> concentration anomaly increases toward the time of maximum sea-<span class="hlt">ice</span> melt. These findings can be explained by the following positive feedback effect: once <span class="hlt">ice</span> concentration decreases (increases) at the beginning of the melt season, solar heating of the upper ocean through the increased (decreased) open water fraction is enhanced (reduced), leading to (suppressing) a further decrease in <span class="hlt">ice</span> concentration by the oceanic heat. Results obtained fi-om a simple <span class="hlt">ice</span>-ocean coupled model also support our interpretation of the observational results. This positive feedback mechanism explains in part the large interannual variability of the sea-<span class="hlt">ice</span> cover in summer.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20050041627','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20050041627"><span><span class="hlt">Ice</span> Shelves and Landfast <span class="hlt">Ice</span> on the Antarctic Perimeter: Revised Scope of Work</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Abdalati, Waleed (Technical Monitor); Scambos, Ted</p> <p>2004-01-01</p> <p><span class="hlt">Ice</span> shelves respond quickly and profoundly to a warming climate. Within a decade after mean summertime temperature reaches approximately 0 deg C and persistent melt ponding is observed, a rapid retreat and disintegration begins. This link was documented for <span class="hlt">ice</span> shelves in the Antarctic Peninsula region (the Larsen 'A', B', and Wilkins <span class="hlt">Ice</span> shelves) in the results of a previous grant under ADRO-1. Modeling of shelf <span class="hlt">ice</span> flow and the effects of meltwater indicated that melt ponding accelerates shelf breakup by increasing fracturing. The ADRO-2 funding (topic of this report) supported further inquiry into the evolution of <span class="hlt">ice</span> shelves under warming conditions, and the post-breakup effects on their feeder glaciers. Also, this grant considered fast <span class="hlt">ice</span> and sea <span class="hlt">ice</span> characteristics, to the extent that they provide information regarding shelf stability. A major component of this work was in the form of NSIDC image data support and in situ sea <span class="hlt">ice</span> research on the Aurora Australis 'ARISE' cruise of September 9 2003 through October 28 2003.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950034734&hterms=marginal&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dmarginal','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950034734&hterms=marginal&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dmarginal"><span>Ocean-<span class="hlt">ice</span> interaction in the marginal <span class="hlt">ice</span> zone using synthetic aperture radar imagery</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Liu, Antony K.; Peng, Chich Y.; Weingartner, Thomas J.</p> <p>1994-01-01</p> <p>Ocean-<span class="hlt">ice</span> interaction processes in the marginal <span class="hlt">ice</span> zone (MIZ) by wind, waves, and mesoscale features, such as up/downwelling and eddies are studied using Earth Remote-Sensing Satellite (ERS) 1 synthetic aperture radar (SAR) images and an ocean-<span class="hlt">ice</span> interaction model. A sequence of seven SAR images of the MIZ in the Chukchi Sea with 3 or 6 days interval are investigated for <span class="hlt">ice</span> edge advance/retreat. Simultaneous current measurements from the northeast Chukchi Sea, as well as the Barrow wind record, are used to interpret the MIZ dynamics. SAR spectra of waves in <span class="hlt">ice</span> and ocean waves in the Bering and Chukchi Sea are compared for the study of wave propagation and dominant SAR imaging mechanism. By using the SAR-observed <span class="hlt">ice</span> edge configuration and wind and wave field in the Chukchi Sea as inputs, a numerical simulation has been performed with the ocean-<span class="hlt">ice</span> interaction model. After 3 days of wind and wave forcing the resulting <span class="hlt">ice</span> edge configuration, eddy formation, and flow velocity field are shown to be consistent with SAR observations.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140011036','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140011036"><span>Improving Surface Mass Balance Over <span class="hlt">Ice</span> Sheets and Snow Depth on Sea <span class="hlt">Ice</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Koenig, Lora Suzanne; Box, Jason; Kurtz, Nathan</p> <p>2013-01-01</p> <p>Surface mass balance (SMB) over <span class="hlt">ice</span> sheets and snow on sea <span class="hlt">ice</span> (SOSI) are important components of the cryosphere. Large knowledge gaps remain in scientists' abilities to monitor SMB and SOSI, including insufficient measurements and difficulties with satellite retrievals. On <span class="hlt">ice</span> sheets, snow accumulation is the sole mass gain to SMB, and meltwater runoff can be the dominant single loss factor in extremely warm years such as 2012. SOSI affects the growth and melt cycle of the Earth's polar sea <span class="hlt">ice</span> cover. The summer of 2012 saw the largest satellite-recorded melt area over the Greenland <span class="hlt">ice</span> sheet and the smallest satellite-recorded Arctic sea <span class="hlt">ice</span> extent, making this meeting both timely and relevant.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19970023937','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19970023937"><span>DRA/NASA/ONERA Collaboration on <span class="hlt">Icing</span> Research. Part 2; Prediction of Airfoil <span class="hlt">Ice</span> Accretion</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wright, William B.; Gent, R. W.; Guffond, Didier</p> <p>1997-01-01</p> <p>This report presents results from a joint study by DRA, NASA, and ONERA for the purpose of comparing, improving, and validating the aircraft <span class="hlt">icing</span> computer codes developed by each agency. These codes are of three kinds: (1) water droplet trajectory prediction, (2) <span class="hlt">ice</span> accretion modeling, and (3) transient electrothermal deicer analysis. In this joint study, the agencies compared their code predictions with each other and with experimental results. These comparison exercises were published in three technical reports, each with joint authorship. DRA published and had first authorship of Part 1 - Droplet Trajectory Calculations, NASA of Part 2 - <span class="hlt">Ice</span> Accretion Prediction, and ONERA of Part 3 - Electrothermal Deicer Analysis. The results cover work done during the period from August 1986 to late 1991. As a result, all of the information in this report is dated. Where necessary, current information is provided to show the direction of current research. In this present report on <span class="hlt">ice</span> accretion, each agency predicted <span class="hlt">ice</span> shapes on two dimensional airfoils under <span class="hlt">icing</span> conditions for which experimental <span class="hlt">ice</span> shapes were available. In general, all three codes did a reasonable job of predicting the measured <span class="hlt">ice</span> shapes. For any given experimental condition, one of the three codes predicted the general <span class="hlt">ice</span> features (i.e., shape, impingement limits, mass of <span class="hlt">ice</span>) somewhat better than did the other two. However, no single code consistently did better than the other two over the full range of conditions examined, which included rime, mixed, and glaze <span class="hlt">ice</span> conditions. In several of the cases, DRA showed that the user's knowledge of <span class="hlt">icing</span> can significantly improve the accuracy of the code prediction. Rime <span class="hlt">ice</span> predictions were reasonably accurate and consistent among the codes, because droplets freeze on impact and the freezing model is simple. Glaze <span class="hlt">ice</span> predictions were less accurate and less consistent among the codes, because the freezing model is more complex and is critically</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://eric.ed.gov/?q=kelp&id=EJ335092','ERIC'); return false;" href="https://eric.ed.gov/?q=kelp&id=EJ335092"><span>Sea <span class="hlt">Ice</span> and Oceanographic Conditions.</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Oceanus, 1986</p> <p>1986-01-01</p> <p>The coastal waters of the Beaufort Sea are covered with <span class="hlt">ice</span> three-fourths of the year. These waters (during winter) are discussed by considering: consolidation of coastal <span class="hlt">ice</span>; under-<span class="hlt">ice</span> water; brine circulation; biological energy; life under the <span class="hlt">ice</span> (including kelp and larger animals); food chains; and <span class="hlt">ice</span> break-up. (JN)</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19810014536','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19810014536"><span>Commercial aviation <span class="hlt">icing</span> research requirements</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Koegeboehn, L. P.</p> <p>1981-01-01</p> <p>A short range and long range <span class="hlt">icing</span> research program was proposed. A survey was made to various industry and goverment agencies to obtain their views of needs for commercial aviation <span class="hlt">ice</span> protection. Through these responsed, other additional data, and Douglas Aircraft <span class="hlt">icing</span> expertise; an assessment of the state-of-the-art of aircraft <span class="hlt">icing</span> data and <span class="hlt">ice</span> protection systems was made. The information was then used to formulate the <span class="hlt">icing</span> research programs.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMGC31H1195T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMGC31H1195T"><span>A regional-scale estimation of <span class="hlt">ice</span> wedge <span class="hlt">ice</span> volumes in the Canadian High Arctic</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Templeton, M.; Pollard, W. H.; Grand'Maison, C. B.</p> <p>2016-12-01</p> <p><span class="hlt">Ice</span> wedges are both prominent and environmentally vulnerable features in continuous permafrost environments. As the world's Arctic regions begin to warm, concern over the potential effects of <span class="hlt">ice</span> wedge melt out has become an immediate issue, receiving much attention in the permafrost literature. In this study we estimate the volume of <span class="hlt">ice</span> wedge <span class="hlt">ice</span> for large areas in the Canadian High Arctic through the use of high resolution satellite imagery and the improved capabilities of Geographic Information Systems (GIS). The methodology used for this study is similar to that of one performed in Siberia and Alaska by Ulrich et al, in 2014. Utilizing Ulrich's technique, this study detected <span class="hlt">ice</span> wedge polygons from satellite imagery using ArcGIS. The average width and depth of these <span class="hlt">ice</span> wedges were obtained from a combination of field data and long-term field studies for the same location. The assumptions used in the analysis of <span class="hlt">ice</span> wedge volume have been tested, including trough width being representative of <span class="hlt">ice</span> wedge width, and <span class="hlt">ice</span> wedge <span class="hlt">ice</span> content (Pollard and French 1980). This study used specific field sites located near Eureka on Ellesmere Island (N80°01', W85°43') and at Expedition Fiord on Axel Heiberg Island (N79°23', W90°59'). The preliminary results indicate that the methodology used by Ulrich et al, 2014 is transferrable to the Canadian High Arctic, and that <span class="hlt">ice</span> wedge volumes range between 3-10% of the upper part of permafrost. These findings are similar to previous studies and their importance is made all the more evident by the dynamic nature of <span class="hlt">ice</span> wedges where it could be argued that they are a key driver of thermokarst terrain. The ubiquitous nature of <span class="hlt">ice</span> wedges across arctic terrain highlights the importance and the need to improve our understanding of <span class="hlt">ice</span> wedge dynamics, as subsidence from <span class="hlt">ice</span> wedge melt-out could lead to large scale landscape change.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMGC12A..01S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMGC12A..01S"><span>Towards Improving Sea <span class="hlt">Ice</span> Predictabiity: Evaluating Climate Models Against Satellite Sea <span class="hlt">Ice</span> Observations</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stroeve, J. C.</p> <p>2014-12-01</p> <p>The last four decades have seen a remarkable decline in the spatial extent of the Arctic sea <span class="hlt">ice</span> cover, presenting both challenges and opportunities to Arctic residents, government agencies and industry. After the record low extent in September 2007 effort has increased to improve seasonal, decadal-scale and longer-term predictions of the sea <span class="hlt">ice</span> cover. Coupled global climate models (GCMs) consistently project that if greenhouse gas concentrations continue to rise, the eventual outcome will be a complete loss of the multiyear <span class="hlt">ice</span> cover. However, confidence in these projections depends o HoHoweon the models ability to reproduce features of the present-day climate. Comparison between models participating in the World Climate Research Programme Coupled Model Intercomparison Project Phase 5 (CMIP5) and observations of sea <span class="hlt">ice</span> extent and thickness show that (1) historical trends from 85% of the model ensemble members remain smaller than observed, and (2) spatial patterns of sea <span class="hlt">ice</span> thickness are poorly represented in most models. Part of the explanation lies with a failure of models to represent details of the mean atmospheric circulation pattern that governs the transport and spatial distribution of sea <span class="hlt">ice</span>. These results raise concerns regarding the ability of CMIP5 models to realistically represent the processes driving the decline of Arctic sea <span class="hlt">ice</span> and to project the timing of when a seasonally <span class="hlt">ice</span>-free Arctic may be realized. On shorter time-scales, seasonal sea <span class="hlt">ice</span> prediction has been challenged to predict the sea <span class="hlt">ice</span> extent from Arctic conditions a few months to a year in advance. Efforts such as the Sea <span class="hlt">Ice</span> Outlook (SIO) project, originally organized through the Study of Environmental Change (SEARCH) and now managed by the Sea <span class="hlt">Ice</span> Prediction Network project (SIPN) synthesize predictions of the September sea <span class="hlt">ice</span> extent based on a variety of approaches, including heuristic, statistical and dynamical modeling. Analysis of SIO contributions reveals that when the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006AGUFM.C53A..05S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006AGUFM.C53A..05S"><span>Discharge of New Subglacial Lake on Whillians <span class="hlt">Ice</span> Stream: Implication for <span class="hlt">Ice</span> Stream Flow Dynamics.</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sergienko, O. V.; Fricker, H. A.; Bindschadler, R. A.; Vornberger, P. L.; Macayeal, D. R.</p> <p>2006-12-01</p> <p>One of the surprise discoveries made possible by the ICESat laser altimeter mission of 2004-2006 is the presence of a large subglacial lake below the grounding zone of Whillians <span class="hlt">Ice</span> Stream (dubbed here `Lake Helen' after the discoverer, Helen Fricker). What is even more surprising is the fact that this lake discharged a substantial portion of its volume during the ICESat mission, and changes in lake volume and surface elevation of the <span class="hlt">ice</span> stream are documented in exquisite detail [Fricker et al., in press]. The presence and apparent dynamism of large subglacial lakes in the grounding zone of a major <span class="hlt">ice</span> stream raises questions about their effects on <span class="hlt">ice</span>-stream dynamics. Being liquid and movable, water modifies basal friction spatially and temporally. Melting due to shear heating and geothermal flux reduces basal traction, making the <span class="hlt">ice</span> stream move fast. However, when water collects in a depression to form a lake, it potentially deprives the surrounding bed of lubricating water, and additionally makes the <span class="hlt">ice</span> surface flat, thereby locally decreasing the <span class="hlt">ice</span> stream driving stress. We study the effect of formation and discharge of a subglacial lake at the mouth of and <span class="hlt">ice</span> stream using a two dimensional, vertically integrated, <span class="hlt">ice</span>-stream model. The model is forced by the basal friction, <span class="hlt">ice</span> thickness and surface elevation. The basal friction is obtained by inversion of the <span class="hlt">ice</span> surface velocity, <span class="hlt">ice</span> thickness and surface elevation come from observations. To simulate the lake formation we introduce zero basal friction and "inflate" the basal elevation of the <span class="hlt">ice</span> stream at the site of the lake. Sensitivity studies of the response of the surrounding <span class="hlt">ice</span> stream and <span class="hlt">ice</span> shelf flow are performed to delineate the influence of near-grounding-line subglacial water storage for <span class="hlt">ice</span> streams in general.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20000023203','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20000023203"><span>Laboratory Investigation of Direct Measurement of <span class="hlt">Ice</span> Water Content, <span class="hlt">Ice</span> Surface Area, and Effective Radius of <span class="hlt">Ice</span> Crystals Using a Laser-Diffraction Instrument</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gerber, H.; DeMott, P. J.; Rogers, D. C.</p> <p>1995-01-01</p> <p>The aircraft microphysics probe, PVM-100A, was tested in the Colorado State University dynamic cloud chamber to establish its ability to measure <span class="hlt">ice</span> water content (IWC), PSA, and Re in <span class="hlt">ice</span> clouds. Its response was compared to other means of measuring those <span class="hlt">ice</span>-cloud parameters that included using FSSP-100 and 230-X 1-D optical probes for <span class="hlt">ice</span>-crystal concentrations, a film-loop microscope for <span class="hlt">ice</span>-crystal habits and dimensions, and an in-situ microscope for determining <span class="hlt">ice</span>-crystal orientation. Intercomparisons were made in <span class="hlt">ice</span> clouds containing <span class="hlt">ice</span> crystals ranging in size from about 10 microns to 150 microns diameter, and <span class="hlt">ice</span> crystals with plate, columnar, dendritic, and spherical shapes. It was not possible to determine conclusively that the PVM accurately measures IWC, PSA, and Re of <span class="hlt">ice</span> crystals, because heat from the PVM evaporated in part the crystals in its vicinity in the chamber thus affecting its measurements. Similarities in the operating principle of the FSSP and PVM, and a comparison between Re measured by both instruments, suggest, however, that the PVM can make those measurements. The resolution limit of the PVM for IWC measurements was found to be on the order of 0.001 g/cubic m. Algorithms for correcting IWC measured by FSSP and PVM were developed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19860038376&hterms=marginal&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dmarginal','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19860038376&hterms=marginal&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dmarginal"><span>Coupled <span class="hlt">ice</span>-ocean dynamics in the marginal <span class="hlt">ice</span> zones Upwelling/downwelling and eddy generation</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hakkinen, S.</p> <p>1986-01-01</p> <p>This study is aimed at modeling mesoscale processes such as upwelling/downwelling and <span class="hlt">ice</span> edge eddies in the marginal <span class="hlt">ice</span> zones. A two-dimensional coupled <span class="hlt">ice</span>-ocean model is used for the study. The <span class="hlt">ice</span> model is coupled to the reduced gravity ocean model through interfacial stresses. The parameters of the ocean model were chosen so that the dynamics would be nonlinear. The model was tested by studying the dynamics of upwelling. Wings parallel to the <span class="hlt">ice</span> edge with the <span class="hlt">ice</span> on the right produce upwelling because the air-<span class="hlt">ice</span> momentum flux is much greater than air-ocean momentum flux; thus the Ekman transport is greater than the <span class="hlt">ice</span> than in the open water. The stability of the upwelling and downwelling jets is discussed. The downwelling jet is found to be far more unstable than the upwelling jet because the upwelling jet is stabilized by the divergence. The constant wind field exerted on a varying <span class="hlt">ice</span> cover will generate vorticity leading to enhanced upwelling/downwelling regions, i.e., wind-forced vortices. Steepening and strengthening of vortices are provided by the nonlinear terms. When forcing is time-varying, the advection terms will also redistribute the vorticity. The wind reversals will separate the vortices from the <span class="hlt">ice</span> edge, so that the upwelling enhancements are pushed to the open ocean and the downwelling enhancements are pushed underneath the <span class="hlt">ice</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ApJ...837...56M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ApJ...837...56M"><span>Identification of Accretion as Grain Growth Mechanism in Astrophysically Relevant Water&<span class="hlt">ice</span> Dusty Plasma Experiment</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Marshall, Ryan S.; Chai, Kil-Byoung; Bellan, Paul M.</p> <p>2017-03-01</p> <p>The grain growth process in the Caltech water-<span class="hlt">ice</span> dusty plasma experiment has been studied using a high-speed camera and a long-distance microscope lens. It is observed that (I) the <span class="hlt">ice</span> grain number density decreases fourfold as the average grain major axis increases from 20 to 80 μm, (II) the major axis length has a log-normal distribution rather than a power-law dependence, and (III) no collisions between <span class="hlt">ice</span> grains are apparent. The grains have a large negative charge resulting in strong mutual repulsion and this, combined with the fractal character of the <span class="hlt">ice</span> grains, prevents them from agglomerating. In order for the grain kinetic energy to be sufficiently small to prevent collisions between <span class="hlt">ice</span> grains, the volumetric <span class="hlt">packing</span> factor (I.e., ratio of the actual volume to the volume of a circumscribing ellipsoid) of the <span class="hlt">ice</span> grains must be less than ˜0.1 depending on the exact relative velocity of the grains in question. Thus, it is concluded that direct accretion of water molecules is very likely to dominate the observed <span class="hlt">ice</span> grain growth.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19920024900','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19920024900"><span>Analysis of <span class="hlt">iced</span> wings</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Cebeci, T.; Chen, H. H.; Kaups, K.; Schimke, S.; Shin, J.</p> <p>1992-01-01</p> <p>A method for computing <span class="hlt">ice</span> shapes along the leading edge of a wing and a method for predicting its aerodynamic performance degradation due to <span class="hlt">icing</span> is described. <span class="hlt">Ice</span> shapes are computed using an extension of the LEWICE code which was developed for airfoils. The aerodynamic properties of the <span class="hlt">iced</span> wing are determined with an interactive scheme in which the solutions of the inviscid flow equations are obtained from a panel method and the solutions of the viscous flow equations are obtained from an inverse three-dimensional finite-difference boundary-layer method. A new interaction law is used to couple the inviscid and viscous flow solutions. The application of the LEWICE wing code to the calculation of <span class="hlt">ice</span> shapes on a MS-317 swept wing shows good agreement with measurements. The interactive boundary-layer method is applied to a tapered <span class="hlt">ice</span> wing in order to study the effect of <span class="hlt">icing</span> on the aerodynamic properties of the wing at several angles of attack.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.C33E..07F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.C33E..07F"><span>Routine Mapping of the Snow Depth Distribution on Sea <span class="hlt">Ice</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Farrell, S. L.; Newman, T.; Richter-Menge, J.; Dattler, M.; Paden, J. D.; Yan, S.; Li, J.; Leuschen, C.</p> <p>2016-12-01</p> <p>The annual growth and retreat of the polar sea <span class="hlt">ice</span> cover is influenced by the seasonal accumulation, redistribution and melt of snow on sea <span class="hlt">ice</span>. Due to its high albedo and low thermal conductivity, snow is also a controlling parameter in the mass and energy budgets of the polar climate system. Under a changing climate scenario it is critical to obtain reliable and routine measurements of snow depth, across basin scales, and long time periods, so as to understand regional, seasonal and inter-annual variability, and the subsequent impacts on the sea <span class="hlt">ice</span> cover itself. Moreover the snow depth distribution remains a significant source of uncertainty in the derivation of sea <span class="hlt">ice</span> thickness from remote sensing measurements, as well as in numerical model predictions of future climate state. Radar altimeter systems flown onboard NASA's Operation <span class="hlt">Ice</span>Bridge (OIB) mission now provide annual measurements of snow across both the Arctic and Southern Ocean <span class="hlt">ice</span> <span class="hlt">packs</span>. We describe recent advances in the processing techniques used to interpret airborne radar waveforms and produce accurate and robust snow depth results. As a consequence of instrument effects and data quality issues associated with the initial release of the OIB airborne radar data, the entire data set was reprocessed to remove coherent noise and sidelobes in the radar echograms. These reprocessed data were released to the community in early 2016, and are available for improved derivation of snow depth. Here, using the reprocessed data, we present the results of seven years of radar measurements collected over Arctic sea <span class="hlt">ice</span> at the end of winter, just prior to melt. Our analysis provides the snow depth distribution on both seasonal and multi-year sea <span class="hlt">ice</span>. We present the inter-annual variability in snow depth for both the Central Arctic and the Beaufort/Chukchi Seas. We validate our results via comparison with temporally and spatially coincident in situ measurements gathered during many of the OIB surveys. The results</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2575336','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2575336"><span>Southern Ocean frontal structure and sea-<span class="hlt">ice</span> formation rates revealed by elephant seals</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Charrassin, J.-B.; Hindell, M.; Rintoul, S. R.; Roquet, F.; Sokolov, S.; Biuw, M.; Costa, D.; Boehme, L.; Lovell, P.; Coleman, R.; Timmermann, R.; Meijers, A.; Meredith, M.; Park, Y.-H.; Bailleul, F.; Goebel, M.; Tremblay, Y.; Bost, C.-A.; McMahon, C. R.; Field, I. C.; Fedak, M. A.; Guinet, C.</p> <p>2008-01-01</p> <p>Polar regions are particularly sensitive to climate change, with the potential for significant feedbacks between ocean circulation, sea <span class="hlt">ice</span>, and the ocean carbon cycle. However, the difficulty in obtaining in situ data means that our ability to detect and interpret change is very limited, especially in the Southern Ocean, where the ocean beneath the sea <span class="hlt">ice</span> remains almost entirely unobserved and the rate of sea-<span class="hlt">ice</span> formation is poorly known. Here, we show that southern elephant seals (Mirounga leonina) equipped with oceanographic sensors can measure ocean structure and water mass changes in regions and seasons rarely observed with traditional oceanographic platforms. In particular, seals provided a 30-fold increase in hydrographic profiles from the sea-<span class="hlt">ice</span> zone, allowing the major fronts to be mapped south of 60°S and sea-<span class="hlt">ice</span> formation rates to be inferred from changes in upper ocean salinity. Sea-<span class="hlt">ice</span> production rates peaked in early winter (April–May) during the rapid northward expansion of the <span class="hlt">pack</span> <span class="hlt">ice</span> and declined by a factor of 2 to 3 between May and August, in agreement with a three-dimensional coupled ocean–sea-<span class="hlt">ice</span> model. By measuring the high-latitude ocean during winter, elephant seals fill a “blind spot” in our sampling coverage, enabling the establishment of a truly global ocean-observing system. PMID:18695241</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ISPAr42.3.2419Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ISPAr42.3.2419Z"><span>Sea <span class="hlt">Ice</span> Drift Monitoring in the Bohai Sea Based on GF4 Satellite</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhao, Y.; Wei, P.; Zhu, H.; Xing, B.</p> <p>2018-04-01</p> <p>The Bohai Sea is the inland sea with the highest latitude in China. In winter, the phenomenon of freezing occurs in the Bohai Sea due to frequent cold wave influx. According to historical records, there have been three serious <span class="hlt">ice</span> <span class="hlt">packs</span> in the Bohai Sea in the past 50 years which caused heavy losses to our economy. Therefore, it is of great significance to monitor the drift of sea <span class="hlt">ice</span> and sea <span class="hlt">ice</span> in the Bohai Sea. The GF4 image has the advantages of short imaging time and high spatial resolution. Based on the GF4 satellite images, the three methods of SIFT (Scale invariant feature - the transform and Scale invariant feature transform), MCC (maximum cross-correlation method) and sift combined with MCC are used to monitor sea <span class="hlt">ice</span> drift and calculate the speed and direction of sea <span class="hlt">ice</span> drift, the three calculation results are compared and analyzed by using expert interpretation and historical statistical data to carry out remote sensing monitoring of sea <span class="hlt">ice</span> drift results. The experimental results show that the experimental results of the three methods are in accordance with expert interpretation and historical statistics. Therefore, the GF4 remote sensing satellite images have the ability to monitor sea <span class="hlt">ice</span> drift and can be used for drift monitoring of sea <span class="hlt">ice</span> in the Bohai Sea.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014ESD.....5..271L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014ESD.....5..271L"><span>Projecting Antarctic <span class="hlt">ice</span> discharge using response functions from SeaRISE <span class="hlt">ice</span>-sheet models</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Levermann, A.; Winkelmann, R.; Nowicki, S.; Fastook, J. L.; Frieler, K.; Greve, R.; Hellmer, H. H.; Martin, M. A.; Meinshausen, M.; Mengel, M.; Payne, A. J.; Pollard, D.; Sato, T.; Timmermann, R.; Wang, W. L.; Bindschadler, R. A.</p> <p>2014-08-01</p> <p>The largest uncertainty in projections of future sea-level change results from the potentially changing dynamical <span class="hlt">ice</span> discharge from Antarctica. Basal <span class="hlt">ice</span>-shelf melting induced by a warming ocean has been identified as a major cause for additional <span class="hlt">ice</span> flow across the grounding line. Here we attempt to estimate the uncertainty range of future <span class="hlt">ice</span> discharge from Antarctica by combining uncertainty in the climatic forcing, the oceanic response and the <span class="hlt">ice</span>-sheet model response. The uncertainty in the global mean temperature increase is obtained from historically constrained emulations with the MAGICC-6.0 (Model for the Assessment of Greenhouse gas Induced Climate Change) model. The oceanic forcing is derived from scaling of the subsurface with the atmospheric warming from 19 comprehensive climate models of the Coupled Model Intercomparison Project (CMIP-5) and two ocean models from the EU-project <span class="hlt">Ice</span>2Sea. The dynamic <span class="hlt">ice</span>-sheet response is derived from linear response functions for basal <span class="hlt">ice</span>-shelf melting for four different Antarctic drainage regions using experiments from the Sea-level Response to <span class="hlt">Ice</span> Sheet Evolution (SeaRISE) intercomparison project with five different Antarctic <span class="hlt">ice</span>-sheet models. The resulting uncertainty range for the historic Antarctic contribution to global sea-level rise from 1992 to 2011 agrees with the observed contribution for this period if we use the three <span class="hlt">ice</span>-sheet models with an explicit representation of <span class="hlt">ice</span>-shelf dynamics and account for the time-delayed warming of the oceanic subsurface compared to the surface air temperature. The median of the additional <span class="hlt">ice</span> loss for the 21st century is computed to 0.07 m (66% range: 0.02-0.14 m; 90% range: 0.0-0.23 m) of global sea-level equivalent for the low-emission RCP-2.6 (Representative Concentration Pathway) scenario and 0.09 m (66% range: 0.04-0.21 m; 90% range: 0.01-0.37 m) for the strongest RCP-8.5. Assuming no time delay between the atmospheric warming and the oceanic subsurface, these</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.C51B..04T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.C51B..04T"><span><span class="hlt">Ice</span> Streams as the Critical Link Between the Interior <span class="hlt">Ice</span> Reservoir of the Antarctic <span class="hlt">Ice</span> Sheet and the Global Climate System - a WISSARD Perspective (Invited)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tulaczyk, S. M.; Beem, L.; Walter, J. I.; Hossainzadeh, S.; Mankoff, K. D.</p> <p>2010-12-01</p> <p>Fast flowing <span class="hlt">ice</span> streams represent crucial features of the Antarctic <span class="hlt">ice</span> sheet because they provide discharge ‘valves’ for the interior <span class="hlt">ice</span> reservoir and because their grounding lines are exposed to ocean thermal forcing. Even with no/little topographic control <span class="hlt">ice</span> flow near the perimeter of a polar <span class="hlt">ice</span> sheet self-organizes into discrete, fast-flowing <span class="hlt">ice</span> streams. Within these features basal melting (i.e. lubrication for <span class="hlt">ice</span> sliding) is sustained through elevated basal shear heating in a region of thin <span class="hlt">ice</span> that would otherwise be characterized by basal freezing and slow <span class="hlt">ice</span> motion. Because faster basal <span class="hlt">ice</span> motion is typically associated with faster subglacial erosion, <span class="hlt">ice</span> streams tend to localize themselves over time by carving troughs into underlying rocks and sediments. Debris generated by this erosional activity is carried to the continental shelf and/or continental slope where it may be deposited at very high rates, rivaling these associated with deposition by some of the largest rivers on Earth. In terms of their hydrologic and geological functions, Antarctic <span class="hlt">ice</span> streams play pretty much the same role as rivers do on non-glaciated continents. However, understanding of their dynamics is still quite rudimentary, largely because of the relative inaccessibility of the key basal and marine boundaries of <span class="hlt">ice</span> streams where pertinent measurements need to be made. The present elevated interest in predicting future contribution of Antarctica to global sea level changes is driving ambitious research programs aimed at scientific exploration of these poorly investigated environments that will play a key role in defining the response of the <span class="hlt">ice</span> sheet to near future climate changes. We will review one of these programs, the Whillans <span class="hlt">Ice</span> Stream Subglacial Access Research Drilling (WISSARD) with particular focus on its planned contributions to understanding of <span class="hlt">ice</span> stream dynamics.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.C51B0970C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.C51B0970C"><span>Ocean Wave-to-<span class="hlt">Ice</span> Energy Transfer Determined from Seafloor Pressure and <span class="hlt">Ice</span> Shelf Seismic Observations</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chen, Z.; Bromirski, P. D.; Gerstoft, P.; Stephen, R. A.; Wiens, D.; Aster, R. C.; Nyblade, A.</p> <p>2017-12-01</p> <p><span class="hlt">Ice</span> shelves play an important role in buttressing land <span class="hlt">ice</span> from reaching the sea, thus restraining the rate of sea level rise. Long-period gravity wave impacts excite vibrations in <span class="hlt">ice</span> shelves that may trigger tabular iceberg calving and/or <span class="hlt">ice</span> shelf collapse events. Three kinds of seismic plate waves were continuously observed by broadband seismic arrays on the Ross <span class="hlt">Ice</span> Shelf (RIS) and on the Pine Island Glacier (PIG) <span class="hlt">ice</span> shelf: (1) flexural-gravity waves, (2) flexural waves, and (3) extensional Lamb waves, suggesting that all West Antarctic <span class="hlt">ice</span> shelves are subjected to similar gravity wave excitation. Ocean gravity wave heights were estimated from pressure perturbations recorded by an ocean bottom differential pressure gauge at the RIS front, water depth 741 m, about 8 km north of an on-<span class="hlt">ice</span> seismic station that is 2 km from the shelf front. Combining the plate wave spectrum, the frequency-dependent energy transmission and reflection at the <span class="hlt">ice</span>-water interface were determined. In addition, Young's modulus and Poisson's ratio of the RIS are estimated from the plate wave motions, and compared with the widely used values. Quantifying these <span class="hlt">ice</span> shelf parameters from observations will improve modeling of <span class="hlt">ice</span> shelf response to ocean forcing, and <span class="hlt">ice</span> shelf evolution.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA617649','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA617649"><span>Acquisition of <span class="hlt">Ice</span> Thickness and <span class="hlt">Ice</span> Surface Characteristics in the Seasonal <span class="hlt">Ice</span> Zone by CULPIS-X during the US Coast Guard’s Arctic Domain Awareness Program</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2014-09-30</p> <p>OBJECTIVES • What is the volume of sea <span class="hlt">ice</span> in the Beaufort Sea Seasonal <span class="hlt">Ice</span> Zone (SIZ) and how does this evolve during summer as the <span class="hlt">ice</span> edge...retreats? Recent observations suggest that the remaining <span class="hlt">ice</span> in the Beaufort Sea is younger and thinner in recent years in part because even the oldest...surrounding <span class="hlt">ice</span> . Recent analyses have indicated that ponds on thinner <span class="hlt">ice</span> are often darker, accelerating the <span class="hlt">ice</span> - albedo feedback over thin <span class="hlt">ice</span> in summer</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JGRC..123..324B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JGRC..123..324B"><span>Multiphase Reactive Transport and Platelet <span class="hlt">Ice</span> Accretion in the Sea <span class="hlt">Ice</span> of McMurdo Sound, Antarctica</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Buffo, J. J.; Schmidt, B. E.; Huber, C.</p> <p>2018-01-01</p> <p>Sea <span class="hlt">ice</span> seasonally to interannually forms a thermal, chemical, and physical boundary between the atmosphere and hydrosphere over tens of millions of square kilometers of ocean. Its presence affects both local and global climate and ocean dynamics, <span class="hlt">ice</span> shelf processes, and biological communities. Accurate incorporation of sea <span class="hlt">ice</span> growth and decay, and its associated thermal and physiochemical processes, is underrepresented in large-scale models due to the complex physics that dictate oceanic <span class="hlt">ice</span> formation and evolution. Two phenomena complicate sea <span class="hlt">ice</span> simulation, particularly in the Antarctic: the multiphase physics of reactive transport brought about by the inhomogeneous solidification of seawater, and the buoyancy driven accretion of platelet <span class="hlt">ice</span> formed by supercooled <span class="hlt">ice</span> shelf water onto the basal surface of the overlying <span class="hlt">ice</span>. Here a one-dimensional finite difference model capable of simulating both processes is developed and tested against <span class="hlt">ice</span> core data. Temperature, salinity, liquid fraction, fluid velocity, total salt content, and <span class="hlt">ice</span> structure are computed during model runs. The model results agree well with empirical observations and simulations highlight the effect platelet <span class="hlt">ice</span> accretion has on overall <span class="hlt">ice</span> thickness and characteristics. Results from sensitivity studies emphasize the need to further constrain sea <span class="hlt">ice</span> microstructure and the associated physics, particularly permeability-porosity relationships, if a complete model of sea <span class="hlt">ice</span> evolution is to be obtained. Additionally, implications for terrestrial <span class="hlt">ice</span> shelves and icy moons in the solar system are discussed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018TCry...12...25R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018TCry...12...25R"><span>Frazil-<span class="hlt">ice</span> growth rate and dynamics in mixed layers and sub-<span class="hlt">ice</span>-shelf plumes</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rees Jones, David W.; Wells, Andrew J.</p> <p>2018-01-01</p> <p>The growth of frazil or granular <span class="hlt">ice</span> is an important mode of <span class="hlt">ice</span> formation in the cryosphere. Recent advances have improved our understanding of the microphysical processes that control the rate of <span class="hlt">ice</span>-crystal growth when water is cooled beneath its freezing temperature. These advances suggest that crystals grow much faster than previously thought. In this paper, we consider models of a population of <span class="hlt">ice</span> crystals with different sizes to provide insight into the treatment of frazil <span class="hlt">ice</span> in large-scale models. We consider the role of crystal growth alongside the other physical processes that determine the dynamics of frazil <span class="hlt">ice</span>. We apply our model to a simple mixed layer (such as at the surface of the ocean) and to a buoyant plume under a floating <span class="hlt">ice</span> shelf. We provide numerical calculations and scaling arguments to predict the occurrence of frazil-<span class="hlt">ice</span> explosions, which we show are controlled by crystal growth, nucleation, and gravitational removal. Faster crystal growth, higher secondary nucleation, and slower gravitational removal make frazil-<span class="hlt">ice</span> explosions more likely. We identify steady-state crystal size distributions, which are largely insensitive to crystal growth rate but are affected by the relative importance of secondary nucleation to gravitational removal. Finally, we show that the fate of plumes underneath <span class="hlt">ice</span> shelves is dramatically affected by frazil-<span class="hlt">ice</span> dynamics. Differences in the parameterization of crystal growth and nucleation give rise to radically different predictions of basal accretion and plume dynamics, and can even impact whether a plume reaches the end of the <span class="hlt">ice</span> shelf or intrudes at depth.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20070010003&hterms=time+zone&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dtime%2Bzone','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20070010003&hterms=time+zone&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dtime%2Bzone"><span>Contrasts in Sea <span class="hlt">Ice</span> Formation and Production in the Arctic Seasonal and Perennial <span class="hlt">Ice</span> Zones</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kwok, R.</p> <p>2006-01-01</p> <p>Four years (1997-2000) of RADARSAT Geophysical Processor System (RGPS) data are used to contrast the sea <span class="hlt">ice</span> deformation and production regionally, and in the seasonal (SIZ) and perennial (PIZ) <span class="hlt">ice</span> zones. <span class="hlt">Ice</span> production is of seasonal <span class="hlt">ice</span> in openings during the winter. 3-day estimates of these quantities are provided within Lagrangian elements initially 10 km on a side. A distinct seasonal cycle is seen in both zones with these estimates highest in the late fall and with seasonal minimums in the mid-winter. Regional divergence over the winter could be up to 30%. Spatially, the highest deformation is in the SIZ north of coastal Alaska. Both <span class="hlt">ice</span> deformation and production are higher in the SIZ: deformation-related <span class="hlt">ice</span> production in the SIZ (approx.0.5 m) is 1.5-2.3 times that of the PIZ (approx.0.3 m) - this is connected to <span class="hlt">ice</span> strength and thickness. Atmospheric forcing and boundary layer structure contribute to only the seasonal and interannual variability. Seasonal <span class="hlt">ice</span> growth in <span class="hlt">ice</span> fractures accounts for approx.25-40% of the total <span class="hlt">ice</span> production of the Arctic Ocean. By itself, this deformation-<span class="hlt">ice</span> production relationship could be considered a negative feedback when thickness is perturbed. However, the overall effect on <span class="hlt">ice</span> production in the face of increasing seasonal and thinner/weaker <span class="hlt">ice</span> coverage could be modified by: local destabilization of the water column promoting overturning of warmer water due to increased brine rejection; and, the upwelling of the pynocline associated with increased occurrence of large shear motion in sea <span class="hlt">ice</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23705008','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23705008"><span>Change and variability in East antarctic sea <span class="hlt">ice</span> seasonality, 1979/80-2009/10.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Massom, Robert; Reid, Philip; Stammerjohn, Sharon; Raymond, Ben; Fraser, Alexander; Ushio, Shuki</p> <p>2013-01-01</p> <p>Recent analyses have shown that significant changes have occurred in patterns of sea <span class="hlt">ice</span> seasonality in West Antarctica since 1979, with wide-ranging climatic, biological and biogeochemical consequences. Here, we provide the first detailed report on long-term change and variability in annual timings of sea <span class="hlt">ice</span> advance, retreat and resultant <span class="hlt">ice</span> season duration in East Antarctica. These were calculated from satellite-derived <span class="hlt">ice</span> concentration data for the period 1979/80 to 2009/10. The pattern of change in sea <span class="hlt">ice</span> seasonality off East Antarctica comprises mixed signals on regional to local scales, with pockets of strongly positive and negative trends occurring in near juxtaposition in certain regions e.g., Prydz Bay. This pattern strongly reflects change and variability in different elements of the marine "icescape", including fast <span class="hlt">ice</span>, polynyas and the marginal <span class="hlt">ice</span> zone. A trend towards shorter sea-<span class="hlt">ice</span> duration (of 1 to 3 days per annum) occurs in fairly isolated pockets in the outer <span class="hlt">pack</span> from∼95-110°E, and in various near-coastal areas that include an area of particularly strong and persistent change near Australia's Davis Station and between the Amery and West <span class="hlt">Ice</span> Shelves. These areas are largely associated with coastal polynyas that are important as sites of enhanced sea <span class="hlt">ice</span> production/melt. Areas of positive trend in <span class="hlt">ice</span> season duration are more extensive, and include an extensive zone from 160-170°E (i.e., the western Ross Sea sector) and the near-coastal zone between 40-100°E. The East Antarctic pattern is considerably more complex than the well-documented trends in West Antarctica e.g., in the Antarctic Peninsula-Bellingshausen Sea and western Ross Sea sectors.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20090030606','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20090030606"><span>Airframe <span class="hlt">Icing</span> Research Gaps: NASA Perspective</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Potapczuk, Mark</p> <p>2009-01-01</p> <p>qCurrent Airframe <span class="hlt">Icing</span> Technology Gaps: Development of a full 3D <span class="hlt">ice</span> accretion simulation model. Development of an improved simulation model for SLD conditions. CFD modeling of stall behavior for <span class="hlt">ice</span>-contaminated wings/tails. Computational methods for simulation of stability and control parameters. Analysis of thermal <span class="hlt">ice</span> protection system performance. Quantification of 3D <span class="hlt">ice</span> shape geometric characteristics Development of accurate ground-based simulation of SLD conditions. Development of scaling methods for SLD conditions. Development of advanced diagnostic techniques for assessment of tunnel cloud conditions. Identification of critical <span class="hlt">ice</span> shapes for aerodynamic performance degradation. Aerodynamic scaling issues associated with testing scale model <span class="hlt">ice</span> shape geometries. Development of altitude scaling methods for thermal <span class="hlt">ice</span> protections systems. Development of accurate parameter identification methods. Measurement of stability and control parameters for an <span class="hlt">ice</span>-contaminated swept wing aircraft. Creation of control law modifications to prevent loss of control during <span class="hlt">icing</span> encounters. 3D <span class="hlt">ice</span> shape geometries. Collection efficiency data for <span class="hlt">ice</span> shape geometries. SLD <span class="hlt">ice</span> shape data, in-flight and ground-based, for simulation verification. Aerodynamic performance data for 3D geometries and various <span class="hlt">icing</span> conditions. Stability and control parameter data for <span class="hlt">iced</span> aircraft configurations. Thermal <span class="hlt">ice</span> protection system data for simulation validation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70019840','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70019840"><span>Southern Laurentide <span class="hlt">ice</span> lobes were created by <span class="hlt">ice</span> streams: Des Moines Lobe in Minnesota, USA</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Patterson, C.J.</p> <p>1997-01-01</p> <p>Regional mapping in southern Minnesota has illuminated a suite of landforms developed by the Des Moines Lobe that delimit the position of the lobe at its maximum and at lesser readvances. The <span class="hlt">ice</span> lobe repeatedly advanced, discharged its subglacial water, and subsequently stagnated. Recent glaciological research on Antarctic <span class="hlt">ice</span> streams has led some glacial geologists to postulate that <span class="hlt">ice</span> streams drained parts of the marine-based areas of the Laurentide <span class="hlt">Ice</span> Sheet. I postulate that such <span class="hlt">ice</span> streams may develop in land-based areas of an <span class="hlt">ice</span> sheet as well, and that the Des Moines Lobe, 200 km wide and 900 km long, was an outlet glacier of an <span class="hlt">ice</span> stream. It appears to have been able to advance beyond the Laurentide <span class="hlt">Ice</span> Sheet as long as adequate water pressure was maintained. However, the outer part of the lobe stagnated because subglacial water that facilitated the flow was able to drain away through tunnel valleys. Stagnation of the lobe is not equivalent to stoppage of the <span class="hlt">ice</span> stream, because <span class="hlt">ice</span> repeatedly advanced into and onto the stagnant margins, stacking <span class="hlt">ice</span> and debris. Similar landforms are also seen in other lobes of the upper midwestern United States.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.C11B..03P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.C11B..03P"><span>Airborne radar surveys of snow depth over Antarctic sea <span class="hlt">ice</span> during Operation <span class="hlt">Ice</span>Bridge</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Panzer, B.; Gomez-Garcia, D.; Leuschen, C.; Paden, J. D.; Gogineni, P. S.</p> <p>2012-12-01</p> <p>Over the last decade, multiple satellite-based laser and radar altimeters, optimized for polar observations, have been launched with one of the major objectives being the determination of global sea <span class="hlt">ice</span> thickness and distribution [5, 6]. Estimation of sea-<span class="hlt">ice</span> thickness from these altimeters relies on freeboard measurements and the presence of snow cover on sea <span class="hlt">ice</span> affects this estimate. Current means of estimating the snow depth rely on daily precipitation products and/or data from passive microwave sensors [2, 7]. Even a small uncertainty in the snow depth leads to a large uncertainty in the sea-<span class="hlt">ice</span> thickness estimate. To improve the accuracy of the sea-<span class="hlt">ice</span> thickness estimates and provide validation for measurements from satellite-based sensors, the Center for Remote Sensing of <span class="hlt">Ice</span> Sheets deploys the Snow Radar as a part of NASA Operation <span class="hlt">Ice</span>Bridge. The Snow Radar is an ultra-wideband, frequency-modulated, continuous-wave radar capable of resolving snow depth on sea <span class="hlt">ice</span> from 5 cm to more than 2 meters from long-range, airborne platforms [4]. This paper will discuss the algorithm used to directly extract snow depth estimates exclusively using the Snow Radar data set by tracking both the air-snow and snow-<span class="hlt">ice</span> interfaces. Prior work in this regard used data from a laser altimeter for tracking the air-snow interface or worked under the assumption that the return from the snow-<span class="hlt">ice</span> interface was greater than that from the air-snow interface due to a larger dielectric contrast, which is not true for thick or higher loss snow cover [1, 3]. This paper will also present snow depth estimates from Snow Radar data during the NASA Operation <span class="hlt">Ice</span>Bridge 2010-2011 Antarctic campaigns. In 2010, three sea <span class="hlt">ice</span> flights were flown, two in the Weddell Sea and one in the Amundsen and Bellingshausen Seas. All three flight lines were repeated in 2011, allowing an annual comparison of snow depth. In 2011, a repeat pass of an earlier flight in the Weddell Sea was flown, allowing for a</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://easyread.drugabuse.gov/content/meth-crank-ice-facts','NIH-MEDLINEPLUS'); return false;" href="https://easyread.drugabuse.gov/content/meth-crank-ice-facts"><span>Meth (Crank, <span class="hlt">Ice</span>) Facts</span></a></p> <p><a target="_blank" href="http://medlineplus.gov/">MedlinePlus</a></p> <p></p> <p></p> <p>... Crank, <span class="hlt">Ice</span>) Facts Meth (Crank, <span class="hlt">Ice</span>) Facts Listen Methamphetamine—meth for short—is a white, bitter powder. ... names for meth are: Crank <span class="hlt">Ice</span> Crystal Glass Chalk In This Section Signs of Meth Use and ...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19870060021&hterms=marginal&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dmarginal','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19870060021&hterms=marginal&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dmarginal"><span>Multisensor comparison of <span class="hlt">ice</span> concentration estimates in the marginal <span class="hlt">ice</span> zone</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Burns, B. A.; Cavalieri, D. J.; Gloersen, P.; Keller, M. R.; Campbell, W. J.</p> <p>1987-01-01</p> <p>Aircraft remote sensing data collected during the 1984 summer Marginal <span class="hlt">Ice</span> Zone Experiment in the Fram Strait are used to compare <span class="hlt">ice</span> concentration estimates derived from synthetic aperture radar (SAR) imagery, passive microwave imagery at several frequencies, aerial photography, and spectral photometer data. The comparison is carried out not only to evaluate SAR performance against more established techniques but also to investigate how <span class="hlt">ice</span> surface conditions, imaging geometry, and choice of algorithm parameters affect estimates made by each sensor.Active and passive microwave sensor estimates of <span class="hlt">ice</span> concentration derived using similar algorithms show an rms difference of 13 percent. Agreement between each microwave sensor and near-simultaneous aerial photography is approximately the same (14 percent). The availability of high-resolution microwave imagery makes it possible to ascribe the discrepancies in the concentration estimates to variations in <span class="hlt">ice</span> surface signatures in the scene.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110005552','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110005552"><span>ICESat Observations of Seasonal and Interannual Variations of Sea-<span class="hlt">Ice</span> Freeboard and Estimated Thickness in the Weddell Sea, Antarctica (2003-2009)</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Yi, Donghui; Robbins, John W.</p> <p>2010-01-01</p> <p>Sea-<span class="hlt">ice</span> freeboard heights for 17 ICESat campaign periods from 2003 to 2009 are derived from ICESat data. Freeboard is combined with snow depth from Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E) data and nominal densities of snow, water and sea <span class="hlt">ice</span>, to estimate sea-<span class="hlt">ice</span> thickness. Sea-<span class="hlt">ice</span> freeboard and thickness distributions show clear seasonal variations that reflect the yearly cycle of growth and decay of the Weddell Sea (Antarctica) <span class="hlt">pack</span> <span class="hlt">ice</span>. During October-November, sea <span class="hlt">ice</span> grows to its seasonal maximum both in area and thickness; the mean freeboards are 0.33-0.41 m and the mean thicknesses are 2.10-2.59 m. During February-March, thinner sea <span class="hlt">ice</span> melts away and the sea-<span class="hlt">ice</span> <span class="hlt">pack</span> is mainly distributed in the west Weddell Sea; the mean freeboards are 0.35-0.46 m and the mean thicknesses are 1.48-1.94 m. During May-June, the mean freeboards and thicknesses are 0.26-0.29 m and 1.32-1.37 m, respectively. The 6 year trends in sea-<span class="hlt">ice</span> extent and volume are (0.023+/-0.051) x 10(exp 6)sq km/a (0.45%/a) and (0.007+/-1.0.092) x 10(exp 3)cu km/a (0.08%/a); however, the large standard deviations indicate that these positive trends are not statistically significant.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1911192A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1911192A"><span>Planetary <span class="hlt">Ice</span>-Oceans: Numerical Modeling Study of <span class="hlt">Ice</span>-Shell Growth in Convecting Two-Phase Systems</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Allu Peddinti, Divya; McNamara, Allen</p> <p>2017-04-01</p> <p>Several icy bodies in the Solar system such as the icy moons Europa and Enceladus exhibit signs of subsurface oceans underneath an <span class="hlt">ice</span>-shell. For Europa, the geologically young surface, the presence of surface features and the aligned surface chemistry pose interesting questions about formation of the <span class="hlt">ice</span>-shell and its interaction with the ocean below. This also ties in with its astrobiological potential and implications for similar <span class="hlt">ice</span>-ocean systems elsewhere in the cosmos. The overall thickness of the H2O layer on Europa is estimated to be 100-150 km while the thickness of the <span class="hlt">ice</span>-shell is debated. Additionally, Europa is subject to tidal heating due to interaction with Jupiter's immense gravity field. It is of interest to understand how the <span class="hlt">ice</span>-shell thickness varies in the presence of tidal internal heating and the localization of heating in different regions of the <span class="hlt">ice</span>-shell. Thus this study aims to determine the effect of tidal internal heating on the growth rate of the <span class="hlt">ice</span>-shell over time. We perform geodynamic modeling of the <span class="hlt">ice</span>-ocean system in order to understand how the <span class="hlt">ice</span>-shell thickness changes with time. The convection code employs the <span class="hlt">ice</span> Ih-water phase diagram in order to model the two-phase convecting <span class="hlt">ice</span>-ocean system. All the models begin from an initial warm thick ocean that cools from the top. The numerical experiments analyze three cases: case 1 with no tidal internal heating in the system, case 2 with constant tidal internal heating in the <span class="hlt">ice</span> and case 3 with viscosity-dependent tidal internal heating in the <span class="hlt">ice</span>. We track the <span class="hlt">ice</span>-shell thickness as a function of time as the system cools. Modeling results so far have identified that the shell growth rate changes substantially at a point in time that coincides with a change in the planform of <span class="hlt">ice</span>-convection cells. Additionally, the velocity vs depth plots indicate a shift from a conduction dominant to a convection dominant <span class="hlt">ice</span> regime. We compare the three different cases to provide a</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19830062257&hterms=marginal&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dmarginal','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19830062257&hterms=marginal&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dmarginal"><span>Sensitivity studies with a coupled <span class="hlt">ice</span>-ocean model of the marginal <span class="hlt">ice</span> zone</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Roed, L. P.</p> <p>1983-01-01</p> <p>An analytical coupled <span class="hlt">ice</span>-ocean model is considered which is forced by a specified wind stress acting on the open ocean as well as the <span class="hlt">ice</span>. The analysis supports the conjecture that the upwelling dynamics at <span class="hlt">ice</span> edges can be understood by means of a simple analytical model. In similarity with coastal problems it is shown that the <span class="hlt">ice</span> edge upwelling is determined by the net mass flux at the boundaries of the considered region. The model is used to study the sensitivity of the upwelling dynamics in the marginal <span class="hlt">ice</span> zone to variation in the controlling parameters. These parameters consist of combinations of the drag coefficients used in the parameterization of the stresses on the three interfaces atmosphere-<span class="hlt">ice</span>, atmosphere-ocean, and <span class="hlt">ice</span>-ocean. The response is shown to be sensitive to variations in these parameters in that one set of parameters may give upwelling while a slightly different set of parameters may give downwelling.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/14749827','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/14749827"><span>Enhanced <span class="hlt">ice</span> sheet growth in Eurasia owing to adjacent <span class="hlt">ice</span>-dammed lakes.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Krinner, G; Mangerud, J; Jakobsson, M; Crucifix, M; Ritz, C; Svendsen, J I</p> <p>2004-01-29</p> <p>Large proglacial lakes cool regional summer climate because of their large heat capacity, and have been shown to modify precipitation through mesoscale atmospheric feedbacks, as in the case of Lake Agassiz. Several large <span class="hlt">ice</span>-dammed lakes, with a combined area twice that of the Caspian Sea, were formed in northern Eurasia about 90,000 years ago, during the last glacial period when an <span class="hlt">ice</span> sheet centred over the Barents and Kara seas blocked the large northbound Russian rivers. Here we present high-resolution simulations with an atmospheric general circulation model that explicitly simulates the surface mass balance of the <span class="hlt">ice</span> sheet. We show that the main influence of the Eurasian proglacial lakes was a significant reduction of <span class="hlt">ice</span> sheet melting at the southern margin of the Barents-Kara <span class="hlt">ice</span> sheet through strong regional summer cooling over large parts of Russia. In our simulations, the summer melt reduction clearly outweighs lake-induced decreases in moisture and hence snowfall, such as has been reported earlier for Lake Agassiz. We conclude that the summer cooling mechanism from proglacial lakes accelerated <span class="hlt">ice</span> sheet growth and delayed <span class="hlt">ice</span> sheet decay in Eurasia and probably also in North America.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20070034034&hterms=time+zone&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dtime%2Bzone','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20070034034&hterms=time+zone&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dtime%2Bzone"><span>Contrasts in Sea <span class="hlt">Ice</span> Deformation and Production in the Arctic Seasonal and Perennial <span class="hlt">Ice</span> Zones</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kwok, K.</p> <p>2006-01-01</p> <p>Four years (1997-2000) of RADARSAT Geophysical Processor System (RGPS) data are used to contrast the sea <span class="hlt">ice</span> deformation and production regionally, and in the seasonal (SIZ) and perennial (PIZ) <span class="hlt">ice</span> zones. <span class="hlt">Ice</span> production is of seasonal <span class="hlt">ice</span> in openings during the winter. Three-day estimates of these quantities are provided within Lagrangian elements initially 10 km on a side. A distinct seasonal cycle is seen in both zones with these estimates highest in the late fall and with seasonal minimums in the midwinter. Regional divergence over the winter could be up to 30%. Spatially, the highest deformation is seen in the SIZ north of coastal Alaska. Both <span class="hlt">ice</span> deformation and production are higher in the SIZ: deformation-related <span class="hlt">ice</span> production in the SIZ (approx.0.5 m) is 1.5-2.3 times that of the PIZ (approx.0.3 m): this is connected to <span class="hlt">ice</span> strength and thickness. Atmospheric forcing and boundary layer structure contribute to only the seasonal and interannual variability. Seasonal <span class="hlt">ice</span> growth in <span class="hlt">ice</span> fractures accounts for approx.25-40% of the total <span class="hlt">ice</span> production of the Arctic Ocean. Uncertainties in these estimates are discussed. By itself, this deformation-<span class="hlt">ice</span> production relationship could be considered a negative feedback when thickness is perturbed. However, the overall effect on <span class="hlt">ice</span> production in the face of increasing seasonal and thinner/weaker <span class="hlt">ice</span> coverage could be modified by local destabilization of the water column promoting overturning of warmer water due to increased brine rejection; and the upwelling of the pynocline associated with increased occurrence of large shear motion in sea <span class="hlt">ice</span>. Divergence is shown to be negligibly correlated to cyclonic motion in summer and winter in both <span class="hlt">ice</span> zones.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110012934','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110012934"><span><span class="hlt">Ice</span>-Borehole Probe</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Behar, Alberto; Carsey, Frank; Lane, Arthur; Engelhardt, Herman</p> <p>2006-01-01</p> <p>An instrumentation system has been developed for studying interactions between a glacier or <span class="hlt">ice</span> sheet and the underlying rock and/or soil. Prior borehole imaging systems have been used in well-drilling and mineral-exploration applications and for studying relatively thin valley glaciers, but have not been used for studying thick <span class="hlt">ice</span> sheets like those of Antarctica. The system includes a cylindrical imaging probe that is lowered into a hole that has been bored through the <span class="hlt">ice</span> to the <span class="hlt">ice</span>/bedrock interface by use of an established hot-water-jet technique. The images acquired by the cameras yield information on the movement of the <span class="hlt">ice</span> relative to the bedrock and on visible features of the lower structure of the <span class="hlt">ice</span> sheet, including <span class="hlt">ice</span> layers formed at different times, bubbles, and mineralogical inclusions. At the time of reporting the information for this article, the system was just deployed in two boreholes on the Amery <span class="hlt">ice</span> shelf in East Antarctica and after successful 2000 2001 deployments in 4 boreholes at <span class="hlt">Ice</span> Stream C, West Antarctica, and in 2002 at Black Rapids Glacier, Alaska. The probe is designed to operate at temperatures from 40 to +40 C and to withstand the cold, wet, high-pressure [130-atm (13.20-MPa)] environment at the bottom of a water-filled borehole in <span class="hlt">ice</span> as deep as 1.6 km. A current version is being outfitted to service 2.4-km-deep boreholes at the Rutford <span class="hlt">Ice</span> Stream in West Antarctica. The probe (see figure) contains a sidelooking charge-coupled-device (CCD) camera that generates both a real-time analog video signal and a sequence of still-image data, and contains a digital videotape recorder. The probe also contains a downward-looking CCD analog video camera, plus halogen lamps to illuminate the fields of view of both cameras. The analog video outputs of the cameras are converted to optical signals that are transmitted to a surface station via optical fibers in a cable. Electric power is supplied to the probe through wires in the cable at a</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.P31A2092B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.P31A2092B"><span>Jamming of granular <span class="hlt">ice</span> mélange in tidewater glacial fjords</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Burton, J. C.; Cassotto, R.; Amundson, J. M.; Kuo, C. C.; Dennin, M.</p> <p>2016-12-01</p> <p>In tidewater glacial fjords, the open water in front of the glacier terminus is often filled with a collection of calved iceberg fragments and sea <span class="hlt">ice</span>. For glaciers with large calving rates, this "mélange" of <span class="hlt">ice</span> can be jam-<span class="hlt">packed</span>, so that the flow is mostly determined by granular interactions, in addition to underlying fjord currents. As the glacier pushes the <span class="hlt">ice</span> mélange through the fjord, the mélange will become jammed and may potentially influence calving rates if the back-stress applied to the glacier terminus is large enough. However, the stress applied by a granular <span class="hlt">ice</span> mélange will depend on its rheology, i.e. iceberg-iceberg contact forces, geometry, friction, etc. Here we report 2D, discrete particle simulations to model the granular mechanics of <span class="hlt">ice</span> mélange. A polydisperse collection of particles is <span class="hlt">packed</span> into a long channel and pushed downfjord at a constant speed, the latter derived from terrestrial radar interferometry (TRI). Each individual particle experiences viscoelastic contact forces and tangential frictional forces upon collision with another particle or channel walls. We find the two most important factors that govern the total force applied to the glacier are the geometry of the channel, and the shape of the particles. In addition, our simulated velocity fields reveal shearing margins near the fjord walls with more uniform flow in the middle of the mélange, consistent with TRI observations. Finally, we find that the magnitude of the back-stress applied to the glacier terminus can influence calving, however, the maximum back-stress is limited by the buckling of icebergs into the fjord waters, so that the stress in the quasi-2D mélange is partially determined by the thickness of the mélange layer.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRF..122.2324S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRF..122.2324S"><span>Assimilating the <span class="hlt">ICE</span>-6G_C Reconstruction of the Latest Quaternary <span class="hlt">Ice</span> Age Cycle Into Numerical Simulations of the Laurentide and Fennoscandian <span class="hlt">Ice</span> Sheets</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stuhne, G. R.; Peltier, W. R.</p> <p>2017-12-01</p> <p>We analyze the effects of nudging 100 kyr numerical simulations of the Laurentide and Fennoscandian <span class="hlt">ice</span> sheets toward the glacial isostatic adjustment-based (GIA-based) <span class="hlt">ICE</span>-6G_C reconstruction of the most recent <span class="hlt">ice</span> age cycle. Starting with the <span class="hlt">ice</span> physics approximations of the PISM <span class="hlt">ice</span> sheet model and the SeaRISE simulation protocols, we incorporate nudging at characteristic time scales, τf, through anomalous mass balance terms in the <span class="hlt">ice</span> mass conservation equation. As should be expected, these mass balances exhibit physically unrealistic details arising from pure GIA-based reconstruction geometry when nudging is very strong (τf=20 years for North America), while weakly nudged (τf=1,000 years) solutions deviate from <span class="hlt">ICE</span>-6G_C sufficiently to degrade its observational fit quality. For reasonable intermediate time scales (τf=100 years and 200 years), we perturbatively analyze nudged <span class="hlt">ice</span> dynamics as a superposition of "leading-order smoothing" that diffuses <span class="hlt">ICE</span>-6G_C in a physically and observationally consistent manner and "higher-order" deviations arising, for instance, from biases in the time dependence of surface climate boundary conditions. Based upon the relative deviations between respective nudged simulations in which these biases follow surface temperature from <span class="hlt">ice</span> cores and eustatic sea level from marine sediment cores, we compute "<span class="hlt">ice</span> core climate adjustments" that suggest how local paleoclimate observations may be applied to the systematic refinement of <span class="hlt">ICE</span>-6G_C. Our results are consistent with a growing body of evidence suggesting that the geographical origins of Meltwater Pulse 1B (MWP1b) may lie primarily in North America as opposed to Antarctica (as reconstructed in <span class="hlt">ICE</span>-6G_C).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.C52A..03P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.C52A..03P"><span>Characterizing Arctic sea <span class="hlt">ice</span> topography and atmospheric form drag using high-resolution <span class="hlt">Ice</span>Bridge data</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Petty, A.; Tsamados, M.; Kurtz, N. T.; Farrell, S. L.; Newman, T.; Harbeck, J.; Feltham, D. L.; Richter-Menge, J.</p> <p>2015-12-01</p> <p>Here we present a detailed analysis of Arctic sea <span class="hlt">ice</span> topography using high resolution, three-dimensional surface elevation data from the NASA Operation <span class="hlt">Ice</span>Bridge Airborne Topographic Mapper (ATM) laser altimeter. We derive novel <span class="hlt">ice</span> topography statistics from 2009-2014 across both first-year and multiyear <span class="hlt">ice</span> regimes - including the height, area coverage, orientation and spacing of distinct surface features. The sea <span class="hlt">ice</span> topography exhibits strong spatial variability, including increased surface feature (e.g. pressure ridge) height and area coverage within the multi-year <span class="hlt">ice</span> regions. The <span class="hlt">ice</span> topography also shows a strong coastal dependency, with the feature height and area coverage increasing as a function of proximity to the nearest coastline, especially north of Greenland and the Canadian Archipelago. The <span class="hlt">ice</span> topography data have also been used to explicitly calculate atmospheric drag coefficients over Arctic sea <span class="hlt">ice</span>; utilizing existing relationships regarding ridge geometry and their impact on form drag. The results are being used to calibrate the recent drag parameterization scheme included in the sea <span class="hlt">ice</span> model CICE.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20120015900&hterms=export&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dexport','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20120015900&hterms=export&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dexport"><span>Variability and Trends in Sea <span class="hlt">Ice</span> Extent and <span class="hlt">Ice</span> Production in the Ross Sea</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Comiso, Josefino; Kwok, Ronald; Martin, Seelye; Gordon, Arnold L.</p> <p>2011-01-01</p> <p>Salt release during sea <span class="hlt">ice</span> formation in the Ross Sea coastal regions is regarded as a primary forcing for the regional generation of Antarctic Bottom Water. Passive microwave data from November 1978 through 2008 are used to examine the detailed seasonal and interannual characteristics of the sea <span class="hlt">ice</span> cover of the Ross Sea and the adjacent Bellingshausen and Amundsen seas. For this period the sea <span class="hlt">ice</span> extent in the Ross Sea shows the greatest increase of all the Antarctic seas. Variability in the <span class="hlt">ice</span> cover in these regions is linked to changes in the Southern Annular Mode and secondarily to the Antarctic Circumpolar Wave. Over the Ross Sea shelf, analysis of sea <span class="hlt">ice</span> drift data from 1992 to 2008 yields a positive rate of increase in the net <span class="hlt">ice</span> export of about 30,000 sq km/yr. For a characteristic <span class="hlt">ice</span> thickness of 0.6 m, this yields a volume transport of about 20 cu km/yr, which is almost identical, within error bars, to our estimate of the trend in <span class="hlt">ice</span> production. The increase in brine rejection in the Ross Shelf Polynya associated with the estimated increase with the <span class="hlt">ice</span> production, however, is not consistent with the reported Ross Sea salinity decrease. The locally generated sea <span class="hlt">ice</span> enhancement of Ross Sea salinity may be offset by an increase of relatively low salinity of the water advected into the region from the Amundsen Sea, a consequence of increased precipitation and regional glacial <span class="hlt">ice</span> melt.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012JGRC..117.9031G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012JGRC..117.9031G"><span>Modeling the basal melting and marine <span class="hlt">ice</span> accretion of the Amery <span class="hlt">Ice</span> Shelf</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Galton-Fenzi, B. K.; Hunter, J. R.; Coleman, R.; Marsland, S. J.; Warner, R. C.</p> <p>2012-09-01</p> <p>The basal mass balance of the Amery <span class="hlt">Ice</span> Shelf (AIS) in East Antarctica is investigated using a numerical ocean model. The main improvements of this model over previous studies are the inclusion of frazil formation and dynamics, tides and the use of the latest estimate of the sub-<span class="hlt">ice</span>-shelf cavity geometry. The model produces a net basal melt rate of 45.6 Gt year-1 (0.74 m <span class="hlt">ice</span> year-1) which is in good agreement with reviewed observations. The melting at the base of the <span class="hlt">ice</span> shelf is primarily due to interaction with High Salinity Shelf Water created from the surface sea-<span class="hlt">ice</span> formation in winter. The temperature difference between the coldest waters created in the open ocean and the in situ freezing point of ocean water in contact with the deepest part of the AIS drives a melt rate that can exceed 30 m of <span class="hlt">ice</span> year-1. The inclusion of frazil dynamics is shown to be important for both melting and marine <span class="hlt">ice</span> accretion (refreezing). Frazil initially forms in the supercooled water layer adjacent to the base of the <span class="hlt">ice</span> shelf. The net accretion of marine <span class="hlt">ice</span> is 5.3 Gt year-1, comprised of 3.7 Gt year-1 of frazil accretion and 1.6 Gt year-1 of direct basal refreezing.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20060033743&hterms=antartic&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dantartic','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20060033743&hterms=antartic&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dantartic"><span>The Antartic <span class="hlt">Ice</span> Borehole Probe</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Behar, A.; Carsey, F.; Lane, A.; Engelhardt, H.</p> <p>2000-01-01</p> <p>The Antartic <span class="hlt">Ice</span> Borehole Probe mission is a glaciological investigation, scheduled for November 2000-2001, that will place a probe in a hot-water drilled hole in the West Antartic <span class="hlt">ice</span> sheet. The objectives of the probe are to observe <span class="hlt">ice</span>-bed interactions with a downward looking camera, and <span class="hlt">ice</span> inclusions and structure, including hypothesized <span class="hlt">ice</span> accretion, with a side-looking camera.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA327882','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA327882"><span>River <span class="hlt">Ice</span> Data Instrumentation</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1997-06-01</p> <p>transmission and storage of data. Fi- nally, recommendations are made for further work in the field of <span class="hlt">ice</span> data collection. North Atlantic \\N...Missouri River Division (MRD) Kansas City Omaha MRK MRO 7 32 20 11 North Atlantic Division (NAD) Baltimore New York Norfolk Philadelphia... Western 1 r~ T T <span class="hlt">Ice</span> Thickness U Water Temperature < > Air Temperature i ► Discharge < | Water Stage < [ <span class="hlt">Ice</span> Areal Coverage a <span class="hlt">Ice</span></p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/6085044-arctic-ice-shelves-ice-islands-origin-growth-disintegration-physical-characteristics-structural-stratigraphic-variability-dynamics','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/6085044-arctic-ice-shelves-ice-islands-origin-growth-disintegration-physical-characteristics-structural-stratigraphic-variability-dynamics"><span>Arctic <span class="hlt">ice</span> shelves and <span class="hlt">ice</span> islands: Origin, growth and disintegration, physical characteristics, structural-stratigraphic variability, and dynamics</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Jeffries, M.O.</p> <p>1992-08-01</p> <p><span class="hlt">Ice</span> shelves are thick, floating <span class="hlt">ice</span> masses most often associated with Antarctica where they are seaward extensions of the grounded Antarctic <span class="hlt">ice</span> sheet and sources of many icebergs. However, there are also <span class="hlt">ice</span> shelves in the Arctic, primarily located along the north coast of Ellesmere Island in the Canadian High Arctic. The only <span class="hlt">ice</span> shelves in North America and the most extensive in the north polar region, the Ellesmere <span class="hlt">ice</span> shelves originate from glaciers and from sea <span class="hlt">ice</span> and are the source of <span class="hlt">ice</span> islands, the tabular icebergs of the Arctic Ocean. The present state of knowledge and understanding ofmore » these <span class="hlt">ice</span> features is summarized in this paper. It includes historical background to the discovery and early study of <span class="hlt">ice</span> shelves and <span class="hlt">ice</span> islands, including the use of <span class="hlt">ice</span> islands as floating laboratories for polar geophysical research. Growth mechanisms and age, the former extent and the twentieth century disintegration of the Ellesmere <span class="hlt">ice</span> shelves, and the processes and mechanisms of <span class="hlt">ice</span> island calving are summarized. Surface features, thickness, thermal regime, and the size, shape, and numbers of <span class="hlt">ice</span> islands are discussed. The structural-stratigraphic variability of <span class="hlt">ice</span> islands and <span class="hlt">ice</span> shelves and the complex nature of their growth and development are described. Large-scale and small-scale dynamics of <span class="hlt">ice</span> islands are described, and the results of modeling their drift and recurrence intervals are presented. The conclusion identifies some unanswered questions and future research opportunities and needs. 97 refs., 18 figs.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3997805','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3997805"><span>Marine <span class="hlt">ice</span> regulates the future stability of a large Antarctic <span class="hlt">ice</span> shelf</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Kulessa, Bernd; Jansen, Daniela; Luckman, Adrian J.; King, Edward C.; Sammonds, Peter R.</p> <p>2014-01-01</p> <p>The collapses of the Larsen A and B <span class="hlt">ice</span> shelves on the Antarctic Peninsula in 1995 and 2002 confirm the impact of southward-propagating climate warming in this region. Recent mass and dynamic changes of Larsen B’s southern neighbour Larsen C, the fourth largest <span class="hlt">ice</span> shelf in Antarctica, may herald a similar instability. Here, using a validated <span class="hlt">ice</span>-shelf model run in diagnostic mode, constrained by satellite and in situ geophysical data, we identify the nature of this potential instability. We demonstrate that the present-day spatial distribution and orientation of the principal stresses within Larsen C <span class="hlt">ice</span> shelf are akin to those within pre-collapse Larsen B. When Larsen B’s stabilizing frontal portion was lost in 1995, the unstable remaining shelf accelerated, crumbled and ultimately collapsed. We hypothesize that Larsen C <span class="hlt">ice</span> shelf may suffer a similar fate if it were not stabilized by warm and mechanically soft marine <span class="hlt">ice</span>, entrained within narrow suture zones. PMID:24751641</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19870061487&hterms=correlation+coefficient&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dcorrelation%2Bcoefficient','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19870061487&hterms=correlation+coefficient&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dcorrelation%2Bcoefficient"><span>Evaluation of <span class="hlt">icing</span> drag coefficient correlations applied to <span class="hlt">iced</span> propeller performance prediction</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Miller, Thomas L.; Shaw, R. J.; Korkan, K. D.</p> <p>1987-01-01</p> <p>Evaluation of three empirical <span class="hlt">icing</span> drag coefficient correlations is accomplished through application to a set of propeller <span class="hlt">icing</span> data. The various correlations represent the best means currently available for relating drag rise to various flight and atmospheric conditions for both fixed-wing and rotating airfoils, and the work presented here ilustrates and evaluates one such application of the latter case. The origins of each of the correlations are discussed, and their apparent capabilities and limitations are summarized. These correlations have been made to be an integral part of a computer code, ICEPERF, which has been designed to calculate <span class="hlt">iced</span> propeller performance. Comparison with experimental propeller <span class="hlt">icing</span> data shows generally good agreement, with the quality of the predicted results seen to be directly related to the radial <span class="hlt">icing</span> extent of each case. The code's capability to properly predict thrust coefficient, power coefficient, and propeller efficiency is shown to be strongly dependent on the choice of correlation selected, as well as upon proper specificatioon of radial <span class="hlt">icing</span> extent.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014PhRvB..89s5123M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014PhRvB..89s5123M"><span>Coulombic charge <span class="hlt">ice</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>McClarty, P. A.; O'Brien, A.; Pollmann, F.</p> <p>2014-05-01</p> <p>We consider a classical model of charges ±q on a pyrochlore lattice in the presence of long-range Coulomb interactions. This model first appeared in the early literature on charge order in magnetite [P. W. Anderson, Phys. Rev. 102, 1008 (1956), 10.1103/PhysRev.102.1008]. In the limit where the interactions become short ranged, the model has a ground state with an extensive entropy and dipolar charge-charge correlations. When long-range interactions are introduced, the exact degeneracy is broken. We study the thermodynamics of the model and show the presence of a correlated charge liquid within a temperature window in which the physics is well described as a liquid of screened charged defects. The structure factor in this phase, which has smeared pinch points at the reciprocal lattice points, may be used to detect charge <span class="hlt">ice</span> experimentally. In addition, the model exhibits fractionally charged excitations ±q/2 which are shown to interact via a 1/r potential. At lower temperatures, the model exhibits a transition to a long-range ordered phase. We are able to treat the Coulombic charge <span class="hlt">ice</span> model and the dipolar spin <span class="hlt">ice</span> model on an equal footing by mapping both to a constrained charge model on the diamond lattice. We find that states of the two <span class="hlt">ice</span> models are related by a staggering field which is reflected in the energetics of these two models. From this perspective, we can understand the origin of the spin <span class="hlt">ice</span> and charge <span class="hlt">ice</span> ground states as coming from a dipolar model on a diamond lattice. We study the properties of charge <span class="hlt">ice</span> in an external electric field, finding that the correlated liquid is robust to the presence of a field in contrast to the case of spin <span class="hlt">ice</span> in a magnetic field. Finally, we comment on the transport properties of Coulombic charge <span class="hlt">ice</span> in the correlated liquid phase.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28811530','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28811530"><span>Evidence for <span class="hlt">ice</span>-ocean albedo feedback in the Arctic Ocean shifting to a seasonal <span class="hlt">ice</span> zone.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kashiwase, Haruhiko; Ohshima, Kay I; Nihashi, Sohey; Eicken, Hajo</p> <p>2017-08-15</p> <p><span class="hlt">Ice</span>-albedo feedback due to the albedo contrast between water and <span class="hlt">ice</span> is a major factor in seasonal sea <span class="hlt">ice</span> retreat, and has received increasing attention with the Arctic Ocean shifting to a seasonal <span class="hlt">ice</span> cover. However, quantitative evaluation of such feedbacks is still insufficient. Here we provide quantitative evidence that heat input through the open water fraction is the primary driver of seasonal and interannual variations in Arctic sea <span class="hlt">ice</span> retreat. Analyses of satellite data (1979-2014) and a simplified <span class="hlt">ice</span>-upper ocean coupled model reveal that divergent <span class="hlt">ice</span> motion in the early melt season triggers large-scale feedback which subsequently amplifies summer sea <span class="hlt">ice</span> anomalies. The magnitude of divergence controlling the feedback has doubled since 2000 due to a more mobile <span class="hlt">ice</span> cover, which can partly explain the recent drastic <span class="hlt">ice</span> reduction in the Arctic Ocean.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26336338','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26336338"><span>Multiple Off-<span class="hlt">Ice</span> Performance Variables Predict On-<span class="hlt">Ice</span> Skating Performance in Male and Female Division III <span class="hlt">Ice</span> Hockey Players.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Janot, Jeffrey M; Beltz, Nicholas M; Dalleck, Lance D</p> <p>2015-09-01</p> <p>The purpose of this study was to determine if off-<span class="hlt">ice</span> performance variables could predict on-<span class="hlt">ice</span> skating performance in Division III collegiate hockey players. Both men (n = 15) and women (n = 11) hockey players (age = 20.5 ± 1.4 years) participated in the study. The skating tests were agility cornering S-turn, 6.10 m acceleration, 44.80 m speed, modified repeat skate, and 15.20 m full speed. Off-<span class="hlt">ice</span> variables assessed were years of playing experience, height, weight and percent body fat and off-<span class="hlt">ice</span> performance variables included vertical jump (VJ), 40-yd dash (36.58m), 1-RM squat, pro-agility, Wingate peak power and peak power percentage drop (% drop), and 1.5 mile (2.4km) run. Results indicated that 40-yd dash (36.58m), VJ, 1.5 mile (2.4km) run, and % drop were significant predictors of skating performance for repeat skate (slowest, fastest, and average time) and 44.80 m speed time, respectively. Four predictive equations were derived from multiple regression analyses: 1) slowest repeat skate time = 2.362 + (1.68 x 40-yd dash time) + (0.005 x 1.5 mile run), 2) fastest repeat skate time = 9.762 - (0.089 x VJ) - (0.998 x 40-yd dash time), 3) average repeat skate time = 7.770 + (1.041 x 40-yd dash time) - (0.63 x VJ) + (0.003 x 1.5 mile time), and 4) 47.85 m speed test = 7.707 - (0.050 x VJ) - (0.01 x % drop). It was concluded that selected off-<span class="hlt">ice</span> tests could be used to predict on-<span class="hlt">ice</span> performance regarding speed and recovery ability in Division III male and female hockey players. Key pointsThe 40-yd dash (36.58m) and vertical jump tests are significant predictors of on-<span class="hlt">ice</span> skating performance specific to speed.In addition to 40-yd dash and vertical jump, the 1.5 mile (2.4km) run for time and percent power drop from the Wingate anaerobic power test were also significant predictors of skating performance that incorporates the aspect of recovery from skating activity.Due to the specificity of selected off-<span class="hlt">ice</span> variables as predictors of on-<span class="hlt">ice</span> performance, coaches can</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4541115','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4541115"><span>Multiple Off-<span class="hlt">Ice</span> Performance Variables Predict On-<span class="hlt">Ice</span> Skating Performance in Male and Female Division III <span class="hlt">Ice</span> Hockey Players</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Janot, Jeffrey M.; Beltz, Nicholas M.; Dalleck, Lance D.</p> <p>2015-01-01</p> <p>The purpose of this study was to determine if off-<span class="hlt">ice</span> performance variables could predict on-<span class="hlt">ice</span> skating performance in Division III collegiate hockey players. Both men (n = 15) and women (n = 11) hockey players (age = 20.5 ± 1.4 years) participated in the study. The skating tests were agility cornering S-turn, 6.10 m acceleration, 44.80 m speed, modified repeat skate, and 15.20 m full speed. Off-<span class="hlt">ice</span> variables assessed were years of playing experience, height, weight and percent body fat and off-<span class="hlt">ice</span> performance variables included vertical jump (VJ), 40-yd dash (36.58m), 1-RM squat, pro-agility, Wingate peak power and peak power percentage drop (% drop), and 1.5 mile (2.4km) run. Results indicated that 40-yd dash (36.58m), VJ, 1.5 mile (2.4km) run, and % drop were significant predictors of skating performance for repeat skate (slowest, fastest, and average time) and 44.80 m speed time, respectively. Four predictive equations were derived from multiple regression analyses: 1) slowest repeat skate time = 2.362 + (1.68 x 40-yd dash time) + (0.005 x 1.5 mile run), 2) fastest repeat skate time = 9.762 - (0.089 x VJ) - (0.998 x 40-yd dash time), 3) average repeat skate time = 7.770 + (1.041 x 40-yd dash time) - (0.63 x VJ) + (0.003 x 1.5 mile time), and 4) 47.85 m speed test = 7.707 - (0.050 x VJ) - (0.01 x % drop). It was concluded that selected off-<span class="hlt">ice</span> tests could be used to predict on-<span class="hlt">ice</span> performance regarding speed and recovery ability in Division III male and female hockey players. Key points The 40-yd dash (36.58m) and vertical jump tests are significant predictors of on-<span class="hlt">ice</span> skating performance specific to speed. In addition to 40-yd dash and vertical jump, the 1.5 mile (2.4km) run for time and percent power drop from the Wingate anaerobic power test were also significant predictors of skating performance that incorporates the aspect of recovery from skating activity. Due to the specificity of selected off-<span class="hlt">ice</span> variables as predictors of on-<span class="hlt">ice</span> performance, coaches</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.C32B..01T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.C32B..01T"><span>Some Results on Sea <span class="hlt">Ice</span> Rheology for the Seasonal <span class="hlt">Ice</span> Zone, Obtained from the Deformation Field of Sea <span class="hlt">Ice</span> Drift Pattern</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Toyota, T.; Kimura, N.</p> <p>2017-12-01</p> <p>Sea <span class="hlt">ice</span> rheology which relates sea <span class="hlt">ice</span> stress to the large-scale deformation of the <span class="hlt">ice</span> cover has been a big issue to numerical sea <span class="hlt">ice</span> modelling. At present the treatment of internal stress within sea <span class="hlt">ice</span> area is based mostly on the rheology formulated by Hibler (1979), where the whole sea <span class="hlt">ice</span> area behaves like an isotropic and plastic matter under the ordinary stress with the yield curve given by an ellipse with an aspect ratio (e) of 2, irrespective of sea <span class="hlt">ice</span> area and horizontal resolution of the model. However, this formulation was initially developed to reproduce the seasonal variation of the perennial <span class="hlt">ice</span> in the Arctic Ocean. As for its applicability to the seasonal <span class="hlt">ice</span> zones (SIZ), where various types of sea <span class="hlt">ice</span> are present, it still needs validation from observational data. In this study, the validity of this rheology was examined for the Sea of Okhotsk <span class="hlt">ice</span>, typical of the SIZ, based on the AMSR-derived <span class="hlt">ice</span> drift pattern in comparison with the result obtained for the Beaufort Sea. To examine the dependence on a horizontal scale, the coastal radar data operated near the Hokkaido coast, Japan, were also used. <span class="hlt">Ice</span> drift pattern was obtained by a maximum cross-correlation method with grid spacings of 37.5 km from the 89 GHz brightness temperature of AMSR-E for the entire Sea of Okhotsk and the Beaufort Sea and 1.3 km from the coastal radar for the near-shore Sea of Okhotsk. The validity of this rheology was investigated from a standpoint of work rate done by deformation field, following the theory of Rothrock (1975). In analysis, the relative rates of convergence were compared between theory and observation to check the shape of yield curve, and the strain ellipse at each grid cell was estimated to see the horizontal variation of deformation field. The result shows that the ellipse of e=1.7-2.0 as the yield curve represents the observed relative conversion rates well for all the <span class="hlt">ice</span> areas. Since this result corresponds with the yield criterion by Tresca and</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012TRACE..21..285O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012TRACE..21..285O"><span>Dynamic-Type <span class="hlt">Ice</span> Thermal Storage Systems</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ohira, Akiyoshi</p> <p></p> <p>This paper deals with reviews for research and development of a dynamic-type <span class="hlt">ice</span> thermal storage system. This system has three main features. First, the <span class="hlt">ice</span> thermal storage tank and the <span class="hlt">ice</span> generator are separate. Second, <span class="hlt">ice</span> is transported to the tank from the <span class="hlt">ice</span> generator by water or air. Third, the <span class="hlt">ice</span> making and melting processes are operated at the same time. Outlet water temperature from the dynamic-type <span class="hlt">ice</span> thermal storage tank remains low for a longer time. In this paper, dynamic-Type <span class="hlt">ice</span> thermal storage systems are divided into three parts: the <span class="hlt">ice</span> making part, the <span class="hlt">ice</span> transport part, and the cold energy release part. Each part is reviewed separately.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20090030602','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20090030602"><span>Proceedings of the Airframe <span class="hlt">Icing</span> Workshop</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Colantonio, Ron O. (Editor)</p> <p>2009-01-01</p> <p>The NASA Glenn Research Center (GRC) has a long history of working with its partners towards the understanding of <span class="hlt">ice</span> accretion formation and its associated degradation of aerodynamic performance. The June 9, 2009, Airframe <span class="hlt">Icing</span> Workshop held at GRC provided an opportunity to examine the current NASA airframe <span class="hlt">icing</span> research program and to dialogue on remaining and emerging airframe <span class="hlt">icing</span> issues and research with the external community. Some of the airframe <span class="hlt">icing</span> gaps identified included, but are not limited to, <span class="hlt">ice</span> accretion simulation enhancements, three-dimensional benchmark <span class="hlt">icing</span> database development, three-dimensional <span class="hlt">iced</span> aerodynamics modeling, and technology development for a smart <span class="hlt">icing</span> system.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-GSFC_20171208_Archive_e000945.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-GSFC_20171208_Archive_e000945.html"><span>Operation <span class="hlt">Ice</span>Bridge Turns Five</span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2017-12-08</p> <p>In May 2014, two new studies concluded that a section of the land-based West Antarctic <span class="hlt">ice</span> sheet had reached a point of inevitable collapse. Meanwhile, fresh observations from September 2014 showed sea <span class="hlt">ice</span> around Antarctica had reached its greatest extent since the late 1970s. To better understand such dynamic and dramatic differences in the region's land and sea <span class="hlt">ice</span>, researchers are travelling south to Antarctica this month for the sixth campaign of NASA’s Operation <span class="hlt">Ice</span>Bridge. The airborne campaign, which also flies each year over Greenland, makes annual surveys of the <span class="hlt">ice</span> with instrumented research aircraft. Instruments range from lasers that map the elevation of the <span class="hlt">ice</span> surface, radars that "see" below it, and downward looking cameras to provide a natural-color perspective. The Digital Mapping System (DMS) camera acquired the above photo during the mission’s first science flight on October 16, 2009. At the time of the image, the DC-8 aircraft was flying at an altitude of 515 meters (1,700 feet) over heavily compacted first-year sea <span class="hlt">ice</span> along the edge of the Amundsen Sea. Since that first flight, much has been gleaned from <span class="hlt">Ice</span>Bridge data. For example, images from an <span class="hlt">Ice</span>Bridge flight in October 2011 revealed a massive crack running about 29 kilometers (18 miles) across the floating tongue of Antarctica's Pine Island Glacier. The crack ultimately led to a 725-square-kilometer (280-square-mile) iceberg. In 2012, <span class="hlt">Ice</span>Bridge data was a key part of a new map of Antarctica called Bedmap2. By combining surface elevation, <span class="hlt">ice</span> thickness, and bedrock topography, Bedmap2 gives a clearer picture of Antarctica from the <span class="hlt">ice</span> surface down to the land surface. Discoveries have been made in Greenland, too, including the identification of a 740-kilometer-long (460-mile-long) mega canyon below the <span class="hlt">ice</span> sheet. Repeated measurements of land and sea <span class="hlt">ice</span> from aircraft extend the record of observations once made by NASA’s <span class="hlt">Ice</span>, Cloud, and Land Elevation Satellite, or ICESat, which</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A13O..06K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A13O..06K"><span>Where's the Water in (Salty) <span class="hlt">Ice</span>?</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kahan, T.; Malley, P.</p> <p>2017-12-01</p> <p>Solutes can have large effects on reactivity in <span class="hlt">ice</span> and at <span class="hlt">ice</span> surfaces. Freeze concentration ("the salting out effect") forms liquid regions containing high solute concentrations surrounded by relatively solute-free <span class="hlt">ice</span>. Thermodynamics can predict the fraction of <span class="hlt">ice</span> that is liquid for a given temperature and (pre-frozen) solute concentration, as well as the solute concentration within these liquid regions, but they do not inform on the spatial distribution of the solutes and the liquid regions within the <span class="hlt">ice</span>. This leads to significant uncertainty in predictions of reaction kinetics in <span class="hlt">ice</span> and at <span class="hlt">ice</span> surfaces. We have used Raman microscopy to determine the location of liquid regions within <span class="hlt">ice</span> and at <span class="hlt">ice</span> surface in the presence of sodium chloride (NaCl). Under most conditions, liquid channels are observed at the <span class="hlt">ice</span> surface and throughout the <span class="hlt">ice</span> bulk. The fraction of the <span class="hlt">ice</span> that is liquid, as well as the widths of these channels, increases with increasing temperature. Below the eutectic temperature (-21.1 oC), no liquid is observed. Patches of NaCl.2H2O ("hydrohalite") are observed at the <span class="hlt">ice</span> surface under these conditions. These results will improve predictions of reaction kinetics in <span class="hlt">ice</span> and at <span class="hlt">ice</span> surfaces.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20050186848&hterms=Running+beneficial&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DRunning%2Bbeneficial','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20050186848&hterms=Running+beneficial&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DRunning%2Bbeneficial"><span>Surface Modeling and Grid Generation for <span class="hlt">Iced</span> Airfoils (Smagg<span class="hlt">Ice</span>)</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hammond, Brandy M.</p> <p>2004-01-01</p> <p>Many of the troubles associated with problem solving are alleviated when there is a model that can be used to represent the problem. Through the Advanced Graphics and Visualization (G-VIS) Laboratory and other facilities located within the Research Analysis Center, the Computer Services Division (CSD) is able to develop and maintain programs and software that allow for the modeling of various situations. For example, the <span class="hlt">Icing</span> Research Branch is devoted to investigating the effect of <span class="hlt">ice</span> that forms on the wings and other airfoils of airplanes while in flight. While running tests that physically generate <span class="hlt">ice</span> and wind on airfoils within the laboratories and wind tunnels on site are done, it would be beneficial if most of the preliminary work could be done outside of the lab. Therefore, individuals from within CSD have collaborated with <span class="hlt">Icing</span> Research in order to create Smagg<span class="hlt">Ice</span>. This software allows users to create <span class="hlt">ice</span> patterns on clean airfoils or open files containing a variety of <span class="hlt">icing</span> situations, manipulate and measure these forms, generate, divide, and merge grids around these elements for more explicit analysis, and specify and rediscretize subcurves. With the projected completion date of Summer 2005, the majority of the focus of the Smagglce team is user-functionality and error handling. My primary responsibility is to test the Graphical User Interface (GUI) in Smagg<span class="hlt">Ice</span> in order to ensure the usability and verify the expected results of the events (buttons, menus, etc.) within the program. However, there is no standardized, systematic way in which to test all the possible combinations or permutations of events, not to mention unsolicited events such as errors. Moreover, scripting tests, if not done properly and with a view towards inevitable revision, can result in more apparent errors within the software and in effect become useless whenever the developers of the program make a slight change in the way a specific process is executed. My task therefore</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009EGUGA..11.5232H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009EGUGA..11.5232H"><span>Sensitivities of Greenland <span class="hlt">ice</span> sheet volume inferred from an <span class="hlt">ice</span> sheet adjoint model</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Heimbach, P.; Bugnion, V.</p> <p>2009-04-01</p> <p>We present a new and original approach to understanding the sensitivity of the Greenland <span class="hlt">ice</span> sheet to key model parameters and environmental conditions. At the heart of this approach is the use of an adjoint <span class="hlt">ice</span> sheet model. Since its introduction by MacAyeal (1992), the adjoint method has become widespread to fit <span class="hlt">ice</span> stream models to the increasing number and diversity of satellite observations, and to estimate uncertain model parameters such as basal conditions. However, no attempt has been made to extend this method to comprehensive <span class="hlt">ice</span> sheet models. As a first step toward the use of adjoints of comprehensive three-dimensional <span class="hlt">ice</span> sheet models we have generated an adjoint of the <span class="hlt">ice</span> sheet model SICOPOLIS of Greve (1997). The adjoint was generated by means of the automatic differentiation (AD) tool TAF. The AD tool generates exact source code representing the tangent linear and adjoint model of the nonlinear parent model provided. Model sensitivities are given by the partial derivatives of a scalar-valued model diagnostic with respect to the controls, and can be efficiently calculated via the adjoint. By way of example, we determine the sensitivity of the total Greenland <span class="hlt">ice</span> volume to various control variables, such as spatial fields of basal flow parameters, surface and basal forcings, and initial conditions. Reliability of the adjoint was tested through finite-difference perturbation calculations for various control variables and perturbation regions. Besides confirming qualitative aspects of <span class="hlt">ice</span> sheet sensitivities, such as expected regional variations, we detect regions where model sensitivities are seemingly unexpected or counter-intuitive, albeit ``real'' in the sense of actual model behavior. An example is inferred regions where sensitivities of <span class="hlt">ice</span> sheet volume to basal sliding coefficient are positive, i.e. where a local increase in basal sliding parameter increases the <span class="hlt">ice</span> sheet volume. Similarly, positive <span class="hlt">ice</span> temperature sensitivities in certain parts</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JMS...166....4S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JMS...166....4S"><span>Modelling sea <span class="hlt">ice</span> formation in the Terra Nova Bay polynya</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sansiviero, M.; Morales Maqueda, M. Á.; Fusco, G.; Aulicino, G.; Flocco, D.; Budillon, G.</p> <p>2017-02-01</p> <p>Antarctic sea <span class="hlt">ice</span> is constantly exported from the shore by strong near surface winds that open leads and large polynyas in the <span class="hlt">pack</span> <span class="hlt">ice</span>. The latter, known as wind-driven polynyas, are responsible for significant water mass modification due to the high salt flux into the ocean associated with enhanced <span class="hlt">ice</span> growth. In this article, we focus on the wind-driven Terra Nova Bay (TNB) polynya, in the western Ross Sea. Brine rejected during sea <span class="hlt">ice</span> formation processes that occur in the TNB polynya densifies the water column leading to the formation of the most characteristic water mass of the Ross Sea, the High Salinity Shelf Water (HSSW). This water mass, in turn, takes part in the formation of Antarctic Bottom Water (AABW), the densest water mass of the world ocean, which plays a major role in the global meridional overturning circulation, thus affecting the global climate system. A simple coupled sea <span class="hlt">ice</span>-ocean model has been developed to simulate the seasonal cycle of sea <span class="hlt">ice</span> formation and export within a polynya. The sea <span class="hlt">ice</span> model accounts for both thermal and mechanical <span class="hlt">ice</span> processes. The oceanic circulation is described by a one-and-a-half layer, reduced gravity model. The domain resolution is 1 km × 1 km, which is sufficient to represent the salient features of the coastline geometry, notably the Drygalski <span class="hlt">Ice</span> Tongue. The model is forced by a combination of Era Interim reanalysis and in-situ data from automatic weather stations, and also by a climatological oceanic dataset developed from in situ hydrographic observations. The sensitivity of the polynya to the atmospheric forcing is well reproduced by the model when atmospheric in situ measurements are combined with reanalysis data. Merging the two datasets allows us to capture in detail the strength and the spatial distribution of the katabatic winds that often drive the opening of the polynya. The model resolves fairly accurately the sea <span class="hlt">ice</span> drift and sea <span class="hlt">ice</span> production rates in the TNB polynya, leading to</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.C53B0778M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.C53B0778M"><span>Impact of surface roughness on L-band emissivity of the sea <span class="hlt">ice</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Miernecki, M.; Kaleschke, L.; Hendricks, S.; Søbjærg, S. S.</p> <p>2015-12-01</p> <p>In March 2014 a joint experiment IRO2/SMOSice was carried out in the Barents Sea. R/V Lance equipped with meteorological instruments, electromagnetic sea <span class="hlt">ice</span> thickness probe and engine monitoring instruments, was performing a series of tests in different <span class="hlt">ice</span> conditions in order to validate the <span class="hlt">ice</span> route optimization (IRO) system, advising on his route through <span class="hlt">pack</span> <span class="hlt">ice</span>. In parallel cal/val activities for sea <span class="hlt">ice</span> thickness product obtained from SMOS (Soil Moisture and Ocean Salinity mission) L-band radiometer were carried out. Apart from helicopter towing the EMbird thickness probe, Polar 5 aircraft was serving the area during the experiment with L-band radiometer EMIRAD2 and Airborne Laser Scanner (ALS) as primary instruments. Sea <span class="hlt">ice</span> Thickness algorithm using SMOS brightness temperature developed at University of Hamburg, provides daily maps of thin sea <span class="hlt">ice</span> (up to 0.5-1 m) in polar regions with resolution of 35-50 km. So far the retrieval method was not taking into account surface roughness, assuming that sea <span class="hlt">ice</span> is a specular surface. Roughness is a stochastic process that can be characterized by standard deviation of surface height σ and by shape of the autocorrelation function R to estimate it's vertical and horizontal scales respectively. Interactions of electromagnetic radiation with the surface of the medium are dependent on R and σ and they scales with respect to the incident wavelength. During SMOSice the radiometer was observing sea <span class="hlt">ice</span> surface at two incidence angles 0 and 40 degrees and simultaneously the surface elevation was scanned with ALS with ground resolution of ~ 0.25 m. This configuration allowed us to calculate σ and R from power spectral densities of surface elevation profiles and quantify the effect of surface roughness on the emissivity of the sea <span class="hlt">ice</span>. First results indicate that Gaussian autocorrelation function is suitable for deformed <span class="hlt">ice</span>, for other <span class="hlt">ice</span> types exponential function is the best fit.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20010048416&hterms=hydrometer&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dhydrometer','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20010048416&hterms=hydrometer&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dhydrometer"><span><span class="hlt">Ice</span> Nucleation in Deep Convection</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Jensen, Eric; Ackerman, Andrew; Stevens, David; Gore, Warren J. (Technical Monitor)</p> <p>2001-01-01</p> <p>The processes controlling production of <span class="hlt">ice</span> crystals in deep, rapidly ascending convective columns are poorly understood due to the difficulties involved with either modeling or in situ sampling of these violent clouds. A large number of <span class="hlt">ice</span> crystals are no doubt generated when droplets freeze at about -40 C. However, at higher levels, these crystals are likely depleted due to precipitation and detrainment. As the <span class="hlt">ice</span> surface area decreases, the relative humidity can increase well above <span class="hlt">ice</span> saturation, resulting in bursts of <span class="hlt">ice</span> nucleation. We will present simulations of these processes using a large-eddy simulation model with detailed microphysics. Size bins are included for aerosols, liquid droplets, <span class="hlt">ice</span> crystals, and mixed-phase (<span class="hlt">ice</span>/liquid) hydrometers. Microphysical processes simulated include droplet activation, freezing, melting, homogeneous freezing of sulfate aerosols, and heterogeneous <span class="hlt">ice</span> nucleation. We are focusing on the importance of <span class="hlt">ice</span> nucleation events in the upper part of the cloud at temperatures below -40 C. We will show that the ultimate evolution of the cloud in this region (and the anvil produced by the convection) is sensitive to these <span class="hlt">ice</span> nucleation events, and hence to the composition of upper tropospheric aerosols that get entrained into the convective column.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008E%26PSL.265..246N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008E%26PSL.265..246N"><span>Conditions for a steady <span class="hlt">ice</span> sheet <span class="hlt">ice</span> shelf junction</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nowicki, S. M. J.; Wingham, D. J.</p> <p>2008-01-01</p> <p>This paper investigates the conditions under which a marine <span class="hlt">ice</span> sheet may adopt a steady profile. The <span class="hlt">ice</span> is treated as a linear viscous fluid caused to flow from a rigid base to and over water, treated as a denser but inviscid fluid. The solutions in the region around the point of flotation, or 'transition' zone, are calculated numerically. In-flow and out-flow conditions appropriate to <span class="hlt">ice</span> sheet and <span class="hlt">ice</span> shelf flow are applied at the ends of the transition zone and the rigid base is specified; the flow and steady free surfaces are determined as part of the solutions. The basal stress upstream, and the basal deflection downstream, of the flotation point are examined to determine which of these steady solutions satisfy 'contact' conditions that would prevent (i) the steady downstream basal deflection contacting the downstream base, and (ii) the upstream <span class="hlt">ice</span> commencing to float in the event it was melted at the base. In the case that the upstream bed is allowed to slide, we find only one mass flux that satisfies the contact conditions. When no sliding is allowed at the bed, however, we find a range of mass fluxes satisfy the contact conditions. The effect of 'backpressure' on the solutions is investigated, and is found to have no affect on the qualitative behaviour of the junctions. To the extent that the numerical, linearly viscous treatment may be applied to the case of <span class="hlt">ice</span> flowing out over the ocean, we conclude that when sliding is present, Weertman's 'instability' hypothesis holds.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20080048008','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20080048008"><span>Coating Reduces <span class="hlt">Ice</span> Adhesion</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Smith, Trent; Prince, Michael; DwWeese, Charles; Curtis, Leslie</p> <p>2008-01-01</p> <p>The Shuttle <span class="hlt">Ice</span> Liberation Coating (SILC) has been developed to reduce the adhesion of <span class="hlt">ice</span> to surfaces on the space shuttle. SILC, when coated on a surface (foam, metal, epoxy primer, polymer surfaces), will reduce the adhesion of <span class="hlt">ice</span> by as much as 90 percent as compared to the corresponding uncoated surface. This innovation is a durable coating that can withstand several cycles of <span class="hlt">ice</span> growth and removal without loss of anti-adhesion properties. SILC is made of a binder composed of varying weight percents of siloxane(s), ethyl alcohol, ethyl sulfate, isopropyl alcohol, and of fine-particle polytetrafluoroethylene (PTFE). The combination of these components produces a coating with significantly improved weathering characteristics over the siloxane system alone. In some cases, the coating will delay <span class="hlt">ice</span> formation and can reduce the amount of <span class="hlt">ice</span> formed. SILC is not an <span class="hlt">ice</span> prevention coating, but the very high water contact angle (greater than 140 ) causes water to readily run off the surface. This coating was designed for use at temperatures near -170 F (-112 C). <span class="hlt">Ice</span> adhesion tests performed at temperatures from -170 to 20 F (-112 to -7 C) show that SILC is a very effective <span class="hlt">ice</span> release coating. SILC can be left as applied (opaque) or buffed off until the surface appears clear. Energy dispersive spectroscopy (EDS) and x-ray photoelectron spectroscopy (XPS) data show that the coating is still present after buffing to transparency. This means SILC can be used to prevent <span class="hlt">ice</span> adhesion even when coating windows or other objects, or items that require transmission of optical light. Car windshields are kept cleaner and SILC effectively mitigates rain and snow under driving conditions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20060041320&hterms=Antarctic+icebergs&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DAntarctic%2Bicebergs','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20060041320&hterms=Antarctic+icebergs&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DAntarctic%2Bicebergs"><span>Comparison of <span class="hlt">Ice</span>-shelf Creep Flow Simulations with <span class="hlt">Ice</span>-front Motion of Filchner-Ronne <span class="hlt">Ice</span> Shelf, Antarctica, Detected by SAR Interferometry</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hulbe, C. L.; Rignot, E.; MacAyeal, D. R.</p> <p>1998-01-01</p> <p>Comparison between numerical model <span class="hlt">ice</span>-shelf flow simulations and synthetic aperture radar (SAR) interferograms is used to study the dynamics at the Hemmen <span class="hlt">Ice</span> Rise (HIR) and Lassiter Coast (LC) corners of the iceberg-calving front of the Filchner-Ronne <span class="hlt">Ice</span> Shelf (FRIS).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/6648212-fire-beneath-ice','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/6648212-fire-beneath-ice"><span>Fire beneath the <span class="hlt">ice</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Monastersky, R.</p> <p>1993-02-13</p> <p>A volcano discovered six years ago by researchers Blankenship and Bell under Antarctica poses questions about a potential climatic catastrophe. The researchers claim that the volcano is still active, erupting occasionally and growing. A circular depression on the surface of the <span class="hlt">ice</span> sheet has <span class="hlt">ice</span> flowing into it and is used to provide a portrait of the heat source. The volcano is on a critical transition zone within West Antarctica with fast flowing <span class="hlt">ice</span> streams directly downhill. Work by Blankenship shows that a soft layer of water-logged sediments called till provide the lubricating layer on the underside of the icemore » streams. Volcanos may provide the source of this till. The <span class="hlt">ice</span> streams buffer the thick interior <span class="hlt">ice</span> from the ocean and no one know what will happen if the <span class="hlt">ice</span> streams continue to shorten. These researchers believe their results indicate that the stability of West Antarctica ultimately depends less on the current climate than on the location of heat and sediments under the <span class="hlt">ice</span> and the legacy of past climatic changes.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016DSRII.131....7H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016DSRII.131....7H"><span>SIPEX 2012: Extreme sea-<span class="hlt">ice</span> and atmospheric conditions off East Antarctica</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Heil, P.; Stammerjohn, S.; Reid, P.; Massom, R. A.; Hutchings, J. K.</p> <p>2016-09-01</p> <p> 2012 has been identified to have fed into the westward current of the SIPEX 2012 region. A pair of large grounded icebergs appears to have modified the local stress state as well as the structure of the <span class="hlt">ice</span> <span class="hlt">pack</span> upstream and also towards the Dalton Glacier Tongue. Together with the increased influx of sea <span class="hlt">ice</span> into the regions, this contributed to the difficulties in navigating the SIPEX 2012 region.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ISPAr41B8..481B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ISPAr41B8..481B"><span>Mass Balance Changes and <span class="hlt">Ice</span> Dynamics of Greenland and Antarctic <span class="hlt">Ice</span> Sheets from Laser Altimetry</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Babonis, G. S.; Csatho, B.; Schenk, T.</p> <p>2016-06-01</p> <p>During the past few decades the Greenland and Antarctic <span class="hlt">ice</span> sheets have lost <span class="hlt">ice</span> at accelerating rates, caused by increasing surface temperature. The melting of the two big <span class="hlt">ice</span> sheets has a big impact on global sea level rise. If the <span class="hlt">ice</span> sheets would melt down entirely, the sea level would rise more than 60 m. Even a much smaller rise would cause dramatic damage along coastal regions. In this paper we report about a major upgrade of surface elevation changes derived from laser altimetry data, acquired by NASA's <span class="hlt">Ice</span>, Cloud and land Elevation Satellite mission (ICESat) and airborne laser campaigns, such as Airborne Topographic Mapper (ATM) and Land, Vegetation and <span class="hlt">Ice</span> Sensor (LVIS). For detecting changes in <span class="hlt">ice</span> sheet elevations we have developed the Surface Elevation Reconstruction And Change detection (SERAC) method. It computes elevation changes of small surface patches by keeping the surface shape constant and considering the absolute values as surface elevations. We report about important upgrades of earlier results, for example the inclusion of local <span class="hlt">ice</span> caps and the temporal extension from 1993 to 2014 for the Greenland <span class="hlt">Ice</span> Sheet and for a comprehensive reconstruction of <span class="hlt">ice</span> thickness and mass changes for the Antarctic <span class="hlt">Ice</span> Sheets.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-GSFC_20171208_Archive_e001605.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-GSFC_20171208_Archive_e001605.html"><span>Iceberg in sea <span class="hlt">ice</span></span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2017-12-08</p> <p>An iceberg embedded in sea <span class="hlt">ice</span> as seen from the <span class="hlt">Ice</span>Bridge DC-8 over the Bellingshausen Sea on Oct. 19, 2012. Credit: NASA / James Yungel NASA's Operation <span class="hlt">Ice</span>Bridge is an airborne science mission to study Earth's polar <span class="hlt">ice</span>. For more information about <span class="hlt">Ice</span>Bridge, visit: www.nasa.gov/icebridge NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PApGe.173.3141K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PApGe.173.3141K"><span>Importance of Chemical Composition of <span class="hlt">Ice</span> Nuclei on the Formation of Arctic <span class="hlt">Ice</span> Clouds</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Keita, Setigui Aboubacar; Girard, Eric</p> <p>2016-09-01</p> <p><span class="hlt">Ice</span> clouds play an important role in the Arctic weather and climate system but interactions between aerosols, clouds and radiation remain poorly understood. Consequently, it is essential to fully understand their properties and especially their formation process. Extensive measurements from ground-based sites and satellite remote sensing reveal the existence of two Types of <span class="hlt">Ice</span> Clouds (TICs) in the Arctic during the polar night and early spring. TICs-1 are composed by non-precipitating small (radar-unseen) <span class="hlt">ice</span> crystals of less than 30 μm in diameter. The second type, TICs-2, are detected by radar and are characterized by a low concentration of large precipitating <span class="hlt">ice</span> crystals <span class="hlt">ice</span> crystals (>30 μm). To explain these differences, we hypothesized that TIC-2 formation is linked to the acidification of aerosols, which inhibits the <span class="hlt">ice</span> nucleating properties of <span class="hlt">ice</span> nuclei (IN). As a result, the IN concentration is reduced in these regions, resulting to a lower concentration of larger <span class="hlt">ice</span> crystals. Water vapor available for deposition being the same, these crystals reach a larger size. Current weather and climate models cannot simulate these different types of <span class="hlt">ice</span> clouds. This problem is partly due to the parameterizations implemented for <span class="hlt">ice</span> nucleation. Over the past 10 years, several parameterizations of homogeneous and heterogeneous <span class="hlt">ice</span> nucleation on IN of different chemical compositions have been developed. These parameterizations are based on two approaches: stochastic (that is nucleation is a probabilistic process, which is time dependent) and singular (that is nucleation occurs at fixed conditions of temperature and humidity and time-independent). The best approach remains unclear. This research aims to better understand the formation process of Arctic TICs using recently developed <span class="hlt">ice</span> nucleation parameterizations. For this purpose, we have implemented these <span class="hlt">ice</span> nucleation parameterizations into the Limited Area version of the Global Multiscale Environmental Model</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140017492','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140017492"><span>Tidal Modulation of <span class="hlt">Ice</span>-shelf Flow: a Viscous Model of the Ross <span class="hlt">Ice</span> Shelf</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Brunt, Kelly M.; MacAyeal, Douglas R.</p> <p>2014-01-01</p> <p>Three stations near the calving front of the Ross <span class="hlt">Ice</span> Shelf, Antarctica, recorded GPS data through a full spring-neap tidal cycle in November 2005. The data revealed a diurnal horizontal motion that varied both along and transverse to the long-term average velocity direction, similar to tidal signals observed in other <span class="hlt">ice</span> shelves and <span class="hlt">ice</span> streams. Based on its periodicity, it was hypothesized that the signal represents a flow response of the Ross <span class="hlt">Ice</span> Shelf to the diurnal tides of the Ross Sea. To assess the influence of the tide on the <span class="hlt">ice</span>-shelf motion, two hypotheses were developed. The first addressed the direct response of the <span class="hlt">ice</span> shelf to tidal forcing, such as forces due to sea-surface slopes or forces due to sub-<span class="hlt">ice</span>-shelf currents. The second involved the indirect response of <span class="hlt">ice</span>-shelf flow to the tidal signals observed in the <span class="hlt">ice</span> streams that source the <span class="hlt">ice</span> shelf. A finite-element model, based on viscous creep flow, was developed to test these hypotheses, but succeeded only in falsifying both hypotheses, i.e. showing that direct tidal effects produce too small a response, and indirect tidal effects produce a response that is not smooth in time. This nullification suggests that a combination of viscous and elastic deformation is required to explain the observations.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.C53C..03D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.C53C..03D"><span>A Decade of High-Resolution Arctic Sea <span class="hlt">Ice</span> Measurements from Airborne Altimetry</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Duncan, K.; Farrell, S. L.; Connor, L. N.; Jackson, C.; Richter-Menge, J.</p> <p>2017-12-01</p> <p>Satellite altimeters carried on board ERS-1,-2, EnviSat, ICESat, CryoSat-2, AltiKa and Sentinel-3 have transformed our ability to map the thickness and volume of the polar sea <span class="hlt">ice</span> cover, on seasonal and decadal time-scales. The era of polar satellite altimetry has coincided with a rapid decline of the Arctic <span class="hlt">ice</span> cover, which has thinned, and transitioned from a predominantly multi-year to first-year <span class="hlt">ice</span> cover. In conjunction with basin-scale satellite altimeter observations, airborne surveys of the Arctic Ocean at the end of winter are now routine. These surveys have been targeted to monitor regions of rapid change, and are designed to obtain the full snow and <span class="hlt">ice</span> thickness distribution, across a range of <span class="hlt">ice</span> types. Sensors routinely deployed as part of NASA's Operation <span class="hlt">Ice</span>Bridge (OIB) campaigns include the Airborne Topographic Mapper (ATM) laser altimeter, the frequency-modulated continuous-wave snow radar, and the Digital Mapping System (DMS). Airborne measurements yield high-resolution data products and thus present a unique opportunity to assess the quality and characteristics of the satellite observations. We present a suite of sea <span class="hlt">ice</span> data products that describe the snow depth and thickness of the Arctic <span class="hlt">ice</span> cover during the last decade. Fields were derived from OIB measurements collected between 2009-2017, and from reprocessed data collected during ad-hoc sea <span class="hlt">ice</span> campaigns prior to OIB. Our bespoke algorithms are designed to accommodate the heterogeneous sea <span class="hlt">ice</span> surface topography, that varies at short spatial scales. We assess regional and inter-annual variability in the sea <span class="hlt">ice</span> thickness distribution. Results are compared to satellite-derived <span class="hlt">ice</span> thickness fields to highlight the sensitivities of satellite footprints to the tails of the thickness distribution. We also show changes in the dynamic forcing shaping the <span class="hlt">ice</span> <span class="hlt">pack</span> over the last eight years through an analysis of pressure-ridge sail-height distributions and surface roughness conditions</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19810023062','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19810023062"><span><span class="hlt">Ice</span> sheet altimetry</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Brooks, R. L.</p> <p>1981-01-01</p> <p>Generalized surface slopes were computed for the Antarctic and Greenland <span class="hlt">ice</span> sheets by differencing plotted contour levels and dividing them by the distance between the contours. It was observed that more than 90% of the <span class="hlt">ice</span> sheets have surface slopes less than 1%. Seasat test mode-1 Seasat altimeter measurements over Greenland were analyzed by comparisons with collinear and intersecting normal mode Seasat altimeter passes. Over the <span class="hlt">ice</span> sheet, the computed surface elevations from test mode-1 measurements were consistently lower by about 45 m and the AGC levels were down by approximately 6 dB. No test mode-1 data were acquired over Antarctica. It is concluded that analysis of the existing altimeter data base over the two <span class="hlt">ice</span> sheets is crucial in designing a future improved altimeter tracking capability. It is recommended that additional waveform retracking be performed to characterize <span class="hlt">ice</span> sheet topography as a function of geographic area and elevation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20080013293','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20080013293"><span>Airfoil <span class="hlt">Ice</span>-Accretion Aerodynamics Simulation</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bragg, Michael B.; Broeren, Andy P.; Addy, Harold E.; Potapczuk, Mark G.; Guffond, Didier; Montreuil, E.</p> <p>2007-01-01</p> <p>NASA Glenn Research Center, ONERA, and the University of Illinois are conducting a major research program whose goal is to improve our understanding of the aerodynamic scaling of <span class="hlt">ice</span> accretions on airfoils. The program when it is completed will result in validated scaled simulation methods that produce the essential aerodynamic features of the full-scale <span class="hlt">iced</span>-airfoil. This research will provide some of the first, high-fidelity, full-scale, <span class="hlt">iced</span>-airfoil aerodynamic data. An initial study classified <span class="hlt">ice</span> accretions based on their aerodynamics into four types: roughness, streamwise <span class="hlt">ice</span>, horn <span class="hlt">ice</span>, and spanwise-ridge <span class="hlt">ice</span>. Subscale testing using a NACA 23012 airfoil was performed in the NASA IRT and University of Illinois wind tunnel to better understand the aerodynamics of these <span class="hlt">ice</span> types and to test various levels of <span class="hlt">ice</span> simulation fidelity. These studies are briefly reviewed here and have been presented in more detail in other papers. Based on these results, full-scale testing at the ONERA F1 tunnel using cast <span class="hlt">ice</span> shapes obtained from molds taken in the IRT will provide full-scale <span class="hlt">iced</span> airfoil data from full-scale <span class="hlt">ice</span> accretions. Using these data as a baseline, the final step is to validate the simulation methods in scale in the Illinois wind tunnel. Computational <span class="hlt">ice</span> accretion methods including LEWICE and ONICE have been used to guide the experiments and are briefly described and results shown. When full-scale and simulation aerodynamic results are available, these data will be used to further develop computational tools. Thus the purpose of the paper is to present an overview of the program and key results to date.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.C23E0542F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.C23E0542F"><span>Validation and Interpretation of a New Sea <span class="hlt">Ice</span> Globice Dataset Using Buoys and the Cice Sea <span class="hlt">Ice</span> Model</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Flocco, D.; Laxon, S. W.; Feltham, D. L.; Haas, C.</p> <p>2011-12-01</p> <p>The Glob<span class="hlt">Ice</span> project has provided high resolution sea <span class="hlt">ice</span> product datasets over the Arctic derived from SAR data in the ESA archive. The products are validated sea <span class="hlt">ice</span> motion, deformation and fluxes through straits. Glob<span class="hlt">Ice</span> sea <span class="hlt">ice</span> velocities, deformation data and sea <span class="hlt">ice</span> concentration have been validated using buoy data provided by the International Arctic Buoy Program (IABP). Over 95% of the Glob<span class="hlt">Ice</span> and buoy data analysed fell within 5 km of each other. The Glob<span class="hlt">Ice</span> Eulerian image pair product showed a high correlation with buoy data. The sea <span class="hlt">ice</span> concentration product was compared to SSM/I data. An evaluation of the validity of the Glob<span class="hlt">ICE</span> data will be presented in this work. Glob<span class="hlt">ICE</span> sea <span class="hlt">ice</span> velocity and deformation were compared with runs of the CICE sea <span class="hlt">ice</span> model: in particular the mass fluxes through the straits were used to investigate the correlation between the winter behaviour of sea <span class="hlt">ice</span> and the sea <span class="hlt">ice</span> state in the following summer.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JPhCS.897a2006O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JPhCS.897a2006O"><span>Alternating current breakdown voltage of <span class="hlt">ice</span> electret</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Oshika, Y.; Tsuchiya, Y.; Okumura, T.; Muramoto, Y.</p> <p>2017-09-01</p> <p><span class="hlt">Ice</span> has low environmental impact. Our research objectives are to study the availability of <span class="hlt">ice</span> as a dielectric insulating material at cryogenic temperatures. We focus on ferroelectric <span class="hlt">ice</span> (<span class="hlt">ice</span>XI) at cryogenic temperatures. The properties of <span class="hlt">ice</span>XI, including its formation, are not clear. We attempted to obtain the polarized <span class="hlt">ice</span> that was similar to <span class="hlt">ice</span>XI under the applied voltage and cooling to 77 K. The polarized <span class="hlt">ice</span> have a wide range of engineering applications as electronic materials at cryogenic temperatures. This polarized <span class="hlt">ice</span> is called <span class="hlt">ice</span> electret. The structural difference between <span class="hlt">ice</span> electret and normal <span class="hlt">ice</span> is only the positions of protons. The effects of the proton arrangement on the breakdown voltage of <span class="hlt">ice</span> electret were shown because electrical properties are influenced by the structure of <span class="hlt">ice</span>. We observed an alternating current (ac) breakdown voltage of <span class="hlt">ice</span> electret and normal <span class="hlt">ice</span> at 77 K. The mean and minimum ac breakdown voltage values of <span class="hlt">ice</span> electret were higher than those of normal <span class="hlt">ice</span>. We considered that the electrically weak part of the normal <span class="hlt">ice</span> was improved by applied a direct electric field.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <footer><a id="backToTop" href="#top"> </a><nav><a id="backToTop" href="#top"> </a><ul class="links"><a id="backToTop" href="#top"> </a><li><a id="backToTop" href="#top"></a><a href="/sitemap.html">Site Map</a></li> <li><a href="/members/index.html">Members Only</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://doe.responsibledisclosure.com/hc/en-us" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> <div class="small">Science.gov is maintained by the U.S. Department of Energy's <a href="https://www.osti.gov/" target="_blank">Office of Scientific and Technical Information</a>, in partnership with <a href="https://www.cendi.gov/" target="_blank">CENDI</a>.</div> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>