Sample records for ice pack test

  1. Effect of local cooling on excitation-contraction coupling in myasthenic muscle: Another mechanism of ice-pack test in myasthenia gravis.

    PubMed

    Yamamoto, Daisuke; Imai, Tomihiro; Tsuda, Emiko; Hozuki, Takayoshi; Yamauchi, Rika; Hisahara, Shin; Kawamata, Jun; Shimohama, Shun

    2017-11-01

    The ice-pack test is a convenient diagnostic testing procedure for myasthenia gravis (MG). We investigated the underlying mechanism of the ice-pack test performed on bilateral masseters. We performed trigeminal repetitive nerve stimulation (RNS), excitation-contraction (E-C) coupling assessment (Imai's method) and bite force measurement before and after cooling of the masseters in MG patients and normal controls. After placing the ice-pack on the masseters for 3min, serial recordings of the three tests were performed at various time intervals during 10min after cooling. The bite force increased significantly after cooling in ice-pack-positive MG patients. The acceleration and acceleration ratio (acceleration at a given time to baseline acceleration) of jaw movement increased significantly after cooling of the masseters in ice-pack-positive MG patients compared to ice-pack-negative patients and normal controls. The prolonged effect of cooling continued until the end of recording even though decremental response to RNS had returned to baseline value. Cooling of myasthenic muscle may induce two effects. One is relatively short effect on electrical synaptic transmission at the endplate, and another is prolonged effect on E-C coupling in the muscle. The ice-pack test induces a prolonged effect of ameliorating impaired E-C coupling in MG. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  2. Ice Pack Heat Sink Subsystem - Phase I. [astronaut liquid cooling garment design and testing

    NASA Technical Reports Server (NTRS)

    Roebelen, G. J., Jr.

    1973-01-01

    This paper describes the design and test at one-g of a functional laboratory model (non-flight) Ice Pack Heat Sink Subsystem to be used eventually for astronaut cooling during manned space missions. In normal use, excess heat in the liquid cooling garment (LCG) coolant is transferred to a reusable/regenerable ice pack heat sink. For emergency operation, or for extension of extravehicular activity mission time after all the ice has melted, water from the ice pack is boiled to vacuum, thereby continuing to remove heat from the LCG coolant. This subsystem incorporates a quick connect/disconnect thermal interface between the ice pack heat sink and the subsystem heat exchanger.

  3. Ice pack heat sink subsystem - Phase 1, Volume 1

    NASA Technical Reports Server (NTRS)

    Roebelen, G. J., Jr.

    1973-01-01

    The design, development, fabrication, and test at one-g of a functional laboratory model (non-flight) ice pack heat sink subsystem to be used eventually for astronaut cooling during manned space missions are discussed. In normal use, excess heat in the liquid cooling garment (LCG) coolant is transferred to a reusable/regenerable ice pack heat sink. For emergency operation, or for extension of extravehicular activity mission time after all the ice has melted, water from the ice pack is boiled to vacuum, thereby continuing to remove heat from the LCG coolant. This subsystem incorporates a quick connect/disconnect thermal interface between the ice pack heat sink and the subsystem heat exchanger.

  4. Ice pack heat sink subsystem, phase 2. [astronaut life support cooling system

    NASA Technical Reports Server (NTRS)

    Roebelen, G. J., Jr.; Kellner, J. D.

    1975-01-01

    The report describes the design, development, fabrication, and test at one gravity of a prototype ice pack heat sink subsystem to be used eventually for astronaut cooling during manned space missions; the investigation of thermal storage material with the objective of uncovering materials with heats of fusion and/or solution in the range of 300 Btu/lb (700 kilojoules/kilogram); and the planned procedure for implementing an ice pack heat sink subsystem flight experiment. In normal use, excess heat in the liquid cooling garment (LCG) coolant is transferred to a reusable/regenerable ice pack heat sink. For emergency operation, or for extension of extravehicular activity mission time after all the ice has melted, water from the ice pack is boiled to vacuum, thereby continuing to remove heat from the LCG coolant. This subsystem incorporates a quick disconnect thermal interface between the ice pack heat sink and the subsystem heat exchanger.

  5. Ice pack heat sink subsystem - phase 1, volume 2

    NASA Technical Reports Server (NTRS)

    Roebelen, G. J., Jr.

    1973-01-01

    The design, development, and test of a functional laboratory model ice pack heat sink subsystem are discussed. Operating instructions to include mechanical and electrical schematics, maintenance instructions, and equipment specifications are presented.

  6. Experimental Investigation of the Resistance Performance and Heave and Pitch Motions of Ice-Going Container Ship Under Pack Ice Conditions

    NASA Astrophysics Data System (ADS)

    Guo, Chun-yu; Xie, Chang; Zhang, Jin-zhao; Wang, Shuai; Zhao, Da-gang

    2018-04-01

    In order to analyze the ice-going ship's performance under the pack ice conditions, synthetic ice was introduced into a towing tank. A barrier using floating cylinder in the towing tank was designed to carry out the resistance experiment. The test results indicated that the encountering frequency between the ship model and the pack ice shifts towards a high-velocity point as the concentration of the pack ice increases, and this encountering frequency creates an unstable region of the resistance, and the unstable region shifts to the higher speed with the increasing concentration. The results also showed that for the same speed points, the ratio of the pack ice resistance to the open water resistance increases with the increasing concentration, and for the same concentrations, this ratio decreases as the speed increases. Motion characteristics showed that the mean value of the heave motion increases as the speed increases, and the pitch motion tends to increase with the increasing speed. In addition, the total resistance of the fullscale was predicted.

  7. Length of perineal pain relief after ice pack application: A quasi-experimental study.

    PubMed

    de Souza Bosco Paiva, Caroline; Junqueira Vasconcellos de Oliveira, Sonia Maria; Amorim Francisco, Adriana; da Silva, Renata Luana; de Paula Batista Mendes, Edilaine; Steen, Mary

    2016-04-01

    Ice pack is effective for alleviating postpartum perineal pain in primiparous women while multiparous women's levels of perineal pain appear to be poorly explored. Ice pack is a low-cost non-invasive localised treatment that can be used with no impact on breastfeeding. However, how long perineal analgesia persists after applying an ice pack is still unknown. To evaluate if perineal analgesia is maintained up to 2h after applying an ice pack to the perineum for 20min. A quasi-experimental study, using a pre and post-test design, was undertaken with a sample size of 50 multiparous women in Brazil. Data was collected by structured interview. The intervention involved a single application of an ice pack applied for 20min to the perineal area of women who reported perineal pain ≥3 by use of a numeric rating scale (0-10), with intact perineum, 1st or 2nd degree lacerations or episiotomy, between 6 and 24h after spontaneous vaginal birth. Perineal pain was evaluated at three points of time: before, immediately after and 2h after applying an ice pack. Immediately after applying an ice pack to the perineal area, there was a significant reduction in the severity of perineal pain reported (5.4 vs. 1.0, p<0.0005), which continued for 1h 35min up to 2h after the local application. Ice pack application for 20min is effective for alleviating postpartum perineal pain and continues to be effective between 1h 35min for up to 2h. Copyright © 2015 Australian College of Midwives. Published by Elsevier Ltd. All rights reserved.

  8. STS-48 ESC Earth observation of ice pack, Antarctic Ice Shelf

    NASA Technical Reports Server (NTRS)

    1991-01-01

    STS-48 Earth observation taken aboard Discovery, Orbiter Vehicle (OV) 103, is of the breakup of pack ice along the periphery of the Antarctic Ice Shelf. Strong offshore winds, probably associated with katabatic downdrafts from the interior of the continent, are seen peeling off the edges of the ice shelf into long filaments of sea ice, icebergs, bergy bits, and growlers to flow northward into the South Atlantic Ocean. These photos are used to study ocean wind, tide and current patterns. Similar views photographed during previous missions, when analyzed with these recent views may yield information about regional ice drift and breakup of ice packs. The image was captured using an electronic still camera (ESC), was stored on a removable hard disk or small optical disk, and was converted to a format suitable for downlink transmission. The ESC documentation was part of Development Test Objective (DTO) 648, Electronic Still Photography.

  9. Method to estimate drag coefficient at the air/ice interface over drifting open pack ice from remotely sensed data

    NASA Technical Reports Server (NTRS)

    Feldman, U.

    1984-01-01

    A knowledge in near real time, of the surface drag coefficient for drifting pack ice is vital for predicting its motions. And since this is not routinely available from measurements it must be replaced by estimates. Hence, a method for estimating this variable, as well as the drag coefficient at the water/ice interface and the ice thickness, for drifting open pack ice was developed. These estimates were derived from three-day sequences of LANDSAT-1 MSS images and surface weather charts and from the observed minima and maxima of these variables. The method was tested with four data sets in the southeastern Beaufort sea. Acceptable results were obtained for three data sets. Routine application of the method depends on the availability of data from an all-weather air or spaceborne remote sensing system, producing images with high geometric fidelity and high resolution.

  10. 7 CFR 91.20 - Shipping.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... refrigerated samples should contain ice or ice packs to maintain temperatures of 0° to 5 °C, unless a different temperature is required for the sample to be tested. (d) Containers for frozen samples should contain dry ice...

  11. 7 CFR 91.20 - Shipping.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... refrigerated samples should contain ice or ice packs to maintain temperatures of 0° to 5 °C, unless a different temperature is required for the sample to be tested. (d) Containers for frozen samples should contain dry ice...

  12. 7 CFR 91.20 - Shipping.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... refrigerated samples should contain ice or ice packs to maintain temperatures of 0° to 5 °C, unless a different temperature is required for the sample to be tested. (d) Containers for frozen samples should contain dry ice...

  13. 7 CFR 91.20 - Shipping.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... refrigerated samples should contain ice or ice packs to maintain temperatures of 0° to 5 °C, unless a different temperature is required for the sample to be tested. (d) Containers for frozen samples should contain dry ice...

  14. 7 CFR 91.20 - Shipping.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... refrigerated samples should contain ice or ice packs to maintain temperatures of 0° to 5 °C, unless a different temperature is required for the sample to be tested. (d) Containers for frozen samples should contain dry ice...

  15. SPH Modelling of Sea-ice Pack Dynamics

    NASA Astrophysics Data System (ADS)

    Staroszczyk, Ryszard

    2017-12-01

    The paper is concerned with the problem of sea-ice pack motion and deformation under the action of wind and water currents. Differential equations describing the dynamics of ice, with its very distinct mateFfigrial responses in converging and diverging flows, express the mass and linear momentum balances on the horizontal plane (the free surface of the ocean). These equations are solved by the fully Lagrangian method of smoothed particle hydrodynamics (SPH). Assuming that the ice behaviour can be approximated by a non-linearly viscous rheology, the proposed SPH model has been used to simulate the evolution of a sea-ice pack driven by wind drag stresses. The results of numerical simulations illustrate the evolution of an ice pack, including variations in ice thickness and ice area fraction in space and time. The effects of different initial ice pack configurations and of different conditions assumed at the coast-ice interface are examined. In particular, the SPH model is applied to a pack flow driven by a vortex wind to demonstrate how well the Lagrangian formulation can capture large deformations and displacements of sea ice.

  16. Acoustic effects of oil-production activities on bowhead and white whales visible during spring migration near Pt. Barrow, Alaska-1990 phase: sound propagation and whale responses to playbacks of continuous drilling noise from an ice platform, as studied in pack ice conditions. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richardson, W.J.; Greene, C.R.; Koski, W.R.

    1991-10-01

    The report concerns the effects of underwater noise from simulated oil production operations on the movements and behavior of bowhead and white whales migrating around northern Alaska in spring. An underwater sound projector suspended from pack ice was used to introduce recorded drilling noise and other test sounds into leads through the pack ice. These sounds were received and measured at various distances to determine the rate of sound attenuation with distance and frequency. The movements and behavior of bowhead and white whales approaching the operating projector were studied by aircraft- and ice-based observers. Some individuals of both species weremore » observed to approach well within the ensonified area. However, behavioral changes and avoidance reactions were evident when the received sound level became sufficiently high. Reactions to aircraft are also discussed.« less

  17. Mapping and assessing variability in the Antarctic marginal ice zone, pack ice and coastal polynyas in two sea ice algorithms with implications on breeding success of snow petrels

    NASA Astrophysics Data System (ADS)

    Stroeve, Julienne C.; Jenouvrier, Stephanie; Campbell, G. Garrett; Barbraud, Christophe; Delord, Karine

    2016-08-01

    Sea ice variability within the marginal ice zone (MIZ) and polynyas plays an important role for phytoplankton productivity and krill abundance. Therefore, mapping their spatial extent as well as seasonal and interannual variability is essential for understanding how current and future changes in these biologically active regions may impact the Antarctic marine ecosystem. Knowledge of the distribution of MIZ, consolidated pack ice and coastal polynyas in the total Antarctic sea ice cover may also help to shed light on the factors contributing towards recent expansion of the Antarctic ice cover in some regions and contraction in others. The long-term passive microwave satellite data record provides the longest and most consistent record for assessing the proportion of the sea ice cover that is covered by each of these ice categories. However, estimates of the amount of MIZ, consolidated pack ice and polynyas depend strongly on which sea ice algorithm is used. This study uses two popular passive microwave sea ice algorithms, the NASA Team and Bootstrap, and applies the same thresholds to the sea ice concentrations to evaluate the distribution and variability in the MIZ, the consolidated pack ice and coastal polynyas. Results reveal that the seasonal cycle in the MIZ and pack ice is generally similar between both algorithms, yet the NASA Team algorithm has on average twice the MIZ and half the consolidated pack ice area as the Bootstrap algorithm. Trends also differ, with the Bootstrap algorithm suggesting statistically significant trends towards increased pack ice area and no statistically significant trends in the MIZ. The NASA Team algorithm on the other hand indicates statistically significant positive trends in the MIZ during spring. Potential coastal polynya area and amount of broken ice within the consolidated ice pack are also larger in the NASA Team algorithm. The timing of maximum polynya area may differ by as much as 5 months between algorithms. These differences lead to different relationships between sea ice characteristics and biological processes, as illustrated here with the breeding success of an Antarctic seabird.

  18. Ice interaction with offshore structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cammaert, A.B.; Muggeridge, D.B.

    1988-01-01

    Oil platforms and other offshore structures being built in the arctic regions must be able to withstand icebergs, ice islands, and pack ice. This reference explain the effect ice has on offshore structures and demonstrates design and construction methods that allow such structures to survive in harsh, ice-ridden environments. It analyzes the characteristics of sea ice as well as dynamic ice forces on structures. Techniques for ice modeling and field testing facilitate the design and construction of sturdy, offshore constructions. Computer programs included.

  19. Comparisons of Cubed Ice, Crushed Ice, and Wetted Ice on Intramuscular and Surface Temperature Changes

    PubMed Central

    Dykstra, Joseph H; Hill, Holly M; Miller, Michael G; Cheatham, Christopher C; Michael, Timothy J; Baker, Robert J

    2009-01-01

    Context: Many researchers have investigated the effectiveness of different types of cold application, including cold whirlpools, ice packs, and chemical packs. However, few have investigated the effectiveness of different types of ice used in ice packs, even though ice is one of the most common forms of cold application. Objective: To evaluate and compare the cooling effectiveness of ice packs made with cubed, crushed, and wetted ice on intramuscular and skin surface temperatures. Design: Repeated-measures counterbalanced design. Setting: Human performance research laboratory. Patients or Other Participants: Twelve healthy participants (6 men, 6 women) with no history of musculoskeletal disease and no known preexisting inflammatory conditions or recent orthopaedic injuries to the lower extremities. Intervention(s): Ice packs made with cubed, crushed, or wetted ice were applied to a standardized area on the posterior aspect of the right gastrocnemius for 20 minutes. Each participant was given separate ice pack treatments, with at least 4 days between treatment sessions. Main Outcome Measure(s): Cutaneous and intramuscular (2 cm plus one-half skinfold measurement) temperatures of the right gastrocnemius were measured every 30 seconds during a 20-minute baseline period, a 20-minute treatment period, and a 120-minute recovery period. Results: Differences were observed among all treatments. Compared with the crushed-ice treatment, the cubed-ice and wetted-ice treatments produced lower surface and intramuscular temperatures. Wetted ice produced the greatest overall temperature change during treatment and recovery, and crushed ice produced the smallest change. Conclusions: As administered in our protocol, wetted ice was superior to cubed or crushed ice at reducing surface temperatures, whereas both cubed ice and wetted ice were superior to crushed ice at reducing intramuscular temperatures. PMID:19295957

  20. Analysis of sea ice dynamics

    NASA Technical Reports Server (NTRS)

    Zwally, J.

    1988-01-01

    The ongoing work has established the basis for using multiyear sea ice concentrations from SMMR passive microwave for studies of largescale advection and convergence/divergence of the Arctic sea ice pack. Comparisons were made with numerical model simulations and buoy data showing qualitative agreement on daily to interannual time scales. Analysis of the 7-year SMMR data set shows significant interannual variations in the total area of multiyear ice. The scientific objective is to investigate the dynamics, mass balance, and interannual variability of the Arctic sea ice pack. The research emphasizes the direct application of sea ice parameters derived from passive microwave data (SMMR and SSMI) and collaborative studies using a sea ice dynamics model. The possible causes of observed interannual variations in the multiyear ice area are being examined. The relative effects of variations in the large scale advection and convergence/divergence within the ice pack on a regional and seasonal basis are investigated. The effects of anomolous atmospheric forcings are being examined, including the long-lived effects of synoptic events and monthly variations in the mean geostrophic winds. Estimates to be made will include the amount of new ice production within the ice pack during winter and the amount of ice exported from the pack.

  1. Ice shelf breaking and increase velocity of glacier: the view from analogue experiment

    NASA Astrophysics Data System (ADS)

    Corti, Giacomo; Iandelli, Irene

    2013-04-01

    Collapse of the Larsen II platform during the late 90s has generated an increase in velocity if ice sheet discharge, highlighting that these processes may strongly destabilize large ice masses speeding up the plateau discharge toward the sea. Parameters such as ice thickness, valley width and slope, ice pack dimensions may contribute to modulate the effect of increase in ice flow velocity following the removal of ice. We analyze this process through scale analogue models, aimed at reproducing the flow of ice from a plateau into the sea through a narrow valley. The ice is reproduced with a transparent silicone (Polydimethisiloxane), flowing at velocities of a few centimeters per hour and simulating natural velocities in the range of a few meters per year. Having almost the same density of the ice, PDMS floats on water and simulate the ice-shelf formation. Results of preliminary experimental series support that this methodology is able to reasonably reproduce the process and support a significant increase in velocity discharge following the removal of ice pack. Additional tests are designed to verify the influence of the above-mentioned parameters on the increase in ice velocity.

  2. There goes the sea ice: following Arctic sea ice parcels and their properties.

    NASA Astrophysics Data System (ADS)

    Tschudi, M. A.; Tooth, M.; Meier, W.; Stewart, S.

    2017-12-01

    Arctic sea ice distribution has changed considerably over the last couple of decades. Sea ice extent record minimums have been observed in recent years, the distribution of ice age now heavily favors younger ice, and sea ice is likely thinning. This new state of the Arctic sea ice cover has several impacts, including effects on marine life, feedback on the warming of the ocean and atmosphere, and on the future evolution of the ice pack. The shift in the state of the ice cover, from a pack dominated by older ice, to the current state of a pack with mostly young ice, impacts specific properties of the ice pack, and consequently the pack's response to the changing Arctic climate. For example, younger ice typically contains more numerous melt ponds during the melt season, resulting in a lower albedo. First-year ice is typically thinner and more fragile than multi-year ice, making it more susceptible to dynamic and thermodynamic forcing. To investigate the response of the ice pack to climate forcing during summertime melt, we have developed a database that tracks individual Arctic sea ice parcels along with associated properties as these parcels advect during the summer. Our database tracks parcels in the Beaufort Sea, from 1985 - present, along with variables such as ice surface temperature, albedo, ice concentration, and convergence. We are using this database to deduce how these thousands of tracked parcels fare during summer melt, i.e. what fraction of the parcels advect through the Beaufort, and what fraction melts out? The tracked variables describe the thermodynamic and dynamic forcing on these parcels during their journey. This database will also be made available to all interested investigators, after it is published in the near future. The attached image shows the ice surface temperature of all parcels (right) that advected through the Beaufort Sea region (left) in 2014.

  3. Broken collarbone - aftercare

    MedlinePlus

    Applying an ice pack can help relieve your pain. Make an ice pack by putting ice in a zip lock plastic bag and wrapping ... around it. DO NOT put the bag of ice directly on your skin. This could injure your ...

  4. Behavioral Ecology of Narwhals in a Changing Arctic

    DTIC Science & Technology

    2015-09-30

    ecology in the pack ice of Baffin Bay. We will collect data on the species’ acoustic , movement, and diving ecology in the offshore pack ice of Baffin...Bay over a 4 year long research program with three ecological focus areas ( acoustic ecology, sea ice ecology, and foraging ecology). Our...questions: 2 1. Acoustic ecology: What are baseline characteristics of the acoustic repertoire of narwhals in the offshore Baffin Bay pack ice

  5. Broken kneecap - aftercare

    MedlinePlus

    ... This will help reduce swelling and muscle atrophy. Ice your knee. Make an ice pack by putting ice cubes in a plastic bag and wrapping a ... For the first day of injury, apply the ice pack every hour for 10 to 15 minutes. ...

  6. Kneecap dislocation - aftercare

    MedlinePlus

    ... times a day. This will help reduce swelling. Ice your knee. Make an ice pack by putting ice cubes in a plastic bag and wrapping a ... For the first day of injury, apply the ice pack every hour for 10 to 15 minutes. ...

  7. Coupling of Waves, Turbulence and Thermodynamics Across the Marginal Ice Zone

    DTIC Science & Technology

    2013-09-30

    ice . The albedo of sea ice is large compared to open water, and most of the incoming solar radiation...ocean and the ice pack where the seasonal retreat of the main ice pack takes place. It is a highly variable sea ice environment, usually comprised of...many individual floes of variable shape and size and made of mixed ice types, from young forming ice to fragmented multiyear ice . The presence of sea

  8. Multifaceted Comparison of Two Cryotherapy Devices Used After Total Knee Arthroplasty: Cryotherapy Device Comparison.

    PubMed

    Schinsky, Mark F; McCune, Christine; Bonomi, Judith

    2016-01-01

    Some form of cryotherapy used after total knee arthroplasty is commonplace. However, various factors determine the specific device deployed. This study aimed to answer the following questions: : A group of 100 patients undergoing primary total knee arthroplasty by a single surgeon were enrolled in an institutional review board-approved, prospective study and randomized to receive either a circulating cold water or ice/gel pack cryotherapy device postoperatively. Demographic, pain, swelling, blood loss, range of motion, compliance, satisfaction, and adverse event outcomes were recorded until 6 weeks after surgery. Hospital staff satisfaction and economic variables were examined. The ice/gel pack cryotherapy wrap was noninferior to the cold water cryotherapy device for any patient outcome measured. Average pain level at 6 weeks postoperative was significantly less in the ice/gel pack cryotherapy wrap group. Hospital staff satisfaction was higher with the ice/gel pack cryotherapy wrap.Substantial economic savings can be realized at our institution by switching to the lower cost cryotherapy device. In this study, the lower cost ice/gel pack cryotherapy wrap was noninferior to the circulating ice water cryotherapy device with respect to objective patient outcomes and subjective patient satisfaction after total knee arthroplasty. Hospital staff satisfaction and economic considerations also favor the ice/gel pack compression cryotherapy wraps.

  9. Sea ice motions in the Central Arctic pack ice as inferred from AVHRR imagery

    NASA Technical Reports Server (NTRS)

    Emery, William; Maslanik, James; Fowler, Charles

    1995-01-01

    Synoptic observations of ice motion in the Arctic Basin are currently limited to those acquired by drifting buoys and, more recently, radar data from ERS-1. Buoys are not uniformly distributed throughout the Arctic, and SAR coverage is currently limited regionally and temporally due to the data volume, swath width, processing requirements, and power needs of the SAR. Additional ice-motion observations that can map ice responses simultaneously over large portions of the Arctic on daily to weekly time intervals are thus needed to augment the SAR and buoys data and to provide an intermediate-scale measure of ice drift suitable for climatological analyses and ice modeling. Principal objectives of this project were to: (1) demonstrate whether sufficient ice features and ice motion existed within the consolidated ice pack to permit motion tracking using AVHRR imagery; (2) determine the limits imposed on AVHRR mapping by cloud cover; and (3) test the applicability of AVHRR-derived motions in studies of ice-atmosphere interactions. Each of these main objectives was addressed. We conclude that AVHRR data, particularly when blended with other available observations, provide a valuable data set for studying sea ice processes. In a follow-on project, we are now extending this work to cover larger areas and to address science questions in more detail.

  10. A Modified Cooling Method and Its Application in "Drosophila" Experiments

    ERIC Educational Resources Information Center

    Qu, Wen-hui; Zhu, Tong-bo; Yang, Da-Xiang

    2015-01-01

    Chilling is a cost-effective and safe method of immobilising flies in "Drosophila" experiments. However, should condensation form on the plate, it would be fatal to the flies. Here we describe a modified cooling method using reusable commercial ice pack(s) (ca. 400 ml, 2-3 cm tall) rather than crushed ice. The ice pack is covered with a…

  11. Pack ice along the Kamchatka Peninsula, Russia as seen from STS-60

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Pack ice is documented in this photograph along the coast of the Kamchatka Peninsula of Russia in Zaliv Ozernoj. Detailed photographs of the ice provide information to scientists in both Russia and the United States about the location and fluctuation of ice edges, and how this new sea ice interacts with ocean and littoral currents.

  12. Breakup of Pack Ice, Antarctic Ice Shelf

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Breakup of Pack Ice along the periphery of the Antarctic Ice Shelf (53.5S, 3.0E) produced this mosaic of ice floes off the Antarctic Ice Shelf. Strong offshore winds, probably associated with strong katabatic downdrafts from the interior of the continent, are seen peeling off the edges of the ice shelf into long filamets of sea ice, icebergs, bergy bits and growlers to flow northward into the South Atlantic Ocean. 53.5S, 3.0E

  13. SAR imagery of the Grand Banks (Newfoundland) pack ice pack and its relationship to surface features

    NASA Technical Reports Server (NTRS)

    Argus, S. D.; Carsey, F. D.

    1988-01-01

    Synthetic Aperture Radar (SAR) data and aerial photographs were obtained over pack ice off the East Coast of Canada in March 1987 as part of the Labrador Ice Margin Experiment (LIMEX) pilot project. Examination of this data shows that although the pack ice off the Canadian East Coast appears essentially homogeneous to visible light imagery, two clearly defined zones of ice are apparent on C-band SAR imagery. To identify factors that create the zones seen on the radar image, aerial photographs were compared to the SAR imagery. Floe size data from the aerial photographs was compared to digital number values taken from SAR imagery of the same ice. The SAR data of the inner zone acquired three days apart over the melt period was also examined. The studies indicate that the radar response is governed by floe size and meltwater distribution.

  14. Year-Round Pack Ice in the Weddell Sea, Antarctica: Response and Sensitivity to Atmospheric and Oceanic Forcing

    NASA Technical Reports Server (NTRS)

    Geiger, Cathleen A.; Ackley, Stephen F.; Hibler, William D., III

    1997-01-01

    Using a dynamic-thermodynamic numerical sea-ice model, external oceanic and atmospheric forcings on sea ice in the Weddell Sea are examined to identify physical processes associated with the seasonal cycle of pack ice, and to identify further the parameters that coupled models need to consider in predicting the response of the pack ice to climate and ocean-circulation changes. In agreement with earlier studies, the primary influence on the winter ice-edge maximum extent is air temperature. Ocean heat flux has more impact on the minimum-ice-edge extent and in reducing pack-ice thickness, especially in the eastern-Weddell Sea. Low relative humidity enhances ice growth in thin ice and open-water regions, producing a more realistic ice edge along the coastal areas of the western-Weddell Sea where dry continental air has an impact. The modeled extent of the Weddell summer pack is equally sensitive to ocean heat flux and atmospheric relative humidity variations with the more dynamic responses being from the atmosphere. Since the atmospheric regime in the eastern Weddell is dominated by marine intrusions from lower latitudes, with high humidity already, it is unlikely that either the moisture trans- port could be further raised or that it could be significantly lowered because of its distance from the continent (the lower humidity source). Ocean heat-transport variability is shown to lead to overall ice thinning in the model response and is a known feature of the actual system, as evidenced by the occurrence of the Weddell Polynya in the mid 1970s.

  15. Is it worth packing the head with ice in patients undergoing deep hypothermic circulatory arrest?

    PubMed

    O'Neill, Bridie; Bilal, Haris; Mahmood, Sarah; Waterworth, Paul

    2012-10-01

    A best evidence topic in cardiac surgery was written according to a structured protocol. The question addressed was: Is it worth packing the head with ice in patients undergoing deep hypothermic circulatory arrest (DHCA)? Altogether more than 34 papers were found using the reported search, of which 7 represented the best evidence to answer the clinical question, 5 of which were animal studies, 1 was a theoretical laboratory study and 1 study looked at the ability to cool using circulating water 'jackets' in humans. There were no available human studies looking at the neurological outcome with or without topical head cooling with ice without further adjunct methods of cerebral protection. The authors, journal, date and country of publication, patient group studied, study type, relevant outcomes and results of these papers are tabulated. Four papers studied animals undergoing DHCA for 45 min-2 h depending on the study design, with or without packing the head with ice. The studies all demonstrated improved cerebral cooling when the head was packed with ice during DHCA. They also illustrated an improved neurological outcome, with better behavioural scores (P < 0.05), and in some, survival, when compared with animals whose heads were not packed in ice. One study examined selective head cooling with the use of packing the head with ice during rewarming after DHCA. However, they demonstrated worse neurological outcomes in these animals, possibly due to the loss of cerebral vasoregulation and cerebral oedema. One study involved a laboratory experiment showing improved cooling using circulating cool water in cryotherapy braces than by using packed ice. They extrapolated that newer devices to cool the head may improve cerebral cooling during DHCA. The final study discussed here demonstrated the use of circulating water to the head in humans undergoing pulmonary endarterectomy. They found that tympanic membrane temperatures could be maintained significantly lower than bladder or rectal temperatures when using circulating water to cool the head. We conclude that topical head cooling with ice is of use during DHCA but not during rewarming following DHCA and that it may be possible to advance topical head cooling techniques using circulating water rather than packed ice.

  16. Comparisons of ice packs, hot water immersion, and analgesia injection for the treatment of centipede envenomations in Taiwan.

    PubMed

    Chaou, Chung-Hsien; Chen, Chian-Kuang; Chen, Jih-Chang; Chiu, Te-Fa; Lin, Chih-Chuan

    2009-08-01

    To compare the effectiveness of ice packs and hot water immersion for the treatment of centipede envenomations. Sixty patients envenomated by centipedes were randomized into three groups and were treated with ice packs, hot water immersion, or analgesia injection. The visual analog score (VAS) for pain was measured before the treatment and 15 min afterward. Demographic data and data on local and systemic effects after centipede bites were collected. The VAS scores and the pain decrease (DeltaVAS) were compared between the three groups. All patients suffered from pain at the affected sites; other local effects included redness (n = 49, 81.7%), swelling (n = 32, 53.3%), heat (n = 14, 23.3%), itchiness (n = 5, 8.3), and bullae formation (n = 3, 5.0%). Rare systemic effects were reported. All three groups had similar VAS scores before and after treatment. They also had similar effectiveness in reducing pain caused by centipedes bites (DeltaVAS = 2.55 +/- 1.88, 2.33 +/- 1.78, and 1.55 +/- 1.68, with ice packs, analgesia, and hot water immersion, respectively, p = 0.165). Ice packs, hot water immersion, and analgesics all improved the pain from centipede envenomation. Ice pack treatment is a safe, inexpensive, and non-invasive method for pre-hospital management in patients with centipede envenomation.

  17. Mapping and Assessing Variability in the Antarctic Marginal Ice Zone, the Pack Ice and Coastal Polynyas

    NASA Astrophysics Data System (ADS)

    Stroeve, Julienne; Jenouvrier, Stephanie

    2016-04-01

    Sea ice variability within the marginal ice zone (MIZ) and polynyas plays an important role for phytoplankton productivity and krill abundance. Therefore mapping their spatial extent, seasonal and interannual variability is essential for understanding how current and future changes in these biological active regions may impact the Antarctic marine ecosystem. Knowledge of the distribution of different ice types to the total Antarctic sea ice cover may also help to shed light on the factors contributing towards recent expansion of the Antarctic ice cover in some regions and contraction in others. The long-term passive microwave satellite data record provides the longest and most consistent data record for assessing different ice types. However, estimates of the amount of MIZ, consolidated pack ice and polynyas depends strongly on what sea ice algorithm is used. This study uses two popular passive microwave sea ice algorithms, the NASA Team and Bootstrap to evaluate the distribution and variability in the MIZ, the consolidated pack ice and coastal polynyas. Results reveal the NASA Team algorithm has on average twice the MIZ and half the consolidated pack ice area as the Bootstrap algorithm. Polynya area is also larger in the NASA Team algorithm, and the timing of maximum polynya area may differ by as much as 5 months between algorithms. These differences lead to different relationships between sea ice characteristics and biological processes, as illustrated here with the breeding success of an Antarctic seabird.

  18. Fifteen-second skin icing using a frozen gel pack is effective for reducing goserelin injection pain.

    PubMed

    Naya, Yoshio; Hagiwara, Nobuhisa; Takeuchi, Ichiro; Mori, Masaru; Inagaki, Akinori; Nakanouchi, Tsuneyuki; Mikami, Kazuya

    2014-01-01

    The efficacy of skin icing to reduce the pain of goserelin injection has been reported. We investigated the optimal icing time with a frozen gel pack and its effectiveness. Abdominal skin temperatures of 49 healthy volunteers were measured after application of the frozen gel pack for 10, 15 and 30 s, and it was decided that a 15-second icing was adequate. For 55 consecutive patients who received goserelin (10.8 mg) injection, pain was evaluated employing a visual analog scale (VAS). The first injection was administered routinely. A second injection was administered after skin icing in 27 of 55 patients who wanted to try icing. At the time of the third injection, all patient decided whether they were to receive icing or the routine method. After icing, VAS scores decreased in 20 of 27 patients. At the third injection, 18 patients requested icing. When a patient complains of injection pain, the icing method should be considered for pain reduction. 2014 S. Karger AG, Basel.

  19. Parameterization and scaling of arctic ice conditions in the context of ice-atmospheric processes

    NASA Technical Reports Server (NTRS)

    Barry, R. G.; Steffen, K.; Heinrichs, J. F.; Key, J. R.; Maslanik, J. A.; Serreze, M. C.; Weaver, R. L.

    1995-01-01

    The goals of this project are to observe how the open water/thin ice fraction in a high-concentration ice pack responds to different short-period atmospheric forcings, and how this response is represented in different scales of observation. The objectives can be summarized as follows: determine the feasibility and accuracy of ice concentration and ice typing by ERS-1 SAR backscatter data, and whether SAR data might be used to calibrate concentration estimates from optical and massive-microwave sensors; investigate methods to integrate SAR data with other satellite data for turbulent heat flux parameterization at the ocean/atmosphere interface; determine how the development and evolution of open water/thin ice areas within the interior ice pack vary under different atmospheric synoptic regimes; compare how open-water/thin ice fractions estimated from large-area divergence measurements differ from fractions determined by summing localized openings in the pack; relate these questions of scale and process to methods of observation, modeling, and averaging over time and space.

  20. On the 2012 Record Low Arctic Sea Ice Cover: Combined Impact of Preconditioning and an August Storm

    NASA Technical Reports Server (NTRS)

    Parkinson, Claire L.; Comiso, Josefino C.

    2013-01-01

    A new record low Arctic sea ice extent for the satellite era, 3.4 x 10(exp 6) square kilometers, was reached on 13 September 2012; and a new record low sea ice area, 3.01 x 10(exp 6) square kilometers was reached on the same date. Preconditioning through decades of overall ice reductions made the ice pack more vulnerable to a strong storm that entered the central Arctic in early August 2012. The storm caused the separation of an expanse of 0.4 x 10(exp 6) square kilometers of ice that melted in total, while its removal left the main pack more exposed to wind and waves, facilitating the main pack's further decay. Future summer storms could lead to a further acceleration of the decline in the Arctic sea ice cover and should be carefully monitored.

  1. Simple Cloud Chambers Using Gel Ice Packs

    ERIC Educational Resources Information Center

    Kamata, Masahiro; Kubota, Miki

    2012-01-01

    Although cloud chambers are highly regarded as teaching aids for radiation education, school teachers have difficulty in using cloud chambers because they have to prepare dry ice or liquid nitrogen before the experiment. We developed a very simple and inexpensive cloud chamber that uses the contents of gel ice packs which can substitute for dry…

  2. Study of Cold Heat Energy Release Characteristics of Flowing Ice Water Slurry in a Pipe

    NASA Astrophysics Data System (ADS)

    Inaba, Hideo; Horibe, Akihiko; Ozaki, Koichi; Yokota, Maki

    This paper has dealt with melting heat transfer characteristics of ice water slurry in an inside tube of horizontal double tube heat exchanger in which a hot water circulated in an annular gap between the inside and outside tubes. Two kinds of heat exchangers were used; one is made of acrylic resin tube for flow visualization and the other is made of stainless steel tube for melting heat transfer measurement. The result of flow visualization revealed that ice particles flowed along the top of inside tube in the ranges of small ice packing factor and low ice water slurry velocity, while ice particles diffused into the whole of tube and flowed like a plug built up by ice particles for large ice packing factor and high velocity. Moreover, it was found that the flowing ice plug was separated into numbers of small ice clusters by melting phenomenon. Experiments of melting heat transfer were carried out under some parameters of ice packing factor, ice water slurry flow rate and hot water temperature. Consequently, the correlation equation of melting heat transfer was derived as a function of those experimental parameters.

  3. Statistical Analyses of High-Resolution Aircraft and Satellite Observations of Sea Ice: Applications for Improving Model Simulations

    NASA Astrophysics Data System (ADS)

    Farrell, S. L.; Kurtz, N. T.; Richter-Menge, J.; Harbeck, J. P.; Onana, V.

    2012-12-01

    Satellite-derived estimates of ice thickness and observations of ice extent over the last decade point to a downward trend in the basin-scale ice volume of the Arctic Ocean. This loss has broad-ranging impacts on the regional climate and ecosystems, as well as implications for regional infrastructure, marine navigation, national security, and resource exploration. New observational datasets at small spatial and temporal scales are now required to improve our understanding of physical processes occurring within the ice pack and advance parameterizations in the next generation of numerical sea-ice models. High-resolution airborne and satellite observations of the sea ice are now available at meter-scale resolution or better that provide new details on the properties and morphology of the ice pack across basin scales. For example the NASA IceBridge airborne campaign routinely surveys the sea ice of the Arctic and Southern Oceans with an advanced sensor suite including laser and radar altimeters and digital cameras that together provide high-resolution measurements of sea ice freeboard, thickness, snow depth and lead distribution. Here we present statistical analyses of the ice pack primarily derived from the following IceBridge instruments: the Digital Mapping System (DMS), a nadir-looking, high-resolution digital camera; the Airborne Topographic Mapper, a scanning lidar; and the University of Kansas snow radar, a novel instrument designed to estimate snow depth on sea ice. Together these instruments provide data from which a wide range of sea ice properties may be derived. We provide statistics on lead distribution and spacing, lead width and area, floe size and distance between floes, as well as ridge height, frequency and distribution. The goals of this study are to (i) identify unique statistics that can be used to describe the characteristics of specific ice regions, for example first-year/multi-year ice, diffuse ice edge/consolidated ice pack, and convergent/divergent ice zones, (ii) provide datasets that support enhanced parameterizations in numerical models as well as model initialization and validation, (iii) parameters of interest to Arctic stakeholders for marine navigation and ice engineering studies, and (iv) statistics that support algorithm development for the next-generation of airborne and satellite altimeters, including NASA's ICESat-2 mission. We describe the potential contribution our results can make towards the improvement of coupled ice-ocean numerical models, and discuss how data synthesis and integration with high-resolution models may improve our understanding of sea ice variability and our capabilities in predicting the future state of the ice pack.

  4. Studies of the inner shelf and coastal sedimentation environment of the Beaufort Sea from ERTS-A

    NASA Technical Reports Server (NTRS)

    Reimnitz, E. (Principal Investigator); Barnes, P. W.; Toimil, L. J.; Harden, D.

    1976-01-01

    The author has identified the following significant results. Shearing periodically occurs between the westward moving pack ice (3 to 10 km/d) within the Pacific Gyre and the fast ice along the coast, forming major grounded shear and pressure ridges between the 10 to 40 m isobaths. Ridges occur in patterns conforming to known shoals. The zone of grounded ridges, called stamukhi zone, protects the inner shelf and coast from marine energy and pack ice forces. Relatively undeformed fast ice grows inshore of the stamukhi zone. The boundary is explained in terms of pack ice drift and major promontories and shoals. Intense ice gaging, highly disrupted sediments, and landward migration of shoals suggest that much of the available marine energy is expended on the sea floor within the stamukhi zone. Naleds (products of river icings) on the North Slope are more abundant east than west of the Colville River. Their location, growth, and decay were studied from LANDSAT imagery.

  5. Acquisition of Airborne Sea Ice Remote Sensing Data with CULPIS-X: an Instrument Mounted on a US Coast Guard C-130

    NASA Astrophysics Data System (ADS)

    Tschudi, M. A.; Tooth, M.; Barton-Grimley, R. A.

    2016-12-01

    To obtain high-resolution observations of sea ice, we developed the University of Colorado LIDAR Profiler Instrument Suite - Extended (CULPIS-X). CULPIS-X, originally funded by NASA and currently supported by ONR, is being deployed in the flare tube of a US Coast Guard (USCG) C-130 aircraft, during Arctic Domain Awareness (ADA) flights from Kodiak, AK to the Arctic, in cooperation with the Coast Guard and with the Seasonal Ice Zone Remote Sensing (SIZRS, J. Morrison, PI) program. CULPIS-X (Figure 1) contains a LIDAR, digital camera, thermal infrared and hyperspectral radiometers, along with a GPS for aircraft altitude and an Inertial Measurement Unit (IMU) for aircraft attitude, and a computer to process and write the instrument data to SD cards. The package is designed to fly over Arctic sea ice for the purposes of measuring sea ice roughness, estimating sea ice thickness, and measuring ice surface temperature and reflectance. CULPIS-X had its inaugural flight aboard a C-130 out of USCG Air Station Sacramento in April 2016. This flight tested the structure of CULPIS-X, along with instrument readiness. The inaugural Arctic flight of CULPIS-X took place on June 15, 2016. The C-130 took off from Kodiak and flew towards Deadhorse, where it turned on to the 150W longitude line and proceeded north to 76N. The C-130 descended to a lower altitude ( 500 feet) during several flight segments along the 150W line, from Deadhorse to 76N and back. The lower altitude is required to obtain ULS LIDAR return pulses as they reflect off the ocean and sea ice. A similar flight was also performed on July 13, 2016. LIDAR data will be utilized to determine the surface roughness of the overflown ice pack. Furthermore, we will pick locations where open water occurred near or within the ice pack, to establish the freeboard of the ice pack, which will be used to estimate the sea ice thickness. More flights are scheduled for this season, in mid-Aug, Sept, and Oct, and are designed to overfly the 140W and 150W parallels from the Northern Alaskan coast up to 76N. We will present more detail of the CULPIS-X instruments, as well as flight tracks of completed missions, and data acquired from the missions during this inaugural season. The figure shows CULPIS-X in a US Coast Guard C-130 flare tube before the test flight out of USCG Air Station, Sacramento, CA.

  6. Characterization of the mechanical behavior of sea ice as a frictional material

    NASA Astrophysics Data System (ADS)

    Lade, Poul V.

    2002-12-01

    The mechanical properties of sea ice are determined by the formation process, and the consequent material behavior at the element scale exhibits viscoelastic behavior at the early loading stages, followed by brittle fracture or ductile, irrecoverable deformation that may be captured by hardening/softening plasticity models with nonassociated flow. Failure of sea ice under different loading conditions follows a pattern that demonstrates its highly cross-anisotropic nature as well as its behavior as a frictional material. The interactions between the floes in the pack ice resemble those observed in granular materials. These materials are frictional in nature, they exhibit both contractive and dilative volume changes, the plastic flow is nonassociated, and their stiffnesses and strengths increase with confining pressure, but they do not have any strength when unconfined. The overall behavior of the pack ice may be close to isotropic. Constitutive modeling of this behavior may be achieved by models used in geotechnical engineering. Formation of leads and subsequent freezing of the water results in cementation between the ice floes, and the pack ice becomes stronger. The behavior of the pack ice may now be compared with that observed in cemented soils or concrete. For these materials, increasing amounts of cementation result in increasing rates of dilation when sheared, and this accounts for the largest contribution to the increase in shear strength.

  7. Top predators in relation to bathymetry, ice and krill during austral winter in Marguerite Bay, Antarctica

    USGS Publications Warehouse

    Ribic, C.A.; Chapman, E.; Fraser, William R.; Lawson, G.L.; Wiebe, P.H.

    2008-01-01

    A key hypothesis guiding the US Southern Ocean Global Ocean Ecosystems Dynamics (US SO GLOBEC) program is that deep across-shelf troughs facilitate the transport of warm and nutrient-rich waters onto the continental shelf of the Western Antarctic Peninsula, resulting in enhanced winter production and prey availability to top predators. We tested aspects of this hypothesis during austral winter by assessing the distribution of the resident pack-ice top predators in relation to these deep across-shelf troughs and by investigating associations between top predators and their prey. Surveys were conducted July-August 2001 and August-September 2002 in Marguerite Bay, Antarctica, with a focus on the main across-shelf trough in the bay, Marguerite Trough. The common pack-ice seabird species were snow petrel (Pagodroma nivea, 1.2 individuals km-2), Antarctic petrel (Thalassoica antarctica, 0.3 individuals km-2), and Ade??lie penguin (Pygoscelis adeliae, 0.5 individuals km-2). The most common pack-ice pinniped was crabeater seal (Lobodon carcinophagus). During both winters, snow and Antarctic petrels were associated with low sea-ice concentrations independent of Marguerite Trough, while Ade??lie penguins occurred in association with this trough. Krill concentrations, both shallow and deep, also were associated with Ade??lie penguin and snow petrel distributions. During both winters, crabeater seal occurrence was associated with deep krill concentrations and with regions of lower chlorophyll concentration. The area of lower chlorophyll concentrations occurred in an area with complex bathymetry close to land and heavy ice concentrations. Complex or unusual bathymetry via its influence on physical and biological processes appears to be one of the keys to understanding how top predators survive during the winter in this Antarctic region. ?? 2007 Elsevier Ltd. All rights reserved.

  8. Design, development, and fabrication of a prototype ice pack heat sink subsystem. Flight experiment physical phenomena experiment chest

    NASA Technical Reports Server (NTRS)

    Roebelen, G. J., Jr.; Dean, W. C., II

    1975-01-01

    The concept of a flight experiment physical phenomena experiment chest, to be used eventually for investigating and demonstrating ice pack heat sink subsystem physical phenomena during a zero gravity flight experiment, is described.

  9. Arctic Ice Dynamics Joint Experiment (AIDJEX) assumptions revisited and found inadequate

    NASA Astrophysics Data System (ADS)

    Coon, Max; Kwok, Ron; Levy, Gad; Pruis, Matthew; Schreyer, Howard; Sulsky, Deborah

    2007-11-01

    This paper revisits the Arctic Ice Dynamics Joint Experiment (AIDJEX) assumptions about pack ice behavior with an eye to modeling sea ice dynamics. The AIDJEX assumptions were that (1) enough leads were present in a 100 km by 100 km region to make the ice isotropic on that scale; (2) the ice had no tensile strength; and (3) the ice behavior could be approximated by an isotropic yield surface. These assumptions were made during the development of the AIDJEX model in the 1970s, and are now found inadequate. The assumptions were made in part because of insufficient large-scale (10 km) deformation and stress data, and in part because of computer capability limitations. Upon reviewing deformation and stress data, it is clear that a model including deformation on discontinuities and an anisotropic failure surface with tension would better describe the behavior of pack ice. A model based on these assumptions is needed to represent the deformation and stress in pack ice on scales from 10 to 100 km, and would need to explicitly resolve discontinuities. Such a model would require a different class of metrics to validate discontinuities against observations.

  10. Radar image interpretation techniques applied to sea ice geophysical problems

    NASA Technical Reports Server (NTRS)

    Carsey, F. D.

    1983-01-01

    The geophysical science problems in the sea ice area which at present concern understanding the ice budget, where ice is formed, how thick it grows and where it melts, and the processes which control the interaction of air-sea and ice at the ice margins is discussed. The science problems relate to basic questions of sea ice: how much is there, thickness, drift rate, production rate, determination of the morphology of the ice margin, storms feeling for the ice, storms and influence at the margin to alter the pack, and ocean response to a storm at the margin. Some of these questions are descriptive and some require complex modeling of interactions between the ice, the ocean, the atmosphere and the radiation fields. All involve measurements of the character of the ice pack, and SAR plays a significant role in the measurements.

  11. The phase diagram of high-pressure superionic ice

    DOE PAGES

    Sun, Jiming; Clark, Bryan K.; Torquato, Salvatore; ...

    2015-08-28

    Superionic ice is a special group of ice phases at high temperature and pressure, which may exist in ice-rich planets and exoplanets. In superionic ice liquid hydrogen coexists with a crystalline oxygen sublattice. At high pressures, the properties of superionic ice are largely unknown. Here we report evidence that from 280 GPa to 1.3 TPa, there are several competing phases within the close-packed oxygen sublattice. At even higher pressure, the close-packed structure of the oxygen sublattice becomes unstable to a new unusual superionic phase in which the oxygen sublattice takes the P2 1/c symmetry. We also discover that higher pressuremore » phases have lower transition temperatures. The diffusive hydrogen in the P2 1/c superionic phase shows strong anisotropic behaviour and forms a quasi-two-dimensional liquid. The ionic conductivity changes abruptly in the solid to close-packed superionic phase transition, but continuously in the solid to P2 1/c superionic phase transition.« less

  12. Landward and eastward shift of Alaskan polar bear denning associated with recent sea ice changes

    USGS Publications Warehouse

    Fischbach, Anthony S.; Amstrup, Steven C.; Douglas, David C.

    2007-01-01

    Polar bears (Ursus maritimus) in the northern Alaska region den in coastal areas and on offshore drifting ice. We evaluated changes in the distribution of polar bear maternal dens between 1985 and 2005, using satellite telemetry. We determined the distribution of maternal dens occupied by 89 satellite collared female polar bears between 137°W and 167°W longitude. The proportion of dens on pack ice declined from 62% in 1985–1994 to 37% in 1998–2004 (P = 0.044) and among pack ice dens fewer occurred in the western Beaufort Sea after 1998. We evaluated whether hunting, attraction to bowhead whale remains, or changes in sea ice could explain changes in den distribution. We concluded that denning distribution changed in response to reductions in stable old ice, increases in unconsolidated ice, and lengthening of the melt season. In consort, these changes have likely reduced the availability and quality of pack ice denning habitat. Further declines in sea ice availability are predicted. Therefore, we expect the proportion of polar bears denning in coastal areas will continue to increase, until such time as the autumn ice retreats far enough from shore that it precludes offshore pregnant females from reaching the Alaska coast in advance of denning.

  13. Atmospheric forcing of sea ice leads in the Beaufort Sea

    NASA Astrophysics Data System (ADS)

    Lewis, B. J.; Hutchings, J.; Mahoney, A. R.; Shapiro, L. H.

    2016-12-01

    Leads in sea ice play an important role in the polar marine environment where they allow heat and moisture transfer between the oceans and atmosphere and act as travel pathways for both marine mammals and ships. Examining AVHRR thermal imagery of the Beaufort Sea, collected between 1994 and 2010, sea ice leads appear in repeating patterns and locations (Eicken et al 2005). The leads, resolved by AVHRR, are at least 250m wide (Mahoney et al 2012), thus the patterns described are for lead systems that extend up to hundreds of kilometers across the Beaufort Sea. We describe how these patterns are associated with the location of weather systems relative to the coastline. Mean sea level pressure and 10m wind fields from ECMWF ERA-Interim reanalysis are used to identify if particular lead patterns can be uniquely forecast based on the location of weather systems. Ice drift data from the NSIDC's Polar Pathfinder Daily 25km EASE-Grid Sea Ice Motion Vectors indicates the role shear along leads has on the motion of ice in the Beaufort Gyre. Lead formation is driven by 4 main factors: (i) coastal features such as promontories and islands influence the origin of leads by concentrating stresses within the ice pack; (ii) direction of the wind forcing on the ice pack determines the type of fracture, (iii) the location of the anticyclone (or cyclone) center determines the length of the fracture for certain patterns; and (iv) duration of weather conditions affects the width of the ice fracture zones. Movement of the ice pack on the leeward side of leads originating at promontories and islands increases, creating shear zones that control ice transport along the Alaska coast in winter. . Understanding how atmospheric conditions influence the large-scale motion of the ice pack is needed to design models that predict variability of the gyre and export of multi-year ice to lower latitudes.

  14. Effects of lead structure in Bering Sea pack ice on the flight costs of wintering spectacled eiders

    NASA Astrophysics Data System (ADS)

    Bump, Joseph K.; Lovvorn, James R.

    2004-10-01

    In polar regions, sea ice is critical habitat for many marine birds and mammals. The quality of pack ice habitat depends on the duration and spacing of leads (openings in the ice), which determine access to water and air for diving endotherms, and how often and how far they must move as leads open and close. Recent warming trends have caused major changes in the extent and nature of sea ice at large scales used in climate models. However, no studies have analyzed lead structure in terms of habitat for ice-dependent endotherms, or effects of climate on ice habitat at scales relevant to their daily movements. Based on observations from an icebreaker and synthetic aperture radar (SAR) images, we developed methods to describe the dynamics and thermodynamics of lead structure relative to use by spectacled eiders ( Somateria fischeri) wintering in pack ice of the Bering Sea. By correlating lead structure with weather variables, we then used these methods to estimate changes in lead dynamics from 1945 to 2002, and effects of such changes on flight costs of the eiders. For 1991-1992, when images were available about every 3 days throughout winter, SAR images were divided among five weather regimes defined by wind speed, wind direction, and air temperature. Based on 12.5-m pixels, lead shape, compass orientation, and fetch across leads did not differ among the weather regimes. However, the five regimes differed in total area of open water, leads per unit area, and distance between leads. Lead duration was modeled based on air temperature, wind, and fetch. Estimates of mean daily flight time for eiders, based on lead duration and distance between neighboring leads, differed among regimes by 0 to 15 min. Resulting flight costs varied from 0 to 158 kJ day -1, or from 0% to 11% of estimated field metabolic rate. Over 57 winters (1945-2002), variation among years in mean daily flight time was most influenced by the north-south wind component, which determined pack divergence (lead opening) during northerly winds or pack convergence (lead closing) during southerly winds. Mean daily flight time and flight cost during winter did not differ among proposed periods of decadal-scale climate shifts in the North Pacific Ocean. Although leads in mobile pack ice constantly open and close with variations in wind, under most conditions in the Bering Sea there appeared to be a shifting-mosaic steady-state of lead availability. Long-term trends in the extent and timing of Bering Sea pack ice may have affected spectacled eiders more by altering foodweb processes than by changing flight costs relative to lead structure.

  15. 49 CFR 173.196 - Category A infectious substances.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... refrigerated or frozen (ice, pre-frozen packs, dry ice). Ice, dry ice, or other refrigerant must be placed... the secondary packaging must maintain their integrity at the temperature of the refrigerant used, as...

  16. Oral health-related quality of life following third molar surgery with or without application of ice pack therapy.

    PubMed

    Ibikunle, Adebayo A; Adeyemo, Wasiu L

    2016-09-01

    To evaluate the effect of ice pack therapy on oral health-related quality of life (OHRQoL) following third molar surgery. All consecutive subjects who required surgical extraction of lower third molars and satisfied the inclusion criteria were randomly allocated into two groups. Subjects in group A were instructed to apply ice packs directly over the masseteric region on the operated side intermittently after third molar surgery. This first application was supervised in the clinic and was repeated at the 24-h postoperative review. Subjects in group A were further instructed to apply the ice pack when at home every one and a half hours on postoperative days 0 and 1 while he/she was awake as described. Group B subjects did not apply ice pack therapy. Facial swelling, pain, trismus, and quality of life (using Oral Health Impact Profile-14 (OHIP-14) instrument) were evaluated both preoperatively and postoperatively. Postoperative scores in both groups were compared. A significant increase in the mean total and subscale scores of OHIP-14 was found in both groups postoperatively when compared with preoperative value. Subjects who received ice pack therapy had a better quality of life than those who did not. Subjects whose postoperative QoL were affected were statistically significantly higher in group B than in group A at all postoperative evaluation points (P < 0.05). Statistically significant differences were also observed between the groups in the various subscales analyzed, with better quality of life seen among subjects in group A. Quality of life after third molar surgery was significantly better in subjects who had cryotherapy after third molar than those who did not have cryotherapy. Cryotherapy is a viable alternative or adjunct to other established modes of improving the quality of life of patients following surgical extraction of third molars.

  17. Mobility of icy sand packs, with application to Martian permafrost

    USGS Publications Warehouse

    Durham, W.B.; Pathare, A.V.; Stern, L.A.; Lenferink, H.J.

    2009-01-01

    [1] The physical state of water on Mars has fundamental ramifications for both climatology and astrobiology. The widespread presence of "softened" Martian landforms (such as impact craters) can be attributed to viscous creep of subsurface ground ice. We present laboratory experiments designed to determine the minimum amount of ice necessary to mobilize topography within Martian permafrost. Our results show that the jammed-to-mobile transition of icy sand packs neither occurs at fixed ice content nor is dependent on temperature or stress, but instead correlates strongly with the maximum dry packing density of the sand component. Viscosity also changes rapidly near the mobility transition. The results suggest a potentially lower minimum volatile inventory for the impact-pulverized megaregolith of Mars. Furthermore, the long-term preservation of partially relaxed craters implies that the ice content of Martian permafrost has remained close to that at the mobility transition throughout Martian history. Copyright 2009 by the American Geophysical Union.

  18. Modelling MIZ dynamics in a global model

    NASA Astrophysics Data System (ADS)

    Rynders, Stefanie; Aksenov, Yevgeny; Feltham, Daniel; Nurser, George; Naveira Garabato, Alberto

    2016-04-01

    Exposure of large, previously ice-covered areas of the Arctic Ocean to the wind and surface ocean waves results in the Arctic pack ice cover becoming more fragmented and mobile, with large regions of ice cover evolving into the Marginal Ice Zone (MIZ). The need for better climate predictions, along with growing economic activity in the Polar Oceans, necessitates climate and forecasting models that can simulate fragmented sea ice with a greater fidelity. Current models are not fully fit for the purpose, since they neither model surface ocean waves in the MIZ, nor account for the effect of floe fragmentation on drag, nor include sea ice rheology that represents both the now thinner pack ice and MIZ ice dynamics. All these processes affect the momentum transfer to the ocean. We present initial results from a global ocean model NEMO (Nucleus for European Modelling of the Ocean) coupled to the Los Alamos sea ice model CICE. The model setup implements a novel rheological formulation for sea ice dynamics, accounting for ice floe collisions, thus offering a seamless framework for pack ice and MIZ simulations. The effect of surface waves on ice motion is included through wave pressure and the turbulent kinetic energy of ice floes. In the multidecadal model integrations we examine MIZ and basin scale sea ice and oceanic responses to the changes in ice dynamics. We analyse model sensitivities and attribute them to key sea ice and ocean dynamical mechanisms. The results suggest that the effect of the new ice rheology is confined to the MIZ. However with the current increase in summer MIZ area, which is projected to continue and may become the dominant type of sea ice in the Arctic, we argue that the effects of the combined sea ice rheology will be noticeable in large areas of the Arctic Ocean, affecting sea ice and ocean. With this study we assert that to make more accurate sea ice predictions in the changing Arctic, models need to include MIZ dynamics and physics.

  19. Future Interannual Variability of Arctic Sea Ice Area and its Implications for Marine Navigation

    NASA Astrophysics Data System (ADS)

    Vavrus, S. J.; Mioduszewski, J.; Holland, M. M.; Wang, M.; Landrum, L.

    2016-12-01

    As both a symbol and driver of ongoing climate change, the diminishing Arctic sea ice pack has been widely studied in a variety of contexts. Most research, however, has focused on time-mean changes in sea ice, rather than on short-term variations that also have important physical and societal consequences. In this study we test the hypothesis that interannual Arctic sea ice variability will increase in the future by utilizing a set of 40 independent simulations from the Community Earth System Model's Large Ensemble for the 1920-2100 period. The model projects that ice variability will indeed grow substantially in all months but with a strong seasonal dependence in magnitude and timing. The variability increases most during late autumn (November-December) and least during spring. This increase proceeds in a time-transgressive manner over the course of the year, peaking soonest (2020s) in late-summer months and latest (2090s) during late spring. The variability in every month is inversely correlated with the average melt rate, resulting in an eventual decline in both terms as the ice pack becomes seasonal by late century. These projected changes in sea ice variations will likely have significant consequences for marine navigation, which we assess with the empirical Ice Numeral (IN) metric. A function of ice concentration and thickness, the IN quantifies the difficulty in traversing a transect of sea ice-covered ocean as a function of vessel strength. Our results show that although increasingly open Arctic seas will mean generally more favorable conditions for navigation, the concurrent rise in the variability of ice cover poses a competing risk. In particular, future intervals featuring the most rapid declines in ice area that coincide with the highest interannual ice variations will offer more inviting shipping opportunities tempered by less predictable navigational conditions.

  20. Polar bear maternity denning in the Beaufort Sea

    USGS Publications Warehouse

    Amstrup, Steven C.; Gardner, Craig L.

    1994-01-01

    The distribution of polar bears (Ursus maritimus) is circumpolar in the NOrthern Hemisphere, but known locations of maternal dens are concentrated in relatively few, widely scattered locations. Denning is either uncommon or unknown within gaps. To understand effects of industrial development and propose increases in hunting, the temporal and spatial distribution of denning in the Beaufort Sea must be known. We caputred and radiocollared polar bears between 1981 and 1991 and determined tht denning in the Beaufort Sea region was sufficient to account for the estimated population there. Of 90 dend, 48 were on drifting pack ice, 38 on land, and 4 on land-fast ice. The portions of dens on land was higher (P= 0.029) in later compared with earlier years of the study. Bears denning on pack ice drifting as far as 997 km (x=385km) while in dens. there was no difference in cun production by bears denning on land and pack ice (P =0.66). Mean entry and exit dates were 11 November and 5 April for land dens and 22 November and 26 March for pack-ice dens. Female polar bears captured in the Beaufort Sea appeared to be isolated from those caught eat of Cape Bathurst in Canada. Of 35 polar bears that denned along the mainland coast of Alaska and Canada 80% denned between 137 00'W snf 146 59'W. Bears followed to >1 den did not reuse sites and consecutive dens were 20-1,304 km apart. However radio-collared bears are largely faithful to substrate (pack-ice, land, and land-fast ice) and the general geographic area of previous dens. Bears denning on land may be vunerable to human activities such as hunting and industrial development. However, predictable denning chronology and alck of site fidelity indicate that many potential impacts on denning polar bears could be mitigated.

  1. Local cooling for relieving pain from perineal trauma sustained during childbirth.

    PubMed

    East, C E; Begg, L; Henshall, N E; Marchant, P; Wallace, K

    2007-10-17

    Perineal trauma is common during childbirth and may be painful. Contemporary maternity practice includes offering women numerous forms of pain relief, including the local application of cooling treatments. To evaluate the effectiveness and side effects of localised cooling treatments compared with no treatment, other forms of cooling treatments and non-cooling treatments. We searched the Cochrane Pregnancy and Childbirth Group's Trials Register (January 2007), CINAHL (1982 to January 2007) and contacted experts in the field. Published and unpublished randomised and quasi-randomised trials (RCTs) that compared localised cooling treatment applied to the perineum with no treatment or other treatments applied to relieve pain related to perineal trauma sustained during childbirth. At least two independent authors performed data extraction for each study. Analyses were performed on an intention-to-treat basis where data allowed. We sought additional information from the authors of three trials. Seven published RCTs were included, comparing local cooling treatments (ice packs, cold gel pads or cold/iced baths) with no treatment, hamamelis water (witch hazel), pulsed electromagnetic energy (PET), hydrocortisone/pramoxine foam [Epifoam] or warm baths. The RCTs reported on a total of 859 women. Ice packs provided improved pain relief 24 to 72 hours after birth compared with no treatment (risk ratio (RR) 0.61, 95% confidence interval (CI) 0.41 to 0.91). Women preferred the utility of the gel pads compared with ice packs or no treatment, although no differences in pain relief were detected between the treatments. None of our comparisons of treatments resulted in differences detected in perineal oedema or bruising. Women reported more pain (RR 5.60, 95% CI 2.35 to 13.33) and used more additional analgesia (RR 4.00, 95% CI 1.44 to 11.13) following the application of ice packs compared with PET. There is only limited evidence to support the effectiveness of local cooling treatments (ice packs, cold gel pads, cold/iced baths) applied to the perineum following childbirth to relieve pain.

  2. Hydraulic Conductivity Measurements Barrow 2014

    DOE Data Explorer

    Katie McKnight; Tim Kneafsey; Craig Ulrich; Jil Geller

    2015-02-22

    Six individual ice cores were collected from Barrow Environmental Observatory in Barrow, Alaska, in May of 2013 as part of the Next Generation Ecosystem Experiment (NGEE). Each core was drilled from a different location at varying depths. A few days after drilling, the cores were stored in coolers packed with dry ice and flown to Lawrence Berkeley National Laboratory (LBNL) in Berkeley, CA. 3-dimensional images of the cores were constructed using a medical X-ray computed tomography (CT) scanner at 120kV. Hydraulic conductivity samples were extracted from these cores at LBNL Richmond Field Station in Richmond, CA, in February 2014 by cutting 5 to 8 inch segments using a chop saw. Samples were packed individually and stored at freezing temperatures to minimize any changes in structure or loss of ice content prior to analysis. Hydraulic conductivity was determined through falling head tests using a permeameter [ELE International, Model #: K-770B]. After approximately 12 hours of thaw, initial falling head tests were performed. Two to four measurements were collected on each sample and collection stopped when the applied head load exceeded 25% change from the original load. Analyses were performed between 2 to 3 times for each sample. The final hydraulic conductivity calculations were computed using methodology of Das et al., 1985.

  3. Pain Intensity after an Ice Pack Application Prior to Venipuncture among School-Age Children: An Experimental Study

    ERIC Educational Resources Information Center

    Alalo, Fadeelah Mansour Ahmed; Ahmad, Awatef El Sayed; El Sayed, Hoda Mohamed Nafee

    2016-01-01

    Venipuncture and other invasive procedures as blood draws, intramuscular injections or heel pricks are the most commonly performed painful procedures in children. These can be a terrifying and painful experience for children and their families. The present study aimed to identify Pain intensity after an ice pack application prior to venipuncture…

  4. The jammed-to-mobile transition in frozen sand under stress

    NASA Astrophysics Data System (ADS)

    Durham, W. B.; Pathare, A.; Stern, L. A.; Lenferink, H. J.

    2009-12-01

    We conducted laboratory deformation experiments on sand-rich mixtures of sand + ice under sufficient confinement to inhibit macroscopic dilation. Dry sand packs constrained not to dilate when they are under a shearing load reach an immobile or “jammed” state, as load-supporting “force chains” of sand particles form after a small amount of strain and cannot be broken without volume expansion. Our research objective here was to find the minimum volume fraction of ice required to overcome the jammed state. The result surprised us: the required volume fraction is not a fixed number, but depends on the packing characteristics of the sand in question. Experiments were carried out in a triaxial gas deformation rig at confining pressures (60 - 200 MPa) always at least twice the level of differential stresses (11 - 50 MPa) in order to suppress dilatancy. Run temperatures were 223 - 243 K. We used two kinds of quartz sand, one well-sorted, with a maximum dry packing density (MDPD) of about 0.68 sand by volume, and the other a mixture of two sizes, having a higher MDPD of 0.75. Ice volume fraction ranged from well below saturation (where unfilled porosity necessarily remained) to slightly greater than the value of porosity at MDPD. We tested these frozen sands in compression under constant applied differential stress (creep). Strain rates were very low at these conditions, and runs took days or weeks to complete. The amount of strain required to reach the jammed state in ice-undersaturated samples was approximately 0.04, and did not show an obvious dependence on ice content. For both sands, the onset of mobility occurred at approximately 5% above the value of pore volume at MDPD. Furthermore, viscosity of mobile frozen sand near the transition point was extremely sensitive to ice fraction, which implies that at geologic strain rates, far slower than we can reach in the lab, the ice fraction at transition may lie closer to that at MDPD. Cryogenic scanning electron microscopy shows that fracturing of sand grains occurs in ice-undersaturated samples, but gradually disappears as saturation is reached. There are no fractured sand grains in deforming mobile frozen sand packs. One application of this work is to the regolith of Mars at mid-latitudes and poleward, where significant ice is expected to be present. Partially relaxed (“softened”) landforms such as craters require the presence of ice, but also suggest strengths far higher than that of ice. The extreme sensitivity of viscosity to ice content near the mobility boundary, and the near coincidence of mobility and saturation at MDPD together suggest a plausible explanation for partial landform softening on Mars that does not require a fortuitous ice content or an unrealistically brief period of saturation; namely, that the water content of the Martian regolith lies at or near saturation. If true, we can estimate the historical water content of the Martian regolith for reasonable soil densities as being between 120 and 240 global meters of water for the upper kilometer of crust. This is somewhat lower than previous estimates.

  5. Using oral polio vaccine beyond the cold chain: a feasibility study conducted during the national immunization campaign in Mali.

    PubMed

    Halm, Ariane; Yalcouyé, Idrissa; Kamissoko, Mady; Keïta, Tenemakan; Modjirom, Ndoutabé; Zipursky, Simona; Kartoglu, Umit; Ronveaux, Olivier

    2010-04-26

    We conducted the first systematic documentation of using oral polio vaccine (OPV) out of the cold chain during national immunization day (NID) campaigns in Mali. Using a crossover intervention design, vaccinators compared the transport of OPV in vaccine carriers with or without ice packs. Vaccine integrity was assured through monitoring vaccine vial monitor (VVM) status. Despite ambient temperatures up to 40 degrees C, none of the VVMs on any of the vials used (n=956) reached their discard point. Over 90% of vaccinators and supervisors preferred conducting NIDs without ice packs. In addition, using OPV out of the cold chain reduced vaccine wastage resulting from melting ice packs causing labels to detach from the vial. Copyright 2010 Elsevier Ltd. All rights reserved.

  6. Responding to Climate Change: Adelie Penguins Confront Astronomical and Ocean Boundaries

    NASA Technical Reports Server (NTRS)

    Ballard, Grant; Toniolo, Viola; Ainley, David G.; Parkinson, Claire L.; Arrigo, Kevin R.; Trathan, Phil N.

    2009-01-01

    Long-distance migration enables many organisms to take advantage of lucrative breeding and feeding opportunities during summer at high latitudes and then to move to lower, more temperate latitudes for the remainder of the year. The latitudinal range of the Ad lie penguin spans 22 deg. Penguins from northern colonies may not migrate, but due to the high latitude of Ross Island colonies, these penguins almost certainly undertake the longest migrations for the species. Previous work has suggested that Adelies require both pack ice and some ambient light at all times of year. Over a 3-yr period, which included winters of both extensive and reduced sea ice, we investigated migratory routes and characteristics and wintering locations of Adelie Penguins from two colonies of very different size on Ross Island, Ross Sea, the southernmost colonies for any penguin. We acquired data from 3-16 Geolocation Sensors affixed to penguins each year at both Cape Royds and Cape Crozier in 2003-2005. Migrations averaged 12,760 km, with the longest being 17,600 km, and were in part facilitated by pack ice movement. Trip distances varied annually, but not by colony. Penguins rarely traveled north of the main sea ice pack, and used areas with high sea-ice concentration, ranging from 75-85%, about 500 km inward from the ice edge. They also used locations where there was some twilight (2-7 hr with sun greater than 6 below horizon). We review how Adelie Penguin migration has likely changed since withdrawal of the West Antarctic Ice 35 Sheet across the Ross Sea beginning 12,000 yBP. If sea ice extent in the Ross Sea sector decreases, as predicted by climate models, we can expect change in wintering areas, the location of which ultimately may be limited more by the availability of adequate light for visual foraging than by the availability of suitable pack-ice.

  7. Sea ice and surface water circulation, Alaskan Continental Shelf

    NASA Technical Reports Server (NTRS)

    Wright, F. F. (Principal Investigator); Sharma, G. D.; Burn, J. J.

    1973-01-01

    The author has identified the following significant results. The boundaries of land-fast ice, distribution of pack ice, and major polynya were studied in the vicinity of the Bering Strait. Movement of pack ice during 24 hours was determined by plotting the distinctly identifiable ice floes on ERTS-1 imagery obtained from two consecutive passes. Considerably large shallow area along the western Seward Peninsula just north of the Bering Strait is covered by land fast ice. This ice hinders the movement of ice formed in eastern Chukchi Sea southward through the Bering Strait. The movement of ice along the Russian coast is relatively faster. Plotting of some of the ice floes indicated movement of ice in excess of 30 km in and south of the Bering Strait between 6 and 7 March, 1973. North of the Bering Strait the movement approached 18 km. The movement of ice observed during March 6 and 7 considerably altered the distribution and extent of polynya. These features when continually plotted should be of considerable aid in navigation of ice breakers. The movement of ice will also help delineate the migration and distribution of sea mammals.

  8. Parameterization and scaling of Arctic ice conditions in the context of ice-atmosphere processes

    NASA Technical Reports Server (NTRS)

    Barry, R. G.; Heinrichs, J.; Steffen, K.; Maslanik, J. A.; Key, J.; Serreze, M. C.; Weaver, R. W.

    1994-01-01

    This report summarizes achievements during year three of our project to investigate the use of ERS-1 SAR data to study Arctic ice and ice/atmosphere processes. The project was granted a one year extension, and goals for the final year are outlined. The specific objects of the project are to determine how the development and evolution of open water/thin ice areas within the interior ice pack vary under different atmospheric synoptic regimes; compare how open water/thin ice fractions estimated from large-area divergence measurements differ from fractions determined by summing localized openings in the pack; relate these questions of scale and process to methods of observation, modeling, and averaging over time and space; determine whether SAR data might be used to calibrate ice concentration estimates from medium and low-rate bit sensors (AVHRR and DMSP-OLS) and the special sensor microwave imager (SSM/I); and investigate methods to integrate SAR data for turbulent heat flux parametrization at the atmosphere interface with other satellite data.

  9. Propagation and Directional Scattering of Ocean Waves in the Marginal Ice Zone and Neighboring Seas

    DTIC Science & Technology

    2015-09-30

    expected to be the average of the kernel for 10 s and 12 s. This means that we should be able to calculate empirical formulas for 2 the scattering kernel...floe packing. Thus, establish a way to incorporate what has been done by Squire and co-workers into the wave model paradigm (in which the phase of the...cases observed by Kohout et al. (2014) in Antarctica . vii. Validation: We are planning validation tests for wave-ice scattering / attenuation model by

  10. Microbiological quality of cuttlefish (Sepia pharaonis) fillets stored in dry and wet ice.

    PubMed

    Jeyasekaran, G; Jeya Shakila, R; Sukumar, D

    2012-10-01

    Microbiological quality of cuttlefish (Sepia pharaonis) fillets stored in three different ice conditions was studied. Fillets stored in wet ice at a ratio of 1:1 (package III) were sensorially acceptable for only 18 h, while that stored in dry ice at 1:1 (package I) and combination of dry ice and wet ice at 1:0.2:0.5 (package II) were in acceptable condition up to 24 h without re-icing and thus there was an extension of shelf life by about 33%. Total bacterial load was 7 log₁₀ cfu/g at the end of the storage period. Total psychrophilic population increased from zero to 7 log₁₀ cfu/g while total lactic acid bacteria from zero to 5 log₁₀ cfu/g. H₂S producers were detected only at 18 h, with a count of 1 log₁₀ cfu/g. Sulphite-reducing Clostridia increased gradually from zero to 110 most probable number count/g. Fresh cuttlefish fillets carried a bacterial flora of Micrococcus, Planococcus, Streptococcus, Moraxella, Proteus and Aeromonas. Pseudomonas was dominant in wet ice pack, while Aeromonas was dominant in both the dry ice and combination pack. Immediately after packing, the temperatures recorded in packages I, II and III were 10.5, 1.2 and 3.0 °C, respectively, which drastically decreased in 1 h and then maintained and finally increased gradually. The results indicate that use of combination of dry ice and wet ice is economical and very much useful to seafood industries, as this package considerably reduced the cost of air freight, as well as improved the quality and shelf life of cuttlefish.

  11. Effects of synoptic patterns on atmospheric chemistry and aerosols during the Arctic Ocean Expedition 1996

    NASA Astrophysics Data System (ADS)

    Nilsson, E. Douglas; Barr, Sumner

    2001-12-01

    The atmospheric program on the Arctic Ocean Expedition of July through September 1996 (AOE-96) was focused on aerosol climate feedback. The expedition took place close to the saddle point between a semipersistent anticyclonic ridge from near Scandinavia to the Arctic coast of eastern Siberia and a trough from the Canadian archipelago across the pole to north central Siberia. The weather varied from anticyclonic clear-sky conditions to cyclonic cloudy conditions, and 13 identifiable migratory features (frontal bands, wave disturbances) clearly influenced local weather, clouds, atmospheric transport, and chemistry. This includes an explosive polar cyclone, born at the lateral heat gradient between Greenland and the pack ice rather than between open sea and the pack ice. The synoptic scale weather systems caused the strongest variability in trace gases (O3 in particular) and aerosols, and also strong variability in the cloud cover. The formation of air masses over the pack ice primarily depends on if there is cyclonic (convergent) or anticyclonic (divergent) flow. Cyclonic flow resulted in a modified marine air mass loaded with vapor, but with low aerosol number concentrations owing to frequent clouds and fogs and efficient cloud scavenging of the aerosol. Anticyclonic flow resulted in almost continental air masses with clear sky, long residence time over the pack ice and subsidence slowly replacing the boundary layer with free tropospheric air, low vapor concentrations, but large aerosol number in lack of efficient cloud scavenging. The synoptic variability and advection from south of the ice edge were weaker than during the predecessor International Arctic Ocean Expedition in 1991 (IAOE-91), when on average the sampled air spent 55 hours over the pack ice compared to more than 120 hours during AOE-96, owing to exceptionally high cyclone activity in 1991. This caused a large difference in atmospheric transport, chemistry, and aerosols between the two expeditions.

  12. Ice tracking techniques, implementation, performance, and applications

    NASA Technical Reports Server (NTRS)

    Rothrock, D. A.; Carsey, F. D.; Curlander, J. C.; Holt, B.; Kwok, R.; Weeks, W. F.

    1992-01-01

    Present techniques of ice tracking make use both of cross-correlation and of edge tracking, the former being more successful in heavy pack ice, the latter being critical for the broken ice of the pack margins. Algorithms must assume some constraints on the spatial variations of displacements to eliminate fliers, but must avoid introducing any errors into the spatial statistics of the measured displacement field. We draw our illustrations from the implementation of an automated tracking system for kinematic analyses of ERS-1 and JERS-1 SAR imagery at the University of Alaska - the Alaska SAR Facility's Geophysical Processor System. Analyses of the ice kinematic data that might have some general interest to analysts of cloud-derived wind fields are the spatial structure of the fields, and the evaluation and variability of average deformation and its invariants: divergence, vorticity and shear. Many problems in sea ice dynamics and mechanics can be addressed with the kinematic data from SAR.

  13. CO2 flux over young and snow-covered Arctic pack ice in winter and spring

    NASA Astrophysics Data System (ADS)

    Nomura, Daiki; Granskog, Mats A.; Fransson, Agneta; Chierici, Melissa; Silyakova, Anna; Ohshima, Kay I.; Cohen, Lana; Delille, Bruno; Hudson, Stephen R.; Dieckmann, Gerhard S.

    2018-06-01

    Rare CO2 flux measurements from Arctic pack ice show that two types of ice contribute to the release of CO2 from the ice to the atmosphere during winter and spring: young, thin ice with a thin layer of snow and older (several weeks), thicker ice with thick snow cover. Young, thin sea ice is characterized by high salinity and high porosity, and snow-covered thick ice remains relatively warm ( > -7.5 °C) due to the insulating snow cover despite air temperatures as low as -40 °C. Therefore, brine volume fractions of these two ice types are high enough to provide favorable conditions for gas exchange between sea ice and the atmosphere even in mid-winter. Although the potential CO2 flux from sea ice decreased due to the presence of the snow, the snow surface is still a CO2 source to the atmosphere for low snow density and thin snow conditions. We found that young sea ice that is formed in leads without snow cover produces CO2 fluxes an order of magnitude higher than those in snow-covered older ice (+1.0 ± 0.6 mmol C m-2 day-1 for young ice and +0.2 ± 0.2 mmol C m-2 day-1 for older ice).

  14. The winter pack-ice zone provides a sheltered but food-poor habitat for larval Antarctic krill.

    PubMed

    Meyer, Bettina; Freier, Ulrich; Grimm, Volker; Groeneveld, Jürgen; Hunt, Brian P V; Kerwath, Sven; King, Rob; Klaas, Christine; Pakhomov, Evgeny; Meiners, Klaus M; Melbourne-Thomas, Jessica; Murphy, Eugene J; Thorpe, Sally E; Stammerjohn, Sharon; Wolf-Gladrow, Dieter; Auerswald, Lutz; Götz, Albrecht; Halbach, Laura; Jarman, Simon; Kawaguchi, So; Krumpen, Thomas; Nehrke, Gernot; Ricker, Robert; Sumner, Michael; Teschke, Mathias; Trebilco, Rowan; Yilmaz, Noyan I

    2017-12-01

    A dominant Antarctic ecological paradigm suggests that winter sea ice is generally the main feeding ground for krill larvae. Observations from our winter cruise to the southwest Atlantic sector of the Southern Ocean contradict this view and present the first evidence that the pack-ice zone is a food-poor habitat for larval development. In contrast, the more open marginal ice zone provides a more favourable food environment for high larval krill growth rates. We found that complex under-ice habitats are, however, vital for larval krill when water column productivity is limited by light, by providing structures that offer protection from predators and to collect organic material released from the ice. The larvae feed on this sparse ice-associated food during the day. After sunset, they migrate into the water below the ice (upper 20 m) and drift away from the ice areas where they have previously fed. Model analyses indicate that this behaviour increases both food uptake in a patchy food environment and the likelihood of overwinter transport to areas where feeding conditions are more favourable in spring.

  15. The zooplankton food web under East Antarctic pack ice - A stable isotope study

    NASA Astrophysics Data System (ADS)

    Jia, Zhongnan; Swadling, Kerrie M.; Meiners, Klaus M.; Kawaguchi, So; Virtue, Patti

    2016-09-01

    Understanding how sea ice serves zooplankton species during the food-limited season is crucial information to evaluate the potential responses of pelagic food webs to changes in sea-ice conditions in the Southern Ocean. Stable isotope analyses (13C/12C and 15N/14N) were used to compare the dietary preferences and trophic relationships of major zooplankton species under pack ice during two winter-spring transitions (2007 and 2012). During sampling, furcilia of Euphausia superba demonstrated dietary plasticity between years, herbivory when feeding on sea-ice biota, and with a more heterotrophic diet when feeding from both the sea ice and the water column. Carbon isotope signatures suggested that the pteropod Limacina helicina, small copepods Oithona spp., ostracods and amphipods relied heavily on sea-ice biota. Post larval E. superba and omnivorous krill Thysanoessa macrura consumed both water column and ice biota, but further investigations are needed to estimate the contribution from each source. Large copepods and chaetognaths overwintered on a water column-based diet. Our study suggests that warm and permeable sea ice is more likely to provide food for zooplankton species under the ice than the colder ice.

  16. Variational Ridging in Sea Ice Models

    NASA Astrophysics Data System (ADS)

    Roberts, A.; Hunke, E. C.; Lipscomb, W. H.; Maslowski, W.; Kamal, S.

    2017-12-01

    This work presents the results of a new development to make basin-scale sea ice models aware of the shape, porosity and extent of individual ridges within the pack. We have derived an analytic solution for the Euler-Lagrange equation of individual ridges that accounts for non-conservative forces, and therefore the compressive strength of individual ridges. Because a region of the pack is simply a collection of paths of individual ridges, we are able to solve the Euler-Lagrange equation for a large-scale sea ice field also, and therefore the compressive strength of a region of the pack that explicitly accounts for the macro-porosity of ridged debris. We make a number of assumptions that have simplified the problem, such as treating sea ice as a granular material in ridges, and assuming that bending moments associated with ridging are perturbations around an isostatic state. Regardless of these simplifications, the ridge model is remarkably predictive of macro-porosity and ridge shape, and, because our equations are analytic, they do not require costly computations to solve the Euler-Lagrange equation of ridges on the large scale. The new ridge model is therefore applicable to large-scale sea ice models. We present results from this theoretical development, as well as plans to apply it to the Regional Arctic System Model and a community sea ice code. Most importantly, the new ridging model is particularly useful for pinpointing gaps in our observational record of sea ice ridges, and points to the need for improved measurements of the evolution of porosity of deformed ice in the Arctic and Antarctic. Such knowledge is not only useful for improving models, but also for improving estimates of sea ice volume derived from altimetric measurements of sea ice freeboard.

  17. Sea Ice Topography Profiling using Laser Altimetry from Small Unmanned Aircraft Systems

    NASA Astrophysics Data System (ADS)

    Crocker, Roger Ian

    Arctic sea ice is undergoing a dramatic transition from a perennial ice pack with a high prevalence of old multiyear ice, to a predominantly seasonal ice pack comprised primarily of young first-year and second-year ice. This transition has brought about changes in the sea ice thickness and topography characteristics, which will further affect the evolution and survivability of the ice pack. The varying ice conditions have substantial implications for commercial operations, international affairs, regional and global climate, our ability to model climate dynamics, and the livelihood of Arctic inhabitants. A number of satellite and airborne missions are dedicated to monitoring sea ice, but they are limited by their spatial and temporal resolution and coverage. Given the fast rate of sea ice change and its pervasive implications, enhanced observational capabilities are needed to augment the current strategies. The CU Laser Profilometer and Imaging System (CULPIS) is designed specifically for collecting fine-resolution elevation data and imagery from small unmanned aircraft systems (UAS), and has a great potential to compliment ongoing missions. This altimeter system has been integrated into four different UAS, and has been deployed during Arctic and Antarctic science campaigns. The CULPIS elevation measurement accuracy is shown to be 95±25 cm, and is limited primarily by GPS positioning error (<25 cm), aircraft attitude determination error (<20 cm), and sensor misalignment error (<20 cm). The relative error is considerably smaller over short flight distances, and the measurement precision is shown to be <10 cm over a distance of 200 m. Given its fine precision, the CULPIS is well suited for measuring sea ice topography, and observed ridge height and ridge separation distributions are found to agree with theoretical distributions to within 5%. Simulations demonstrate the inability of course-resolution measurements to accurately represent the theoretical distributions, with differences up to 30%. Future efforts should focus on reducing the total measurement error to <20 cm to make the CULPIS suitable for detecting ice sheet elevation change.

  18. Precooling leg muscle improves intermittent sprint exercise performance in hot, humid conditions.

    PubMed

    Castle, Paul C; Macdonald, Adam L; Philp, Andrew; Webborn, Anthony; Watt, Peter W; Maxwell, Neil S

    2006-04-01

    We used three techniques of precooling to test the hypothesis that heat strain would be alleviated, muscle temperature (Tmu) would be reduced, and as a result there would be delayed decrements in peak power output (PPO) during exercise in hot, humid conditions. Twelve male team-sport players completed four cycling intermittent sprint protocols (CISP). Each CISP consisted of twenty 2-min periods, each including 10 s of passive rest, 5 s of maximal sprint against a resistance of 7.5% body mass, and 105 s of active recovery. The CISP, preceded by 20 min of no cooling (Control), precooling via an ice vest (Vest), cold water immersion (Water), and ice packs covering the upper legs (Packs), was performed in hot, humid conditions (mean +/- SE; 33.7 +/- 0.3 degrees C, 51.6 +/- 2.2% relative humidity) in a randomized order. The rate of heat strain increase during the CISP was faster in Control than Water and Packs (P < 0.01), but it was similar to Vest. Packs and Water blunted the rise of Tmu until minute 16 and for the duration of the CISP (40 min), respectively (P < 0.01). Reductions in PPO occurred from minute 32 onward in Control, and an increase in PPO by approximately 4% due to Packs was observed (main effect; P < 0.05). The method of precooling determined the extent to which heat strain was reduced during intermittent sprint cycling, with leg precooling offering the greater ergogenic effect on PPO than either upper body or whole body cooling.

  19. Upper Ocean Evolution Across the Beaufort Sea Marginal Ice Zone

    NASA Astrophysics Data System (ADS)

    Lee, C.; Rainville, L.; Gobat, J. I.; Perry, M. J.; Freitag, L. E.; Webster, S.

    2016-12-01

    The observed reduction of Arctic summertime sea ice extent and expansion of the marginal ice zone (MIZ) have profound impacts on the balance of processes controlling sea ice evolution, including the introduction of several positive feedback mechanisms that may act to accelerate melting. Examples of such feedbacks include increased upper ocean warming though absorption of solar radiation, elevated internal wave energy and mixing that may entrain heat stored in subsurface watermasses (e.g., the relatively warm Pacific Summer and Atlantic waters), and elevated surface wave energy that acts to deform and fracture sea ice. Spatial and temporal variability in ice properties and open water fraction impact these processes. To investigate how upper ocean structure varies with changing ice cover, how the balance of processes shift as a function of ice fraction and distance from open water, and how these processes impact sea ice evolution, a network of autonomous platforms sampled the atmosphere-ice-ocean system in the Beaufort, beginning in spring, well before the start of melt, and ending with the autumn freeze-up. Four long-endurance autonomous Seagliders occupied sections that extended from open water, through the marginal ice zone, deep into the pack during summer 2014 in the Beaufort Sea. Gliders penetrated up to 200 km into the ice pack, under complete ice cover for up to 10 consecutive days. Sections reveal strong fronts where cold, ice-covered waters meet waters that have been exposed to solar warming, and O(10 km) scale eddies near the ice edge. In the pack, Pacific Summer Water and a deep chlorophyll maximum form distinct layers at roughly 60 m and 80 m, respectively, which become increasingly diffuse late in the season as they progress through the MIZ and into open water. Stratification just above the Pacific Summer Water rapidly weakens near the ice edge and temperature variance increases, likely due to mixing or energetic vertical exchange associated with strong lateral gradients at the MIZ. This presentation will discuss the evolution of the Arctic upper ocean over the summer to the start of freeze up and the relationship of its variability to sea ice extent and atmospheric forcing.

  20. Remarkable antiagglomeration effect of a yeast biosurfactant, diacylmannosylerythritol, on ice-water slurry for cold thermal storage.

    PubMed

    Kitamoto, D; Yanagishita, H; Endo, A; Nakaiwa, M; Nakane, T; Akiya, T

    2001-01-01

    Antiagglomeration effects of different surfactants on ice slurry formation were examined to improve the efficiency of an ice-water slurry system to be used for cold thermal storage. Among the chemical surfactants tested, a nonionic surfactant, poly(oxyethylene) sorbitan dioleate, was found to show a greater antiagglomeration effect on the slurry than anionic, cationic, or amphoteric surfactants. More interestingly, diacylmannosylerythritol, a glycolipid biosurfactant produced by a yeast strain of Candida antarctica, exhibited a remarkable effect on the slurry, attaining a high ice packing factor (35%) for 8 h at a biosurfactant concentration of 10 mg/L. These nonionic glycolipid surfactants are likely to effectively adsorb on the ice surface in a highly regulated manner to suppress the agglomeration or growth of the ice particles. This is the first report on the utilization of biosurfactant for thermal energy storage, which may significantly expand the commercial applications of the highly environmentally friendly slurry system.

  1. Advances in Airborne Altimetric Techniques for the Measurement of Snow on Arctic Sea Ice

    NASA Astrophysics Data System (ADS)

    Newman, T.; Farrell, S. L.; Richter-Menge, J.; Elder, B. C.; Ruth, J.; Connor, L. N.

    2014-12-01

    Current sea ice observations and models indicate a transition towards a more seasonal Arctic ice pack with a smaller, and geographically more variable, multiyear ice component. To gain a comprehensive understanding of the processes governing this transition it is important to include the impact of the snow cover, determining the mechanisms by which snow is both responding to and forcing changes to the sea ice pack. Data from NASA's Operation IceBridge (OIB) snow radar system, which has been making yearly surveys of the western Arctic since 2009, offers a key resource for investigating the snow cover. In this work, we characterize the OIB snow radar instrument response to ascertain the location of 'side-lobes', aiding the interpretation of snow radar data. We apply novel wavelet-based techniques to identify the primary reflecting interfaces within the snow pack from which snow depth estimates are derived. We apply these techniques to the range of available snow radar data collected over the last 6 years during the NASA OIB mission. Our results are validated through comparison with a range of in-situ data. We discuss the impact of sea ice surface morphology on snow radar returns (with respect to ice type) and the topographic conditions over which accurate snow-radar-derived snow depths may be obtained. Finally we present improvements to in situ survey design that will allow for both an improved sampling of the snow radar footprint and more accurate assessment of the uncertainties in radar-derived snow depths in the future.

  2. Multiscale Models of Melting Arctic Sea Ice

    DTIC Science & Technology

    2013-09-30

    September 29, 2013 LONG-TERM GOALS Sea ice reflectance or albedo , a key parameter in climate modeling, is primarily determined by melt pond...and ice floe configurations. Ice - albedo feedback has played a major role in the recent declines of the summer Arctic sea ice pack. However...understanding the evolution of melt ponds and sea ice albedo remains a significant challenge to improving climate models. Our research is focused on

  3. Time-dependence of sea-ice concentration and multiyear ice fraction in the Arctic Basin

    USGS Publications Warehouse

    Gloersen, P.; Zwally, H.J.; Chang, A.T.C.; Hall, D.K.; Campbell, W.J.; Ramseier, R.O.

    1978-01-01

    The time variation of the sea-ice concentration and multiyear ice fraction within the pack ice in the Arctic Basin is examined, using microwave images of sea ice recently acquired by the Nimbus-5 spacecraft and the NASA CV-990 airborne laboratory. The images used for these studies were constructed from data acquired from the Electrically Scanned Microwave Radiometer (ESMR) which records radiation from earth and its atmosphere at a wavelength of 1.55 cm. Data are analyzed for four seasons during 1973-1975 to illustrate some basic differences in the properties of the sea ice during those times. Spacecraft data are compared with corresponding NASA CV-990 airborne laboratory data obtained over wide areas in the Arctic Basin during the Main Arctic Ice Dynamics Joint Experiment (1975) to illustrate the applicability of passive-microwave remote sensing for monitoring the time dependence of sea-ice concentration (divergence). These observations indicate significant variations in the sea-ice concentration in the spring, late fall and early winter. In addition, deep in the interior of the Arctic polar sea-ice pack, heretofore unobserved large areas, several hundred kilometers in extent, of sea-ice concentrations as low as 50% are indicated. ?? 1978 D. Reidel Publishing Company.

  4. The Rapidly Diminishing Arctic ice Cover and its Potential Impact on Navy Operational Considerations

    NASA Astrophysics Data System (ADS)

    Muench, R. D.; Conlon, D.; Lamb, D.

    2001-12-01

    Observations made from U.S. Navy Fleet submarines during the 1990s have revealed a dramatic decrease in thickness, when compared to historical values, of the central Arctic Ocean pack ice cover. Estimates of this decrease have been as high as 40%. Remote sensing observations have shown a coincident decrease in the areal extent of the pack. The areal decrease has been especially apparent during winter. The overall loss of ice appears to have accelerated over the past decade, raising the possibility that the Northwest Passage and the Northern Sea Route may become seasonally navigable on a regular basis in the coming decade. The ice loss has been most evident in the peripheral seas and continental shelf areas. For example, during winter 2000-2001 the Bering Sea was effectively ice-free, with strong and immediate impacts on the surrounding indigenous populations. Lessening of the peripheral pack ice cover will presumably, lead to accelerated development of the resource-rich regions that surround the deep, central Arctic Ocean basin. This raises potential issues with respect to national security and commercial interests, and has implicit strategic concerns for the Navy. The timeline for a significantly navigable Arctic may extend decades into the future; however, operational requirements must be identified in the nearer term to ensure that the necessary capabilities exist when future Arctic missions do present themselves. A first step is to improve the understanding of the coupled atmosphere/ice/ocean system. Current environmental measurement and prediction, including Arctic weather and ice prediction, shallow water acoustic performance prediction, dynamic ocean environmental changes and data to support navigation is inadequate to support sustained naval operations in the Arctic. A new focus on data collection is required in order to measure, map, monitor and model Arctic weather, ice and oceanographic conditions.

  5. Variability of Antarctic Sea Ice 1979-1998

    NASA Technical Reports Server (NTRS)

    Zwally, H. Jay; Comiso, Josefino C.; Parkinson, Claire L.; Cavalieri, Donald J.; Gloersen, Per; Koblinsky, Chester J. (Technical Monitor)

    2001-01-01

    The principal characteristics of the variability of Antarctic sea ice cover as previously described from satellite passive-microwave observations are also evident in a systematically-calibrated and analyzed data set for 20.2 years (1979-1998). The total Antarctic sea ice extent (concentration > 15 %) increased by 13,440 +/- 4180 sq km/year (+1.18 +/- 0.37%/decade). The area of sea ice within the extent boundary increased by 16,960 +/- 3,840 sq km/year (+1.96 +/- 0.44%/decade). Regionally, the trends in extent are positive in the Weddell Sea (1.5 +/- 0.9%/decade), Pacific Ocean (2.4 +/- 1.4%/decade), and Ross (6.9 +/- 1.1 %/decade) sectors, slightly negative in the Indian Ocean (-1.5 +/- 1.8%/decade, and strongly negative in the Bellingshausen-Amundsen Seas sector (-9.5 +/- 1.5%/decade). For the entire ice pack, small ice increases occur in all seasons with the largest increase during autumn. On a regional basis, the trends differ season to season. During summer and fall, the trends are positive or near zero in all sectors except the Bellingshausen-Amundsen Seas sector. During winter and spring, the trends are negative or near zero in all sectors except the Ross Sea, which has positive trends in all seasons. Components of interannual variability with periods of about 3 to 5 years are regionally large, but tend to counterbalance each other in the total ice pack. The interannual variability of the annual mean sea-ice extent is only 1.6% overall, compared to 5% to 9% in each of five regional sectors. Analysis of the relation between regional sea ice extents and spatially-averaged surface temperatures over the ice pack gives an overall sensitivity between winter ice cover and temperature of -0.7% change in sea ice extent per K. For summer, some regional ice extents vary positively with temperature and others negatively. The observed increase in Antarctic sea ice cover is counter to the observed decreases in the Arctic. It is also qualitatively consistent with the counterintuitive prediction of a global atmospheric-ocean model of increasing sea ice around Antarctica with climate warming due to the stabilizing effects of increased snowfall on the Southern Ocean.

  6. Geophysics of an Oceanic Ice Shell on Snowball Earth

    NASA Technical Reports Server (NTRS)

    Gaidos, E. J.

    2000-01-01

    Kirschvink proposed Precambrian low-latitude glaciation could result in an albedo-driven catastrophic runaway to a "Snowball Earth" state in which pack ice up to 1 km thick covered the world ocean. The geophysical state of an ice crust on a Snowball Earth is examined.

  7. Winter snow conditions on Arctic sea ice north of Svalbard during the Norwegian young sea ICE (N-ICE2015) expedition

    NASA Astrophysics Data System (ADS)

    Merkouriadi, Ioanna; Gallet, Jean-Charles; Graham, Robert M.; Liston, Glen E.; Polashenski, Chris; Rösel, Anja; Gerland, Sebastian

    2017-10-01

    Snow is a crucial component of the Arctic sea ice system. Its thickness and thermal properties control heat conduction and radiative fluxes across the ocean, ice, and atmosphere interfaces. Hence, observations of the evolution of snow depth, density, thermal conductivity, and stratigraphy are crucial for the development of detailed snow numerical models predicting energy transfer through the snow pack. Snow depth is also a major uncertainty in predicting ice thickness using remote sensing algorithms. Here we examine the winter spatial and temporal evolution of snow physical properties on first-year (FYI) and second-year ice (SYI) in the Atlantic sector of the Arctic Ocean, during the Norwegian young sea ICE (N-ICE2015) expedition (January to March 2015). During N-ICE2015, the snow pack consisted of faceted grains (47%), depth hoar (28%), and wind slab (13%), indicating very different snow stratigraphy compared to what was observed in the Pacific sector of the Arctic Ocean during the SHEBA campaign (1997-1998). Average snow bulk density was 345 kg m-3 and it varied with ice type. Snow depth was 41 ± 19 cm in January and 56 ± 17 cm in February, which is significantly greater than earlier suggestions for this region. The snow water equivalent was 14.5 ± 5.3 cm over first-year ice and 19 ± 5.4 cm over second-year ice.

  8. Bacterial activity in sea ice and open water of the Weddell Sea, Antarctica: A microautoradiographic study.

    PubMed

    Grossmann, S

    1994-07-01

    Metabolic activity of bacteria was investigated in open water, newly forming sea ice, and successive stages of pack ice in the Weddell Sea. Microautoradiography, using [(3)H]leucine as substrate, was compared with incorporation rates of [(3)H]leucine into proteins. Relation of [(3)H]leucine incorporation to the biomass of active bacteria provides information about changes of specific metabolic activity of cells. During a phytoplankton bloom in an ice-free, stratified water column, total numbers of bacteria in the euphotic zone averaged 2.3 × 10(5) ml(-1), but only about 13% showed activity via leucine uptake. Growth rate of the active bacteria was estimated as 0.3-0.4 days(-1). Total cell concentration of bacteria in 400 m depth was 6.6 × 10(4) ml(-1). Nearly 50% of these cells were active, although biomass production and specific growth rate were only about one-tenth that of the surface populations. When sea ice was forming in high concentrations of phytoplankton, bacterial biomass in the newly formed ice was 49.1 ng C ml(-1), exceeding that in open water by about one order of magnitude. Attachment of large bacteria to algal cells seems to cause their enrichment in the new ice, since specific bacterial activity was reduced during ice formation, and enrichment of bacteria was not observed when ice formed at low algal concentration. During growth of pack ice, biomass of bacteria increased within the brine channel system. Specific activity was still reduced at these later stages of ice development, and percentages of active cells were as low as 3-5%. In old, thick pack ice, bacterial activity was high and about 30% of cells were active. However, biomass-specific activity of bacteria remained significantly lower than that in open water. It is concluded that bacterial assemblages different to those of open water developed within the ice and were dominated by bacteria with lower average metabolic activity than those of ice-free water.

  9. Capsulitis of the Second Toe

    MedlinePlus

    ... second toe is a result of abnormal foot mechanics, where the ball of the foot beneath the ... options for early treatment of capsulitis: Rest and ice. Staying off the foot and applying ice packs ...

  10. Breakup of Pack Ice, Antarctic Ice Shelf

    NASA Image and Video Library

    1991-09-18

    STS048-152-007 (12-18 Sept 1991) --- The periphery of the Antarctic ice shelf and the Antarctic Peninsula were photographed by the STS 48 crew members. Strong offshore winds, probably associated with katabatic winds from the interior of the continent, are peeling off the edges of the ice shelf into ribbons of sea ice, icebergs, bergy bits and growlers into the cold waters of the circum-Antarctic southern ocean.

  11. Leads in Arctic pack ice enable early phytoplankton blooms below snow-covered sea ice

    PubMed Central

    Assmy, Philipp; Fernández-Méndez, Mar; Duarte, Pedro; Meyer, Amelie; Randelhoff, Achim; Mundy, Christopher J.; Olsen, Lasse M.; Kauko, Hanna M.; Bailey, Allison; Chierici, Melissa; Cohen, Lana; Doulgeris, Anthony P.; Ehn, Jens K.; Fransson, Agneta; Gerland, Sebastian; Hop, Haakon; Hudson, Stephen R.; Hughes, Nick; Itkin, Polona; Johnsen, Geir; King, Jennifer A.; Koch, Boris P.; Koenig, Zoe; Kwasniewski, Slawomir; Laney, Samuel R.; Nicolaus, Marcel; Pavlov, Alexey K.; Polashenski, Christopher M.; Provost, Christine; Rösel, Anja; Sandbu, Marthe; Spreen, Gunnar; Smedsrud, Lars H.; Sundfjord, Arild; Taskjelle, Torbjørn; Tatarek, Agnieszka; Wiktor, Jozef; Wagner, Penelope M.; Wold, Anette; Steen, Harald; Granskog, Mats A.

    2017-01-01

    The Arctic icescape is rapidly transforming from a thicker multiyear ice cover to a thinner and largely seasonal first-year ice cover with significant consequences for Arctic primary production. One critical challenge is to understand how productivity will change within the next decades. Recent studies have reported extensive phytoplankton blooms beneath ponded sea ice during summer, indicating that satellite-based Arctic annual primary production estimates may be significantly underestimated. Here we present a unique time-series of a phytoplankton spring bloom observed beneath snow-covered Arctic pack ice. The bloom, dominated by the haptophyte algae Phaeocystis pouchetii, caused near depletion of the surface nitrate inventory and a decline in dissolved inorganic carbon by 16 ± 6 g C m−2. Ocean circulation characteristics in the area indicated that the bloom developed in situ despite the snow-covered sea ice. Leads in the dynamic ice cover provided added sunlight necessary to initiate and sustain the bloom. Phytoplankton blooms beneath snow-covered ice might become more common and widespread in the future Arctic Ocean with frequent lead formation due to thinner and more dynamic sea ice despite projected increases in high-Arctic snowfall. This could alter productivity, marine food webs and carbon sequestration in the Arctic Ocean. PMID:28102329

  12. Measured Black Carbon Deposition on the Sierra Nevada Snow Pack and Implication for Snow Pack Retreat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hadley, O.L.; Corrigan, C.E.; Kirchstetter, T.W.

    2010-01-12

    Modeling studies show that the darkening of snow and ice by black carbon deposition is a major factor for the rapid disappearance of arctic sea ice, mountain glaciers and snow packs. This study provides one of the first direct measurements for the efficient removal of black carbon from the atmosphere by snow and its subsequent deposition to the snow packs of California. The early melting of the snow packs in the Sierras is one of the contributing factors to the severe water problems in California. BC concentrations in falling snow were measured at two mountain locations and in rain atmore » a coastal site. All three stations reveal large BC concentrations in precipitation, ranging from 1.7 ng/g to 12.9 ng/g. The BC concentrations in the air after the snow fall were negligible suggesting an extremely efficient removal of BC by snow. The data suggest that below cloud scavenging, rather than ice nuclei, was the dominant source of BC in the snow. A five-year comparison of BC, dust, and total fine aerosol mass concentrations at multiple sites reveals that the measurements made at the sampling sites were representative of large scale deposition in the Sierra Nevada. The relative concentration of iron and calcium in the mountain aerosol indicates that one-quarter to one-third of the BC may have been transported from Asia.« less

  13. 1. DETAIL OF TUBE ICE MACHINE OUTLET AT SOUTHWEST CORNER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. DETAIL OF TUBE ICE MACHINE OUTLET AT SOUTHWEST CORNER OF BUILDING 162; ICE MANUFACTURED INSIDE THE BUILDING WAS AUGURED THROUGH THE WALL AND DROPPED INTO COMPARTMENTS IN REFIGERATED RAIL CARS - Rath Packing Company, Cooler Building, Sycamore Street between Elm & Eighteenth Streets, Waterloo, Black Hawk County, IA

  14. Heated Debates: Hot-Water Immersion or Ice Packs as First Aid for Cnidarian Envenomations?

    PubMed

    Wilcox, Christie L; Yanagihara, Angel A

    2016-04-01

    Cnidarian envenomations are an important public health problem, responsible for more deaths than shark attacks annually. For this reason, optimization of first-aid care is essential. According to the published literature, cnidarian venoms and toxins are heat labile at temperatures safe for human application, which supports the use of hot-water immersion of the sting area(s). However, ice packs are often recommended and used by emergency personnel. After conducting a systematic review of the evidence for the use of heat or ice in the treatment of cnidarian envenomations, we conclude that the majority of studies to date support the use of hot-water immersion for pain relief and improved health outcomes.

  15. Pack ice along the Kamchatka Peninsula, Russia as seen from STS-60

    NASA Image and Video Library

    1994-02-09

    STS060-73-038 (3-11 Feb 1994) --- Pack ice is documented in this photograph along the coast of the Kamchatka Peninsula of Russia in Zaliv Ozernoj. Newly formed ice continually breaks away from the land and takes the form imposed by coastal currents. Detailed photographs of the ice provide information to scientists in both Russia and the united States about the location and fluctuation of ice edges, and how this new sea ice interacts with ocean and littoral currents. This information results in better ice warnings to shipping traffic and provides data points for long-range climate change research for both the Mission-To-Planet Earth and the Russian Priroda ("Nature") monitoring and assessment programs that are respectively coordinated by NASA and the Russian Academy of Sciences. This photography of ice development in the North Pacific, North Atlantic, the Southern Ocean, the Baltic and North Seas, and the Great Lakes is of great interest to the international scientific community. NASA scientists feel high-resolution analog and digital photography from the Space Shuttle and future craft can be a particularly important component in satisfying their data needs on both an operational and a long-term research basis.

  16. Cryo-scanning electron microscopy discloses differences in dehydration of frozen boar semen stored in large containers.

    PubMed

    Ekwall, H

    2009-02-01

    In general, freezing in flat plastic polyethylene terephthalate (PET) bags (FlatPacks) at 50 degrees C/min gives better post-thaw viability, in terms of sperm motility and membrane integrity, than does freezing in plastic maxi-straws, probably owing to differences in cryobiology. To test the hypothesis that this better survival post-thaw relates to the degree of sperm dehydration during freezing, the present study investigated the structure of boar semen in a frozen state using cryo-scanning electron microscopy (cryo-SEM) to compare two different packages (FlatPacks and maxi-straws) for single artificial insemination (AI) doses, and three different freezing rates. The semen was split-sample frozen in maxi-straws or FlatPacks (both holding 5 ml) using 3% glycerol as cryoprotectant. Three freezing rates were applied from -5 degrees C to -100 degrees C, namely 2 degrees C/min, 50 degrees C/min and 1200 degrees C/min, the lattermost by plunging the samples into liquid nitrogen (LN(2)). The samples were thereafter fractured into LN(2) and larger areas of extra-cellular, unbound frozen water ('ice lakes') were measured to determine the degree of dehydration of the spermatozoa. These areas decreased in size with an increase in cooling rate, the differences in size being more dramatic for maxi-straws than for FlatPacks. Size of ice lakes was also influenced by location within package in relation to cooling rate, the central values being always smaller in maxi-straws than in Flatpacks (p < 0.05 at 2 degrees C/min and 50 degrees C/min) but not at 1200 degrees C/min, which suggested the FlatPack allows for more homogenous freezing of boar semen.

  17. Effects of vial packing density on drying rate during freeze-drying of carbohydrates or a model protein measured using a vial-weighing technique.

    PubMed

    Gieseler, Henning; Lee, Geoffrey

    2008-02-01

    To determine the effects of vial packing density in a laboratory freeze dryer on drying rate profiles of crystalline and amorphous formulations. The Christ freeze-drying balance measured cumulative water loss, m(t), and instantaneous drying rate, m(t), of water, mannitol, sucrose and sucrose/BSA formulations in commercial vials. Crystalline mannitol shows drying rate behaviour indicative of a largely homogeneous dried-product layer. The drying rate behaviour of amorphous sucrose indicates structural heterogeneity, postulated to come from shrinkage or microcollapse. Trehalose dries more slowly than sucrose. Addition of BSA to either disaccharide decreases primary drying time. Higher vial packing density greatly reduces drying rate because of effects of radiation heat transfer from chamber walls to test vial. Plots of m(t) versus radical t and m(t) versus layer thickness (either ice or dried-product) allow interpretation of changes in internal cake morphology during drying. Vial packing density greatly influences these profiles.

  18. Estimation of Antarctic Land-Fast Sea Ice Algal Biomass and Snow Thickness From Under-Ice Radiance Spectra in Two Contrasting Areas

    NASA Astrophysics Data System (ADS)

    Wongpan, P.; Meiners, K. M.; Langhorne, P. J.; Heil, P.; Smith, I. J.; Leonard, G. H.; Massom, R. A.; Clementson, L. A.; Haskell, T. G.

    2018-03-01

    Fast ice is an important component of Antarctic coastal marine ecosystems, providing a prolific habitat for ice algal communities. This work examines the relationships between normalized difference indices (NDI) calculated from under-ice radiance measurements and sea ice algal biomass and snow thickness for Antarctic fast ice. While this technique has been calibrated to assess biomass in Arctic fast ice and pack ice, as well as Antarctic pack ice, relationships are currently lacking for Antarctic fast ice characterized by bottom ice algae communities with high algal biomass. We analyze measurements along transects at two contrasting Antarctic fast ice sites in terms of platelet ice presence: near and distant from an ice shelf, i.e., in McMurdo Sound and off Davis Station, respectively. Snow and ice thickness, and ice salinity and temperature measurements support our paired in situ optical and biological measurements. Analyses show that NDI wavelength pairs near the first chlorophyll a (chl a) absorption peak (≈440 nm) explain up to 70% of the total variability in algal biomass. Eighty-eight percent of snow thickness variability is explained using an NDI with a wavelength pair of 648 and 567 nm. Accounting for pigment packaging effects by including the ratio of chl a-specific absorption coefficients improved the NDI-based algal biomass estimation only slightly. Our new observation-based algorithms can be used to estimate Antarctic fast ice algal biomass and snow thickness noninvasively, for example, by using moored sensors (time series) or mapping their spatial distributions using underwater vehicles.

  19. [Cryotherapy after childbirth: the length of application and changes in perineal temperature].

    PubMed

    Francisco, Adriana Amorim; de Oliveira, Sonia Maria Junqueira Vasconcellos; Leventhal, Lucila Coca; de Bosco, Caroline Souza

    2013-06-01

    We present a descriptive study based on the data from two clinical trials conducted at a maternity hospital in São Paulo, Brazil, in 2008 and 2009. This study aimed to describe perineal temperature after the application of an ice pack during the postpartum period. Three groups of 38 postpartum women (n=114 total) received an ice pack between 2 and 48 h after delivery. The results showed that after 10 minutes of cryotherapy, the mean perineal temperature varied between 13.3 degreeCand 15.3 degree"C, with a small reduction at the end of the 15- and 20-minute applications (2.4 degreeC and 2.7"C, respectively). Women who received cryotherapy for 10 minutes reported a cool sensation and pain relief; after a session of 15 or 20 minutes, the women reported anesthesia and numbness. In conclusion, an ice pack applied for 10 minutes reduced the perineal temperature to the recommended levels for analgesia (10-15 degreeC).

  20. An integrated approach to the remote sensing of floating ice

    NASA Technical Reports Server (NTRS)

    Campbell, W. J.; Ramseier, R. O.; Weeks, W. F.; Gloersen, P.

    1976-01-01

    Review article on remote sensing applications to glaciology. Ice parameters sensed include: ice cover vs open water, ice thickness, distribution and morphology of ice formations, vertical resolution of ice thickness, ice salinity (percolation and drainage of brine; flushing of ice body with fresh water), first-year ice and multiyear ice, ice growth rate and surface heat flux, divergence of ice packs, snow cover masking ice, behavior of ice shelves, icebergs, lake ice and river ice; time changes. Sensing techniques discussed include: satellite photographic surveys, thermal IR, passive and active microwave studies, microwave radiometry, microwave scatterometry, side-looking radar, and synthetic aperture radar. Remote sensing of large aquatic mammals and operational ice forecasting are also discussed.

  1. Snow contribution to first-year and second-year Arctic sea ice mass balance north of Svalbard

    NASA Astrophysics Data System (ADS)

    Granskog, Mats A.; Rösel, Anja; Dodd, Paul A.; Divine, Dmitry; Gerland, Sebastian; Martma, Tõnu; Leng, Melanie J.

    2017-03-01

    The salinity and water oxygen isotope composition (δ18O) of 29 first-year (FYI) and second-year (SYI) Arctic sea ice cores (total length 32.0 m) from the drifting ice pack north of Svalbard were examined to quantify the contribution of snow to sea ice mass. Five cores (total length 6.4 m) were analyzed for their structural composition, showing variable contribution of 10-30% by granular ice. In these cores, snow had been entrained in 6-28% of the total ice thickness. We found evidence of snow contribution in about three quarters of the sea ice cores, when surface granular layers had very low δ18O values. Snow contributed 7.5-9.7% to sea ice mass balance on average (including also cores with no snow) based on δ18O mass balance calculations. In SYI cores, snow fraction by mass (12.7-16.3%) was much higher than in FYI cores (3.3-4.4%), while the bulk salinity of FYI (4.9) was distinctively higher than for SYI (2.7). We conclude that oxygen isotopes and salinity profiles can give information on the age of the ice and enables distinction between FYI and SYI (or older) ice in the area north of Svalbard.Plain Language SummaryThe role of snow in sea ice mass balance is largely two fold. Firstly, it can slow down growth and melt due to its high insulation and high reflectance, but secondly it can actually contribute to sea ice growth if the snow cover is turned into ice. The latter is largely a consequence of high mass of snow on top of sea ice that can push the surface of the sea ice below sea level and seawater can flood the ice. This mixture of seawater and snow can then freeze and add to the growth of sea ice. This is very typical in the Antarctic but not believed to be so important in the Arctic. In this work we show, for the first time, that snow actually contributes significantly to the growth of Arctic sea ice. This is likely a consequence of the thinning of the Arctic sea ice. The conditions in the Arctic, with thinner and more seasonal ice thus resemble the ice pack in the Antarctic. Studies on the role of snow in the Arctic are critical to be able to understand the ongoing changes of the Arctic sea ice pack.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28764133','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28764133"><span>Distribution of Cd, Pb and Cu between dissolved fraction, inorganic particulate and phytoplankton in seawater of Terra Nova Bay (Ross Sea, Antarctica) during austral summer 2011-12.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Illuminati, S; Annibaldi, A; Romagnoli, T; Libani, G; Antonucci, M; Scarponi, G; Totti, C; Truzzi, C</p> <p>2017-10-01</p> <p>During the austral summer 2011-2012, the metal quotas of Cd, Pb and Cu in the phytoplankton of Terra Nova Bay (TNB, Antarctica) were measured for the first time. Evolution of all the three metal distributions between dissolved and particulate fractions during the season was also evaluated. Metal concentrations were mainly affected by the dynamic of the pack ice melting and phytoplankton activity. In mid-December when TNB area was covered by a thick pack ice layer and phytoplankton activity was very low, all the three metals were present mainly in their dissolved species. When the pack ice started to melt and the water column characteristics became ideal (i.e. moderate stratification, ice free area), the phytoplankton bloom occurred. Cd showed a nutrient-type behaviour with dissolved and particulate fractions mainly influenced by phytoplankton activity. Cd quota showed a mean value of 0.12 ± 0.07 nmol L -1 (30-100% of the total particulate). Also Cu showed a nutrient-type behaviour, with its quota in phytoplankton varying between 0.08 and 2.1 nmol L -1 (20-100% of the total particulate). Pb features the typical distribution of a scavenged element with very low algal content (0.03 ± 0.02 nmol L -1 , representing 20-50% of the total particulate). The vertical distribution of this element was influenced by several factors (e.g. pack ice melting, atmospheric inputs), the phytoplankton activity affecting Pb behaviour only partially. Metal:C ratios provide valuable information on the biological requirements for Cd, Pb and Cu, leading us to better understand their biogeochemical cycles. Copyright © 2017 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28762226','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28762226"><span>[The Effectiveness of Cooling Packaging Care in Relieving Chemotherapy-Induced Skin Toxicity Reactions in Cancer Patients Receiving Chemotherapy: A Systematic Review].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hsu, Ya-Hui; Hung, Hsing-Wei; Chen, Shu-Ching</p> <p>2017-08-01</p> <p>Anti-cancer chemotherapy may cause skin-toxicity reactions. Different types of cooling packages affect chemotherapy-induced skin toxicity reactions differently. To evaluate the effects of cooling packing care on chemotherapy-induced skin toxicity reactions in cancer patients receiving chemotherapy. A systematic review approach was used. Searches were conducted in databases including Cochrane Library, Embase, MEDLINE, PubMed and Airiti Library using the keywords "chemotherapy cutaneous toxicity", "chemotherapy skin reaction", "chemotherapy skin toxicity", "frozen glove", "frozen sock", "cooling packaging care", "ice gloves", "ice socks", "usual care", "severity", "comfort", "satisfaction", "severity", and "comfort". The search focused on articles published before December 2016. Based on the inclusion and exclusion criteria, 5 articles involving relevant randomized controlled trials were extracted for review. Elasto-Gel ice gloves or ice socks that were chilled to -25°C- -30°C and used for 15 mins during initial chemotherapy, for one hour during chemotherapy infusion, and for 15 mins after chemotherapy were shown to improve the frequency and severity of chemotherapy-induced skin toxicity reactions. Several studies were limited by small sample sizes and different types of cooling packing programs, temperature, timing, and frequency. Thus, further research is recommended to verify the effects of cooling packing care. Cancer patients who were treated with docetaxel or PLD and who used ice gloves or ice socks that were chilled to -25°C- -30°C for 15 mins during initial chemotherapy, for one hour during chemotherapy infusion, and for 15 mins after chemotherapy improved significantly in terms of the frequency and severity of their chemotherapy-induced skin toxicity reactions. Local cooling packing care is a non-pharmacotherapy approach that is low cost and free of side effects. This review is intended to provide a reference for clinical care.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70012473','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70012473"><span>Arctic continental shelf morphology related to sea-ice zonation, Beaufort Sea, Alaska</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Reimnitz, E.; Toimil, L.; Barnes, P.</p> <p>1978-01-01</p> <p>Landsat-1 and NOAA satellite imagery for the winter 1972-1973, and a variety of ice and sea-floor data were used to study sea-ice zonation and dynamics and their relation to bottom morphology and geology on the Beaufort Sea continental shelf of arctic Alaska. In early winter the location of the boundary between undeformed fast ice and westward-drifting pack ice of the Pacific Gyre is controlled by major coastal promontories. Pronounced linear pressure- and shear-ridges, as well as hummock fields, form along this boundary and are stabilized by grounding, generally between the 10- and 20-m isobaths. Slippage along this boundary occurs intermittently at or seaward of the grounded ridges, forming new grounded ridges in a widening zone, the stamukhi zone, which by late winter extends out to the 40-m isobath. Between intermittent events along the stamukhi zone, pack-ice drift and slippage is continuous along the shelf edge, at average rates of 3-10 km/day. Whether slippage occurs along the stamukhi zone or along the shelf edge, it is restricted to a zone several hundred meters wide, and ice seaward of the slip face moves at uniform rates without discernible drag effects. A causal relationship is seen between the spatial distribution of major ice-ridge systems and offshore shoals downdrift of major coastal promontories. The shoals appear to have migrated shoreward under the influence of ice up to 400 m in the last 25 years. The sea floor seaward of these shoals within the stamukhi zone shows high ice-gouge density, large incision depths, and a high degree of disruption of internal sedimentary structures. The concentration of large ice ridges and our sea floor data in the stamukhi zone indicate that much of the available marine energy is expended here, while the inner shelf and coast, where the relatively undeformed fast ice grows, are sheltered. There is evidence that anomalies in the overall arctic shelf profile are related to sea-ice zonation, ice dynamics, and bottom processes. A proposed ice zonation, including zones of (1) bottom-fast ice, (2) floating fast ice, (3) stamukhi, and (4) seasonal pack ice, emphasizes ice interaction with the shelf surface and differs from previous zonation. Certain aspects of the results reported here are directly applicable to planned offshore developments in the Prudhoe Bay oil field. Properly placed artificial structures similar to offshore shoals should be able to withstand the forces of the ice, serve to modify the observed ice zonation, and might be used to make the environment less hostile to human activities. ?? 1978.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=cooking&pg=2&id=EJ1049030','ERIC'); return false;" href="https://eric.ed.gov/?q=cooking&pg=2&id=EJ1049030"><span>Simple Cloud Chambers Using a Freezing Mixture of Ice and Cooking Salt</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Yoshinaga, Kyohei; Kubota, Miki; Kamata, Masahiro</p> <p>2015-01-01</p> <p>We have developed much simpler cloud chambers that use only ice and cooking salt instead of the dry ice or ice gel pack needed for the cloud chambers produced in our previous work. The observed alpha-ray particle tracks are as clear as those observed using our previous cloud chambers. The tracks can be observed continuously for about 20?min, and…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16349347','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16349347"><span>Bacterial Standing Stock, Activity, and Carbon Production during Formation and Growth of Sea Ice in the Weddell Sea, Antarctica.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Grossmann, S; Dieckmann, G S</p> <p>1994-08-01</p> <p>Bacterial response to formation and growth of sea ice was investigated during autumn in the northeastern Weddell Sea. Changes in standing stock, activity, and carbon production of bacteria were determined in successive stages of ice development. During initial ice formation, concentrations of bacterial cells, in the order of 1 x 10 to 3 x 10 liter, were not enhanced within the ice matrix. This suggests that physical enrichment of bacteria by ice crystals is not effective. Due to low concentrations of phytoplankton in the water column during freezing, incorporation of bacteria into newly formed ice via attachment to algal cells or aggregates was not recorded in this study. As soon as the ice had formed, the general metabolic activity of bacterial populations was strongly suppressed. Furthermore, the ratio of [H]leucine incorporation into proteins to [H]thymidine incorporation into DNA changed during ice growth. In thick pack ice, bacterial activity recovered and growth rates up to 0.6 day indicated actively dividing populations. However, biomass-specific utilization of organic compounds remained lower than in open water. Bacterial concentrations of up to 2.8 x 10 cells liter along with considerably enlarged cell volumes accumulated within thick pack ice, suggesting reduced mortality rates of bacteria within the small brine pores. In the course of ice development, bacterial carbon production increased from about 0.01 to 0.4 mug of C liter h. In thick ice, bacterial secondary production exceeded primary production of microalgae.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.C11C..05F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.C11C..05F"><span>A Decade of Arctic Sea Ice Thickness Change from Airborne and Satellite Altimetry (Invited)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Farrell, S. L.; Richter-Menge, J.; Kurtz, N. T.; McAdoo, D. C.; Newman, T.; Zwally, H.; Ruth, J.</p> <p>2013-12-01</p> <p>Altimeters on both airborne and satellite platforms provide direct measurements of sea ice freeboard from which sea ice thickness may be calculated. Satellite altimetry observations of Arctic sea ice from ICESat and CryoSat-2 indicate a significant decline in ice thickness, and volume, over the last decade. During this time the ice pack has experienced a rapid change in its composition, transitioning from predominantly thick, multi-year ice to thinner, increasingly seasonal ice. We will discuss the regional trends in ice thickness derived from ICESat and IceBridge altimetry between 2003 and 2013, contrasting observations of the multi-year ice pack with seasonal ice zones. ICESat ceased operation in 2009, and the final, reprocessed data set became available recently. We extend our analysis to April 2013 using data from the IceBridge airborne mission, which commenced operations in 2009. We describe our current efforts to more accurately convert from freeboard to ice thickness, with a modified methodology that corrects for range errors, instrument biases, and includes an enhanced treatment of snow depth, with respect to ice type. With the planned launch by NASA of ICESat-2 in 2016 we can expect continuity of the sea ice thickness time series through the end of this decade. Data from the ICESat-2 mission, together with ongoing observations from CryoSat-2, will allow us to understand both the decadal trends and inter-annual variability in the Arctic sea ice thickness record. We briefly present the status of planned ICESat-2 sea ice data products, and demonstrate the utility of micro-pulse, photon-counting laser altimetry over sea ice.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4848624','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4848624"><span>Heated Debates: Hot-Water Immersion or Ice Packs as First Aid for Cnidarian Envenomations?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Wilcox, Christie L.; Yanagihara, Angel A.</p> <p>2016-01-01</p> <p>Cnidarian envenomations are an important public health problem, responsible for more deaths than shark attacks annually. For this reason, optimization of first-aid care is essential. According to the published literature, cnidarian venoms and toxins are heat labile at temperatures safe for human application, which supports the use of hot-water immersion of the sting area(s). However, ice packs are often recommended and used by emergency personnel. After conducting a systematic review of the evidence for the use of heat or ice in the treatment of cnidarian envenomations, we conclude that the majority of studies to date support the use of hot-water immersion for pain relief and improved health outcomes. PMID:27043628</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5892929','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5892929"><span>Microalgal photophysiology and macronutrient distribution in summer sea ice in the Amundsen and Ross Seas, Antarctica</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Fransson, Agneta; Currie, Kim; Wulff, Angela; Chierici, Melissa</p> <p>2018-01-01</p> <p>Our study addresses how environmental variables, such as macronutrients concentrations, snow cover, carbonate chemistry and salinity affect the photophysiology and biomass of Antarctic sea-ice algae. We have measured vertical profiles of inorganic macronutrients (phosphate, nitrite + nitrate and silicic acid) in summer sea ice and photophysiology of ice algal assemblages in the poorly studied Amundsen and Ross Seas sectors of the Southern Ocean. Brine-scaled bacterial abundance, chl a and macronutrient concentrations were often high in the ice and positively correlated with each other. Analysis of photosystem II rapid light curves showed that microalgal cells in samples with high phosphate and nitrite + nitrate concentrations had reduced maximum relative electron transport rate and photosynthetic efficiency. We also observed strong couplings of PSII parameters to snow depth, ice thickness and brine salinity, which highlights a wide range of photoacclimation in Antarctic pack-ice algae. It is likely that the pack ice was in a post-bloom situation during the late sea-ice season, with low photosynthetic efficiency and a high degree of nutrient accumulation occurring in the ice. In order to predict how key biogeochemical processes are affected by future changes in sea ice cover, such as in situ photosynthesis and nutrient cycling, we need to understand how physicochemical properties of sea ice affect the microbial community. Our results support existing hypothesis about sea-ice algal photophysiology, and provide additional observations on high nutrient concentrations in sea ice that could influence the planktonic communities as the ice is retreating. PMID:29634756</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.C33B1192G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.C33B1192G"><span>Direct observations of atmosphere - sea ice - ocean interactions during Arctic winter and spring storms</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Graham, R. M.; Itkin, P.; Granskog, M. A.; Assmy, P.; Cohen, L.; Duarte, P.; Doble, M. J.; Fransson, A.; Fer, I.; Fernandez Mendez, M.; Frey, M. M.; Gerland, S.; Haapala, J. J.; Hudson, S. R.; Liston, G. E.; Merkouriadi, I.; Meyer, A.; Muilwijk, M.; Peterson, A.; Provost, C.; Randelhoff, A.; Rösel, A.; Spreen, G.; Steen, H.; Smedsrud, L. H.; Sundfjord, A.</p> <p>2017-12-01</p> <p>To study the thinner and younger sea ice that now dominates the Arctic the Norwegian Young Sea ICE expedition (N-ICE2015) was launched in the ice-covered region north of Svalbard, from January to June 2015. During this time, eight local and remote storms affected the region and rare direct observations of the atmosphere, snow, ice and ocean were conducted. Six of these winter storms passed directly over the expedition and resulted in air temperatures rising from below -30oC to near 0oC, followed by abrupt cooling. Substantial snowfall prior to the campaign had already formed a snow pack of approximately 50 cm, to which the February storms contributed an additional 6 cm. The deep snow layer effectively isolated the ice cover and prevented bottom ice growth resulting in low brine fluxes. Peak wind speeds during winter storms exceeded 20 m/s, causing strong snow re-distribution, release of sea salt aerosol and sea ice deformation. The heavy snow load caused widespread negative freeboard; during sea ice deformation events, level ice floes were flooded by sea water, and at least 6-10 cm snow-ice layer was formed. Elevated deformation rates during the most powerful winter storms damaged the ice cover permanently such that the response to wind forcing increased by 60 %. As a result of a remote storm in April deformation processes opened about 4 % of the total area into leads with open water, while a similar amount of ice was deformed into pressure ridges. The strong winds also enhanced ocean mixing and increased ocean heat fluxes three-fold in the pycnocline from 4 to 12 W/m2. Ocean heat fluxes were extremely large (over 300 W/m2) during storms in regions where the warm Atlantic inflow is located close to surface over shallow topography. This resulted in very large (5-25 cm/day) bottom ice melt and in cases flooding due to heavy snow load. Storm events increased the carbon dioxide exchange between the atmosphere and ocean but also affected the pCO2 in surface waters through mixing. Finally, the combination of a higher lead fraction and thinner ice cover, driven in part by storms, helped facilitate an early under-ice phytoplankton bloom in May, far inside the ice pack. In summary the storms entail significant effects on the ice pack that may last much longer than the short-lived storm events.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003JGRC..108.3296M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003JGRC..108.3296M"><span>Observations and analyses of an intense waves-in-ice event in the Sea of Okhotsk</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Marko, John R.</p> <p>2003-09-01</p> <p>Ice draft, ice velocity, ice concentration, and current profile data gathered at an array of eight continental shelf monitoring sites east of Sakhalin Island were analyzed in conjunction with regional meteorological data to document and explain intense wave occurrences several hundred kilometers inside the Sea of Okhotsk ice pack. The studied event was associated with the 19-21 March 1998 passage of an intense cyclone, which produced waves with amplitudes in excess of 1 m at the most offshore monitoring location. The relatively monochromatic character of the waves allowed extraction of wave intensity time series from ice draft time series data. Spatial and temporal variations in these data were used to establish directions and speeds of wave energy propagation for comparisons with an earlier interpretation [, 1988] of an Antarctic intense waves-in-ice event. It was concluded that although both events are compatible with a two-stage process in which initially slowly advancing wave activity increases subsequent ice cover wave transmissivity, the first stage of the Sea of Okhotsk event was not explicable in terms of the static stress-induced changes in the waves-in-ice dispersion relationship proposed by Liu and Mollo-Christensen. An alternative explanation is offered that eschews the linkage between wave group velocities and the observed slow rates of wave energy propagation and attributes the subsequent transition to more normal wave propagation behavior to ice pack divergence.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110005552','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110005552"><span>ICESat Observations of Seasonal and Interannual Variations of Sea-Ice Freeboard and Estimated Thickness in the Weddell Sea, Antarctica (2003-2009)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Yi, Donghui; Robbins, John W.</p> <p>2010-01-01</p> <p>Sea-ice freeboard heights for 17 ICESat campaign periods from 2003 to 2009 are derived from ICESat data. Freeboard is combined with snow depth from Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E) data and nominal densities of snow, water and sea ice, to estimate sea-ice thickness. Sea-ice freeboard and thickness distributions show clear seasonal variations that reflect the yearly cycle of growth and decay of the Weddell Sea (Antarctica) pack ice. During October-November, sea ice grows to its seasonal maximum both in area and thickness; the mean freeboards are 0.33-0.41 m and the mean thicknesses are 2.10-2.59 m. During February-March, thinner sea ice melts away and the sea-ice pack is mainly distributed in the west Weddell Sea; the mean freeboards are 0.35-0.46 m and the mean thicknesses are 1.48-1.94 m. During May-June, the mean freeboards and thicknesses are 0.26-0.29 m and 1.32-1.37 m, respectively. The 6 year trends in sea-ice extent and volume are (0.023+/-0.051) x 10(exp 6)sq km/a (0.45%/a) and (0.007+/-1.0.092) x 10(exp 3)cu km/a (0.08%/a); however, the large standard deviations indicate that these positive trends are not statistically significant.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRG..122.1486K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRG..122.1486K"><span>Windows in Arctic sea ice: Light transmission and ice algae in a refrozen lead</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kauko, Hanna M.; Taskjelle, Torbjørn; Assmy, Philipp; Pavlov, Alexey K.; Mundy, C. J.; Duarte, Pedro; Fernández-Méndez, Mar; Olsen, Lasse M.; Hudson, Stephen R.; Johnsen, Geir; Elliott, Ashley; Wang, Feiyue; Granskog, Mats A.</p> <p>2017-06-01</p> <p>The Arctic Ocean is rapidly changing from thicker multiyear to thinner first-year ice cover, with significant consequences for radiative transfer through the ice pack and light availability for algal growth. A thinner, more dynamic ice cover will possibly result in more frequent leads, covered by newly formed ice with little snow cover. We studied a refrozen lead (≤0.27 m ice) in drifting pack ice north of Svalbard (80.5-81.8°N) in May-June 2015 during the Norwegian young sea ICE expedition (N-ICE2015). We measured downwelling incident and ice-transmitted spectral irradiance, and colored dissolved organic matter (CDOM), particle absorption, ultraviolet (UV)-protecting mycosporine-like amino acids (MAAs), and chlorophyll a (Chl a) in melted sea ice samples. We found occasionally very high MAA concentrations (up to 39 mg m-3, mean 4.5 ± 7.8 mg m-3) and MAA to Chl a ratios (up to 6.3, mean 1.2 ± 1.3). Disagreement in modeled and observed transmittance in the UV range let us conclude that MAA signatures in CDOM absorption spectra may be artifacts due to osmotic shock during ice melting. Although observed PAR (photosynthetically active radiation) transmittance through the thin ice was significantly higher than that of the adjacent thicker ice with deep snow cover, ice algal standing stocks were low (≤2.31 mg Chl a m-2) and similar to the adjacent ice. Ice algal accumulation in the lead was possibly delayed by the low inoculum and the time needed for photoacclimation to the high-light environment. However, leads are important for phytoplankton growth by acting like windows into the water column.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27834589','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27834589"><span>The Acute Effect of Cryotherapy on Muscle Strength and Shoulder Proprioception.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Torres, Rui; Silva, Filipa; Pedrosa, Vera; Ferreira, João; Lopes, Alexandre</p> <p>2017-11-01</p> <p>Cryotherapy, a common intervention used by clinicians, poses several benefits in managing acute injuries. However, cooling muscle tissue can interfere with muscular properties and the sensory-motor system. The aim of this study was to analyze the influence of cryotherapy with a crushed-ice pack on shoulder proprioception concerning joint position sense, force sense, the threshold for detecting passive movement, and maximal force production. A randomized, double-blind controlled trial. 48 healthy women aged 22.6 ± 0.4 y with a mean body mass index of 22.8 ±0.37 kg/m2 and a percentage of body fat of 15.4 ± 1.5%. In the experimental group, a crushed-ice pack was applied to the shoulder for 15 min, whereas participants in the control group applied a sandbag at skin temperature, also for 15 min. An isokinetic dynamometer was used to assess maximal voluntary contraction, force sense, joint position sense, and the threshold for detecting passive movement. Paired sample t tests revealed that maximal voluntary isometric contraction decreased significantly after cryotherapy (P ≤ .001), or approximately 10% of the reduction found in both muscular groups assessed. Shoulder position sense (P < .001) and the threshold for detecting passive movement (P = .01 and P = .01 for lateral and medial shoulder rotator muscles, respectively) also suffered significant impairment. Nevertheless, no significant differences emerged in force sense at 20% and 50% of maximal force reproduction (P = .41 and P = .10 for lateral rotator muscles at 20% and 50%, respectively; and P = .20 and P = .09 for medial rotator muscles at 20% and 50%, respectively). Applying a crushed-ice pack to the shoulder for 15 min negatively affected muscle strength and impaired shoulder proprioception by decreasing joint position sense and the threshold for detecting passive movement.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA497652','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA497652"><span>Toward an Arctic Strategy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2009-02-01</p> <p>Arctic Sea Ice Extent6 Reduced ice pack area translates to less reflected solar energy, which further accelerates the ongoing melting process . Light... process , creating a vicious cycle where melting ice causes the remaining ice to melt faster.7 Modelers previously agreed that the Arctic Ocean could be...freight ports stand to benefit by shipping through the Arctic region.10 For example, an ocean voyage from Yokohama, Japan, to Hamburg, Germany via the</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25993625','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25993625"><span>Lower limb ice application alters ground reaction force during gait initiation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Muniz, Thiago B; Moraes, Renato; Guirro, Rinaldo R J</p> <p>2015-01-01</p> <p>Cryotherapy is a widely used technique in physical therapy clinics and sports. However, the effects of cryotherapy on dynamic neuromuscular control are incompletely explained. To evaluate the effects of cryotherapy applied to the calf, ankle and sole of the foot in healthy young adults on ground reaction forces during gait initiation. This study evaluated the gait initiation forces, maximum propulsion, braking forces and impulses of 21 women volunteers through a force platform, which provided maximum and minimum ground reaction force values. To assess the effects of cooling, the task--gait initiation--was performed before ice application, immediately after and 30 minutes after removal of the ice pack. Ice was randomly applied on separate days to the calf, ankle and sole of the foot of the participants. It was demonstrated that ice application for 30 minutes to the sole of the foot and calf resulted in significant changes in the vertical force variables, which returned to their pre-application values 30 minutes after the removal of the ice pack. Ice application to the ankle only reduced propulsion impulse. These results suggest that although caution is necessary when performing activities that require good gait control, the application of ice to the ankle, sole of the foot or calf in 30-minute intervals may be safe even preceding such activities.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70036174','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70036174"><span>Consequences of long-distance swimming and travel over deep-water pack ice for a female polar bear during a year of extreme sea ice retreat</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Durner, George M.; Whiteman, J.P.; Harlow, H.J.; Amstrup, Steven C.; Regehr, E.V.; Ben-David, M.</p> <p>2011-01-01</p> <p>Polar bears (Ursus maritimus) prefer to live on Arctic sea ice but may swim between ice floes or between sea ice and land. Although anecdotal observations suggest that polar bears are capable of swimming long distances, no data have been available to describe in detail long distance swimming events or the physiological and reproductive consequences of such behavior. Between an initial capture in late August and a recapture in late October 2008, a radio-collared adult female polar bear in the Beaufort Sea made a continuous swim of 687 km over 9 days and then intermittently swam and walked on the sea ice surface an additional 1,800 km. Measures of movement rate, hourly activity, and subcutaneous and external temperature revealed distinct profiles of swimming and walking. Between captures, this polar bear lost 22% of her body mass and her yearling cub. The extraordinary long distance swimming ability of polar bears, which we confirm here, may help them cope with reduced Arctic sea ice. Our observation, however, indicates that long distance swimming in Arctic waters, and travel over deep water pack ice, may result in high energetic costs and compromise reproductive fitness.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21829988','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21829988"><span>Effect of walking and resting after three cryotherapy modalities on the recovery of sensory and motor nerve conduction velocity in healthy subjects.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Herrera, Esperanza; Sandoval, Maria Cristina; Camargo, Diana M; Salvini, Tania F</p> <p>2011-01-01</p> <p>Different cryotherapy modalities have distinct effects on sensory and motor nerve conduction parameters. However, it is unclear how these parameters change during the post-cooling period and how the exercise carried out in this period would influence the recovery of nerve conduction velocity (NCV). To compare the effects of three cryotherapy modalities on post-cooling NCV and to analyze the effect of walking on the recovery of sensory and motor NCV. Thirty six healthy young subjects were randomly allocated into three groups: ice massage (n=12), ice pack (n=12) and cold water immersion (n=12). The modalities were applied to the right leg. The subjects of each modality group were again randomized to perform a post-cooling activity: a) 30 min rest, b) walking 15 min followed by 15 min rest. The NCV of sural (sensory) and posterior tibial (motor) nerves was evaluated. Initial (pre-cooling) and final (30 min post-cooling) NCV were compared using a paired t-test. The effects of the modalities and the post-cooling activities on NCV were evaluated by an analysis of covariance. The significance level was α=0.05. There was a significant difference between immersion and ice massage on final sensory NCV (p=0.009). Ice pack and ice massage showed similar effects (p>0.05). Walking accelerated the recovery of sensory and motor NCV, regardless of the modality previously applied (p<0.0001). Cold water immersion was the most effective modality for maintaining reduced sensory nerve conduction after cooling. Walking after cooling, with any of the three modalities, enhances the recovery of sensory and motor NCV.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JGRC..121..267B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JGRC..121..267B"><span>Physical processes contributing to an ice free Beaufort Sea during September 2012</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Babb, D. G.; Galley, R. J.; Barber, D. G.; Rysgaard, S.</p> <p>2016-01-01</p> <p>During the record September 2012 sea ice minimum, the Beaufort Sea became ice free for the first time during the observational record. Increased dynamic activity during late winter enabled increased open water and seasonal ice coverage that contributed to negative sea ice anomalies and positive solar absorption anomalies which drove rapid bottom melt and sea ice loss. As had happened in the Beaufort Sea during previous years of exceptionally low September sea ice extent, anomalous solar absorption developed during May, increased during June, peaked during July, and persisted into October. However in situ observations from a single floe reveal less than 78% of the energy required for bottom melt during 2012 was available from solar absorption. We show that the 2012 sea ice minimum in the Beaufort was the result of anomalously large solar absorption that was compounded by an arctic cyclone and other sources of heat such as solar transmission, oceanic upwelling, and riverine inputs, but was ultimately made possible through years of preconditioning toward a younger, thinner ice pack. Significant negative trends in sea ice concentration between 1979 and 2012 from June to October, coupled with a tendency toward earlier sea ice reductions have fostered a significant trend of +12.9 MJ m-2 yr-1 in cumulative solar absorption, sufficient to melt an additional 4.3 cm m-2 yr-1. Overall through preconditioning toward a younger, thinner ice pack the Beaufort Sea has become increasingly susceptible to increased sea ice loss that may render it ice free more frequently in coming years.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.C43B0748B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.C43B0748B"><span>Physical Processes contributing to an ice free Beaufort Sea during September 2012</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Babb, D.; Galley, R.; Barber, D. G.; Rysgaard, S.</p> <p>2016-12-01</p> <p>During the record September 2012 sea ice minimum the Beaufort Sea became ice free for the first time during the observational record. Increased dynamic activity during late winter enabled increased open water and seasonal ice coverage that contributed to negative sea ice anomalies and positive solar absorption anomalies which drove rapid bottom melt and sea ice loss. As had happened in the Beaufort Sea during previous years of exceptionally low September sea ice extent, anomalous solar absorption developed during May, increased during June, peaked during July and persisted into October. However in situ observations from a single floe reveal less than 78% of the energy required for bottom melt during 2012 was available from solar absorption. We show that the 2012 sea ice minimum in the Beaufort was the result of anomalously large solar absorption that was compounded by an arctic cyclone and other sources of heat such as solar transmission, oceanic upwelling and riverine inputs, but was ultimately made possible through years of preconditioning towards a younger, thinner ice pack. Significant negative trends in sea ice concentration between 1979 and 2012 from June to October, coupled with a tendency towards earlier sea ice reductions have fostered a significant trend of +12.9 MJ m-2 year-1 in cumulative solar absorption, sufficient to melt an additional 4.3 cm m-2 year-1. Overall through preconditioning towards a younger, thinner ice pack the Beaufort Sea has become increasingly susceptible to increased sea ice loss that may render it ice free more frequently in coming years.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li class="active"><span>6</span></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_6 --> <div id="page_7" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li class="active"><span>7</span></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="121"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.loc.gov/pictures/collection/hh/item/ia0526.photos.319591p/','SCIGOV-HHH'); return false;" href="https://www.loc.gov/pictures/collection/hh/item/ia0526.photos.319591p/"><span>2. DETAIL OF DISCHARGE CHUTES FROM VOGT AUTOMATIC TUBE ICE ...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.loc.gov/pictures/collection/hh/">Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey</a></p> <p></p> <p></p> <p>2. DETAIL OF DISCHARGE CHUTES FROM VOGT AUTOMATIC TUBE ICE MACHINE IN SOUTHWEST CORNER OF LEVEL 5; ICE DROPPED INTO HOLDING BIN BEFORE BEING TRANSFERRED TO RAIL CARS OUTSIDE BUILDING (HENRY VOGT MACHINE COMPANY, LOUISVILLE, USA, PATENT NO. 2,200,424 - Rath Packing Company, Cooler Building, Sycamore Street between Elm & Eighteenth Streets, Waterloo, Black Hawk County, IA</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016DSRII.131...28T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016DSRII.131...28T"><span>Formation processes of sea ice floe size distribution in the interior pack and its relationship to the marginal ice zone off East Antarctica</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Toyota, Takenobu; Kohout, Alison; Fraser, Alexander D.</p> <p>2016-09-01</p> <p>To understand the behavior of the Seasonal Ice Zone (SIZ), which is composed of sea-ice floes of various sizes, knowledge of the floe size distribution (FSD) is important. In particular, FSD in the Marginal Ice Zone (MIZ), controlled by wave-ice interaction, plays an important role in determining the retreating rates of sea-ice extent on a global scale because the cumulative perimeter of floes enhances melting. To improve the understanding of wave-ice interaction and subsequent effects on FSD in the MIZ, FSD measurements were conducted off East Antarctica during the second Sea Ice Physics and Ecosystems eXperiment (SIPEX-2) in late winter 2012. Since logistical reasons limited helicopter operations to two interior ice regions, FSD in the interior ice region was determined using a combination of heli-photos and MODIS satellite visible images. The possible effect of wave-ice interaction in the MIZ was examined by comparison with past results obtained in the same MIZ, with our analysis showing: (1) FSD in the interior ice region is basically scale invariant for both small- (<100 m) and large- (>1 km) scale regimes; (2) although fractal dimensions are quite different between these two regimes, they are both rather close to that in the MIZ; and (3) for floes <100 m in diameter, a regime shift which appeared at 20-40 m in the MIZ is absent. These results indicate that one role of wave-ice interaction is to modulate the FSD that already exists in the interior ice region, rather than directly determine it. The possibilities of floe-floe collisions and storm-induced lead formation are considered as possible formation processes of FSD in the interior pack.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17769826','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17769826"><span>Oil and ice in the arctic ocean: possible large-scale interactions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Campbell, W J; Martin, S</p> <p>1973-07-06</p> <p>The diffusion and transport mechanisms generated by the pack ice dynamics of the Beaufort Sea, combined with the slow rate of biodegradation of oil under Arctic conditions, would combine to diffuse an oil spill over the sea and eventually deposit the oil on the ice surface, where it would lower the natural albedo over a large area.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PolSc..15...55L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PolSc..15...55L"><span>Vertical distribution of the sound-scattering layer in the Amundsen Sea, Antarctica</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lee, Hyungbeen; La, Hyoung Sul; Kang, Donhyug; Lee, SangHoon</p> <p>2018-03-01</p> <p>Mid-trophic level at high-latitude coastal water in the Southern Ocean reside unique geographical condition with sea ice, coastal polynya, and ice shelf. To investigate the regional differences in their vertical distribution during summer, we examined acoustic backscatter data from scientific echo sounder, collected in the three representative regions in the Amundsen Sea: pack ice zone, coastal polynya zone, and ice shelf zone. The weighted mean depths (WMDs) representing zooplankton were calculated with the high resolution acoustic backscatter (1-m depth) to identify the vertical variability of the sound-scattering layer (SSL). WMDs were mainly distributed between 50 and 130 m exhibiting clear regional differences. The WMDs were detected in the shallow depth ranged between 48 and 84 m within the pack ice and coastal polynya, whereas they were observed at deeper depths around near ice shelf ranged between 117 and 126 m. WMDs varied with changing the stratification of water column structure representing strong linear relationship with the mixed layer depth (r = 0.69). This finding implies that understanding the essential forcing of zooplankton behavior will improve our ability to assess the coastal ecosystem in the Southern Ocean facing dramatic change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JGRC..119.2327A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JGRC..119.2327A"><span>Implications of fractured Arctic perennial ice cover on thermodynamic and dynamic sea ice processes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Asplin, Matthew G.; Scharien, Randall; Else, Brent; Howell, Stephen; Barber, David G.; Papakyriakou, Tim; Prinsenberg, Simon</p> <p>2014-04-01</p> <p>Decline of the Arctic summer minimum sea ice extent is characterized by large expanses of open water in the Siberian, Laptev, Chukchi, and Beaufort Seas, and introduces large fetch distances in the Arctic Ocean. Long waves can propagate deep into the pack ice, thereby causing flexural swell and failure of the sea ice. This process shifts the floe size diameter distribution smaller, increases floe surface area, and thereby affects sea ice dynamic and thermodynamic processes. The results of Radarsat-2 imagery analysis show that a flexural fracture event which occurred in the Beaufort Sea region on 6 September 2009 affected ˜40,000 km2. Open water fractional area in the area affected initially decreased from 3.7% to 2.7%, but later increased to ˜20% following wind-forced divergence of the ice pack. Energy available for lateral melting was assessed by estimating the change in energy entrainment from longwave and shortwave radiation in the mixed-layer of the ocean following flexural fracture. 11.54 MJ m-2 of additional energy for lateral melting of ice floes was identified in affected areas. The impact of this process in future Arctic sea ice melt seasons was assessed using estimations of earlier occurrences of fracture during the melt season, and is discussed in context with ocean heat fluxes, atmospheric mixing of the ocean mixed layer, and declining sea ice cover. We conclude that this process is an important positive feedback to Arctic sea ice loss, and timing of initiation is critical in how it affects sea ice thermodynamic and dynamic processes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRC..122.9548T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRC..122.9548T"><span>Biogeochemical Impact of Snow Cover and Cyclonic Intrusions on the Winter Weddell Sea Ice Pack</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tison, J.-L.; Schwegmann, S.; Dieckmann, G.; Rintala, J.-M.; Meyer, H.; Moreau, S.; Vancoppenolle, M.; Nomura, D.; Engberg, S.; Blomster, L. J.; Hendrickx, S.; Uhlig, C.; Luhtanen, A.-M.; de Jong, J.; Janssens, J.; Carnat, G.; Zhou, J.; Delille, B.</p> <p>2017-12-01</p> <p>Sea ice is a dynamic biogeochemical reactor and a double interface actively interacting with both the atmosphere and the ocean. However, proper understanding of its annual impact on exchanges, and therefore potentially on the climate, notably suffer from the paucity of autumnal and winter data sets. Here we present the results of physical and biogeochemical investigations on winter Antarctic pack ice in the Weddell Sea (R. V. Polarstern AWECS cruise, June-August 2013) which are compared with those from two similar studies conducted in the area in 1986 and 1992. The winter 2013 was characterized by a warm sea ice cover due to the combined effects of deep snow and frequent warm cyclones events penetrating southward from the open Southern Ocean. These conditions were favorable to high ice permeability and cyclic events of brine movements within the sea ice cover (brine tubes), favoring relatively high chlorophyll-a (Chl-a) concentrations. We discuss the timing of this algal activity showing that arguments can be presented in favor of continued activity during the winter due to the specific physical conditions. Large-scale sea ice model simulations also suggest a context of increasingly deep snow, warm ice, and large brine fractions across the three observational years, despite the fact that the model is forced with a snowfall climatology. This lends support to the claim that more severe Antarctic sea ice conditions, characterized by a longer ice season, thicker, and more concentrated ice are sufficient to increase the snow depth and, somehow counterintuitively, to warm the ice.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.photolib.noaa.gov/flight/index.html','SCIGOVWS'); return false;" href="http://www.photolib.noaa.gov/flight/index.html"><span>NOAA Photo Library - Flying with NOAA Collection</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.science.gov/aboutsearch.html">Science.gov Websites</a></p> <p></p> <p></p> <p>of projects far at <em>sea</em>. Experience the alien world of Arctic ice with NOAA scientists as NOAA helicopters transport them far out on the ice packs of the Bering <em>Sea</em> and Beaufort <em>Sea</em>. Join us and take a</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PrOce.156...17L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PrOce.156...17L"><span>Under the sea ice: Exploring the relationship between sea ice and the foraging behaviour of southern elephant seals in East Antarctica</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Labrousse, Sara; Sallée, Jean-Baptiste; Fraser, Alexander D.; Massom, Robert A.; Reid, Phillip; Sumner, Michael; Guinet, Christophe; Harcourt, Robert; McMahon, Clive; Bailleul, Frédéric; Hindell, Mark A.; Charrassin, Jean-Benoit</p> <p>2017-08-01</p> <p>Investigating ecological relationships between predators and their environment is essential to understand the response of marine ecosystems to climate variability and change. This is particularly true in polar regions, where sea ice (a sensitive climate variable) plays a crucial yet highly dynamic and variable role in how it influences the whole marine ecosystem, from phytoplankton to top predators. For mesopredators such as seals, sea ice both supports a rich (under-ice) food resource, access to which depends on local to regional coverage and conditions. Here, we investigate sex-specific relationships between the foraging strategies of southern elephant seals (Mirounga leonina) in winter and spatio-temporal variability in sea ice concentration (SIC) and coverage in East Antarctica. We satellite-tracked 46 individuals undertaking post-moult trips in winter from Kerguelen Islands to the peri-Antarctic shelf between 2004 and 2014. These data indicate distinct general patterns of sea ice usage: while females tended to follow the sea ice edge as it extended northward, the males remained on the continental shelf despite increasing sea ice. Seal hunting time, a proxy of foraging activity inferred from the diving behaviour, was longer for females in late autumn in the outer part of the pack ice, ∼150-370 km south of the ice edge. Within persistent regions of compact sea ice, females had a longer foraging activity (i) in the highest sea ice concentration at their position, but (ii) their foraging activity was longer when there were more patches of low concentration sea ice around their position (either in time or in space; 30 days & 50 km). The high spatio-temporal variability of sea ice around female positions is probably a key factor allowing them to exploit these concentrated patches. Despite lack of information on prey availability, females may exploit mesopelagic finfishes and squids that concentrate near the ice-water interface or within the water column (from diurnal vertical migration) in the pack ice region, likely attracted by an ice algal autumn bloom that sustains an under-ice ecosystem. In contrast, male foraging effort increased when they remained deep within the sea ice (420-960 km from the ice edge) over the shelf. Males had a longer foraging activity (i) in the lowest sea ice concentration at their position, and (ii) when there were more patches of low concentration sea ice around their position (either in time or in space; 30 days & 50 km) presumably in polynyas or flaw leads between land fast and pack ice. This provides access to zones of enhanced resources in autumn or in early spring such as polynyas, the Antarctic shelf and slope. Our results suggest that some seals utilized a highly sea ice covered environment, which is key for their foraging effort, sustaining or concentrating resources during winter.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.C21E..05P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.C21E..05P"><span>Variability in Arctic sea ice topography and atmospheric form drag: Combining IceBridge laser altimetry with ASCAT radar backscatter.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Petty, A.; Tsamados, M.; Kurtz, N. T.</p> <p>2016-12-01</p> <p>Here we present atmospheric form drag estimates over Arctic sea ice using high resolution, three-dimensional surface elevation data from NASA's Operation IceBridge Airborne Topographic Mapper (ATM), and surface roughness estimates from the Advanced Scatterometer (ASCAT). Surface features of the ice pack (e.g. pressure ridges) are detected using IceBridge ATM elevation data and a novel surface feature-picking algorithm. We use simple form drag parameterizations to convert the observed height and spacing of surface features into an effective atmospheric form drag coefficient. The results demonstrate strong regional variability in the atmospheric form drag coefficient, linked to variability in both the height and spacing of surface features. This includes form drag estimates around 2-3 times higher over the multiyear ice north of Greenland, compared to the first-year ice of the Beaufort/Chukchi seas. We compare results from both scanning and linear profiling to ensure our results are consistent with previous studies investigating form drag over Arctic sea ice. A strong correlation between ASCAT surface roughness estimates (using radar backscatter) and the IceBridge form drag results enable us to extrapolate the IceBridge data collected over the western-Arctic across the entire Arctic Ocean. While our focus is on spring, due to the timing of the primary IceBridge campaigns since 2009, we also take advantage of the autumn data collected by IceBridge in 2015 to investigate seasonality in Arctic ice topography and the resulting form drag coefficient. Our results offer the first large-scale assessment of atmospheric form drag over Arctic sea ice due to variable ice topography (i.e. within the Arctic pack ice). The analysis is being extended to the Antarctic IceBridge sea ice data, and the results are being used to calibrate a sophisticated form drag parameterization scheme included in the sea ice model CICE, to improve the representation of form drag over Arctic and Antarctic sea ice in global climate models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23086365','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23086365"><span>Validation of cooling effect of insulated containers for the shipment of corneal tissue and recommendations for transport.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Miller, Thomas D; Maxwell, Andrew J; Lindquist, Thomas D; Requard, Jake</p> <p>2013-01-01</p> <p>To determine the cooling effect of generic insulated shipping containers in ambient and high-temperature environments. Twenty-seven shipping containers were packed with wet ice according to industry standards. The ice in each container was weighed. Ambient temperatures were recorded by data loggers affixed to the exterior. Internal temperatures were recorded by data loggers packed inside the containers, for as long as the data loggers remained at ≤8°C. The cooling effect, or minutes per gram of ice a data logger maintained a temperature of ≤8°C, was calculated using linear regression; 8 similar containers were subjected to elevated summer temperatures. Small, medium, and large containers held mean masses of wet ice of 685, 1929, and 4439 g, respectively. The linear regression equation for grams of ice to duration of time at ≤8°C was y = 0.1994x + 385.13 for small containers, y = 0.1854x + 1273.3 for medium, and y = 0.5892x + 1410.3 for large containers, resulting in a cooling effect of 25.1 hours for small, 58.9 hours for medium, and 85.7 hours for large containers at ambient temperature. The duration of cooling effect in the summer profile group was consistent with that of the ambient temperature group. All of the container sizes successfully maintained proper cooling when packed with the appropriate grams of wet ice for the needed time interval. This study validates current practice for the shipment of corneal tissue in inexpensive, generic containers that can maintain effective cooling for the duration required for local, national, and international shipment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27981595','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27981595"><span>An investigation of the effect of rapid slurry chilling on blown pack spoilage of vacuum-packaged beef primals.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Reid, R; Fanning, S; Whyte, P; Kerry, J; Bolton, D</p> <p>2017-02-01</p> <p>The aim of this study was to investigate if rapid slurry chilling would retard or prevent blown pack spoilage (BPS) of vacuum-packaged beef primals. Beef primals were inoculated with Clostridium estertheticum subspp. estertheticum (DSMZ 8809), C. estertheticum subspp. laramenise (DSMZ 14864) and C. gasigenes (DSMZ 12272), and vacuum-packaged with and without heat shrinkage (90°C for 3 s). These packs were then subjected to immediate chilling in an ice slurry or using conventional blast chilling systems and stored at 2°C for up to 100 days. The onset and progress of BPS was monitored using the following scale; 0-no gas bubbles in drip; 1-gas bubbles in drip; 2-loss of vacuum; 3-'blown'; 4-presence of sufficient gas inside the packs to produce pack distension and 5-tightly stretched, 'overblown' packs/packs leaking. Rapid slurry chilling (as compared to conventional chilling) did not significantly affect (P > 0.05) the time to the onset or progress of BPS. It was therefore concluded that rapid chilling of vacuum-packaged beef primals, using an ice slurry system, may not be used as a control intervention to prevent or retard blown pack spoilage. This study adds to our growing understanding of blown pack spoilage of vacuum-packaged beef primals and suggests that rapid chilling of vacuum-packaged beef primals is not a control option for the beef industry. The results suggest that neither eliminating the heat shrinkage step nor rapid chilling of vacuum-packaged beef retard the time to blown pack spoilage. © 2016 The Society for Applied Microbiology.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70014695','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70014695"><span>Remote sensing of the Fram Strait marginal ice zone</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Shuchman, R.A.; Burns, B.A.; Johannessen, O.M.; Josberger, E.G.; Campbell, W.J.; Manley, T.O.; Lannelongue, N.</p> <p>1987-01-01</p> <p>Sequential remote sensing images of the Fram Strait marginal ice zone played a key role in elucidating the complex interactions of the atmosphere, ocean, and sea ice. Analysis of a subset of these images covering a 1-week period provided quantitative data on the mesoscale ice morphology, including ice edge positions, ice concentrations, floe size distribution, and ice kinematics. The analysis showed that, under light to moderate wind conditions, the morphology of the marginal ice zone reflects the underlying ocean circulation. High-resolution radar observations showed the location and size of ocean eddies near the ice edge. Ice kinematics from sequential radar images revealed an ocean eddy beneath the interior pack ice that was verified by in situ oceanographic measurements.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19910044116&hterms=marginal&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dmarginal','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19910044116&hterms=marginal&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dmarginal"><span>Wave propagation in the marginal ice zone - Model predictions and comparisons with buoy and synthetic aperture radar data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Liu, Antony K.; Holt, Benjamin; Vachon, Paris W.</p> <p>1991-01-01</p> <p>Ocean wave dispersion relation and viscous attenuation by a sea ice cover are studied for waves propagating into the marginal ice zone (MIZ). The Labrador ice margin experiment (LIMEX), conducted on the MIZ off the east coast of Newfoundland, Canada in March 1987, provided aircraft SAR imagery, ice property and wave buoy data. Wave energy attenuation rates are estimated from SAR data and the ice motion package data that were deployed at the ice edge and into the ice pack, and compared with a model. It is shown that the model data comparisons are quite good for the ice conditions observed during LIMEX 1987.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA030362','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA030362"><span>Sea-Ice Conditions in the Norwegian, Barents, and White Seas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1976-08-01</p> <p>pack, aided by relatively warm water from the Murman coast current, would reduce the maximum ice thickness predicted by the equation used for...THICKNESS With the aid of the ice growth model in the appendix, it is pos- sible to relate the maximum ice thickness attained during a winter season to a...inserted merely to aid the reader in discerning differences between individual winter seasons. As was the case for the 12-month mean temperatures</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4481831','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4481831"><span>Lower limb ice application alters ground reaction force during gait initiation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Muniz, Thiago B.; Moraes, Renato; Guirro, Rinaldo R. J.</p> <p>2015-01-01</p> <p>BACKGROUND: Cryotherapy is a widely used technique in physical therapy clinics and sports. However, the effects of cryotherapy on dynamic neuromuscular control are incompletely explained. OBJECTIVES: To evaluate the effects of cryotherapy applied to the calf, ankle and sole of the foot in healthy young adults on ground reaction forces during gait initiation. METHOD: This study evaluated the gait initiation forces, maximum propulsion, braking forces and impulses of 21 women volunteers through a force platform, which provided maximum and minimum ground reaction force values. To assess the effects of cooling, the task - gait initiation - was performed before ice application, immediately after and 30 minutes after removal of the ice pack. Ice was randomly applied on separate days to the calf, ankle and sole of the foot of the participants. RESULTS: It was demonstrated that ice application for 30 minutes to the sole of the foot and calf resulted in significant changes in the vertical force variables, which returned to their pre-application values 30 minutes after the removal of the ice pack. Ice application to the ankle only reduced propulsion impulse. CONCLUSIONS: These results suggest that although caution is necessary when performing activities that require good gait control, the application of ice to the ankle, sole of the foot or calf in 30-minute intervals may be safe even preceding such activities. PMID:25993625</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/12154613','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/12154613"><span>Ecology of southern ocean pack ice.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Brierley, Andrew S; Thomas, David N</p> <p>2002-01-01</p> <p>Around Antarctica the annual five-fold growth and decay of sea ice is the most prominent physical process and has a profound impact on marine life there. In winter the pack ice canopy extends to cover almost 20 million square kilometres--some 8% of the southern hemisphere and an area larger than the Antarctic continent itself (13.2 million square kilometres)--and is one of the largest, most dynamic ecosystems on earth. Biological activity is associated with all physical components of the sea-ice system: the sea-ice surface; the internal sea-ice matrix and brine channel system; the underside of sea ice and the waters in the vicinity of sea ice that are modified by the presence of sea ice. Microbial and microalgal communities proliferate on and within sea ice and are grazed by a wide range of proto- and macrozooplankton that inhabit the sea ice in large concentrations. Grazing organisms also exploit biogenic material released from the sea ice at ice break-up or melt. Although rates of primary production in the underlying water column are often low because of shading by sea-ice cover, sea ice itself forms a substratum that provides standing stocks of bacteria, algae and grazers significantly higher than those in ice-free areas. Decay of sea ice in summer releases particulate and dissolved organic matter to the water column, playing a major role in biogeochemical cycling as well as seeding water column phytoplankton blooms. Numerous zooplankton species graze sea-ice algae, benefiting additionally because the overlying sea-ice ceiling provides a refuge from surface predators. Sea ice is an important nursery habitat for Antarctic krill, the pivotal species in the Southern Ocean marine ecosystem. Some deep-water fish migrate to shallow depths beneath sea ice to exploit the elevated concentrations of some zooplankton there. The increased secondary production associated with pack ice and the sea-ice edge is exploited by many higher predators, with seals, seabirds and whales aggregating there. As a result, much of the Southern Ocean pelagic whaling was concentrated at the edge of the marginal ice zone. The extent and duration of sea ice fluctuate periodically under the influence of global climatic phenomena including the El Niño Southern Oscillation. Life cycles of some associated species may reflect this periodicity. With evidence for climatic warming in some regions of Antarctica, there is concern that ecosystem change may be induced by changes in sea-ice extent. The relative abundance of krill and salps appears to change interannually with sea-ice extent, and in warm years, when salps proliferate, krill are scarce and dependent predators suffer severely. Further research on the Southern Ocean sea-ice system is required, not only to further our basic understanding of the ecology, but also to provide ecosystem managers with the information necessary for the development of strategies in response to short- and medium-term environmental changes in Antarctica. Technological advances are delivering new sampling platforms such as autonomous underwater vehicles that are improving vastly our ability to sample the Antarctic under sea-ice environment. Data from such platforms will enhance greatly our understanding of the globally important Southern Ocean sea-ice ecosystem.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011DSRII..58.1710E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011DSRII..58.1710E"><span>Characterization of winter foraging locations of Adélie penguins along the Western Antarctic Peninsula, 2001-2002</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Erdmann, Eric S.; Ribic, Christine A.; Patterson-Fraser, Donna L.; Fraser, William R.</p> <p>2011-07-01</p> <p>In accord with the hypotheses driving the Southern Ocean Global Ocean Ecosystems Dynamics (SO GLOBEC) program, we tested the hypothesis that the winter foraging ecology of a major top predator in waters off the Western Antarctic Peninsula (WAP), the Adélie penguin ( Pygoscelis adeliae), is constrained by oceanographic features related to the physiography of the region. This hypothesis grew from the supposition that breeding colonies in the WAP during summer are located adjacent to areas of complex bathymetry where circulation and upwelling processes appear to ensure predictable food resources. Therefore, we tested the additional hypothesis that these areas continue to contribute to the foraging strategy of this species throughout the non-breeding winter season. We used satellite telemetry data collected as part of the SO GLOBEC program during the austral winters of 2001 and 2002 to characterize individual penguin foraging locations in relation to bathymetry, sea ice variability within the pack ice, and wind velocity and divergence (as a proxy for potential areas with cracks and leads). We also explored differences between males and females in core foraging area overlap. Ocean depth was the most influential variable in the determination of foraging location, with most birds focusing their effort on shallow (<200 m) waters near land and on mixed-layer (200-500 m) waters near the edge of deep troughs. Within-ice variability and wind (as a proxy for potential areas with cracks and leads) were not found to be influential variables, which is likely because of the low resolution satellite imagery and model outputs that were available. Throughout the study period, all individuals maintained a core foraging area separated from other individuals with very little overlap. However, from a year with light sea ice to one with heavy ice cover (2001-2002), we observed an increase in the overlap of individual female foraging areas with those of other birds, likely due to restricted access to the water column, reduced prey abundance, or higher prey concentration. Male birds maintained separate core foraging areas with the same small amount of overlap, showing no difference in overlap between the years. While complex bathymetry was an important physical variable influencing the Adélie penguin's foraging, the analysis of sea ice data of a higher resolution than was available for this study may help elucidate the role of sea ice in affecting Adélie penguin winter foraging behavior within the pack ice.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70173543','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70173543"><span>Characterization of winter foraging locations of Adélie penguins along the Western Antarctic Peninsula, 2001–2002</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Erdmann, Eric S.; Ribic, Christine; Patterson-Fraser, Donna L.; Fraser, William R.</p> <p>2011-01-01</p> <p>In accord with the hypotheses driving the Southern Ocean Global Ocean Ecosystems Dynamics (SO GLOBEC) program, we tested the hypothesis that the winter foraging ecology of a major top predator in waters off the Western Antarctic Peninsula (WAP), the Adélie penguin (Pygoscelis adeliae), is constrained by oceanographic features related to the physiography of the region. This hypothesis grew from the supposition that breeding colonies in the WAP during summer are located adjacent to areas of complex bathymetry where circulation and upwelling processes appear to ensure predictable food resources. Therefore, we tested the additional hypothesis that these areas continue to contribute to the foraging strategy of this species throughout the non-breeding winter season. We used satellite telemetry data collected as part of the SO GLOBEC program during the austral winters of 2001 and 2002 to characterize individual penguin foraging locations in relation to bathymetry, sea ice variability within the pack ice, and wind velocity and divergence (as a proxy for potential areas with cracks and leads). We also explored differences between males and females in core foraging area overlap. Ocean depth was the most influential variable in the determination of foraging location, with most birds focusing their effort on shallow (<200 m) waters near land and on mixed-layer (200–500 m) waters near the edge of deep troughs. Within-ice variability and wind (as a proxy for potential areas with cracks and leads) were not found to be influential variables, which is likely because of the low resolution satellite imagery and model outputs that were available. Throughout the study period, all individuals maintained a core foraging area separated from other individuals with very little overlap. However, from a year with light sea ice to one with heavy ice cover (2001–2002), we observed an increase in the overlap of individual female foraging areas with those of other birds, likely due to restricted access to the water column, reduced prey abundance, or higher prey concentration. Male birds maintained separate core foraging areas with the same small amount of overlap, showing no difference in overlap between the years. While complex bathymetry was an important physical variable influencing the Adélie penguin's foraging, the analysis of sea ice data of a higher resolution than was available for this study may help elucidate the role of sea ice in affecting Adélie penguin winter foraging behavior within the pack ice.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018HMT...tmp..130X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018HMT...tmp..130X"><span>Numerical simulation of flow and melting characteristics of seawater-ice crystals two-phase flow in inlet straight pipe of shell and tube heat exchanger of polar ship</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xu, Li; Huang, Chang-Xu; Huang, Zhen-Fei; Sun, Qiang; Li, Jie</p> <p>2018-05-01</p> <p>The ice crystal particles are easy to enter into the seawater cooling system of polar ship together with seawater when it sails in the Arctic. They are easy to accumulate in the pipeline, causing serious blockage of the cooling pipe. In this study, the flow and melting characteristics of ice particles-seawater two-phase flow in inlet straight pipe of shell-and-tube heat exchanger were numerically simulated by using Eulerian-Eulerian two-fluid model coupled with the interphase heat and mass transfer model. The influences of inlet ice packing factor, ice crystal particle diameter, and inlet velocity on the distribution and melting characteristics of ice crystals were investigated. The degree of asymmetry of the distribution of ice crystals in the cross section decreases gradually when the IPF changes from 5 to 15%. The volume fractions of ice crystals near the top of the outlet cross section are 19.59, 19.51, and 22.24% respectively for ice packing factor of 5, 10 and 15%. When the particle diameter is 0.5 mm, the ice crystals are gradually stratified during the flow process. With particle diameters of 1.0 and 2.0 mm, the region with the highest volume fraction of ice crystals is a small circle and the contours in the cloud map are compact. The greater the inlet flow velocity, the less stratified the ice crystals and the more obvious the turbulence on the outlet cross section. The average volume fraction of ice crystals along the flow direction is firstly rapidly reduced and then stabilized after 300 mm.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.9227L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.9227L"><span>Upper Ocean Evolution Across the Beaufort Sea Marginal Ice Zone from Autonomous Gliders</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lee, Craig; Rainville, Luc; Perry, Mary Jane</p> <p>2016-04-01</p> <p>The observed reduction of Arctic summertime sea ice extent and expansion of the marginal ice zone (MIZ) have profound impacts on the balance of processes controlling sea ice evolution, including the introduction of several positive feedback mechanisms that may act to accelerate melting. Examples of such feedbacks include increased upper ocean warming though absorption of solar radiation, elevated internal wave energy and mixing that may entrain heat stored in subsurface watermasses (e.g., the relatively warm Pacific Summer (PSW) and Atlantic (AW) waters), and elevated surface wave energy that acts to deform and fracture sea ice. Spatial and temporal variability in ice properties and open water fraction impact these processes. To investigate how upper ocean structure varies with changing ice cover, and how the balance of processes shift as a function of ice fraction and distance from open water, four long-endurance autonomous Seagliders occupied sections that extended from open water, through the marginal ice zone, deep into the pack during summer 2014 in the Beaufort Sea. Sections reveal strong fronts where cold, ice-covered waters meet waters that have been exposed to solar warming, and O(10 km) scale eddies near the ice edge. In the pack, Pacific Summer Water and a deep chlorophyll maximum form distinct layers at roughly 60 m and 80 m, respectively, which become increasingly diffuse as they progress through the MIZ and into open water. The isopynal layer between 1023 and 1024 kgm-3, just above the PSW, consistently thickens near the ice edge, likely due to mixing or energetic vertical exchange associated with strong lateral gradients in this region. This presentation will discuss the upper ocean variability, its relationship to sea ice extent, and evolution over the summer to the start of freeze up.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li class="active"><span>7</span></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_7 --> <div id="page_8" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li class="active"><span>8</span></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="141"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSHE21A..06L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSHE21A..06L"><span>Upper Ocean Evolution Across the Beaufort Sea Marginal Ice Zone from Autonomous Gliders</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lee, C.; Rainville, L.; Perry, M. J.</p> <p>2016-02-01</p> <p>The observed reduction of Arctic summertime sea ice extent and expansion of the marginal ice zone (MIZ) have profound impacts on the balance of processes controlling sea ice evolution, including the introduction of several positive feedback mechanisms that may act to accelerate melting. Examples of such feedbacks include increased upper ocean warming though absorption of solar radiation, elevated internal wave energy and mixing that may entrain heat stored in subsurface watermasses (e.g., the relatively warm Pacific Summer (PSW) and Atlantic (AW) waters), and elevated surface wave energy that acts to deform and fracture sea ice. Spatial and temporal variability in ice properties and open water fraction impact these processes. To investigate how upper ocean structure varies with changing ice cover, and how the balance of processes shift as a function of ice fraction and distance from open water, four long-endurance autonomous Seagliders occupied sections that extended from open water, through the marginal ice zone, deep into the pack during summer 2014 in the Beaufort Sea. Sections reveal strong fronts where cold, ice-covered waters meet waters that have been exposed to solar warming, and O(10 km) scale eddies near the ice edge. In the pack, Pacific Summer Water and a deep chlorophyll maximum form distinct layers at roughly 60 m and 80 m, respectively, which become increasingly diffuse as they progress through the MIZ and into open water. The isopynal layer between 1023 and 1024 kg m-3, just above the PSW, consistently thickens near the ice edge, likely due to mixing or energetic vertical exchange associated with strong lateral gradients in this region. This presentation will discuss the upper ocean variability, its relationship to sea ice extent, and evolution over the summer to the start of freeze up.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMGC11A0540O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMGC11A0540O"><span>Impacts of Organic Macromolecules, Chlorophyll and Soot on Arctic Sea Ice</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ogunro, O. O.; Wingenter, O. W.; Elliott, S.; Flanner, M.; Dubey, M. K.</p> <p>2014-12-01</p> <p>Recent intensification of Arctic amplification can be strongly connected to positive feedback relating black carbon deposition to sea ice surface albedo. In addition to soot deposition on the ice and snow pack, ice algal chlorophyll is likely to compete as an absorber and redistributor of energy. Hence, solar radiation absorption by chlorophyll and some components of organic macromolecules in/under the ice column is currently being examined to determine the level of influence on predicted rate of ice loss. High amounts of organic macromolecules and chlorophyll are produced in global sea ice by the bottom microbial community and also in vertically distributed layers where substantial biological activities take place. Brine channeling in columnar ice can allow for upward flow of nutrients which leads to greater primary production in the presence of moderate light. Modeling of the sea-ice processes in tandem with experiments and field observations promises rapid progress in enhancing Arctic ice predictions. We are designing and conducting global climate model experiments to determine the impact of organic macromolecules and chlorophyll on Arctic sea ice. Influences on brine network permeability and radiation/albedo will be considered in this exercise. Absorption by anthropogenic materials such as soot and black carbon will be compared with that of natural pigments. We will indicate areas of soot and biological absorption dominance in the sense of single scattering, then couple into a full radiation transfer scheme to attribute the various contributions to polar climate change amplification. The work prepares us to study more traditional issues such as chlorophyll warming of the pack periphery and chemical effects of the flow of organics from ice internal communities. The experiments started in the Arctic will broaden to include Antarctic sea ice and shelves. Results from the Arctic simulations will be presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/5599042-airborne-gravity-measurement-over-sea-ice-western-weddel-sea','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/5599042-airborne-gravity-measurement-over-sea-ice-western-weddel-sea"><span>Airborne gravity measurement over sea-ice: The western Weddel Sea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Brozena, J.; Peters, M.; LaBrecque, J.</p> <p>1990-10-01</p> <p>An airborne gravity study of the western Weddel Sea, east of the Antarctic Peninsula, has shown that floating pack-ice provides a useful radar altimetric reference surface for altitude and vertical acceleration corrections surface for alititude and vertical acceleration corrections to airborne gravimetry. Airborne gravimetry provides an important alternative to satellite altimetry for the sea-ice covered regions of the world since satellite alimeters are not designed or intended to provide accurate geoidal heights in areas where significant sea-ice is present within the radar footprint. Errors in radar corrected airborne gravimetry are primarily sensitive to the variations in the second derivative ofmore » the sea-ice reference surface in the frequency pass-band of interest. With the exception of imbedded icebergs the second derivative of the pack-ice surface closely approximates that of the mean sea-level surface at wavelengths > 10-20 km. With the airborne method the percentage of ice coverage, the mixture of first and multi-year ice and the existence of leads and pressure ridges prove to be unimportant in determining gravity anomalies at scales of geophysical and geodetic interest, provided that the ice is floating and not grounded. In the Weddell study an analysis of 85 crosstrack miss-ties distributed over 25 data tracks yields an rms error of 2.2 mGals. Significant structural anomalies including the continental shelf and offsets and lineations interpreted as fracture zones recording the early spreading directions within the Weddell Sea are observed in the gravity map.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005AGUFM.A12B..01M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005AGUFM.A12B..01M"><span>Overview of Sea-Ice Properties, Distribution and Temporal Variations, for Application to Ice-Atmosphere Chemical Processes.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Moritz, R. E.</p> <p>2005-12-01</p> <p>The properties, distribution and temporal variation of sea-ice are reviewed for application to problems of ice-atmosphere chemical processes. Typical vertical structure of sea-ice is presented for different ice types, including young ice, first-year ice and multi-year ice, emphasizing factors relevant to surface chemistry and gas exchange. Time average annual cycles of large scale variables are presented, including ice concentration, ice extent, ice thickness and ice age. Spatial and temporal variability of these large scale quantities is considered on time scales of 1-50 years, emphasizing recent and projected changes in the Arctic pack ice. The amount and time evolution of open water and thin ice are important factors that influence ocean-ice-atmosphere chemical processes. Observations and modeling of the sea-ice thickness distribution function are presented to characterize the range of variability in open water and thin ice.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA601069','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA601069"><span>The Seasonal Evolution of Sea Ice Floe Size Distribution</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2013-09-30</p> <p>the summer breakup of the ice cover . Large-scale, lower resolution imagery from MODIS and other platforms will also be analyzed to determine changes...control number. 1. REPORT DATE 30 SEP 2013 2. REPORT TYPE 3. DATES COVERED 00-00-2013 to 00-00-2013 4. TITLE AND SUBTITLE The Seasonal Evolution...appearance and morphology of the Arctic sea ice cover over and annual cycle. These photos were taken over the pack ice near SHEBA in May (left) and</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA617970','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA617970"><span>The Seasonal Evolution of Sea Ice Floe Size Distribution</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2014-09-30</p> <p>summer breakup of the ice cover . Large-scale, lower resolution imagery from MODIS and other platforms will also be analyzed to determine changes in floe...number. 1. REPORT DATE 30 SEP 2014 2. REPORT TYPE 3. DATES COVERED 00-00-2014 to 00-00-2014 4. TITLE AND SUBTITLE The Seasonal Evolution of Sea...morphology of the Arctic sea ice cover over and annual cycle. These photos were taken over the pack ice near SHEBA in May (left) and August (right</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA598906','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA598906"><span>Cumulative and Synergistic Effects of Physical, Biological and Acoustic Signals on Marine Mammal Habitat Use</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2011-09-30</p> <p>M5 mooring demonstrated at least five different soundscapes associated with sea ice coverage (Fig. 2). The ice pack was present at M5 from Day 5...Feb – Mar 16) (Miksis-Olds et al. 2011, submitted). This episode was detected acoustically, including the acoustic soundscape of open water on...ice breakup/melting occurred. The ice season ended on May 17 (Day 137), when open water soundscapes are present. 4 Figure 2. A</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002AGUFMOS12B0282B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002AGUFMOS12B0282B"><span>Field Results for an Arctic AUV Designed for Characterizing Circulation and Ice Thickness</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bellingham, J. G.; Kirkwood, W. J.; Tervalon, N.; Cokelet, E.; Thomas, H.; Sibenac, M.; Gashler, D.; McEwen, R.; Henthorn, R.; Shane, F.; Osborn, D. J.; Johnson, K.; Overland, J.; Stein, P.; Bahlavouni, A.; Anderson, D.</p> <p>2002-12-01</p> <p>An Autonomous Underwater Vehicle designed for operation at high latitudes and under ice completed its first Arctic field tests from the USCGC Healy in fall of 2001. The ALTEX AUV has been under development since 1998, and is being created to provide: unprecedented endurance, ability to navigate at high latitudes, a depth rating of 1500 to 4500 meters depending on payload, and the capability to relay data through the ice to satellites via data buoys. The AUV's initial applications are focused on tracking the warm Atlantic Layer inflow - the primary source of seawater to the Arctic Ocean. Consequently the primary payloads are twin pumped CTD systems. Oxygen and nitrate sensors provide the ability to use NO as a tracer. An ice profiling sonar allows the AUV to estimate the ice thickness in real-time and is designed to generate high quality post-processed ice draft data comparable to that collected through the SCICEX program. The experiments in October aboard the USCGC Healy generated numerous water column and under-ice data sets. Traditional ship-based CTD operations were used to provide a comparison data set for AUV water column measurements. The post-processed ice draft results show reasonable ice profiles and have the potential, when combined with other science data collected, to shed some additional light on upper water column processes in ice-covered regions. Cruise results include: operating the AUV from the USCGC Healy in the ice pack, demonstrating inertial navigation system performance, obtaining oceanographic sections with the AUV, obtaining ice draft measurements with an AUV born sonar, and testing the data-buoy system. This work is supported by the National Science Foundation under grant NSF-OPP 9910290. The Packard Foundation and the Office of Naval Research have also provided support. The project was initiated under the National Ocean Partnership Program under contract N00014-98-1-0814.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA102093','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA102093"><span>Western Ross Sea and McMurdo Sound Ice Forecasting Guide.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1975-06-01</p> <p>areal ice distribution and follow the sane historical proqression of pack disintergration . This technique assumes that environmental conditions...30-day) are based on historical ice data which cxnbine averaae disintergration rates as well as averace wind and current drift. Iong-range wind...original 2 to 3 okta area and its new cnfiguration remains the same, the products of ocnoentrations and widths at the verifying time must equal the</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/AD1015395','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/AD1015395"><span>Specimen Collection and Submission Manual</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2016-06-01</p> <p>immunoassays Specimen: tissue or bone marrow (100 mg); Whole EDTA blood or serum (0.5 ml) Nasopharyngeal or throat swab, dry or in transport medium; Sputum... Syndrome Coronavirus (MERS-CoV) – detection in clinical samples Methodology: molecular Specimen: If possible collect 3 specimen types (lower...guidelines-clinical-specimens.html) Shipping: ship cold on wet ice or ice packs. For delays exceeding 72 hours, ship frozen on dry ice. Turnaround: 1-2</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24105059','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24105059"><span>[Ice application for reducing pain associated with goserelin acetate injection].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ishii, Kaname; Nagata, Chika; Koshizaki, Eiko; Nishiuchi, Satoko</p> <p>2013-10-01</p> <p>We investigated the effectiveness of using an ice pack for reducing the pain associated with goserelin acetate injection. In this study, 39 patients with prostate cancer and 1 patient with breast cancer receiving hormonal therapy with goserelin acetate were enrolled. All patients completed a questionnaire regarding the use of ice application. We used the numerical rating scale (NRS) to assess the pain associated with injection. The NRS scores indicated that the pain was significantly less with ice application than with the usual method (p < 0.001). Further, ice application could decrease the duration of pain sensation. Ice application at the injection site is safe and effective for reducing pain.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19850017731&hterms=climate+exchange&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dclimate%2Bexchange','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19850017731&hterms=climate+exchange&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dclimate%2Bexchange"><span>Sea Ice, Climate and Fram Strait</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hunkins, K.</p> <p>1984-01-01</p> <p>When sea ice is formed the albedo of the ocean surface increases from its open water value of about 0.1 to a value as high as 0.8. This albedo change effects the radiation balance and thus has the potential to alter climate. Sea ice also partially seals off the ocean from the atmosphere, reducing the exchange of gases such as carbon dioxide. This is another possible mechanism by which climate might be affected. The Marginal Ice Zone Experiment (MIZEX 83 to 84) is an international, multidisciplinary study of processes controlling the edge of the ice pack in that area including the interactions between sea, air and ice.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19860048367&hterms=marginal&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dmarginal','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19860048367&hterms=marginal&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dmarginal"><span>Weddell-Scotia sea marginal ice zone observations from space, October 1984</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Carsey, F. D.; Holt, B.; Martin, S.; Rothrock, D. A.; Mcnutt, L.</p> <p>1986-01-01</p> <p>Imagery from the Shuttle imaging radar-B experiment as well as other satellite and meteorological data are examined to learn more about the open sea ice margin of the Weddell-Scotia Seas region. At the ice edge, the ice forms into bandlike aggregates of small ice floes similar to those observed in the Bering Sea. The radar backscatter characteristics of these bands suggest that their upper surface is wet. Further into the pack, the radar imagery shows a transition to large floes. In the open sea, large icebergs and long surface gravity waves are discernable in the radar images.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2000JMS....27..267J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2000JMS....27..267J"><span>Summer at-sea distribution of seabirds and marine mammals in polar ecosystems: a comparison between the European Arctic seas and the Weddell Sea, Antarctica</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Joiris, Claude R.</p> <p>2000-12-01</p> <p>The summer at-sea distribution of seabirds and marine mammals was quantitatively established both in Antarctica (Weddell Sea) and in the European Arctic: Greenland, Norwegian and Barents seas. Data can directly be compared, since the same transect counts were applied by the same team from the same icebreaking ship in both regions. The main conclusion is that densities of seabirds and marine mammals are similar in open water and at the ice edge from both polar regions, while the presence of Adélie penguins, minke whales and crabeater seals in densities more than one order of magnitude higher in Antarctic pack-ice must reflect a major ecological difference between both polar systems. The ecological implications of these observations are discussed, especially concerning important primary and secondary (krill) productions under the Weddell Sea pack-ice.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.loc.gov/pictures/collection/hh/item/ia0405.photos.319482p/','SCIGOV-HHH'); return false;" href="https://www.loc.gov/pictures/collection/hh/item/ia0405.photos.319482p/"><span>21. Photographic copy of blueprint dated 1891; William R. Berger, ...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.loc.gov/pictures/collection/hh/">Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey</a></p> <p></p> <p></p> <p>21. Photographic copy of blueprint dated 1891; William R. Berger, Chicago, architect; Original in collection of Rath drawings and blueprints owned by Waterloo Community Development Board, Waterloo, Iowa; DETAILS OF ICE CRIBS USED IN PACKINGHOUSE/CHILLING BUILDING IN THE ORIGINAL RATH PACKING PLANT - Rath Packing Company, Sycamore Street between Elm & Eighteenth Streets, Waterloo, Black Hawk County, IA</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19920052553&hterms=marginal&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dmarginal','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19920052553&hterms=marginal&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dmarginal"><span>Correlation studies of passive and active microwave data in the marginal ice zone</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Comiso, J. C.</p> <p>1991-01-01</p> <p>The microwave radiative and backscatter characteristics of sea ice in an Arctic marginal ice zone have been studied using near-simultaneous passive and active synthetic aperture radar microwave data. Intermediate-resolution multichannel passive microwave data were registered and analyzed. Passive and active microwave data generally complement each other as the two sensors are especially sensitive to different physical properties of the sea ice. In the inner pack, undeformed first-year ice is observed to have low backscatter values but high brightness temperatures while multiyear ice has generally high backscatter values and low brightness temperatures. However, in the marginal ice zone, the signature and backscatter for multiyear ice are considerably different and closer to those of first-year ice. Some floes identified by photography as snow-covered thick ice have backscatter similar to that of new ice or open water while brash ice has backscatter similar to or higher than that of ridged ice.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20505996','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20505996"><span>Packin' ya Eskies!</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bryce, Sharon; Taylor, Fiona; Shaw, Warwick</p> <p>2010-08-01</p> <p>The objective was to document a Process Validation on the packaging of human tissue grafts using polystyrene boxes containing dry ice for short term storage. The aim was to give a high degree of assurance that the processed grafts would be maintained at -20 degrees C for a period of time to allow distribution to customers. This study was designed to comply with the Australian GMP-Human Blood and Tissues and AATB Standards for Tissue Banking (Ed 12) American Association of Tissue Banks Section E4.141-Storage Conditions for Commonly Transplanted Human Tissue. Four Eskies were packed with 1, 4, 10 & 20 "dummy" allografts with thermocouples and Data Loggers attached with 3.5, 7, 15 and 20 kg of dry ice packed around the "dummy" allografts, respectively. All Eskies were weighed six times over a 48 h period and temperatures recorded. The results showed that one allograft in an Esky with 3.5 kg of dry ice was able to be stored for up to 31 h and fifteen allografts in an Esky containing 20 kg dry ice lasted 48 h.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19840019240','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19840019240"><span>Satellite remote sensing over ice</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Thomas, R. H.</p> <p>1984-01-01</p> <p>Satellite remote sensing provides unique opportunities for observing ice-covered terrain. Passive-microwave data give information on snow extent on land, sea-ice extent and type, and zones of summer melting on the polar ice sheets, with the potential for estimating snow-accumulation rates on these ice sheets. All weather, high-resolution imagery of sea ice is obtained using synthetic aperture radars, and ice-movement vectors can be deduced by comparing sequential images of the same region. Radar-altimetry data provide highly detailed information on ice-sheet topography, with the potential for deducing thickening/thinning rates from repeat surveys. The coastline of Antarctica can be mapped accurately using altimetry data, and the size and spatial distribution of icebergs can be monitored. Altimetry data also distinguish open ocean from pack ice and they give an indication of sea-ice characteristics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19860043882&hterms=Antarctic+icebergs&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3DAntarctic%2Bicebergs','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19860043882&hterms=Antarctic+icebergs&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3DAntarctic%2Bicebergs"><span>Satellite remote sensing over ice</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Thomas, R. H.</p> <p>1986-01-01</p> <p>Satellite remote sensing provides unique opportunities for observing ice-covered terrain. Passive-microwave data give information on snow extent on land, sea-ice extent and type, and zones of summer melting on the polar ice sheets, with the potential for estimating snow-accumulation rates on these ice sheets. All weather, high-resolution imagery of sea ice is obtained using synthetic aperture radars, and ice-movement vectors can be deduced by comparing sequential images of the same region. Radar-altimetry data provide highly detailed information on ice-sheet topography, with the potential for deducing thickening/thinning rates from repeat surveys. The coastline of Antarctica can be mapped accurately using altimetry data, and the size and spatial distribution of icebergs can be monitored. Altimetry data also distinguish open ocean from pack ice and they give an indication of sea-ice characteristics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19930013511','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19930013511"><span>The influence of the hydrologic cycle on the extent of sea ice with climatic implications</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Dean, Kenneson G.; Stringer, William J.; Searcy, Craig</p> <p>1993-01-01</p> <p>Multi-temporal satellite images, field observations, and field measurements were used to investigate the mechanisms by which sea ice melts offshore from the Mackenzie River delta. Advanced Very High Resolution Radiometer (AVHRR) satellite data recorded in 1986 were analyzed. The satellite data were geometrically corrected and radiometrically calibrated so that albedo and temperature values could be extracted. The investigation revealed that sea ice melted approximately 2 weeks earlier offshore from the Mackenzie River delta than along coasts where river discharge is minimal or non-existent. There is significant intra-delta variability in the timing and patterns of ice melt. An estimation of energy flux indicates that 30 percent more of the visible wavelength energy and 25 percent more of the near-infrared wavelength energy is absorbed by water offshore of the delta compared to coastal areas with minimal river discharge. The analysis also revealed that the removal of sea ice involves the following: over-ice-flooding along the coast offshore from river delta channels; under-ice flow of 'warm' river water; melting and calving of the fast ice; and, the formation of a bight in the pack ice edge. Two stages in the melting of sea ice were identified: (1) an early stage where heat is supplied to overflows largely by solar radiation, and (2) a later stage where heat is supplied by river discharge in addition to solar radiation. A simple thermodynamic model of the thaw process in the fast ice zone was developed and parameterized based on events recorded by the satellite images. The model treats river discharge as the source of sensible heat at the base of the ice cover. The results of a series of sensitivity tests to assess the influence of river discharge on the near shore ice are presented.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li class="active"><span>8</span></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_8 --> <div id="page_9" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li class="active"><span>9</span></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="161"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.C22A..02N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.C22A..02N"><span>Snow depth evolution on sea ice from Snow Buoy measurement</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nicolaus, M.; Arndt, S.; Hendricks, S.; Hoppmann, M.; Katlein, C.; König-Langlo, G.; Nicolaus, A.; Rossmann, H. L.; Schiller, M.; Schwegmann, S.; Langevin, D.</p> <p>2016-12-01</p> <p>Snow cover is an Essential Climate Variable. On sea ice, snow dominates the energy and momentum exchanges across the atmosphere-ice-ocean interfaces, and actively contributes to sea ice mass balance. Yet, snow depth on sea ice is one of the least known and most difficult to observe parameters of the Arctic and Antarctic; mainly due to its exceptionally high spatial and temporal variability. In this study; we present a unique time series dataset of snow depth and air temperature evolution on Arctic and Antarctic sea ice recorded by autonomous instruments. Snow Buoys record snow depth with four independent ultrasonic sensors, increasing the reliability of the measurements and allowing for additional analyses. Auxiliary measurements include surface and air temperature, barometric pressure and GPS position. 39 deployments of such Snow Buoys were achieved over the last three years either on drifting pack ice, on landfast sea ice or on an ice shelf. Here we highlight results from two pairs of Snow Buoys installed on drifting pack ice in the Weddell Sea. The data reveals large regional differences in the annual cycle of snow depth. Almost no reduction in snow depth (snow melt) was observed in the inner and southern part of the Weddell Sea, allowing a net snow accumulation of 0.2 to 0.9 m per year. In contrast, summer snow melt close to the ice edge resulted in a decrease of about 0.5 m during the summer 2015/16. Another array of eight Snow Buoys was installed on central Arctic sea ice in September 2015. Their air temperature record revealed exceptionally high air temperatures in the subsequent winter, even exceeding the melting point but with almost no impact on snow depth at that time. Future applications of Snow Buoys on Arctic and Antarctic sea ice will allow additional inter-annual studies of snow depth and snow processes, e.g. to support the development of snow depth data products from airborne and satellite data or though assimilation in numerical models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOS.A43A..08M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOS.A43A..08M"><span>Long-Term Observations of Atmospheric CO2, O3 and BrO over the Transitioning Arctic Ocean Pack-ice: The O-Buoy Chemical Network</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Matrai, P.</p> <p>2016-02-01</p> <p>Autonomous, sea ice-tethered O-Buoys have been deployed (2009-2016) across the Arctic sea ice for long-term atmospheric measurements (http://www.o-buoy.org). O-Buoys (15) provide in-situ concentrations of three sentinel atmospheric chemicals, ozone, CO2 and BrO, as well as meteorological parameters and imagery, over the frozen ocean. O-Buoys were designed to transmit daily data over a period of 2 years while deployed in sea ice, as part of automated ice-drifting stations that include snow/ice measurement systems (e.g. Ice Mass Balance buoys) and oceanographic measurements (e.g. Ice Tethered Profilers). Seasonal changes in Arctic atmospheric chemistry are influenced by changes in the characteristics and presence of the sea ice vs. open water as well as air mass trajectories, especially during the winter-spring and summer-fall transitions when sea ice is melting and freezing, respectively. The O-Buoy Chemical Network provides the unique opportunity to observe these transition periods in real-time with high temporal resolution, and to compare them with those collected on land-based monitoring stations located. Due to the logistical challenges of measurements over the Arctic Ocean region, most long term, in-situ observations of atmospheric chemistry have been made at coastal or island sites around the periphery of the Arctic Ocean, leaving large spatial and temporal gaps that O-Buoys overcome. Advances in floatation, communications, power management, and sensor hardware have been made to overcome the challenges of diminished Arctic sea ice. O-Buoy data provide insights into enhanced seasonal, interannual and spatial variability in atmospheric composition, atmospheric boundary layer control on the amount of halogen activation, enhancement of the atmospheric CO2 signal over the more variable and porous pack ice, and to develop an integrated picture of the coupled ocean/ice/atmosphere system. As part of the Arctic Observing Network, we provide data to the community (www.aoncadis.org).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/11809961','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/11809961"><span>Antarctic Sea ice--a habitat for extremophiles.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Thomas, D N; Dieckmann, G S</p> <p>2002-01-25</p> <p>The pack ice of Earth's polar oceans appears to be frozen white desert, devoid of life. However, beneath the snow lies a unique habitat for a group of bacteria and microscopic plants and animals that are encased in an ice matrix at low temperatures and light levels, with the only liquid being pockets of concentrated brines. Survival in these conditions requires a complex suite of physiological and metabolic adaptations, but sea-ice organisms thrive in the ice, and their prolific growth ensures they play a fundamental role in polar ecosystems. Apart from their ecological importance, the bacterial and algae species found in sea ice have become the focus for novel biotechnology, as well as being considered proxies for possible life forms on ice-covered extraterrestrial bodies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17597948','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17597948"><span>Proprioception and throwing accuracy in the dominant shoulder after cryotherapy.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wassinger, Craig A; Myers, Joseph B; Gatti, Joseph M; Conley, Kevin M; Lephart, Scott M</p> <p>2007-01-01</p> <p>Application of cryotherapy modalities is common after acute shoulder injury and as part of rehabilitation. During athletic events, athletes may return to play after this treatment. The effects of cryotherapy on dominant shoulder proprioception have been assessed, yet the effects on throwing performance are unknown. To determine the effects of a cryotherapy application on shoulder proprioception and throwing accuracy. Single-group, pretest-posttest control session design. University-based biomechanics laboratory. Healthy college-aged subjects (n = 22). Twenty-minute ice pack application to the dominant shoulder. Active joint position replication, path of joint motion replication, and the Functional Throwing Performance Index. Subjects demonstrated significant increases in deviation for path of joint motion replication when moving from 90 degrees of abduction with 90 degrees of external rotation to 20 degrees of flexion with neutral shoulder rotation after ice pack application. Also, subjects exhibited a decrease in Functional Throwing Performance Index after cryotherapy application. No differences were found in subjects for active joint position replication after cryotherapy application. Proprioception and throwing accuracy were decreased after ice pack application to the shoulder. It is important that clinicians understand the deficits that occur after cryotherapy, as this modality is commonly used following acute injury and during rehabilitation. This information should also be considered when attempting to return an athlete to play after treatment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA126316','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA126316"><span>Modeling Sea Ice Trajectories for Oil Spill Tracking.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1981-06-01</p> <p>is compared with sea ice motions observed during the AIDJEX main field experiment in the Beaufort Sea from April 1975 to February 1976. The average ...more recently grown on leads formed as the floes fracture and divide. The large-scale average thickness of the pack ice is roughly 3 m. As an...opposite extreme, during the summer when air temperatures rise above freezing, melting and offshore winds combine to form an approximately 300-km-wide swath</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29174313','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29174313"><span>The effect of cool water pack preparation on vaccine vial temperatures in refrigerators.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Goldwood, Geneva; Diesburg, Steven</p> <p>2018-01-02</p> <p>Cool water packs are a useful alternative to ice packs for preventing unintentional freezing of vaccines during outreach in some situations. Current guidelines recommend the use of a separate refrigerator for cooling water packs from ambient temperatures to prevent possible heat degradation of adjacent vaccine vials. To investigate whether this additional equipment is necessary, we measured the temperatures that vaccine vials were exposed to when warm water packs were placed next to vials in a refrigerator. We then calculated the effect of repeated vial exposure to those temperatures on vaccine vial monitor status to estimate the impact to the vaccine. Vials were tested in a variety of configurations, varying the number and locations of vials and water packs in the refrigerator. The calculated average percentage life lost during a month of repeated warming ranged from 20.0% to 30.3% for a category 2 (least stable) vaccine vial monitor and from 3.8% to 6.0% for a category 7 (moderate stability) vaccine vial monitor, compared to 17.0% for category 2 vaccine vial monitors and 3.1% for category 7 vaccine vial monitors at a constant 5 °C. The number of vials, number of water packs, and locations of each impacted vial warming and therefore percentage life lost, but the vaccine vial monitor category had a higher impact on the average percentage life lost than any of the other parameters. The results suggest that damage to vaccines from repeated warming over the course of a month is not certain and that cooling water packs in a refrigerator where vaccines are being stored may be a useful practice if safe procedures are established. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19910031156&hterms=marginal&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dmarginal','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19910031156&hterms=marginal&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dmarginal"><span>Wave evolution in the marginal ice zone - Model predictions and comparisons with on-site and remote data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Liu, A. K.; Holt, B.; Vachon, P. W.</p> <p>1989-01-01</p> <p>The ocean-wave dispersion relation and viscous attenuation by a sea ice cover were studied for waves in the marginal ice zone (MIZ). The Labrador ice margin experiment (Limex), conducted off the east coast of Newfoundland, Canada in March 1987, provided aircraft SAR, wave buoy, and ice property data. Based on the wave number spectrum from SAR data, the concurrent wave frequency spectrum from ocean buoy data, and accelerometer data on the ice during Limex '87, the dispersion relation has been derived and compared with the model. Accelerometers were deployed at the ice edge and into the ice pack. Data from the accelerometers were used to estimate wave energy attenuation rates and compared with the model. The model-data comparisons are reasonably good for the ice conditions observed during Limex' 87.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19870060018&hterms=marginal&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dmarginal','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19870060018&hterms=marginal&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dmarginal"><span>Variations of mesoscale and large-scale sea ice morphology in the 1984 Marginal Ice Zone Experiment as observed by microwave remote sensing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Campbell, W. J.; Josberger, E. G.; Gloersen, P.; Johannessen, O. M.; Guest, P. S.</p> <p>1987-01-01</p> <p>The data acquired during the summer 1984 Marginal Ice Zone Experiment in the Fram Strait-Greenland Sea marginal ice zone, using airborne active and passive microwave sensors and the Nimbus 7 SMMR, were analyzed to compile a sequential description of the mesoscale and large-scale ice morphology variations during the period of June 6 - July 16, 1984. Throughout the experiment, the long ice edge between northwest Svalbard and central Greenland meandered; eddies were repeatedly formed, moved, and disappeared but the ice edge remained within a 100-km-wide zone. The ice pack behind this alternately diffuse and compact edge underwent rapid and pronounced variations in ice concentration over a 200-km-wide zone. The high-resolution ice concentration distributions obtained in the aircraft images agree well with the low-resolution distributions of SMMR images.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015PhDT.......484S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015PhDT.......484S"><span>Sea-ice habitat preference of the Pacific walrus (Odobenus rosmarus divergens) in the Bering Sea: A multiscaled approach</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sacco, Alexander Edward</p> <p></p> <p>The goal of this thesis is to define specific parameters of mesoscale sea-ice seascapes for which walruses show preference during important periods of their natural history. This research thesis incorporates sea-ice geophysics, marine-mammal ecology, remote sensing, computer vision techniques, and traditional ecological knowledge of indigenous subsistence hunters in order to quantitatively study walrus preference of sea ice during the spring migration in the Bering Sea. Using an approach that applies seascape ecology, or landscape ecology to the marine environment, our goal is to define specific parameters of ice patch descriptors, or mesoscale seascapes in order to evaluate and describe potential walrus preference for such ice and the ecological services it provides during an important period of their life-cycle. The importance of specific sea-ice properties to walrus occupation motivates an investigation into how walruses use sea ice at multiple spatial scales when previous research suggests that walruses do not show preference for particular floes. Analysis of aerial imagery, using image processing techniques and digital geomorphometric measurements (floe size, shape, and arrangement), demonstrated that while a particular floe may not be preferred, at larger scales a collection of floes, specifically an ice patch (< 4 km2), was preferred. This shows that walruses occupy ice patches with distinct ice features such as floe convexity, spatial density, and young ice and open water concentration. Ice patches that are occupied by adult and juvenile walruses show a small number of characteristics that vary from those ice patches that were visually unoccupied. Using synthetic aperture radar imagery, we analyzed co-located walrus observations and statistical texture analysis of radar imagery to quantify seascape preferences of walruses during the spring migration. At a coarse resolution of 100 -- 9,000 km2, seascape analysis shows that, for the years 2006 -- 2008, walruses were preferentially occupying fragmented pack ice seascapes range 50 -- 89% of the time, when, all throughout the Bering Sea, only range 41 -- 46% of seascapes consisted of fragmented pack ice. Traditional knowledge of a walrus' use of sea ice is investigated through semi-directed interviews conducted with subsistence hunters and elders from Savoonga and Gambell, two Alaskan Native communities on St. Lawrence Island, Alaska. Informants were provided with a large nautical map of the land and ocean surrounding St. Lawrence Island and 45 printed large-format aerial photographs of walruses on sea ice to stimulate discussion as questions were asked to direct the topics of conversation. Informants discussed change in sea ice conditions over time, walrus behaviors during the fall and spring subsistence hunts, and sea-ice characteristics that walruses typically occupy. These observations are compared with ice-patch preferences analyzed from aerial imagery. Floe size was found to agree with remotely-sensed ice-patch analysis results, while floe shape was not distinguishable to informants during the hunt. Ice-patch arrangement descriptors concentration and density generally agreed with ice-patch analysis results. Results include possible preference of ice-patch descriptors at the ice-patch scale and fragmented pack ice preference at the seascape scale. Traditional knowledge suggests large ice ridges are preferential sea-ice features at the ice-patch scale, which are rapidly becoming less common during the fall and spring migration of sea ice through the Bering Sea. Traditional knowledge, combined with a scientific analysis and field work to study species habitat preferences and, ultimately, habitat partitioning, can stem from these results. Future work includes increased sophistication of the synthetic aperture radar classification algorithm, experimentation with various spatial scales to determine the optimal scale for walrus' life-cycle events, and incorporation of further traditional knowledge to investigate and interface cross-cultural sea-ice observations, knowledge and science to determine sea ice importance to marine mammals in a changing Arctic.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20020004347','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20020004347"><span>Sea Ice Remote Sensing Using Surface Reflected GPS Signals</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Komjathy, Attila; Maslanik, James; Zavorotny, Valery U.; Axelrad, Penina; Katzberg, Stephen J.</p> <p>2000-01-01</p> <p>This paper describes a new research effort to extend the application of Global Positioning System (GPS) signal reflections, received by airborne instruments, to cryospheric remote sensing. Our experimental results indicate that reflected GPS signals have potential to provide information on the presence and condition of sea and freshwater ice as well as the freeze/thaw state of frozen ground. In this paper we show results from aircraft experiments over the ice pack near Barrow, Alaska indicating correlation between forward-scattered GPS returns and RADARSAT backscattered measurements.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19820016728','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19820016728"><span>SEASAT views oceans and sea ice with synthetic aperture radar</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Fu, L. L.; Holt, B.</p> <p>1982-01-01</p> <p>Fifty-one SEASAT synthetic aperture radar (SAR) images of the oceans and sea ice are presented. Surface and internal waves, the Gulf Stream system and its rings and eddies, the eastern North Pacific, coastal phenomena, bathymetric features, atmospheric phenomena, and ship wakes are represented. Images of arctic pack and shore-fast ice are presented. The characteristics of the SEASAT SAR system and its image are described. Maps showing the area covered, and tables of key orbital information, and listing digitally processed images are provided.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1992JMS.....3...73J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1992JMS.....3...73J"><span>Summer distribution and ecological role of seabirds and marine mammals in the Norwegian and Greenland seas (June 1988)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Joiris, Claude R.</p> <p>1992-03-01</p> <p>During the ARK V /2 expedition of RV Polarstern in the Norwegian and Greenland seas in June 1988, 380 half hour counts for marine vertebrates (seabirds, pinnipeds and cetaceans) were carried out. Results are presented as total numbers encountered and then converted into density and food intake. Mean food intake was 2.2 kg fresh weight per km 2 per day for seabirds, with a higher value in Atlantic water (2.5) lower values in polar water and the pack ice (1.7 and 1.9), and an intermediate value at the ice edge. The main species were the alcids (1.5, primarily Little Auk, Alle alle and Brünnich's Guillemot, Urea Iomvia) ,the Fulmar, Fulmarus glacialis (0.5), and the Kittiwake, Rissa tridactyla (0.2). The ecological role of cetaceans was clearly lower, with a mean value of 0.2 and a maximum of 0.7 in Atlantic water (rough evaluation, due to the low number of contacts). The food intake by pinnipeds was 0.55 kg/km 2 day at the ice edge and 0.4 in the pack ice; they were mainly harp, Phoca groenlandica and hooded seals, Cystophora cristata, in one main concentration each and ringed seals, Phoca hispida, scattered on the pack. Data for July 1988 show a great similarity with these results, except for a lower density of alcids, which probably reflects that Little Auk, Brünnich's Guillemot and Common Guillemot, Uria aalge already had started to leave the region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1756227','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1756227"><span>Frozen chips: an unusual cause of severe frostbite injury</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Graham, C.; Stevenson, J.</p> <p>2000-01-01</p> <p>A case of severe frostbite injury to the right foot is presented. This was caused by the inappropriate application of a bag of frozen chips to the foot in an attempt to ease non-specific pain. No specific acute traumatic injury was identified. As the patient was a teacher of physical education, the pain had initially been assumed to originate from a minor musculoskeletal injury. Full recovery ensued after surgical excision of necrotic tissue and split skin grafting. The danger of inappropriate overenthusiastic use of ice packs or other frozen material to treat soft tissue injuries is emphasised. The need for education to prevent similar future injuries is discussed. Key Words: cold injury; frostbite; ice pack; skin; necrosis PMID:11049150</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010EGUGA..12.8769F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010EGUGA..12.8769F"><span>Peopling of the high Arctic - induced by sea ice?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Funder, Svend</p> <p>2010-05-01</p> <p>'We travelled in the winter after the return of daylight and did not go into fixed camp until spring, when the ice broke up. There was good hunting on the way, seals, beluga, walrus, bear.' (From Old Merkrusârk's account of his childhood's trek from Baffin Island to Northwest Greenland, told to Knud Rasmussen on Saunders Island in 1904) Five thousand years ago people moving eastwards from Beringia spread over the barrens of the Canadian high Arctic. This was the first of three waves of prehistoric Arctic 'cultures', which eventually reached Greenland. The passage into Greenland has to go through the northernmost and most hostile part of the country with a 5 month Polar night, and to understand this extraordinary example of human behaviour and endurance, it has been customary to invoke a more favourable (warmer) climate. This presentation suggests that land-fast sea ice, i.e. stationary sea ice anchored to the coast, is among the most important environmental factors behind the spread of prehistoric polar cultures. The ice provides the road for travelling and social communion - and access to the most important source of food, the ocean. In the LongTerm Project (2006 and 2007) we attempted to establish a Holocene record for sea ice variations along oceanic coasts in northernmost Greenland. Presently the coasts north of 80° N are beleaguered by year-round sea ice - for ten months this is land-fast ice, and only for a period in the stormy autumn months are the coasts exposed to pack-ice. This presentation Land-fast ice - as opposed to pack-ice - is a product of local temperatures, but its duration over the year, and especially into the daylight season, is also conditioned by other factors, notably wind strength. In the geological record we recognize long lasting land-fast ice by two absences: absence of traces of wave action (no beach formation), which, however, can also be a result of pack-ice along the coast; - and absence of driftwood on the shore (land-fast ice blocked its landing). Our record shows that a period with less sea ice than now ended shortly after 6 kaBP. When the Independence I people (4450-3850 kaBP) came into the area, the sea ice conditions may have been similar to the present with land-fast ice for a good part of the year. The annual insolation was 2-3% higher than now, but the vegetation, especially in coastal areas, had deteriorated to Polar desert, as at present. This development continued, and when the second wave of immigrants came, The Independence II people (2900-2300 kaBP), both sea-ice conditions and insolation were similar to the present. Finally, when the last group of immigrants, the Thule people (AD1400-1500), reached the area had year-round land-fast ice. These results show that there is no clear correlation between climate change and human migration into Greenland, but it may have been the increase in sea ice after 6 kaBP that paved the ground for the peopling of high Arctic Canada and Greenland. The three North Greenland immigration-waves took place in a 'deteriorating' (cooling) climate, and evidence from lake sediments and ice coring show that the immigrants met an environment that was similar to today's - or even more harsh.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950034736&hterms=typing&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dtyping','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950034736&hterms=typing&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dtyping"><span>Feasibility of sea ice typing with synthetic aperture radar (SAR): Merging of Landsat thematic mapper and ERS 1 SAR satellite imagery</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Steffen, Konrad; Heinrichs, John</p> <p>1994-01-01</p> <p>Earth Remote-Sensing Satellite (ERS) 1 synthetic aperture radar (SAR) and Landsat thematic mapper (TM) images were acquired for the same area in the Beaufort Sea, April 16 and 18, 1992. The two image pairs were colocated to the same grid (25-m resolution), and a supervised ice type classification was performed on the TM images in order to classify ice free, nilas, gray ice, gray-white ice, thin first-year ice, medium and thick first-year ice, and old ice. Comparison of the collocated SAR pixels showed that ice-free areas can only be classified under calm wind conditions (less than 3 m/s) and for surface winds greater than 10 m/s based on the backscattering coefficient alone. This is true for pack ice regions during the cold months of the year where ice-free areas are spatially limited and where the capillary waves that cause SAR backscatter are dampened by entrained ice crystals. For nilas, two distinct backscatter classes were found at -17 dB and at -10 dB. The higher backscattering coefficient is attributed to the presence of frost flowers on light nilas. Gray and gray-white ice have a backscatter signature similar to first-year ice and therefore cannot be distinguished by SAR alone. First-year and old ice can be clearly separated based on their backscattering coefficient. The performance of the Geophysical Processor System ice classifier was tested against the Landsat derived ice products. It was found that smooth first-year ice and rough first-year ice were not significantly different in the backscatter domain. Ice concentration estimates based on ERS 1 C band SAR showed an error range of 5 to 8% for high ice concentration regions, mainly due to misclassified ice-free and smooth first-year ice areas. This error is expected to increase for areas of lower ice concentration. The combination of C band SAR and TM channels 2, 4, and 6 resulted in ice typing performance with an estimated accuracy of 90% for all seven ice classes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1919531L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1919531L"><span>Ensemble sea ice forecast for predicting compressive situations in the Baltic Sea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lehtiranta, Jonni; Lensu, Mikko; Kokkonen, Iiro; Haapala, Jari</p> <p>2017-04-01</p> <p>Forecasting of sea ice hazards is important for winter shipping in the Baltic Sea. In current numerical models the ice thickness distribution and drift are captured well, but compressive situations are often missing from forecast products. Its inclusion is requested by the shipping community, as compression poses a threat to ship operations. As compressing ice is capable of stopping ships for days and even damaging them, its inclusion in ice forecasts is vital. However, we have found that compression can not be predicted well in a deterministic forecast, since it can be a local and a quickly changing phenomenon. It is also very sensitive to small changes in the wind speed and direction, the prevailing ice conditions, and the model parameters. Thus, a probabilistic ensemble simulation is needed to produce a meaningful compression forecast. An ensemble model setup was developed in the SafeWIN project for this purpose. It uses the HELMI multicategory ice model, which was amended for making simulations in parallel. The ensemble was built by perturbing the atmospheric forcing and the physical parameters of the ice pack. The model setup will provide probabilistic forecasts for the compression in the Baltic sea ice. Additionally the model setup provides insight into the uncertainties related to different model parameters and their impact on the model results. We have completed several hindcast simulations for the Baltic Sea for verification purposes. These results are shown to match compression reports gathered from ships. In addition, an ensemble forecast is in preoperational testing phase and its first evaluation will be presented in this work.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19840008344&hterms=sea+world&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dsea%2Bworld','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19840008344&hterms=sea+world&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dsea%2Bworld"><span>Spaceborne SAR and sea ice</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Weeks, W. F.</p> <p>1983-01-01</p> <p>A number of remote sensing systems deployed in satellites to view the Earth which are successful in gathering data on the behavior of the world's snow and ice covers are described. Considering sea ice which covers over 10% of the world ocean, systems that have proven capable to collect useful data include those operating in the visible, near-infrared, infrared, and microwave frequency ranges. The microwave systems have the essential advantage in observing the ice under all weather and lighting conditions. Without this capability data are lost during the long polar night and during times of storm passage, periods when ice activity can be intense. The margins of the ice pack, a region of particular interest, is shrouded in cloud between 80 and 90% of the time.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26564753','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26564753"><span>Standardisation of a novel sperm banking kit - NextGen(®) - to preserve sperm parameters during shipment.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Agarwal, A; Sharma, R; Singh, A; Gupta, S; Sharma, R</p> <p>2016-08-01</p> <p>Many male patients diagnosed with cancer are within their reproductive years. These men are advised to freeze their spermatozoa prior to the start of cancer treatment. Very often, sperm banking facilities may not be readily available and patients may be required to travel to distant sperm bank centres. Our objective was to design and standardise a remote home shipping sperm kit that allows patients to collect a semen sample at home and ship it overnight to a sperm bank. A total of 21 semen samples and two transport media (refrigeration media and human tubal fluid) and five different combinations of ice packs were tested for maintaining desired shipping temperature. Ten semen samples were assessed for pre- and post-shipment changes in sperm motility, membrane integrity, total motile spermatozoa and recovery of motile spermatozoa. Even though motility, membrane integrity and total motile spermatozoa declined both in samples examined under simulated shipped conditions and in overnight-shipped samples, the observed motility and total motile spermatozoa were adequate for use with assisted reproductive techniques. Using refrigeration media, cooling sleeve and ice packs, adequate sperm motility can be maintained utilising NextGen(®) kit and these spermatozoa can be used for procreation utilising ART techniques such as intracytoplasmic sperm injection. © 2015 Blackwell Verlag GmbH.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19890024803&hterms=Phytoplankton&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3DPhytoplankton','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19890024803&hterms=Phytoplankton&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3DPhytoplankton"><span>Phytoplankton standing crops within an Antarctic ice edge assessed by satellite remote sensing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Sullivan, C. W.; Mcclain, C. R.; Comiso, J. C.; Smith, W. O., Jr.</p> <p>1988-01-01</p> <p>The dynamic interactions between the pack-ice recession and the occurrence of ice blooms of phytoplankton in waters of the marginal ice zone within an Antarctic ice edge were investigated using CZCS and SMMR imageries from the Nimbus 7 satellite (September 16-December 17, 1983), together with in situ measurements of pigments and sea ice concentration carried out from November 7 to December 2. A substantial amount of spatial variability in pigment concentration was observed to occur along the ice edge in the Weddell Sea. The relationships among light, ice distribution, and vertical stability and their effects on observed spatial variations in phytoplankton biomass are discussed. The results of this investigation suggest that the retreat of ice provides an input of significant volumes of meltwater which creates vertical stability for a period necessary to permit growth and accumulation of phytoplankton.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.elsevier.com/books/encyclopedia-of-marine-mammals/wursig/978-0-12-804327-1','USGSPUBS'); return false;" href="https://www.elsevier.com/books/encyclopedia-of-marine-mammals/wursig/978-0-12-804327-1"><span>Polar bears, Ursus maritimus</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Rode, Karyn D.; Stirling, Ian</p> <p>2017-01-01</p> <p>Polar bears are the largest of the eight species of bears found worldwide and are covered in a pigment-free fur giving them the appearance of being white. They are the most carnivorous of bear species consuming a high-fat diet, primarily of ice-associated seals and other marine mammals. They range throughout the circumpolar Arctic to the southernmost extent of seasonal pack ice.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li class="active"><span>9</span></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_9 --> <div id="page_10" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="181"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSME12B..03L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSME12B..03L"><span>Under the Sea Ice: Exploration of the Relationships Between Sea Ice Patterns and Foraging Movements of a Marine Predator in East Antarctica.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Labrousse, S.; Sallee, J. B.; Fraser, A. D.; Massom, R. A.; Reid, P.; Sumner, M.; Guinet, C.; Harcourt, R.; Bailleul, F.; Hindell, M.; Charrassin, J. B.</p> <p>2016-02-01</p> <p>Investigating ecological relationships between top predators and their environment is essential to understand the response of marine ecosystems to climate variability. Specifically, variability and changes in sea ice, which is known as an important habitat for marine ecosystems, presents complex patterns in East Antarctic. The impact for ecosystems of such changes of their habitat is however still unknown. Acting as an ecological double-edged sword, sea ice can impede access to marine resources while harboring a rich ecosystem during winter. Here, we investigated which type of sea ice habitat is used by male and female southern elephant seals during winter and examine if and how the spatio-temporal variability of sea ice concentration (SIC) influence their foraging strategies. We also examined over a 10 years time-series the impact of SIC and sea ice advance anomaly on foraging activity. To do this, we studied 46 individuals equipped with Satellite linked data recorders between 2004 and 2014, undertaking post-moult trips in winter from Kerguelen to the peri-Antarctic shelf. The general patterns of sea ice use by males and females are clearly distinct; while females tended to follow the sea ice edge as it extended northward, males remained on the continental shelf. Female foraging activity was higher in late autumn in the outer part of the pack ice in concentrated SIC and spatially stable. They remained in areas of variable SIC over time and low persistence. The seal hunting time, a proxy of foraging activity inferred from the diving behaviour, was much higher during earlier advance of sea ice over female time-series. The females were possibly taking advantage of the ice algal autumn bloom sustaining krill and an under ice ecosystem without being trapped in sea ice. Males foraging activity increased when they remained deep inside sea ice over the shelf using variable SIC in time and space, presumably in polynyas or flaw leads between fast and pack ice. This strategy probably gave them access to zones of enhanced resources in early spring such as polynyas, the Antarctic Slope Front, or the Antarctic shelf while avoiding the constraint of sea ice. Over years, males foraging activity were not affected by anomalies of sea ice advance, however negative SIC anomalies were profitable allowing them to use remote areas within sea ice.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/12208033','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/12208033"><span>Influence of ice and snow covers on the UV exposure of terrestrial microbial communities: dosimetric studies.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cockell, Charles S; Rettberg, Petra; Horneck, Gerda; Wynn-Williams, David D; Scherer, Kerstin; Gugg-Helminger, Anton</p> <p>2002-08-01</p> <p>Bacillus subtilis spore biological dosimeters and electronic dosimeters were used to investigate the exposure of terrestrial microbial communities in micro-habitats covered by snow and ice in Antarctica. The melting of snow covers of between 5- and 15-cm thickness, depending on age and heterogeneity, could increase B. subtilis spore inactivation by up to an order of magnitude, a relative increase twice that caused by a 50% ozone depletion. Within the snow-pack at depths of less than approximately 3 cm snow algae could receive two to three times the DNA-weighted irradiance they would receive on bare ground. At the edge of the snow-pack, warming of low albedo soils resulted in the formation of overhangs that provided transient UV protection to thawed and growing microbial communities on the soils underneath. In shallow aquatic habitats, thin layers of heterogeneous ice of a few millimetres thickness were found to reduce DNA-weighted irradiances by up to 55% compared to full-sky values with equivalent DNA-weighted diffuse attenuation coefficients (K(DNA)) of >200 m(-1). A 2-mm snow-encrusted ice cover on a pond was equivalent to 10 cm of ice on a perennially ice covered lake. Ice covers also had the effect of stabilizing the UV exposure, which was often subject to rapid variations of up to 33% of the mean value caused by wind-rippling of the water surface. These data show that changing ice and snow covers cause relative changes in microbial UV exposure at least as great as those caused by changing ozone column abundance. Copyright 2002 Elsevier Science B.V.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016DSRII.131...96S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016DSRII.131...96S"><span>Dissolved iron and iron(II) distributions beneath the pack ice in the East Antarctic (120°E) during the winter/spring transition</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schallenberg, Christina; van der Merwe, Pier; Chever, Fanny; Cullen, Jay T.; Lannuzel, Delphine; Bowie, Andrew R.</p> <p>2016-09-01</p> <p>Distributions of dissolved iron (dFe) and its reduced form, Fe(II), to a depth of 1000 m were investigated under the seasonal pack ice off East Antarctica during the Sea Ice Physics and Ecosystem experiment (SIPEX-2) sea-ice voyage in September-October 2012. Concentrations of dFe were elevated up to five-fold relative to Southern Ocean background concentrations and were spatially variable. The mean dFe concentration was 0.44±0.4 nM, with a range from 0.09 to 3.05 nM. Profiles of dFe were more variable within and among stations than were macronutrients, suggesting that coupling between these biologically-essential elements was weak at the time of the study. Brine rejection and drainage from sea ice are estimated to be the dominant contributors to elevated dFe concentrations in the mixed layer, but mass budget considerations indicate that estimated dFe fluxes from brine input alone are insufficient to account for all observed dFe. Melting icebergs and shelf sediments are suspected to provide the additional dFe. Fe(II) was mostly below the detection limit but elevated at depth near the continental shelf, implying that benthic processes are a source of reduced Fe in bottom waters. The data indicate that dFe builds up under the seasonal sea-ice cover during winter and that reduction of Fe may be hampered in early spring by several factors such as lack of electron donors, low biological productivity and inadequate light below the sea ice. The accumulated dFe pool in the mixed layer is expected to contribute to the formation of the spring bloom as the ice retreats.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004DSRI...51.1601M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004DSRI...51.1601M"><span>Effects of summer ice coverage on phytoplankton assemblages in the Ross Sea, Antarctica</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mangoni, O.; Modigh, M.; Conversano, F.; Carrada, G. C.; Saggiomo, V.</p> <p>2004-11-01</p> <p>An oceanographic cruise was conducted in the Ross Sea (Antarctica) during summer 2001 as part of the Italian National Program for Antarctic Research (PNRA). Extensive areas of pack ice occurred over the Ross Sea, atypical for summer when offshore waters are normally free of ice. The present study focuses on the effects of increased ice coverage on phytoplankton assemblages. Water samples collected at various depths at 72 hydrographical stations in offshore and coastal waters were used to determine size-fractionated phytoplankton biomass as chlorophyll a (chla) concentrations, and HPLC photosynthetic pigments. For the offshore waters, the average chla concentration was 57.8 mg m-2, approximately three times the values recorded under ice-free conditions during summer 1996. In coastal waters, the average chla concentrations were 102 and 206 mg m-2 during January and February, respectively, i.e., up to 2.5 times those of 1996. Micro- and nano-phytoplankton size fractions made up about 90% of the phytoplankton biomass over the entire study area and were composed primarily of diatoms with a pico-phytoplankton fraction dominated by prymnesiophyceans. The broken pack and melting ice was strongly coloured by an extensive algal biomass suggesting that the phytoplankton was a result of seeding from ice algal communities. The Ross Sea considered to be one of the most productive areas of the Southern Ocean, had primary production values about four-fold those of other areas. The lengthening of the ice season observed in the Western Ross Sea, associated with a considerable increase in phytoplankton biomass as observed in summer 2001, would have a major impact on the trophic structure of the entire ecosystem, and presumably, also on carbon export.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012TRACE..17..529S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012TRACE..17..529S"><span>Development of a Compact and Efficient Ice Thermal Energy Storage Vessel</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sasaguchi, Kengo; Ishikawa, Masatoshi; Muta, Kenji; Yoshino, Kiyotaka; Hayashi, Hiroko; Baba, Yoshiyuki</p> <p></p> <p>In the present study, the authors propose the use of a low concentration aqueous solution as phase change material for static-type ice-storage-vessels, instead of pure water commonly used today. If an aqueous solution with low concentration is used, even when a large amount of solution (aqueous ethylene glycol in this study) is solidified and bridging of ice developed around cold tubes occurs, the pressure increase could be prevented by the existence of a continuous liquid phase in the solid-liquid two-phase layer (mushy layer) which opens to an air gap at the top of a vessel. Therefore, one can continue to solidify an aqueous solution after bridging, achieving a high ice packing factor (IPF). First, experiments using small-scale test cells have been conducted to confirm the present idea, and then we have performed experiments using a large vessel with an early practical size. It was seen that a large pressure increase is prevented for the initial concentration of the solution C0 of 1.0%, and IPF obtained using the solution is much greater than 0.65 using pure water for which the solidification must be stopped before the bridging.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1896081','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1896081"><span>Proprioception and Throwing Accuracy in the Dominant Shoulder After Cryotherapy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Wassinger, Craig A; Myers, Joseph B; Gatti, Joseph M; Conley, Kevin M; Lephart, Scott M</p> <p>2007-01-01</p> <p>Context: Application of cryotherapy modalities is common after acute shoulder injury and as part of rehabilitation. During athletic events, athletes may return to play after this treatment. The effects of cryotherapy on dominant shoulder proprioception have been assessed, yet the effects on throwing performance are unknown. Objective: To determine the effects of a cryotherapy application on shoulder proprioception and throwing accuracy. Design: Single-group, pretest-posttest control session design. Setting: University-based biomechanics laboratory. Patients or Other Participants: Healthy college-aged subjects (n = 22). Intervention(s): Twenty-minute ice pack application to the dominant shoulder. Main Outcome Measure(s): Active joint position replication, path of joint motion replication, and the Functional Throwing Performance Index. Results: Subjects demonstrated significant increases in deviation for path of joint motion replication when moving from 90° of abduction with 90° of external rotation to 20° of flexion with neutral shoulder rotation after ice pack application. Also, subjects exhibited a decrease in Functional Throwing Performance Index after cryotherapy application. No differences were found in subjects for active joint position replication after cryotherapy application. Conclusions: Proprioception and throwing accuracy were decreased after ice pack application to the shoulder. It is important that clinicians understand the deficits that occur after cryotherapy, as this modality is commonly used following acute injury and during rehabilitation. This information should also be considered when attempting to return an athlete to play after treatment. PMID:17597948</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA573600','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA573600"><span>Deep Explosive Volcanism on the Gakkel Ridge and Seismological Constraints on Shallow Recharge at TAG Active Mound</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2013-02-01</p> <p>Siberian margin (6.5 mm yr-1 full rate) [Vogt et al., 1979; DeMets et al., 1994; Sella et al., 2002]. For comparison, the ultraslow- spreading Southwest...that systemati~:ally decrea:;e from 12.8 mm yr 1 <~l its western eod {near Greeolund) to 6.5 nun yr 1 at its eastern end (the Siberian margin ) [Vogt et...perennial pack ice has made it possible to test these hypotheses. In 2007 the AGAVE expedi- tion utilized a oovcl vduclc (CAMPER) to acquire high</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017TCry...11.2137T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017TCry...11.2137T"><span>Modelling radiative transfer through ponded first-year Arctic sea ice with a plane-parallel model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Taskjelle, Torbjørn; Hudson, Stephen R.; Granskog, Mats A.; Hamre, Børge</p> <p>2017-09-01</p> <p>Under-ice irradiance measurements were done on ponded first-year pack ice along three transects during the ICE12 expedition north of Svalbard. Bulk transmittances (400-900 nm) were found to be on average 0.15-0.20 under bare ice, and 0.39-0.46 under ponded ice. Radiative transfer modelling was done with a plane-parallel model. While simulated transmittances deviate significantly from measured transmittances close to the edge of ponds, spatially averaged bulk transmittances agree well. That is, transect-average bulk transmittances, calculated using typical simulated transmittances for ponded and bare ice weighted by the fractional coverage of the two surface types, are in good agreement with the measured values. Radiative heating rates calculated from model output indicates that about 20 % of the incident solar energy is absorbed in bare ice, and 50 % in ponded ice (35 % in pond itself, 15 % in the underlying ice). This large difference is due to the highly scattering surface scattering layer (SSL) increasing the albedo of the bare ice.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28388209','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28388209"><span>Wind-Driven Formation of Ice Bridges in Straits.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Rallabandi, Bhargav; Zheng, Zhong; Winton, Michael; Stone, Howard A</p> <p>2017-03-24</p> <p>Ice bridges are static structures composed of tightly packed sea ice that can form during the course of its flow through a narrow strait. Despite their important role in local ecology and climate, the formation and breakup of ice bridges is not well understood and has proved difficult to predict. Using long-wave approximations and a continuum description of sea ice dynamics, we develop a one-dimensional theory for the wind-driven formation of ice bridges in narrow straits, which is verified against direct numerical simulations. We show that for a given wind stress and minimum and maximum channel widths, a steady-state ice bridge can only form beyond a critical value of the thickness and the compactness of the ice field. The theory also makes quantitative predictions for ice fluxes, which are particularly useful to estimate the ice export associated with the breakup of ice bridges. We note that similar ideas are applicable to dense granular flows in confined geometries.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70194929','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70194929"><span>Seeding hydrate formation in water-saturated sand with dissolved-phase methane obtained from hydrate dissolution: A progress report</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Waite, William F.; Osegovic, J.P.; Winters, William J.; Max, M.D.; Mason, David H.</p> <p>2008-01-01</p> <p>An isobaric flow loop added to the Gas Hydrate And Sediment Test Laboratory Instrument (GHASTLI) is being investigated as a means of rapidly forming methane hydrate in watersaturated sand from methane dissolved in water. Water circulates through a relatively warm source chamber, dissolving granular methane hydrate that was pre-made from seed ice, then enters a colder hydrate growth chamber where hydrate can precipitate in a water-saturated sand pack. Hydrate dissolution in the source chamber imparts a known methane concentration to the circulating water, and hydrate particles from the source chamber entrained in the circulating water can become nucleation sites to hasten the onset of hydrate formation in the growth chamber. Initial results suggest hydrate grows rapidly near the growth chamber inlet. Techniques for establishing homogeneous hydrate formation throughout the sand pack are being developed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1994DSRI...41.1231S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1994DSRI...41.1231S"><span>The transition from winter to early spring in the eastern Weddell Sea, Antarctica: Plankton biomass and composition in relation to hydrography and nutrients</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Scharek, Renate; Smetacek, Victor; Fahrbach, Eberhard; Gordon, Louis I.; Rohardt, Gerd; Moore, Stanley</p> <p>1994-08-01</p> <p>Hydrography and nutrient distribution in relation to plankton biomass and composition were studied during two transects (October and December) that crossed the ice-covered eastern Weddell Sea (approximately along the Greenwich Meridian) from the ice edge at 58°S to the continental margin at 70°30'S in 1986. Whereas the winter situation still prevailed under the intact ice cover during the October transect, extensive melting was underway by December. Despite the very low levels of plankton biomass encountered under sea ice in late winter (as low at 0.02 μg chlorophyll α 1 -1), distinct differences, particularly in diatom abundance and species composition, were present between the northern, eastward-flowing and southern, westward-flowing limbs of the Weddell Gyre. On the basis of species composition and physiological state of diatom assemblages, the higher biomass of the northern limb is attributed to entrainment of plankton-rich water from the ice-free Circumpolar Current rather than to in situ growth. The pelagic community characteristic of the region under the pack ice throughout the study was dominated by nanoflagellates, ciliates and heterotrophic dinoflagellates. Biomass of the latter groups ranged between 12 and 119% of that of autotrophs, and microscopic observations suggested that grazing pressure was heavy. This winter and early spring community resembled the regenerating communities of nutrient-limited waters. Break-up and melt of the ice cover in early December occurred simultaneously over an extensive area yet did not elicit biomass build-up, not even at the northern ice edge where favorable growth conditions appeared to prevail. Apparently most of the diatoms sinking into the water from the rich stocks developing in melting ice are grazed by protozoa and krill, hence do not contribute to water column blooms in this region. This situation contrasts with those reported from the western Weddell and Ross Sea ice edges where blooms of ice diatoms were observed in sharply defined melt-water zones adjoining closed ice pack. The role of melting sea ice in initiating blooms will hence differ in accordance with regional hydrography.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..15.5747D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..15.5747D"><span>ICE stereocamera system - photogrammetric setup for retrieval and analysis of small scale sea ice topography</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Divine, Dmitry; Pedersen, Christina; Karlsen, Tor Ivan; Aas, Harald; Granskog, Mats; Renner, Angelika; Spreen, Gunnar; Gerland, Sebastian</p> <p>2013-04-01</p> <p>A new thin-ice Arctic paradigm requires reconsideration of the set of parameterizations of mass and energy exchange within the ocean-sea-ice-atmosphere system used in modern CGCMs. Such a reassessment would require a comprehensive collection of measurements made specifically on first-year pack ice with a focus on summer melt season when the difference from typical conditions for the earlier multi-year Arctic sea ice cover becomes most pronounced. Previous in situ studies have demonstrated a crucial importance of smaller (i.e. less than 10 m) scale surface topography features for the seasonal evolution of pack ice. During 2011-2012 NPI developed a helicopter borne ICE stereocamera system intended for mapping the sea ice surface topography and aerial photography. The hardware component of the system comprises two Canon 5D Mark II cameras, combined GPS/INS unit by "Novatel" and a laser altimeter mounted in a single enclosure outside the helicopter. The unit is controlled by a PXI chassis mounted inside the helicopter cabin. The ICE stereocamera system was deployed for the first time during the 2012 summer field season. The hardware setup has proven to be highly reliable and was used in about 30 helicopter flights over Arctic sea-ice during July-September. Being highly automated it required a minimal human supervision during in-flight operation. The deployment of the camera system was mostly done in combination with the EM-bird, which measures sea-ice thickness, and this combination provides an integrated view of sea ice cover along the flight track. During the flight the cameras shot sequentially with a time interval of 1 second each to ensure sufficient overlap between subsequent images. Some 35000 images of sea ice/water surface captured per camera sums into 6 Tb of data collected during its first field season. The reconstruction of the digital elevation model of sea ice surface will be done using SOCET SET commercial software. Refraction at water/air interface can also be taken into account, providing the valuable data on melt pond coverage, depth and bottom topography -the primary goals for the system at its present stage. Preliminary analysis of the reconstructed 3D scenes of ponded first year ice for some selected sites has shown a good agreement with in situ measurements demonstrating a good scientific potential of the ICE stereocamera system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70018330','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70018330"><span>Particulate matter in pack ice of the Beaufort Gyre</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Reimnitz, E.; Barnes, P.W.; Weber, W.S.</p> <p>1993-01-01</p> <p>Fine sediment occurred in very small patches of turbid ice, as thin spotty surface layers, in mud pellets or in old snowdrifts. The latter were widespread south of 74??N, containing an estimated 22 tonnes of silt and clay km-2. Average particle concentration in sea ice (40 mg1-1) was much higher than in sea water (0.8 mg 1 -1) or in new snow. Assuming one-third of the load is released each year, the estimated deposition rate would equal the measured Holocene rate (~2cm 1000 year-1). Therefore, modern sea-ice rafting represents a substantial fraction of the total Arctic Ocean sediment budget. -from Authors</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://medlineplus.gov/temporomandibularjointdysfunction.html','NIH-MEDLINEPLUS'); return false;" href="https://medlineplus.gov/temporomandibularjointdysfunction.html"><span>Temporomandibular Joint Dysfunction</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://medlineplus.gov/">MedlinePlus</a></p> <p></p> <p></p> <p>... or applying ice packs. It may also include pain medicines or devices to insert in your mouth. In very rare cases, you might need surgery. NIH: National Institute of Dental and Craniofacial Research</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001JGR...10632139N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001JGR...10632139N"><span>Turbulent aerosol fluxes over the Arctic Ocean: 2. Wind-driven sources from the sea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nilsson, E. D.; Rannik, Ü.; Swietlicki, E.; Leck, C.; Aalto, P. P.; Zhou, J.; Norman, M.</p> <p>2001-12-01</p> <p>An eddy-covariance flux system was successfully applied over open sea, leads and ice floes during the Arctic Ocean Expedition in July-August 1996. Wind-driven upward aerosol number fluxes were observed over open sea and leads in the pack ice. These particles must originate from droplets ejected into the air at the bursting of small air bubbles at the water surface. The source flux F (in 106 m-2 s-1) had a strong dependency on wind speed, log>(F>)=0.20U¯-1.71 and 0.11U¯-1.93, over the open sea and leads, respectively (where U¯ is the local wind speed at about 10 m height). Over the open sea the wind-driven aerosol source flux consisted of a film drop mode centered at ˜100 nm diameter and a jet drop mode centered at ˜1 μm diameter. Over the leads in the pack ice, a jet drop mode at ˜2 μm diameter dominated. The jet drop mode consisted of sea-salt, but oxalate indicated an organic contribution, and bacterias and other biogenic particles were identified by single particle analysis. Particles with diameters less than -100 nm appear to have contributed to the flux, but their chemical composition is unknown. Whitecaps were probably the bubble source at open sea and on the leads at high wind speed, but a different bubble source is needed in the leads owing to their small fetch. Melting of ice in the leads is probably the best candidate. The flux over the open sea was of such a magnitude that it could give a significant contribution to the condensation nuclei (CCN) population. Although the flux from the leads were roughly an order of magnitude smaller and the leads cover only a small fraction of the pack ice, the local source may till be important for the CCN population in Arctic fogs. The primary marine aerosol source will increase both with increased wind speed and with decreased ice fraction and extent. The local CCN production may therefore increase and influence cloud or fog albedo and lifetime in response to greenhouse warming in the Arctic Ocean region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA955001','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA955001"><span>Man in the Arctic, The Changing Nature of His Quest for Food and Water as Related to Snow, Ice, and Permafrost</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1962-01-01</p> <p>Sub- marines have been used under the ice pack. The most systematic and concerted effort has bet that conducted in Greenland where data from nearly...ml -’ -•- ice individually, chronic thirst was a common complaint. In fact, one cause of dehydration ex- haustion was seen .15 The problem of...made by truck or sledge and bar- rel. For example, at Hay River water is supplied under franchise by a trucker. This water is drawn from the river and</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/3781900','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/3781900"><span>Management of minor soft tissue trauma in adolescent athletes.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Dyment, P G</p> <p>1986-11-01</p> <p>Rest, ice therapy, compression, and elevation (RICE) are important components of the initial management of acute soft-tissue injuries such as contusions, strains, and sprains. Cryotherapy should be used, in the form of an ice pack, as soon as possible after the injury, and then several times a day for 20 minutes for several days. The use of ice has a theoretical, clinical, and experimental basis. Mild pain due to an injury should be treated with acetaminophen rather than aspirin because of the latter's effect on blood coagulation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19840059848&hterms=oil+spills&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Doil%2Bspills','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19840059848&hterms=oil+spills&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Doil%2Bspills"><span>Offshore oil in the Alaskan Arctic</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Weeks, W. F.; Weller, G.</p> <p>1984-01-01</p> <p>Oil and gas deposits in the Alaskan Arctic are estimated to contain up to 40 percent of the remaining undiscovered crude oil and oil-equivalent natural gas within U.S. jurisdiction. Most (65 to 70 percent) of these estimated reserves are believed to occuur offshore beneath the shallow, ice-covered seas of the Alaskan continental shelf. Offshore recovery operations for such areas are far from routine, with the primary problems associated with the presence of ice. Some problems that must be resolved if efficient, cost-effective, environmentally safe, year-round offshore production is to be achieved include the accurate estimation of ice forces on offshore structures, the proper placement of pipelines beneath ice-produced gouges in the sea floor, and the cleanup of oil spills in pack ice areas.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.C53B0778M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.C53B0778M"><span>Impact of surface roughness on L-band emissivity of the sea ice</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Miernecki, M.; Kaleschke, L.; Hendricks, S.; Søbjærg, S. S.</p> <p>2015-12-01</p> <p>In March 2014 a joint experiment IRO2/SMOSice was carried out in the Barents Sea. R/V Lance equipped with meteorological instruments, electromagnetic sea ice thickness probe and engine monitoring instruments, was performing a series of tests in different ice conditions in order to validate the ice route optimization (IRO) system, advising on his route through pack ice. In parallel cal/val activities for sea ice thickness product obtained from SMOS (Soil Moisture and Ocean Salinity mission) L-band radiometer were carried out. Apart from helicopter towing the EMbird thickness probe, Polar 5 aircraft was serving the area during the experiment with L-band radiometer EMIRAD2 and Airborne Laser Scanner (ALS) as primary instruments. Sea ice Thickness algorithm using SMOS brightness temperature developed at University of Hamburg, provides daily maps of thin sea ice (up to 0.5-1 m) in polar regions with resolution of 35-50 km. So far the retrieval method was not taking into account surface roughness, assuming that sea ice is a specular surface. Roughness is a stochastic process that can be characterized by standard deviation of surface height σ and by shape of the autocorrelation function R to estimate it's vertical and horizontal scales respectively. Interactions of electromagnetic radiation with the surface of the medium are dependent on R and σ and they scales with respect to the incident wavelength. During SMOSice the radiometer was observing sea ice surface at two incidence angles 0 and 40 degrees and simultaneously the surface elevation was scanned with ALS with ground resolution of ~ 0.25 m. This configuration allowed us to calculate σ and R from power spectral densities of surface elevation profiles and quantify the effect of surface roughness on the emissivity of the sea ice. First results indicate that Gaussian autocorrelation function is suitable for deformed ice, for other ice types exponential function is the best fit.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70026844','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70026844"><span>The distribution of seabirds and pinnipeds in Marguerite Bay and their relationship to physical features during austral winter 2001</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Chapman, Erik W.; Ribic, C.A.; Fraser, William R.</p> <p>2004-01-01</p> <p>The distribution of seabirds and pinnipeds and their relationship to physical oceanographic variables were investigated as part of the US Southern Ocean Global Ocean Ecosystem Dynamics field program along a study grid centered around Marguerite Bay on the west Antarctic Peninsula during late fall (April-May) and winter (July-August), 2001. Sea-ice conditions during the cruises provided an opportunity to compare the relationship among physical oceanographic variables and species distributions before and after the development of pack ice. During the fall cruise before pack ice development, both sea-ice-affiliated species and open-water-affiliated were observed in the area. The most common ice-affiliated species observed at this time were snow petrel (Pagodroma nivea, 0.7 individuals km-2) and Antarctic petrel (Thalassoica antarctica, 0.2 individuals km-2) and the most common open-water-affiliated species were blue petrel (Halobaena caerulea, 0.4 individuals km-2), cape petrel (Daption capense, 0.2 individuals km-2), and southern fulmar (Fulmarus glacialoides, 0.1 individuals km-2). In addition, Antarctic fur seals (Arctocephalus gazella, 0.1 individuals km-2) and crabeater seals (Lobodon carcinophagus, 0.4 individuals km-2) were observed in low numbers. Akaike's information criterion was used to assess competing models that predicted predator distributions based on physical oceanographic variables proposed to structure predator distribution in previous research. These analyses indicated that predator distributions were primarily associated with water-mass structure and variability in bottom depth during the fall cruise. Crabeater seal, snow petrel, Antarctic petrel, and southern fulmar had higher densities in Inner Shelf Water, particularly near Alexander Island where a coastal current was present. Blue petrel, kelp gull (Larus dominicanus), and southern giant petrel (Macronectes giganteus) were positively associated with variability in bottom depth in April-May, suggesting that hydrographic processes influenced by bathymetry may have been important in structuring bird distributions. After the development of pack ice, during July and August, only sea-ice-affiliated species, including snow petrel (1.0 individuals km-2), Antarctic petrel (0.1 individuals km-2), Ade??lie penguin (Pygoscelis adeliae, 0.4 individuals km-2), and crabeater seal (0.3 individuals km-2), were observed. Seabirds were primarily associated with sea-ice characteristics (e.g. sea-ice concentration, sea-ice type) rather than the water-column environment later in the winter. Results from this study suggest that the timing and extent of sea-ice development in the fall may influence over-winter predation by seabirds and pinnipeds on zooplankton and fish on the western Antarctic Peninsula. Delays in sea-ice development may allow seabirds and pinnipeds access to biologically important areas such as the Inner Shelf Water for a longer period of time thereby increasing predation on zooplankton and fish. ?? 2004 Elsevier Ltd. All rights reserved.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_10 --> <div id="page_11" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="201"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMOS33D..06H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMOS33D..06H"><span>Fram-2014/2015: A 400 Day Investigation of the Arctic's Oldest Sediments over the Alpha Ridge with a Research Hovercraft</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hall, J. K.; Kristoffersen, Y.</p> <p>2014-12-01</p> <p>The thickest multi-year ice in the Arctic covers a secret. Four short cores raised from the Alpha Ridge in the 1970s and 1980s from drift stations T-3 and CESAR showed ages between 45 and 76 my. The reason for these old ages became clear when examination of legacy seismic data from T-3 showed that in some places up to 500 m of sediments had been removed within an area of some 200 by 600 km, presumably by an impact of asteroid fragments. To investigate the impact area, the authors conceived an innovative research platform in 2007. Named the R/H SABVABAA, this 12m by 6m hovercraft has been home-based in Svalbard since June 2008. During the following 6 years the craft and its evolving innovative light-weight equipment have made 18 trips to the summer ice pack, traveling some 4410 km over ice during some six months of scientific investigations. An opportunity to get a lift to this area, some 1500 km from Svalbard, came in a 2011 invitation to join AWI's icebreaker POLARSTERN in its ARK-XXVIII/4 expedition departing Tromsö August 5, 2014. The 400 day drift will be the first wintering over, ever, of a mobile research platform with geophysical, geological, and oceanographic capabilities. The Arctic ice pack continually moves due to winds and currents. While at the main camp, observations will consist of marine geophysics (seismic profiling with four element CHIRP, a 20 in³ airgun with single hydrophone, as well as 12 kHz bathymetry and 200 kHz sounding of the deep scattering layer), marine geology (coring with a hydrostatically-boosted 3 or 6 m corer; bottom photography; and two rock dredges), and oceanography. Deployed away from the camp, four sonobuoys will allow 3-D seismic acquisition. Access to the depths below the ice is via a hydraulic capstan winch, with 6500 m of Kevlar aramid fiber rope with 2.8 ton breaking strength. Ice thickness monitoring of the local 100 km² will be made with the craft's EM-31 probe when away from the camp, moving to choice locations for taking cores, and deformation of the ice pack monitored by 5 remote GPS data loggers. A meteorological station including radiation flux measurements will be operated. Several cameras will be used to observe under-ice conditions (ice formation, biology) as well as time-lapse local ice movement. The talk will summarize the operations up to the time of the GEBCO 2014 Science Day at the AGU Fall Meeting.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013ACPD...13.9801L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013ACPD...13.9801L"><span>Size resolved airborne particulate polysaccharides in summer high Arctic</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Leck, C.; Gao, Q.; Mashayekhy Rad, F.; Nilsson, U.</p> <p>2013-04-01</p> <p>Size-resolved aerosol samples for subsequent determination of polysaccharides (monosaccharides in combined form) were collected in air over the central Arctic Ocean during the biologically most active period between the late summer melt season and into the transition to autumn freeze-up. The analysis was carried out using liquid chromatography coupled with highly selective and sensitive tandem mass spectrometry. Polysaccharides were detected in all sizes ranging from 0.035 to 10 μm in diameter with distinct features of heteropolysaccharides, enriched in xylose, glucose + mannose as well as a substantial fraction of deoxysugars. Polysaccharides containing deoxysugars showed a bimodal structure with about 60% of their mass found in the Aitken mode over the pack ice area. Pentose (xylose) and hexose (glucose + mannose) showed a weaker bimodal character and were largely found in the coarse mode in addition to a minor fraction apportioned in the sub-micrometer size range. The concentration of total hydrolysable neutral sugars (THNS) in the samples collected varied over 3 orders of magnitude (1 to 692 pmol m-3) in the super-micrometer size fraction and to a lesser extent in sub-micrometer particles (4 to 88 pmol m-3). Lowest THNS concentrations were observed in air masses that had spent more than 5 days over the pack ice. Within the pack ice area, about 53% (by mass) of the total mass of polysaccharides were found in sub-micrometer particles. The relative abundance of sub-micrometer polysaccharides was closely related to the length of time that the air mass spent over pack ice, with highest fraction (> 90%) observed for > 7 days of advection. The ambient aerosol particles collected onboard ship showed similar monosaccharide composition, compared to particles generated experimentally in situ at the open lead site. This supports the existence of a primary source of particulate polysaccharides from open leads by bubble bursting at the air-sea interface. We speculate that the presence of biogenic polysaccharides, due to their surface active and hygroscopic nature, could play a potential role as cloud condensation nuclei in the pristine high Arctic.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013ACP....1312573L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013ACP....1312573L"><span>Size-resolved atmospheric particulate polysaccharides in the high summer Arctic</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Leck, C.; Gao, Q.; Mashayekhy Rad, F.; Nilsson, U.</p> <p>2013-12-01</p> <p>Size-resolved aerosol samples for subsequent quantitative determination of polymer sugars (polysaccharides) after hydrolysis to their subunit monomers (monosaccharides) were collected in surface air over the central Arctic Ocean during the biologically most active summer period. The analysis was carried out by novel use of liquid chromatography coupled with highly selective and sensitive tandem mass spectrometry. Polysaccharides were detected in particle sizes ranging from 0.035 to 10 μm in diameter with distinct features of heteropolysaccharides, enriched in xylose, glucose + mannose as well as a substantial fraction of deoxysugars. Polysaccharides, containing deoxysugar monomers, showed a bimodal size structure with about 70% of their mass found in the Aitken mode over the pack ice area. Pentose (xylose) and hexose (glucose + mannose) had a weaker bimodal character and were largely found with super-micrometer sizes and in addition with a minor sub-micrometer fraction. The concentration of total hydrolysable neutral sugars (THNS) in the samples collected varied over two orders of magnitude (1 to 160 pmol m-3) in the super-micrometer size fraction and to a somewhat lesser extent in sub-micrometer particles (4 to 140 pmol m-3). Lowest THNS concentrations were observed in air masses that had spent more than five days over the pack ice. Within the pack ice area, about 53% of the mass of hydrolyzed polysaccharides was detected in sub-micrometer particles. The relative abundance of sub-micrometer hydrolyzed polysaccharides could be related to the length of time that the air mass spent over pack ice, with the highest fraction (> 90%) observed for > 7 days of advection. The aerosol samples collected onboard ship showed similar monosaccharide composition, compared to particles generated experimentally in situ at the expedition's open lead site. This supports the existence of a primary particle source of polysaccharide containing polymer gels from open leads by bubble bursting at the air-sea interface. We speculate that the occurrence of atmospheric surface-active polymer gels with their hydrophilic and hydrophobic segments, promoting cloud droplet activation, could play a potential role as cloud condensation nuclei in the pristine high Arctic.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA422192','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA422192"><span>AUV Commercialization - Who’s Leading the Pack?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2000-09-01</p> <p>the Theseus and ARCS, is designing a deep water commercial site survey AUV for Fugro GeoServices Inc. Called the Explorer, the vehicle will conduct...ISE has the ARCS and the Theseus vehicles and Perry Technologies has the MUST. These vehicles have each performed some dramatic operations including the...deployment of fiber optic cables. In the case of Theseus , the fiber optic cable was deployed under the ice pack. Mid-size vehicles include those from</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70194324','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70194324"><span>Collar temperature sensor data reveal long-term patterns in southern Beaufort Sea polar bear den distribution on pack ice and land</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Olson, Jay W; Rode, Karyn D.; Eggett, Dennis L.; Smith, T.S.; Wilson, R. R.; Durner, George M.; Fischbach, Anthony S.; Atwood, Todd C.; Douglas, David C.</p> <p>2017-01-01</p> <p>In response to a changing climate, many species alter habitat use. Polar bears Ursus maritimus in the southern Beaufort Sea have increasingly used land for maternal denning. To aid in detecting denning behavior, we developed an objective method to identify polar bear denning events using temperature sensor data collected by satellite-linked transmitters deployed on adult females between 1985 and 2013. We then applied this method to determine whether southern Beaufort Sea polar bears have continued to increase land denning with recent sea-ice loss and examined whether sea-ice conditions affect the distribution of dens between pack-ice and coastal substrates. Because land use in summer and autumn has also increased, we examined potential associations between summering substrate and denning substrate. Statistical process control methods applied to temperature-sensor data identified denning events with 94.5% accuracy in comparison to direct observations (n = 73) and 95.7% accuracy relative to subjective classifications based on temperature, location, and activity sensor data (n = 116). We found an increase in land-based denning during the study period. The frequency of land denning was directly related to the distance that sea ice retreated from the coast. Among females that denned, all 14 that summered on land subsequently denned there, whereas 29% of the 69 bears summering on ice denned on land. These results suggest that denning on land may continue to increase with further loss of sea ice. While the effects that den substrate have on nutrition, energetics, and reproduction are unclear, more polar bears denning onshore will likely increase human-bear interactions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A11K2025R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A11K2025R"><span>The Preservation and Recycling of Snow Pack Nitrate at the West Antarctic Ice Sheet (WAIS) Divide Ice Core Site from the Present Day to the Last Glacial Period.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Robinson, J. W.; Buffen, A.; Hastings, M. G.; Schauer, A. J.; Moore, L.; Isaacs, A.; Geng, L.; Savarino, J. P.; Alexander, B.</p> <p>2017-12-01</p> <p>We use observations of the nitrogen isotopic composition of nitrate (δ15N(NO3-)) from snow and ice collected at the West Antarctic ice sheet (WAIS) divide ice core site to quantify the preservation and recycling of snow nitrate. Ice-core samples cover a continuous section from 36 to 52 thousand years ago and discrete samples from the Holocene, the last glacial maximum (LGM), and the glacial-Holocene transition. Higher δ15N of nitrate is consistently associated with lower temperatures with δ15N(NO3-) varying from 26 to 45 ‰ during the last glacial period and from 1 to 45 ‰ between the Holocene and glacial periods, respectively. We attribute the higher δ15N in colder periods to lower snow accumulation rates which lead to greater loss of snow nitrate via photolysis before burial beneath the snow photic zone. Modeling of nitrate preservation in snow pack was performed for modern and LGM conditions. The model is used in conjunction with observations to estimate the fraction of snow nitrate that is photolyzed, re-oxidized, and re-deposited over WAIS divide versus the fraction of primary nitrate that is deposited via long range transport. We used these estimates of fractional loss of snow nitrate in different time periods to determine the variation in the deposition flux of primary nitrate at WAIS divide with climate. Our findings have implications for the climate sensitivity of the oxidizing capacity of the polar atmosphere and the interpretation of ice-core records of nitrate in terms of past atmospheric composition.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70020441','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70020441"><span>Greenland Sea Odden sea ice feature: Intra-annual and interannual variability</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Shuchman, R.A.; Josberger, E.G.; Russel, C.A.; Fischer, K.W.; Johannessen, O.M.; Johannessen, J.; Gloersen, P.</p> <p>1998-01-01</p> <p>The "Odden" is a large sea ice feature that forms in the east Greenland Sea that may protrude eastward to 5??E from the main sea ice pack (at about 8??W) between 73?? and 77??N. It generally forms at the beginning of the winter season and can cover 300,000 km2. Throughout the winter the outer edge of the Odden may advance and retreat by several hundred kilometers on timescales of a few days to weeks. Satellite passive microwave observations from 1978 through 1995 provide a continuous record of the spatial and temporal variations of this extremely dynamic phenomenon. Aircraft synthetic aperture radar, satellite passive microwave, and ship observations in the Odden show that the Odden consists of new ice types, rather than older ice types advected eastward from the main pack. The 17-year record shows both strong interannual and intra-annual variations in Odden extent and temporal behavior. For example, in 1983 the Odden was weak, in 1984 the Odden did not occur, and in 1985 the Odden returned late in the season. An analysis of the ice area and extent time series derived from the satellite passive microwave observations along with meteorological data from the International Arctic Buoy Program (IABP) determined the meteorological forcing associated with Odden growth, maintenance, and decay. The key meteorological parameters that are related to the rapid ice formation and decay associated with the Odden are, in order of importance, air temperature, wind speed, and wind direction. Oceanographic parameters must play an important role in controlling Odden formation, but it is not yet possible to quantify this role because of a lack of long-term oceanographic observations. Copyright 1998 by the American Geophysical Union.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19900007135','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19900007135"><span>Parallel algorithm for determining motion vectors in ice floe images by matching edge features</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Manohar, M.; Ramapriyan, H. K.; Strong, J. P.</p> <p>1988-01-01</p> <p>A parallel algorithm is described to determine motion vectors of ice floes using time sequences of images of the Arctic ocean obtained from the Synthetic Aperture Radar (SAR) instrument flown on-board the SEASAT spacecraft. Researchers describe a parallel algorithm which is implemented on the MPP for locating corresponding objects based on their translationally and rotationally invariant features. The algorithm first approximates the edges in the images by polygons or sets of connected straight-line segments. Each such edge structure is then reduced to a seed point. Associated with each seed point are the descriptions (lengths, orientations and sequence numbers) of the lines constituting the corresponding edge structure. A parallel matching algorithm is used to match packed arrays of such descriptions to identify corresponding seed points in the two images. The matching algorithm is designed such that fragmentation and merging of ice floes are taken into account by accepting partial matches. The technique has been demonstrated to work on synthetic test patterns and real image pairs from SEASAT in times ranging from .5 to 0.7 seconds for 128 x 128 images.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016APS..DPPP10145C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016APS..DPPP10145C"><span>Accretion growth of water-ice grains in astrophysically-relevant dusty plasma experiment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chai, Kil-Byoung; Marshall, Ryan; Bellan, Paul</p> <p>2016-10-01</p> <p>The grain growth process in the Caltech water-ice dusty plasma experiment has been studied using a high-speed camera equipped with a long-distance microscope lens. It is found that (i) the ice grain number density decreases four-fold as the average grain length increases from 20 to 80 um, (ii) the ice grain length has a log-normal distribution rather than a power-law dependence, and (iii) no collisions between ice grains are apparent. The grains have a large negative charge so the agglomeration growth is prevented by their strong mutual repulsion. It is concluded that direct accretion of water molecules is in good agreement with the observed ice grain growth. The volumetric packing factor of the ice grains must be less than 0.25 in order for the grain kinetic energy to be sufficiently small to prevent collisions between ice grains; this conclusion is consistent with ice grain images showing a fractal character.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19840002650','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19840002650"><span>Antartic sea ice, 1973 - 1976: Satellite passive-microwave observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Zwally, H. J.; Comiso, J. C.; Parkinson, C. L.; Campbell, W. J.; Carsey, F. D.; Gloersen, P.</p> <p>1983-01-01</p> <p>Data from the Electrically Scanning Microwave Radiometer (ESMR) on the Nimbus 5 satellite are used to determine the extent and distribution of Antarctic sea ice. The characteristics of the southern ocean, the mathematical formulas used to obtain quantitative sea ice concentrations, the general characteristics of the seasonal sea ice growth/decay cycle and regional differences, and the observed seasonal growth/decay cycle for individual years and interannual variations of the ice cover are discussed. The sea ice data from the ESMR are presented in the form of color-coded maps of the Antarctic and the southern oceans. The maps show brightness temperatures and concentrations of pack ice averaged for each month, 4-year monthly averages, and month-to-month changes. Graphs summarizing the results, such as areas of sea ice as a function of time in the various sectors of the southern ocean are included. The images demonstrate that satellite microwave data provide unique information on large-scale sea ice conditions for determining climatic conditions in polar regions and possible global climatic changes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17181224','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17181224"><span>Hydrate kinetics study in the presence of nonaqueous liquid by nuclear magnetic resonance spectroscopy and imaging.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Susilo, Robin; Moudrakovski, Igor L; Ripmeester, John A; Englezos, Peter</p> <p>2006-12-28</p> <p>The dynamics of methane hydrate growth and decomposition were studied by nuclear magnetic resonance (NMR) spectroscopy and imaging (MRI). Three well-known large molecule guest substances (LMGS) were used as structure H hydrate formers: 2,2-dimethylbutane (NH), methylcyclohexane (MCH), tert-butyl methyl ether (TBME). In addition, the impact of a non-hydrate former (n-heptane/nC7) was studied. The methane diffusion and hydrate growth were monitored by recording the 2H NMR spectra at 253 K and approximately 4.5 MPa for 20 h. The results revealed that methane diffuses faster in TBME and NH, slower in nC7, and slowest in MCH. The TBME system gives the fastest hydrate formation kinetics followed by NH, MCH, and nC7. The conversion of water into hydrate was also observed. The imaging study showed that TBME has a strong affinity toward ice, which is not the case for the NH and MCH systems. The degree of ice packing was also found to affect the LMGS distribution between ice particles. Highly packed ice increases the mass transfer resistance and hence limits the contact between LMGS and ice. It was also found that "temperature ramping" above the ice point improves the conversion significantly. Finally, hydrates were found to dissociate quickly within the first hour at atmospheric pressure and subsequently at a much slower rate. Methane dissolved in LMGS was also seen. The residual methane in hydrate phase and dissolved in LMGS phase explain the faster kinetics during hydrate re-formation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=CAPS&pg=3&id=EJ983765','ERIC'); return false;" href="https://eric.ed.gov/?q=CAPS&pg=3&id=EJ983765"><span>Let Them Eat Faux Cake</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Peace, Suze</p> <p>2012-01-01</p> <p>In this article, students create a "faux" cake sculpture. It is a three-dimensional artwork made of paper, colored with markers, and decorated with old marker caps and polystyrene packing peanuts for icing swirls.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/AD1013707','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/AD1013707"><span>Evolution of the Marginal Ice Zone: Adaptive Sampling with Autonomous Gliders</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2015-09-30</p> <p>kinetic energy (ε). Gliders also sampled dissolved oxygen, optical backscatter ( chlorophyll and CDOM fluorescence) and multi-spectral downwelling...Fig. 2). In the pack, Pacific Summer Water and a deep chlorophyll maximum form distinct layers at roughly 60 m and 80 m, respectively, which become...Sections across the ice edge just prior to recovery, during freeze-up, reveal elevated chlorophyll fluorescence throughout the mixed layer (Fig. 4</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA496977','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA496977"><span>Direct Numerical Simulations of Diffusive Staircases in the Arctic</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2009-03-01</p> <p>modeling is the simplest and most obvious tool for evaluating the mixing characteristics in the Arctic Ocean, and it will be extensively used in our...and Kinglear, in addition to Department of Defense (DoD) supercomputer clusters, Babbage, Davinci , and Midnight. Low resolution model runs were...Krishfield, R., Toole , J., Proshutinsky, A., & Timmermans, M.-L. (2008). Automated Ice Tethered Profilers for seawater observations under pack ice in</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19840059709&hterms=Thorndike&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DThorndike','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19840059709&hterms=Thorndike&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DThorndike"><span>Measuring the sea ice floe size distribution</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Rothrock, D. A.; Thorndike, A. S.</p> <p>1984-01-01</p> <p>The sea ice covering the Arctic Ocean is broken into distinct pieces,called floes. In the summer, these floes, which have diameters ranging up to 100 km, are separated from each other by a region of open water. In the winter, floes still exist, but they are less easily identified. An understanding of the geometry of the ice pack is of interest for a number of practical applications associated with transportation in ice-covered seas and with the design of offshore structures intended to survive in the presence of ice. The present investigation has the objective to clarify ideas about floe sizes and to propose techniques for measuring them. Measurements are presented with the primary aim to illustrate points of technique or approach. A preliminary discussion of the floe size distribution of sea ice is devoted to questions of definition and of measurement.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFM.P21B1223L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFM.P21B1223L"><span>Laboratory measurements of ice tensile strength dependence on density and concentration of silicate and polymer impurities at low temperatures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Litwin, K. L.; Beyeler, J. D.; Polito, P. J.; Zygielbaum, B. R.; Sklar, L. S.; Collins, G. C.</p> <p>2009-12-01</p> <p>The tensile strength of ice bedrock on Titan should strongly influence the effectiveness of the erosional processes responsible for carving the extensive fluvial drainage networks and other surface features visible in images returned by the Cassini and Huygens probes. Recent measurements of the effect of temperature on the tensile strength of low-porosity, polycrystalline ice, without impurities, suggest that ice bedrock at the Titan surface temperature of 93 K may be as much as five times stronger than ice at terrestrial surface temperatures. However, ice bedrock on Titan and other outer solar system bodies may have significant porosity, and impurities such silicates or polymers are possible in such ices. In this laboratory investigation we are exploring the dependence of tensile strength on the density and concentration of impurities, for polycrystalline ice across a wide range of temperatures. We use the Brazilian tensile splitting test to measure strength, and control temperature with dry ice and liquid nitrogen. The 50 mm diameter ice cores are made from a log-normally distributed seed crystal mixture with a median size of 1.4 mm. To control ice density and porosity we vary the packing density of the seed grains in core molds and vary the degree of saturation of the matrix with added near-freezing distilled water. We also vary ice density by blending in a similarly-sized mixture of angular fragments of two types of impurities, a fine-grained volcanic rock and a polyethylene polymer. Because both types of impurities have greater tensile strength than ice at Earth surface temperatures, we expect higher concentrations of impurities to correlate with increased strength for ice-rock and ice-polymer mixtures. However, at the ultra-cold temperatures of the outer planets, we expect significant divergence in the temperature dependence of ice tensile strength for the various mixtures and resulting densities. These measurements will help constrain the range of possible ice tensile strengths that might occur on Titan and other solar system bodies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://familydoctor.org/condition/hemorrhoids/?adfree=true','NIH-MEDLINEPLUS'); return false;" href="https://familydoctor.org/condition/hemorrhoids/?adfree=true"><span>Hemorrhoids</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://medlineplus.gov/">MedlinePlus</a></p> <p></p> <p></p> <p>... ice packs to relieve swelling. Use acetaminophen (1 brand name: Tylenol), ibuprofen (1 brand name: Motrin), or aspirin to help relieve pain. ... Childbirth Women Men Seniors Your Health Resources Healthcare Management End-of-Life Issues Insurance & Bills Self Care ...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.C23C0646G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.C23C0646G"><span>Numerical model of ice melange expansion during abrupt ice-shelf collapse</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Guttenberg, N.; Abbot, D. S.; Amundson, J. M.; Burton, J. C.; Cathles, L. M.; Macayeal, D. R.; Zhang, W.</p> <p>2010-12-01</p> <p>Satellite imagery of the February 2008 Wilkins Ice-Shelf Collapse event reveals that a large percentage of the involved ice shelf was converted to capsized icebergs and broken fragments of icebergs over a relatively short period of time, possibly less than 24 hours. The extreme violence and short time scale of the event, and the considerable reduction of gravitational potential energy between upright and capsized icebergs, suggests that iceberg capsize might be an important driving mechanism controlling both the rate and spatial extent of ice shelf collapse. To investigate this suggestion, we have constructed an idealized, 2-dimensional model of a disintegrating ice shelf composed of a large number (N~100 to >1000) of initially well-packed icebergs of rectangular cross section. The model geometry consists of a longitudinal cross section of the idealized ice shelf from grounding line (or the upstream extent of ice-shelf fragmentation) to seaward ice front, and includes the region beyond the initial ice front to cover the open, ice-free water into which the collapsing ice shelf expands. The seawater in which the icebergs float is treated as a hydrostatic fluid in the computation of iceberg orientation (e.g., the evaluation of buoyancy forces and torques), thereby eliminating the complexities of free-surface waves, but net horizontal drift of the icebergs is resisted by a linear drag law designed to energy dissipation by viscous forces and surface-gravity-wave radiation. Icebergs interact via both elastic and inelastic contacts (typically a corner of one iceberg will scrape along the face of its neighbor). Ice-shelf collapse in the model is embodied by the mass capsize of a large proportion of the initially packed icebergs and the consequent advancement of the ice front (leading edge). Model simulations are conducted to examine (a) the threshold of stability (e.g., what density of initially capsizable icebergs is needed to allow a small perturbation to the system evolve into full-blown collapse of the ice shelf? What proportion of uncapsizable icebergs prevent a collapse?), (b) the rates of mobilization and their dependence on iceberg geometry (e.g., what determines the speed at which the expanding ice melange moves into the open, ice-free water?), and (c) the factors that promote the arrest of the system (e.g., are there circumstances where only partial collapses can occur?). Results of simulations are compared with observational parameters derived from satellite imagery, seismic analysis and laboratory experiment to determine what aspects of the numerical model's physical formulation may have most relevance to the disappearance of ice shelves.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5324094','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5324094"><span>Variability in sea ice cover and climate elicit sex specific responses in an Antarctic predator</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Labrousse, Sara; Sallée, Jean-Baptiste; Fraser, Alexander D.; Massom, Rob A.; Reid, Phillip; Hobbs, William; Guinet, Christophe; Harcourt, Robert; McMahon, Clive; Authier, Matthieu; Bailleul, Frédéric; Hindell, Mark A.; Charrassin, Jean-Benoit</p> <p>2017-01-01</p> <p>Contrasting regional changes in Southern Ocean sea ice have occurred over the last 30 years with distinct regional effects on ecosystem structure and function. Quantifying how Antarctic predators respond to such changes provides the context for predicting how climate variability/change will affect these assemblages into the future. Over an 11-year time-series, we examine how inter-annual variability in sea ice concentration and advance affect the foraging behaviour of a top Antarctic predator, the southern elephant seal. Females foraged longer in pack ice in years with greatest sea ice concentration and earliest sea ice advance, while males foraged longer in polynyas in years of lowest sea ice concentration. There was a positive relationship between near-surface meridional wind anomalies and female foraging effort, but not for males. This study reveals the complexities of foraging responses to climate forcing by a poleward migratory predator through varying sea ice property and dynamic anomalies. PMID:28233791</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28233791','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28233791"><span>Variability in sea ice cover and climate elicit sex specific responses in an Antarctic predator.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Labrousse, Sara; Sallée, Jean-Baptiste; Fraser, Alexander D; Massom, Rob A; Reid, Phillip; Hobbs, William; Guinet, Christophe; Harcourt, Robert; McMahon, Clive; Authier, Matthieu; Bailleul, Frédéric; Hindell, Mark A; Charrassin, Jean-Benoit</p> <p>2017-02-24</p> <p>Contrasting regional changes in Southern Ocean sea ice have occurred over the last 30 years with distinct regional effects on ecosystem structure and function. Quantifying how Antarctic predators respond to such changes provides the context for predicting how climate variability/change will affect these assemblages into the future. Over an 11-year time-series, we examine how inter-annual variability in sea ice concentration and advance affect the foraging behaviour of a top Antarctic predator, the southern elephant seal. Females foraged longer in pack ice in years with greatest sea ice concentration and earliest sea ice advance, while males foraged longer in polynyas in years of lowest sea ice concentration. There was a positive relationship between near-surface meridional wind anomalies and female foraging effort, but not for males. This study reveals the complexities of foraging responses to climate forcing by a poleward migratory predator through varying sea ice property and dynamic anomalies.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_11 --> <div id="page_12" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="221"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19930061882&hterms=marginal&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dmarginal','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19930061882&hterms=marginal&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dmarginal"><span>Wave effects on ocean-ice interaction in the marginal ice zone</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Liu, Antony K.; Hakkinen, Sirpa; Peng, Chih Y.</p> <p>1993-01-01</p> <p>The effects of wave train on ice-ocean interaction in the marginal ice zone are studied through numerical modeling. A coupled two-dimensional ice-ocean model has been developed to include wave effects and wind stress for the predictions of ice edge dynamics. The sea ice model is coupled to the reduced-gravity ocean model through interfacial stresses. The main dynamic balance in the ice momentum is between water-ice stress, wind stress, and wave radiation stresses. By considering the exchange of momentum between waves and ice pack through radiation stress for decaying waves, a parametric study of the effects of wave stress and wind stress on ice edge dynamics has been performed. The numerical results show significant effects from wave action. The ice edge is sharper, and ice edge meanders form in the marginal ice zone owing to forcing by wave action and refraction of swell system after a couple of days. Upwelling at the ice edge and eddy formation can be enhanced by the nonlinear effects of wave action; wave action sharpens the ice edge and can produce ice meandering, which enhances local Ekman pumping and pycnocline anomalies. The resulting ice concentration, pycnocline changes, and flow velocity field are shown to be consistent with previous observations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/638276-sea-ice-polar-climate-ncar-csm','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/638276-sea-ice-polar-climate-ncar-csm"><span>Sea ice and polar climate in the NCAR CSM</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Weatherly, J.W.; Briegleb, B.P.; Large, W.G.</p> <p></p> <p>The Climate System Model (CSM) consists of atmosphere, ocean, land, and sea-ice components linked by a flux coupler, which computes fluxes of energy and momentum between components. The sea-ice component consists of a thermodynamic formulation for ice, snow, and leads within the ice pack, and ice dynamics using the cavitating-fluid ice rheology, which allows for the compressive strength of ice but ignores shear viscosity. The results of a 300-yr climate simulation are presented, with the focus on sea ice and the atmospheric forcing over sea ice in the polar regions. The atmospheric model results are compared to analyses from themore » European Centre for Medium-Range Weather Forecasts and other observational sources. The sea-ice concentrations and velocities are compared to satellite observational data. The atmospheric sea level pressure (SLP) in CSM exhibits a high in the central Arctic displaced poleward from the observed Beaufort high. The Southern Hemisphere SLP over sea ice is generally 5 mb lower than observed. Air temperatures over sea ice in both hemispheres exhibit cold biases of 2--4 K. The precipitation-minus-evaporation fields in both hemispheres are greatly improved over those from earlier versions of the atmospheric GCM.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1987RaPC...29..325N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1987RaPC...29..325N"><span>Preliminary investigations on a new method of retaining the colour of shucked cockles ( Anadara Granosa), and the extension of shelflife by gamma irradiation and vacuum packing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ng, Cher Siang; Low, Lai Kim; Chia, Lawrence H. L.</p> <p></p> <p>Live cockles were incubated in atmospheres containing different concentrations of carbon monoxide. Since CO combines more readily with myoglobin and haemoglobin than oxygen, the formation of in vivo deoxygenated haemoglobins and post mortem formation of methaemoglobin were retarded by the more stable carboxyhaemoglobin (HbCO). The bright red colour of the stable HbCO is retained during storage, giving the desired colour to the cockles. The colour of normal, chilled cockle meat deteriorated after 3 days ice storage while those treated with 50 and 100% CO retained the bright deep orange colour up to 10 days storage. Irradiation caused faster colour deterioration in both CO and non-CO treated samples. Vacuum packing influenced the colour of the cockles with irradiation and with CO treatments. In non-CO treated, irradiated samples, the effect of vacuum packing was not obvious. In CO treated, irradiated samples, vacuum packing retarded the deterioration of colour. Odour developments were influenced by irradiation, vacuum packing and storage temperature, and were not influenced by CO treatments. Irradiation suppressed the development of odour for the first 11 days storage (0°C) while vacuum packing depressed the odour by lowering its intensity instead. Odour development was slowed down by lowering the storage temperature. The odour of shucked cockles was rejected within one day at room temperature (26-28°C) while at 0°C the odour of the shucked cockles was still acceptable after 10 days. Suitable chemical indices for quality are K value and TVBN. Treatment with CO did not influence the K value development. Vacuum packing produced the highest K values after 19 days storage (0°C), while irradiated samples had higher K values than non-irradiated samples. The TVBN increased with storage and is an indicator of the odour development. The use of CO treatment extended the shelflife of the cockles based on appearance. A combination of CO treatment, vacuum packing, ice storage and irradiation extended the shelflife to beyond 18 days, based on odour, colour, and overall appearance.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.P31A2092B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.P31A2092B"><span>Jamming of granular ice mélange in tidewater glacial fjords</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Burton, J. C.; Cassotto, R.; Amundson, J. M.; Kuo, C. C.; Dennin, M.</p> <p>2016-12-01</p> <p>In tidewater glacial fjords, the open water in front of the glacier terminus is often filled with a collection of calved iceberg fragments and sea ice. For glaciers with large calving rates, this "mélange" of ice can be jam-packed, so that the flow is mostly determined by granular interactions, in addition to underlying fjord currents. As the glacier pushes the ice mélange through the fjord, the mélange will become jammed and may potentially influence calving rates if the back-stress applied to the glacier terminus is large enough. However, the stress applied by a granular ice mélange will depend on its rheology, i.e. iceberg-iceberg contact forces, geometry, friction, etc. Here we report 2D, discrete particle simulations to model the granular mechanics of ice mélange. A polydisperse collection of particles is packed into a long channel and pushed downfjord at a constant speed, the latter derived from terrestrial radar interferometry (TRI). Each individual particle experiences viscoelastic contact forces and tangential frictional forces upon collision with another particle or channel walls. We find the two most important factors that govern the total force applied to the glacier are the geometry of the channel, and the shape of the particles. In addition, our simulated velocity fields reveal shearing margins near the fjord walls with more uniform flow in the middle of the mélange, consistent with TRI observations. Finally, we find that the magnitude of the back-stress applied to the glacier terminus can influence calving, however, the maximum back-stress is limited by the buckling of icebergs into the fjord waters, so that the stress in the quasi-2D mélange is partially determined by the thickness of the mélange layer.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/1003808','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/1003808"><span>DDT poisoning in a Cooper's hawk collected in 1980</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Prouty, Richard M.; Pattee, Oliver H.; Schmeling, Shelia K.</p> <p>1982-01-01</p> <p>In April 1980, a Cooper's hawk (Accipiter cooperii) was found on the ground in Lakewood, Colorado, unable to fly and in convulsion. The bird died shortly thereafter. The hawk was packed in dry ice and shipped air express to the Fish and Wildlife Service, U. S. Department of the Interior, National Wildlife Health Laboratory, Madison, Wisconsin, for necropsy. Following necropsy, the brain, gastrointestinal tract, and remaining carcass except skin, feet, wings, liver, and kidney were packed in dry ice and shipped air express to the Patuxent Wildlife Research Center, Laurel, Maryland, for chemical residue analysis. Because the bird's behavior before death suggested some form of poisoning, the kidney was assayed for thallium, the liver for lead, and the gastrointestinal tract for strychnine, sodium fluoroacetate, and arsenic. When these assays proved negative, the bird was analyzed for organochlorine pesticides. Necropsy findings and pesticide residue analyses are reported here.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20000038117&hterms=SSM&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DSSM','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20000038117&hterms=SSM&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DSSM"><span>A Comparison of Sea Ice Type, Sea Ice Temperature, and Snow Thickness Distributions in the Arctic Seasonal Ice Zones with the DMSP SSM/I</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>St.Germain, Karen; Cavalieri, Donald J.; Markus, Thorsten</p> <p>1997-01-01</p> <p>Global climate studies have shown that sea ice is a critical component in the global climate system through its effect on the ocean and atmosphere, and on the earth's radiation balance. Polar energy studies have further shown that the distribution of thin ice and open water largely controls the distribution of surface heat exchange between the ocean and atmosphere within the winter Arctic ice pack. The thickness of the ice, the depth of snow on the ice, and the temperature profile of the snow/ice composite are all important parameters in calculating surface heat fluxes. In recent years, researchers have used various combinations of DMSP SSMI channels to independently estimate the thin ice type (which is related to ice thickness), the thin ice temperature, and the depth of snow on the ice. In each case validation efforts provided encouraging results, but taken individually each algorithm gives only one piece of the information necessary to compute the energy fluxes through the ice and snow. In this paper we present a comparison of the results from each of these algorithms to provide a more comprehensive picture of the seasonal ice zone using passive microwave observations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhFl...30b7101J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhFl...30b7101J"><span>Mixed ice accretion on aircraft wings</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Janjua, Zaid A.; Turnbull, Barbara; Hibberd, Stephen; Choi, Kwing-So</p> <p>2018-02-01</p> <p>Ice accretion is a problematic natural phenomenon that affects a wide range of engineering applications including power cables, radio masts, and wind turbines. Accretion on aircraft wings occurs when supercooled water droplets freeze instantaneously on impact to form rime ice or runback as water along the wing to form glaze ice. Most models to date have ignored the accretion of mixed ice, which is a combination of rime and glaze. A parameter we term the "freezing fraction" is defined as the fraction of a supercooled droplet that freezes on impact with the top surface of the accretion ice to explore the concept of mixed ice accretion. Additionally we consider different "packing densities" of rime ice, mimicking the different bulk rime densities observed in nature. Ice accretion is considered in four stages: rime, primary mixed, secondary mixed, and glaze ice. Predictions match with existing models and experimental data in the limiting rime and glaze cases. The mixed ice formulation however provides additional insight into the composition of the overall ice structure, which ultimately influences adhesion and ice thickness, and shows that for similar atmospheric parameter ranges, this simple mixed ice description leads to very different accretion rates. A simple one-dimensional energy balance was solved to show how this freezing fraction parameter increases with decrease in atmospheric temperature, with lower freezing fraction promoting glaze ice accretion.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19980237537','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19980237537"><span>Spatial Distribution of Trends and Seasonality in the Hemispheric Sea Ice Covers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gloersen, P.; Parkinson, C. L.; Cavalieri, D. J.; Cosmiso, J. C.; Zwally, H. J.</p> <p>1998-01-01</p> <p>We extend earlier analyses of a 9-year sea ice data set that described the local seasonal and trend variations in each of the hemispheric sea ice covers to the recently merged 18.2-year sea ice record from four satellite instruments. The seasonal cycle characteristics remain essentially the same as for the shorter time series, but the local trends are markedly different, in some cases reversing sign. The sign reversal reflects the lack of a consistent long-term trend and could be the result of localized long-term oscillations in the hemispheric sea ice covers. By combining the separate hemispheric sea ice records into a global one, we have shown that there are statistically significant net decreases in the sea ice coverage on a global scale. The change in the global sea ice extent, is -0.01 +/- 0.003 x 10(exp 6) sq km per decade. The decrease in the areal coverage of the sea ice is only slightly smaller, so that the difference in the two, the open water within the packs, has no statistically significant change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19940007284&hterms=holt+winters&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dholt%2Bwinters','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19940007284&hterms=holt+winters&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dholt%2Bwinters"><span>Sea ice radar signatures from ERS-1 SAR during late Summer and Fall in the Beaufort and Chukchi Seas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Holt, Benjamin; Cunningham, Glenn; Kwok, Ron</p> <p>1993-01-01</p> <p>A study which examines ERS-1 C band SAR (Synthetic Aperture Radar) imagery of sea ice obtained in the Beaufort and Chukchi Seas from mid Summer through Fall freeze up and early Winter in 1991 is presented. Radar backscatter statistics of sea ice were obtained from the imagery, using common floes tracked through consecutive repeat images whenever possible. During the Summer months, strong fluctuations in ice signatures of several dB are observed over 2 to 3 day periods, which are found to be closely related to air temperature excursions above and below freezing that alters the phase of the ice surface. As air temperatures drop steadily below freezing in the Fall, the signatures of the pack ice increase in brightness and become more stable with time. Multiyear ice is distinguished from rough and smooth first year ice. There are also variations in the multiyear signatures with latitude. Large variations are seen in new ice and open water contained within leads which results in ambiguous classification.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24498495','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24498495"><span>Evaluation of vaccine cold chain in urban health centers of municipal corporation of surat city, Western India.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Naik, Ashish K; Rupani, Mihir P; Bansal, R K</p> <p>2013-12-01</p> <p>The success of immunization depends highly on the level of cold chain maintenance. The aim of the study was to assess the condition of cold chain equipment, practices adopted for cold chain maintenance and knowledge of the vaccinators. It was a cross-sectional study conducted in 20 UHCs of Surat Municipal Corporation (SMC). Cold chain equipment were observed with regards to their condition, along with the practices adopted by vaccinators for cold chain maintenance. A pre-designed and pre-tested questionnaire was used to interview the vaccinators regarding their knowledge and awareness regarding cold chain practices, management and handling. Data were entered and analyzed using Epi Info v 3.5.1. Simple proportions were calculated. Absence of separate stabilizer for deep freezers and ILRs (85%), ill-maintained temperature-record register, lack of criss-cross pattern of ice packs in deep freezer (65%), presence of things other than ice packs in deep freezer (10%) and things other than vaccines in ILR (10%) indicate poor cold chain maintenance. In addition to this, expired vaccines in ILR (5%), vaccines in the "unusable" stages of VVM (15%), lack of emergency contact number nearby in case of cold chain failure (85%), lack of inverter (85%), lack of generator (85%) and failure to note time of reconstitution on the vaccine vial at the time of vaccination (25%) indicate poor cold chain practices. Lack of knowledge of defrosting of ILR and deep freezer (45%), lack of knowledge about Shake test (40%), lack of knowledge of temperature range to be maintained in deep freezer (70%) and in ILR (15%) indicate poor knowledge of vaccinators. Cold chain maintenance and practices need improvement. Knowledge of vaccinators was overall unsatisfactory.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015PrOce.136..241M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015PrOce.136..241M"><span>The relationship between sea ice concentration and the spatio-temporal distribution of vocalizing bearded seals (Erignathus barbatus) in the Bering, Chukchi, and Beaufort Seas from 2008 to 2011</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>MacIntyre, Kalyn Q.; Stafford, Kathleen M.; Conn, Paul B.; Laidre, Kristin L.; Boveng, Peter L.</p> <p>2015-08-01</p> <p>Bearded seals (Erignathus barbatus) are widely distributed in the Arctic and sub-Arctic; the Beringia population is found throughout the Bering, Chukchi and Beaufort Seas (BCB). Bearded seals are highly vocal, using underwater calls to advertise their breeding condition and maintain aquatic territories. They are also closely associated with pack ice for reproductive activities, molting, and resting. Sea ice habitat for this species varies spatially and temporally throughout the year due to differences in underlying physical and oceanographic features across its range. To test the hypothesis that the vocal activity of bearded seals is related to variations in sea ice, passive acoustic data were collected from nine locations throughout the BCB from 2008 to 2011. Recording instruments sampled on varying duty cycles ranging from 20% to 100% of each hour, and recorded frequencies up to 8192 Hz. Spectrograms of acoustic data were analyzed manually to calculate the daily proportion of hours with bearded seal calls at each sampling location, and these call activity proportions were correlated with daily satellite-derived estimates of sea ice concentration. Bearded seals were vocally active nearly year-round in the Beaufort and Chukchi Seas with peak activity occurring from mid-March to late June during the mating season. The duration of call activity in the Bering Sea was shorter, lasting typically only five months, and peaked from mid-March to May at the northernmost recorders. In all areas, call activity was significantly correlated with higher sea ice concentrations (p < 0.01). These results suggest that losses in ice cover may negatively impact bearded seals, not just by loss of habitat but also by altering the behavioral ecology of the BCB population.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3804104','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3804104"><span>Floating Ice-Algal Aggregates below Melting Arctic Sea Ice</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Assmy, Philipp; Ehn, Jens K.; Fernández-Méndez, Mar; Hop, Haakon; Katlein, Christian; Sundfjord, Arild; Bluhm, Katrin; Daase, Malin; Engel, Anja; Fransson, Agneta; Granskog, Mats A.; Hudson, Stephen R.; Kristiansen, Svein; Nicolaus, Marcel; Peeken, Ilka; Renner, Angelika H. H.; Spreen, Gunnar; Tatarek, Agnieszka; Wiktor, Jozef</p> <p>2013-01-01</p> <p>During two consecutive cruises to the Eastern Central Arctic in late summer 2012, we observed floating algal aggregates in the melt-water layer below and between melting ice floes of first-year pack ice. The macroscopic (1-15 cm in diameter) aggregates had a mucous consistency and were dominated by typical ice-associated pennate diatoms embedded within the mucous matrix. Aggregates maintained buoyancy and accumulated just above a strong pycnocline that separated meltwater and seawater layers. We were able, for the first time, to obtain quantitative abundance and biomass estimates of these aggregates. Although their biomass and production on a square metre basis was small compared to ice-algal blooms, the floating ice-algal aggregates supported high levels of biological activity on the scale of the individual aggregate. In addition they constituted a food source for the ice-associated fauna as revealed by pigments indicative of zooplankton grazing, high abundance of naked ciliates, and ice amphipods associated with them. During the Arctic melt season, these floating aggregates likely play an important ecological role in an otherwise impoverished near-surface sea ice environment. Our findings provide important observations and measurements of a unique aggregate-based habitat during the 2012 record sea ice minimum year. PMID:24204642</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24204642','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24204642"><span>Floating ice-algal aggregates below melting arctic sea ice.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Assmy, Philipp; Ehn, Jens K; Fernández-Méndez, Mar; Hop, Haakon; Katlein, Christian; Sundfjord, Arild; Bluhm, Katrin; Daase, Malin; Engel, Anja; Fransson, Agneta; Granskog, Mats A; Hudson, Stephen R; Kristiansen, Svein; Nicolaus, Marcel; Peeken, Ilka; Renner, Angelika H H; Spreen, Gunnar; Tatarek, Agnieszka; Wiktor, Jozef</p> <p>2013-01-01</p> <p>During two consecutive cruises to the Eastern Central Arctic in late summer 2012, we observed floating algal aggregates in the melt-water layer below and between melting ice floes of first-year pack ice. The macroscopic (1-15 cm in diameter) aggregates had a mucous consistency and were dominated by typical ice-associated pennate diatoms embedded within the mucous matrix. Aggregates maintained buoyancy and accumulated just above a strong pycnocline that separated meltwater and seawater layers. We were able, for the first time, to obtain quantitative abundance and biomass estimates of these aggregates. Although their biomass and production on a square metre basis was small compared to ice-algal blooms, the floating ice-algal aggregates supported high levels of biological activity on the scale of the individual aggregate. In addition they constituted a food source for the ice-associated fauna as revealed by pigments indicative of zooplankton grazing, high abundance of naked ciliates, and ice amphipods associated with them. During the Arctic melt season, these floating aggregates likely play an important ecological role in an otherwise impoverished near-surface sea ice environment. Our findings provide important observations and measurements of a unique aggregate-based habitat during the 2012 record sea ice minimum year.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150004436','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150004436"><span>Sea-Ice Freeboard Retrieval Using Digital Photon-Counting Laser Altimetry</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Farrell, Sinead L.; Brunt, Kelly M.; Ruth, Julia M.; Kuhn, John M.; Connor, Laurence N.; Walsh, Kaitlin M.</p> <p>2015-01-01</p> <p>Airborne and spaceborne altimeters provide measurements of sea-ice elevation, from which sea-ice freeboard and thickness may be derived. Observations of the Arctic ice pack by satellite altimeters indicate a significant decline in ice thickness, and volume, over the last decade. NASA's Ice, Cloud and land Elevation Satellite-2 (ICESat-2) is a next-generation laser altimeter designed to continue key sea-ice observations through the end of this decade. An airborne simulator for ICESat-2, the Multiple Altimeter Beam Experimental Lidar (MABEL), has been deployed to gather pre-launch data for mission development. We present an analysis of MABEL data gathered over sea ice in the Greenland Sea and assess the capabilities of photon-counting techniques for sea-ice freeboard retrieval. We compare freeboard estimates in the marginal ice zone derived from MABEL photon-counting data with coincident data collected by a conventional airborne laser altimeter. We find that freeboard estimates agree to within 0.03m in the areas where sea-ice floes were interspersed with wide leads, and to within 0.07m elsewhere. MABEL data may also be used to infer sea-ice thickness, and when compared with coincident but independent ice thickness estimates, MABEL ice thicknesses agreed to within 0.65m or better.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AIPC.1810i0009S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AIPC.1810i0009S"><span>Arctic melt ponds and energy balance in the climate system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sudakov, Ivan</p> <p>2017-02-01</p> <p>Elements of Earth's cryosphere, such as the summer Arctic sea ice pack, are melting at precipitous rates that have far outpaced the projections of large scale climate models. Understanding key processes, such as the evolution of melt ponds that form atop Arctic sea ice and control its optical properties, is crucial to improving climate projections. These types of critical phenomena in the cryosphere are of increasing interest as the climate system warms, and are crucial for predicting its stability. In this paper, we consider how geometrical properties of melt ponds can influence ice-albedo feedback and how it can influence the equilibria in the energy balance of the planet.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.C13C0683H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.C13C0683H"><span>Operation of a Hovercraft Scientific Platform Over Sea Ice in the Arctic Ocean Transpolar Drift (81 - 85N): The FRAM-2012 Experience</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hall, J. K.; Kristoffersen, Y.</p> <p>2013-12-01</p> <p>We have tested the feasibility of hovercraft travel through predominantly first year ice of the Transpolar Drift between 81°N - 85°N north of Svalbard. With 2-9 ridges per kilometer, our hovercraft (Griffon TD2000 Mark II), with an effective hover height of about 0.5 m, had to travel a distance 1.3 times the great circle distance between the point of origin and the final destination. Instantaneous speeds were mostly 5-7 knots. Two weeks later icebreaker Oden completed the same transit under conditions with no significant pressure in the ice at a speed mostly 1 knot higher than the hovercraft and travelled 1.2 times the great circle distance. The hovercraft spent 25 days monitoring micro-earthquake activity of the Arctic Mid-Ocean Ridge at a section of the spreading center where no seismicity has been recorded by the global seismograph network. More than ten small earthquake events per day were recorded. Visibility appears to be the most critical factor to hovercraft travel in polar pack ice. Improved control of hovercraft motion would substantially increase the potential usefulness of hovercraft in the sea ice environment. University of Bergen graduate student Gaute Hope emplacing one of the hydrophones in the triangular array used to locate small earthquakes over the Gakkel Ridge rift valley around 85N during FRAM-2012. The research hovercraft R/H SABVABAA is in the background.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.C43D0577F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.C43D0577F"><span>Sea Ice and Hydrographic Variability in the Northwest North Atlantic</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fenty, I. G.; Heimbach, P.; Wunsch, C. I.</p> <p>2010-12-01</p> <p>Sea ice anomalies in the Northwest North Atlantic's Labrador Sea are of climatic interest because of known and hypothesized feedbacks with hydrographic anomalies, deep convection/mode water formation, and Northern Hemisphere atmospheric patterns. As greenhouse gas concentrations increase, hydrographic anomalies formed in the Arctic Ocean associated with warming will propagate into the Labrador Sea via the Fram Strait/West Greenland Current and the Canadian Archipelago/Baffin Island Current. Therefore, understanding the dynamical response of sea ice in the basin to hydrographic anomalies is essential for the prediction and interpretation of future high-latitude climate change. Historically, efforts to quantify the link between the observed sea ice and hydrographic variability in the region has been limited due to in situ observation paucity and technical challenges associated with synthesizing ocean and sea ice observations with numerical models. To elaborate the relationship between sea ice and ocean variability, we create three one-year (1992-1993, 1996-1997, 2003-2004) three-dimensional time-varying reconstructions of the ocean and sea ice state in Labrador Sea and Baffin Bay. The reconstructions are syntheses of a regional coupled 32 km ocean-sea ice model with a suite of contemporary in situ and satellite hydrographic and ice data using the adjoint method. The model and data are made consistent, in a least-squares sense, by iteratively adjusting several model control variables (e.g., ocean initial and lateral boundary conditions and the atmospheric state) to minimize an uncertainty-weighted model-data misfit cost function. The reconstructions reveal that the ice pack attains a state of quasi-equilibrium in mid-March (the annual sea ice maximum) in which the total ice-covered area reaches a steady state -ice production and dynamical divergence along the coasts balances dynamical convergence and melt along the pack’s seaward edge. Sea ice advected to the marginal ice zone is mainly ablated via large sustained turbulent ocean enthalpy fluxes. The sensible heat required for these sustained fluxes is drawn from a reservoir of warm subsurface waters of subtropical origin entrained into the mixed layer via convective mixing. Analysis of ocean surface buoyancy fluxes during the period preceding quasi-equilibrium reveals that low-salinity upper ocean anomalies are required for ice to advance seaward of the Arctic Water/Irminger Water thermohaline front in the northern Labrador Sea. Anomalous low-salinity waters inhibit mixed layer deepening, shielding the advancing ice pack from the subsurface heat reservoir, and are conducive to a positive surface stratification enhancement feedback from ice meltwater release. Interestingly, the climatological location of the front coincides with the minimum observed wintertime ice extent; positive ice extent anomalies may require hydrographic preconditioning. If true, the export of low-salinity anomalies from melting Arctic ice associated with future warming may be predicted to lead positive ice extent anomalies in Labrador Sea via the positive surface stratification enhancement mechanism feedback outlined above.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1364126','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1364126"><span>CICE, The Los Alamos Sea Ice Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Hunke, Elizabeth; Lipscomb, William; Jones, Philip</p> <p></p> <p>The Los Alamos sea ice model (CICE) is the result of an effort to develop a computationally efficient sea ice component for a fully coupled atmosphere–land–ocean–ice global climate model. It was originally designed to be compatible with the Parallel Ocean Program (POP), an ocean circulation model developed at Los Alamos National Laboratory for use on massively parallel computers. CICE has several interacting components: a vertical thermodynamic model that computes local growth rates of snow and ice due to vertical conductive, radiative and turbulent fluxes, along with snowfall; an elastic-viscous-plastic model of ice dynamics, which predicts the velocity field of themore » ice pack based on a model of the material strength of the ice; an incremental remapping transport model that describes horizontal advection of the areal concentration, ice and snow volume and other state variables; and a ridging parameterization that transfers ice among thickness categories based on energetic balances and rates of strain. It also includes a biogeochemical model that describes evolution of the ice ecosystem. The CICE sea ice model is used for climate research as one component of complex global earth system models that include atmosphere, land, ocean and biogeochemistry components. It is also used for operational sea ice forecasting in the polar regions and in numerical weather prediction models.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/419613-classification-baltic-sea-ice-types-airborne-multifrequency-microwave-radiometer','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/419613-classification-baltic-sea-ice-types-airborne-multifrequency-microwave-radiometer"><span>Classification of Baltic Sea ice types by airborne multifrequency microwave radiometer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Kurvonen, L.; Hallikainen, M.</p> <p></p> <p>An airborne multifrequency radiometer (24, 34, 48, and 94 GHz, vertical polarization) was used to investigate the behavior of the brightness temperature of different sea ice types in the Gulf of Bothnia (Baltic Sea). The measurements and the main results of the analysis are presented. The measurements were made in dry and wet conditions (air temperature above and below 0 C). The angle of incidence was 45{degree} in all measurements. The following topics are evaluated: (a) frequency dependency of the brightness temperature of different ice types, (b) the capability of the multifrequency radiometer to classify ice types for winter navigationmore » purposes, and (c) the optimum measurement frequencies for mapping sea ice. The weather conditions had a significant impact on the radiometric signatures of some ice types (snow-covered compact pack ice and frost-covered new ice); the impact was the highest at 94 GHz. In all cases the overall classification accuracy was around 90% (the kappa coefficient was from 0.86 to 0.96) when the optimum channel combination (24/34 GHz and 94 GHz) was used.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19870060026&hterms=British+Petroleum&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DBritish%2BPetroleum','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19870060026&hterms=British+Petroleum&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DBritish%2BPetroleum"><span>Shuttle Imaging Radar B (SIR-B) Weddell Sea ice observations - A comparison of SIR-B and scanning multichannel microwave radiometer ice concentrations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Martin, Seelye; Holt, Benjamin; Cavalieri, Donald J.; Squire, Vernon</p> <p>1987-01-01</p> <p>Ice concentrations over the Weddell Sea were studied using SIR-B data obtained during the October 1984 mission, with special attention given to the effect of ocean waves on the radar return at the ice edge. Sea ice concentrations were derived from the SIR-B data using two image processing methods: the classification scheme at JPL and the manual classification method at Scott Polar Research Institute (SPRI), England. The SIR ice concentrations were compared with coincident concentrations from the Nimbus-7 SMMR. For concentrations greater than 40 percent, which was the smallest concentration observed jointly by SIR-B and the SMMR, the mean difference between the two data sets for 12 points was 2 percent. A comparison between the JPL and the SPRI SIR-B algorithms showed that the algorithms agree to within 1 percent in the interior ice pack, but the JPL algorithm gives slightly greater concentrations at the ice edge (due to the fact that the algorithm is affected by the wind waves in these areas).</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_12 --> <div id="page_13" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="241"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ApJ...837...56M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ApJ...837...56M"><span>Identification of Accretion as Grain Growth Mechanism in Astrophysically Relevant Water&ice Dusty Plasma Experiment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Marshall, Ryan S.; Chai, Kil-Byoung; Bellan, Paul M.</p> <p>2017-03-01</p> <p>The grain growth process in the Caltech water-ice dusty plasma experiment has been studied using a high-speed camera and a long-distance microscope lens. It is observed that (I) the ice grain number density decreases fourfold as the average grain major axis increases from 20 to 80 μm, (II) the major axis length has a log-normal distribution rather than a power-law dependence, and (III) no collisions between ice grains are apparent. The grains have a large negative charge resulting in strong mutual repulsion and this, combined with the fractal character of the ice grains, prevents them from agglomerating. In order for the grain kinetic energy to be sufficiently small to prevent collisions between ice grains, the volumetric packing factor (I.e., ratio of the actual volume to the volume of a circumscribing ellipsoid) of the ice grains must be less than ˜0.1 depending on the exact relative velocity of the grains in question. Thus, it is concluded that direct accretion of water molecules is very likely to dominate the observed ice grain growth.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950038689&hterms=glacier+melt&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dglacier%2Bmelt','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950038689&hterms=glacier+melt&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dglacier%2Bmelt"><span>Radar measurements of melt zones on the Greenland Ice Sheet</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Jezek, Kenneth C.; Gogineni, Prasad; Shanableh, M.</p> <p>1994-01-01</p> <p>Surface-based microwave radar measurements were performed at a location on the western flank of the Greenland Ice Sheet. Here, firn metamorphasis is dominated by seasonal melt, which leads to marked contrasts in the vertical structure of winter and summer firn. This snow regime is also one of the brightest radar targets on Earth with an average backscatter coefficient of 0 dB at 5.3 GHz and an incidence angle of 25 deg. By combining detailed observations of firn physical properties with ranging radar measurements we find that the glaciological mechanism associated with this strong electromagnetic response is summer ice lens formation within the previous winter's snow pack. This observation has important implications for monitoring and understanding changes in ice sheet volume using spaceborne microwave sensors.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5131627','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5131627"><span>The effectiveness of cooling conditions on temperature of canine EDTA whole blood samples</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Sun, Xiaocun; Flatland, Bente</p> <p>2016-01-01</p> <p>Background Preanalytic factors such as time and temperature can have significant effects on laboratory test results. For example, ammonium concentration will increase 31% in blood samples stored at room temperature for 30 min before centrifugation. To reduce preanalytic error, blood samples may be placed in precooled tubes and chilled on ice or in ice water baths; however, the effectiveness of these modalities in cooling blood samples has not been formally evaluated. The purpose of this study was to evaluate the effectiveness of various cooling modalities on reducing temperature of EDTA whole blood samples. Methods Pooled samples of canine EDTA whole blood were divided into two aliquots. Saline was added to one aliquot to produce a packed cell volume (PCV) of 40% and to the second aliquot to produce a PCV of 20% (simulated anemia). Thirty samples from each aliquot were warmed to 37.7 °C and cooled in 2 ml allotments under one of three conditions: in ice, in ice after transfer to a precooled tube, or in an ice water bath. Temperature of each sample was recorded at one minute intervals for 15 min. Results Within treatment conditions, sample PCV had no significant effect on cooling. Cooling in ice water was significantly faster than cooling in ice only or transferring the sample to a precooled tube and cooling it on ice. Mean temperature of samples cooled in ice water was significantly lower at 15 min than mean temperatures of those cooled in ice, whether or not the tube was precooled. By 4 min, samples cooled in an ice water bath had reached mean temperatures less than 4 °C (refrigeration temperature), while samples cooled in other conditions remained above 4.0 °C for at least 11 min. For samples with a PCV of 40%, precooling the tube had no significant effect on rate of cooling on ice. For samples with a PCV of 20%, transfer to a precooled tube resulted in a significantly faster rate of cooling than direct placement of the warmed tube onto ice. Discussion Canine EDTA whole blood samples cool most rapidly and to a greater degree when placed in an ice-water bath rather than in ice. Samples stored on ice water can rapidly drop below normal refrigeration temperatures; this should be taken into consideration when using this cooling modality. PMID:27917319</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GMD....10.3105P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GMD....10.3105P"><span>Sea-ice evaluation of NEMO-Nordic 1.0: a NEMO-LIM3.6-based ocean-sea-ice model setup for the North Sea and Baltic Sea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pemberton, Per; Löptien, Ulrike; Hordoir, Robinson; Höglund, Anders; Schimanke, Semjon; Axell, Lars; Haapala, Jari</p> <p>2017-08-01</p> <p>The Baltic Sea is a seasonally ice-covered marginal sea in northern Europe with intense wintertime ship traffic and a sensitive ecosystem. Understanding and modeling the evolution of the sea-ice pack is important for climate effect studies and forecasting purposes. Here we present and evaluate the sea-ice component of a new NEMO-LIM3.6-based ocean-sea-ice setup for the North Sea and Baltic Sea region (NEMO-Nordic). The setup includes a new depth-based fast-ice parametrization for the Baltic Sea. The evaluation focuses on long-term statistics, from a 45-year long hindcast, although short-term daily performance is also briefly evaluated. We show that NEMO-Nordic is well suited for simulating the mean sea-ice extent, concentration, and thickness as compared to the best available observational data set. The variability of the annual maximum Baltic Sea ice extent is well in line with the observations, but the 1961-2006 trend is underestimated. Capturing the correct ice thickness distribution is more challenging. Based on the simulated ice thickness distribution we estimate the undeformed and deformed ice thickness and concentration in the Baltic Sea, which compares reasonably well with observations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28011294','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28011294"><span>Sea-ice eukaryotes of the Gulf of Finland, Baltic Sea, and evidence for herbivory on weakly shade-adapted ice algae.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Majaneva, Markus; Blomster, Jaanika; Müller, Susann; Autio, Riitta; Majaneva, Sanna; Hyytiäinen, Kirsi; Nagai, Satoshi; Rintala, Janne-Markus</p> <p>2017-02-01</p> <p>To determine community composition and physiological status of early spring sea-ice organisms, we collected sea-ice, slush and under-ice water samples from the Baltic Sea. We combined light microscopy, HPLC pigment analysis and pyrosequencing, and related the biomass and physiological status of sea-ice algae with the protistan community composition in a new way in the area. In terms of biomass, centric diatoms including a distinct Melosira arctica bloom in the upper intermediate section of the fast ice, dinoflagellates, euglenoids and the cyanobacterium Aphanizomenon sp. predominated in the sea-ice sections and unidentified flagellates in the slush. Based on pigment analyses, the ice-algal communities showed no adjusted photosynthetic pigment pools throughout the sea ice, and the bottom-ice communities were not shade-adapted. The sea ice included more characteristic phototrophic taxa (49%) than did slush (18%) and under-ice water (37%). Cercozoans and ciliates were the richest taxon groups, and the differences among the communities arose mainly from the various phagotrophic protistan taxa inhabiting the communities. The presence of pheophytin a coincided with an elevated ciliate biomass and read abundance in the drift ice and with a high Eurytemora affinis read abundance in the pack ice, indicating that ciliates and Eurytemora affinis were grazing on algae. Copyright © 2016 Elsevier GmbH. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20070021400&hterms=relationships&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DTitle%26N%3D0%26No%3D50%26Ntt%3Drelationships','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20070021400&hterms=relationships&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DTitle%26N%3D0%26No%3D50%26Ntt%3Drelationships"><span>Spatial Variability of Barrow-Area Shore-Fast Sea Ice and Its Relationships to Passive Microwave Emissivity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Maslanik, J. A.; Rivas, M. Belmonte; Holmgren, J.; Gasiewski, A. J.; Heinrichs, J. F.; Stroeve, J. C.; Klein, M.; Markus, T.; Perovich, D. K.; Sonntag, J. G.; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20070021400'); toggleEditAbsImage('author_20070021400_show'); toggleEditAbsImage('author_20070021400_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20070021400_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20070021400_hide"></p> <p>2006-01-01</p> <p>Aircraft-acquired passive microwave data, laser radar height observations, RADARSAT synthetic aperture radar imagery, and in situ measurements obtained during the AMSR-Ice03 experiment are used to investigate relationships between microwave emission and ice characteristics over several space scales. The data fusion allows delineation of the shore-fast ice and pack ice in the Barrow area, AK, into several ice classes. Results show good agreement between observed and Polarimetric Scanning Radiometer (PSR)-derived snow depths over relatively smooth ice, with larger differences over ridged and rubbled ice. The PSR results are consistent with the effects on snow depth of the spatial distribution and nature of ice roughness, ridging, and other factors such as ice age. Apparent relationships exist between ice roughness and the degree of depolarization of emission at 10,19, and 37 GHz. This depolarization .would yield overestimates of total ice concentration using polarization-based algorithms, with indications of this seen when the NT-2 algorithm is applied to the PSR data. Other characteristics of the microwave data, such as effects of grounding of sea ice and large contrast between sea ice and adjacent land, are also apparent in the PSR data. Overall, the results further demonstrate the importance of macroscale ice roughness conditions such as ridging and rubbling on snow depth and microwave emissivity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005APS..MARA34005M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005APS..MARA34005M"><span>First Principles Simulations of Ice Nucleation at Metal Surfaces</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Michaelides, Angelos</p> <p>2005-03-01</p> <p>Ice nucleation at solid surfaces is of relevance to countless scientific and technological processes. In particular the nucleation of ice nano-crystals on metal surfaces is often a key first step in cloud formation and corrosion [1]. Yet unfortunately this remains one of the most poorly understood natural phenomena; severely lacking in atomic level understanding. Here, we discuss detailed density functional theory studies aimed at putting our understanding of ice nucleation at metals on a much firmer footing. Specifically the properties of H2O hexamers - the smallest `building blocks' of ice - adsorbed on a number of close-packed transition metal surfaces have been examined. We find that the competing influences of substrate reactivity and hexamer-substrate epitaxial mismatch conspire to yield a rich variety of (novel) hexameric ice structures, some of which have been observed by recent scanning tunnelling microscopy experiments [2]. [1] H.R. Pruppacher and J.D. Klett, Microphysics of Clouds and Precipitation, (Kluwer, Dordrecht, 2003). [2] K. Morgenstern, et al., (To be published).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.C33E..03G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.C33E..03G"><span>Models and observations of Arctic melt ponds</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Golden, K. M.</p> <p>2016-12-01</p> <p>During the Arctic melt season, the sea ice surface undergoes a striking transformation from vast expanses of snow covered ice to complex mosaics of ice and melt ponds. Sea ice albedo, a key parameter in climate modeling, is largely determined by the complex evolution of melt pond configurations. In fact, ice-albedo feedback has played a significant role in the recent declines of the summer Arctic sea ice pack. However, understanding melt pond evolution remains a challenge to improving climate projections. It has been found that as the ponds grow and coalesce, the fractal dimension of their boundaries undergoes a transition from 1 to about 2, around a critical length scale of 100 square meters in area. As the ponds evolve they take complex, self-similar shapes with boundaries resembling space-filling curves. I will outline how mathematical models of composite materials and statistical physics, such as percolation and Ising models, are being used to describe this evolution and predict key geometrical parameters that agree very closely with observations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25810206','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25810206"><span>Square ice in graphene nanocapillaries.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Algara-Siller, G; Lehtinen, O; Wang, F C; Nair, R R; Kaiser, U; Wu, H A; Geim, A K; Grigorieva, I V</p> <p>2015-03-26</p> <p>Bulk water exists in many forms, including liquid, vapour and numerous crystalline and amorphous phases of ice, with hexagonal ice being responsible for the fascinating variety of snowflakes. Much less noticeable but equally ubiquitous is water adsorbed at interfaces and confined in microscopic pores. Such low-dimensional water determines aspects of various phenomena in materials science, geology, biology, tribology and nanotechnology. Theory suggests many possible phases for adsorbed and confined water, but it has proved challenging to assess its crystal structure experimentally. Here we report high-resolution electron microscopy imaging of water locked between two graphene sheets, an archetypal example of hydrophobic confinement. The observations show that the nanoconfined water at room temperature forms 'square ice'--a phase having symmetry qualitatively different from the conventional tetrahedral geometry of hydrogen bonding between water molecules. Square ice has a high packing density with a lattice constant of 2.83 Å and can assemble in bilayer and trilayer crystallites. Molecular dynamics simulations indicate that square ice should be present inside hydrophobic nanochannels independently of their exact atomic nature.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015Natur.519..443A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015Natur.519..443A"><span>Square ice in graphene nanocapillaries</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Algara-Siller, G.; Lehtinen, O.; Wang, F. C.; Nair, R. R.; Kaiser, U.; Wu, H. A.; Geim, A. K.; Grigorieva, I. V.</p> <p>2015-03-01</p> <p>Bulk water exists in many forms, including liquid, vapour and numerous crystalline and amorphous phases of ice, with hexagonal ice being responsible for the fascinating variety of snowflakes. Much less noticeable but equally ubiquitous is water adsorbed at interfaces and confined in microscopic pores. Such low-dimensional water determines aspects of various phenomena in materials science, geology, biology, tribology and nanotechnology. Theory suggests many possible phases for adsorbed and confined water, but it has proved challenging to assess its crystal structure experimentally. Here we report high-resolution electron microscopy imaging of water locked between two graphene sheets, an archetypal example of hydrophobic confinement. The observations show that the nanoconfined water at room temperature forms `square ice'--a phase having symmetry qualitatively different from the conventional tetrahedral geometry of hydrogen bonding between water molecules. Square ice has a high packing density with a lattice constant of 2.83 Å and can assemble in bilayer and trilayer crystallites. Molecular dynamics simulations indicate that square ice should be present inside hydrophobic nanochannels independently of their exact atomic nature.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19740002260','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19740002260"><span>Microwave maps of the polar ice of the earth. [from Nimbus-5 satellite</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gloersen, P.; Wilheit, T. T.; Chang, T. C.; Nordberg, W.; Campbell, W. J.</p> <p>1973-01-01</p> <p>Synoptic views of the entire polar regions of earth were obtained free of the usual persistent cloud cover using a scanning microwave radiometer operating at a wavelength of 1.55 cm on board the Nimbus-5 satellite. Three different views at each pole are presented utilizing data obtained at approximately one-month intervals during the winter of 1972-1973. The major discoveries resulting from an analysis of these data are as follows: (1) Large discrepancies exist between the climatic norm ice cover depicted in various atlases and the actual extent of the canopies. (2) The distribution of multiyear ice in the north polar region is markedly different from that predicted by existing ice dynamics models. (3) Irregularities in the edge of the Antarctic sea ice pack occur that have neither been observed previously nor anticipated. (4) The brightness temperatures of the Greenland and Antarctica glaciers show interesting contours probably related to the ice and snow morphologic structure.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title9-vol1/pdf/CFR-2010-title9-vol1-sec147-15.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title9-vol1/pdf/CFR-2010-title9-vol1-sec147-15.pdf"><span>9 CFR 147.15 - Laboratory procedure recommended for the bacteriological examination of mycoplasma reactors. 11</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-01-01</p> <p>..., Chairman, Charles H. Domermuth, H. Graham Purchase, James E. Williams.) 1980, pp. 40-42, Creative Printing... may be shipped in MBM with ice packs if shipment will be in transit less than 2-3 days. Longer...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012TCD.....6..505F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012TCD.....6..505F"><span>Quantification of ikaite in Antarctic sea ice</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fischer, M.; Thomas, D. N.; Krell, A.; Nehrke, G.; Göttlicher, J.; Norman, L.; Riaux-Gobin, C.; Dieckmann, G. S.</p> <p>2012-02-01</p> <p>Calcium carbonate precipitation in sea ice can increase pCO2 during precipitation in winter and decrease pCO2 during dissolution in spring. CaCO3 precipitation in sea ice is thought to potentially drive significant CO2 uptake by the ocean. However, little is known about the quantitative spatial and temporal distribution of CaCO3 within sea ice. This is the first quantitative study of hydrous calcium carbonate, as ikaite, in sea ice and discusses its potential significance for the carbon cycle in polar oceans. Ice cores and brine samples were collected from pack and land fast sea ice between September and December 2007 during an expedition in the East Antarctic and another off Terre Adélie, Antarctica. Samples were analysed for CaCO3, Salinity, DOC, DON, Phosphate, and total alkalinity. A relationship between the measured parameters and CaCO3 precipitation could not be observed. We found calcium carbonate, as ikaite, mostly in the top layer of sea ice with values up to 126 mg ikaite per liter melted sea ice. This potentially represents a contribution between 0.12 and 9 Tg C to the annual carbon flux in polar oceans. The horizontal distribution of ikaite in sea ice was heterogenous. We also found the precipitate in the snow on top of the sea ice.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSHE34A1451P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSHE34A1451P"><span>Effects of an Arctic under-ice phytoplankton bloom on bio-optical properties of surface waters during the Norwegian Young Sea Ice Cruise (N-ICE2015)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pavlov, A. K.; Granskog, M. A.; Hudson, S. R.; Taskjelle, T.; Kauko, H.; Hamre, B.; Assmy, P.; Mundy, C. J.; Nicolaus, M.; Kowalczuk, P.; Stedmon, C. A.; Fernandez Mendez, M.</p> <p>2016-02-01</p> <p>A thinner and younger Arctic sea-ice cover has led to an increase in solar light transmission into the surface ocean, especially during late spring and summer. A description of the seasonal evolution of polar surface water optical properties is essential, in order to understand how changes are affecting light availability for photosynthetic organisms and the surface ocean energy budget. The development of the bio-optical properties of Arctic surface waters under predominantly first-year sea ice in the southern Nansen Basin were studied from January to June 2015 during the Norwegian Young Sea Ice Cruise (N-ICE2015). Observations included inherent optical properties, absorption by colored dissolved organic matter and particles, as well as radiometric measurements. We documented a rapid transition from relatively clear and transparent waters in winter to turbid waters in late May and June. This transition was associated with a strong under-ice phytoplankton bloom detected first under the compact ice pack and then monitored during drift across the marginal ice zone. We discuss potential implications of underwater light availability for photosynthesis, heat redistribution in the upper ocean layer, and energy budget of the sea-ice - ocean system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22661323-identification-accretion-grain-growth-mechanism-astrophysically-relevant-waterice-dusty-plasma-experiment','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22661323-identification-accretion-grain-growth-mechanism-astrophysically-relevant-waterice-dusty-plasma-experiment"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Marshall, Ryan S.; Chai, Kil-Byoung; Bellan, Paul M.</p> <p></p> <p>The grain growth process in the Caltech water–ice dusty plasma experiment has been studied using a high-speed camera and a long-distance microscope lens. It is observed that (i) the ice grain number density decreases fourfold as the average grain major axis increases from 20 to 80 μ m, (ii) the major axis length has a log-normal distribution rather than a power-law dependence, and (iii) no collisions between ice grains are apparent. The grains have a large negative charge resulting in strong mutual repulsion and this, combined with the fractal character of the ice grains, prevents them from agglomerating. In ordermore » for the grain kinetic energy to be sufficiently small to prevent collisions between ice grains, the volumetric packing factor (i.e., ratio of the actual volume to the volume of a circumscribing ellipsoid) of the ice grains must be less than ∼0.1 depending on the exact relative velocity of the grains in question. Thus, it is concluded that direct accretion of water molecules is very likely to dominate the observed ice grain growth.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20040050581','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20040050581"><span>Improving the Simulation of Sea Ice Lead Conditions and Turbulent Fluxes Using RGPS Products and Merged RADARSAT, AVHRR and MODIS Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Maslanik, James A.</p> <p>2004-01-01</p> <p>The importance of sea ice leads in the ice-ocean-atmosphere system lies in the fact that each of the boxes in the 'surface processes' interface in this diagram is closely linked to lead conditions. For example, heat, moisture and salt exchange between the Ocean and atmosphere within the ice pack occur nearly entirely through leads. The shear, divergence and convergence associated with lead formation and closure alter surface and basal roughness and topography, which in turn affects momentum transfer in the atmosphere and ocean boundary layers, and modifies the accumulation of snow on the ice surface, which then affects heat conduction and summertime albedo. In addition to providing openings for loss of heat and moisture fluxes to the atmosphere, leads absorb solar energy, which is used to melt ice and is transmitting to the underlying ocean. Given that leads dominate the ice-ocean interface in this manner, then it stands to reason that focusing on lead treatments within models can identify performance limitations of models and yield routes for significant improvements.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.A23I..05F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.A23I..05F"><span>Arctic Sea Salt Aerosol from Blowing Snow and Sea Ice Surfaces - a Missing Natural Source in Winter</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Frey, M. M.; Norris, S. J.; Brooks, I. M.; Nishimura, K.; Jones, A. E.</p> <p>2015-12-01</p> <p>Atmospheric particles in the polar regions consist mostly of sea salt aerosol (SSA). SSA plays an important role in regional climate change through influencing the surface energy balance either directly or indirectly via cloud formation. SSA irradiated by sunlight also releases very reactive halogen radicals, which control concentrations of ozone, a pollutant and greenhouse gas. However, models under-predict SSA concentrations in the Arctic during winter pointing to a missing source. It has been recently suggested that salty blowing snow above sea ice, which is evaporating, to be that source as it may produce more SSA than equivalent areas of open ocean. Participation in the 'Norwegian Young Sea Ice Cruise (N-ICE 2015)' on board the research vessel `Lance' allowed to test this hypothesis in the Arctic sea ice zone during winter. Measurements were carried out from the ship frozen into the pack ice North of 80º N during February to March 2015. Observations at ground level (0.1-2 m) and from the ship's crows nest (30 m) included number concentrations and size spectra of SSA (diameter range 0.3-10 μm) as well as snow particles (diameter range 50-500 μm). During and after blowing snow events significant SSA production was observed. In the aerosol and snow phase sulfate is fractionated with respect to sea water, which confirms sea ice surfaces and salty snow, and not the open ocean, to be the dominant source of airborne SSA. Aerosol shows depletion in bromide with respect to sea water, especially after sunrise, indicating photochemically driven release of bromine. We discuss the SSA source strength from blowing snow in light of environmental conditions (wind speed, atmospheric turbulence, temperature and snow salinity) and recommend improved model parameterisations to estimate regional aerosol production. N-ICE 2015 results are then compared to a similar study carried out previously in the Weddell Sea during the Antarctic winter.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950048358&hterms=Frost&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DFrost','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950048358&hterms=Frost&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DFrost"><span>Measurements of thermal infrared spectral reflectance of frost, snow, and ice</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Salisbury, John W.; D'Aria, Dana M.; Wald, Andrew</p> <p>1994-01-01</p> <p>Because much of Earth's surface is covered by frost, snow, and ice, the spectral emissivities of these materials are a significant input to radiation balance calculations in global atmospheric circulation and climate change models. Until now, however, spectral emissivities of frost and snow have been calculated from the optical constants of ice. We have measured directional hemispherical reflectance spectra of frost, snow, and ice from which emissivities can be predicted using Kirchhoff's law (e = 1-R). These measured spectra show that contrary to conclusions about the emissivity of snow drawn from previously calculated spectra, snow emissivity departs significantly from blackbody behavior in the 8-14 micrometer region of the spectrum; snow emissivity decreases with both increasing particle size and increasing density due to packing or grain welding; while snow emissivity increases due to the presence of meltwater.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23222446','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23222446"><span>Females roam while males patrol: divergence in breeding season movements of pack-ice polar bears (Ursus maritimus).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Laidre, Kristin L; Born, Erik W; Gurarie, Eliezer; Wiig, Øystein; Dietz, Rune; Stern, Harry</p> <p>2013-02-07</p> <p>Intraspecific differences in movement behaviour reflect different tactics used by individuals or sexes to favour strategies that maximize fitness. We report movement data collected from n = 23 adult male polar bears with novel ear-attached transmitters in two separate pack ice subpopulations over five breeding seasons. We compared movements with n = 26 concurrently tagged adult females, and analysed velocities, movement tortuosity, range sizes and habitat selection with respect to sex, reproductive status and body mass. There were no differences in 4-day displacements or sea ice habitat selection for sex or population. By contrast, adult females in all years and both populations had significantly more linear movements and significantly larger breeding range sizes than males. We hypothesized that differences were related to encounter rates, and used observed movement metrics to parametrize a simulation model of male-male and male-female encounter. The simulation showed that the more tortuous movement of males leads to significantly longer times to male-male encounter, while having little impact on male-female encounter. By contrast, linear movements of females are consistent with a prioritized search for sparsely distributed prey. These results suggest a possible mechanism for explaining the smaller breeding range sizes of some solitary male carnivores compared to females.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011EOSTr..92...80K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011EOSTr..92...80K"><span>Research Spotlight: Narwhals document continued warming of Baffin Bay</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kumar, Mohi</p> <p>2011-03-01</p> <p>Baffin Bay, situated between northern Greenland and Canada, is a major gateway between waters from the North Atlantic and Arctic oceans. Dynamics within the bay help govern how much water from the Arctic flows south and sinks to form North Atlantic Deep Water, a deep current that drives ocean circulation on a global scale. Unfortunately, monitoring the deep reaches of Baffin Bay throughout the year is difficult—most oceanographic data are collected in the summer when the area is ice free. To overcome this inability to collect data in harsh winter conditions, Laidre et al. hit upon a novel solution: mounting instruments on narwhals to collect temperature and depth data. Narwhals, a top predator in this frigid ecosystem, make annual migrations from summering grounds in the Canadian High Arctic and western Greenland to wintering grounds in the dense offshore pack ice of Baffin Bay. Moreover, narwhals, which rank among the deepest-diving whales in the world, dive extensively and repeatedly to depths exceeding 1800 meters under pack ice to reach their major food source, the flatfish that swarm on the seafloor of Baffin Bay. Narwhal dives are nearly vertical, making this whale an ideal platform on which to mount surveying instruments. (Journal of Geophysical Research-Oceans, doi:10.1029/2009JC005820, 2010)</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_13 --> <div id="page_14" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="261"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA01737.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA01737.html"><span>Space Radar Image of Weddell Sea, Antarctica</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>1999-05-01</p> <p>This Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar color composite shows a portion of the Weddell Sea, which is adjacent to the continent of Antarctica. The image shows extensive coverage of first-year sea ice mixtures and patches of open water inside the ice margin. The image covers a 100 kilometer by 30 kilometer (62 mile by 18.5 mile) region of the southern ocean, centered at approximately 57 degrees south latitude and 3 degrees east longitude, which was acquired on October 3, 1994. Data used to create this image were obtained using the L-band (horizontally transmitted and vertically received) in red; the L-band (horizontally transmitted and received) in green; and the C-band (horizontally transmitted and received) in blue. The sea ice, which appears rust-brown in the image, is composed of loosely packed floes from approximately 1 meter to 2 meters (3 feet to 6.5 feet) thick and ranging from 1 meter to 20 meters (3 feet to 65.5 feet) in diameter. Large patches of open water, shown as turquoise blue, are scattered throughout the area, which is typical for ice margins experiencing off-ice winds. The thin, well-organized lines clearly visible in the ice pack are caused by radar energy reflected by floes riding the crest of ocean swells. The wispy, black features seen throughout the image represent areas where new ice is forming. Sea ice, because it acts as an insulator, reduces the loss of heat between the relatively warm ocean and cold atmosphere. This interaction is an important component of the global climate system. Because of the unique combination of winds, currents and temperatures found in this region, ice can extend many hundreds of kilometers north of Antarctica each winter, which classifies the Weddell Sea as one of nature's greatest ice-making engines. During the formation of sea ice, great quantities of salt are expelled from the frozen water. The salt increases the density of the upper layer of sea water, which then sinks to great depths. Oceanographers believe this process forms most of the oceans' deep water. Sea ice covering all of the southern oceans, including the Weddell Sea, typically reaches its most northerly extent in about September. As periods of daylight become gradually longer in the Southern Hemisphere, ice formation stops and the ice edge retreats southward. By February, most of the sea ice surrounding Antarctica disappears. Imaging radar is extremely useful for studying the polar regions because of the long periods of darkness and extensive cloud cover. The multiple frequencies of the SIR-C/X-SAR instruments allow further study into ways of improving the separation of the various thickness ranges of sea ice, which are vital to understanding the heat balance in the ice, ocean and atmospheric system. http://photojournal.jpl.nasa.gov/catalog/PIA01737</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006AnGla..44..253U','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006AnGla..44..253U"><span>Ship-borne electromagnetic induction sounding of sea-ice thickness in the southern Sea of Okhotsk</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Uto, Shotaro; Toyota, Takenobu; Shimoda, Haruhito; Tateyama, Kazutaka; Shirasawa, Kunio</p> <p></p> <p>Recent observations have revealed that dynamical thickening is dominant in the growth process of sea ice in the southern Sea of Okhotsk. That indicates the importance of understanding the nature of thick deformed ice in this area. The objective of the present paper is to establish a ship-based method for observing the thickness of deformed ice with reasonable accuracy. Since February 2003, one of the authors has engaged in the core sampling using a small basket from the icebreaker Soya. Based on these results, we developed a new model which expressed the internal structure of pack ice in the southern Sea of Okhotsk, as a one-dimensional multilayered structure. Since 2004, the electromagnetic (EM) inductive sounding of sea-ice thickness has been conducted on board Soya. By combining the model and theoretical calculations, a new algorithm was developed for transforming the output of the EM inductive instrument to ice + snow thickness (total thickness). Comparison with total thickness by drillhole observations showed fair agreement. The probability density functions of total thickness in 2004 and 2005 showed some difference, which reflected the difference of fractions of thick deformed ice.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28708127','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28708127"><span>An active bacterial community linked to high chl-a concentrations in Antarctic winter-pack ice and evidence for the development of an anaerobic sea-ice bacterial community.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Eronen-Rasimus, Eeva; Luhtanen, Anne-Mari; Rintala, Janne-Markus; Delille, Bruno; Dieckmann, Gerhard; Karkman, Antti; Tison, Jean-Louis</p> <p>2017-10-01</p> <p>Antarctic sea-ice bacterial community composition and dynamics in various developmental stages were investigated during the austral winter in 2013. Thick snow cover likely insulated the ice, leading to high (<4 μg l -1 ) chlorophyll-a (chl-a) concentrations and consequent bacterial production. Typical sea-ice bacterial genera, for example, Octadecabacter, Polaribacter and Glaciecola, often abundant in spring and summer during the sea-ice algal bloom, predominated in the communities. The variability in bacterial community composition in the different ice types was mainly explained by the chl-a concentrations, suggesting that as in spring and summer sea ice, the sea-ice bacteria and algae may also be coupled during the Antarctic winter. Coupling between the bacterial community and sea-ice algae was further supported by significant correlations between bacterial abundance and production with chl-a. In addition, sulphate-reducing bacteria (for example, Desulforhopalus) together with odour of H 2 S were observed in thick, apparently anoxic ice, suggesting that the development of the anaerobic bacterial community may occur in sea ice under suitable conditions. In all, the results show that bacterial community in Antarctic sea ice can stay active throughout the winter period and thus possible future warming of sea ice and consequent increase in bacterial production may lead to changes in bacteria-mediated processes in the Antarctic sea-ice zone.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23574610','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23574610"><span>Impact of early and late winter icing events on sub-arctic dwarf shrubs.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Preece, C; Phoenix, G K</p> <p>2014-01-01</p> <p>Polar regions are predicted to undergo large increases in winter temperature and an increased frequency of freeze-thaw cycles, which can cause ice layers in the snow pack and ice encasement of vegetation. Early or late winter timing of ice encasement could, however, modify the extent of damage caused to plants. To determine impacts of the date of ice encasement, a novel field experiment was established in sub-arctic Sweden, with icing events simulated in January and March 2008 and 2009. In the subsequent summers, reproduction, phenology, growth and mortality, as well as physiological indicators of leaf damage were measured in the three dominant dwarf shrubs: Vaccinium uliginosum, Vaccinium vitis-idaea and Empetrum nigrum. It was hypothesised that January icing would be more damaging compared to March icing due to the longer duration of ice encasement. Following 2 years of icing, E. nigrum berry production was 83% lower in January-iced plots compared to controls, and V. vitis-idaea electrolyte leakage was increased by 69%. Conversely, electrolyte leakage of E. nigrum was 25% lower and leaf emergence of V. vitis-idaea commenced 11 days earlier in March-iced plots compared to control plots in 2009. There was no effect of icing on any of the other parameters measured, indicating that overall these study species have moderate to high tolerance to ice encasement. Even much longer exposure under the January icing treatment does not clearly increase damage. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.C31D..03C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.C31D..03C"><span>Modulation of Sea Ice Melt Onset and Retreat in the Laptev Sea by the Timing of Snow Retreat in the West Siberian Plain</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Crawford, A. D.; Stroeve, J.; Serreze, M. C.; Rajagopalan, B.; Horvath, S.</p> <p>2017-12-01</p> <p>As much of the Arctic Ocean transitions to ice-free conditions in summer, efforts have increased to improve seasonal forecasts of not only sea ice extent, but also the timing of melt onset and retreat. This research investigates the potential of regional terrestrial snow retreat in spring as a predictor for subsequent sea ice melt onset and retreat in Arctic seas. One pathway involves earlier snow retreat enhancing atmospheric moisture content, which increases downwelling longwave radiation over sea ice cover downstream. Another pathway involves manipulation of jet stream behavior, which may affect the sea ice pack via both dynamic and thermodynamic processes. Although several possible connections between snow and sea ice regions are identified using a mutual information criterion, the physical mechanisms linking snow retreat and sea ice phenology are most clearly exemplified by variability of snow retreat in the West Siberian Plain impacting melt onset and sea ice retreat in the Laptev Sea. The detrended time series of snow retreat in the West Siberian Plain explains 26% of the detrended variance in Laptev Sea melt onset (29% for sea ice retreat). With modest predictive skill and an average time lag of 53 (88) days between snow retreat and sea ice melt onset (retreat), West Siberian Plains snow retreat is useful for refining seasonal sea ice predictions in the Laptev Sea.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.7271O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.7271O"><span>Modeling Wave-Ice Interactions in the Marginal Ice Zone</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Orzech, Mark; Shi, Fengyan; Bateman, Sam; Veeramony, Jay; Calantoni, Joe</p> <p>2015-04-01</p> <p>The small-scale (O(m)) interactions between waves and ice floes in the marginal ice zone (MIZ) are investigated with a coupled model system. Waves are simulated with the non-hydrostatic finite-volume model NHWAVE (Ma et al., 2012) and ice floes are represented as bonded collections of smaller particles with the discrete element system LIGGGHTS (Kloss et al., 2012). The physics of fluid and ice are recreated as authentically as possible, to allow the coupled system to supplement and/or substitute for more costly and demanding field experiments. The presentation will first describe the development and validation of the coupled system, then discuss the results of a series of virtual experiments in which ice floe and wave characteristics are varied to examine their effects on energy dissipation, MIZ floe size distribution, and ice pack retreat rates. Although Wadhams et al. (1986) suggest that only a small portion (roughly 10%) of wave energy entering the MIZ is reflected, dissipation mechanisms for the remaining energy have yet to be delineated or measured. The virtual experiments are designed to focus on specific properties and processes - such as floe size and shape, collision and fracturing events, and variations in wave climate - and measure their relative roles the transfer of energy and momentum from waves to ice. Questions to be examined include: How is energy dissipated by ice floe collisions, fracturing, and drag, and how significant is the wave attenuation associated with each process? Do specific wave/floe length scale ratios cause greater wave attenuation? How does ice material strength affect the rate of wave energy loss? The coupled system will ultimately be used to test and improve upon wave-ice parameterizations for large-scale climate models. References: >Kloss, C., C. Goniva, A. Hager, S. Amberger, and S. Pirker (2012). Models, algorithms and validation for opensource DEM and CFD-DEM. Progress in Computational Fluid Dynamics 12(2/3), 140-152. >Ma, G., F. Shi, and J.T. Kirby (2012). Shock-capturing non-hydrostatic model for fully dispersive surface wave processes. Ocean Modelling 43-44, 22-35. >Wadhams P., V. Squire, J.A. Ewing, and R.W. Pascal (1986). The effect of the marginal ice zone on the directional wave spectrum of the ocean. J. Phys. Oceanog., 16(2), 358-376.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title49-vol2/pdf/CFR-2011-title49-vol2-sec173-4a.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title49-vol2/pdf/CFR-2011-title49-vol2-sec173-4a.pdf"><span>49 CFR 173.4a - Excepted quantities.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-10-01</p> <p>... of withstanding without leakage the pressure differential specified in § 173.27(c) of this part. (b... ice), and lithium batteries and cells. (c) Inner packaging limits. The maximum quantity of hazardous..., rigid outer packaging. (5) Placement of the material in the package or packing different materials in...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19770014422','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19770014422"><span>Design, development, and fabrication of a prototype ice pack heat sink subsystem. Potassium bifluoride/water solution investigations. [for portable life support systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Roebelen, G. J., Jr.; Kellner, J. D.</p> <p>1977-01-01</p> <p>A series of investigations was conducted to characterize the physical properties of potassium bifluoride and water solutions for use as the fusible heat sink material in a regenerable portable life support system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1990JGR....9513411C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1990JGR....9513411C"><span>Arctic multiyear ice classification and summer ice cover using passive microwave satellite data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Comiso, J. C.</p> <p>1990-08-01</p> <p>The ability to classify and monitor Arctic multiyear sea ice cover using multispectral passive microwave data is studied. Sea ice concentration maps during several summer minima have been analyzed to obtain estimates of ice surviving the summer. The results are compared with multiyear ice concentrations derived from data the following winter, using an algorithm that assumes a certain emissivity for multiyear ice. The multiyear ice cover inferred from the winter data is approximately 25 to 40% less than the summer ice cover minimum, suggesting that even during winter when the emissivity of sea ice is most stable, passive microwave data may account for only a fraction of the total multiyear ice cover. The difference of about 2×106 km2 is considerably more than estimates of advection through Fram Strait during the intervening period. It appears that as in the Antarctic, some multiyear ice floes in the Arctic, especially those near the summer marginal ice zone, have first-year ice or intermediate signatures in the subsequent winter. A likely mechanism for this is the intrusion of seawater into the snow-ice interface, which often occurs near the marginal ice zone or in areas where snow load is heavy. Spatial variations in melt and melt ponding effects also contribute to the complexity of the microwave emissivity of multiyear ice. Hence the multiyear ice data should be studied in conjunction with the previous summer ice data to obtain a more complete characterization of the state of the Arctic ice cover. The total extent and actual areas of the summertime Arctic pack ice were estimated to be 8.4×106 km2 and 6.2×106 km2, respectively, and exhibit small interannual variability during the years 1979 through 1985, suggesting a relatively stable ice cover.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20170003145','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20170003145"><span>Antarctic Sea-Ice Freeboard and Estimated Thickness from NASA's ICESat and IceBridge Observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Yi, Donghui; Kurtz, Nathan; Harbeck, Jeremy; Manizade, Serdar; Hofton, Michelle; Cornejo, Helen G.; Zwally, H. Jay; Robbins, John</p> <p>2016-01-01</p> <p>ICESat completed 18 observational campaigns during its lifetime from 2003 to 2009. Data from all of the 18 campaign periods are used in this study. Most of the operational periods were between 34 and 38 days long. Because of laser failure and orbit transition from 8-day to 91-day orbit, there were four periods lasting 57, 16, 23, and 12 days. IceBridge data from 2009, 2010, and 2011 are used in this study. Since 2009, there are 19 Airborne Topographic Mapper (ATM) campaigns, and eight Land, Vegetation, and Ice Sensor (LVIS) campaigns over the Antarctic sea ice. Freeboard heights are derived from ICESat, ATM and LVIS elevation and waveform data. With nominal densities of snow, water, and sea ice, combined with snow depth data from AMSR-E/AMSR2 passive microwave observation over the southern ocean, sea-ice thickness is derived from the freeboard. Combined with AMSR-E/AMSR2 ice concentration, sea-ice area and volume are also calculated. During the 2003-2009 period, sea-ice freeboard and thickness distributions show clear seasonal variations that reflect the yearly cycle of the growth and decay of the Antarctic pack ice. We found no significant trend of thickness or area for the Antarctic sea ice during the ICESat period. IceBridge sea ice freeboard and thickness data from 2009 to 2011 over the Weddell Sea and Amundsen and Bellingshausen Seas are compared with the ICESat results.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AdAtS..35..106Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AdAtS..35..106Z"><span>Record low sea-ice concentration in the central Arctic during summer 2010</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhao, Jinping; Barber, David; Zhang, Shugang; Yang, Qinghua; Wang, Xiaoyu; Xie, Hongjie</p> <p>2018-01-01</p> <p>The Arctic sea-ice extent has shown a declining trend over the past 30 years. Ice coverage reached historic minima in 2007 and again in 2012. This trend has recently been assessed to be unique over at least the last 1450 years. In the summer of 2010, a very low sea-ice concentration (SIC) appeared at high Arctic latitudes—even lower than that of surrounding pack ice at lower latitudes. This striking low ice concentration—referred to here as a record low ice concentration in the central Arctic (CARLIC)—is unique in our analysis period of 2003-15, and has not been previously reported in the literature. The CARLIC was not the result of ice melt, because sea ice was still quite thick based on in-situ ice thickness measurements. Instead, divergent ice drift appears to have been responsible for the CARLIC. A high correlation between SIC and wind stress curl suggests that the sea ice drift during the summer of 2010 responded strongly to the regional wind forcing. The drift trajectories of ice buoys exhibited a transpolar drift in the Atlantic sector and an eastward drift in the Pacific sector, which appeared to benefit the CARLIC in 2010. Under these conditions, more solar energy can penetrate into the open water, increasing melt through increased heat flux to the ocean. We speculate that this divergence of sea ice could occur more often in the coming decades, and impact on hemispheric SIC and feed back to the climate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140008934','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140008934"><span>Evaluation of Arctic Sea Ice Thickness Simulated by Arctic Ocean Model Intercomparison Project Models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Johnson, Mark; Proshuntinsky, Andrew; Aksenov, Yevgeny; Nguyen, An T.; Lindsay, Ron; Haas, Christian; Zhang, Jinlun; Diansky, Nikolay; Kwok, Ron; Maslowski, Wieslaw; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20140008934'); toggleEditAbsImage('author_20140008934_show'); toggleEditAbsImage('author_20140008934_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20140008934_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20140008934_hide"></p> <p>2012-01-01</p> <p>Six Arctic Ocean Model Intercomparison Project model simulations are compared with estimates of sea ice thickness derived from pan-Arctic satellite freeboard measurements (2004-2008); airborne electromagnetic measurements (2001-2009); ice draft data from moored instruments in Fram Strait, the Greenland Sea, and the Beaufort Sea (1992-2008) and from submarines (1975-2000); and drill hole data from the Arctic basin, Laptev, and East Siberian marginal seas (1982-1986) and coastal stations (1998-2009). Despite an assessment of six models that differ in numerical methods, resolution, domain, forcing, and boundary conditions, the models generally overestimate the thickness of measured ice thinner than approximately 2 mand underestimate the thickness of ice measured thicker than about approximately 2m. In the regions of flat immobile landfast ice (shallow Siberian Seas with depths less than 25-30 m), the models generally overestimate both the total observed sea ice thickness and rates of September and October ice growth from observations by more than 4 times and more than one standard deviation, respectively. The models do not reproduce conditions of fast ice formation and growth. Instead, the modeled fast ice is replaced with pack ice which drifts, generating ridges of increasing ice thickness, in addition to thermodynamic ice growth. Considering all observational data sets, the better correlations and smaller differences from observations are from the Estimating the Circulation and Climate of the Ocean, Phase II and Pan-Arctic Ice Ocean Modeling and Assimilation System models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2575336','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2575336"><span>Southern Ocean frontal structure and sea-ice formation rates revealed by elephant seals</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Charrassin, J.-B.; Hindell, M.; Rintoul, S. R.; Roquet, F.; Sokolov, S.; Biuw, M.; Costa, D.; Boehme, L.; Lovell, P.; Coleman, R.; Timmermann, R.; Meijers, A.; Meredith, M.; Park, Y.-H.; Bailleul, F.; Goebel, M.; Tremblay, Y.; Bost, C.-A.; McMahon, C. R.; Field, I. C.; Fedak, M. A.; Guinet, C.</p> <p>2008-01-01</p> <p>Polar regions are particularly sensitive to climate change, with the potential for significant feedbacks between ocean circulation, sea ice, and the ocean carbon cycle. However, the difficulty in obtaining in situ data means that our ability to detect and interpret change is very limited, especially in the Southern Ocean, where the ocean beneath the sea ice remains almost entirely unobserved and the rate of sea-ice formation is poorly known. Here, we show that southern elephant seals (Mirounga leonina) equipped with oceanographic sensors can measure ocean structure and water mass changes in regions and seasons rarely observed with traditional oceanographic platforms. In particular, seals provided a 30-fold increase in hydrographic profiles from the sea-ice zone, allowing the major fronts to be mapped south of 60°S and sea-ice formation rates to be inferred from changes in upper ocean salinity. Sea-ice production rates peaked in early winter (April–May) during the rapid northward expansion of the pack ice and declined by a factor of 2 to 3 between May and August, in agreement with a three-dimensional coupled ocean–sea-ice model. By measuring the high-latitude ocean during winter, elephant seals fill a “blind spot” in our sampling coverage, enabling the establishment of a truly global ocean-observing system. PMID:18695241</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70190395','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70190395"><span>Polar bears and sea ice habitat change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Durner, George M.; Atwood, Todd C.; Butterworth, Andy</p> <p>2017-01-01</p> <p>The polar bear (Ursus maritimus) is an obligate apex predator of Arctic sea ice and as such can be affected by climate warming-induced changes in the extent and composition of pack ice and its impacts on their seal prey. Sea ice declines have negatively impacted some polar bear subpopulations through reduced energy input because of loss of hunting habitats, higher energy costs due to greater ice drift, ice fracturing and open water, and ultimately greater challenges to recruit young. Projections made from the output of global climate models suggest that polar bears in peripheral Arctic and sub-Arctic seas will be reduced in numbers or become extirpated by the end of the twenty-first century if the rate of climate warming continues on its present trajectory. The same projections also suggest that polar bears may persist in the high-latitude Arctic where heavy multiyear sea ice that has been typical in that region is being replaced by thinner annual ice. Underlying physical and biological oceanography provides clues as to why polar bear in some regions are negatively impacted, while bears in other regions have shown no apparent changes. However, continued declines in sea ice will eventually challenge the survival of polar bears and efforts to conserve them in all regions of the Arctic.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA273018','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA273018"><span>Notes on Antarctic Aviation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1993-08-01</p> <p>4 5. Curtiss-Wright T -32 biplane used by the second Byrd Antarctic Expedition...pack ice north of Mawson ............................................ 7 10. USN ski-wheel Douglas R4D-8 at McMurdo...McMurdo ................. 11 17. ANARE ski-wheel DHC-2 Beaver over Mawson ............................................ 12 18. USN ski-wheel DHC-3 Otter</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.boem.gov/BOEM-Newsroom/Library/Publications/2006/2006_003.aspx','USGSPUBS'); return false;" href="https://www.boem.gov/BOEM-Newsroom/Library/Publications/2006/2006_003.aspx"><span>Development of airborne remote sensing methods for surveys of Pacific walrus</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Burn, Douglas M.; Udevitz, Mark S.; Webber, M.A.; Garlich-Miller, Joel L.</p> <p>2006-01-01</p> <p>In April 2003, we conducted an operational test of an airborne multispectral scanner (AMS) over pack ice in the Bering Sea to evaluate the potential of this system as a survey tool for Pacific walruses. We scanned a total of 28,875 km2 of sea ice habitat at a spatial resolution of 4 m and collected high resolution photographs from a subset of the thermally detected walrus groups. We found a significant positive relationship between walrus group size and the amount of heat measured by the AMS and used this relationship to estimate total walrus numbers in the survey area. The number of walruses hauled out onto sea ice in our study area was estimated at 4,785 animals with a 95% confidence interval of 2,499–7,111. We believe that the AMS system as configured for this study would be a highly effective tool for surveying large areas of sea ice habitat for walrus groups. With a 6 km swath width, it should be possible to sample more 10,000 km2 in an 8-hr flight. Although walrus groups > 4 animals were easily detected and enumerated in the 4 m thermal data, the system was unable to detect individual walruses or seals (Phoca spp. and Erignathus barbatus). We found that most (94.6%) of the walruses photographed in our survey area occurred in groups > 6 animals, therefore we expect the magnitude of any bias due to undetected groups of hauled out animals would be relatively small.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120012563','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120012563"><span>Moisture Fluxes Derived from EOS Aqua Satellite Data for the North Water Polynya Over 2003-2009</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Boisvert, Linette N.; Markus, Thorsten; Parkinson, Claire L.; Vihma, Timo</p> <p>2012-01-01</p> <p>Satellite data were applied to calculate the moisture flux from the North Water polynya during a series of events spanning 2003-2009. The fluxes were calculated using bulk aerodynamic formulas with the stability effects according to the Monin-Obukhov similarity theory. Input parameters were taken from three sources: air relative humidity, air temperature, and surface temperature from the Atmospheric Infrared Sounder (AIRS) onboard NASA's Earth Observing System (EOS) Aqua satellite, sea ice concentration from the Advanced Microwave Scanning Radiometer (AMSR-E, also onboard Aqua), and wind speed from the ECMWF ERA-Interim reanalysis. Our results show the progression of the moisture fluxes from the polynya during each event, as well as their atmospheric effects after the polynya has closed up. These results were compared to results from studies on other polynyas, and fall within one standard deviation of the moisture flux estimates from these studies. Although the estimated moisture fluxes over the entire study region from AIRS are smaller in magnitude than ERA-Interim, they are more accurate due to improved temperature and relative humidity profiles and ice concentration estimates over the polynya. Error estimates were calculated to be 5.56 x10(exp -3) g/sq. m/ s, only 25% of the total moisture flux, thus suggesting that AIRS and AMSR-E can be used with confidence to study smaller scale features in the Arctic sea ice pack and can capture their atmospheric effects. These findings bode well for larger-scale studies of moisture fluxes over the entire Arctic Ocean and the thinning ice pack.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018OcDyn..68..347S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018OcDyn..68..347S"><span>High-frequency and meso-scale winter sea-ice variability in the Southern Ocean in a high-resolution global ocean model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stössel, Achim; von Storch, Jin-Song; Notz, Dirk; Haak, Helmuth; Gerdes, Rüdiger</p> <p>2018-03-01</p> <p>This study is on high-frequency temporal variability (HFV) and meso-scale spatial variability (MSV) of winter sea-ice drift in the Southern Ocean simulated with a global high-resolution (0.1°) sea ice-ocean model. Hourly model output is used to distinguish MSV characteristics via patterns of mean kinetic energy (MKE) and turbulent kinetic energy (TKE) of ice drift, surface currents, and wind stress, and HFV characteristics via time series of raw variables and correlations. We find that (1) along the ice edge, the MSV of ice drift coincides with that of surface currents, in particular such due to ocean eddies; (2) along the coast, the MKE of ice drift is substantially larger than its TKE and coincides with the MKE of wind stress; (3) in the interior of the ice pack, the TKE of ice drift is larger than its MKE, mostly following the TKE pattern of wind stress; (4) the HFV of ice drift is dominated by weather events, and, in the absence of tidal currents, locally and to a much smaller degree by inertial oscillations; (5) along the ice edge, the curl of the ice drift is highly correlated with that of surface currents, mostly reflecting the impact of ocean eddies. Where ocean eddies occur and the ice is relatively thin, ice velocity is characterized by enhanced relative vorticity, largely matching that of surface currents. Along the ice edge, ocean eddies produce distinct ice filaments, the realism of which is largely confirmed by high-resolution satellite passive-microwave data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015PhRvL.115n8501T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015PhRvL.115n8501T"><span>Theory of the Sea Ice Thickness Distribution</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Toppaladoddi, Srikanth; Wettlaufer, J. S.</p> <p>2015-10-01</p> <p>We use concepts from statistical physics to transform the original evolution equation for the sea ice thickness distribution g (h ) from Thorndike et al. into a Fokker-Planck-like conservation law. The steady solution is g (h )=N (q )hqe-h /H, where q and H are expressible in terms of moments over the transition probabilities between thickness categories. The solution exhibits the functional form used in observational fits and shows that for h ≪1 , g (h ) is controlled by both thermodynamics and mechanics, whereas for h ≫1 only mechanics controls g (h ). Finally, we derive the underlying Langevin equation governing the dynamics of the ice thickness h , from which we predict the observed g (h ). The genericity of our approach provides a framework for studying the geophysical-scale structure of the ice pack using methods of broad relevance in statistical mechanics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26551827','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26551827"><span>Theory of the Sea Ice Thickness Distribution.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Toppaladoddi, Srikanth; Wettlaufer, J S</p> <p>2015-10-02</p> <p>We use concepts from statistical physics to transform the original evolution equation for the sea ice thickness distribution g(h) from Thorndike et al. into a Fokker-Planck-like conservation law. The steady solution is g(h)=N(q)h(q)e(-h/H), where q and H are expressible in terms of moments over the transition probabilities between thickness categories. The solution exhibits the functional form used in observational fits and shows that for h≪1, g(h) is controlled by both thermodynamics and mechanics, whereas for h≫1 only mechanics controls g(h). Finally, we derive the underlying Langevin equation governing the dynamics of the ice thickness h, from which we predict the observed g(h). The genericity of our approach provides a framework for studying the geophysical-scale structure of the ice pack using methods of broad relevance in statistical mechanics.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_14 --> <div id="page_15" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="281"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.C13E0664H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.C13E0664H"><span>FRAM-2012: Norwegians return to the High Arctic with a Hovercraft for Marine Geophysical Research</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hall, J. K.; Kristoffersen, Y.; Brekke, H.; Hope, G.</p> <p>2012-12-01</p> <p>After four years of testing methods, craft reliability, and innovative equipment, the R/H SABVABAA has embarked on its first FRAM-201x expedition to the highest Arctic. Named after the Inupiaq word for 'flows swiftly over it', the 12m by 6m hovercraft has been home-based in Longyearbyen, Svalbard since June 2008. In this, its fifth summer of work on the ice pack north of 81N, the craft is supported by the Norwegian Petroleum Directorate (NPD) via the Nansen Environmental and Remote Sensing Center (NERSC) in Bergen, and the Norwegian Scientific Academy for Polar Research. FRAM-2012 represents renewed Norwegian interest in returning to the highest Arctic some 116 years after the 1893-96 drift of Fridtjof Nansen's ship FRAM, the first serious scientific investigation of the Arctic. When replenished by air or icebreaker, the hovercraft Sabvabaa offers a hospitable scientific platform with crew of two, capable of marine geophysical, geological and oceanographic observations over long periods with relative mobility on the ice pack. FRAM-2012 is the first step towards this goal, accompanying the Swedish icebreaker ODEN to the Lomonosov Ridge, north of Greenland, as part of the LOMROG III expedition. The science plan called for an initial drive from the ice edge to Gakkel Ridge at 85N where micro-earthquakes would be monitored, and then to continue north to a geological sampling area on the Lomonosov Ridge at about 88N, 65W. The micro-earthquake monitoring is part of Gaute Hope's MSc thesis and entails five hydrophones in a WiFi-connected hydrophone array deployed over the Gakkel Rift Valley, drifting with the ice at up to 0.4 knots. On August 3 the hovercraft was refueled from icebreaker ODEN at 84-21'N and both vessels proceeded north. The progress of the hovercraft was hampered by insufficient visibility for safe driving and time consuming maneuvering in and around larger fields of rubble ice impassable by the hovercraft, but of little concern to the icebreaker. It became clear that to compensate for delayed rendezvous would take up substantially more icebreaker time than initially agreed to. It was therefore decided that the hovercraft would remain in the Gakkel Ridge survey area while the icebreaker would concentrate on its primary mission objective, a Danish UNCLOS survey. The two vessels would rejoin for the return journey to Svalbard in early September. The hovercraft has made continuous ice thickness measurements along its track by a front-mounted electromagnetic survey instrument in combination with a sonic height measuring device. The poster will present the findings of the expedition, and a short video is under preparation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013ACPD...1313541T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013ACPD...1313541T"><span>The Arctic Summer Cloud-Ocean Study (ASCOS): overview and experimental design</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tjernström, M.; Leck, C.; Birch, C. E.; Brooks, B. J.; Brooks, I. M.; Bäcklin, L.; Chang, R. Y.-W.; Granath, E.; Graus, M.; Hansel, A.; Heintzenberg, J.; Held, A.; Hind, A.; de la Rosa, S.; Johnston, P.; Knulst, J.; de Leeuw, G.; Di Liberto, L.; Martin, M.; Matrai, P. A.; Mauritsen, T.; Müller, M.; Norris, S. J.; Orellana, M. V.; Orsini, D. A.; Paatero, J.; Persson, P. O. G.; Gao, Q.; Rauschenberg, C.; Ristovski, Z.; Sedlar, J.; Shupe, M. D.; Sierau, B.; Sirevaag, A.; Sjogren, S.; Stetzer, O.; Swietlicki, E.; Szczodrak, M.; Vaattovaara, P.; Wahlberg, N.; Westberg, M.; Wheeler, C. R.</p> <p>2013-05-01</p> <p>The climate in the Arctic is changing faster than anywhere else on Earth. Poorly understood feedback processes relating to Arctic clouds and aerosol-cloud interactions contribute to a poor understanding of the present changes in the Arctic climate system, and also to a large spread in projections of future climate in the Arctic. The problem is exacerbated by the paucity of research-quality observations in the central Arctic. Improved formulations in climate models require such observations, which can only come from measurements in-situ in this difficult to reach region with logistically demanding environmental conditions. The Arctic Summer Cloud-Ocean Study (ASCOS) was the most extensive central Arctic Ocean expedition with an atmospheric focus during the International Polar Year (IPY) 2007-2008. ASCOS focused on the study of the formation and life cycle of low-level Arctic clouds. ASCOS departed from Longyearbyen on Svalbard on 2 August and returned on 9 September 2008. In transit into and out of the pack ice, four short research stations were undertaken in the Fram Strait; two in open water and two in the marginal ice zone. After traversing the pack-ice northward an ice camp was set up on 12 August at 87°21' N 01°29' W and remained in operation through 1 September, drifting with the ice. During this time extensive measurements were taken of atmospheric gas and particle chemistry and physics, mesoscale and boundary-layer meteorology, marine biology and chemistry, and upper ocean physics. ASCOS provides a unique interdisciplinary data set for development and testing of new hypotheses on cloud processes, their interactions with the sea ice and ocean and associated physical, chemical, and biological processes and interactions. For example, the first ever quantitative observation of bubbles in Arctic leads, combined with the unique discovery of marine organic material, polymer gels with an origin in the ocean, inside cloud droplets suggest the possibility of primary marine organically derived cloud condensation nuclei in Arctic stratocumulus clouds. Direct observations of surface fluxes of aerosols could, however, not explain observed variability in aerosol concentrations and the balance between local and remote aerosols sources remains open. Lack of CCN was at times a controlling factor in low-level cloud formation, and hence for the impact of clouds on the surface energy budget. ASCOS provided detailed measurements of the surface energy balance from late summer melt into the initial autumn freeze-up, and documented the effects of clouds and storms on the surface energy balance during this transition. In addition to such process-level studies, the unique, independent ASCOS data set can and is being used for validation of satellite retrievals, operational models, and reanalysis data sets.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014ACP....14.2823T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014ACP....14.2823T"><span>The Arctic Summer Cloud Ocean Study (ASCOS): overview and experimental design</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tjernström, M.; Leck, C.; Birch, C. E.; Bottenheim, J. W.; Brooks, B. J.; Brooks, I. M.; Bäcklin, L.; Chang, R. Y.-W.; de Leeuw, G.; Di Liberto, L.; de la Rosa, S.; Granath, E.; Graus, M.; Hansel, A.; Heintzenberg, J.; Held, A.; Hind, A.; Johnston, P.; Knulst, J.; Martin, M.; Matrai, P. A.; Mauritsen, T.; Müller, M.; Norris, S. J.; Orellana, M. V.; Orsini, D. A.; Paatero, J.; Persson, P. O. G.; Gao, Q.; Rauschenberg, C.; Ristovski, Z.; Sedlar, J.; Shupe, M. D.; Sierau, B.; Sirevaag, A.; Sjogren, S.; Stetzer, O.; Swietlicki, E.; Szczodrak, M.; Vaattovaara, P.; Wahlberg, N.; Westberg, M.; Wheeler, C. R.</p> <p>2014-03-01</p> <p>The climate in the Arctic is changing faster than anywhere else on earth. Poorly understood feedback processes relating to Arctic clouds and aerosol-cloud interactions contribute to a poor understanding of the present changes in the Arctic climate system, and also to a large spread in projections of future climate in the Arctic. The problem is exacerbated by the paucity of research-quality observations in the central Arctic. Improved formulations in climate models require such observations, which can only come from measurements in situ in this difficult-to-reach region with logistically demanding environmental conditions. The Arctic Summer Cloud Ocean Study (ASCOS) was the most extensive central Arctic Ocean expedition with an atmospheric focus during the International Polar Year (IPY) 2007-2008. ASCOS focused on the study of the formation and life cycle of low-level Arctic clouds. ASCOS departed from Longyearbyen on Svalbard on 2 August and returned on 9 September 2008. In transit into and out of the pack ice, four short research stations were undertaken in the Fram Strait: two in open water and two in the marginal ice zone. After traversing the pack ice northward, an ice camp was set up on 12 August at 87°21' N, 01°29' W and remained in operation through 1 September, drifting with the ice. During this time, extensive measurements were taken of atmospheric gas and particle chemistry and physics, mesoscale and boundary-layer meteorology, marine biology and chemistry, and upper ocean physics. ASCOS provides a unique interdisciplinary data set for development and testing of new hypotheses on cloud processes, their interactions with the sea ice and ocean and associated physical, chemical, and biological processes and interactions. For example, the first-ever quantitative observation of bubbles in Arctic leads, combined with the unique discovery of marine organic material, polymer gels with an origin in the ocean, inside cloud droplets suggests the possibility of primary marine organically derived cloud condensation nuclei in Arctic stratocumulus clouds. Direct observations of surface fluxes of aerosols could, however, not explain observed variability in aerosol concentrations, and the balance between local and remote aerosols sources remains open. Lack of cloud condensation nuclei (CCN) was at times a controlling factor in low-level cloud formation, and hence for the impact of clouds on the surface energy budget. ASCOS provided detailed measurements of the surface energy balance from late summer melt into the initial autumn freeze-up, and documented the effects of clouds and storms on the surface energy balance during this transition. In addition to such process-level studies, the unique, independent ASCOS data set can and is being used for validation of satellite retrievals, operational models, and reanalysis data sets.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.C43B0744A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.C43B0744A"><span>Spatial scales of light transmission through Antarctic pack ice: Surface flooding vs. floe-size distribution</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Arndt, S.; Meiners, K.; Krumpen, T.; Ricker, R.; Nicolaus, M.</p> <p>2016-12-01</p> <p>Snow on sea ice plays a crucial role for interactions between the ocean and atmosphere within the climate system of polar regions. Antarctic sea ice is covered with snow during most of the year. The snow contributes substantially to the sea-ice mass budget as the heavy snow loads can depress the ice below water level causing flooding. Refreezing of the snow and seawater mixture results in snow-ice formation on the ice surface. The snow cover determines also the amount of light being reflected, absorbed, and transmitted into the upper ocean, determining the surface energy budget of ice-covered oceans. The amount of light penetrating through sea ice into the upper ocean is of critical importance for the timing and amount of bottom sea-ice melt, biogeochemical processes and under-ice ecosystems. Here, we present results of several recent observations in the Weddell Sea measuring solar radiation under Antarctic sea ice with instrumented Remotely Operated Vehicles (ROV). The combination of under-ice optical measurements with simultaneous characterization of surface properties, such as sea-ice thickness and snow depth, allows the identification of key processes controlling the spatial distribution of the under-ice light. Thus, our results show how the distinction between flooded and non-flooded sea-ice regimes dominates the spatial scales of under-ice light variability for areas smaller than 100-by-100m. In contrast, the variability on larger scales seems to be controlled by the floe-size distribution and the associated lateral incidence of light. These results are related to recent studies on the spatial variability of Arctic under-ice light fields focusing on the distinctly differing dominant surface properties between the northern (e.g. summer melt ponds) and southern (e.g. year-round snow cover, surface flooding) hemisphere sea-ice cover.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1814313K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1814313K"><span>The internal structure of the Brunt Ice Shelf, Antarctica from ice-penetrating radar</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>King, Edward; De Rydt, Jan; Gudmundsson, Hilmar</p> <p>2016-04-01</p> <p>The Brunt Ice Shelf is a small feature on the Coats Land Coast of the Weddell Sea, Antarctica. It is unusual among Antarctic ice shelves because the ice crossing the grounding line from the ice sheet retains no structural integrity, so the ice shelf comprises icebergs of continental ice cemented together by sea ice, with the whole blanketed by in-situ snowfall. The size and distribution of the icebergs is governed by the thickness profile along the grounding line. Where bedrock troughs discharge thick ice to the ice shelf, the icebergs are large and remain close together with little intervening sea ice. Where bedrock ridges mean the ice crossing the grounding line is thin, the icebergs are small and widely-scattered with large areas of sea ice between them. To better understand the internal structure of the Brunt Ice Shelf and how this might affect the flow dynamics we conducted ice-penetrating radar surveys during December 2015 and January 2016. Three different ground-based radar systems were used, operating at centre frequencies of 400, 50 and 10 MHz respectively. The 400 MHz system gave detailed firn structure and accumulation profiles as well as time-lapse profiles of the active propagation of a crevasse. The 50 MHz system provided intermediate-level detail of iceberg distribution and thickness as well as information on the degree of salt water infiltration into the accumulating snow pack. The 10 MHz system used a high-power transmitter in an attempt to measure ice thickness beneath salt-impregnated ice. In this poster we will present example data from each of the three radar systems which will demonstrate the variability of the internal structure of the ice shelf. We will also present preliminary correlations between the internal structure and the surface topography from satellite data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=267890','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=267890"><span>Occurrence of nonspecific reactions among stool specimens tested by the Abbott TestPack rotavirus enzyme immunoassay.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Lipson, S M; Leonardi, G P; Salo, R J; Schutzbank, T E; Kaplan, M H</p> <p>1990-01-01</p> <p>Sixty-five stool specimens obtained from children suffering from gastroenteritis were tested for the presence of antigen to rotavirus by the Abbott TestPack Rotavirus (TestPack) enzyme immunoassay kit. The Kallestad Pathfinder enzyme immunoassay, polyacrylamide gel electrophoresis, immune electron microscopy, and virus isolation were utilized as reference assays. Fifty-four specimens were in accord by TestPack and Kallestad Pathfinder. Among 11 discordant specimens positive with TestPack but negative by Kallestad Pathfinder, rotavirus was not identified by polyacrylamide gel electrophoresis, immune electron microscopy, or isolation in primary African green monkey kidney cell cultures. TestPack displayed a performance specificity of 83%. The inordinately high number of stool specimens reported as false-positive by TestPack precludes the incorporation of this antigen detection kit into our routine regimen of diagnostic virologic testing. Images PMID:2166074</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016OcMod.105....1T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016OcMod.105....1T"><span>Emerging trends in the sea state of the Beaufort and Chukchi seas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Thomson, Jim; Fan, Yalin; Stammerjohn, Sharon; Stopa, Justin; Rogers, W. Erick; Girard-Ardhuin, Fanny; Ardhuin, Fabrice; Shen, Hayley; Perrie, Will; Shen, Hui; Ackley, Steve; Babanin, Alex; Liu, Qingxiang; Guest, Peter; Maksym, Ted; Wadhams, Peter; Fairall, Chris; Persson, Ola; Doble, Martin; Graber, Hans; Lund, Bjoern; Squire, Vernon; Gemmrich, Johannes; Lehner, Susanne; Holt, Benjamin; Meylan, Mike; Brozena, John; Bidlot, Jean-Raymond</p> <p>2016-09-01</p> <p>The sea state of the Beaufort and Chukchi seas is controlled by the wind forcing and the amount of ice-free water available to generate surface waves. Clear trends in the annual duration of the open water season and in the extent of the seasonal sea ice minimum suggest that the sea state should be increasing, independent of changes in the wind forcing. Wave model hindcasts from four selected years spanning recent conditions are consistent with this expectation. In particular, larger waves are more common in years with less summer sea ice and/or a longer open water season, and peak wave periods are generally longer. The increase in wave energy may affect both the coastal zones and the remaining summer ice pack, as well as delay the autumn ice-edge advance. However, trends in the amount of wave energy impinging on the ice-edge are inconclusive, and the associated processes, especially in the autumn period of new ice formation, have yet to be well-described by in situ observations. There is an implicit trend and evidence for increasing wave energy along the coast of northern Alaska, and this coastal signal is corroborated by satellite altimeter estimates of wave energy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..MARF12003C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..MARF12003C"><span>Spatial distirbution of Antarctic mass flux due to iceberg transport</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Comeau, Darin; Hunke, Elizabeth; Turner, Adrian</p> <p></p> <p>Under a changing climate that sees amplified warming in the polar regions, the stability of the West Antarctic ice sheet and its impact on sea level rise is of great importance. Icebergs are at the interface of the land-ice, ocean, and sea ice systems, and represent approximately half of the mass flux from the Antarctic ice sheet to the ocean. Calved icebergs transport freshwater away from the coast and exchange heat with the ocean, thereby affecting stratification and circulation, with subsequent indirect thermodynamic effects to the sea ice system. Icebergs also dynamically interact with surrounding sea ice pack, as well as serving as nutrient sources for biogeochemical activity. The spatial pattern of these fluxes transported from the continent to the ocean is generally poorly represented in current global climate models. We are implementing an iceberg model into the new Accelerated Climate Model for Energy (ACME) within the MPAS-Seaice model, which uses a variable resolution, unstructured grid framework. This capability will allow for full coupling with the land ice model to inform calving fluxes, and the ocean model for freshwater and heat exchange, giving a complete representation of the iceberg lifecycle and increasing the fidelity of ACME southern cryosphere simulations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRC..122.5970T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRC..122.5970T"><span>Relative influences of the metocean forcings on the drifting ice pack and estimation of internal ice stress gradients in the Labrador Sea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Turnbull, I. D.; Torbati, R. Z.; Taylor, R. S.</p> <p>2017-07-01</p> <p>Understanding the relative influences of the metocean forcings on the drift of sea ice floes is a crucial component to the overall characterization of an ice environment and to developing an understanding of the factors controlling the ice dynamics. In addition, estimating the magnitude of the internal stress gradients on drifting sea ice floes generated by surrounding ice cover is important for modeling operations, informing the design of offshore structures and vessels in ice environments, and for the proper calibration of Discrete Element Models (DEM) of fields of drifting ice floes. In the spring of 2015 and 2016, four sea ice floes offshore Makkovik, Labrador were tagged with satellite-linked ice tracking buoys along with one satellite-linked weather station on each floe to transmit wind speed and direction. Twenty satellite-linked Lagrangian surface ocean current tracking buoys were also deployed in the open water adjacent to the targeted ice floes. In this paper, the dynamics of the four ice floes are explored in terms of the relative proportions which were forced by the wind, current, sea surface topography, Coriolis, and internal stress gradients. The internal ice stress gradients are calculated as residuals between the observed accelerations of the floes as measured by the tracking buoys and the sums of the other metocean forcings. Results show that internal ice stress gradients accounted for up to 50% of the observed forcing on the floes, and may have reached up to around 0.19 kPa.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28162872','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28162872"><span>Simple and effective method to lower body core temperatures of hyperthermic patients.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>O'Connor, John P</p> <p>2017-06-01</p> <p>Hyperthermia is a potentially life threatening scenario that may occur in patients due to accompanying morbidities, exertion, or exposure to dry and arid environmental conditions. In particular, heat stroke may result from environmental exposure combined with a lack of thermoregulation. Key clinical findings in the diagnosis of heatstroke are (1) a history of heat stress or exposure, (2) a rectal temperature greater than 40 °C, and (3) central nervous system dysfunction (altered mental state, disorientation, stupor, seizures, or coma) (Prendergast and Erickson, 2014 [1]). In these patients, it is important to bring the body's core temperature down to acceptable levels in a short period of time to avoid tissue/organ injury or death (Yoder, 2001; Casa et al., 2007 [2,3]). A number of potential approaches, both non-invasive and invasive, may be used to lower the temperature of these individuals. Non-invasive techniques generally include: evaporative cooling, ice water immersion, whole-body ice packing, strategic ice packing, and convective cooling. Invasive approaches may include gastric lavage or peritoneal lavage (Schraga and Kates [4]). The efficacy of these methods vary and select treatment approaches may be unsuitable for specific individuals (Schraga and Kates [4]). In this work, the effectiveness of radiation cooling of individuals as a stand-alone treatment and comparisons with existing noninvasive techniques are presented. Copyright © 2017 Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012TRACE...6..221S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012TRACE...6..221S"><span>Fundamental Research on Heat Transfer Characteristics in Shell & Tube Type Ice Forming Cold Energy Storage</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Saito, Akio; Utaka, Yoshio; Okawa, Seiji; Ishibashi, Hiroaki</p> <p></p> <p>Investigation of heat transfer characteristics in an ice making cold energy storage using a set of horizontal cooling pipes was carried out experimentally. Cooling pipe arrangement, number of pipes used and initial water temperature were varied, and temperature distribution in the tank and the volume of ice formed around the pipe were measured. Natural convection was also observed visually. During the experiment, two kinds of layers were observed. One is the layer where ice forming is interfered by natural convection and its temperature decreases rapidly with an almost uniform temperature distribution, and the other is the layer where ice forms steadily under a stagnant water condition. The former was called that the layer is under a cooling process and the latter that the layer is under an ice forming process. The effect of the experimental parameters, such as the arrangement of the cooling pipes, the number of pipes, the initial water temperature and the flow rate of the cooling medium, on the cooling process and the ice forming process were discussed. Approximate analysis was also carried out and compared with the experimental results. Finally, the relationship between the ice packing factor, which is significant in preventing the blockade, and experimental parameters was discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19940026127','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19940026127"><span>Cryosphere and climate</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hibler, William D., III; Thorndike, Alan S.</p> <p>1992-01-01</p> <p>This chapter will discuss two main issues related to the cryosphere and climate. One is the effect of sea ice and salinity gradients on ocean circulation, and in particular the possible role of sea ice transport on the ocean conveyer belt. The other is the effect of the cryosphere on climate, and in particular in high-latitude warming under increased CO2. In understanding the role of the cryosphere in both cases, it is useful to elucidate two types of toy sea ice models. Neither of these represents reality, but both are useful for illustrating the archetypal features of sea ice that control much of its large-scale behavior. The first model is a simple slab thermodynamic sea ice model as presented by Thorndike. In this model there are no dynamical effects and the thickness of ice is determined by surface heat budget and oceanic heat flux considerations, with the thickness of the ice critically affecting the effective conductivity whereby heat is transferred from the bottom ice boundary to the upper ice boundary. In this model all of the sea ice characteristics are controlled by the vertical heat fluxes from the atmosphere and ocean into the ice. The thickness is controlled by the ice's becoming an effective insulator as it thickens, thus reducing conductive heat loss to the atmosphere. A second model emphasizes the effects of dynamics. It considers the ice pack to be a collection of floes moving in response to synoptic wind fields and ocean currents. These motions create semipermanent leads (open areas) over which ice can grow rapidly.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010JGRC..115.2005V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010JGRC..115.2005V"><span>Modeling brine and nutrient dynamics in Antarctic sea ice: The case of dissolved silica</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vancoppenolle, Martin; Goosse, Hugues; de Montety, Anne; Fichefet, Thierry; Tremblay, Bruno; Tison, Jean-Louis</p> <p>2010-02-01</p> <p>Sea ice ecosystems are characterized by microalgae living in brine inclusions. The growth rate of ice algae depends on light and nutrient supply. Here, the interactions between nutrients and brine dynamics under the influence of algae are investigated using a one-dimensional model. The model includes snow and ice thermodynamics with brine physics and an idealized sea ice biological component, characterized by one nutrient, namely, dissolved silica (DSi). In the model, DSi follows brine motion and is consumed by ice algae. Depending on physical ice characteristics, the brine flow is either advective, diffusive, or turbulent. The vertical profiles of ice salinity and DSi concentration are solutions of advection-diffusion equations. The model is configured to simulate the typical thermodynamic regimes of first-year Antarctic pack ice. The simulated vertical profiles of salinity and DSi qualitatively reproduce observations. Analysis of results highlights the role of convection in the lowermost 5-10 cm of ice. Convection mixes saline, nutrient-poor brine with comparatively fresh, nutrient-rich seawater. This implies a rejection of salt to the ocean and a flux of DSi to the ice. In the presence of growing algae, the simulated ocean-to-ice DSi flux increases by 0-115% compared to an abiotic situation. In turn, primary production and brine convection act in synergy to form a nutrient pump. The other important processes are the flooding of the surface by seawater and the percolation of meltwater. The former refills nutrients near the ice surface in spring. The latter, if present, tends to expell nutrients from the ice in summer.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title29-vol3/pdf/CFR-2013-title29-vol3-sec776-20.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title29-vol3/pdf/CFR-2013-title29-vol3-sec776-20.pdf"><span>29 CFR 776.20 - “Goods.”</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-07-01</p> <p>..., bills of lading, checks, drafts, negotiable notes and other commercial paper. 26 “Goods” includes gold... or rented; 33 ice; 34 containers, as, for example, cigar boxes or wrapping paper and packing... of the four dissenting justices in 10 E. 40th St. Bldg. v. Callus, 325 U.S. at p. 586. Waste paper...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title29-vol3/pdf/CFR-2014-title29-vol3-sec776-20.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title29-vol3/pdf/CFR-2014-title29-vol3-sec776-20.pdf"><span>29 CFR 776.20 - “Goods.”</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-07-01</p> <p>..., bills of lading, checks, drafts, negotiable notes and other commercial paper. 26 “Goods” includes gold... or rented; 33 ice; 34 containers, as, for example, cigar boxes or wrapping paper and packing... of the four dissenting justices in 10 E. 40th St. Bldg. v. Callus, 325 U.S. at p. 586. Waste paper...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title29-vol3/pdf/CFR-2012-title29-vol3-sec776-20.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title29-vol3/pdf/CFR-2012-title29-vol3-sec776-20.pdf"><span>29 CFR 776.20 - “Goods.”</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-07-01</p> <p>..., bills of lading, checks, drafts, negotiable notes and other commercial paper. 26 “Goods” includes gold... or rented; 33 ice; 34 containers, as, for example, cigar boxes or wrapping paper and packing... of the four dissenting justices in 10 E. 40th St. Bldg. v. Callus, 325 U.S. at p. 586. Waste paper...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ISPAr42.3.2419Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ISPAr42.3.2419Z"><span>Sea Ice Drift Monitoring in the Bohai Sea Based on GF4 Satellite</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhao, Y.; Wei, P.; Zhu, H.; Xing, B.</p> <p>2018-04-01</p> <p>The Bohai Sea is the inland sea with the highest latitude in China. In winter, the phenomenon of freezing occurs in the Bohai Sea due to frequent cold wave influx. According to historical records, there have been three serious ice packs in the Bohai Sea in the past 50 years which caused heavy losses to our economy. Therefore, it is of great significance to monitor the drift of sea ice and sea ice in the Bohai Sea. The GF4 image has the advantages of short imaging time and high spatial resolution. Based on the GF4 satellite images, the three methods of SIFT (Scale invariant feature - the transform and Scale invariant feature transform), MCC (maximum cross-correlation method) and sift combined with MCC are used to monitor sea ice drift and calculate the speed and direction of sea ice drift, the three calculation results are compared and analyzed by using expert interpretation and historical statistical data to carry out remote sensing monitoring of sea ice drift results. The experimental results show that the experimental results of the three methods are in accordance with expert interpretation and historical statistics. Therefore, the GF4 remote sensing satellite images have the ability to monitor sea ice drift and can be used for drift monitoring of sea ice in the Bohai Sea.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5725666','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5725666"><span>Complex bud architecture and cell‐specific chemical patterns enable supercooling of Picea abies bud primordia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Munkler, Caspar; Resnyak, Anna; Zimmermann, Sonja; Tuong, Tan D.; Gierlinger, Notburga; Müller, Thomas; Livingston, David P.; Neuner, Gilbert</p> <p>2017-01-01</p> <p>Abstract Bud primordia of Picea abies, despite a frozen shoot, stay ice free down to −50 °C by a mechanism termed supercooling whose biophysical and biochemical requirements are poorly understood. Bud architecture was assessed by 3D—reconstruction, supercooling and freezing patterns by infrared video thermography, freeze dehydration and extraorgan freezing by water potential measurements, and cell‐specific chemical patterns by Raman microscopy and mass spectrometry imaging. A bowl‐like ice barrier tissue insulates primordia from entrance by intrinsic ice. Water repellent and densely packed bud scales prevent extrinsic ice penetration. At −18 °C, break‐down of supercooling was triggered by intrinsic ice nucleators whereas the ice barrier remained active. Temperature‐dependent freeze dehydration (−0.1 MPa K−1) caused accumulation of extraorgan ice masses that by rupture of the shoot, pith tissue are accommodated in large voids. The barrier tissue has exceptionally pectin‐rich cell walls and intercellular spaces, and the cell lumina were lined or filled with proteins, especially near the primordium. Primordial cells close to the barrier accumulate di, tri and tetrasaccharides. Bud architecture efficiently prevents ice penetration, but ice nucleators become active inside the primordium below a temperature threshold. Biochemical patterns indicate a complex cellular interplay enabling supercooling and the necessity for cell‐specific biochemical analysis. PMID:28960368</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFM.C41C0467V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFM.C41C0467V"><span>Modeling brine and nutrient dynamics in Antarctic sea ice: the case of dissolved silica</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vancoppenolle, M.; Goosse, H.; de Montety, A.; Fichefet, T.; Tremblay, B.; Tison, J.</p> <p>2009-12-01</p> <p>Sea ice ecosystems are characterized by micro-algae living in brine inclusions. The growth rate of ice algae depends on light and nutrient supply. Here, the interactions between nutrients and brine dynamics under the influence of algae are investigated using a one-dimensional model. The model includes snow and ice thermodynamics with brine physics and an idealized sea ice biological component, characterized by one nutrient, namely dissolved silica (DSi). In the model, DSi follows brine motion and is consumed by ice algae. Depending on physical ice characteristics, the brine flow is either advective, diffusive or turbulent. The vertical profiles of ice salinity and DSi concentration are solutions of advection-diffusion equations. The model is configured to simulate the typical thermodynamic regimes of first-year Antarctic pack ice. The simulated vertical profiles of salinity and DSi qualitatively reproduce observations. Analysis of results highlights the role of convection in the lowermost 5-10 cm of ice. Convection mixes saline, nutrient-poor brine with comparatively fresh, nutrient-rich seawater. This implies a rejection of salt to the ocean and a flux of DSi to the ice. In presence of growing algae, the simulated ocean-to-ice DSi flux increases by 0-115% compared to an abiotic situation. In turn, primary production and brine convection act in synergy to form a nutrient pump. The other important processes are the flooding of the surface by seawater and the percolation of meltwater. The former refills nutrients near the ice surface in spring. The latter, if present, tends to expell nutrients from the ice in summer. Sketch of salt (left) and nutrient (right) exchanges at the ice-ocean interface proposed in this paper.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24769440','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24769440"><span>Water promotes the sealing of nanoscale packing defects in folding proteins.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Fernández, Ariel</p> <p>2014-05-21</p> <p>A net dipole moment is shown to arise from a non-Debye component of water polarization created by nanoscale packing defects on the protein surface. Accordingly, the protein electrostatic field exerts a torque on the induced dipole, locally impeding the nucleation of ice at the protein-water interface. We evaluate the solvent orientation steering (SOS) as the reversible work needed to align the induced dipoles with the Debye electrostatic field and computed the SOS for the variable interface of a folding protein. The minimization of the SOS is shown to drive protein folding as evidenced by the entrainment of the total free energy by the SOS energy along trajectories that approach a Debye limit state where no torque arises. This result suggests that the minimization of anomalous water polarization at the interface promotes the sealing of packing defects, thereby maintaining structural integrity and committing the protein chain to fold.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_15 --> <div id="page_16" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="301"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ENews..47b..26B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ENews..47b..26B"><span>Delicious ice cream, why does salt thaw ice?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bagnoli, Franco</p> <p>2016-03-01</p> <p>Plain Awful is an imaginary valley on the Andes populated by a highly-imitative, cubical people for which the most criminal offence is to exhibit round objects. The duck family (Scrooge, Donald and nephews) are teaming against Scrooge's worst enemy, Flintheart Glomgold, trying to buy the famous Plain Awful square eggs. Inadvertently, Scrooge violates the taboo, showing his Number One Dime, and is imprisoned in the stone quarries. He can be released only after the presentation of an ice cream soda to the President of Plain Awful. Donald and his nephews fly with Flintheart to deliver it, but Scrooge's enemy, of course, betrays the previous agreement after getting the ice cream, forcing the ducks into making an emergence replacement on the spot. Using dried milk, sugar and chocolate from their ration packs, plus some snow and salt for cooling they are able make the ice cream, and after dressing it with the carbonated water from a fire extinguisher they finally manage to produce the desired dessert. This comic may serve as an introduction to the "mysterious" phenomenon that added salt melts the ice and, even more surprising, does it by lowering the temperature of the mixture.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19940007290&hterms=SSM&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3DSSM','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19940007290&hterms=SSM&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3DSSM"><span>Summer Arctic ice concentrations and characteristics from SAR and SSM/I data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Comiso, Joey C.; Kwok, Ron</p> <p>1993-01-01</p> <p>The extent and concentration of the Summer minima provide indirect information about the long term ability of the perennial portion of the ice pack to survive the Arctic atmosphere and ocean system. Both active and passive microwave data were used with some success for monitoring the ice cover during the Summer, but they both suffer from similar problems caused by the presence of meltponding, surface wetness, flooding, and freeze/thaw cycles associated with periodic changes in surface air temperatures. A comparative analysis of ice conditions in the Arctic region using coregistered ERS-1 SAR (Synthetic Aperture Radar) and SSM/I (Special Sensor Microwave/Imager) data was made. The analysis benefits from complementary information from the two systems, the good spatial resolution of SAR data, and the good time resolution of and global coverage by SSM/I data. The results show that in many areas ice concentrations derived from SAR data are significantly different (usually higher) than those derived from passive microwave data. Additional insights about surface conditions can be inferred depending on the nature of the discrepancies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1990JGR....9522229N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1990JGR....9522229N"><span>Physical and biological oceanographic interaction in the spring bloom at the Bering Sea marginal ice edge zone</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Niebauer, H. J.; Alexander, Vera; Henrichs, Susan</p> <p>1990-12-01</p> <p>At the edge of the melting sea ice pack in the Bering Sea in spring, physical, biological, and chemical oceanographic processes combine to generate a short-lived, intense phytoplankton bloom that is associated with the retreating ice edge. The bloom begins a week or so before the first of May triggered by insolation and by the low-salinity meltwater stratification in the presence of high nitrate concentrations (˜ > 25 μM). Meltwater (salinity) stratification delineates ice edge blooms from open water blooms where temperature gradients generate the stratification. Five cross-ice sections of temperature, salinity, σt, chlorophyll, and nitrate are presented as a time series from April 27 to May 5 illustrating the bloom. Evidence of two separate but concurrent blooms in the ice edge zone are presented. In addition, meteorological and oceanographic conditions were observed that should have been conducive to ice edge up welling. While significant ice and water movement occurred, upwelling was not observed. Finally, the Bering Sea ice edge spring bloom is compared with other ice edge systems in both hemispheres, showing that initial Bering Sea nitrate concentrations are among the highest observed but quickly become limiting owing to the rapid build up of phytoplankton populations. This primary production is not coupled to the pelagic Zooplankton because Zooplankton are largely absent on account of the cold temperatures. Observed maximum chlorophyll concentrations in the bloom are several times greater than those observed in other systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.C51A0683R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.C51A0683R"><span>Inter-comparison of isotropic and anisotropic sea ice rheology in a fully coupled model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Roberts, A.; Cassano, J. J.; Maslowski, W.; Osinski, R.; Seefeldt, M. W.; Hughes, M.; Duvivier, A.; Nijssen, B.; Hamman, J.; Hutchings, J. K.; Hunke, E. C.</p> <p>2015-12-01</p> <p>We present the sea ice climate of the Regional Arctic System Model (RASM), using a suite of new physics available in the Los Alamos Sea Ice Model (CICE5). RASM is a high-resolution fully coupled pan-Arctic model that also includes the Parallel Ocean Program (POP), the Weather Research and Forecasting Model (WRF) and Variable Infiltration Capacity (VIC) land model. The model domain extends from ~45˚N to the North Pole and is configured to run at ~9km resolution for the ice and ocean components, coupled to 50km resolution atmosphere and land models. The baseline sea ice model configuration includes mushy-layer sea ice thermodynamics and level-ice melt ponds. Using this configuration, we compare the use of isotropic and anisotropic sea ice mechanics, and evaluate model performance using these two variants against observations including Arctic buoy drift and deformation, satellite-derived drift and deformation, and sea ice volume estimates from ICESat. We find that the isotropic rheology better approximates spatial patterns of thickness observed across the Arctic, but that both rheologies closely approximate scaling laws observed in the pack using buoys and RGPS data. A fundamental component of both ice mechanics variants, the so called Elastic-Viscous-Plastic (EVP) and Anisotropic-Elastic-Plastic (EAP), is that they are highly sensitive to the timestep used for elastic sub-cycling in an inertial-resolving coupled framework, and this has a significant affect on surface fluxes in the fully coupled framework.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17868292','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17868292"><span>Sea ice occurrence predicts genetic isolation in the Arctic fox.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Geffen, Eli; Waidyaratne, Sitara; Dalén, Love; Angerbjörn, Anders; Vila, Carles; Hersteinsson, Pall; Fuglei, Eva; White, Paula A; Goltsman, Michael; Kapel, Christian M O; Wayne, Robert K</p> <p>2007-10-01</p> <p>Unlike Oceanic islands, the islands of the Arctic Sea are not completely isolated from migration by terrestrial vertebrates. The pack ice connects many Arctic Sea islands to the mainland during winter months. The Arctic fox (Alopex lagopus), which has a circumpolar distribution, populates numerous islands in the Arctic Sea. In this study, we used genetic data from 20 different populations, spanning the entire distribution of the Arctic fox, to identify barriers to dispersal. Specifically, we considered geographical distance, occurrence of sea ice, winter temperature, ecotype, and the presence of red fox and polar bear as nonexclusive factors that influence the dispersal behaviour of individuals. Using distance-based redundancy analysis and the BIOENV procedure, we showed that occurrence of sea ice is the key predictor and explained 40-60% of the genetic distance among populations. In addition, our analysis identified the Commander and Pribilof Islands Arctic populations as genetically unique suggesting they deserve special attention from a conservation perspective.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20866494','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20866494"><span>Sea-ice floe-size distribution in the context of spontaneous scaling emergence in stochastic systems.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Herman, Agnieszka</p> <p>2010-06-01</p> <p>Sea-ice floe-size distribution (FSD) in ice-pack covered seas influences many aspects of ocean-atmosphere interactions. However, data concerning FSD in the polar oceans are still sparse and processes shaping the observed FSD properties are poorly understood. Typically, power-law FSDs are assumed although no feasible explanation has been provided neither for this one nor for other properties of the observed distributions. Consequently, no model exists capable of predicting FSD parameters in any particular situation. Here I show that the observed FSDs can be well represented by a truncated Pareto distribution P(x)=x(-1-α) exp[(1-α)/x] , which is an emergent property of a certain group of multiplicative stochastic systems, described by the generalized Lotka-Volterra (GLV) equation. Building upon this recognition, a possibility of developing a simple agent-based GLV-type sea-ice model is considered. Contrary to simple power-law FSDs, GLV gives consistent estimates of the total floe perimeter, as well as floe-area distribution in agreement with observations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010PhRvE..81f6123H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010PhRvE..81f6123H"><span>Sea-ice floe-size distribution in the context of spontaneous scaling emergence in stochastic systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Herman, Agnieszka</p> <p>2010-06-01</p> <p>Sea-ice floe-size distribution (FSD) in ice-pack covered seas influences many aspects of ocean-atmosphere interactions. However, data concerning FSD in the polar oceans are still sparse and processes shaping the observed FSD properties are poorly understood. Typically, power-law FSDs are assumed although no feasible explanation has been provided neither for this one nor for other properties of the observed distributions. Consequently, no model exists capable of predicting FSD parameters in any particular situation. Here I show that the observed FSDs can be well represented by a truncated Pareto distribution P(x)=x-1-αexp[(1-α)/x] , which is an emergent property of a certain group of multiplicative stochastic systems, described by the generalized Lotka-Volterra (GLV) equation. Building upon this recognition, a possibility of developing a simple agent-based GLV-type sea-ice model is considered. Contrary to simple power-law FSDs, GLV gives consistent estimates of the total floe perimeter, as well as floe-area distribution in agreement with observations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20010124078','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20010124078"><span>Towards GPS Surface Reflection Remote Sensing of Sea Ice Conditions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Komjathy, A.; Maslanik, J. A.; Zavorotny, V. U.; Axelrad, P.; Katzberg, S. J.</p> <p>2000-01-01</p> <p>This paper describes the research to extend the application of Global Positioning System (GPS) signal reflections, received by airborne instruments, to cryospheric remote sensing. The characteristics of the GPS signals and equipment afford the possibility of new measurements not possible with existing radar and passive microwave systems. In particular, the GPS receiving systems are small and light-weight, and as such are particularly well suited to be deployed on small aircraft or satellite platforms with minimal impact. Our preliminary models and experimental results indicate that reflected GPS signals have potential to provide information on the presence and condition of sea and fresh-water ice as well as the freeze/thaw state of frozen ground. In this paper we show results from aircraft experiments over the ice pack near Barrow, Alaska suggesting correlation between forward scattered GPS returns and RADARSAT backscattered signals.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23522163','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23522163"><span>Prophylactic topically applied ice to prevent cutaneous complications of nontarget chemoembolization and radioembolization.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wang, David S; Louie, John D; Kothary, Nishita; Shah, Rajesh P; Sze, Daniel Y</p> <p>2013-04-01</p> <p>Cutaneous complications can result from nontarget deposition during transcatheter arterial chemoembolization or radioembolization. Liver tumors may receive blood supply from parasitized extrahepatic arteries (EHAs) that also perfuse skin or from hepatic arteries located near the origin of the falciform artery (FA), which perfuses the anterior abdominal wall. To vasoconstrict cutaneous vasculature and prevent nontarget deposition, ice packs were topically applied to at-risk skin in nine chemoembolization treatments performed via 14 parasitized EHAs, seven chemoembolization treatments near the FA origin, and five radioembolization treatments in cases in which the FA could not be prophylactically coil-embolized. No postprocedural cutaneous complications were encountered.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19930011305','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19930011305"><span>Marshall Space Flight Center battery activity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lowery, Eric</p> <p>1993-01-01</p> <p>The topics covered are presented in viewgraph form and include a flight program history and in-house activities. Some of the in-house activities addressed include secondary battery/cell testing and Hubble Space Telescope Test data updates involving the NiCd type 40 test - battery 1 and 2, the NiCd type 41 test battery, the general electric battery, the NiCd six-battery system, the six four-cell packs, fourteen-cell pack, three four-cell packs, the NiH2 six-battery system, and the flight spare battery. A general test data update is also presented for the twelve-cell pack, the four four-cell packs, the reconditioning test, and planned Ni-MH testing.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMGC53E..04R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMGC53E..04R"><span>Arctic (and Antarctic) Observing Experiment - an Assessment of Methods to Measure Temperature over Polar Environments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rigor, I. G.; Clemente-Colon, P.; Nghiem, S. V.; Hall, D. K.; Woods, J. E.; Henderson, G. R.; Zook, J.; Marshall, C.; Gallage, C.</p> <p>2014-12-01</p> <p>The Arctic environment has been undergoing profound changes; the most visible is the dramatic decrease in Arctic sea ice extent (SIE). These changes pose a challenge to our ability to measure surface temperature across the Polar Regions. Traditionally, the International Arctic Buoy Programme (IABP) and International Programme for Antarctic Buoys (IPAB) have measured surface air temperature (SAT) at 2-m height, which minimizes the ambiguity of measurements near of the surface. Specifically, is the temperature sensor measuring open water, snow, sea ice, or air? But now, with the dramatic decrease in Arctic SIE, increase in open water during summer, and the frailty of the younger sea ice pack, the IABP has had to deploy and develop new instruments to measure temperature. These instruments include Surface Velocity Program (SVP) buoys, which are commonly deployed on the world's ice-free oceans and typically measure sea surface temperature (SST), and the new robust Airborne eXpendable Ice Beacons (AXIB), which measure both SST and SAT. "Best Practice" requires that these instruments are inter-compared, and early results showing differences in collocated temperature measurements of over 2°C prompted the establishment of the IABP Arctic Observing Experiment (AOX) buoy test site at the US Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) site in Barrow, Alaska. Preliminary results showed that the color of the hull of SVP buoys introduces a bias due to solar heating of the buoy. Since then, we have recommended that buoys should be painted white to reduce biases in temperature measurements due to different colors of the buoys deployed in different regions of the Arctic or the Antarctic. Measurements of SAT are more robust, but some of the temperature shields are susceptible to frosting. During our presentation we will provide an intercomparison of the temperature measurements at the AOX test site (i.e. high quality DOE/ARM observations compared with unattended buoy measurements, and satellite retrievals). We will also show how these data may be used to improve our record of temperature over polar environments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70176362','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70176362"><span>The study of fresh-water lake ice using multiplexed imaging radar</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Leonard, Bryan M.; Larson, R.W.</p> <p>1975-01-01</p> <p>The study of ice in the upper Great Lakes, both from the operational and the scientific points of view, is receiving continued attention. Quantitative and qualitative field work is being conducted to provide the needed background for accurate interpretation of remotely sensed data. The data under discussion in this paper were obtained by a side-looking multiplexed airborne radar (SLAR) supplemented with ground-truth data.Because of its ability to penetrate adverse weather, radar is an especially important instrument for monitoring ice in the upper Great Lakes. It has previously been shown that imaging radars can provide maps of ice cover in these areas. However, questions concerning both the nature of the surfaces reflecting radar energy and the interpretation of the radar imagery continually arise.Our analysis of ice in Whitefish Bay (Lake Superior) indicates that the combination of the ice/water interlace and the ice/air interface is the major contributor to the radar backscatter as seen on the imagery At these frequencies the ice has a very low relative dielectric permittivity (< 3.0) and a low loss tangent Thus, this ice is somewhat transparent to the energy used by the imaging SLAR system. The ice types studied include newly formed black ice, pancake ice, and frozen and consolidated pack and brash ice.Although ice thickness cannot be measured directly from the received signals, it is suspected that by combining the information pertaining to radar backscatter with data on the meteorological and sea-state history of the area, together with some basic ground truth, better estimates of the ice thickness may be provided. In addition, certain ice features (e.g. ridges, ice-foot formation, areas of brash ice) may be identified with reasonable confidence. There is a continued need for additional ground work to verify the validity of imaging radars for these types of interpretations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19990084033&hterms=divergent+series&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Ddivergent%2Bseries','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19990084033&hterms=divergent+series&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Ddivergent%2Bseries"><span>C-Band Backscatter Measurements of Winter Sea-Ice in the Weddell Sea, Antarctica</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Drinkwater, M. R.; Hosseinmostafa, R.; Gogineni, P.</p> <p>1995-01-01</p> <p>During the 1992 Winter Weddell Gyre Study, a C-band scatterometer was used from the German ice-breaker R/V Polarstern to obtain detailed shipborne measurement scans of Antarctic sea-ice. The frequency-modulated continuous-wave (FM-CW) radar operated at 4-3 GHz and acquired like- (VV) and cross polarization (HV) data at a variety of incidence angles (10-75 deg). Calibrated backscatter data were recorded for several ice types as the icebreaker crossed the Weddell Sea and detailed measurements were made of corresponding snow and sea-ice characteristics at each measurement site, together with meteorological information, radiation budget and oceanographic data. The primary scattering contributions under cold winter conditions arise from the air/snow and snow/ice interfaces. Observations indicate so e similarities with Arctic sea-ice scattering signatures, although the main difference is generally lower mean backscattering coefficients in the Weddell Sea. This is due to the younger mean ice age and thickness, and correspondingly higher mean salinities. In particular, smooth white ice found in 1992 in divergent areas within the Weddell Gyre ice pack was generally extremely smooth and undeformed. Comparisons of field scatterometer data with calibrated 20-26 deg incidence ERS-1 radar image data show close correspondence, and indicate that rough Antarctic first-year and older second-year ice forms do not produce as distinctively different scattering signatures as observed in the Arctic. Thick deformed first-year and second-year ice on the other hand are clearly discriminated from younger undeformed ice. thereby allowing successful separation of thick and thin ice. Time-series data also indicate that C-band is sensitive to changes in snow and ice conditions resulting from atmospheric and oceanographic forcing and the local heat flux environment. Variations of several dB in 45 deg incidence backscatter occur in response to a combination of thermally-regulated parameters including sea-ice brine volume, snow and ice complex dielectric properties, and snow physical properties.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3660359','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3660359"><span>Change and Variability in East Antarctic Sea Ice Seasonality, 1979/80–2009/10</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Massom, Robert; Reid, Philip; Stammerjohn, Sharon; Raymond, Ben; Fraser, Alexander; Ushio, Shuki</p> <p>2013-01-01</p> <p>Recent analyses have shown that significant changes have occurred in patterns of sea ice seasonality in West Antarctica since 1979, with wide-ranging climatic, biological and biogeochemical consequences. Here, we provide the first detailed report on long-term change and variability in annual timings of sea ice advance, retreat and resultant ice season duration in East Antarctica. These were calculated from satellite-derived ice concentration data for the period 1979/80 to 2009/10. The pattern of change in sea ice seasonality off East Antarctica comprises mixed signals on regional to local scales, with pockets of strongly positive and negative trends occurring in near juxtaposition in certain regions e.g., Prydz Bay. This pattern strongly reflects change and variability in different elements of the marine “icescape”, including fast ice, polynyas and the marginal ice zone. A trend towards shorter sea-ice duration (of 1 to 3 days per annum) occurs in fairly isolated pockets in the outer pack from∼95–110°E, and in various near-coastal areas that include an area of particularly strong and persistent change near Australia's Davis Station and between the Amery and West Ice Shelves. These areas are largely associated with coastal polynyas that are important as sites of enhanced sea ice production/melt. Areas of positive trend in ice season duration are more extensive, and include an extensive zone from 160–170°E (i.e., the western Ross Sea sector) and the near-coastal zone between 40–100°E. The East Antarctic pattern is considerably more complex than the well-documented trends in West Antarctica e.g., in the Antarctic Peninsula-Bellingshausen Sea and western Ross Sea sectors. PMID:23705008</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23705008','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23705008"><span>Change and variability in East antarctic sea ice seasonality, 1979/80-2009/10.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Massom, Robert; Reid, Philip; Stammerjohn, Sharon; Raymond, Ben; Fraser, Alexander; Ushio, Shuki</p> <p>2013-01-01</p> <p>Recent analyses have shown that significant changes have occurred in patterns of sea ice seasonality in West Antarctica since 1979, with wide-ranging climatic, biological and biogeochemical consequences. Here, we provide the first detailed report on long-term change and variability in annual timings of sea ice advance, retreat and resultant ice season duration in East Antarctica. These were calculated from satellite-derived ice concentration data for the period 1979/80 to 2009/10. The pattern of change in sea ice seasonality off East Antarctica comprises mixed signals on regional to local scales, with pockets of strongly positive and negative trends occurring in near juxtaposition in certain regions e.g., Prydz Bay. This pattern strongly reflects change and variability in different elements of the marine "icescape", including fast ice, polynyas and the marginal ice zone. A trend towards shorter sea-ice duration (of 1 to 3 days per annum) occurs in fairly isolated pockets in the outer pack from∼95-110°E, and in various near-coastal areas that include an area of particularly strong and persistent change near Australia's Davis Station and between the Amery and West Ice Shelves. These areas are largely associated with coastal polynyas that are important as sites of enhanced sea ice production/melt. Areas of positive trend in ice season duration are more extensive, and include an extensive zone from 160-170°E (i.e., the western Ross Sea sector) and the near-coastal zone between 40-100°E. The East Antarctic pattern is considerably more complex than the well-documented trends in West Antarctica e.g., in the Antarctic Peninsula-Bellingshausen Sea and western Ross Sea sectors.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFM.C31A0435M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFM.C31A0435M"><span>Help, I don’t know which sea ice algorithm to use?!: Developing an authoritative sea ice climate data record</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Meier, W.; Stroeve, J.; Duerr, R. E.; Fetterer, F. M.</p> <p>2009-12-01</p> <p>The declining Arctic sea ice is one of the most dramatic indicators of climate change and is being recognized as a key factor in future climate impacts on biology, human activities, and global climate change. As such, the audience for sea ice data is expanding well beyond the sea ice community. The most comprehensive sea ice data are from a series of satellite-borne passive microwave sensors. They provide a near-complete daily timeseries of sea ice concentration and extent since late-1978. However, there are many complicating issues in using such data, particularly for novice users. First, there is not one single, definitive algorithm, but several. And even for a given algorithm, different processing and quality-control methods may be used, depending on the source. Second, for all algorithms, there are uncertainties in any retrieved value. In general, these limitations are well-known: low spatial-resolution results in an imprecise ice edge determination and lack of small-scale detail (e.g., lead detection) within the ice pack; surface melt depresses concentration values during summer; thin ice is underestimated in some algorithms; some algorithms are sensitive to physical surface temperature; other surface features (e.g., snow) can influence retrieved data. While general error estimates are available for concentration values, currently the products do not carry grid-cell level or even granule level data quality information. Finally, metadata and data provenance information are limited, both of which are essential for future reprocessing. Here we describe the progress to date toward development of sea ice concentration products and outline the future steps needed to complete a sea ice climate data record.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.C33C1202F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.C33C1202F"><span>Determination of a Critical Sea Ice Thickness Threshold for the Central Arctic Ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ford, V.; Frauenfeld, O. W.; Nowotarski, C. J.</p> <p>2017-12-01</p> <p>While sea ice extent is readily measurable from satellite observations and can be used to assess the overall survivability of the Arctic sea ice pack, determining the spatial variability of sea ice thickness remains a challenge. Turbulent and conductive heat fluxes are extremely sensitive to ice thickness but are dominated by the sensible heat flux, with energy exchange expected to increase with thinner ice cover. Fluxes over open water are strongest and have the greatest influence on the atmosphere, while fluxes over thick sea ice are minimal as heat conduction from the ocean through thick ice cannot reach the atmosphere. We know that turbulent energy fluxes are strongest over open ocean, but is there a "critical thickness of ice" where fluxes are considered non-negligible? Through polar-optimized Weather Research and Forecasting model simulations, this study assesses how the wintertime Arctic surface boundary layer, via sensible heat flux exchange and surface air temperature, responds to sea ice thinning. The region immediately north of Franz Josef Land is characterized by a thickness gradient where sea ice transitions from the thickest multi-year ice to the very thin marginal ice seas. This provides an ideal location to simulate how the diminishing Arctic sea ice interacts with a warming atmosphere. Scenarios include both fixed sea surface temperature domains for idealized thickness variability, and fixed ice fields to detect changes in the ocean-ice-atmosphere energy exchange. Results indicate that a critical thickness threshold exists below 1 meter. The threshold is between 0.4-1 meters thinner than the critical thickness for melt season survival - the difference between first year and multi-year ice. Turbulent heat fluxes and surface air temperature increase as sea ice thickness transitions from perennial ice to seasonal ice. While models predict a sea ice free Arctic at the end of the warm season in future decades, sea ice will continue to transform seasonally during Polar winter. However, despite seasonal sea ice change, if and where its thickness remains below this critical threshold, the Arctic Ocean will continue interacting with the overlying atmosphere and contributing to Arctic amplification during the cold season.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=How+AND+many+AND+Genders&id=EJ1126111','ERIC'); return false;" href="https://eric.ed.gov/?q=How+AND+many+AND+Genders&id=EJ1126111"><span>"Man-Up, Go and Get an Ice-Pack." Gendered Stereotypes and Binaries within the Primary Classroom: A Thing of the Past?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Hamilton, Paula; Roberts, Bethan</p> <p>2017-01-01</p> <p>Gendered expectations are deeply embedded within the fabric of a society and the classroom is no exception; binaries habitually pervade attitudes, practices and pedagogies. This small-scale qualitative-interpretive study, undertaken in one rural primary school in North Wales, explores how the learning of gender is constructed, enacted and…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28607306','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28607306"><span>Assessment of cold-chain maintenance in vaccine carriers during Pulse Polio National Immunization Day in a rural block of India.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Pakhare, Abhijit P; Bali, Surya; Pawar, Radhakishan B; Lokhande, Ganesh S</p> <p>2014-01-01</p> <p>India was certified polio free on 27 March 2014. Supplementary immunization activities, in the form of national immunization days, is one of the core strategies for eradication, where oral polio vaccine is administered to children aged under 5 years throughout the country. Oral polio vaccine is heat sensitive and requires maintenance of a stringent cold chain. Therefore, vaccine carriers with ice packs are used in the Pulse Polio Immunization (PPI) programme. This study assessed whether the cold chain is maintained during National Immunization Day in Beed district. A cross-sectional study was conducted at six randomly selected booths, one each from six primary health centres in Georai block of Beed district in Maharashtra. Electronic data loggers, configured to measure half-hourly temperatures, were kept in vaccine carriers throughout the day of PPI. The vaccine carrier temperature was below 8 °C at all six booths; minimum temperature recorded was -9.5 °C, while the maximum was 4.5 °C. The vaccine vial monitor did not reach discard point in any booth. A vaccine carrier with four ice packs very effectively maintains the cold chain required for oral polio vaccine.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.C43B0756M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.C43B0756M"><span>Laboratory Studies of Sea-Ice-Wave Interactions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Monty, J.; Meylan, M. H.; Babanin, A. V.; Toffoli, A.; Bennetts, L.</p> <p>2016-12-01</p> <p>A world-first facility for studying the Marginal Ice Zone has been constructed in the Michell Hydrodynamics Laboratory at the University of Melbourne. A 14m long wave tank (0.75m wide, 0.6m deep) resides in a freezer, where air temperature can be controlled down to -15C. This permits the freezing of the water surface. Large stainless steel ice-making trays (up to 4 m long) are also available to create ice of desired thickness and microstructure, which can be lowered onto the water surface. A computer controlled wave generator is capable of creating waves of any desired form. The temperature of the water in the tank can also be controlled between 2 and 30C. The tank frame is constructed of marine-treated wood and the entire tank is glass and acrylic, permitting the use of corrosive fluids, such as salt water. Here we present the first laboratory experiments of break-up of a controlled thickness, fresh water ice sheet impacted by regular and JONSWAP spectrum surface waves. The geometry of the resultant ice-floes is measured with high-resolution, time-resolved imaging, providing the crucial data of floe size distribution. Initial observations show that, in the case of high steepness waves, the primary mechanisms of ice break-up at the ice edge are overwash and rafting, both of which put weight on the ice interior to the ice-water interface. This additional weight (and impact in the case of rafting) breaks more ice, which allows overwash and rafting deeper into the ice sheet, breaking more ice and so on. For lower steepness waves, overwash and rafting are still present but far less significant. Finally, results of vertical ice movement using laser height gauges will be presented showing the attenuation of waves into an ice sheet and through a pack of ice floes. These results are compared with field data and theory available (e.g. Squire & Moore, Nature, 1980 and Kohout et al., Nature, 2014).</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_16 --> <div id="page_17" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="321"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20810427','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20810427"><span>Positive selection on the killer whale mitogenome.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Foote, Andrew D; Morin, Phillip A; Durban, John W; Pitman, Robert L; Wade, Paul; Willerslev, Eske; Gilbert, M Thomas P; da Fonseca, Rute R</p> <p>2011-02-23</p> <p>Mitochondria produce up to 95 per cent of the eukaryotic cell's energy. The coding genes of the mitochondrial DNA may therefore evolve under selection owing to metabolic requirements. The killer whale, Orcinus orca, is polymorphic, has a global distribution and occupies a range of ecological niches. It is therefore a suitable organism for testing this hypothesis. We compared a global dataset of the complete mitochondrial genomes of 139 individuals for amino acid changes that were associated with radical physico-chemical property changes and were influenced by positive selection. Two such selected non-synonymous amino acid changes were found; one in each of two ecotypes that inhabit the Antarctic pack ice. Both substitutions were associated with changes in local polarity, increased steric constraints and α-helical tendencies that could influence overall metabolic performance, suggesting a functional change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17781630','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17781630"><span>The surface of the ice-age Earth.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p></p> <p>1976-03-19</p> <p>In the Northern Hemisphere the 18,000 B.P. world differed strikingly from the present in the huge land-based ice sheets, reaching approximately 3 km in thickness, and in a dramatic increase in the extent of pack ice and marine-based ice sheets. In the Southern Hemisphere the most striking contrast was the greater extent of sea ice. On land, grasslands, steppes, and deserts spread at the expense of forests. This change in vegetation, together with extensive areas of permanent ice and sandy outwash plains, caused an increase in global surface albedo over modern values. Sea level was lower by at least 85 m. The 18,000 B.P. oceans were characterized by: (i) marked steepening of thermal gradients along polar frontal systems, particularly in the North Atlantic and Antarctic; (ii) an equatorward displacement of polar frontal systems; (iii) general cooling of most surface waters, with a global average of -2.3 degrees C; (iv) increased cooling and up-welling along equatorial divergences in the Pacific and Atlantic; (v) low temperatures extending equatorward along the western coast of Africa, Australia, and South America, indicating increased upwelling and advection of cool waters; and (vi) nearly stable positions and temperatures of the central gyres in the subtropical Atlantic, Pacific, and Indian oceans.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015GeoRL..42.2317A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015GeoRL..42.2317A"><span>Estimates of ocean wave heights and attenuation in sea ice using the SAR wave mode on Sentinel-1A</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ardhuin, Fabrice; Collard, Fabrice; Chapron, Bertrand; Girard-Ardhuin, Fanny; Guitton, Gilles; Mouche, Alexis; Stopa, Justin E.</p> <p>2015-04-01</p> <p>Swell evolution from the open ocean into sea ice is poorly understood, in particular the amplitude attenuation expected from scattering and dissipation. New synthetic aperture radar (SAR) data from Sentinel-1A wave mode reveal intriguing patterns of bright oscillating lines shaped like instant noodles. We investigate cases in which the oscillations are in the azimuth direction, around a straight line in the range direction. This observation is interpreted as the distortion by the SAR processing of crests from a first swell, due to the presence of a second swell. Since deviations from a straight line should be proportional to the orbital velocity toward the satellite, swell height can be estimated, from 1.5 to 5 m in the present case. The evolution of this 13 s period swell across the ice pack is consistent with an exponential attenuation on a length scale of 200 km.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..1714245A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..1714245A"><span>Estimates of ocean wave heights and attenuation in sea ice using the SAR wave mode on Sentinel-1A</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ardhuin, Fabrice; Collard, Fabrice; Chapron, Bertrand; Girard-Ardhuin, Fanny; Guitton, Gilles; Mouche, Alexis; Stopa, Justin</p> <p>2015-04-01</p> <p>Swell evolution from the open ocean into sea ice is poorly understood, in particular the amplitude attenuation expected from scattering and dissipation. New synthetic aperture radar (SAR) data from Sentinel-1 wave mode reveal intriguing patterns of bright oscillating lines shaped like instant noodles. We investigate cases in which the oscillations are in the azimuth direction, around a straight line in the range direction. This observation is interpreted as the distortion by the SAR processing of crests from a first swell, due to the presence of a second swell. As deviations from a straight line should be proportional to the orbital velocity towards the satellite, swell height can be estimated, from 1.5 to 5 m in the present case. This evolution of this 13 s period swell across the ice pack is consistent with an exponential attenuation on a length scale of 200 km.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19880059050&hterms=europa+ice&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Deuropa%2Bice','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19880059050&hterms=europa+ice&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Deuropa%2Bice"><span>Friction of ice. [on Ganymede, Callisto, and Europa surfaces</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Beeman, M.; Durham, W. B.; Kirby, S. H.</p> <p>1988-01-01</p> <p>Frictional sliding experiments were performed on saw-cut samples of laboratory-made polycrystalline water ice, prepared in the same way as the material used by Kirby et al. (1987) in ice deformation experiments. The data show that the maximum frictional stress is a function of the normal stress but is not measurably dependent on temperature or sliding rate over the ranges covered in these experiments (77-115 K and 0.0003-0.03 mm/s, respectively). The sliding behavior was invariably stick slip, with the sliding surfaces exhibiting only minor gouge development. In samples with anomalously low strength, a curious arrangement of densely packed short vertical fractures was observed. The results of these experiments were applied to a model of near-surface tectonic activity on Ganymede, one of Jupiter's icy moons. The results indicate that a global expansion on Ganymede of 3 linear percent will cause extensional movement on preexisting faults at depths to 7 + or - 3 km.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=267860&Lab=OTAQ&keyword=lithium+AND+ion+AND+battery&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=267860&Lab=OTAQ&keyword=lithium+AND+ion+AND+battery&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>HIL Development and Validation of Lithium-ion Battery Packs (SAE 2014-01-1863)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>A Battery Test Facility (BTF) has been constructed at United States Environmental Protection Agency (EPA) to test various automotive battery packs for HEV, PHEV, and EV vehicles. Battery pack tests were performed in the BTF using a battery cycler, testing controllers, battery pa...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016APS..MARH51007W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016APS..MARH51007W"><span>Non-equilibrium Statistical Mechanics and the Sea Ice Thickness Distribution</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wettlaufer, John; Toppaladoddi, Srikanth</p> <p></p> <p>We use concepts from non-equilibrium statistical physics to transform the original evolution equation for the sea ice thickness distribution g (h) due to Thorndike et al., (1975) into a Fokker-Planck like conservation law. The steady solution is g (h) = calN (q) hqe - h / H , where q and H are expressible in terms of moments over the transition probabilities between thickness categories. The solution exhibits the functional form used in observational fits and shows that for h << 1 , g (h) is controlled by both thermodynamics and mechanics, whereas for h >> 1 only mechanics controls g (h) . Finally, we derive the underlying Langevin equation governing the dynamics of the ice thickness h, from which we predict the observed g (h) . This allows us to demonstrate that the ice thickness field is ergodic. The genericity of our approach provides a framework for studying the geophysical scale structure of the ice pack using methods of broad relevance in statistical mechanics. Swedish Research Council Grant No. 638-2013-9243, NASA Grant NNH13ZDA001N-CRYO and the National Science Foundation and the Office of Naval Research under OCE-1332750 for support.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28607400','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28607400"><span>Arctic sea ice melt leads to atmospheric new particle formation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Dall Osto, M; Beddows, D C S; Tunved, P; Krejci, R; Ström, J; Hansson, H-C; Yoon, Y J; Park, Ki-Tae; Becagli, S; Udisti, R; Onasch, T; O Dowd, C D; Simó, R; Harrison, Roy M</p> <p>2017-06-12</p> <p>Atmospheric new particle formation (NPF) and growth significantly influences climate by supplying new seeds for cloud condensation and brightness. Currently, there is a lack of understanding of whether and how marine biota emissions affect aerosol-cloud-climate interactions in the Arctic. Here, the aerosol population was categorised via cluster analysis of aerosol size distributions taken at Mt Zeppelin (Svalbard) during a 11 year record. The daily temporal occurrence of NPF events likely caused by nucleation in the polar marine boundary layer was quantified annually as 18%, with a peak of 51% during summer months. Air mass trajectory analysis and atmospheric nitrogen and sulphur tracers link these frequent nucleation events to biogenic precursors released by open water and melting sea ice regions. The occurrence of such events across a full decade was anti-correlated with sea ice extent. New particles originating from open water and open pack ice increased the cloud condensation nuclei concentration background by at least ca. 20%, supporting a marine biosphere-climate link through sea ice melt and low altitude clouds that may have contributed to accelerate Arctic warming. Our results prompt a better representation of biogenic aerosol sources in Arctic climate models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=PIA00591&hterms=europa+ice&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Deuropa%2Bice','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=PIA00591&hterms=europa+ice&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Deuropa%2Bice"><span>Europa Ice Rafts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1997-01-01</p> <p>This high resolution image shows the ice-rich crust of Europa, one of the moons of Jupiter. Seen here are crustal plates ranging up to 13 kilometers (8 miles) across, which have been broken apart and 'rafted' into new positions, superficially resembling the disruption of pack-ice on polar seas during spring thaws on Earth. The size and geometry of these features suggest that motion was enabled by ice-crusted water or soft ice close to the surface at the time of disruption.<p/>The area shown is about 34 kilometers by 42 kilometers (21 miles by 26 miles), centered at 9.4 degrees north latitude, 274 degrees west longitude, and the resolution is 54 meters (59 yards). This picture was taken by the Solid State Imaging system on board the Galileo spacecraft on February 20, 1997, from a distance of 5,340 kilometers (3,320 miles) during the spacecraft's close flyby of Europa.<p/>The Jet Propulsion Laboratory, Pasadena, CA, manages the mission for NASA's Office of Space Science, Washington D.C. This image and other images and data received from Galileo are posted on the World Wide Web Galileo mission home page at: http://galileo.jpl.nasa.gov.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.C23B0793M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.C23B0793M"><span>Multiyear ice transport and small scale sea ice deformation near the Alaska coast measured by air-deployable Ice Trackers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mahoney, A. R.; Kasper, J.; Winsor, P.</p> <p>2015-12-01</p> <p>Highly complex patterns of ice motion and deformation were captured by fifteen satellite-telemetered GPS buoys (known as Ice Trackers) deployed near Barrow, Alaska, in spring 2015. Two pentagonal clusters of buoys were deployed on pack ice by helicopter in the Beaufort Sea between 20 and 80 km offshore. During deployment, ice motion in the study region was effectively zero, but two days later the buoys captured a rapid transport event in which multiyear ice from the Beaufort Sea was flushed into the Chukchi Sea. During this event, westward ice motion began in the Chukchi Sea and propagated eastward. This created new openings in the ice and led to rapid elongation of the clusters as the westernmost buoys accelerated away from their neighbors to the east. The buoys tracked ice velocities of over 1.5 ms-1, with fastest motion occurring closest to the coast indicating strong current shear. Three days later, ice motion reversed and the two clusters became intermingled, rendering divergence calculations based on the area enclosed by clusters invalid. The data show no detectable difference in velocity between first year and multiyear ice floes, but Lagrangian timeseries of SAR imagery centered on each buoy show that first year ice underwent significant small-scale deformation during the event. The five remaining buoys were deployed by local residents on prominent ridges embedded in the landfast ice within 16 km of Barrow in order to track the fate of such features after they detached from the coast. Break-up of the landfast ice took place over a period of several days and, although the buoys each initially followed a similar eastward trajectory around Point Barrow into the Beaufort Sea, they rapidly dispersed over an area more than 50 km across. With rapid environmental and socio-economic change in the Arctic, understanding the complexity of nearshore ice motion is increasingly important for predict future changes in the ice and the tracking ice-related hazards contaminants entrained in the ice. This work demonstrates the ability of low-cost easily-deployable Ice Trackers to generate to generate data of both scientific and operational value.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.C43B0751P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.C43B0751P"><span>Seasonal and Interannual Fast-Ice Variability from MODIS Surface-Temperature Anomalies, and its Link to External Forcings in Atka Bay, Antarctica</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Paul, S.; Hoppmann, M.; Willmes, S.; Heinemann, G.</p> <p>2016-12-01</p> <p>Around Antarctica, sea ice is regularly attached to coastal features. These regions of mostly seasonal fast ice interact with the atmosphere, ocean and coastal ecosystem in a variety of ways. The growth and breakup cycles may depend on different factors, such as water- and air temperatures, wind conditions, tides, ocean swell, the passage of icebergs and the presence of nearby polynyas. However, a detailed understanding about the interaction between these factors and the fast-ice cycle is missing. In order to better understand the linkages between general fast-ice evolution and external forcing factors, we present results from an observational case study performed on the seasonal fast-ice cover of Atka Bay, eastern Weddell Sea. The ice conditions in this region are critical for the supply of the German wintering station Neumayer III. Moreover, the fast ice at Atka Bay hosts a unique ecosystem based on the presence of a sub-ice platelet layer and a large emperor penguin colony. While some qualitative characterizations on the seasonal fast-ice cycle in this region exist, no proper quantification was carried out to date. The backbone of this work is a new algorithm, which yields the first continuous time series of open-water fractions from Moderate-Resolution Imaging Spectroradiometer (MODIS) surface temperatures. The open-water fractions are derived from a range of running multi-day median temperature composites, utilizing the thermal footprint of warm open water and thin ice in contrast to cold pack-ice/ice-shelf areas. This unique, and manually validated dataset allows us to monitor changes in fast-ice extent on a near daily basis, for a period of 14 years (2002-2015). In a second step, we combine these results with iceberg observations, data from the meteorological observatory, and auxiliary satellite data in order to identify the main factors governing fast-ice formation and break-up.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1912255R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1912255R"><span>Comparative study of sea ice dynamics simulations with a Maxwell elasto-brittle rheology and the elastic-viscous-plastic rheology in NEMO-LIM3</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Raulier, Jonathan; Dansereau, Véronique; Fichefet, Thierry; Legat, Vincent; Weiss, Jérôme</p> <p>2017-04-01</p> <p>Sea ice is a highly dynamical environment characterized by a dense mesh of fractures or leads, constantly opening and closing over short time scales. This characteristic geomorphology is linked to the existence of linear kinematic features, which consist of quasi-linear patterns emerging from the observed strain rate field of sea ice. Standard rheologies used in most state-of-the-art sea ice models, like the well-known elastic-viscous-plastic rheology, are thought to misrepresent those linear kinematic features and the observed statistical distribution of deformation rates. Dedicated rheologies built to catch the processes known to be at the origin of the formation of leads are developed but still need evaluations on the global scale. One of them, based on a Maxwell elasto-brittle formulation, is being integrated in the NEMO-LIM3 global ocean-sea ice model (www.nemo-ocean.eu; www.elic.ucl.ac.be/lim). In the present study, we compare the results of the sea ice model LIM3 obtained with two different rheologies: the elastic-viscous-plastic rheology commonly used in LIM3 and a Maxwell elasto-brittle rheology. This comparison is focused on the statistical characteristics of the simulated deformation rate and on the ability of the model to reproduce the existence of leads within the ice pack. The impact of the lead representation on fluxes between ice, atmosphere and ocean is also assessed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-iss015e05624.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-iss015e05624.html"><span>Earth Observations taken by the Expedition 15 Crew</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2007-04-29</p> <p>ISS015-E-05624 (29 April 2007) --- The Niagara River, eastern end of Lake Erie and western end of Lake Ontario are featured in this image photographed by an Expedition 15 crewmember on the International Space Station. In contrast, an image photographed by an Expedition 14 crewmember just a month earlier on March 21, 2007 (ISS014-E-17999) shows Lake Erie clogged with ice that is pushed against the shore line by the prevailing weather systems from the west. These two images document the breakup of the Lake Erie ice pack, the unofficial signature of spring for residents of Buffalo and Niagara Falls. During the winter months, the ice collects in Lake Erie and is prevented from flowing down the Niagara River (the international boundary between Ontario, Canada and New York State) by the Lake Erie-Niagara River Ice Boom. The 2,680-meter (8,800-foot) boom, administered by the 1909 Boundary Water Treaty's International Niagara Board of Control, is deployed each December. Operational since 1964, the boom serves several functions: it protects the water intakes for the Niagara River power plants, and minimizes ice runs and ice blockages that can create damage and flooding along the river. At the height of winter, the thickness of the ice at the Buffalo harbor can reach 3.5 meters (12 feet). The removal of the ice boom, usually in early April, is now marked by local celebrations. This year the boom was removed in mid-April, a bit later than usual.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007PhDT........29K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007PhDT........29K"><span>Arctic landfast sea ice</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Konig, Christof S.</p> <p></p> <p>Landfast ice is sea ice which forms and remains fixed along a coast, where it is attached either to the shore, or held between shoals or grounded icebergs. Landfast ice fundamentally modifies the momentum exchange between atmosphere and ocean, as compared to pack ice. It thus affects the heat and freshwater exchange between air and ocean and impacts on the location of ocean upwelling and downwelling zones. Further, the landfast ice edge is essential for numerous Arctic mammals and Inupiat who depend on them for their subsistence. The current generation of sea ice models is not capable of reproducing certain aspects of landfast ice formation, maintenance, and disintegration even when the spatial resolution would be sufficient to resolve such features. In my work I develop a new ice model that permits the existence of landfast sea ice even in the presence of offshore winds, as is observed in mature. Based on viscous-plastic as well as elastic-viscous-plastic ice dynamics I add tensile strength to the ice rheology and re-derive the equations as well as numerical methods to solve them. Through numerical experiments on simplified domains, the effects of those changes are demonstrated. It is found that the modifications enable landfast ice modeling, as desired. The elastic-viscous-plastic rheology leads to initial velocity fluctuations within the landfast ice that weaken the ice sheet and break it up much faster than theoretically predicted. Solving the viscous-plastic rheology using an implicit numerical method avoids those waves and comes much closer to theoretical predictions. Improvements in landfast ice modeling can only verified in comparison to observed data. I have extracted landfast sea ice data of several decades from several sources to create a landfast sea ice climatology that can be used for that purpose. Statistical analysis of the data shows several factors that significantly influence landfast ice distribution: distance from the coastline, ocean depth, as well as the strength of offshore winds during nine out of the twelve months each year. Additionally, I identify regions where landfast ice appearance has been increasing or decreasing over the observed time span.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19930016861','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19930016861"><span>Radar backscatter measurements from Arctic sea ice during the fall freeze-up</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Beaven, S.; Gogineni, S. P.; Shanableh, M.; Gow, A.; Tucker, W.; Jezek, K.</p> <p>1993-01-01</p> <p>Radar backscatter measurements from sea ice during the fall freeze-up were performed by the United States Coast Guard Icebreaker Polar Star as a part of the International Arctic Ocean Expedition (IAOE'91) from Aug. to Sep. 1991. The U.S. portion of the experiment took place on board the Polar Star and was referred to as TRAPOLEX '91 (Transpolar expedition) by some investigators. Before prematurely aborting its mission because of mechanical failure of her port shaft, the Polar Star reached 84 deg 57 min N latitude at 35 deg E longitude. The ship was in the ice (greater than 50 percent coverage) from 14 Aug. until 3 Sep. and was operational for all but 6 days due to two instances of mechanical problems with the port shaft. The second was fatal to the ship's participation in the expedition. During the expedition, radar backscatter was measured at C-band under a variety of conditions. These included measurements from young ice types as well as from multiyear and first-/second-year sea ice during the fall freeze-up. The sea ice types were determined by measurement of the ice properties at several of the stations and by visual inspection on others. Radar backscatter measurements were performed over a large portion of the ship's transit into the Arctic ice pack. These were accompanied by in situ sea ice property characterization by the U.S. Army Cold Regions Research and Engineering Laboratory (CRREL) at several stations and, when snow was present, its properties were documented by The Microwave Group, Ottawa River (MWG).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013ACPD...1310395K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013ACPD...1310395K"><span>Vertical profiling of aerosol particles and trace gases over the central Arctic Ocean during summer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kupiszewski, P.; Leck, C.; Tjernström, M.; Sjogren, S.; Sedlar, J.; Graus, M.; Müller, M.; Brooks, B.; Swietlicki, E.; Norris, S.; Hansel, A.</p> <p>2013-04-01</p> <p>Unique measurements of vertical size resolved aerosol particle concentrations, trace gas concentrations and meteorological data were obtained during the Arctic Summer Cloud Ocean Study (ASCOS, <a href="http://www.ascos.se"target="_blank">http://www.ascos.se</a>), an International Polar Year project aimed at establishing the processes responsible for formation and evolution of low-level clouds over the high Arctic summer pack ice. The experiment was conducted from onboard the Swedish icebreaker Oden, and provided both ship- and helicopter-based measurements. This study focuses on the vertical helicopter profiles and onboard measurements obtained during a three-week period when Oden was anchored to a drifting ice floe, and sheds light on the characteristics of Arctic aerosol particles and their distribution throughout the lower atmosphere. Distinct differences in aerosol particle characteristics within defined atmospheric layers are identified. Near the surface (lowermost couple hundred meters), transport from the marginal ice zone (MIZ), if sufficiently short (less than ca. 2 days), condensational growth and cloud-processing develop the aerosol population. During two of the four representative periods defined in this study, such influence is shown. At altitudes above about 1 km, long-range transport occurs frequently. However, only infrequently does large-scale subsidence descend such air masses to become entrained into the mixed layer in the high Arctic, and therefore they are unlikely to directly influence low-level stratiform cloud formation. Nonetheless, long-range transport plumes can influence the radiative balance of the PBL by influencing formation and evolution of higher clouds, as well as through precipitation transport of particles downwards. New particle formation was occasionally observed, particularly in the near-surface layer. We hypothesize that the origin of these ultrafine particles can be from biological processes, both primary and secondary, within the open leads between the pack ice and/or along the MIZ. In general, local sources, in combination with upstream boundary layer transport of precursor gases from the MIZ, are suggested to constitute the origin of CCN particles and thus be of importance for the formation of interior Arctic low level clouds during summer, and subsequently, through cloud influences, on the melting and freezing of sea ice.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013ACP....1312405K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013ACP....1312405K"><span>Vertical profiling of aerosol particles and trace gases over the central Arctic Ocean during summer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kupiszewski, P.; Leck, C.; Tjernström, M.; Sjogren, S.; Sedlar, J.; Graus, M.; Müller, M.; Brooks, B.; Swietlicki, E.; Norris, S.; Hansel, A.</p> <p>2013-12-01</p> <p>Unique measurements of vertical size-resolved aerosol particle concentrations, trace gas concentrations and meteorological data were obtained during the Arctic Summer Cloud Ocean Study (ASCOS, <a href="http://www.ascos.se"target="_blank"> www.ascos.se</a>), an International Polar Year project aimed at establishing the processes responsible for formation and evolution of low-level clouds over the high Arctic summer pack ice. The experiment was conducted from on board the Swedish icebreaker Oden, and provided both ship- and helicopter-based measurements. This study focuses on the vertical helicopter profiles and onboard measurements obtained during a three-week period when Oden was anchored to a drifting ice floe, and sheds light on the characteristics of Arctic aerosol particles and their distribution throughout the lower atmosphere. Distinct differences in aerosol particle characteristics within defined atmospheric layers are identified. Within the lowermost couple hundred metres, transport from the marginal ice zone (MIZ), condensational growth and cloud processing develop the aerosol population. During two of the four representative periods defined in this study, such influence is shown. At altitudes above about 1 km, long-range transport occurs frequently. However, only infrequently does large-scale subsidence descend such air masses to become entrained into the mixed layer in the high Arctic, and therefore long-range transport plumes are unlikely to directly influence low-level stratiform cloud formation. Nonetheless, such plumes can influence the radiative balance of the planetary boundary layer (PBL) by influencing formation and evolution of higher clouds, as well as through precipitation transport of particles downwards. New particle formation was occasionally observed, particularly in the near-surface layer. We hypothesize that the origin of these ultrafine particles could be in biological processes, both primary and secondary, within the open leads between the pack ice and/or along the MIZ. In general, local sources, in combination with upstream boundary-layer transport of precursor gases from the MIZ, are considered to constitute the origin of cloud condensation nuclei (CCN) particles and thus be of importance for the formation of interior Arctic low-level clouds during summer, and subsequently, through cloud influences, for the melting and freezing of sea ice.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title49-vol2/pdf/CFR-2011-title49-vol2-sec173-162.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title49-vol2/pdf/CFR-2011-title49-vol2-sec173-162.pdf"><span>49 CFR 173.162 - Gallium.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-10-01</p> <p>... must be packed in wood boxes (4C1, 4C2, 4D, 4F), fiberboard boxes (4G), plastic boxes (4H1, 4H2), fiber... fiber (1G) or steel (1A2) drums, which are lined with leak-tight, puncture-resistant material. Bags and... employed. If dry ice is used, the outer packaging must permit the release of carbon dioxide gas. (c...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title49-vol2/pdf/CFR-2010-title49-vol2-sec173-162.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title49-vol2/pdf/CFR-2010-title49-vol2-sec173-162.pdf"><span>49 CFR 173.162 - Gallium.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-10-01</p> <p>... must be packed in wood boxes (4C1, 4C2, 4D, 4F), fiberboard boxes (4G), plastic boxes (4H1, 4H2), fiber... fiber (1G) or steel (1A2) drums, which are lined with leak-tight, puncture-resistant material. Bags and... employed. If dry ice is used, the outer packaging must permit the release of carbon dioxide gas. (c...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=kids&pg=7&id=EJ921995','ERIC'); return false;" href="https://eric.ed.gov/?q=kids&pg=7&id=EJ921995"><span>Stay aHEAD of the Game: Get the Facts about Concussion in Sports</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Boyer, Cynthia</p> <p>2011-01-01</p> <p>Sports offer so many benefits to kids, from fun and fitness to responsibility and teamwork skills. With sports also come bumps and bruises--and one type of injury requires much more than an ice pack or a band-aid. Head trauma is one of the most common injuries sustained by young athletes, with more than 60,000 concussions occurring each year in…</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_17 --> <div id="page_18" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="341"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ncifrederick.cancer.gov/about/theposter/node/47','NCI'); return false;" href="https://ncifrederick.cancer.gov/about/theposter/node/47"><span>PEL Staff Together for the First Time | Poster</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.cancer.gov">Cancer.gov</a></p> <p></p> <p></p> <p>By Ashley DeVine, Staff Writer John-Paul Denson and Troy Taylor of the Protein Expression Laboratory (PEL) used to pack liters of Escherichia coli lysates on ice, put them in the back of a microvan, and drive across campus to deliver the samples for protein purification. Now that all PEL staff members are working under the same roof at the Advanced Technology Research Facility</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA540804','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA540804"><span>Heat Stroke: Role of the Systemic Inflammatory Response</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2010-06-01</p> <p>data indicate that current clinical markers of heat stroke recovery may not adequately reflect heat stroke recovery in all cases. Currently heat stroke...cause of mortality, and recent experimental data indicate that current clinical markers of heat stroke recovery may not adequately reflect heat stroke...hyperthermia in patients was regarded as a compensatory peripheral vasoconstriction response to cooling of the skin surface with ice packs, whereas</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ISPAnIII7....9W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ISPAnIII7....9W"><span>a New High-Resolution Elevation Model of Greenland Derived from Tandem-X</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wessel, B.; Bertram, A.; Gruber, A.; Bemm, S.; Dech, S.</p> <p>2016-06-01</p> <p>In this paper we present for the first time the new digital elevation model (DEM) for Greenland produced by the TanDEM-X (TerraSAR add-on for digital elevation measurement) mission. The new, full coverage DEM of Greenland has a resolution of 0.4 arc seconds corresponding to 12 m. It is composed of more than 7.000 interferometric synthetic aperture radar (InSAR) DEM scenes. X-Band SAR penetrates the snow and ice pack by several meters depending on the structures within the snow, the acquisition parameters, and the dielectricity constant of the medium. Hence, the resulting SAR measurements do not represent the surface but the elevation of the mean phase center of the backscattered signal. Special adaptations on the nominal TanDEM-X DEM generation are conducted to maintain these characteristics and not to raise or even deform the DEM to surface reference data. For the block adjustment, only on the outer coastal regions ICESat (Ice, Cloud, and land Elevation Satellite) elevations as ground control points (GCPs) are used where mostly rock and surface scattering predominates. Comparisons with ICESat data and snow facies are performed. In the inner ice and snow pack, the final X-Band InSAR DEM of Greenland lies up to 10 m below the ICESat measurements. At the outer coastal regions it corresponds well with the GCPs. The resulting DEM is outstanding due to its resolution, accuracy and full coverage. It provides a high resolution dataset as basis for research on climate change in the arctic.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.9640F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.9640F"><span>Continuous profiles of microstructure, stable water isotopes and impurity content of the 2m snow pack from three polar drill sites</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Freitag, Johannes; Schaller, Christoph; Kipfstuhl, Sepp; Hörhold, Maria; Schaidt, Maximilian; Sander, Merle; Moser, Dorothea</p> <p>2017-04-01</p> <p>Interpreting polar ice as climate archive requires profound knowledge about the formation of climate-proxies within the upper snow column. In order to investigate different impact factors on signal formation we performed a multiproxy- approach for 2m deep snow profiles by continuously measuring the 3D-microstructure using core-scale X-CT and the isotopic composition and impurity load in discrete samples of 1.1cm spatial resolution. The study includes profiles from a low-accumulation site on the East Antarctic plateau (Kohnen Station, DML), a typical medium-accumulation site on the North-East-Greenland ice sheet (EGRIP drilling camp) and a high-accumulation site on the Renland ice cap (East-coast of Greenland, RECAP drilling camp). Major observations are the tooth-shaped imprint of structural anisotropy and sulfate concentrations at the low accumulation site, the clear isotopic inter-annual variations that are in line with distinct impurity peaks at the high-accumulation site and the unexpected missing footprint of ice crusts and refrozen melt layers within the impurity- and isotope records for all sites.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=PIA03419&hterms=wildlife&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dwildlife','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=PIA03419&hterms=wildlife&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dwildlife"><span>Summer in the Arctic National Wildlife Refuge</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2001-01-01</p> <p>This colorful image of the Arctic National Wildlife Refuge and the Beaufort Sea was acquired by the Multi-angle Imaging SpectroRadiometer's nadir (vertical-viewing) camera on August 16, 2000, during Terra orbit 3532. The swirling patterns apparent on the Beaufort Sea are small ice floes driven by turbulent water patterns, or eddies, caused by the interactions of water masses of differing salinity and temperature. By this time of year, all of the seasonal ice which surrounds the north coast of Alaska in winter has broken up, although the perennial pack ice remains further north. The morphology of the perennial ice pack's edge varies in response to the prevailing wind. If the wind is blowing strongly toward the perennial pack (that is, to the north), the ice edge will be more compact. In this image the ice edge is diffuse, and the patterns reflected by the ice floes indicate fairly calm weather.<p/>The Arctic National Wildlife Refuge (often abbreviated to ANWR) was established by President Eisenhower in 1960, and is the largest wildlife refuge in the United States. Animals of the Refuge include the 130,000-member Porcupine caribou herd, 180 species of birds from four continents, wolves, wolverine, polar and grizzly bears, muskoxen, foxes, and over 40 species of coastal and freshwater fish. Although most of ANWR was designated as wilderness in 1980, the area along the coastal plain was set aside so that the oil and gas reserves beneath the tundra could be studied. Drilling remains a topic of contention, and an energy bill allowing North Slope oil development to extend onto the coastal plain of the Refuge was approved by the US House of Representatives on August 2, 2001.<p/>The Refuge encompasses an impressive variety of arctic and subarctic ecosystems, including coastal lagoons, barrier islands, arctic tundra, and mountainous terrain. Of all these, the arctic tundra is the landscape judged most important for wildlife. From the coast inland to an average of 30-60 kilometers, arctic tundra dominates the coastal plain, until reaching the foothills of the Brooks Mountain Range. Beneath the tundra, a layer of permafrost reaches an average depth of 600 meters, restricting water drainage through the soil, and increasing the sensitivity of tundra vegetation to disturbance. Precipitation is scarce (less than 16 centimeters per year) and the small amount of melt water or rain that soaks into the tundra remains near the surface. This is why the coastal plain can be classified as a wetland.<p/>The western boundary of the Refuge is marked by the Canning River, about halfway between the center and left-hand side of the image, and the eastern boundary is near the right-hand edge at the US/Canadian border. The two permanent human settlements within the image area are Kaktovic near the tip of the large rounded peninsula, and Arctic Village south of the Brooks Range near the southern Refuge boundary. The area represented by the image is approximately 380 kilometers x 540 kilometers.<p/>MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70186594','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70186594"><span>Diminishing sea ice in the western Arctic Ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Stone, R.S.; Belchansky, G.I.; Drobot, Sheldon; Douglas, David C.; Levinson, D.H.; Waple, A.M.</p> <p>2004-01-01</p> <p>Since the advent of satellite passive microwave radiometry (1978), variations in sea ice extent and concentration have been carefully monitored from space. An estimated 7.4% decrease in sea ice extent has occurred in the last 25 yr (Johannessen et al. 2004), with recent record minima (e.g., Maslanik et al. 1999; Serreze et al. 2003) accounting for much of the decline. Comparisons between the time series of Arctic sea ice melt dynamics and snowmelt dates at the NOAA–CMDL Barrow Observatory (BRW) reveal intriguing correlations.Melt-onset dates over sea ice (Drobot and Anderson 2001) were cross correlated with the melt-date time series from BRW, and a prominent region of high correlation between snowmelt onset over sea ice and the BRW record of melt dates was approximately aligned with the climatological center of the Beaufort Sea Anticyclone (BSA). The BSA induces anticyclonic ice motion in the region, effectively forcing the Beaufort gyre. A weak gyre caused by a breakdown of the BSA diminishes transport of multiyear ice into this region (Drobot and Maslanik 2003). Similarly, the annual snow cycle at BRW varies with the position and intensity of the BSA (Stone et al. 2002, their Fig. 6). Thus, variations in the BSA appear to have far-reaching effects on the annual accumulation and subsequent melt of snow over a large region of the western Arctic.A dramatic increase in melt season duration (Belchansky et al. 2004) was also observed within the same region of high correlation between onset of melt over the ice pack and snowmelt at BRW (Fig. 5.7). By inference, this suggests linkages between factors that modulate the annual cycle of snow on land and processes that influence melting of snow and ice in the western Arctic Ocean.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3322824','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3322824"><span>Structural Basis for Antifreeze Activity of Ice-binding Protein from Arctic Yeast*</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Lee, Jun Hyuck; Park, Ae Kyung; Do, Hackwon; Park, Kyoung Sun; Moh, Sang Hyun; Chi, Young Min; Kim, Hak Jun</p> <p>2012-01-01</p> <p>Arctic yeast Leucosporidium sp. produces a glycosylated ice-binding protein (LeIBP) with a molecular mass of ∼25 kDa, which can lower the freezing point below the melting point once it binds to ice. LeIBP is a member of a large class of ice-binding proteins, the structures of which are unknown. Here, we report the crystal structures of non-glycosylated LeIBP and glycosylated LeIBP at 1.57- and 2.43-Å resolution, respectively. Structural analysis of the LeIBPs revealed a dimeric right-handed β-helix fold, which is composed of three parts: a large coiled structural domain, a long helix region (residues 96–115 form a long α-helix that packs along one face of the β-helix), and a C-terminal hydrophobic loop region (243PFVPAPEVV251). Unexpectedly, the C-terminal hydrophobic loop region has an extended conformation pointing away from the body of the coiled structural domain and forms intertwined dimer interactions. In addition, structural analysis of glycosylated LeIBP with sugar moieties attached to Asn185 provides a basis for interpreting previous biochemical analyses as well as the increased stability and secretion of glycosylated LeIBP. We also determined that the aligned Thr/Ser/Ala residues are critical for ice binding within the B face of LeIBP using site-directed mutagenesis. Although LeIBP has a common β-helical fold similar to that of canonical hyperactive antifreeze proteins, the ice-binding site is more complex and does not have a simple ice-binding motif. In conclusion, we could identify the ice-binding site of LeIBP and discuss differences in the ice-binding modes compared with other known antifreeze proteins and ice-binding proteins. PMID:22303017</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20070034825','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20070034825"><span>Trends in the Sea Ice Cover Using Enhanced and Compatible AMSR-E, SSM/I and SMMR Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Comiso, Josefino C.; Nishio, Fumihiko</p> <p>2007-01-01</p> <p>Arguably, the most remarkable manifestation of change in the polar regions is the rapid decline (of about -10 %/decade) in the Arctic perennial ice cover. Changes in the global sea ice cover, however, are more modest, being slightly positive in the Southern Hemisphere and slightly negative in the Northern Hemisphere, the significance of which has not been adequately assessed because of unknown errors in the satellite historical data. We take advantage of the recent and more accurate AMSR-E data to evaluate the true seasonal and interannual variability of the sea ice cover, assess the accuracy of historical data, and determine the real trend. Consistently derived ice concentrations from AMSR-E, SSM/I, and SMMR data were analyzed and a slight bias is observed between AMSR-E and SSM/I data mainly because of differences in resolution. Analysis of the combine SMMR, SSM/I and AMSR-E data set, with the bias corrected, shows that the trends in extent and area of sea ice in the Arctic region is -3.4 +/- 0.2 and -4.0 +/- 0.2 % per decade, respectively, while the corresponding values for the Antarctic region is 0.9 +/- 0.2 and 1.7 .+/- 0.3 % per decade. The higher resolution of the AMSR-E provides an improved determination of the location of the ice edge while the SSM/I data show an ice edge about 6 to 12 km further away from the ice pack. Although the current record of AMSR-E is less than 5 years, the data can be utilized in combination with historical data for more accurate determination of the variability and trends in the ice cover.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25384192','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25384192"><span>The interaction of propionic and butyric acids with ice and HNO₃-doped ice surfaces at 195-212 K.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Romanias, Manolis N; Papadimitriou, Vassileios C; Papagiannakopoulos, Panos</p> <p>2014-12-04</p> <p>The interaction of propionic and butyric acids on ice and HNO3-doped ice were studied between 195 and 212 K and low concentrations, using a Knudsen flow reactor coupled with a quadrupole mass spectrometer. The initial uptake coefficients (γ0) of propionic and butyric acids on ice as a function of temperature are given by the expressions: γ0(T) = (7.30 ± 1.0) × 10(-10) exp[(3216 ± 478)/T] and γ0(T) = (6.36 ± 0.76) × 10(-11) exp[(3810 ± 434)/T], respectively; the quoted error limits are at 95% level of confidence. Similarly, γ0 of propionic acid on 1.96 wt % (A) and 7.69 wt % (B) HNO3-doped ice with temperature are given as γ(0,A)(T) = (2.89 ± 0.26) × 10(-8) exp[(2517 ± 266)/T] and γ(0,B)(T) = (2.77 ± 0.29) × 10(-7) exp[(2126 ± 206)/T], respectively. The results show that γ0 of C1 to C4 n-carboxylic acids on ice increase with the alkyl-group length, due to lateral interactions between alkyl-groups that favor a more perpendicular orientation and well packing of H-bonded monomers on ice. The high uptakes (>10(15) molecules cm(-2)) and long recovery signals indicate efficient growth of random multilayers above the first monolayer driven by significant van der Waals interactions. The heterogeneous loss of both acids on ice and HNO3-doped ice particles in dense cirrus clouds is estimated to take a few minutes, signifying rapid local heterogeneous removal by dense cirrus clouds.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.C33C1211G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.C33C1211G"><span>Is snow-ice now a major contributor to sea ice mass balance in the western Transpolar Drift region?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Graham, R. M.; Merkouriadi, I.; Cheng, B.; Rösel, A.; Granskog, M. A.</p> <p>2017-12-01</p> <p>During the Norwegian young sea ICE (N-ICE2015) campaign, which took place in the first half of 2015 north of Svalbard, a deep winter snow pack (50 cm) on sea ice was observed, that was 50% thicker than earlier climatological studies suggested for this region. Moreover, a significant fraction of snow contributed to the total ice mass in second-year ice (SYI) (9% on average). Interestingly, very little snow (3% snow by mass) was present in first-year ice (FYI). The combination of sea ice thinning and increased precipitation north of Svalbard is expected to promote the formation of snow-ice. Here we use the 1-D snow/ice thermodynamic model HIGHTSI forced with reanalysis data, to show that for the case study of N-ICE2015, snow-ice would even form over SYI with an initial thickness of 2 m. In current conditions north of Svalbard, snow-ice is ubiquitous and contributes to the thickness growth up to 30%. This contribution is important, especially in the absence of any bottom thermodynamic growth due to the thick insulating snow cover. Growth of FYI north of Svalbard is mainly controlled by the timing of growth onset relative to snow precipitation events and cold spells. These usually short-lived conditions are largely determined by the frequency of storms entering the Arctic from the Atlantic Ocean. In our case, a later freeze onset was favorable for FYI growth due to less snow accumulation in early autumn. This limited snow-ice formation but promoted bottom thermodynamic growth. We surmise these findings are related to a regional phenomenon in the Atlantic sector of the Arctic, with frequent storm events which bring increasing amounts of precipitation in autumn and winter, and also affect the duration of cold temperatures required for ice growth in winter. We discuss the implications for the importance of snow-ice in the future Arctic, formerly believed to be non-existent in the central Arctic due to thick perennial ice.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.C31B0646W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.C31B0646W"><span>Design and Fabrication of Nereid-UI: A Remotely Operated Underwater Vehicle for Oceanographic Access Under Ice</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Whitcomb, L. L.; Bowen, A. D.; Yoerger, D.; German, C. R.; Kinsey, J. C.; Mayer, L. A.; Jakuba, M. V.; Gomez-Ibanez, D.; Taylor, C. L.; Machado, C.; Howland, J. C.; Kaiser, C. L.; Heintz, M.; Pontbriand, C.; Suman, S.; O'hara, L.</p> <p>2013-12-01</p> <p>The Woods Hole Oceanographic Institution and collaborators from the Johns Hopkins University and the University of New Hampshire are developing for the Polar Science Community a remotely-controlled underwater robotic vehicle capable of being tele-operated under ice under remote real-time human supervision. The Nereid Under-Ice (Nereid-UI) vehicle will enable exploration and detailed examination of biological and physical environments at glacial ice-tongues and ice-shelf margins, delivering high-definition video in addition to survey data from on board acoustic, chemical, and biological sensors. Preliminary propulsion system testing indicates the vehicle will be able to attain standoff distances of up to 20 km from an ice-edge boundary, as dictated by the current maximum tether length. The goal of the Nereid-UI system is to provide scientific access to under-ice and ice-margin environments that is presently impractical or infeasible. FIBER-OPTIC TETHER: The heart of the Nereid-UI system is its expendable fiber optic telemetry system. The telemetry system utilizes many of the same components pioneered for the full-ocean depth capable HROV Nereus vehicle, with the addition of continuous fiber status monitoring, and new float-pack and depressor designs that enable single-body deployment. POWER SYSTEM: Nereid-UI is powered by a pressure-tolerant lithium-ion battery system composed of 30 Ah prismatic pouch cells, arranged on a 90 volt bus and capable of delivering 15 kW. The cells are contained in modules of 8 cells, and groups of 9 modules are housed together in oil-filled plastic boxes. The power distribution system uses pressure tolerant components extensively, each of which have been individually qualified to 10 kpsi and operation between -20 C and 40 C. THRUSTERS: Nereid-UI will employ eight identical WHOI-designed thrusters, each with a frameless motor, oil-filled and individually compensated, and designed for low-speed (500 rpm max) direct drive. We expect an end-to-end propulsive efficiency of between 0.3 and 0.4 at a transit speed of 1 m/s based on testing conducted at WHOI. CAMERAS: Video imagery is one of the principal products of Nereid-UI. Two fiber-optic telemetry wavelengths deliver 1.5 Gb/s uncompressed HDSDI video to the support vessel in real time, supporting a Kongsberg OE14-522 hyperspherical pan and tilt HD camera and several utility cameras. PROJECT STATUS: The first shallow-water vehicle trials are scheduled for September 2013. The trials are designed to test core vehicle systems particularly the power system, main computer and control system, thrusters, video and telemetry system, and to refine camera, lighting and acoustic sensor placement for piloted and closed-loop control, especially as pertains to working near the underside of ice. Remaining vehicle design tasks include finalizing the single-body deployment concept and depressor, populating the scientific sensing suite, and the software development necessary to implement the planned autonomous return strategy. Final design and fabrication for these remaining components of the vehicle system will proceed through fall 2013, with trials under lake ice in early 2014, and potential polar trials beginning in 2014-15. SUPPORT: NSF OPP (ANT-1126311), WHOI, James Family Foundation, and George Frederick Jewett Foundation East.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1997JMS....10...67B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1997JMS....10...67B"><span>Seasonal and annual movements of radio-collared polar bears ( Ursus maritimus) in northeast Greenland</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Born, E. W.; Wiig, Ø.; Thomassen, J.</p> <p>1997-01-01</p> <p>The distribution and movements of polar bears ( Ursus maritimus) in the Northeast Water (NEW) area (NE Greenland) were studied from 28 May 1993 to 31 May 1995, using satellite telemetry. Between 28 May and 17 June 1993 satellite-linked radio transmitters were attached to eight adult females in the NEW area between approximately 79° and approximately 80°30'N. By 31 May 1995 the mean duration of transmission (excluding one radio that quit on day of attachment) was 688.4 days (SD = 65.1, range: 541-718 days). These seven females generally showed a high degree of fidelity to the area between 78° and 81°N and 10°W and the northeast Greenland coast. The average distance between capture site in 1993 and spring relocation site in 1994 and 1995 was 116.5 km (SD = 81.9, range: 3.8-210.7 km, N = 7) and 85.4 km (SD = 35.4, range: 38.7-121.8 km, N = 5), respectively. The minimum polygon home range estimates averaged 72,263 km 2 (SD = 71,059, range: 5,567-195,648 km 2, N = 7). Relocations were concentrated on the shore-fast ice and on the pack ice over the continental shelf. This local movement pattern may be facilitated by an anticyclonal gyre of the surface water between 78° and 81°N, and a slowing of the south-flowing East Greenland current. A male bear marked in 1993 at the NEW was taken by hunters in Scoresby Sund (approximately 70°N) in February 1995, indicating that some exchange does occur with southern areas of eastern Greenland. Maternity and temporary dens were located on the coast close to the NEW. Apparently the NEW area is suitable polar bear habitat, in that the bears have access to ringed seals on the fast ice, and on pack ice adjacent to the polynya.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950028626&hterms=data+types&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Ddata%2Btypes','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950028626&hterms=data+types&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Ddata%2Btypes"><span>The classification of the Arctic Sea ice types and the determination of surface temperature using advanced very high resolution radiometer data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Massom, Robert; Comiso, Josefino C.</p> <p>1994-01-01</p> <p>The accurate quantification of new ice and open water areas and surface temperatures within the sea ice packs is a key to the realistic parameterization of heat, moisture, and turbulence fluxes between ocean and atmosphere in the polar regions. Multispectral NOAA advanced very high resolution radiometer/2 (AVHRR/2) satellite images are analyzed to evaluate how effectively the data can be used to characterize sea ice in the Bering and Greenland seas, both in terms of surface type and physical temperature. The basis of the classification algorithm, which is developed using a late wintertime Bering Sea ice cover data, is that frequency distributions of 10.8- micrometers radiances provide four distinct peaks, represeting open water, new ice, young ice, and thick ice with a snow cover. The results are found to be spatially and temporally consistent. Possible sources of ambiguity, especially associated with wider temporal and spatial application of the technique, are discussed. An ice surface temperature algorithm is developed for the same study area by regressing thermal infrared data from 10.8- and 12.0- micrometers channels against station air temperatures, which are assumed to approximate the skin temperatures of adjacent snow and ice. The standard deviations of the results when compared with in situ data are about 0.5 K over leads and polynyas to about 0.5-1.5 K over thick ice. This study is based upon a set of in situ data limited in scope and coverage. Cloud masks are applied using a thresholding technique that utilizes 3.74- and 10.8- micrometers channel data. The temperature maps produced show coherence with surface features like new ice and leads, and consistency with corresponding surface type maps. Further studies are needed to better understand the effects of both the spatial and temporal variability in emissivity, aerosol and precipitable atmospheric ice particle distribution, and atmospheric temperature inversions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3030902','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3030902"><span>Positive selection on the killer whale mitogenome</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Foote, Andrew D.; Morin, Phillip A.; Durban, John W.; Pitman, Robert L.; Wade, Paul; Willerslev, Eske; Gilbert, M. Thomas P.; da Fonseca, Rute R.</p> <p>2011-01-01</p> <p>Mitochondria produce up to 95 per cent of the eukaryotic cell's energy. The coding genes of the mitochondrial DNA may therefore evolve under selection owing to metabolic requirements. The killer whale, Orcinus orca, is polymorphic, has a global distribution and occupies a range of ecological niches. It is therefore a suitable organism for testing this hypothesis. We compared a global dataset of the complete mitochondrial genomes of 139 individuals for amino acid changes that were associated with radical physico-chemical property changes and were influenced by positive selection. Two such selected non-synonymous amino acid changes were found; one in each of two ecotypes that inhabit the Antarctic pack ice. Both substitutions were associated with changes in local polarity, increased steric constraints and α-helical tendencies that could influence overall metabolic performance, suggesting a functional change. PMID:20810427</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19930091724','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19930091724"><span>The Pack Method for Compressive Tests of Thin Specimens of Materials Used in Thin-Wall Structures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Aitchison, C S; Tuckerman, L B</p> <p>1939-01-01</p> <p>The strength of modern lightweight thin-wall structures is generally limited by the strength of the compression members. An adequate design of these members requires a knowledge of the compressive stress-strain graph of the thin-wall material. The "pack" method was developed at the National Bureau of Standards with the support of the National Advisory Committee for Aeronautics to make possible a determination of compressive stress-strain graphs for such material. In the pack test an odd number of specimens are assembled into a relatively stable pack, like a "pack of cards." Additional lateral stability is obtained from lateral supports between the external sheet faces of the pack and outside reactions. The tests seems adequate for many problems in structural research.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19970017671','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19970017671"><span>Modern Airfoil Ice Accretions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Addy, Harold E., Jr.; Potapczuk, Mark G.; Sheldon, David W.</p> <p>1997-01-01</p> <p>This report presents results from the first icing tests performed in the Modem Airfoils program. Two airfoils have been subjected to icing tests in the NASA Lewis Icing Research Tunnel (IRT). Both airfoils were two dimensional airfoils; one was representative of a commercial transport airfoil while the other was representative of a business jet airfoil. The icing test conditions were selected from the FAR Appendix C envelopes. Effects on aerodynamic performance are presented including the effects of varying amounts of glaze ice as well as the effects of approximately the same amounts of glaze, mixed, and rime ice. Actual ice shapes obtained in these tests are also presented for these cases. In addition, comparisons are shown between ice shapes from the tests and ice shapes predicted by the computer code, LEWICE for similar conditions. Significant results from the tests are that relatively small amounts of ice can have nearly as much effect on airfoil lift coefficient as much greater amounts of ice and that glaze ice usually has a more detrimental effect than either rime or mixed ice. LEWICE predictions of ice shapes, in general, compared reasonably well with ice shapes obtained in the IRT, although differences in details of the ice shapes were observed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20130000320','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20130000320"><span>Development of 3D Ice Accretion Measurement Method</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lee, Sam; Broeren, Andy P.; Addy, Harold E., Jr.; Sills, Robert; Pifer, Ellen M.</p> <p>2012-01-01</p> <p>Icing wind tunnels are designed to simulate in-flight icing environments. The chief product of such facilities is the ice accretion that forms on various test articles. Documentation of the resulting ice accretion key piece of data in icing-wind-tunnel tests. Number of currently used options for documenting ice accretion in icing-wind-tunnel testing.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19199560','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19199560"><span>Body and blubber relationships in antarctic pack ice seals: implications for blubber depth patterns.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Castellini, M A; Trumble, S J; Mau, T L; Yochem, P K; Stewart, B S; Koski, M A</p> <p>2009-01-01</p> <p>Morphometrics and blubber depths from all four high Antarctic seals (Weddell, Ross, crabeater, and leopard) were obtained during a midsummer research cruise in the Ross Sea as the physiological ecology component of the U.S. Antarctic Pack Ice Seals project. These data are the only in vivo measurements of all four species from the same location and time of year and focused on variances in morphometrics and blubber depth related to species, sex, and age. By controlling for location and season, this cross-species design provided the means to differentiate how blubber mass might be influenced in these groups. We measured both absolute blubber depth and ratio of blubber depth to body core diameter. We found that adult and younger animals showed differences in blubber depth, but male versus female seals did not show differences within any given species. However, when compared across species, the ratio of blubber ring depth to body core diameter suggests that adult Weddell seals differ in their use of blubber compared with the other three species. We propose that this difference in blubber pattern is most likely related to Weddell nutritional requirements during the breeding season having a greater influence on blubber depth than thermal requirements when compared with the other three species.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRD..122.7235C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRD..122.7235C"><span>Meteorological conditions in a thinner Arctic sea ice regime from winter to summer during the Norwegian Young Sea Ice expedition (N-ICE2015)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cohen, Lana; Hudson, Stephen R.; Walden, Von P.; Graham, Robert M.; Granskog, Mats A.</p> <p>2017-07-01</p> <p>Atmospheric measurements were made over Arctic sea ice north of Svalbard from winter to early summer (January-June) 2015 during the Norwegian Young Sea Ice (N-ICE2015) expedition. These measurements, which are available publicly, represent a comprehensive meteorological data set covering the seasonal transition in the Arctic Basin over the new, thinner sea ice regime. Winter was characterized by a succession of storms that produced short-lived (less than 48 h) temperature increases of 20 to 30 K at the surface. These storms were driven by the hemispheric scale circulation pattern with a large meridional component of the polar jet stream steering North Atlantic storms into the high Arctic. Nonstorm periods during winter were characterized by strong surface temperature inversions due to strong radiative cooling ("radiatively clear state"). The strength and depth of these inversions were similar to those during the Surface Heat Budget of the Arctic Ocean (SHEBA) campaign. In contrast, atmospheric profiles during the "opaquely cloudy state" were different to those from SHEBA due to differences in the synoptic conditions and location within the ice pack. Storm events observed during spring/summer were the result of synoptic systems located in the Barents Sea and the Arctic Basin rather than passing directly over N-ICE2015. These synoptic systems were driven by a large-scale circulation pattern typical of recent years, with an Arctic Dipole pattern developing during June. Surface temperatures became near-constant 0°C on 1 June marking the beginning of summer. Atmospheric profiles during the spring and early summer show persistent lifted temperature and moisture inversions that are indicative of clouds and cloud processes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A13A2036H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A13A2036H"><span>Ice nucleating particles in the high Arctic at the beginning of the melt season</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hartmann, M.; Gong, X.; Van Pinxteren, M.; Welti, A.; Zeppenfeld, S.; Herrmann, H.; Stratmann, F.</p> <p>2017-12-01</p> <p>Ice nucleating particles (INPs) initiate the ice crystal formation in persistent Arctic mixed-phase clouds and are important for the formation of precipitation, which affects the radiative properties of the Arctic pack ice as well as the radiative properties of clouds. Sources of Arctic INP have been suggested to be local emissions from the marine boundary and long-range transport. To what extent local marine sources contribute to the INP population or if the majority of INPs originate from long-range transport is not yet known. Ship-based INP measurements in the PASCAL framework are reported. The field campaign took place from May 24 to July 20 2017 around and north of Svalbard (up to 84°N, between 0° and 35°E) onboard the RV Polarstern. INP concentrations were determined applying in-situ measurements (DMT Spectrometer for Ice Nuclei, SPIN) and offline filter techniques (filter sampling on both quartz fiber and polycarbonate filters with subsequent analysis of filter pieces and water suspension from particles collected on filters by means of immersion freezing experiments on cold stage setups). Additionally the compartments sea-surface micro layer (SML), bulk sea water, snow, sea ice and fog water were sampled and their ice nucleation potential quantified, also utilizing cold stages. The measurements yield comprehensive picture of the spatial and temporal distribution of INPs around Svalbard for the different compartments. The dependence of the INP concentration on meteorological conditions (e.g. wind speed) and the geographical situation (sea ice cover, distance to the ice edge) are investigated. Potential sources of INP are identified by the comparison of INP concentrations in the compartments and by back trajectory analysis.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20030007845','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20030007845"><span>Computing Aerodynamic Performance of a 2D Iced Airfoil: Blocking Topology and Grid Generation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Chi, X.; Zhu, B.; Shih, T. I.-P.; Slater, J. W.; Addy, H. E.; Choo, Yung K.; Lee, Chi-Ming (Technical Monitor)</p> <p>2002-01-01</p> <p>The ice accrued on airfoils can have enormously complicated shapes with multiple protruded horns and feathers. In this paper, several blocking topologies are proposed and evaluated on their ability to produce high-quality structured multi-block grid systems. A transition layer grid is introduced to ensure that jaggedness on the ice-surface geometry do not to propagate into the domain. This is important for grid-generation methods based on hyperbolic PDEs (Partial Differential Equations) and algebraic transfinite interpolation. A 'thick' wrap-around grid is introduced to ensure that grid lines clustered next to solid walls do not propagate as streaks of tightly packed grid lines into the interior of the domain along block boundaries. For ice shapes that are not too complicated, a method is presented for generating high-quality single-block grids. To demonstrate the usefulness of the methods developed, grids and CFD solutions were generated for two iced airfoils: the NLF0414 airfoil with and without the 623-ice shape and the B575/767 airfoil with and without the 145m-ice shape. To validate the computations, the computed lift coefficients as a function of angle of attack were compared with available experimental data. The ice shapes and the blocking topologies were prepared by NASA Glenn's SmaggIce software. The grid systems were generated by using a four-boundary method based on Hermite interpolation with controls on clustering, orthogonality next to walls, and C continuity across block boundaries. The flow was modeled by the ensemble-averaged compressible Navier-Stokes equations, closed by the shear-stress transport turbulence model in which the integration is to the wall. All solutions were generated by using the NPARC WIND code.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ClDy...49.1341P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ClDy...49.1341P"><span>Linking atmospheric synoptic transport, cloud phase, surface energy fluxes, and sea-ice growth: observations of midwinter SHEBA conditions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Persson, P. Ola G.; Shupe, Matthew D.; Perovich, Don; Solomon, Amy</p> <p>2017-08-01</p> <p>Observations from the Surface Heat Budget of the Arctic Ocean (SHEBA) project are used to describe a sequence of events linking midwinter long-range advection of atmospheric heat and moisture into the Arctic Basin, formation of supercooled liquid water clouds, enhancement of net surface energy fluxes through increased downwelling longwave radiation, and reduction in near-surface conductive heat flux loss due to a warming of the surface, thereby leading to a reduction in sea-ice bottom growth. The analyses provide details of two events during Jan. 1-12, 1998, one entering the Arctic through Fram Strait and the other from northeast Siberia; winter statistics extend the results. Both deep, precipitating frontal clouds and post-frontal stratocumulus clouds impact the surface radiation and energy budget. Cloud liquid water, occurring preferentially in stratocumulus clouds extending into the base of the inversion, provides the strongest impact on surface radiation and hence modulates the surface forcing, as found previously. The observations suggest a minimum water vapor threshold, likely case dependent, for producing liquid water clouds. Through responses to the radiative forcing and surface warming, this cloud liquid water also modulates the turbulent and conductive heat fluxes, and produces a thermal wave penetrating into the sea ice. About 20-33 % of the observed variations of bottom ice growth can be directly linked to variations in surface conductive heat flux, with retarded ice growth occurring several days after these moisture plumes reduce the surface conductive heat flux. This sequence of events modulate pack-ice wintertime environmental conditions and total ice growth, and has implications for the annual sea-ice evolution, especially for the current conditions of extensive thinner ice.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16611722','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16611722"><span>Cryotherapy for acute ankle sprains: a randomised controlled study of two different icing protocols.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bleakley, C M; McDonough, S M; MacAuley, D C; Bjordal, J</p> <p>2006-08-01</p> <p>The use of cryotherapy in the management of acute soft tissue injury is largely based on anecdotal evidence. Preliminary evidence suggests that intermittent cryotherapy applications are most effective at reducing tissue temperature to optimal therapeutic levels. However, its efficacy in treating injured human subjects is not yet known. To compare the efficacy of an intermittent cryotherapy treatment protocol with a standard cryotherapy treatment protocol in the management of acute ankle sprains. Sportsmen (n = 44) and members of the general public (n = 45) with mild/moderate acute ankle sprains. Subjects were randomly allocated, under strictly controlled double blind conditions, to one of two treatment groups: standard ice application (n = 46) or intermittent ice application (n = 43). The mode of cryotherapy was standardised across groups and consisted of melting iced water (0 degrees C) in a standardised pack. Function, pain, and swelling were recorded at baseline and one, two, three, four, and six weeks after injury. Subjects treated with the intermittent protocol had significantly (p<0.05) less ankle pain on activity than those using a standard 20 minute protocol; however, one week after ankle injury, there were no significant differences between groups in terms of function, swelling, or pain at rest. Intermittent applications may enhance the therapeutic effect of ice in pain relief after acute soft tissue injury.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150002330','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150002330"><span>Validation Ice Crystal Icing Engine Test in the Propulsion Systems Laboratory at NASA Glenn Research Center</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Oliver, Michael J.</p> <p>2014-01-01</p> <p>The Propulsion Systems Laboratory (PSL) is an existing altitude simulation jet engine test facility located at NASA Glenn Research Center in Cleveland, OH. It was modified in 2012 with the integration of an ice crystal cloud generation system. This paper documents the inaugural ice crystal cloud test in PSL--the first ever full scale, high altitude ice crystal cloud turbofan engine test to be conducted in a ground based facility. The test article was a Lycoming ALF502-R5 high bypass turbofan engine, serial number LF01. The objectives of the test were to validate the PSL ice crystal cloud calibration and engine testing methodologies by demonstrating the capability to calibrate and duplicate known flight test events that occurred on the same LF01 engine and to generate engine data to support fundamental and computational research to investigate and better understand the physics of ice crystal icing in a turbofan engine environment while duplicating known revenue service events and conducting test points while varying facility and engine parameters. During PSL calibration testing it was discovered than heated probes installed through tunnel sidewalls experienced ice buildup aft of their location due to ice crystals impinging upon them, melting and running back. Filtered city water was used in the cloud generation nozzle system to provide ice crystal nucleation sites. This resulted in mineralization forming on flow path hardware that led to a chronic degradation of performance during the month long test. Lacking internal flow path cameras, the response of thermocouples along the flow path was interpreted as ice building up. Using this interpretation, a strong correlation between total water content (TWC) and a weaker correlation between median volumetric diameter (MVD) of the ice crystal cloud and the rate of ice buildup along the instrumented flow path was identified. For this test article the engine anti-ice system was required to be turned on before ice crystal icing would occur. The ice crystal icing event, an uncommanded reduction in thrust, was able to be turned on and off by manipulating cloud TWC. A flight test point where no ice crystal icing event occurred was also duplicated in PSL. Physics based computational tools were successfully used to predict tunnel settings to induce ice buildup along the low pressure compression system flow path for several test points at incrementally lower altitudes, demonstrating that development of ice crystal icing scaling laws is potentially feasible. Analysis of PSL test data showed that uncommanded reduction in thrust occurs during ice crystal cloud on operation prior to fan speed reduction. This supports previous findings that the reduction of thrust for this test article is due to ice buildup leading to a restricted airflow from either physical or aerodynamic blockage in the engine core flow path.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150002094','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150002094"><span>Validation Ice Crystal Icing Engine Test in the Propulsion Systems Laboratory at NASA Glenn Research Center</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Oliver, Michael J.</p> <p>2014-01-01</p> <p>The Propulsion Systems Laboratory (PSL) is an existing altitude simulation jet engine test facility located at NASA Glenn Research Center in Clevleand, OH. It was modified in 2012 with the integration of an ice crystal cloud generation system. This paper documents the inaugural ice crystal cloud test in PSLthe first ever full scale, high altitude ice crystal cloud turbofan engine test to be conducted in a ground based facility. The test article was a Lycoming ALF502-R5 high bypass turbofan engine, serial number LF01. The objectives of the test were to validate the PSL ice crystal cloud calibration and engine testing methodologies by demonstrating the capability to calibrate and duplicate known flight test events that occurred on the same LF01 engine and to generate engine data to support fundamental and computational research to investigate and better understand the physics of ice crystal icing in a turbofan engine environment while duplicating known revenue service events and conducting test points while varying facility and engine parameters. During PSL calibration testing it was discovered than heated probes installed through tunnel sidewalls experienced ice buildup aft of their location due to ice crystals impinging upon them, melting and running back. Filtered city water was used in the cloud generation nozzle system to provide ice crystal nucleation sites. This resulted in mineralization forming on flow path hardware that led to a chronic degradation of performance during the month long test. Lacking internal flow path cameras, the response of thermocouples along the flow path was interpreted as ice building up. Using this interpretation, a strong correlation between total water content (TWC) and a weaker correlation between median volumetric diameter (MVD) of the ice crystal cloud and the rate of ice buildup along the instrumented flow path was identified. For this test article the engine anti-ice system was required to be turned on before ice crystal icing would occur. The ice crystal icing event, an uncommanded reduction in thrust, was able to be turned on and off by manipulating cloud TWC. A flight test point where no ice crystal icing event occurred was also duplicated in PSL. Physics based computational tools were successfully used to predict tunnel settings to induce ice buildup along the low pressure compression system flow path for several test points at incrementally lower altitudes, demonstrating that development of ice crystal icing scaling laws is potentially feasible. Analysis of PSL test data showed that uncommanded reduction in thrust occurs during ice crystal cloud on operation prior to fan speed reduction. This supports previous findings that the reduction of thrust for this test article is due to ice buildup leading to a restricted airflow from either physical or aerodynamic blockage in the engine core flow path.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20010027899','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20010027899"><span>Studies of Antarctic Sea Ice Concentrations from Satellite Data and Their Applications</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Comiso, Josefino C.; Steffen, Konrad; Zukor, Dorothy J. (Technical Monitor)</p> <p>2001-01-01</p> <p>Large changes in the sea ice cover have been observed recently. Because of the relevance of such changes to climate change studies it is important that key ice concentration data sets used for evaluating such changes are interpreted properly. High and medium resolution visible and infrared satellite data are used in conjunction with passive microwave data to study the true characteristics of the Antarctic sea ice cover, assess errors in currently available ice concentration products, and evaluate the applications and limitations of the latter in polar process studies. Cloud-free high resolution data provide valuable information about the natural distribution, stage of formation, and composition of the ice cover that enables interpretation of the large spatial and temporal variability of the microwave emissivity of Antarctic sea ice. Comparative analyses of co-registered visible, infrared and microwave data were used to evaluate ice concentrations derived from standard ice algorithms (i.e., Bootstrap and Team) and investigate the 10 to 35% difference in derived values from large areas within the ice pack, especially in the Weddell Sea, Amundsen Sea, and Ross Sea regions. Landsat and OLS data show a predominance of thick consolidated ice in these areas and show good agreement with the Bootstrap Algorithm. While direct measurements were not possible, the lower values from the Team Algorithm results are likely due to layering within the ice and snow and/or surface flooding, which are known to affect the polarization ratio. In predominantly new ice regions, the derived ice concentration from passive microwave data is usually lower than the true percentage because the emissivity of new ice changes with age and thickness and is lower than that of thick ice. However, the product provides a more realistic characterization of the sea ice cover, and are more useful in polar process studies since it allows for the identification of areas of significant divergence and polynya activities. Also, heat and salinity fluxes are proportionately increased in these areas compared to those from the thicker ice areas. A slight positive trend in ice extent and area from 1978 through 2000 is observed consistent with slight continental cooling during the period. However, the confidence in this result is only moderate because the overlap period for key instruments is just one month and the sensitivity to changes in sensor characteristics, calibration and threshold for the ice edge is quite high.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.C53C..03D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.C53C..03D"><span>A Decade of High-Resolution Arctic Sea Ice Measurements from Airborne Altimetry</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Duncan, K.; Farrell, S. L.; Connor, L. N.; Jackson, C.; Richter-Menge, J.</p> <p>2017-12-01</p> <p>Satellite altimeters carried on board ERS-1,-2, EnviSat, ICESat, CryoSat-2, AltiKa and Sentinel-3 have transformed our ability to map the thickness and volume of the polar sea ice cover, on seasonal and decadal time-scales. The era of polar satellite altimetry has coincided with a rapid decline of the Arctic ice cover, which has thinned, and transitioned from a predominantly multi-year to first-year ice cover. In conjunction with basin-scale satellite altimeter observations, airborne surveys of the Arctic Ocean at the end of winter are now routine. These surveys have been targeted to monitor regions of rapid change, and are designed to obtain the full snow and ice thickness distribution, across a range of ice types. Sensors routinely deployed as part of NASA's Operation IceBridge (OIB) campaigns include the Airborne Topographic Mapper (ATM) laser altimeter, the frequency-modulated continuous-wave snow radar, and the Digital Mapping System (DMS). Airborne measurements yield high-resolution data products and thus present a unique opportunity to assess the quality and characteristics of the satellite observations. We present a suite of sea ice data products that describe the snow depth and thickness of the Arctic ice cover during the last decade. Fields were derived from OIB measurements collected between 2009-2017, and from reprocessed data collected during ad-hoc sea ice campaigns prior to OIB. Our bespoke algorithms are designed to accommodate the heterogeneous sea ice surface topography, that varies at short spatial scales. We assess regional and inter-annual variability in the sea ice thickness distribution. Results are compared to satellite-derived ice thickness fields to highlight the sensitivities of satellite footprints to the tails of the thickness distribution. We also show changes in the dynamic forcing shaping the ice pack over the last eight years through an analysis of pressure-ridge sail-height distributions and surface roughness conditions. Variability is linked to the geographic location and extent of multi-year sea ice. Finally, we describe accessing our high-resolution data products at the NOAA Laboratory for Satellite Altimetry.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26808844','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26808844"><span>Off-Ice Anaerobic Power Does Not Predict On-Ice Repeated Shift Performance in Hockey.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Peterson, Ben J; Fitzgerald, John S; Dietz, Calvin C; Ziegler, Kevin S; Baker, Sarah E; Snyder, Eric M</p> <p>2016-09-01</p> <p>Peterson, BJ, Fitzgerald, JS, Dietz, CC, Ziegler, KS, Baker, SE, and Snyder, EM. Off-ice anaerobic power does not predict on-ice repeated shift performance in hockey. J Strength Cond Res 30(9): 2375-2381, 2016-Anaerobic power is a significant predictor of acceleration and top speed in team sport athletes. Historically, these findings have been applied to ice hockey although recent research has brought their validity for this sport into question. As ice hockey emphasizes the ability to repeatedly produce power, single bout anaerobic power tests should be examined to determine their ability to predict on-ice performance. We tested whether conventional off-ice anaerobic power tests could predict on-ice acceleration, top speed, and repeated shift performance. Forty-five hockey players, aged 18-24 years, completed anthropometric, off-ice, and on-ice tests. Anthropometric and off-ice testing included height, weight, body composition, vertical jump, and Wingate tests. On-ice testing consisted of acceleration, top speed, and repeated shift fatigue tests. Vertical jump (VJ) (r = -0.42; r = -0.58), Wingate relative peak power (WRPP) (r = -0.32; r = -0.43), and relative mean power (WRMP) (r = -0.34; r = -0.48) were significantly correlated (p ≤ 0.05) to on-ice acceleration and top speed, respectively. Conversely, none of the off-ice tests correlated with on-ice repeated shift performance, as measured by first gate, second gate, or total course fatigue; VJ (r = 0.06; r = 0.13; r = 0.09), WRPP (r = 0.06; r = 0.14; r = 0.10), or WRMP (r = -0.10; r = -0.01; r = -0.01). Although conventional off-ice anaerobic power tests predict single bout on-ice acceleration and top speed, they neither predict the repeated shift ability of the player, nor are good markers for performance in ice hockey.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150018111','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150018111"><span>Paraffin Phase Change Material for Maintaining Temperature Stability of IceCube Type of CubeSats in LEO</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Choi, Michael K.</p> <p>2015-01-01</p> <p>The MLA and IFA of the instrument on the IceCube require a 20 C temperature and a thermal stability of +/-1 C. The thermal environment of the ISS orbit for the IceCube is very unstable due to solar beta angles in the -75deg to +75deg range. Additionally the instrument is powered off in every eclipse to conserve electrical power. These two factors cause thermal instability to the MLA and IFA. This paper presents a thermal design of using mini paraffin PCM packs to meet the thermal requirements of these instrument components. With a 31 g mass plus a 30% margin of n-hexadecane, the MLA and IFA are powered on for 32.3 minutes in sunlight at a 0deg beta angle to melt the paraffin. The powered-on time increases to 38 minutes at a 75deg (+/-) beta angle. When the MLA and IFA are powered off, the paraffin freezes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/8411604','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/8411604"><span>Pleurodynia among football players at a high school. An outbreak associated with coxsackievirus B1.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ikeda, R M; Kondracki, S F; Drabkin, P D; Birkhead, G S; Morse, D L</p> <p>1993-11-10</p> <p>Enteroviral outbreaks involving athletic teams have been described, although the mode of transmission has been unclear. In September 1991, an outbreak of pleurodynia among high school football players provided an opportunity to identify possible modes of transmission. Retrospective cohort outbreak investigation. Public high school in upstate New York. Illness was reported by 17 (20%) of the football players. Behaviors involving contact with common water containers were associated with illness, including eating ice cubes from the team ice chest (relative risk [RR], 9.2; 95% confidence interval [CI], 1.3 to 65.5) and drinking water from the team cooler (RR, 6.3; 95% CI, 1.5 to 25.7). Coxsackievirus B1 was isolated in four (50%) of the eight stool specimens collected. Contamination of common water containers by an infected player may have contributed to or initiated the outbreak. In addition to discouraging direct oral contact with common drinking containers, use of individual water containers and ice packs for injuries was recommended.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23160652','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23160652"><span>The impact of a phase-change cooling vest on heat strain and the effect of different cooling pack melting temperatures.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>House, James R; Lunt, Heather C; Taylor, Rowan; Milligan, Gemma; Lyons, Jason A; House, Carol M</p> <p>2013-05-01</p> <p>Cooling vests (CV) are often used to reduce heat strain. CVs have traditionally used ice as the coolant, although other phase-change materials (PCM) that melt at warmer temperatures have been used in an attempt to enhance cooling by avoiding vasoconstriction, which supposedly occurs when ice CVs are used. This study assessed the effectiveness of four CVs that melted at 0, 10, 20 and 30 °C (CV₀, CV₁₀, CV₂₀, and CV₃₀) when worn by 10 male volunteers exercising and then recovering in 40 °C air whilst wearing fire-fighting clothing. When compared with a non-cooling control condition (CON), only the CV₀ and CV₁₀ vests provided cooling during exercise (40 and 29 W, respectively), whereas all CVs provided cooling during resting recovery (CV₀ 69 W, CV₁₀ 66 W, CV₂₀ 55 W and CV₃₀ 29 W) (P < 0.05). In all conditions, skin blood flow increased when exercising and reduced during recovery, but was lower in the CV₀ and CV₁₀ conditions compared with control during exercise (observed power 0.709) (P < 0.05), but not during resting recovery (observed power only 0.55). The participants preferred the CV₁₀ to the CV₀, which caused temporary erythema to underlying skin, although this resolved overnight after each occurrence. Consequently, a cooling vest melting at 10 °C would seem to be the most appropriate choice for cooling during combined work and rest periods, although possibly an ice-vest (CV₀) may also be appropriate if more insulation was worn between the cooling packs and the skin than used in this study.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.C21C0622M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.C21C0622M"><span>Meteorological conditions influencing the formation of level ice within the Baltic Sea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mazur, A. K.; Krezel, A.</p> <p>2012-12-01</p> <p>The Baltic Sea is covered by ice every winter and on average, the ice-covered area is 45% of the total area of the Baltic Sea. The beginning of ice season usually starts in the end of November, ice extent is the largest between mid-February and mid-March and sea ice disappears completely in May. The ice covered areas during a typical winter are the Gulf of Bothnia, the Gulf of Finland and the Gulf of Riga. The studies of sea ice in the Baltic Sea are related to two aspects: climate and marine transport. Depending on the local weather conditions during the winter different types of sea ice can be formed. From the point of winter shipping it is important to locate level and deformed ice areas (rafted ice, ridged ice, and hummocked ice). Because of cloud and daylight independency as well as good spatial resolution, SAR data seems to be the most suitable source of data for sea ice observation in the comparatively small area of the Baltic Sea. We used ASAR Wide Swath Mode data with spatial resolution 150 m. We analyzed data from the three winter seasons which were examples of severe, typical and mild winters. To remove the speckle effect the data were resampled to 250 m pixel size and filtred using Frost filter 5x5. To detect edges we used Sobel filter. The data were also converted into grayscale. Sea ice classification was based on Object-Based Image Analysis (OBIA). Object-based methods are not a common tool in sea ice studies but they seem to accurately separate level ice within the ice pack. The data were segmented and classified using eCognition Developer software. Level ice were classified based on texture features defined by Haralick (Grey Level Co-Occurrence Matrix homogeneity, GLCM contrast, GLCM entropy and GLCM correlation). The long-term changes of the Baltic Sea ice conditions have been already studied. They include date of freezing, date of break-up, sea ice extent and some of work also ice thickness. There is a little knowledge about the relationship of short term changes in sea ice cover and meteorological conditions. In following studies we analyzed the formation of level sea ice depending on some weather conditions (temperature, humidity, pressure at sea level, 10 meter wind). It can be clearly seen that the most important factors influencing formation of level ice are the temperature and wind.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21535722','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21535722"><span>Rested and stressed farmed Atlantic cod (Gadus morhua) chilled in ice or slurry and effects on quality.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Digre, Hanne; Erikson, Ulf; Aursand, Ida G; Gallart-Jornet, Lorena; Misimi, Ekrem; Rustad, Turid</p> <p>2011-01-01</p> <p>The main objectives of this study were to investigate (1) whether rested harvest of farmed cod was better maintained by chilling with slurry rather than by traditional ice storage, (2) whether chilling with slurry would be a feasible chilling method to assure low core temperatures (≤0 °C) at packing of gutted fish, and (3) the effects of superchilling compared with traditional ice on selected quality parameters of cod during storage. In the experiment, seawater slurry at -2.0 ± 0.3 °C was used. Anesthetized (AQUI-S™), percussion stunned, and stressed cod chilled in slurry were compared. Cod stored on ice were used as reference group. The fish were evaluated at the day of slaughter, and after 7 and 14 d of storage according to handling stress (initial muscle pH, muscle twitches, rigor mortis), core temperatures, quality index method, microbial counts, weight changes, salt and water content, water distribution, pH, adenosine triphosphate-degradation products, K-value, water-holding capacity, fillet color, and texture. Chilling cod in slurry was more rapid than chilling in ice. Prechilling (1 d) of cod in slurry before subsequent ice storage resulted in lower quality 7 d postmortem compared with both ice and continuous slurry storage. The potential advantages of superchilling became more prominent after 14 d with lower microbiological activity, better maintenance of freshness (lower total quality index scores and lower K-values) compared with fish stored on ice. A drawback with slurry-stored fish was that cloudy eyes developed earlier, in addition to weight gain and salt uptake compared to ice-stored fish. Practical Application: Chilling is an essential operation in any fish-processing plant. This manuscript addresses different applications of slurry ice in the processing and storage of Atlantic cod. Cod quality was assessed after 7 and 14 d of iced and superchilled storage.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018TCry...12..935R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018TCry...12..935R"><span>Impact of rheology on probabilistic forecasts of sea ice trajectories: application for search and rescue operations in the Arctic</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rabatel, Matthias; Rampal, Pierre; Carrassi, Alberto; Bertino, Laurent; Jones, Christopher K. R. T.</p> <p>2018-03-01</p> <p>We present a sensitivity analysis and discuss the probabilistic forecast capabilities of the novel sea ice model neXtSIM used in hindcast mode. The study pertains to the response of the model to the uncertainty on winds using probabilistic forecasts of ice trajectories. neXtSIM is a continuous Lagrangian numerical model that uses an elasto-brittle rheology to simulate the ice response to external forces. The sensitivity analysis is based on a Monte Carlo sampling of 12 members. The response of the model to the uncertainties is evaluated in terms of simulated ice drift distances from their initial positions, and from the mean position of the ensemble, over the mid-term forecast horizon of 10 days. The simulated ice drift is decomposed into advective and diffusive parts that are characterised separately both spatially and temporally and compared to what is obtained with a free-drift model, that is, when the ice rheology does not play any role in the modelled physics of the ice. The seasonal variability of the model sensitivity is presented and shows the role of the ice compactness and rheology in the ice drift response at both local and regional scales in the Arctic. Indeed, the ice drift simulated by neXtSIM in summer is close to the one obtained with the free-drift model, while the more compact and solid ice pack shows a significantly different mechanical and drift behaviour in winter. For the winter period analysed in this study, we also show that, in contrast to the free-drift model, neXtSIM reproduces the sea ice Lagrangian diffusion regimes as found from observed trajectories. The forecast capability of neXtSIM is also evaluated using a large set of real buoy's trajectories and compared to the capability of the free-drift model. We found that neXtSIM performs significantly better in simulating sea ice drift, both in terms of forecast error and as a tool to assist search and rescue operations, although the sources of uncertainties assumed for the present experiment are not sufficient for complete coverage of the observed IABP positions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA521374','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA521374"><span>Mini, Micro, and Swarming Unmanned Aerial Vehicles: A Baseline Study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2006-11-01</p> <p>Hunter was being flown by the Belgian military to observe automobile traffic and crowds as part of the European peacekeeping force EUFOR Congo in support... automobile traffic, borders, floods, forests, ice, pipelines, pollution, ports, snow packs, soil moisture, solar radiation, weather, wetlands, and wild...MIGnews.com.ua Web site, October 24, 2006 <http://mignews.com.ua/en/articles/213361.html> (Accessed October 2006). Williams, Sally. “Welsh Team Plans Pilotless</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29409650','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29409650"><span>Influence of work clothing on physiological responses and performance during treadmill exercise and the Wildland Firefighter Pack Test.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Phillips, Devin B; Ehnes, Cameron M; Welch, Bradley G; Lee, Lauren N; Simin, Irina; Petersen, Stewart R</p> <p>2018-04-01</p> <p>This study investigated physiological responses and performance during three separate exercise challenges (Parts I, II, and III) with wildland firefighting work clothing ensemble (boots and coveralls) and a 20.4 kg backpack in four conditions: U-EX (no pack, exercise clothing); L-EX (pack, exercise clothing); U-W (no pack, work clothing); and, L-W (pack and work clothing). Part I consisted of randomly-ordered graded exercise tests, on separate days, in U-EX, L-EX and L-W conditions. Part II consisted of randomly-ordered bouts of sub-maximal treadmill exercise in the four conditions. In Part III, subjects completed, in random-order on separate days, 4.83 km Pack Tests in L-EX or L-W conditions. In Part I, peak oxygen uptake was reduced (p < .05) in L-W. In Part II, mass-specific oxygen uptake was significantly higher in both work clothing conditions. In Part III, Pack Test time was slower (p < .05) in L-W. These results demonstrate the negative impact of work clothing and load carriage on physiological responses to exercise and performance. Copyright © 2017 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19920010531','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19920010531"><span>Sea ice-atmosphere interaction. Application of multispectral satellite data in polar surface energy flux estimates</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Steffen, Konrad; Key, Jeff; Maslanik, Jim; Haefliger, Marcel; Fowler, Chuck</p> <p>1992-01-01</p> <p>Satellite data for the estimation of radiative and turbulent heat fluxes is becoming an increasingly important tool in large-scale studies of climate. One parameter needed in the estimation of these fluxes is surface temperature. To our knowledge, little effort has been directed to the retrieval of the sea ice surface temperature (IST) in the Arctic, an area where the first effects of a changing climate are expected to be seen. The reason is not one of methodology, but rather our limited knowledge of atmospheric temperature, humidity, and aerosol profiles, the microphysical properties of polar clouds, and the spectral characteristics of the wide variety of surface types found there. We have developed a means to correct for the atmospheric attenuation of satellite-measured clear sky brightness temperatures used in the retrieval of ice surface temperature from the split-window thermal channels of the advanced very high resolution radiometer (AVHRR) sensors on-board three of the NOAA series satellites. These corrections are specified for three different 'seasons' and as a function of satellite viewing angle, and are expected to be applicable to the perennial ice pack in the central Arctic Basin.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19730016618','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19730016618"><span>Studies of the inner shelf and coastal sedimentation environment of the Beaufort Sea from ERTS-1</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Reimnitz, E. (Principal Investigator); Barnes, P. W.</p> <p>1973-01-01</p> <p>The author has identified the following significant results. The particulate transport processes involved in the movement of surficial waters were examined using secchi disc readings, light attenuation coefficients, and particulate weights from filtration. Observations gathered during the summers of 1971 and 1972 indicate a remarkable difference in particulate matter and turbidity between the two years. ERTS-1 imagery during August 1972 showed turbid water along the northern Alaska coast. The uniformity of distribution of the turbid water and the fact that the river discharge is low at this period suggest that the turbidity is related to causes other than river effluent. Studies indicate that wave action is a more significant factor influencing particulate transport than believed heretofore. The boundary between the essentially immobile shorefast ice and the moving pack ice has been plotted from several ERTS-1 images and found to occur fairly consistently along the 20 meter contour. Considering the vast difference in the amount of ice movement shoreward and seaward of this boundary, ice-bottom action should also be different on either side of this boundary and for that matter at the shear zone that develops along the boundary.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=63179&keyword=air+AND+company&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=63179&keyword=air+AND+company&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT, FRANCE COMPRESSOR PRODUCTS EMISSIONS PACKING, PHASE I REPORT</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>The report presents results of a Phase I test of emissions packing technology offered by France Compressor Products which is designed to reduce methane leaks from compressor rod packing when a compressor is in a standby and pressurized state. This Phase I test was executed betwee...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSIS11A..03C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSIS11A..03C"><span>Characteristics of Airborne Lidar Profiles of the Arctic Ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Churnside, J. H.; Marchbanks, R.</p> <p>2016-02-01</p> <p>In July, 2014, we flew the NOAA oceanographic lidar more than 6000 km over the Chukchi and Beaufort Seas around northern Alaska. The most obvious feature in the lidar returns was sea ice, which blocked any return from below and saturated our receivers. The flights were designed to measure profiles with varying degrees of ice cover, from open water to nearly completely covered water. Thin phytoplankton layers were also prevalent, both in open water and within the pack ice. These layers were generally deeper (20 m vs. 16 m averages) and stronger (27 times the background level vs. 9 times) in open water than in the ice. The average layer thicknesses were similar in open water and in the ice (3.8 m vs. 3.4 m). The diffuse attenuation coefficient measured by the lidar did not depend strongly on ice cover. It was generally higher near the coast than farther off shore. Fish were present in a few of the returns, but these were not very numerous. More common were the sediment plumes generated by gray whales feeding on crustaceans on the bottom. Data from these flights show a high level of spatial variability that is difficult to measure from a surface vessel and significant vertical structure that is impossible to obtain from satellite ocean-color instruments. One application of this type of lidar data is to estimate primary productivity in the Arctic Ocean. It is clear that productivity is increasing, largely as a result of decreased ice cover, but many details remain uncertain.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25208058','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25208058"><span>Composition, buoyancy regulation and fate of ice algal aggregates in the Central Arctic Ocean.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Fernández-Méndez, Mar; Wenzhöfer, Frank; Peeken, Ilka; Sørensen, Heidi L; Glud, Ronnie N; Boetius, Antje</p> <p>2014-01-01</p> <p>Sea-ice diatoms are known to accumulate in large aggregates in and under sea ice and in melt ponds. There is recent evidence from the Arctic that such aggregates can contribute substantially to particle export when sinking from the ice. The role and regulation of microbial aggregation in the highly seasonal, nutrient- and light-limited Arctic sea-ice ecosystem is not well understood. To elucidate the mechanisms controlling the formation and export of algal aggregates from sea ice, we investigated samples taken in late summer 2011 and 2012, during two cruises to the Eurasian Basin of the Central Arctic Ocean. Spherical aggregates densely packed with pennate diatoms, as well as filamentous aggregates formed by Melosira arctica showed sign of different stages of degradation and physiological stoichiometries, with carbon to chlorophyll a ratios ranging from 110 to 66700, and carbon to nitrogen molar ratios of 8-35 and 9-40, respectively. Sub-ice algal aggregate densities ranged between 1 and 17 aggregates m(-2), maintaining an estimated net primary production of 0.4-40 mg C m(-2) d(-1), and accounted for 3-80% of total phototrophic biomass and up to 94% of local net primary production. A potential factor controlling the buoyancy of the aggregates was light intensity, regulating photosynthetic oxygen production and the amount of gas bubbles trapped within the mucous matrix, even at low ambient nutrient concentrations. Our data-set was used to evaluate the distribution and importance of Arctic algal aggregates as carbon source for pelagic and benthic communities.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4160247','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4160247"><span>Composition, Buoyancy Regulation and Fate of Ice Algal Aggregates in the Central Arctic Ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Fernández-Méndez, Mar; Wenzhöfer, Frank; Peeken, Ilka; Sørensen, Heidi L.; Glud, Ronnie N.; Boetius, Antje</p> <p>2014-01-01</p> <p>Sea-ice diatoms are known to accumulate in large aggregates in and under sea ice and in melt ponds. There is recent evidence from the Arctic that such aggregates can contribute substantially to particle export when sinking from the ice. The role and regulation of microbial aggregation in the highly seasonal, nutrient- and light-limited Arctic sea-ice ecosystem is not well understood. To elucidate the mechanisms controlling the formation and export of algal aggregates from sea ice, we investigated samples taken in late summer 2011 and 2012, during two cruises to the Eurasian Basin of the Central Arctic Ocean. Spherical aggregates densely packed with pennate diatoms, as well as filamentous aggregates formed by Melosira arctica showed sign of different stages of degradation and physiological stoichiometries, with carbon to chlorophyll a ratios ranging from 110 to 66700, and carbon to nitrogen molar ratios of 8–35 and 9–40, respectively. Sub-ice algal aggregate densities ranged between 1 and 17 aggregates m−2, maintaining an estimated net primary production of 0.4–40 mg C m−2 d−1, and accounted for 3–80% of total phototrophic biomass and up to 94% of local net primary production. A potential factor controlling the buoyancy of the aggregates was light intensity, regulating photosynthetic oxygen production and the amount of gas bubbles trapped within the mucous matrix, even at low ambient nutrient concentrations. Our data-set was used to evaluate the distribution and importance of Arctic algal aggregates as carbon source for pelagic and benthic communities. PMID:25208058</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMGC23D1172H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMGC23D1172H"><span>The Effects of Changing Sea Ice on Marine Mammals and Their Hunters in Northern Alaska</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Huntington, H.; Quakenbush, L.; Nelson, M.</p> <p>2015-12-01</p> <p>Marine mammals are important sources of food for indigenous residents of northern Alaska. Changing sea ice patterns affect the animals themselves as well as access by hunters. Documenting the traditional knowledge of Iñupiaq and Yupik hunters concerning marine mammals and sea ice makes accessible a wide range of information and insight relevant to ecological understanding, conservation action, and the regulation of human activity. We interviewed hunters in villages from northern Bering Sea to the Beaufort Sea, focusing on bowhead whales, walrus, and ice seals. Hunters reported extensive changes in sea ice, with resulting effects on the timing of marine mammal migrations, the distribution and behavior of the animals, and the efficacy of certain hunting methods, for example the difficulty of finding ice thick enough to support a bowhead whale for butchering. At the same time, hunters acknowledged impacts and potential impacts from changing technology such as more powerful outboard engines and from industrial activity such as shipping and oil and gas development. Hunters have been able to adapt to some changes, for example by hunting bowhead whales in fall as well as spring on St. Lawrence Island, or by focusing their hunt in a shorter period in Nuiqsut to accommodate work schedules and worse weather. Other changes, such as reduced availability of ice seals due to rapid retreat of pack ice after spring break-up, continue to defy easy responses. Continued environmental changes, increased disturbance from human activity, and the introduction of new regulations for hunting may further challenge the ability of hunters to provide food as they have done to date, though innovation and flexibility may also provide new sources of adaptation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSHE24A1420P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSHE24A1420P"><span>Modeling Primary Productivity in the Margin Ice Zone from Glider-Based Measurements of Chlorophyll and Light during the 2014 Miz Program</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Perry, M. J.; Lee, C.; Rainville, L.; Cetinic, I.; Yang, E. J.; Kang, S. H.</p> <p>2016-02-01</p> <p>In late summer 2014 during the Marginal Ice Zone (MIZ) Experiment, an international project sponsored by ONR, four Seagliders transited open water, through the marginal ice zone, and under ice-covered regions in the Beaufort Sea, penetrating as far as 100 km into the ice pack. The gliders navigated either by GPS in open water or, when under the ice, by acoustics from sound sources embedded in the MIZ autonomous observing array. The glider sensor suite included temperature, temperature microstructure, salinity, oxygen, chlorophyll fluorescence, optical backscatter, and multi-spectral downwelling irradiance. Cruises on the IBRV Araon operating in the open Beaufort Sea and on the R/V Ukpik and Norseman operating in continental shelf waters off Alaska's north slope allowed us to construct proxy libraries for converting chlorophyll fluorescence to chlorophyll concentration and optical backscatter to particulate organic carbon concentration. Water samples were collected for chlorophyll and particulate organic carbon analysis on the cruises and aligned with optical profiles of fluorescence and backscatter using sensors that were factory calibrated at the same time as the glider sensors. Fields of chlorophyll, particulate organic carbon, light, and primary productivity are constructed from the glider data. Productivity is modeled as a function of chlorophyll and light, using photosynthesis-light (PE) models with available PE parameters from Arctic measurements. During August the region under the ice was characterized by a deep chlorophyll maximum layer with low rates of production in overlying waters. A phytoplankton bloom developed in open water at the end of September, preceding the rapid reformation of ice, despite shorter days and reduce irradiation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20170007898','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20170007898"><span>Evaluation of Alternative Altitude Scaling Methods for Thermal Ice Protection System in NASA Icing Research Tunnel</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lee, Sam; Addy, Harold E. Jr.; Broeren, Andy P.; Orchard, David M.</p> <p>2017-01-01</p> <p>A test was conducted at NASA Icing Research Tunnel to evaluate altitude scaling methods for thermal ice protection system. Two new scaling methods based on Weber number were compared against a method based on Reynolds number. The results generally agreed with the previous set of tests conducted in NRCC Altitude Icing Wind Tunnel where the three methods of scaling were also tested and compared along with reference (altitude) icing conditions. In those tests, the Weber number-based scaling methods yielded results much closer to those observed at the reference icing conditions than the Reynolds number-based icing conditions. The test in the NASA IRT used a much larger, asymmetric airfoil with an ice protection system that more closely resembled designs used in commercial aircraft. Following the trends observed during the AIWT tests, the Weber number based scaling methods resulted in smaller runback ice than the Reynolds number based scaling, and the ice formed farther upstream. The results show that the new Weber number based scaling methods, particularly the Weber number with water loading scaling, continue to show promise for ice protection system development and evaluation in atmospheric icing tunnels.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20050232832','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20050232832"><span>Experimental Investigation of Ice Accretion Effects on a Swept Wing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wong, S. C.; Vargas, M.; Papadakis, M.; Yeong, H. W.; Potapczuk, M.</p> <p>2005-01-01</p> <p>An experimental investigation was conducted to study the effects of 2-, 5-, 10-, and 22.5-min ice accretions on the aerodynamic performance of a swept finite wing. The ice shapes tested included castings of ice accretions obtained from icing tests at the NASA Glenn Icing Research Tunnel (IRT) and simulated ice shapes obtained with the LEWICE 2.0 ice accretion code. The conditions used for the icing tests were selected to provide five glaze ice shapes with complete and incomplete scallop features and a small rime ice shape. The LEWICE ice shapes were defined for the same conditions as those used in the icing tests. All aerodynamic performance tests were conducted in the 7- x 10-ft Low-Speed Wind Tunnel Facility at Wichita State University. Six component force and moment measurements, aileron hinge moments, and surface pressures were obtained for a Reynolds number of 1.8 million based on mean aerodynamic chord and aileron deflections in the range of -15o to 20o. Tests were performed with the clean wing, six IRT ice shape castings, seven smooth LEWICE ice shapes, and seven rough LEWICE ice shapes. Roughness for the LEWICE ice shapes was simulated with 36-size grit. The experiments conducted showed that the glaze ice castings reduced the maximum lift coefficient of the clean wing by 11.5% to 93.6%, while the 5-min rime ice casting increased maximum lift by 3.4%. Minimum iced wing drag was 133% to 3533% greater with respect to the clean case. The drag of the iced wing near the clean wing stall angle of attack was 17% to 104% higher than that of the clean case. In general, the aileron remained effective in changing the lift of the clean and iced wings for all angles of attack and aileron deflections tested. Aileron hinge moments for the iced wing cases remained within the maximum and minimum limits defined by the clean wing hinge moments. Tests conducted with the LEWICE ice shapes showed that in general the trends in aerodynamic performance degradation of the wing with the simulated ice shapes were similar to those obtained with the IRT ice shape castings. However, in most cases, the ice castings resulted in greater aerodynamic performance losses than those obtained with the LEWICE ice shapes. For the majority of the LEWICE ice shapes, the addition of 36-size grit roughness to the smooth ice shapes increased aerodynamic performance losses.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/121524-application-booth-kautzmann-method-determination-packing-leakage','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/121524-application-booth-kautzmann-method-determination-packing-leakage"><span>Application of the Booth-Kautzmann method for the determination of N-2 packing leakage</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Burkhart, D.M.; Milton, J.W.; Fawcett, S.T.</p> <p>1995-06-01</p> <p>To accurately determine turbine cycle heat rate, leakage past the N-2 steam seal packing must be determined on turbines with both HP and IP turbines contained within a common high pressure casing. N-2 packing leakage can be determined by the Booth-Kautzmann Method with instrumentation commonly used to determine the HP and IP turbine efficiency. The only additional requirements are changes to the main steam and/or hot reheat steam conditions. This paper discusses the actual test results using the Booth-Kautzmann test procedure on three natural gas fired units. The test results demonstrate the added advantage of having at least three N-2more » test runs, stability requirements for repeatable test runs and test procedures used to determine leakage results. Discussion of the sensitivity of the assumed N-2 enthalpy are also addressed. Utilizing Martins Formula with a series of N-2 Leakage test runs is shown to be a leakage prediction tool and a packing clearance approximation tool. It is concluded that the Booth-Kautzmann Method for determination of N-2 packing leakage should be utilized whenever HP and Ip turbine efficiency is determined. The two or three additional hours invested in the test runs is well worth the information gained on the performance of the N-2 packing.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70016279','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70016279"><span>Coastal retreat and shoreface profile variations in the Canadian Beaufort Sea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Hequette, A.; Barnes, P.W.</p> <p>1990-01-01</p> <p>The coastline of the southern Canadian Beaufort Sea consists primarily of unconsolidated bluffs. Although the sea is ice-free for 3 months of the year and wave energy is restricted by pack ice, the coast is undergoing regional retreat with erosion rates as high as 10 m a-1 in some locations. Simple and multiple regression analyses were carried out to determine the degree of correlation between the mean retreat rate measured at various locations and the different parameters that may control shoreline recession. Sediment texture, ground-ice content, cliff height, wave energy and shoreface gradient revealed medium to poor correlation with erosion rates, showing that the recessive evolution of the coastline can not be explained solely by wave-induced and subaerial processes. The comparison of nearshore echo-sounding records from 1987 with bathymetry from 1971 showed substantial erosion (up to 1 m) of the submarine profile between 12 and 15 m of water. There is strong evidence that this erosion has been caused by sea ice gouging on the seafloor. From depths of 5 to 9 m, accretion has taken place, possibly induced by ice-push processes, and inshore of the 5 m isobath wave and current erosion of the shoreface has occurred. These results suggest that the erosion of the inner shelf by ice gouging drives the erosion observed inshore on the coastal bluffs and nearshore zone as the shoreface profile strives for a state of dynamic equilibrium. ?? 1990.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMPP13D1106W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMPP13D1106W"><span>Wave inhibition by sea ice enables trans-Atlantic ice rafting of debris during Heinrich Events</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wagner, T. J. W.; Dell, R.; Eisenman, I.; Keeling, R. F.; Padman, L.; Severinghaus, J. P.</p> <p>2017-12-01</p> <p>The thickness of the ice-rafted debris (IRD) layers that signal Heinrich Events declines far more gradually with distance from the iceberg sources than would be expected based on present-day iceberg trajectories. Here we model icebergs as passive Lagrangian tracers driven by ocean currents, winds, and sea surface temperatures. The icebergs are released in a comprehensive climate model simulation of the last glacial maximum (LGM), as well as a simulation of the modern climate. The two simulated climates result in qualitatively similar distributions of iceberg meltwater and hence debris, with the colder temperatures of the LGM having only a relatively small effect on meltwater spread. In both scenarios, meltwater flux falls off rapidly with zonal distance from the source, in contrast with the more uniform spread of IRD in sediment cores. In order to address this discrepancy, we propose a physical mechanism that could have prolonged the lifetime of icebergs during Heinrich events. The mechanism involves a surface layer of cold and fresh meltwater formed from, and retained around, densely packed armadas of icebergs. This leads to wintertime sea ice formation even in relatively low latitudes. The sea ice in turn shields the icebergs from wave erosion, which is the main source of iceberg ablation. We find that allowing sea ice to form around all icebergs during four months each winter causes the model to approximately agree with the distribution of IRD in sediment cores.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014ACPD...14..593S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014ACPD...14..593S"><span>Single-particle characterization of the High Arctic summertime aerosol</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sierau, B.; Chang, R. Y.-W.; Leck, C.; Paatero, J.; Lohmann, U.</p> <p>2014-01-01</p> <p>Single-particle mass spectrometric measurements were carried out in the High Arctic north of 80° during summer 2008. The campaign took place onboard the icebreaker Oden and was part of the Arctic Summer Cloud Ocean Study (ASCOS). The instrument deployed was an Aerosol Time-of-Flight Mass Spectrometer (ATOFMS) that provides information on the chemical composition of individual particles and their mixing state in real-time. Aerosols were sampled in the marine boundary layer at stations in the open ocean, in the marginal ice zone, and in the pack ice region. The largest fraction of particles detected for subsequent analysis in the size range of the ATOFMS between approximately 200 nm to 3000 nm in diameter showed mass spectrometric patterns indicating an internal mixing state and a biomass burning and/or biofuel source. The majority of these particles were connected to an air mass layer of elevated particle concentration mixed into the surface mixed layer from the upper part of the marine boundary layer. The second largest fraction was represented by sea salt particles. The chemical analysis of the over-ice sea salt aerosol revealed tracer compounds that reflect chemical aging of the particles during their long-range advection from the marginal ice zone, or open waters south thereof prior to detection at the ship. From our findings we conclude that long-range transport of particles is one source of aerosols in the High Arctic. To assess the importance of long-range particle sources for aerosol-cloud interactions over the inner Arctic in comparison to local and regional biogenic primary aerosol sources, the chemical composition of the detected particles was analyzed for indicators of marine biological origin. Only a~minor fraction showed chemical signatures of potentially ocean-derived primary particles of that kind. However, a chemical bias in the ATOFMS's detection capabilities observed during ASCOS might suggest a presence of a particle type of unknown composition and source. In general, the study suffered from low counting statistics due to the overall small number of particles found in this pristine environment, the small sizes of the prevailing aerosol below the detection limit of the ATOFMS and its low hit rate. To our knowledge, this study reports on the first in-situ single-particle mass spectrometric measurements in the marine boundary layer of the High-Arctic pack-ice region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014ACP....14.7409S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014ACP....14.7409S"><span>Single-particle characterization of the high-Arctic summertime aerosol</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sierau, B.; Chang, R. Y.-W.; Leck, C.; Paatero, J.; Lohmann, U.</p> <p>2014-07-01</p> <p>Single-particle mass-spectrometric measurements were carried out in the high Arctic north of 80° during summer 2008. The campaign took place onboard the icebreaker Oden and was part of the Arctic Summer Cloud Ocean Study (ASCOS). The instrument deployed was an aerosol time-of-flight mass spectrometer (ATOFMS) that provides information on the chemical composition of individual particles and their mixing state in real time. Aerosols were sampled in the marine boundary layer at stations in the open ocean, in the marginal ice zone, and in the pack ice region. The largest fraction of particles detected for subsequent analysis in the size range of the ATOFMS between approximately 200 and 3000 nm in diameter showed mass-spectrometric patterns, indicating an internal mixing state and a biomass burning and/or biofuel source. The majority of these particles were connected to an air mass layer of elevated particle concentration mixed into the surface mixed layer from the upper part of the marine boundary layer. The second largest fraction was represented by sea salt particles. The chemical analysis of the over-ice sea salt aerosol revealed tracer compounds that reflect chemical aging of the particles during their long-range advection from the marginal ice zone, or open waters south thereof prior to detection at the ship. From our findings we conclude that long-range transport of particles is one source of aerosols in the high Arctic. To assess the importance of long-range particle sources for aerosol-cloud interactions over the inner Arctic in comparison to local and regional biogenic primary aerosol sources, the chemical composition of the detected particles was analyzed for indicators of marine biological origin. Only a minor fraction showed chemical signatures of potentially ocean-derived primary particles of that kind. However, a chemical bias in the ATOFMS's detection capabilities observed during ASCOS might suggest the presence of a particle type of unknown composition and source. In general, the study suffered from low counting statistics due to the overall small number of particles found in this pristine environment, the small sizes of the prevailing aerosol below the detection limit of the ATOFMS, and its low hit rate. To our knowledge, this study reports on the first in situ single-particle mass-spectrometric measurements in the marine boundary layer of the high-Arctic pack ice region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20030025277&hterms=statistics&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dstatistics','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20030025277&hterms=statistics&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dstatistics"><span>Space/Time Statistics of Polar Ice Motion</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Emery, William J.; Fowler, Charles; Maslanik, James A.</p> <p>2003-01-01</p> <p>Ice motions have been computed from passive microwave imagery (SMMR and SSM/I) on a daily basis for both Polar Regions. In the Arctic these daily motions have been merged with daily motions from AVHRR imagery and the Arctic buoy program. In the Antarctic motion only from the AVHRR were available for merging with the passive microwave vectors. Long-term means, monthly means and weekly means have all been computed from the resulting 22-year time series of polar ice motion. Papers are in preparation that present the long term (22 year) means, their variability and show animations of the monthly means over this time period for both Polar Regions. These papers will have links to "enhanced objects" that allow the reader to view the animations as part of the paper. The first paper presents the ice motion results from each of the Polar Regions. The second paper looks only at ice motion in the Arctic in order to develop a time series of ice age in the Arctic. Starting with the first full SMMR year in 1979 we keep track of each individual "ice element" (resolution of the sensor) and track it in the subsequent monthly time series. After a year we "age" each "particle" and we thus can keep track of the age of the ice starting in 1979. We keep track of ice age classes between one and five years and thus we can see the evolution of the ice as it ages after the initial 5-year period. This calculation shows how we are losing the older ice through Fram Strait at a rather alarming rate particularly in the past 15 years. This loss of older ice has resulted in an overall decrease in the thickest, oldest ice, which is now limited to a region just north of the Canadian Archipelago with tongues extending out across the pole towards the Siberian Shelf. This loss of old ice is consistent with the effects of global warming which provides the heat needed to melt, move and disperse this oldest ice through Fram Strait. This is the first step in a progression that may eventually open the Arctic ice pack and lead to an ice-free Arctic Ocean.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.C53B0776L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.C53B0776L"><span>Dynamics of landfast sea ice near Jangbogo Antarctic Research Station observed by SAR interferometry</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lee, H.; Han, H.</p> <p>2015-12-01</p> <p>Landfast sea ice is a type of sea ice adjacent to the coast and immobile for a certain period of time. It is important to analyze the temporal and spatial variation of landfast ice because it has significant influences on marine ecosystem and the safe operation of icebreaker vessels. However, it has been a difficult task for both remote sensing and in situ observation to discriminate landfast ice from other types of sea ice, such as pack ice, and also to understand the dynamics and internal strss-strain of fast ice. In this study, we identify landfast ice and its annual variation in Terra Nova Bay (74° 37' 4"S, 164° 13' 7"E), East Antarctica, where Jangbogo Antarctic Research Station has recently been constructed in 2014, by using Interferometric Synthetic Aperture Radar (InSAR) technology. We generated 38 interferograms having temporal baselines of 1-9 days out of 62 COSMO-SkyMed SAR images over Terra Nova Bay obtained from December 2010 to January 2012. Landfast ice began to melt in November 2011 when air temperature raised above freezing point but lasted more than two month to the end of the study period in January 2012. No meaningful relationship was found between sea ice extent and wind and current. Glacial strain (~67cm/day) is similar to tidal strain (~40 cm) so that they appear similar in one-day InSAR. As glacial stress is cumulative while tidal stress is oscillatory, InSAR images with weekly temporal baseline (7~9 days) revealed that a consistent motion of Campbell Glacier Tongue (CGT) is pushing the sea ice continuously to make interferometric fringes parallel to the glacier-sea ice contacts. Glacial interferometric fringe is parallel to the glacier-sea ice contact lines while tidal strain should be parallel to the coastlines defined by sea shore and glacier tongue. DDInSAR operation removed the consistent glacial strain leaving tidal strain alone so that the response of fast ice to tide can be used to deduce physical properties of sea ice in various ice stages. One-day InSAR images revealed that fast ice is not attached to CGT in the early ice formation stages while they began to couple with each other so that the entire glacial motion of up to 67cm/day is transferred directly to fast ice. In the final thawing stage just before ice breakage, ocean wave travelling through the fast ice is also observed by one-day InSAR.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28562609','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28562609"><span>Diagnostic value of repeated ice tests in the evaluation of ptosis in myasthenia gravis.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Park, Jun Young; Yang, Hee Kyung; Hwang, Jeong-Min</p> <p>2017-01-01</p> <p>Twenty-six patients with ptosis related to Myasthenia gravis (MG) and 38 controls with ptosis other than MG were included. All patients were tested with the ice test 2 times on separate days in the afternoon. The margin reflex distance (MRD) was measured before and immediately after 2-minute application of ice on the eyelids. The ice test was judged positive if there was an improvement of at least 2.0 mm of MRD after the ice test. Among the patients with negative test results, 'equivocal' was defined by improvement of MRD from at least 1.0 mm to less than 2.0 mm after the ice test. Repeated ice test results showed an agreement of 61.5% in MG, and 97.4% in nonmyasthenic ptosis. Repeated ice tests increased the sensitivity by 34.6% compared to a single test. Among the patients with repeatedly negative test results, 63.6% of those who showed equivocal results at least once turned out to be MG. Of those with repeated non-equivocal negative results, nobody turned out to be MG. There was no significant difference of the ice test results between ocular MG and generalized MG (p = 0.562).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5451013','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5451013"><span>Diagnostic value of repeated ice tests in the evaluation of ptosis in myasthenia gravis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p></p> <p>2017-01-01</p> <p>Twenty-six patients with ptosis related to Myasthenia gravis (MG) and 38 controls with ptosis other than MG were included. All patients were tested with the ice test 2 times on separate days in the afternoon. The margin reflex distance (MRD) was measured before and immediately after 2-minute application of ice on the eyelids. The ice test was judged positive if there was an improvement of at least 2.0 mm of MRD after the ice test. Among the patients with negative test results, 'equivocal’ was defined by improvement of MRD from at least 1.0 mm to less than 2.0 mm after the ice test. Repeated ice test results showed an agreement of 61.5% in MG, and 97.4% in nonmyasthenic ptosis. Repeated ice tests increased the sensitivity by 34.6% compared to a single test. Among the patients with repeatedly negative test results, 63.6% of those who showed equivocal results at least once turned out to be MG. Of those with repeated non-equivocal negative results, nobody turned out to be MG. There was no significant difference of the ice test results between ocular MG and generalized MG (p = 0.562). PMID:28562609</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150022398','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150022398"><span>Ice Crystal Icing Engine Testing in the NASA Glenn Research Center's Propulsion Systems Laboratory: Altitude Investigation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Oliver, Michael J.</p> <p>2014-01-01</p> <p>The National Aeronautics and Space Administration (NASA) conducted a full scale ice crystal icing turbofan engine test using an obsolete Allied Signal ALF502-R5 engine in the Propulsion Systems Laboratory (PSL) at NASA Glenn Research Center. The test article used was the exact engine that experienced a loss of power event after the ingestion of ice crystals while operating at high altitude during a 1997 Honeywell flight test campaign investigating the turbofan engine ice crystal icing phenomena. The test plan included test points conducted at the known flight test campaign field event pressure altitude and at various pressure altitudes ranging from low to high throughout the engine operating envelope. The test article experienced a loss of power event at each of the altitudes tested. For each pressure altitude test point conducted the ambient static temperature was predicted using a NASA engine icing risk computer model for the given ambient static pressure while maintaining the engine speed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20000044552','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20000044552"><span>Ice Accretions and Icing Effects for Modern Airfoils</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Addy, Harold E., Jr.</p> <p>2000-01-01</p> <p>Icing tests were conducted to document ice shapes formed on three different two-dimensional airfoils and to study the effects of the accreted ice on aerodynamic performance. The models tested were representative of airfoil designs in current use for each of the commercial transport, business jet, and general aviation categories of aircraft. The models were subjected to a range of icing conditions in an icing wind tunnel. The conditions were selected primarily from the Federal Aviation Administration's Federal Aviation Regulations 25 Appendix C atmospheric icing conditions. A few large droplet icing conditions were included. To verify the aerodynamic performance measurements, molds were made of selected ice shapes formed in the icing tunnel. Castings of the ice were made from the molds and placed on a model in a dry, low-turbulence wind tunnel where precision aerodynamic performance measurements were made. Documentation of all the ice shapes and the aerodynamic performance measurements made during the icing tunnel tests is included in this report. Results from the dry, low-turbulence wind tunnel tests are also presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150020899','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150020899"><span>A Battery Certification Testbed for Small Satellite Missions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Cameron, Zachary; Kulkarni, Chetan S.; Luna, Ali Guarneros; Goebel, Kai; Poll, Scott</p> <p>2015-01-01</p> <p>A battery pack consisting of standard cylindrical 18650 lithium-ion cells has been chosen for small satellite missions based on previous flight heritage and compliance with NASA battery safety requirements. However, for batteries that transit through the International Space Station (ISS), additional certification tests are required for individual cells as well as the battery packs. In this manuscript, we discuss the development of generalized testbeds for testing and certifying different types of batteries critical to small satellite missions. Test procedures developed and executed for this certification effort include: a detailed physical inspection before and after experiments; electrical cycling characterization at the cell and pack levels; battery-pack overcharge, over-discharge, external short testing; battery-pack vacuum leak and vibration testing. The overall goals of these certification procedures are to conform to requirements set forth by the agency and identify unique safety hazards. The testbeds, procedures, and experimental results are discussed for batteries chosen for small satellite missions to be launched from the ISS.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28677985','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28677985"><span>Achilles Tendon Penetration for Continuous 810 nm and Superpulsed 904 nm Lasers Before and After Ice Application: An In Situ Study on Healthy Young Adults.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Haslerud, Sturla; Naterstad, Ingvill Fjell; Bjordal, Jan Magnus; Lopes-Martins, Rodrigo Alvaro Brandão; Magnussen, Liv Heide; Leonardo, Patrícia Sardinha; Marques, Ricardo Henrique; Joensen, Jon</p> <p>2017-10-01</p> <p>There is a lack of knowledge about the influence tissue temperature may have on laser light penetration and tendon structure. The purpose of this study was to investigate whether penetration of laser energy in human Achilles tendons differed before and after ice pack application. The Achilles tendons (n = 54) from 27 healthy young adults were irradiated with two class 3B lasers (810 nm 200 mW continuous mode laser and a 904 nm 60 mW superpulsed mode laser). The optical energy penetrating the Achilles area was measured before and after 20 min of ice application. Measurements were obtained after 30, 60, and 120 sec irradiation with the 904 nm laser and after 30 and 60 sec irradiation with the 810 nm laser. Achilles tendon thickness was measured with ultrasonography. Optical energy penetration increased significantly (p < 0.01) after ice application for both lasers and at all time points from 0.34% to 0.39% of energy before ice application to 0.43-0.52% of energy after ice application for the 904 nm laser and from 0.24% to 0.25% of energy before ice application to 0.30-0.31% of energy after ice application for the 810 nm laser. The energy loss per centimeter of irradiated tissue was significantly higher (p < 0.05) at all time points after ice application. Ultrasonography imaging of skin-to-skin and transversal tendon thickness was significantly reduced after ice application at p = 0.05 and p = 0.03, respectively. Achilles tendon thickness in the longitudinal plane remained unchanged (p = 0.49). The penetration of laser light increased significantly through healthy Achilles tendons subjected to 20 min of cooling. These findings occurred in the presence of a significant reduction in skin temperature and Achilles tendon thickness.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002EGSGA..27.4021M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002EGSGA..27.4021M"><span>White Sea's Severe Winter Hydrological Hazard and Its Effect On Decrease of Population of Greenland Seals (1998/99 Winter Ecological Catastrophe)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Melentyev, Konstantin V.; Chernook, Vladimir I.</p> <p></p> <p>Types of hydrological hazards are various but its agencies are especially diversified . At this study hazard effects will be assessed for White Sea population of Greenland seals - a representatives of high level of marine fodder chains and the prime part of the Arctic nature. Number of population and type of their migration are strongly depended from different meteorological and hydrological parameters and processes, climate change and anthropogenical press, including pollution and fur-seal fishery, create additional problems. Especially hard situation happens now with the ice- associated sea mammals (p olar bear, seal, walrus, etc.). Mass destruction of seals in the White Sea (ecological catastrophe) which happens periodically is close connected with different kind of meteorological and hydrological hazard. Greenland seals selected these water areas for whelping where a rookeries are organized on pack ice. But severe winter conditions (long-run severe frosts and NE winds) can modify ice regime of the White Sea which lead to effect "blocking" of pack ice (and whelping rookeries) inside the "Basin". These features stimulated strong reduction number ofseals (especially pups). Marine biology use modelling of the system "sea mammal-media", study "behavior factors" and mammals biodiversity at the different natural conditions. But the main critical goal is the development of special observational network for the White Sea and contiguous regions. A contemporary technologies assume integration of remote sensing and in situ hydro-chemical measurements. Airborne IR and visible observation of the marginal Arctic seas became now an indispensable part of marine ecological investigations. Application of satellite data for monitoring of sea mammals has been attractive also but practical use is restrained by its small spatial resolution, daytime illumination and cloud influence in the Arctic. Launching ERS synthetic aperture radar (SAR) in 1991, which provides global all- weather soundig with resolution 20-25 m, changed situation. High transparency of snow and relatively deep penetration of signals in ice is basis of sub-surface sounding. SAR images allow fix documentary different ice parameters: development and arrangement, ice type, shape of floes, ice concentration and compactness. Unfortunately time being resolution couldn't resolve individual sea mammal. In order to investigate the ice regime, estimate number of seals at the different winter conditions and forecast the future tendency of population decrease we perform regularly ice reconnaissance. Accomplish these observations and computations more precisely could be done at the time of mass accumulation of seals, that is whelping and moulting period. Aerial inspection is difficult task: weather conditions and masking coloration obstructs the problems, sometimes mammals couldn't be quite founded. Comprehensive study of ERS SAR signatures for diagnosis type of winter hydrology of the Arctic seas and ice conditions produced by severe winter , assessment of possibility forecast of future development of ice and studying ice as non-biotic factor of ecology of Pagophilus groenladicus and other ice-associated forms of sea mammals is a new interdisciplinary approach in marine biology. First experience of such application SAR data for diagnosis of hydrological hazard produced by severe winter has been undertaken in the White Sea and contiguous seas in 1996. Sub-satellite experiments onboard nuclear icebreaker "Taymir" provided validation program, ice cores and water samples were gathered and evaluated using chemi-luminiscent methods in connection with seal' behavior patterns. Since then aircraft Antonov-26 «Arktika» provided ice and seals investigations systematically. Helicopter is employed for in situ observations, ice cores and water samples are investigated in laboratory for measurement of different pollutant , dissolved organic matter and other hydro-chemical and radio-physical paramet ers. European Space Agency (ESA) supported this work in 1998-2000. Results of comprehensive study of hydrological hazard and ecological catastrophe in the White Sea produced by 1998/99 severe winter season are demonstrated. Satellite diagnostic and situation forecast is fulfilled for the different winter severity: results of airborne charting of seals are compared for the different ice and weather conditions . 1999/2000 winter is analyzed as mean-climatic winter season.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AGUFMED11A0121P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AGUFMED11A0121P"><span>Going with the Floe? An Analysis of the Epic Expeditions of Fridtjof Nansen and Sir Ernest Shackleton</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pfirman, S.; Tremblay, B.; Fowler, C.</p> <p>2007-12-01</p> <p>One hundred years ago, the heroic age of polar exploration was underway. At first glance the Arctic-based Fridtjof Nansen and Antarctic-based Sir Ernest Shackleton, and their most famous expeditions, are literally poles apart. But the expeditions wound up having much in common, including the fact that their fates were largely dependent on their drift trajectory in the sea ice pack and, in Shackleton's case, the wind and ocean currents. These are natural forces, outside the control of the expedition leaders. Were Nansen and Shackleton lucky that the ice and ocean delivered them and their crew to locations from which they could return? Or were their fates more or less inevitable, within the normal range of natural conditions? While we cannot reconstruct the wind and ocean patterns that actually existed 100 years ago to answer this question, we looked at variability over the past three decades to explore potential alternate fates of these expeditions. Our analysis indicates that Nansen and Shackleton were both lucky and unlucky in the natural conditions that they encountered during their expeditions. Most years since 1979, Nansen would have gotten much closer to the North Pole - his goal -- than his ship did in 1895, so he was unlucky in that respect. On the other hand, he was lucky with the relatively short drift duration of his ship in the Arctic pack ice. Shackleton was also lucky in the rapid pace of drift within the pack. The fact that his trajectory was so far to the west might have been a factor in the crushing and sinking of his ship, but it did allow him to land most of his men on Elephant Island while he went for help. Shackleton's heroic, and harrowing, boat journey to South Georgia turned out to be helped by prevailing conditions: it was within the likely ocean drift trajectory from Elephant Island. Analyses such as these, including "Nansen's Luck" by Roger Colony, and "The Coldest March" by Susan Solomon, help set history and profiles of leadership within a scientific framework, engaging an interdisciplinary suite of scholars, students and the general public in understanding the role of the environment, environmental variability, and environmental change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19970009491','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19970009491"><span>Tests of the Performance of Coatings for Low Ice Adhesion</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Anderson, David N.; Reich, Allen D.</p> <p>1997-01-01</p> <p>This paper reports studies of the performance of low-ice-adhesion coatings by NASA Lewis and BFGoodrich. Studies used impact ice accreted both in the NASA Lewis Icing Research Tunnel (IRT) and in the BFGoodrich Icing Wind Tunnel (IWT) and static ice in a BFGoodrich bench-top parallel-plate shear rig. Early tests at NASA Lewis involved simple qualitative evaluations of the ease of removing impact ice from a surface. Coated surfaces were compared with uncoated ones. Some of the coatings were tested again with static ice at BFGoodrich to obtain quantitative measurements. Later, methods to establish the adhesion force on surfaces subjected to impact ice were explored at Lewis. This paper describes the various test programs and the results of testing some of the coatings looked at over the past 5 years. None of the coatings were found to be truly ice-phobic; however, the most effective coatings were found to reduce the adhesion of ice to about 1/2 that of an uncoated aluminum sample.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19950006784','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19950006784"><span>Role of Wind Tunnels and Computer Codes in the Certification and Qualification of Rotorcraft for Flight in Forecast Icing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Flemming, Robert J.; Britton, Randall K.; Bond, Thomas H.</p> <p>1994-01-01</p> <p>The cost and time to certify or qualify a rotorcraft for flight in forecast icing has been a major impediment to the development of ice protection systems for helicopter rotors. Development and flight test programs for those aircraft that have achieved certification or qualification for flight in icing conditions have taken many years, and the costs have been very high. NASA, Sikorsky, and others have been conducting research into alternative means for providing information for the development of ice protection systems, and subsequent flight testing to substantiate the air-worthiness of a rotor ice protection system. Model rotor icing tests conducted in 1989 and 1993 have provided a data base for correlation of codes, and for the validation of wind tunnel icing test techniques. This paper summarizes this research, showing test and correlation trends as functions of cloud liquid water content, rotor lift, flight speed, and ambient temperature. Molds were made of several of the ice formations on the rotor blades. These molds were used to form simulated ice on the rotor blades, and the blades were then tested in a wind tunnel to determine flight performance characteristics. These simulated-ice rotor performance tests are discussed in the paper. The levels of correlation achieved and the role of these tools (codes and wind tunnel tests) in flight test planning, testing, and extension of flight data to the limits of the icing envelope are discussed. The potential application of simulated ice, the NASA LEWICE computer, the Sikorsky Generalized Rotor Performance aerodynamic computer code, and NASA Icing Research Tunnel rotor tests in a rotorcraft certification or qualification program are also discussed. The correlation of these computer codes with tunnel test data is presented, and a procedure or process to use these methods as part of a certification or qualification program is introduced.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/5684105-cracking-inch-uf-sub-cylinder-valve-packing-nuts-effects-packing-nut-torque-stem-seal-leakage-packing-nut-stress-due-thermal-expansion-ptfe-stem-seal-rings','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/5684105-cracking-inch-uf-sub-cylinder-valve-packing-nuts-effects-packing-nut-torque-stem-seal-leakage-packing-nut-stress-due-thermal-expansion-ptfe-stem-seal-rings"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Davis, S.J.; Underwood, D.E.</p> <p></p> <p>A series of tests has been conducted to correlate the torque applied to the packing nut of 1-in. uranium hexafluoride (UF{sub 6}) cylinder valves versus the stem seal leak rate and material strain. The tests were initiated as a result of discussions held at the 1989 spring meeting of the American National Standards Institute (ANSI) N14.1 committee. The packing nut has been observed to fail due to stress corrosion cracking. The specified level of torque applied to the packing nut to seal the stem packing has been suspected to be a contributor to the failures. The ANSI standard specifies torquemore » of 120 to 150 ft-lb to compact the PTFE packing rings. One series of tests measured the effects of reduced levels of packing nut torque to the stem seal leak rate. The bubble leak rate of the stem was measured at ambient and 225{degree}F temperature with the body interior at 75 psig. Results from the laboratory tests indicate that the stem seal will perform acceptably through multiple thermal excursions at a torque level as low as 50 ft-lb. The second series of tests measured the effect of thermal expansion and increased hydrostatic force of the PTFE rings on the packing nut strain. The strain at certain exterior locations on a packing nut was measured at ambient and elevated temperatures for various assembly torques. The net increase in material strain is significant and is nearly equal at torque levels of 55, 85, and 115 ft-lb, being {minus}479, {minus}463, and {minus}469 {mu}in. respectively.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27828967','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27828967"><span>Quantification and Analysis of Icebergs in a Tidewater Glacier Fjord Using an Object-Based Approach.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>McNabb, Robert W; Womble, Jamie N; Prakash, Anupma; Gens, Rudiger; Haselwimmer, Christian E</p> <p>2016-01-01</p> <p>Tidewater glaciers are glaciers that terminate in, and calve icebergs into, the ocean. In addition to the influence that tidewater glaciers have on physical and chemical oceanography, floating icebergs serve as habitat for marine animals such as harbor seals (Phoca vitulina richardii). The availability and spatial distribution of glacier ice in the fjords is likely a key environmental variable that influences the abundance and distribution of selected marine mammals; however, the amount of ice and the fine-scale characteristics of ice in fjords have not been systematically quantified. Given the predicted changes in glacier habitat, there is a need for the development of methods that could be broadly applied to quantify changes in available ice habitat in tidewater glacier fjords. We present a case study to describe a novel method that uses object-based image analysis (OBIA) to classify floating glacier ice in a tidewater glacier fjord from high-resolution aerial digital imagery. Our objectives were to (i) develop workflows and rule sets to classify high spatial resolution airborne imagery of floating glacier ice; (ii) quantify the amount and fine-scale characteristics of floating glacier ice; (iii) and develop processes for automating the object-based analysis of floating glacier ice for large number of images from a representative survey day during June 2007 in Johns Hopkins Inlet (JHI), a tidewater glacier fjord in Glacier Bay National Park, southeastern Alaska. On 18 June 2007, JHI was comprised of brash ice ([Formula: see text] = 45.2%, SD = 41.5%), water ([Formula: see text] = 52.7%, SD = 42.3%), and icebergs ([Formula: see text] = 2.1%, SD = 1.4%). Average iceberg size per scene was 5.7 m2 (SD = 2.6 m2). We estimate the total area (± uncertainty) of iceberg habitat in the fjord to be 455,400 ± 123,000 m2. The method works well for classifying icebergs across scenes (classification accuracy of 75.6%); the largest classification errors occur in areas with densely-packed ice, low contrast between neighboring ice cover, or dark or sediment-covered ice, where icebergs may be misclassified as brash ice about 20% of the time. OBIA is a powerful image classification tool, and the method we present could be adapted and applied to other ice habitats, such as sea ice, to assess changes in ice characteristics and availability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5102356','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5102356"><span>Quantification and Analysis of Icebergs in a Tidewater Glacier Fjord Using an Object-Based Approach</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>McNabb, Robert W.; Womble, Jamie N.; Prakash, Anupma; Gens, Rudiger; Haselwimmer, Christian E.</p> <p>2016-01-01</p> <p>Tidewater glaciers are glaciers that terminate in, and calve icebergs into, the ocean. In addition to the influence that tidewater glaciers have on physical and chemical oceanography, floating icebergs serve as habitat for marine animals such as harbor seals (Phoca vitulina richardii). The availability and spatial distribution of glacier ice in the fjords is likely a key environmental variable that influences the abundance and distribution of selected marine mammals; however, the amount of ice and the fine-scale characteristics of ice in fjords have not been systematically quantified. Given the predicted changes in glacier habitat, there is a need for the development of methods that could be broadly applied to quantify changes in available ice habitat in tidewater glacier fjords. We present a case study to describe a novel method that uses object-based image analysis (OBIA) to classify floating glacier ice in a tidewater glacier fjord from high-resolution aerial digital imagery. Our objectives were to (i) develop workflows and rule sets to classify high spatial resolution airborne imagery of floating glacier ice; (ii) quantify the amount and fine-scale characteristics of floating glacier ice; (iii) and develop processes for automating the object-based analysis of floating glacier ice for large number of images from a representative survey day during June 2007 in Johns Hopkins Inlet (JHI), a tidewater glacier fjord in Glacier Bay National Park, southeastern Alaska. On 18 June 2007, JHI was comprised of brash ice (x¯ = 45.2%, SD = 41.5%), water (x¯ = 52.7%, SD = 42.3%), and icebergs (x¯ = 2.1%, SD = 1.4%). Average iceberg size per scene was 5.7 m2 (SD = 2.6 m2). We estimate the total area (± uncertainty) of iceberg habitat in the fjord to be 455,400 ± 123,000 m2. The method works well for classifying icebergs across scenes (classification accuracy of 75.6%); the largest classification errors occur in areas with densely-packed ice, low contrast between neighboring ice cover, or dark or sediment-covered ice, where icebergs may be misclassified as brash ice about 20% of the time. OBIA is a powerful image classification tool, and the method we present could be adapted and applied to other ice habitats, such as sea ice, to assess changes in ice characteristics and availability. PMID:27828967</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.U52A..02S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.U52A..02S"><span>Formation of a CliC/CLIVAR Northern Oceans Regional Panel to advance the understanding of the role of the Arctic in global climate</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Solomon, A.</p> <p>2017-12-01</p> <p>The Arctic climate is rapidly transitioning into a new regime with lower sea ice extent and increasingly younger and thinner sea ice pack. The emergent properties of this new regime are yet to be determined since altered feedback processes between ice, ocean, and atmosphere will further impact upper ocean heat content, atmospheric circulation, atmospheric and oceanic stratification, the interactions between subsurface/intermediate warm waters and surface cold and fresh layer, cloud cover, ice growth, among other properties. This emergent new climate regime needs to be understood in terms of the two-way feedback between the Arctic and lower-latitudes (both in the ocean and atmosphere), as well as the local coupling between ocean-sea ice-atmosphere. The net result of these feedbacks will determine the magnitude of future Arctic amplification and potential impacts on mid-latitude weather extremes, among other impacts. A new international panel, the CliC/CLIVAR Northern Oceans Regional Panel, has been established to coordinate efforts that will enhance our ability to monitor the coupled system, understand the driving mechanisms of the system change from a coupled process perspective, and predict the evolution of the emerging "New Arctic" climate. This talk will discuss the scientific motivation for this new panel, the near-term objectives, and plans for deliverables.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19970009335','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19970009335"><span>Validation of NASA Thermal Ice Protection Computer Codes. Part 1; Program Overview</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Miller, Dean; Bond, Thomas; Sheldon, David; Wright, William; Langhals, Tammy; Al-Khalil, Kamel; Broughton, Howard</p> <p>1996-01-01</p> <p>The Icing Technology Branch at NASA Lewis has been involved in an effort to validate two thermal ice protection codes developed at the NASA Lewis Research Center. LEWICE/Thermal (electrothermal deicing & anti-icing), and ANTICE (hot-gas & electrothermal anti-icing). The Thermal Code Validation effort was designated as a priority during a 1994 'peer review' of the NASA Lewis Icing program, and was implemented as a cooperative effort with industry. During April 1996, the first of a series of experimental validation tests was conducted in the NASA Lewis Icing Research Tunnel(IRT). The purpose of the April 96 test was to validate the electrothermal predictive capabilities of both LEWICE/Thermal, and ANTICE. A heavily instrumented test article was designed and fabricated for this test, with the capability of simulating electrothermal de-icing and anti-icing modes of operation. Thermal measurements were then obtained over a range of test conditions, for comparison with analytical predictions. This paper will present an overview of the test, including a detailed description of: (1) the validation process; (2) test article design; (3) test matrix development; and (4) test procedures. Selected experimental results will be presented for de-icing and anti-icing modes of operation. Finally, the status of the validation effort at this point will be summarized. Detailed comparisons between analytical predictions and experimental results are contained in the following two papers: 'Validation of NASA Thermal Ice Protection Computer Codes: Part 2- The Validation of LEWICE/Thermal' and 'Validation of NASA Thermal Ice Protection Computer Codes: Part 3-The Validation of ANTICE'</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19910023473','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19910023473"><span>Evaluation of prototype Advanced Life Support (ALS) pack for use by the Health Maintenance Facility (HMF) on Space Station Freedom (SSF)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Krupa, Debra T.; Gosbee, John; Murphy, Linda; Kizzee, Victor D.</p> <p>1991-01-01</p> <p>The purpose is to evaluate the prototype Advanced Life Support (ALS) Pack which was developed for the Health Maintenance Facility (HMF). This pack will enable the Crew Medical Officer (CMO) to have ready access to advanced life support supplies and equipment for time critical responses to any situation within the Space Station Freedom. The objectives are: (1) to evaluate the design of the pack; and (2) to collect comments for revision to the design of the pack. The in-flight test procedures and other aspects of the KC-135 parabolic test flight to simulate weightlessness are presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA619468','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA619468"><span>Estimating Summer Ocean Heating in the Arctic Ice Pack Using High-Resolution Satellite Imagery</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2014-09-01</p> <p>Left Image: small domed solar sensor on the left-most arm of the meteorology tree collects shortwave (visible) surface solar intensity time series...2012). The replacement of MYI by FYI in the region also enhances this positive feedback loop. Hudson et al. (2013) suggest that the increase in the...larger meltponds being identified as open water, it is valid based on Hudson et al. (2013), were they found larger meltponds share similar albedo</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/6521981','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/6521981"><span>Accidental intra-arterial injection of fluorescein dye.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bovino, J A; Marcus, D F</p> <p>1984-12-01</p> <p>During fluorescein angiography, sodium fluorescein dye intended for intravenous use was inadvertently injected into an artery in the antecubital fossa. An immediate and dramatic orange discoloration of the skin distal to the injection combined with intense burning pain of the right forearm and hand were noted. The patient was treated with ice packs and analgesics. The fluorescein angiogram showed a delayed arm to eye circulation time, but was of normal quality. There were no long-term complications.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/551980','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/551980"><span>Rural health clinics infrastructure</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Olson, K.</p> <p>1997-12-01</p> <p>The author discusses programs which were directed at the installation of photovoltaic power systems in rural health clinics. The objectives included: vaccine refrigeration; ice pack freezing; lighting; communications; medical appliances; sterilization; water purification; and income generation. The paper discusses two case histories, one in the Dominican Republic and one in Colombia. The author summarizes the results of the programs, both successes and failures, and offers an array of conclusions with regard to the implementation of future programs of this general nature.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5043326','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5043326"><span>Packing and deploying Soft Origami to and from cylindrical volumes with application to automotive airbags</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Nelson, Todd G.; Zimmerman, Trent K.; Fernelius, Janette D.; Magleby, Spencer P.; Howell, Larry L.</p> <p>2016-01-01</p> <p>Packing soft-sheet materials of approximately zero bending stiffness using Soft Origami (origami patterns applied to soft-sheet materials) into cylindrical volumes and their deployment via mechanisms or internal pressure (inflation) is of interest in fields including automobile airbags, deployable heart stents, inflatable space habitats, and dirigible and parachute packing. This paper explores twofold patterns, the ‘flasher’ and the ‘inverted-cone fold’, for packing soft-sheet materials into cylindrical volumes. Two initial packing methods and mechanisms are examined for each of the flasher and inverted-cone fold patterns. An application to driver’s side automobile airbags is performed, and deployment tests are completed to compare the influence of packing method and origami pattern on deployment performance. Following deployment tests, two additional packing methods for the inverted-cone fold pattern are explored and applied to automobile airbags. It is shown that modifying the packing method (using different methods to impose the same base pattern on the soft-sheet material) can lead to different deployment performance. In total, two origami patterns and six packing methods are examined, and the benefits of using Soft Origami patterns and packing methods are discussed. Soft Origami is presented as a viable method for efficiently packing soft-sheet materials into cylindrical volumes. PMID:27703707</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016RSOS....360429B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016RSOS....360429B"><span>Packing and deploying Soft Origami to and from cylindrical volumes with application to automotive airbags</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bruton, Jared T.; Nelson, Todd G.; Zimmerman, Trent K.; Fernelius, Janette D.; Magleby, Spencer P.; Howell, Larry L.</p> <p>2016-09-01</p> <p>Packing soft-sheet materials of approximately zero bending stiffness using Soft Origami (origami patterns applied to soft-sheet materials) into cylindrical volumes and their deployment via mechanisms or internal pressure (inflation) is of interest in fields including automobile airbags, deployable heart stents, inflatable space habitats, and dirigible and parachute packing. This paper explores twofold patterns, the `flasher' and the `inverted-cone fold', for packing soft-sheet materials into cylindrical volumes. Two initial packing methods and mechanisms are examined for each of the flasher and inverted-cone fold patterns. An application to driver's side automobile airbags is performed, and deployment tests are completed to compare the influence of packing method and origami pattern on deployment performance. Following deployment tests, two additional packing methods for the inverted-cone fold pattern are explored and applied to automobile airbags. It is shown that modifying the packing method (using different methods to impose the same base pattern on the soft-sheet material) can lead to different deployment performance. In total, two origami patterns and six packing methods are examined, and the benefits of using Soft Origami patterns and packing methods are discussed. Soft Origami is presented as a viable method for efficiently packing soft-sheet materials into cylindrical volumes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27703707','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27703707"><span>Packing and deploying Soft Origami to and from cylindrical volumes with application to automotive airbags.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bruton, Jared T; Nelson, Todd G; Zimmerman, Trent K; Fernelius, Janette D; Magleby, Spencer P; Howell, Larry L</p> <p>2016-09-01</p> <p>Packing soft-sheet materials of approximately zero bending stiffness using Soft Origami (origami patterns applied to soft-sheet materials) into cylindrical volumes and their deployment via mechanisms or internal pressure (inflation) is of interest in fields including automobile airbags, deployable heart stents, inflatable space habitats, and dirigible and parachute packing. This paper explores twofold patterns, the 'flasher' and the 'inverted-cone fold', for packing soft-sheet materials into cylindrical volumes. Two initial packing methods and mechanisms are examined for each of the flasher and inverted-cone fold patterns. An application to driver's side automobile airbags is performed, and deployment tests are completed to compare the influence of packing method and origami pattern on deployment performance. Following deployment tests, two additional packing methods for the inverted-cone fold pattern are explored and applied to automobile airbags. It is shown that modifying the packing method (using different methods to impose the same base pattern on the soft-sheet material) can lead to different deployment performance. In total, two origami patterns and six packing methods are examined, and the benefits of using Soft Origami patterns and packing methods are discussed. Soft Origami is presented as a viable method for efficiently packing soft-sheet materials into cylindrical volumes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMGC14A..01D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMGC14A..01D"><span>Forty years of change: a northern Alaskan seabird's response to a warming Arctic</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Divoky, G.; Suydam, R.</p> <p>2012-12-01</p> <p>While recent decadal-scale decreases in the snow and ice habitats of the Arctic are well documented, there are few concurrent long-term biological data sets, especially for species dependent on the cryopelagic ecosystem associated with arctic sea ice. The Black Guillemot (Cepphus grylle mandti), a marine apex predator specializing on prey associated with arctic pack ice has been studied annually since 1975 at a colony on Cooper Island, 35 km east of Point Barrow, Alaska. Over the last four decades critical components of the species' life history have been found to be sensitive to a number of physical and biological effects associated with the region's increasing atmospheric temperatures. Black Guillemots first colonized northern Alaska in the late 1960s and early 1970s as the annual snow-free period increased sufficiently to allow access to nesting cavities for the 80 days required to successfully raise young. At the Cooper Island colony abundance increased during the 1970s and 1980s as summer length continued to increase and wooden nest cavities were provided to increase sample size for monitoring. During this time breeding success was high as summer sea ice remained in the 30-km foraging range of guillemot parents, providing Arctic Cod (Boreogadus saida), the principal forage fish associated with sea ice and the preferred prey of Black Guillemots. Decreasing summer sea ice extent in the 1990s that accelerated in the last decade reduced the guillemots' access to cryopelagic prey during the critical period when parents are provisioning nestlings. Distance from the colony to the pack ice on 15 August averaged <25 km from 1975-2002 but increased to an average of >100 km from 2003-2011. This ice retreat had a major affect on Arctic Cod availability, causing parent guillemots to shift to lower quality benthic fish resulting in decreases in nestling quality and breeding success when sea ice had retreated and SST was > 4o C. Increasing loss of summer ice in the last decade also facilitated changes in the distribution of a guillemot nest competitor and nest predator resulting in major losses of eggs and young. Horned Puffins (Fratercula corniculata) recently expanded their breeding range from the subarctic to northern Alaska and regularly disrupt guillemot nesting by displacing eggs and killing guillemot nestlings while prospecting for nest sites. Polar Bears (Ursus maritimus), rare on Cooper Island until 2002 are now seen regularly in August as they seek refuge on land and prey on guillemot young. While the loss of cryopelagic prey led to reductions in the guillemot population, the loss of eggs and nestlings to puffins and bears was severe enough to threaten the existence of the colony. In 2011 all nest sites at the colony were replaced with plastic nest cases that eliminate disturbance by bears and puffins. Upper trophic level predators are recognized as important indicators of variation in and perturbations to marine ecosystems and in the near future the waters of the western Arctic will be experiencing a range of alterations due to both atmospheric warming and industrial development. The ongoing research at the Cooper Island Black Guillemot colony, combined with its historic database. will allow assessment of those changes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA01786.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA01786.html"><span>Space Radar Image of Weddell Sea Ice</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>1999-04-15</p> <p>This is the first calibrated, multi-frequency, multi-polarization spaceborne radar image of the seasonal sea-ice cover in the Weddell Sea, Antarctica. The multi-channel data provide scientists with details about the ice pack they cannot see any other way and indicates that the large expanse of sea-ice is, in fact, comprised of many smaller rounded ice floes, shown in blue-gray. These data are particularly useful in helping scientists estimate the thickness of the ice cover which is often extremely difficult to measure with other remote sensing systems. The extent, and especially thickness, of the polar ocean's sea-ice cover together have important implications for global climate by regulating the loss of heat from the ocean to the cold polar atmosphere. The image was acquired on October 3, 1994, by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) onboard the space shuttle Endeavour. This image is produced by overlaying three channels of radar data in the following colors: red (C-band, HH-polarization), green (L-band HV-polarization), and blue (L-band, HH-polarization). The image is oriented almost east-west with a center location of 58.2 degrees South and 21.6 degrees East. Image dimensions are 45 kilometers by 18 kilometers (28 miles by 11 miles). Most of the ice cover is composed of rounded, undeformed blue-gray floes, about 0.7 meters (2 feet) thick, which are surrounded by a jumble of red-tinged deformed ice pieces which are up to 2 meters (7 feet) thick. The winter cycle of ice growth and deformation often causes this ice cover to split apart, exposing open water or "leads." Ice growth within these openings is rapid due to the cold, brisk Antarctic atmosphere. Different stages of new-ice growth can be seen within the linear leads, resulting from continuous opening and closing. The blue lines within the leads are open water areas in new fractures which are roughened by wind. The bright red lines are an intermediate stage of new-ice growth perhaps 5 to 10 centimeters (2 to 4 inches) thick. The more extensive dark zones are covered by a slightly thicker layer of smooth, level ice up to 70 centimeters (28 inches) thick. http://photojournal.jpl.nasa.gov/catalog/PIA01786</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016DSRII.131....7H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016DSRII.131....7H"><span>SIPEX 2012: Extreme sea-ice and atmospheric conditions off East Antarctica</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Heil, P.; Stammerjohn, S.; Reid, P.; Massom, R. A.; Hutchings, J. K.</p> <p>2016-09-01</p> <p>In 2012, Antarctic sea-ice coverage was marked by weak annual-mean climate anomalies that consisted of opposing anomalies early and late in the year (some setting new records) which were interspersed by near-average conditions for most of the austral autumn and winter. Here, we investigate the ocean-ice-atmosphere system off East Antarctica, prior to and during the Sea Ice Physics and Ecosystems eXperiment [SIPEX] 2012, by exploring relationships between atmospheric and oceanic forcing together with the sea-ice and snow characteristics. During August and September 2012, just prior to SIPEX 2012, atmospheric circulation over the Southern Ocean was near-average, setting up the ocean-ice-atmosphere system for near-average conditions. However, below-average surface pressure and temperature as well as strengthened circumpolar winds prevailed during June and July 2012. This led to a new record (19.48×106 km2) in maximum Antarctic sea-ice extent recorded in late September. In contrast to the weak circum-Antarctic conditions, the East Antarctic sector (including the SIPEX 2012 region) experienced positive sea-ice extent and concentration anomalies during most of 2012, coincident with negative atmospheric pressure and sea-surface temperature anomalies. Heavily deformed sea ice appeared to be associated with intensified wind stress due to increased cyclonicity as well as an increased influx of sea ice from the east. This increased westward ice flux is likely linked to the break-up of nearly 80% of the Mertz Glacier Tongue in 2010, which strongly modified the coastal configuration and hence the width of the westward coastal current. Combined with favourable atmospheric conditions the associated changed coastal configuration allowed more sea ice to remain within the coastal current at the expense of a reduced northward flow in the region around 141°-145°E. In addition a westward propagating positive anomaly of sea-ice extent from the western Ross Sea during austral winter 2012 has been identified to have fed into the westward current of the SIPEX 2012 region. A pair of large grounded icebergs appears to have modified the local stress state as well as the structure of the ice pack upstream and also towards the Dalton Glacier Tongue. Together with the increased influx of sea ice into the regions, this contributed to the difficulties in navigating the SIPEX 2012 region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950031112&hterms=microwaves+water+structure&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dmicrowaves%2Bwater%2Bstructure','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950031112&hterms=microwaves+water+structure&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dmicrowaves%2Bwater%2Bstructure"><span>Passive microwave observations of the Wedell Sea during austral winter and early spring</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Grenfell, T. C.; Comiso, J. C.; Lange, M. A.; Eicken, H.; Wensnahan, M. R.</p> <p>1994-01-01</p> <p>The results of multispectral passive microwave observations (6.7 to 90-GHz) are presented from the cruises of the FS Polarstern in the Weddell Sea from July to December 1986. This paper includes primarily the analysis of radiometric observations taken at ice station sites. Averaged emissivity spectra for first-year (FY) ice were relatively constant throughout the experiment and were not statistically different from FY ice signatures in the Arctic. Detailed ice characterization was carried out at each site to compare the microwave signatures of the ice with the physical properties. Absorption optical depths of FY ice were found to be sufficiently high that only the structure in the upper portions of the ice contributed significantly to interstation emissivity variations. The emissivities at 90-GHz, e(90), had the greatest variance. Both e(90) at vertical polarization and GR(sub e)(90, 18.7)(defined as (e(sub V)(90)-e(sub V)(18.7))/e(sub V)(90 + e(sub V)(18.7)) depended on the scattering optical depth which is a function of the snow grain diameter and layer thickness. The variance showed a latitude dependence and is probably due to an increase in the strength of snow metamorphism nearer the northern edge of the ice pack. The contribution of variations of near-surface brine volume to the emissivity was not significant over the range of values encountered at the station sites. Emissivity spectra are presented for a range of thin ice types. Unsupervised principal component analysis produced three significant eigenvectors and showed a separation among four different surface types: open water, thin ice, FY ice, and FY ice with a thick snow cover. A comparison with SMMR satellite data showed that average ice concentrations derived from the ship's ice watch log were consistent with the satellite concentrations. The surface based emissivities for FY ice were also compared with emissivities calculated from scanning multichannel microwave radiometer (SMMR) satellite radiances. Best agreement was found at 6.7 and 10-GHz, while at 18 and 37-GHz, SMMR emissivities were slightly lower than surface based results. For the three lower frequencies agreement was found within a confidence limit of 95% and for 37-GHz within about 90%.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=thunder&pg=2&id=EJ954651','ERIC'); return false;" href="https://eric.ed.gov/?q=thunder&pg=2&id=EJ954651"><span>Establishing the Test-Retest Reliability & Concurrent Validity for the Repeat Ice Skating Test (RIST) in Adolescent Male Ice Hockey Players</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Power, Allan; Faught, Brent E.; Przysucha, Eryk; McPherson, Moira; Montelpare, William</p> <p>2012-01-01</p> <p>In this study the authors examine the test-retest reliability and concurrent validity of the Repeat Ice Skating Test (RIST). This was an on-ice field anaerobic test that measured average peak power and was validated with 3 anaerobic lab tests: (a) vertical jump, (b) the Margaria-Kalamen stair test, and (c) the Wingate Anaerobic Test. The…</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..1614223Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..1614223Z"><span>Microbial cell retention in a melting High Arctic snowpack, Svalbard</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zarsky, Jakub; Björkman, Mats; Kühnel, Rafael; Hell, Katherina; Hodson, Andy; Sattler, Birgit; Psenner, Roland</p> <p>2014-05-01</p> <p>Introduction The melting snow pack represents a highly dynamic system not only for chemical compounds but also for bacterial cells. Microbial activity was found at subzero temperatures in ice veins when liquid water persists due to high concentration of ions on the surface of snow crystals and brine channels between large ice crystals in ice. Several observations also suggest microbial activity under subzero temperatures in seasonal snow. Even with regard to the spatial and temporal relevance of snow ecosystems, microbial activity in such an extreme habitat represents a relatively small proportion in the carbon flux of the global ecosystem and even of the glacial ecosystems specifically. On the other hand, it represents a remarkable piece of mosaic of the microbial activity in glacial ecosystems because the snow pack represents the first contact between the atmosphere and cryosphere. This topic also embodies vital crossovers to biogeochemistry and ecotoxicology, offering a quantitative view of utilization of various substrates relevant for downstream ecosystems. Here we present our study of the dynamics of both solvents and cells suspended in meltwater of the melting snowpack on a high arctic glacier to demonstrate the spatio-temporal constraint of interaction between solvent and bacterial cells in this environment. Method We used 6 lysimeters inserted into the bottom of the snowpack to collect replicated samples of melt water before it comes into contact with basal ice or slush layer at the base of the snow pack. The sampling site was chosen at Midre Lovénbreen (Svalbard, Kongsfjorden, MLB stake 6) where the snow pack showed melting on the surface but the basal ice was still dry. Sampling was conducted in June 2010 for a period of 10 days once per day and the snow profile was sampled according to distinguished layers in the profile at the beginning of the field mission and as bulk at its end. The height of snow above the lysimeters dropped from the initial 74 cm to the final 38 cm. The major ion composition (IC), pH, conductivity and cell abundances were measured. Results and conlusions The removal of microbial cells from a high arctic snowpack resembles an elution sequence similar to that of hydrophobic compounds a process that helps glaciers retain a microbial biomass upon their surface, even after the demise of the snow cover. The snowpack and the glacier surface therefore act as an accumulator of cells during the melt season. This suggests that wet snowpacks, even on the surface of high arctic glaciers, are likely to be dynamic ecosystems in their own right. In our study, a clear ion elution sequence was observed that resembled earlier reports and caused high concentrations of ions in snowpack runoff at the start of the snow melt, which rapidly decreased as snow melt proceeded. Chloride, sulfate, nitrate, sodium and potassium experienced a 50 % elution before 20 - 25 % of the snowpack water content was lost. By contrast, cell removal only reached the 50 % level after ~70 % snowpack depletion. In contrast to our expectations, the calculated cell budget between the initial and final snowpack (including the cell loss by elution), revealed a significant increase of the total cell numbers, i.e. more than twice the original number. Assuming aeolian deposition processes to be low, this suggests cell proliferation as a contribution to the observed "retention effect". Precipitation was the major cell contributor to the snowpack upon Midtre Lovénbreen. An overall low cell concentration was therefore found within the snowpack stratigraphy, where snow layers frequently showed cell abundances similar to those of cloud water. This was in contrast to the nearby and more wind exposed sites examined in the Kongsfjorden area in 2007. However, layers of higher dust deposition were concomitant with one order of magnitude higher cell abundances, indicating that wind dispersal from locally exposed rocks supplements the atmospheric cell input.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/5458971-development-improved-high-temperature-seals-lubricants-downhole-motors-geothermal-applications','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/5458971-development-improved-high-temperature-seals-lubricants-downhole-motors-geothermal-applications"><span>Development of improved high temperature seals and lubricants for downhole motors in geothermal applications</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>De La Fosse, P.H.; Black, A.D.; DiBona, B.G.</p> <p>1983-01-01</p> <p>A major limitation of downhole mud motors for geothermal drilling, as well as straight-hole oil and gas drilling, is the bearing section. Reduced bearing life results from the inability to seal a lubricant in the bearing pack. A reliable rotary seal will extend the bearing life and will allow high pressure drops across the bit for improved bottomhole cleaning and increased drilling rate. This paper summarizes the results of a six-year program funded by the U.S. Department of Energy/Division of Geothermal Energy to develop a sealed bearing pack for use with downhole motors in geothermal applications. Descriptions of the Sealmore » Test Machine, Lubricant Test Machine and Bearing Pack Test Facility are presented. Summaries of all seal tests, lubricant tests and bearing pack tests are provided; and a comprehensive program bibliography is presented.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19940023605','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19940023605"><span>Space Station Freedom NiH2 cell testing program</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Moore, Bruce; Frate, Dave</p> <p>1994-01-01</p> <p>Testing for the Space Station Freedom Nickel Hydrogen Cell Test Program began in 1990 at Crave Division, Naval Surface Warfare Center. The program has included receipt inspection, random vibration, acceptance, characterization, and life cycle testing of Ni-H2 cells in accordance with the NASA LeRC Interagency Order C-31001-J. A total of 400 Ni-H2 cells have been received at NAVSURFWARCENDIV Crane from three separate manufacturers; Yardney Technical Products (Yardney), Eagle Picher Industries (Eagle Picher), and Gates Energy Products (Gates). Of those, 308 cells distributed among 39 packs have undergone life cycle testing under a test regime simulating low earth orbit conditions. As of 30 September 1993, there are 252 cells assembled into 32 packs still on life cycle test. Since the beginning of the program, failed cells have been detected in all phases of testing. The failures include the following; seven 65 AmpHr and 81 AmpHr Yardney cells were found to be leaking KOH on receipt, one 65 AmpHr Eagle Picher cell failed the acceptance test, one 65 AmpHr Gates cell failed during the characterization test, and six 65 AmpHr Gates cells failed the random vibration test. Of the 39 life cycle packs, testing on seven packs, 56 cells, has been suspended because of low end of discharge voltages. All of the failed life cycle packs were cycled at 60% depth of discharge.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19980000580','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19980000580"><span>Scaling Methods for Simulating Aircraft In-Flight Icing Encounters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Anderson, David N.; Ruff, Gary A.</p> <p>1997-01-01</p> <p>This paper discusses scaling methods which permit the use of subscale models in icing wind tunnels to simulate natural flight in icing. Natural icing conditions exist when air temperatures are below freezing but cloud water droplets are super-cooled liquid. Aircraft flying through such clouds are susceptible to the accretion of ice on the leading edges of unprotected components such as wings, tailplane and engine inlets. To establish the aerodynamic penalties of such ice accretion and to determine what parts need to be protected from ice accretion (by heating, for example), extensive flight and wind-tunnel testing is necessary for new aircraft and components. Testing in icing tunnels is less expensive than flight testing, is safer, and permits better control of the test conditions. However, because of limitations on both model size and operating conditions in wind tunnels, it is often necessary to perform tests with either size or test conditions scaled. This paper describes the theoretical background to the development of icing scaling methods, discusses four methods, and presents results of tests to validate them.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19950012869','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19950012869"><span>Methods for Scaling Icing Test Conditions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Anderson, David N.</p> <p>1995-01-01</p> <p>This report presents the results of tests at NASA Lewis to evaluate several methods to establish suitable alternative test conditions when the test facility limits the model size or operating conditions. The first method was proposed by Olsen. It can be applied when full-size models are tested and all the desired test conditions except liquid-water content can be obtained in the facility. The other two methods discussed are: a modification of the French scaling law and the AEDC scaling method. Icing tests were made with cylinders at both reference and scaled conditions representing mixed and glaze ice in the NASA Lewis Icing Research Tunnel. Reference and scale ice shapes were compared to evaluate each method. The Olsen method was tested with liquid-water content varying from 1.3 to .8 g/m(exp3). Over this range, ice shapes produced using the Olsen method were unchanged. The modified French and AEDC methods produced scaled ice shapes which approximated the reference shapes when model size was reduced to half the reference size for the glaze-ice cases tested.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..1610881H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..1610881H"><span>Ice nucleation by cellulose and its potential impact on clouds and climate</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hiranuma, Naruki; Möhler, Ottmar; Yamashita, Katsuya; Tajiri, Takuya; Saito, Atsushi; Kiselev, Alexei; Hoose, Corinna; Murakami, Masataka</p> <p>2014-05-01</p> <p>Biological aerosol particles have recently been accentuated by their efficient ice nucleating activity as well as potential impact on clouds and global climate. Despite their potential importance, little is known about the abundance of biological particles in the atmosphere and their role compared to non-biological material and, consequently, their potential role in the cloud-hydrology and climate system is also poorly constrained. However, field observations show that the concentration of airborne cellulose, which is one of the most important derivatives of glucose and atmospherically relevant biopolymers, is consistently prevalent (>10 ng per cubic meter) throughout the whole year even at remote- and elevated locations. Here we use a novel cloud simulation chamber in Tsukuba, Japan to demonstrate that airborne cellulose of biological origin can act as efficient ice nucleating particles in super-cooled clouds of the lower and middle troposphere. In specific, we measured the surface-based ice nucleation activity of microcrystalline cellulose particles immersed in cloud droplets, which may add crucial importance to further quantify the role of biological particles as ice nuclei in the troposphere. Our results suggest that the concentration of ice nucleating cellulose to become significant (>0.1 per liter) below about -17 °C and nearly comparable to other known ice nucleating clay mineral particles (e.g., illite rich clay mineral - INUIT comparisons are also presented). An important and unique characteristic of microcrystalline cellulose compared to other particles of biological origin is its high molecular packing density, enhancing resistance to hydrolysis degradation. More in-depth microphysical understandings as well as quantitative observations of ice nucleating cellulose particles in the atmosphere are necessary to allow better estimates of their effects on clouds and the global climate. Acknowledgement: We acknowledge support by German Research Society (DfG) and Ice Nucleation research UnIT (FOR 1525 INUIT).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.C33C1209N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.C33C1209N"><span>A full year of snow on sea ice observations and simulations - Plans for MOSAiC 2019/20</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nicolaus, M.; Geland, S.; Perovich, D. K.</p> <p>2017-12-01</p> <p>The snow cover on sea on sea ice dominates many exchange processes and properties of the ice covered polar oceans. It is a major interface between the atmosphere and the sea ice with the ocean underneath. Snow on sea ice is known for its extraordinarily large spatial and temporal variability from micro scales and minutes to basin wide scales and decades. At the same time, snow cover properties and even snow depth distributions are among the least known and most difficult to observe climate variables. Starting in October 2019 and ending in October 2020, the international MOSAiC drift experiment will allow to observe the evolution of a snow pack on Arctic sea ice over a full annual cycle. During the drift with one ice floe along the transpolar drift, we will study snow processes and interactions as one of the main topics of the MOSAiC research program. Thus we will, for the first time, be able to perform such studies on seasonal sea ice and relate it to previous expeditions and parallel observations at different locations. Here we will present the current status of our planning of the MOSAiC snow program. We will summarize the latest implementation ideas to combine the field observations with numerical simulations. The field program will include regular manual observations and sampling on the main floe of the central observatory, autonomous recordings in the distributed network, airborne observations in the surrounding of the central observatory, and retrievals of satellite remote sensing products. Along with the field program, numerical simulations of the MOSAiC snow cover will be performed on different scales, including large-scale interaction with the atmosphere and the sea ice. The snow studies will also bridge between the different disciplines, including physical, chemical, biological, and geochemical measurements, samples, and fluxes. The main challenge of all measurements will be to accomplish the description of the full annual cycle.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20000038166&hterms=Parkinsons&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3DParkinsons','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20000038166&hterms=Parkinsons&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3DParkinsons"><span>Passive Microwave Algorithms for Sea Ice Concentration: A Comparison of Two Techniques</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Comiso, Josefino C.; Cavalieri, Donald J.; Parkinson, Claire L.; Gloersen, Per</p> <p>1997-01-01</p> <p>The most comprehensive large-scale characterization of the global sea ice cover so far has been provided by satellite passive microwave data. Accurate retrieval of ice concentrations from these data is important because of the sensitivity of surface flux(e.g. heat, salt, and water) calculations to small change in the amount of open water (leads and polynyas) within the polar ice packs. Two algorithms that have been used for deriving ice concentrations from multichannel data are compared. One is the NASA Team algorithm and the other is the Bootstrap algorithm, both of which were developed at NASA's Goddard Space Flight Center. The two algorithms use different channel combinations, reference brightness temperatures, weather filters, and techniques. Analyses are made to evaluate the sensitivity of algorithm results to variations of emissivity and temperature with space and time. To assess the difference in the performance of the two algorithms, analyses were performed with data from both hemispheres and for all seasons. The results show only small differences in the central Arctic in but larger disagreements in the seasonal regions and in summer. In some ares in the Antarctic, the Bootstrap technique show ice concentrations higher than those of the Team algorithm by as much as 25%; whereas, in other areas, it shows ice concentrations lower by as much as 30%. The The differences in the results are caused by temperature effects, emissivity effects, and tie point differences. The Team and the Bootstrap results were compared with available Landsat, advanced very high resolution radiometer (AVHRR) and synthetic aperture radar (SAR) data. AVHRR, Landsat, and SAR data sets all yield higher concentrations than the passive microwave algorithms. Inconsistencies among results suggest the need for further validation studies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.C43B0752D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.C43B0752D"><span>Sea Ice Pressure Ridge Height Distributions for the Arctic Ocean in Winter, Just Prior to Melt</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Duncan, K.; Farrell, S. L.; Richter-Menge, J.; Hutchings, J.; Dominguez, R.; Connor, L. N.</p> <p>2016-12-01</p> <p>Pressure ridges are one of the most dominant morphological features of the Arctic sea ice pack. An impediment to navigation, pressure ridges are also of climatological interest since they impact the mass, energy and momentum transfer budgets for the Arctic Ocean. Understanding the regional and seasonal distributions of ridge sail heights, and their variability, is important for quantifying total sea ice mass, and for improved treatment of sea ice dynamics in high-resolution numerical models. Observations of sail heights from airborne and ship-based platforms have been documented in previous studies, however studies with both high spatial and temporal resolution, across multiple regions of the Arctic, are only recently possible with the advent of dedicated airborne surveys of the Arctic Ocean. In this study we present results from the high-resolution Digital Mapping System (DMS), flown as part of NASA's Operation IceBridge missions. We use DMS imagery to calculate ridge sail heights, derived from the shadows they cast combined with the solar elevation angle and the known pixel size of each image. Our analyses describe sea ice conditions at the end of winter, during the months of March and April, over a period spanning seven years, from 2010 to 2016. The high spatial resolution (0.1m) and temporal extent (seven years) of the DMS data set provides, for the first time, the full sail-height distributions of both first-year and multi-year sea ice. We present the inter-annual variability in sail height distributions for both the Central Arctic and the Beaufort and Chukchi Seas. We validate our results via comparison with spatially coincident high-resolution SAR imagery and airborne laser altimeter elevations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19910013870','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19910013870"><span>Advanced ice protection systems test in the NASA Lewis icing research tunnel</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bond, Thomas H.; Shin, Jaiwon; Mesander, Geert A.</p> <p>1991-01-01</p> <p>Tests of eight different deicing systems based on variations of three different technologies were conducted in the NASA Lewis Research Center Icing Research Tunnel (IRT) in June and July 1990. The systems used pneumatic, eddy current repulsive, and electro-expulsive means to shed ice. The tests were conducted on a 1.83 m span, 0.53 m chord NACA 0012 airfoil operated at a 4 degree angle of attack. The models were tested at two temperatures: a glaze condition at minus 3.9 C and a rime condition at minus 17.2 C. The systems were tested through a range of icing spray times and cycling rates. Characterization of the deicers was accomplished by monitoring power consumption, ice shed particle size, and residual ice. High speed video motion analysis was performed to quantify ice particle size.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150019751','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150019751"><span>Ice Crystal Icing Engine Testing in the NASA Glenn Research Center's Propulsion Systems Laboratory (PSL): Altitude Investigation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Oliver, Michael J.</p> <p>2015-01-01</p> <p>The National Aeronautics and Space Administration conducted a full scale ice crystal icing turbofan engine test in the NASA Glenn Research Centers Propulsion Systems Laboratory (PSL) Facility in February 2013. Honeywell Engines supplied the test article, an obsolete, unmodified Lycoming ALF502-R5 turbofan engine serial number LF01 that experienced an un-commanded loss of thrust event while operating at certain high altitude ice crystal icing conditions. These known conditions were duplicated in the PSL for this testing.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19950025659','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19950025659"><span>Preliminary design for Arctic atmospheric radiative transfer experiments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Zak, B. D.; Church, H. W.; Stamnes, K.; Shaw, G.; Filyushkin, V.; Jin, Z.; Ellingson, R. G.; Tsay, S. C.</p> <p>1995-01-01</p> <p>If current plans are realized, within the next few years, an extraordinary set of coordinated research efforts focusing on energy flows in the Arctic will be implemented. All are motivated by the prospect of global climate change. SHEBA (Surface Energy Budget of the Arctic Ocean), led by the National Science Foundation (NSF) and the Office of Naval Research (ONR), involves instrumenting an ice camp in the perennial Arctic ice pack, and taking data for 12-18 months. The ARM (Atmospheric Radiation Measurement) North Slope of Alaska and Adjacent Arctic Ocean (NSA/AAO) Cloud and Radiation Testbed (CART) focuses on atmospheric radiative transport, especially in the presence of clouds. The NSA/AAO CART involves instrumenting a sizeable area on the North Slope of Alaska and adjacent waters in the vicinity of Barrow, and acquiring data over a period of about 10 years. FIRE (First ISCCP (International Satellite Cloud Climatology Program) Regional Experiment) Phase 3 is a program led by the National Aeronautics and Space Administration (NASA) which focuses on Arctic clouds, and which is coordinated with SHEBA and ARM. FIRE has historically emphasized data from airborne and satellite platforms. All three program anticipate initiating Arctic data acquisition during spring, 1997. In light of his historic opportunity, the authors discuss a strawman atmospheric radiative transfer experimental plan that identifies which features of the radiative transport models they think should be tested, what experimental data are required for each type of test, the platforms and instrumentation necessary to acquire those data, and in general terms, how the experiments could be conducted. Aspects of the plan are applicable to all three programs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24367944','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24367944"><span>Laboratory test for ice adhesion strength using commercial instrumentation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wang, Chenyu; Zhang, Wei; Siva, Adarsh; Tiea, Daniel; Wynne, Kenneth J</p> <p>2014-01-21</p> <p>A laboratory test method for evaluating ice adhesion has been developed employing a commercially available instrument normally used for dynamic mechanical analysis (TA RSA-III). This is the first laboratory ice adhesion test that does not require a custom-built apparatus. The upper grip range of ∼10 mm is an enabling feature that is essential for the test. The method involves removal of an ice cylinder from a polymer coating with a probe and the determination of peak removal force (Ps). To validate the test method, the strength of ice adhesion was determined for a prototypical glassy polymer, poly(methyl methacrylate). The distance of the probe from the PMMA surface has been identified as a critical variable for Ps. The new test provides a readily available platform for investigating fundamental surface characteristics affecting ice adhesion. In addition to the ice release test, PMMA coatings were characterized using DSC, DCA, and TM-AFM.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1994EOSTr..75..281O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1994EOSTr..75..281O"><span>Exploring Arctic history through scientific drilling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>ODP Leg 151 Shipboard Scientific Party</p> <p></p> <p>During the brief Arctic summer of 1993, the Ocean Drilling Program's research vessel JOIDES Resolution recovered the first scientific drill cores from the eastern Arctic Ocean. Dodging rafts of pack ice shed from the Arctic ice cap, the science party sampled sediments north of 80°N latitude from the Yermak Plateau, as well as from sites in Fram Strait, the northeastern Greenland margin, and the Iceland Plateau (Figure 1).The sediments collected reveal the earliest history of the connection between the North Atlantic and Arctic Oceans through the Nordic Seas. The region between Greenland and Norway first formed a series of isolated basins, sometimes with restricted deep circulation, that eventually joined and allowed deep and surface Arctic Ocean water to invade the region. A record was also retrieved that shows major glaciation in the region began about 2.5 m.y.a.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4492886','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4492886"><span>Testing warning messages on smokers’ cigarette packages: A standardized protocol</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Brewer, Noel T.; Hall, Marissa G.; Lee, Joseph G. L.; Peebles, Kathryn; Noar, Seth M.; Ribisl, Kurt M.</p> <p>2015-01-01</p> <p>Purpose Lab experiments on cigarette warnings typically use a brief one-time exposure that is not paired with the cigarette packs smokers use every day, leaving open the question of how repeated warning exposure over several weeks may affect smokers. This proof of principle study sought to develop a new protocol for testing cigarette warnings that better reflects real-world exposure by presenting them on cigarette smokers’ own packs. Methods We tested a cigarette pack labeling protocol with 76 US smokers ages 18 and older. We applied graphic warnings to the front and back of smokers’ cigarette packs. Results Most smokers reported that at least 75% of the packs of cigarettes they smoked during the study had our warnings. Nearly all said they would participate in the study again. Using cigarette packs with the study warnings increased quit intentions (p<.05). Conclusion Our findings suggest a feasible pack labeling protocol with six steps: (1) schedule appointments at brief intervals; (2) determine typical cigarette consumption; (3) ask smokers to bring a supply of cigarette packs to study appointments; (4) apply labels to smokers’ cigarette packs; (5) provide participation incentives at the end of appointments; and (6) refer smokers to cessation services at end of the study. When used in randomized controlled trials in settings with real-world message exposure over time, this protocol may help identify the true impact of warnings and thus better inform tobacco product labeling policy. PMID:25564282</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..1714301S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..1714301S"><span>Validating Cryosat-2 elevation estimates with airborne laser scanner data for the Greenland ice sheet, Austfonna and Devon ice caps</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Simonsen, Sebastian B.; Sandberg Sørensen, Louise; Nilsson, Johan; Helm, Veit; Langley, Kirsty A.; Forsberg, Rene; Hvidegaard, Sine M.; Skourup, Henriette</p> <p>2015-04-01</p> <p>The ESA CryoSat-2 satellite, launched in late 2010, carries a new type of radar altimeter especially designed for monitoring changes of sea and land ice. The radar signal might penetrate into the snow pack and the depth of the radar reflecting surface depends on the ratio between the surface and the volume backscatter, which is a function of several different properties such as snow density, crystal structure and surface roughness. In case of large volume scatter, the radar waveforms become broad and the determination of the range (surface elevation) becomes more difficult. Different algorithms (retrackers) are used for the range determination, and estimated surface penetration is highly dependent on the applied retracker. As part of the ESA-CryoVEx/CryoVal-Land Ice projects, DTU Space has gathered accurate airborne laser scanner elevation measurements. Sites on the Greenland ice sheet, Austfonna and Devon ice caps, has been surveyed repeatedly, aligned with Cryosat-2 ground tracks and surface experiments. Here, we utilize elevation estimates from available Cryosat-2 retrackers (ESA level-2 retracker, DTU retracker, etc.) and validate the elevation measurements against ESA-CryoVEx campaigns. A difference between laser and radar elevations is expected due to radar penetration issues, however an inter-comparison between retrackers will shed light on individual performances and biases. Additionally, the geo-location of the radar return will also be a determining factor for the precision. Ultimately, the use of multiple retrackers can provide information about subsurface conditions and utilize more of the waveform information than presently used in radar altimetry.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMGC53D0928D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMGC53D0928D"><span>Thermal regime of an ice-wedge polygon landscape near Barrow, Alaska</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Daanen, R. P.; Liljedahl, A. K.</p> <p>2017-12-01</p> <p>Tundra landscapes are changing all over the circumpolar Arctic due to permafrost degradation. Soil cracking and infilling of meltwater repeated over thousands of years form ice wedges, which produce the characteristic surface pattern of ice-wedge polygon tundra. Rapid top-down thawing of massive ice leads to differential ground subsidence and sets in motion a series of short- and long-term hydrological and ecological changes. Subsequent responses in the soil thermal regime drive further permafrost degradation and/or stabilization. Here we explore the soil thermal regime of an ice-wedge polygon terrain near Utqiagvik (formerly Barrow) with the Water balance Simulation Model (WaSiM). WaSiM is a hydro-thermal model developed to simulate the water balance at the watershed scale and was recently refined to represent the hydrological processes unique to cold climates. WaSiM includes modules that represent surface runoff, evapotranspiration, groundwater, and soil moisture, while active layer freezing and thawing is based on a direct coupling of hydrological and thermal processes. A new snow module expands the vadose zone calculations into the snow pack, allowing the model to simulate the snow as a porous medium similar to soil. Together with a snow redistribution algorithm based on local topography, this latest addition to WaSiM makes simulation of the ground thermal regime much more accurate during winter months. Effective representation of ground temperatures during winter is crucial in the simulation of the permafrost thermal regime and allows for refined predictions of future ice-wedge degradation or stabilization.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/6571187','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/6571187"><span>Review of technology for Arctic offshore oil and gas recovery</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Sackinger, W. M.</p> <p>1980-08-01</p> <p>The technical background briefing report is the first step in the preparation of a plan for engineering research oriented toward Arctic offshore oil and gas recovery. A five-year leasing schedule for the ice-prone waters of the Arctic offshore is presented, which also shows the projected dates of the lease sale for each area. The estimated peak production rates for these areas are given. There is considerable uncertainty for all these production estimates, since no exploratory drilling has yet taken place. A flow chart is presented which relates the special Arctic factors, such as ice and permafrost, to the normal petroleummore » production sequence. Some highlights from the chart and from the technical review are: (1) in many Arctic offshore locations the movement of sea ice causes major lateral forces on offshore structures, which are much greater than wave forces; (2) spray ice buildup on structures, ships and aircraft will be considerable, and must be prevented or accommodated with special designs; (3) the time available for summer exploratory drilling, and for deployment of permanent production structures, is limited by the return of the pack ice. This time may be extended by ice-breaking vessels in some cases; (4) during production, icebreaking workboats will service the offshore platforms in most areas throughout the year; (5) transportation of petroleum by icebreaking tankers from offshore tanker loading points is a highly probable situation, except in the Alaskan Beaufort; and (6) Arctic pipelines must contend with permafrost, making instrumentation necessary to detect subtle changes of the pipe before rupture occurs.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSHE44C1532W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSHE44C1532W"><span>Marine Arctic Ecosystem Study (MARES) - An Integrated Approach to the Dynamics of the Beaufort Sea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wiese, F. K.; Gryba, R.; Kelly, B. P.</p> <p>2016-02-01</p> <p>MARES is an integrated ecosystem research initiative coordinated and planned by the Bureau of Ocean Energy Management, the Office of Naval Research, the National Aeronautics and Space Administration, the U.S. Coast Guard, and Shell through the National Oceanographic Partnership Program. The overarching goal is to advance our knowledge of the structure and function of the Beaufort Sea marine ecosystem so as to link atmospheric and oceanic drivers to sea ice patterns and marine mammal distribution and availability to local subsistence communities. The study, funded in 2014, focuses on the marine ecosystem along the Beaufort Sea shelf from Barrow, Alaska to the Mackenzie River delta in Canada and is scheduled to include bio-physical moorings along the US-Canadian border, glider deployments packed with bio-physical sensors, tagging of whales and ice-associated seals with satellite CTD-Fluorometer tags, biophysical and chemical cruises including the measurement and characterization of hydrography, ice, nutrients, primary and secondary production, carbon budgets, benthic fauna, fish, as well as analysis of freshwater input and chemical loadings, and ecosystem modeling. This presentation will focus on preliminary results from the ice seal tagging that started in the summer of 2015 and describe some of the planning and possibilities for partnerships for the more comprehensive 2016 field season and beyond.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.C41B0700O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.C41B0700O"><span>Light Absorption in Arctic Sea Ice - Black Carbon vs Chlorophyll</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ogunro, O. O.; Wingenter, O. W.; Elliott, S.; Hunke, E. C.; Flanner, M.; Wang, H.; Dubey, M. K.; Jeffery, N.</p> <p>2015-12-01</p> <p>The fingerprint of climate change is more obvious in the Arctic than any other place on Earth. This is not only because the surface temperature there has increased at twice the rate of global mean temperature but also because Arctic sea ice extent has reached a record low of 49% reduction relative to the 1979-2000 climatology. Radiation absorption through black carbon (BC) deposited on Arctic snow and sea ice surface is one of the major hypothesized contributors to the decline. However, we note that chlorophyll-a absorption owing to increasing biology activity in this region could be a major competitor during boreal spring. Modeling of sea-ice physical and biological processes together with experiments and field observations promise rapid progress in the quality of Arctic ice predictions. Here we develop a dynamic ice system module to investigate discrete absorption of both BC and chlorophyll in the Arctic, using BC deposition fields from version 5 of Community Atmosphere Model (CAM5) and vertically distributed layers of chlorophyll concentrations from Sea Ice Model (CICE). To this point, our black carbon mixing ratios compare well with available in situ data. Both results are in the same order of magnitude. Estimates from our calculations show that sea ice and snow around the Canadian Arctic Archipelago and Baffin Bay has the least black carbon absorption while values at the ice-ocean perimeter in the region of the Barents Sea peak significantly. With regard to pigment concentrations, high amounts of chlorophyll are produced in Arctic sea ice by the bottom microbial community, and also within the columnar pack wherever substantial biological activity takes place in the presence of moderate light. We show that the percentage of photons absorbed by chlorophyll in the spring is comparable to the amount attributed to BC, especially in areas where the total deposition rates are decreasing with time on interannual timescale. We expect a continuous increase in chlorophyll absorption as the biological activity becomes stronger in thin ice toward the center of the Arctic basin. Alternatively, a shift in relative importance could occur as total BC mixing ratios are reduced because of environmental advocacy.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA569714','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA569714"><span>Three-Dimensional Geometry of the Narwhal (Monodon monoceros) Flukes in Relation to Hydrodynamics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2011-10-01</p> <p>MARINE MAMMAL SCIENCE, 27(4): 889–898 (October 2011) C© 2010 by the Society for Marine Mammalogy DOI: 10.1111/j.1748-7692.2010.00439.x Three...Chester University, West Chester, Pennsylvania 19383, U.S.A. E-mail: ffish@wcupa.edu NATALIA RYBCZYNSKI Canadian Museum of Nature, Ottawa, Ontario K1P...distributed in the ice-packed stretches of waters bordering Greenland and the Canadian High Arctic (Laidre et al. 2003). The flukes of mature male</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA170414','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA170414"><span>The Southern Cone and Antarctica. Strategies for the 1990’s.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1986-01-01</p> <p>and issued an executive decree on 6 November 1940 ( Decreto No. 1707). The decree laid out the Chilean claim as the lands and ice packs lying between 530...Atlantic (London: British Broadcasting Corp. Publications, 1985), p. 170 . 13Lovering, p. 195. 14Fred Parkinson, "Latin America and Antarctica: An...34Antarctica: A Case for the UN?" World Today 40 (April 1984): 170 -1. Jorge A. Fraga, Introducci6n a la geopolitica antirtica (Buenos Aires: Direcci6n</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA007335','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA007335"><span>An Experimental Investigation of the Boundary Layer under Pack Ice</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1975-01-01</p> <p>current-meter interface ( CMIF ) consists of a very stable, 20-Kllz crystal oscillator and counter, a master memory-address buffer, and a buffer for each...data channel to a specific location in the computer’s memory, The CMIF also generates computer interrupts at a rate determined by the program (12.8... CMIF can handle up to 128 channels and is designed so that even if all channels have simultaneous dipulses, the processing delay is less than .05 msec</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140008692','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140008692"><span>PSL Icing Facility Upgrade Overview</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Griffin, Thomas A.; Dicki, Dennis J.; Lizanich, Paul J.</p> <p>2014-01-01</p> <p>The NASA Glenn Research Center Propulsion Systems Lab (PSL) was recently upgraded to perform engine inlet ice crystal testing in an altitude environment. The system installed 10 spray bars in the inlet plenum for ice crystal generation using 222 spray nozzles. As an altitude test chamber, the PSL is capable of simulating icing events at altitude in a groundtest facility. The system was designed to operate at altitudes from 4,000 to 40,000 ft at Mach numbers up to 0.8M and inlet total temperatures from -60 to +15 degF. This paper and presentation will be part of a series of presentations on PSL Icing and will cover the development of the icing capability through design, developmental testing, installation, initial calibration, and validation engine testing. Information will be presented on the design criteria and process, spray bar developmental testing at Cox and Co., system capabilities, and initial calibration and engine validation test. The PSL icing system was designed to provide NASA and the icing community with a facility that could be used for research studies of engine icing by duplicating in-flight events in a controlled ground-test facility. With the system and the altitude chamber we can produce flight conditions and cloud environments to simulate those encountered in flight. The icing system can be controlled to set various cloud uniformities, droplet median volumetric diameter (MVD), and icing water content (IWC) through a wide variety of conditions. The PSL chamber can set altitudes, Mach numbers, and temperatures of interest to the icing community and also has the instrumentation capability of measuring engine performance during icing testing. PSL last year completed the calibration and initial engine validation of the facility utilizing a Honeywell ALF502-R5 engine and has duplicated in-flight roll back conditions experienced during flight testing. This paper will summarize the modifications and buildup of the facility to accomplish these tests.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19950012870','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19950012870"><span>Ice Accretion with Varying Surface Tension</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bilanin, Alan J.; Anderson, David N.</p> <p>1995-01-01</p> <p>During an icing encounter of an aircraft in flight, super-cooled water droplets impinging on an airfoil may splash before freezing. This paper reports tests performed to determine if this effect is significant and uses the results to develop an improved scaling method for use in icing test facilities. Simple laboratory tests showed that drops splash on impact at the Reynolds and Weber numbers typical of icing encounters. Further confirmation of droplet splash came from icing tests performed in the NaSA Lewis Icing Research Tunnel (IRT) with a surfactant added to the spray water to reduce the surface tension. The resulting ice shapes were significantly different from those formed when no surfactant was added to the water. These results suggested that the droplet Weber number must be kept constant to properly scale icing test conditions. Finally, the paper presents a Weber-number-based scaling method and reports results from scaling tests in the IRT in which model size was reduced up to a factor of 3. Scale and reference ice shapes are shown which confirm the effectiveness of this new scaling method.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19940019574','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19940019574"><span>Rime-, mixed- and glaze-ice evaluations of three scaling laws</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Anderson, David N.</p> <p>1994-01-01</p> <p>This report presents the results of tests at NASA Lewis to evaluate three icing scaling relationships or 'laws' for an unheated model. The laws were LWC x time = constant, one proposed by a Swedish-Russian group and one used at ONERA in France. Icing tests were performed in the NASA Lewis Icing Research Tunnel (IRT) with cylinders ranging from 2.5- to 15.2-cm diameter. Reference conditions were chosen to provide rime, mixed and glaze ice. Scaled conditions were tested for several scenarios of size and velocity scaling, and the resulting ice shapes compared. For rime-ice conditions, all three of the scaling laws provided scaled ice shapes which closely matched reference ice shapes. For mixed ice and for glaze ice none of the scaling laws produced consistently good simulation of the reference ice shapes. Explanations for the observed results are proposed, and scaling issues requiring further study are identified.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1913097K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1913097K"><span>Improved method for sea ice age computation based on combination of sea ice drift and concentration</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Korosov, Anton; Rampal, Pierre; Lavergne, Thomas; Aaboe, Signe</p> <p>2017-04-01</p> <p>Sea Ice Age is one of the components of the Sea Ice ECV as defined by the Global Climate Observing System (GCOS) [WMO, 2015]. It is an important climate indicator describing the sea ice state in addition to sea ice concentration (SIC) and thickness (SIT). The amount of old/thick ice in the Arctic Ocean has been decreasing dramatically [Perovich et al. 2015]. Kwok et al. [2009] reported significant decline in the MYI share and consequent loss of thickness and therefore volume. Today, there is only one acknowledged sea ice age climate data record [Tschudi, et al. 2015], based on Maslanik et al. [2011] provided by National Snow and Ice Data Center (NSIDC) [http://nsidc.org/data/docs/daac/nsidc0611-sea-ice-age/]. The sea ice age algorithm [Fowler et al., 2004] is using satellite-derived ice drift for Lagrangian tracking of individual ice parcels (12-km grid cells) defined by areas of sea ice concentration > 15% [Maslanik et al., 2011], i.e. sea ice extent, according to the NASA Team algorithm [Cavalieri et al., 1984]. This approach has several drawbacks. (1) Using sea ice extent instead of sea ice concentration leads to overestimation of the amount of older ice. (2) The individual ice parcels are not advected uniformly over (long) time. This leads to undersampling in areas of consistent ice divergence. (3) The end product grid cells are assigned the age of the oldest ice parcel within that cell, and the frequency distribution of the ice age is not taken into account. In addition, the base sea ice drift product (https://nsidc.org/data/docs/daac/nsidc0116_icemotion.gd.html) is known to exhibit greatly reduced accuracy during the summer season [Sumata et al 2014, Szanyi, 2016] as it only relies on a combination of sea ice drifter trajectories and wind-driven "free-drift" motion during summer. This results in a significant overestimate of old-ice content, incorrect shape of the old-ice pack, and lack of information about the ice age distribution within the grid cells. We propose an improved algorithm for sea ice age computation based on combination of sea ice drift and concentration, both derived from satellite measurements. The base sea ice drift product is from the Ocean and Sea Ice Satellite Application Facility (EUMETSAT OSI-SAF, Lavergne et al., 2011). This operational product was recently upgraded to also process ice drift during the summer season [http://osisaf.met.no/]. . The Sea Ice Concentration product from the ESA Sea Ice Climate Change Initiative (ESA SI CCI) project is used to adjust the partial concentrations at every advection step [http://esa-cci.nersc.no/]. Each grid cell is characterised by its partial concentration of water and ice of different ages. Also, sea ice convergence and divergence are used to realistically adjust the ratio of young ice / multi year ice. Comparison of results from this new algorithm with results derived from drifting ice buoys deployed in 2013 - 2016 demonstrates clear improvement in the ice age estimation. The spatial distribution of sea ice age in the new product compares better to the Sea Ice Type derived from satellite passive microwave and scatterometer measurements, both with regard to the decreased patchiness and the shape. The new ice age algorithm is developed in the context of the ESA CCI, and is designed for production of more accurate sea ice age climate data records in the future.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22996029','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22996029"><span>The usefulness and reliability of fitness testing protocols for ice hockey players: a literature review.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Nightingale, Steven C; Miller, Stuart; Turner, Anthony</p> <p>2013-06-01</p> <p>Ice hockey, like most sports, uses fitness testing to assess athletes. This study reviews the current commonly used fitness testing protocols for ice hockey players, discussing their predictive values and reliability. It also discusses a range of less commonly used measures and limitations in current testing protocols. The article concludes with a proposed testing program suitable for ice hockey players.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20170003992','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20170003992"><span>Preliminary Results From a Heavily Instrumented Engine Ice Crystal Icing Test in a Ground Based Altitude Test Facility</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Flegel, Ashlie B.; Oliver, Michael J.</p> <p>2016-01-01</p> <p>Preliminary results from the Heavily Instrumented ALF503R-5 Engine test conducted in the NASA Glenn Research Center Propulsion Systems Laboratory will be discussed. The effects of ice crystal icing on a full scale engine is examined and documented. This model engine, serial number LF01, was used during the inaugural icing test in the PSL facility. The reduction of thrust (rollback) events experienced by this engine in flight were replicated in the facility. Limited instrumentation was used to detect icing. Metal temperature on the exit guide vanes and outer shroud and the load measurement were the only indicators of ice formation. The current study features a similar engine, serial number LF11, which is instrumented to characterize the cloud entering the engine, detect characterize ice accretion, and visualize the ice accretion in the region of interest.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19920019453','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19920019453"><span>Results of a low power ice protection system test and a new method of imaging data analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Shin, Jaiwon; Bond, Thomas H.; Mesander, Geert A.</p> <p>1992-01-01</p> <p>Tests were conducted on a BF Goodrich De-Icing System's Pneumatic Impulse Ice Protection (PIIP) system in the NASA Lewis Icing Research Tunnel (IRT). Characterization studies were done on shed ice particle size by changing the input pressure and cycling time of the PIIP de-icer. The shed ice particle size was quantified using a newly developed image software package. The tests were conducted on a 1.83 m (6 ft) span, 0.53 m (221 in) chord NACA 0012 airfoil operated at a 4 degree angle of attack. The IRT test conditions were a -6.7 C (20 F) glaze ice, and a -20 C (-4 F) rime ice. The ice shedding events were recorded with a high speed video system. A detailed description of the image processing package and the results generated from this analytical tool are presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5101544','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5101544"><span>Ice Reduces Needle-Stick Pain Associated With Local Anesthetic Injection</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Mahshidfar, Babak; Cheraghi Shevi, Salimeh; Abbasi, Mohsen; Kasnavieh, Mohammad Hosseini; Rezai, Mahdi; Zavereh, Mina; Mosaddegh, Reza</p> <p>2016-01-01</p> <p>Background Local anesthetic injections are widely used in the emergency department for different purposes. Pain management for such injections is of great importance to both patients and the healthcare system. Objectives Our study aimed to determine the effectiveness and safety of cryotherapy in patients receiving local anesthetic injections. Methods Subjects who presented with superficial lacerations were randomly assigned to 2 groups, the first group received ice packing prior to injection and the second did not. The pain severity, length and depth of the laceration, and the other necessary information before and after the pain-reducing intervention were measured, documented, and compared at the end of the study. Pain scores were measured using a numerical rating scale before and after the procedure, and the differences were compared using a t-test. Results Ninety subjects were enrolled in the study, 45 in each group. There were no statistical differences between the 2 groups in terms of baseline preoperative and operative characteristics (P > 0.05). The pain scores in the cryotherapy group were significantly lower before and after the procedure (P < 0.001). There was no statistically significant difference between the 2 groups for wound infection (P = 0.783). Conclusions Cooling the injection site prior to local anesthetic injection is an effective and inexpensive method to reduce the pain and discomfort caused by the injection. PMID:27847696</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120011129','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120011129"><span>Fundamental Ice Crystal Accretion Physics Studies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Struk, Peter M.; Broeren, Andy P.; Tsao, Jen-Ching; Vargas, Mario; Wright, William B.; Currie, Tom; Knezevici, Danny; Fuleki, Dan</p> <p>2012-01-01</p> <p>Due to numerous engine power-loss events associated with high-altitude convective weather, ice accretion within an engine due to ice crystal ingestion is being investigated. The National Aeronautics and Space Administration (NASA) and the National Research Council (NRC) of Canada are starting to examine the physical mechanisms of ice accretion on surfaces exposed to ice-crystal and mixed-phase conditions. In November 2010, two weeks of testing occurred at the NRC Research Altitude Facility utilizing a single wedge-type airfoil designed to facilitate fundamental studies while retaining critical features of a compressor stator blade or guide vane. The airfoil was placed in the NRC cascade wind tunnel for both aerodynamic and icing tests. Aerodynamic testing showed excellent agreement compared with CFD data on the icing pressure surface and allowed calculation of heat transfer coefficients at various airfoil locations. Icing tests were performed at Mach numbers of 0.2 to 0.3, total pressures from 93 to 45 kPa, and total temperatures from 5 to 15 C. Ice and liquid water contents ranged up to 20 and 3 g/m3, respectively. The ice appeared well adhered to the surface in the lowest pressure tests (45 kPa) and, in a particular case, showed continuous leading-edge ice growth to a thickness greater than 15 mm in 3 min. Such widespread deposits were not observed in the highest pressure tests, where the accretions were limited to a small area around the leading edge. The suction surface was typically ice-free in the tests at high pressure, but not at low pressure. The icing behavior at high and low pressure appeared to be correlated with the wet-bulb temperature, which was estimated to be above 0 C in tests at 93 kPa and below 0 C in tests at lower pressure, the latter enhanced by more evaporative cooling of water. The authors believe that the large ice accretions observed in the low pressure tests would undoubtedly cause the aerodynamic performance of a compressor component such as a stator blade to degrade significantly, and could damage downstream components if shed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120004044','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120004044"><span>Fundamental Ice Crystal Accretion Physics Studies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Currie, Tom; Knezevici, Danny; Fuleki, Dan; Struk, Peter M.; Broeren, Andy P.; Tsao, Jen-ching; Vargas, Mario; Wright, William</p> <p>2011-01-01</p> <p>Due to numerous engine power-loss events associated with high-altitude convective weather, ice accretion within an engine due to ice-crystal ingestion is being investigated. The National Aeronautics and Space Administration (NASA) and the National Research Council (NRC) of Canada are starting to examine the physical mechanisms of ice accretion on surfaces exposed to ice-crystal and mixed-phase conditions. In November 2010, two weeks of testing occurred at the NRC Research Altitude Facility utilizing a single wedge-type airfoil designed to facilitate fundamental studies while retaining critical features of a compressor stator blade or guide vane. The airfoil was placed in the NRC cascade wind tunnel for both aerodynamic and icing tests. Aerodynamic testing showed excellent agreement compared with CFD data on the icing pressure surface and allowed calculation of heat transfer coefficients at various airfoil locations. Icing tests were performed at Mach numbers of 0.2 to 0.3, total pressures from 93 to 45 kPa, and total temperatures from 5 to 15 C. Ice and liquid water contents ranged up to 20 and 3 grams per cubic meter, respectively. The ice appeared well adhered to the surface in the lowest pressure tests (45 kPa) and, in a particular case, showed continuous leading-edge ice growth to a thickness greater than 15 millimeters in 3 minutes. Such widespread deposits were not observed in the highest pressure tests, where the accretions were limited to a small area around the leading edge. The suction surface was typically ice-free in the tests at high pressure, but not at low pressure. The icing behavior at high and low pressure appeared to be correlated with the wet-bulb temperature, which was estimated to be above 0 C in tests at 93 kPa and below 0 C in tests at lower pressure, the latter enhanced by more evaporative cooling of water. The authors believe that the large ice accretions observed in the low pressure tests would undoubtedly cause the aerodynamic performance of a compressor component such as a stator blade to degrade significantly, and could damage downstream components if shed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20170000227','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20170000227"><span>Ice-Accretion Test Results for Three Large-Scale Swept-Wing Models in the NASA Icing Research Tunnel</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Broeren, Andy P.; Potapczuk, Mark G.; Lee, Sam; Malone, Adam M.; Paul, Benard P., Jr.; Woodard, Brian S.</p> <p>2016-01-01</p> <p>Icing simulation tools and computational fluid dynamics codes are reaching levels of maturity such that they are being proposed by manufacturers for use in certification of aircraft for flight in icing conditions with increasingly less reliance on natural-icing flight testing and icing-wind-tunnel testing. Sufficient high-quality data to evaluate the performance of these tools is not currently available. The objective of this work was to generate a database of ice-accretion geometry that can be used for development and validation of icing simulation tools as well as for aerodynamic testing. Three large-scale swept wing models were built and tested at the NASA Glenn Icing Research Tunnel (IRT). The models represented the Inboard (20% semispan), Midspan (64% semispan) and Outboard stations (83% semispan) of a wing based upon a 65% scale version of the Common Research Model (CRM). The IRT models utilized a hybrid design that maintained the full-scale leading-edge geometry with a truncated afterbody and flap. The models were instrumented with surface pressure taps in order to acquire sufficient aerodynamic data to verify the hybrid model design capability to simulate the full-scale wing section. A series of ice-accretion tests were conducted over a range of total temperatures from -23.8 deg C to -1.4 deg C with all other conditions held constant. The results showed the changing ice-accretion morphology from rime ice at the colder temperatures to highly 3-D scallop ice in the range of -11.2 deg C to -6.3 deg C. Warmer temperatures generated highly 3-D ice accretion with glaze ice characteristics. The results indicated that the general scallop ice morphology was similar for all three models. Icing results were documented for limited parametric variations in angle of attack, drop size and cloud liquid-water content (LWC). The effect of velocity on ice accretion was documented for the Midspan and Outboard models for a limited number of test cases. The data suggest that there are morphological characteristics of glaze and scallop ice accretion on these swept-wing models that are dependent upon the velocity. This work has resulted in a large database of ice-accretion geometry on large-scale, swept-wing models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20160011353','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20160011353"><span>Ice-Accretion Test Results for Three Large-Scale Swept-Wing Models in the NASA Icing Research Tunnel</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Broeren, Andy P.; Potapczuk, Mark G.; Lee, Sam; Malone, Adam M.; Paul, Bernard P., Jr.; Woodard, Brian S.</p> <p>2016-01-01</p> <p>Icing simulation tools and computational fluid dynamics codes are reaching levels of maturity such that they are being proposed by manufacturers for use in certification of aircraft for flight in icing conditions with increasingly less reliance on natural-icing flight testing and icing-wind-tunnel testing. Sufficient high-quality data to evaluate the performance of these tools is not currently available. The objective of this work was to generate a database of ice-accretion geometry that can be used for development and validation of icing simulation tools as well as for aerodynamic testing. Three large-scale swept wing models were built and tested at the NASA Glenn Icing Research Tunnel (IRT). The models represented the Inboard (20 percent semispan), Midspan (64 percent semispan) and Outboard stations (83 percent semispan) of a wing based upon a 65 percent scale version of the Common Research Model (CRM). The IRT models utilized a hybrid design that maintained the full-scale leading-edge geometry with a truncated afterbody and flap. The models were instrumented with surface pressure taps in order to acquire sufficient aerodynamic data to verify the hybrid model design capability to simulate the full-scale wing section. A series of ice-accretion tests were conducted over a range of total temperatures from -23.8 to -1.4 C with all other conditions held constant. The results showed the changing ice-accretion morphology from rime ice at the colder temperatures to highly 3-D scallop ice in the range of -11.2 to -6.3 C. Warmer temperatures generated highly 3-D ice accretion with glaze ice characteristics. The results indicated that the general scallop ice morphology was similar for all three models. Icing results were documented for limited parametric variations in angle of attack, drop size and cloud liquid-water content (LWC). The effect of velocity on ice accretion was documented for the Midspan and Outboard models for a limited number of test cases. The data suggest that there are morphological characteristics of glaze and scallop ice accretion on these swept-wing models that are dependent upon the velocity. This work has resulted in a large database of ice-accretion geometry on large-scale, swept-wing models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JMS...166....4S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JMS...166....4S"><span>Modelling sea ice formation in the Terra Nova Bay polynya</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sansiviero, M.; Morales Maqueda, M. Á.; Fusco, G.; Aulicino, G.; Flocco, D.; Budillon, G.</p> <p>2017-02-01</p> <p>Antarctic sea ice is constantly exported from the shore by strong near surface winds that open leads and large polynyas in the pack ice. The latter, known as wind-driven polynyas, are responsible for significant water mass modification due to the high salt flux into the ocean associated with enhanced ice growth. In this article, we focus on the wind-driven Terra Nova Bay (TNB) polynya, in the western Ross Sea. Brine rejected during sea ice formation processes that occur in the TNB polynya densifies the water column leading to the formation of the most characteristic water mass of the Ross Sea, the High Salinity Shelf Water (HSSW). This water mass, in turn, takes part in the formation of Antarctic Bottom Water (AABW), the densest water mass of the world ocean, which plays a major role in the global meridional overturning circulation, thus affecting the global climate system. A simple coupled sea ice-ocean model has been developed to simulate the seasonal cycle of sea ice formation and export within a polynya. The sea ice model accounts for both thermal and mechanical ice processes. The oceanic circulation is described by a one-and-a-half layer, reduced gravity model. The domain resolution is 1 km × 1 km, which is sufficient to represent the salient features of the coastline geometry, notably the Drygalski Ice Tongue. The model is forced by a combination of Era Interim reanalysis and in-situ data from automatic weather stations, and also by a climatological oceanic dataset developed from in situ hydrographic observations. The sensitivity of the polynya to the atmospheric forcing is well reproduced by the model when atmospheric in situ measurements are combined with reanalysis data. Merging the two datasets allows us to capture in detail the strength and the spatial distribution of the katabatic winds that often drive the opening of the polynya. The model resolves fairly accurately the sea ice drift and sea ice production rates in the TNB polynya, leading to realistic polynya extent estimates. The model-derived polynya extent has been validated by comparing the modelled sea ice concentration against MODIS high resolution satellite images, confirming that the model is able to reproduce reasonably well the TNB polynya evolution in terms of both shape and extent.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20050203687&hterms=cycling&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DTitle%26N%3D0%26No%3D30%26Ntt%3Dcycling','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20050203687&hterms=cycling&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DTitle%26N%3D0%26No%3D30%26Ntt%3Dcycling"><span>Individual Pressure Vessel (PV) and Common Pressure Vessel (CPV) Nickel-Hydrogen Battery Performance Under LEO Cycling Conditions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Miller, Thomas B.; Lewis, Harlan L.</p> <p>2004-01-01</p> <p>LEO life cycle testing of Individual Pressure Vessel (PV) and Common Pressure Vessel (CPV) nickel-hydrogen cell packs have been sponsored by the NASA Aerospace Flight Battery Program. The cell packs have cycled under both 35% and 60% depth-of- discharge and temperature conditions of -5 C and +lO C. The packs have been on test since as early as 1992 and have generated a substantial database. This report will provide insight into performance trends as a function of the specific cell configuration and manufacturer for eight separate nickel-hydrogen battery cell packs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA133158','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA133158"><span>Evaluation of Type II Fast Packs for Electrostatic Discharge Properties.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1983-08-01</p> <p>34 x 8" x 1 3/4") consisting of a reclosable cushioned carrier which mates into an outer fiberboard sleeve. A cushioning insert is used consisting of a... RECLOSABLE CUSHIONED CARRIER TEST LOAD FIGURE 1: Cancel Caddy Pack * CONVOLUTED 4* CUSHIONED I FIGURE 2: Type II Fast Pack (PPP-B-1672) TYPE II FAST PACK</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2579462','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2579462"><span>Cryotherapy for acute ankle sprains: a randomised controlled study of two different icing protocols</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Bleakley, C M; McDonough, S M; MacAuley, D C</p> <p>2006-01-01</p> <p>Background The use of cryotherapy in the management of acute soft tissue injury is largely based on anecdotal evidence. Preliminary evidence suggests that intermittent cryotherapy applications are most effective at reducing tissue temperature to optimal therapeutic levels. However, its efficacy in treating injured human subjects is not yet known. Objective : To compare the efficacy of an intermittent cryotherapy treatment protocol with a standard cryotherapy treatment protocol in the management of acute ankle sprains. Subjects Sportsmen (n  =  44) and members of the general public (n  =  45) with mild/moderate acute ankle sprains. Methods Subjects were randomly allocated, under strictly controlled double blind conditions, to one of two treatment groups: standard ice application (n  =  46) or intermittent ice application (n  =  43). The mode of cryotherapy was standardised across groups and consisted of melting iced water (0°C) in a standardised pack. Function, pain, and swelling were recorded at baseline and one, two, three, four, and six weeks after injury. Results Subjects treated with the intermittent protocol had significantly (p<0.05) less ankle pain on activity than those using a standard 20 minute protocol; however, one week after ankle injury, there were no significant differences between groups in terms of function, swelling, or pain at rest. Conclusion Intermittent applications may enhance the therapeutic effect of ice in pain relief after acute soft tissue injury. PMID:16611722</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1992faa..rept.....P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1992faa..rept.....P"><span>The 1991 LLWAS anemometer test program</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Phillips, Charles O.; Burnham, David; Jacobs, Leo; Hazen, David</p> <p>1992-09-01</p> <p>Performance tests of anemometers under icing and snow conditions were conducted during 1990-1991 on the test field at Rochester, MN and in icing chambers and wind tunnels at Sterling, VA. These tests were done for the FAA Low Level Windshear Alert System (LLWAS) program to test sensors for the next phase of LLWAS. Sensors from ten manufacturers were accepted into the test program from the respondents to the Commerce Business Daily. These sensors were required first to pass an icing chamber test in order to be field tested. The field tests lasted from Nov. 1990 to Jul. 1991. Afterwards, all sensors were sent to Sterling, VA for wind tunnel tests in September 1991. All units from the eight manufacturers that passed the icing chamber test were in the field test. A propeller/vane sensor that failed the icing chamber test was put in the field as a reference. All the units that passed were not affected by icing during the field test although a mechanical unit was affected by snow during one event. The propeller/vane was affected by icing during one event. Wind tunnel tests were done to check starting thresholds and calibration anomalies found in the field. It was concluded that there is no one winning technology that could be found from the tests.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title10-vol1/pdf/CFR-2010-title10-vol1-sec32-103.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title10-vol1/pdf/CFR-2010-title10-vol1-sec32-103.pdf"><span>10 CFR 32.103 - Schedule D-prototype tests for ice detection devices containing strontium-90.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-01-01</p> <p>... 10 Energy 1 2010-01-01 2010-01-01 false Schedule D-prototype tests for ice detection devices... § 32.103 Schedule D—prototype tests for ice detection devices containing strontium-90. An applicant for a license pursuant to § 32.61 shall conduct prototype tests on each of five prototype ice detection...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title10-vol1/pdf/CFR-2011-title10-vol1-sec32-103.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title10-vol1/pdf/CFR-2011-title10-vol1-sec32-103.pdf"><span>10 CFR 32.103 - Schedule D-prototype tests for ice detection devices containing strontium-90.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-01-01</p> <p>... 10 Energy 1 2011-01-01 2011-01-01 false Schedule D-prototype tests for ice detection devices... § 32.103 Schedule D—prototype tests for ice detection devices containing strontium-90. An applicant for a license pursuant to § 32.61 shall conduct prototype tests on each of five prototype ice detection...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title10-vol1/pdf/CFR-2012-title10-vol1-sec32-103.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title10-vol1/pdf/CFR-2012-title10-vol1-sec32-103.pdf"><span>10 CFR 32.103 - Schedule D-prototype tests for ice detection devices containing strontium-90.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-01-01</p> <p>... 10 Energy 1 2012-01-01 2012-01-01 false Schedule D-prototype tests for ice detection devices... § 32.103 Schedule D—prototype tests for ice detection devices containing strontium-90. An applicant for a license pursuant to § 32.61 shall conduct prototype tests on each of five prototype ice detection...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/8908343','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/8908343"><span>Oximeter reliability in a subzero environment.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Macnab, A J; Smith, M; Phillips, N; Smart, P</p> <p>1996-11-01</p> <p>Pulse oximeters optimize care in the pre-hospital setting. As British Columbia ambulance teams often provide care in subzero temperatures, we conducted a study to determine the reliability of 3 commercially-available portable oximeters in a subzero environment. We hypothesized that there is no significant difference between SaO2 readings obtained using a pulse oximeter at room temperature and a pulse oximeter operating at sub-zero temperatures. Subjects were stable normothermic children in intensive care on Hewlett Packard monitors (control unit) at room temperature. The test units were packed in dry ice in an insulated bin (temperature - 15 degrees C to -30 degrees C) and their sensors placed on the subjects, contralateral to the control sensors. Data were collected simultaneously from test and control units immediately following validation of control unit values by co-oximetry (blood gas). No data were unacceptable. Two units (Propaq 106EC and Nonin 8500N) functioned well to < -15 degrees C, providing data comparable to those obtained from the control unit (p < 0.001). The Siemens Micro O2 did not function at the temperatures tested. Monitor users who require equipment to function in subzero environments (military, Coast Guard, Mountain Rescue) should ensure that function is reliable, and could test units using this method.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20170007269','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20170007269"><span>Comparisons of Mixed-Phase Icing Cloud Simulations with Experiments Conducted at the NASA Propulsion Systems Laboratory</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bartkus, Tadas; Tsao, Jen-Ching; Struk, Peter</p> <p>2017-01-01</p> <p>This paper builds on previous work that compares numerical simulations of mixed-phase icing clouds with experimental data. The model couples the thermal interaction between ice particles and water droplets of the icing cloud with the flowing air of an icing wind tunnel for simulation of NASA Glenn Research Centers (GRC) Propulsion Systems Laboratory (PSL). Measurements were taken during the Fundamentals of Ice Crystal Icing Physics Tests at the PSL tunnel in March 2016. The tests simulated ice-crystal and mixed-phase icing that relate to ice accretions within turbofan engines.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20180002545','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20180002545"><span>Icing Simulation Research Supporting the Ice-Accretion Testing of Large-Scale Swept-Wing Models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Yadlin, Yoram; Monnig, Jaime T.; Malone, Adam M.; Paul, Bernard P.</p> <p>2018-01-01</p> <p>The work summarized in this report is a continuation of NASA's Large-Scale, Swept-Wing Test Articles Fabrication; Research and Test Support for NASA IRT contract (NNC10BA05 -NNC14TA36T) performed by Boeing under the NASA Research and Technology for Aerospace Propulsion Systems (RTAPS) contract. In the study conducted under RTAPS, a series of icing tests in the Icing Research Tunnel (IRT) have been conducted to characterize ice formations on large-scale swept wings representative of modern commercial transport airplanes. The outcome of that campaign was a large database of ice-accretion geometries that can be used for subsequent aerodynamic evaluation in other experimental facilities and for validation of ice-accretion prediction codes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25653172','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25653172"><span>Detection of relevant amounts of cow's milk protein in non-pre-packed bakery products sold as cow's milk-free.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Trendelenburg, V; Enzian, N; Bellach, J; Schnadt, S; Niggemann, B; Beyer, K</p> <p>2015-05-01</p> <p>Currently, there is no mandatory labelling of allergens for non-pre-packed foods in the EU. Therefore, consumers with food allergy rely on voluntary information provided by the staff. The aim of this study was to characterize allergic reactions to non-pre-packed foods and to investigate whether staff in bakery shops were able to give advice regarding a safe product choice. Questionnaires were sent to 200 parents of children with a food allergy. Staff of 50 bakery shops were interviewed regarding selling non-pre-packed foods to food-allergic customers. Bakery products being recommended as 'cow's milk-free' were bought, and cow's milk protein levels were measured using ELISA. A total of 104 of 200 questionnaires were returned. 25% of the children experienced an allergic reaction due to a non-pre-packed food from bakery shops and 20% from ice cream parlours. Sixty percent of the bakery staff reported serving food-allergic customers at least once a month, 24% once a week. Eighty four percent of the staff felt able to advise food-allergic consumers regarding a safe product choice. Seventy three 'cow's milk-free' products were sold in 44 bakery shops. Cow's milk could be detected in 43% of the bakery products, 21% contained >3 mg cow's milk protein per serving. Staff in bakery shops felt confident about advising customers with food allergy. However, cow's milk was detectable in almost half of bakery products being sold as 'cow's milk-free'. Every fifth product contained quantities of cow's milk exceeding an amount where approximately 10% of cow's milk-allergic children will show clinical relevant symptoms. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25564282','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25564282"><span>Testing warning messages on smokers' cigarette packages: a standardised protocol.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Brewer, Noel T; Hall, Marissa G; Lee, Joseph G L; Peebles, Kathryn; Noar, Seth M; Ribisl, Kurt M</p> <p>2016-03-01</p> <p>Lab experiments on cigarette warnings typically use a brief one-time exposure that is not paired with the cigarette packs smokers use every day, leaving open the question of how repeated warning exposure over several weeks may affect smokers. This proof of principle study sought to develop a new protocol for testing cigarette warnings that better reflects real-world exposure by presenting them on cigarette smokers' own packs. We tested a cigarette pack labelling protocol with 76 US smokers ages 18 and older. We applied graphic warnings to the front and back of smokers' cigarette packs. Most smokers reported that at least 75% of the packs of cigarettes they smoked during the study had our warnings. Nearly all said they would participate in the study again. Using cigarette packs with the study warnings increased quit intentions (p<0.05). Our findings suggest a feasible pack labelling protocol with six steps: (1) schedule appointments at brief intervals; (2) determine typical cigarette consumption; (3) ask smokers to bring a supply of cigarette packs to study appointments; (4) apply labels to smokers' cigarette packs; (5) provide participation incentives at the end of appointments; and (6) refer smokers to cessation services at end of the study. When used in randomised controlled trials in settings with real-world message exposure over time, this protocol may help identify the true impact of warnings and thus better inform tobacco product labelling policy. NCT02247908. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016MsT.........22S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016MsT.........22S"><span>Analysis of an Artificial Tailplane Icing Flight Test of a High-Wing, Twin-Engine Aircraft</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shaikh, Shehzad M.</p> <p></p> <p>The US Air Force Flight Test Center (AFFTC) conducted a civilian, Federal Aviation Administration (FAA) sponsored, evaluation of tailplane icing of a twin-turboprop business transport at Edwards Air Force Base. The flight test was conducted to evaluate ice shape growth and extent of ice on the tailplane for specific weather conditions of Liquid Water Content (LWC), droplet size, and ambient temperature. This work analyzes the flight test data comparing the drag for various tailplane icing conditions with respect to a flight test verified calibrated aircraft model. Although less than a third of the test aircraft was involved in the icing environment, the results of this analysis shows a significant increase in the aircraft drag with respect to the LWC, droplet size, and ambient temperature.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2010-11-01/pdf/2010-27504.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2010-11-01/pdf/2010-27504.pdf"><span>75 FR 67047 - Standard for the Flammability of Mattresses and Mattress Pads</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2010-11-01</p> <p>.... Response: The new SRM cigarette is designed to be equivalent to the original test cigarette. In its report... confirmatory test consumes about two packs, and a ticking substitution test consumes about one pack. Assuming... specified in the standard for use in the mattress standard's performance tests is no longer being produced...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20170000239','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20170000239"><span>Generation of Fullspan Leading-Edge 3D Ice Shapes for Swept-Wing Aerodynamic Testing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Camello, Stephanie C.; Lee, Sam; Lum, Christopher; Bragg, Michael B.</p> <p>2016-01-01</p> <p>The deleterious effect of ice accretion on aircraft is often assessed through dry-air flight and wind tunnel testing with artificial ice shapes. This paper describes a method to create fullspan swept-wing artificial ice shapes from partial span ice segments acquired in the NASA Glenn Icing Reserch Tunnel for aerodynamic wind-tunnel testing. Full-scale ice accretion segments were laser scanned from the Inboard, Midspan, and Outboard wing station models of the 65% scale Common Research Model (CRM65) aircraft configuration. These were interpolated and extrapolated using a weighted averaging method to generate fullspan ice shapes from the root to the tip of the CRM65 wing. The results showed that this interpolation method was able to preserve many of the highly three dimensional features typically found on swept-wing ice accretions. The interpolated fullspan ice shapes were then scaled to fit the leading edge of a 8.9% scale version of the CRM65 wing for aerodynamic wind-tunnel testing. Reduced fidelity versions of the fullspan ice shapes were also created where most of the local three-dimensional features were removed. The fullspan artificial ice shapes and the reduced fidelity versions were manufactured using stereolithography.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=76463&keyword=ice&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=76463&keyword=ice&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>CTEPP STANDARD OPERATING PROCEDURE FOR PACKING AND SHIPPING STUDY SAMPLES (SOP-3.11)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>This SOP describes the methods for packing and shipping study samples. These methods are for packing and shipping biological and environmental samples. The methods have been tested and used in the previous pilot studies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19920013291','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19920013291"><span>The NASA aircraft icing research program</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Shaw, Robert J.; Reinmann, John J.</p> <p>1990-01-01</p> <p>The objective of the NASA aircraft icing research program is to develop and make available to industry icing technology to support the needs and requirements for all-weather aircraft designs. Research is being done for both fixed wing and rotary wing applications. The NASA program emphasizes technology development in two areas, advanced ice protection concepts and icing simulation. Reviewed here are the computer code development/validation, icing wind tunnel testing, and icing flight testing efforts.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140003875','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140003875"><span>Modeling Commercial Turbofan Engine Icing Risk With Ice Crystal Ingestion</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Jorgenson, Philip C. E.; Veres, Joseph P.</p> <p>2013-01-01</p> <p>The occurrence of ice accretion within commercial high bypass aircraft turbine engines has been reported under certain atmospheric conditions. Engine anomalies have taken place at high altitudes that have been attributed to ice crystal ingestion, partially melting, and ice accretion on the compression system components. The result was degraded engine performance, and one or more of the following: loss of thrust control (roll back), compressor surge or stall, and flameout of the combustor. As ice crystals are ingested into the fan and low pressure compression system, the increase in air temperature causes a portion of the ice crystals to melt. It is hypothesized that this allows the ice-water mixture to cover the metal surfaces of the compressor stationary components which leads to ice accretion through evaporative cooling. Ice accretion causes a blockage which subsequently results in the deterioration in performance of the compressor and engine. The focus of this research is to apply an engine icing computational tool to simulate the flow through a turbofan engine and assess the risk of ice accretion. The tool is comprised of an engine system thermodynamic cycle code, a compressor flow analysis code, and an ice particle melt code that has the capability of determining the rate of sublimation, melting, and evaporation through the compressor flow path, without modeling the actual ice accretion. A commercial turbofan engine which has previously experienced icing events during operation in a high altitude ice crystal environment has been tested in the Propulsion Systems Laboratory (PSL) altitude test facility at NASA Glenn Research Center. The PSL has the capability to produce a continuous ice cloud which are ingested by the engine during operation over a range of altitude conditions. The PSL test results confirmed that there was ice accretion in the engine due to ice crystal ingestion, at the same simulated altitude operating conditions as experienced previously in flight. The computational tool was utilized to help guide a portion of the PSL testing, and was used to predict ice accretion could also occur at significantly lower altitudes. The predictions were qualitatively verified by subsequent testing of the engine in the PSL. The PSL test has helped to calibrate the engine icing computational tool to assess the risk of ice accretion. The results from the computer simulation identified prevalent trends in wet bulb temperature, ice particle melt ratio, and engine inlet temperature as a function of altitude for predicting engine icing risk due to ice crystal ingestion.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015TCry....9..255D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015TCry....9..255D"><span>Regional melt-pond fraction and albedo of thin Arctic first-year drift ice in late summer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Divine, D. V.; Granskog, M. A.; Hudson, S. R.; Pedersen, C. A.; Karlsen, T. I.; Divina, S. A.; Renner, A. H. H.; Gerland, S.</p> <p>2015-02-01</p> <p>The paper presents a case study of the regional (≈150 km) morphological and optical properties of a relatively thin, 70-90 cm modal thickness, first-year Arctic sea ice pack in an advanced stage of melt. The study combines in situ broadband albedo measurements representative of the four main surface types (bare ice, dark melt ponds, bright melt ponds and open water) and images acquired by a helicopter-borne camera system during ice-survey flights. The data were collected during the 8-day ICE12 drift experiment carried out by the Norwegian Polar Institute in the Arctic, north of Svalbard at 82.3° N, from 26 July to 3 August 2012. A set of > 10 000 classified images covering about 28 km2 revealed a homogeneous melt across the study area with melt-pond coverage of ≈ 0.29 and open-water fraction of ≈ 0.11. A decrease in pond fractions observed in the 30 km marginal ice zone (MIZ) occurred in parallel with an increase in open-water coverage. The moving block bootstrap technique applied to sequences of classified sea-ice images and albedo of the four surface types yielded a regional albedo estimate of 0.37 (0.35; 0.40) and regional sea-ice albedo of 0.44 (0.42; 0.46). Random sampling from the set of classified images allowed assessment of the aggregate scale of at least 0.7 km2 for the study area. For the current setup configuration it implies a minimum set of 300 images to process in order to gain adequate statistics on the state of the ice cover. Variance analysis also emphasized the importance of longer series of in situ albedo measurements conducted for each surface type when performing regional upscaling. The uncertainty in the mean estimates of surface type albedo from in situ measurements contributed up to 95% of the variance of the estimated regional albedo, with the remaining variance resulting from the spatial inhomogeneity of sea-ice cover.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.C21D1156T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.C21D1156T"><span>Seasonal regional forecast of the minimum sea ice extent in the LapteV Sea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tremblay, B.; Brunette, C.; Newton, R.</p> <p>2017-12-01</p> <p>Late winter anomaly of sea ice export from the peripheral seas of the Atctic Ocean was found to be a useful predictor for the minimum sea ice extent (SIE) in the Arctic Ocean (Williams et al., 2017). In the following, we present a proof of concept for a regional seasonal forecast of the min SIE for the Laptev Sea based on late winter coastal divergence quantified using a Lagrangian Ice Tracking System (LITS) forced with satellite derived sea-ice drifts from the Polar Pathfinder. Following Nikolaeva and Sesterikov (1970), we track an imaginary line just offshore of coastal polynyas in the Laptev Sea from December of the previous year to May 1 of the following year using LITS. Results show that coastal divergence in the Laptev Sea between February 1st and May 1st is best correlated (r = -0.61) with the following September minimum SIE in accord with previous results from Krumpen et al. (2013, for the Laptev Sea) and Williams et a. (2017, for the pan-Arctic). This gives a maximum seasonal predictability of Laptev Sea min SIE anomalies from observations of approximately 40%. Coastal ice divergence leads to formation of thinner ice that melts earlier in early summer, hence creating areas of open water that have a lower albedo and trigger an ice-albedo feedback. In the Laptev Sea, we find that anomalies of coastal divergence in late winter are amplified threefold to result in the September SIE. We also find a correlation coefficient r = 0.49 between February-March-April (FMA) anomalies of coastal divergence with the FMA averaged AO index. Interestingly, the correlation is stronger, r = 0.61, when comparing the FMA coastal divergence anomalies to the DJFMA averaged AO index. It is hypothesized that the AO index at the beginning of the winter (and the associated anomalous sea ice export) also contains information that impact the magnitude of coastal divergence opening later in the winter. Our approach differs from previous approaches (e.g. Krumpen et al and Williams et al) in that the coastal divergence is quantified directly by following the edge of the mobile pack ice in a Lagrangian manner.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20170000236','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20170000236"><span>Preliminary Results From a Heavily Instrumented Engine Ice Crystal Icing Test in a Ground Based Altitude Test Facility</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Flegel, Ashlie B.; Oliver, Michael J.</p> <p>2016-01-01</p> <p>Preliminary results from the heavily instrumented ALF502R-5 engine test conducted in the NASA Glenn Research Center Propulsion Systems Laboratory are discussed. The effects of ice crystal icing on a full scale engine is examined and documented. This same model engine, serial number LF01, was used during the inaugural icing test in the Propulsion Systems Laboratory facility. The uncommanded reduction of thrust (rollback) events experienced by this engine in flight were simulated in the facility. Limited instrumentation was used to detect icing on the LF01 engine. Metal temperatures on the exit guide vanes and outer shroud and the load measurement were the only indicators of ice formation. The current study features a similar engine, serial number LF11, which is instrumented to characterize the cloud entering the engine, detect/ characterize ice accretion, and visualize the ice accretion in the region of interest. Data were acquired at key LF01 test points and additional points that explored: icing threshold regions, low altitude, high altitude, spinner heat effects, and the influence of varying the facility and engine parameters. For each condition of interest, data were obtained from some selected variations of ice particle median volumetric diameter, total water content, fan speed, and ambient temperature. For several cases the NASA in-house engine icing risk assessment code was used to find conditions that would lead to a rollback event. This study further helped NASA develop necessary icing diagnostic instrumentation, expand the capabilities of the Propulsion Systems Laboratory, and generate a dataset that will be used to develop and validate in-house icing prediction and risk mitigation computational tools. The ice accretion on the outer shroud region was acquired by internal video cameras. The heavily instrumented engine showed good repeatability of icing responses when compared to the key LF01 test points and during day-to-day operation. Other noticeable observations are presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20160010560','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20160010560"><span>Preliminary Results From a Heavily Instrumented Engine Ice Crystal Icing Test in a Ground Based Altitude Test Facility</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Flegel, Ashlie B.; Oliver, Michael J.</p> <p>2016-01-01</p> <p>Preliminary results from the heavily instrumented ALF502R-5 engine test conducted in the NASA Glenn Research Center Propulsion Systems Laboratory are discussed. The effects of ice crystal icing on a full scale engine is examined and documented. This same model engine, serial number LF01, was used during the inaugural icing test in the Propulsion Systems Laboratory facility. The uncommanded reduction of thrust (rollback) events experienced by this engine in flight were simulated in the facility. Limited instrumentation was used to detect icing on the LF01 engine. Metal temperatures on the exit guide vanes and outer shroud and the load measurement were the only indicators of ice formation. The current study features a similar engine, serial number LF11, which is instrumented to characterize the cloud entering the engine, detect/characterize ice accretion, and visualize the ice accretion in the region of interest. Data were acquired at key LF01 test points and additional points that explored: icing threshold regions, low altitude, high altitude, spinner heat effects, and the influence of varying the facility and engine parameters. For each condition of interest, data were obtained from some selected variations of ice particle median volumetric diameter, total water content, fan speed, and ambient temperature. For several cases the NASA in-house engine icing risk assessment code was used to find conditions that would lead to a rollback event. This study further helped NASA develop necessary icing diagnostic instrumentation, expand the capabilities of the Propulsion Systems Laboratory, and generate a dataset that will be used to develop and validate in-house icing prediction and risk mitigation computational tools. The ice accretion on the outer shroud region was acquired by internal video cameras. The heavily instrumented engine showed good repeatability of icing responses when compared to the key LF01 test points and during day-to-day operation. Other noticeable observations are presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014ERL.....9k4021H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014ERL.....9k4021H"><span>Warmer and wetter winters: characteristics and implications of an extreme weather event in the High Arctic</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hansen, Brage B.; Isaksen, Ketil; Benestad, Rasmus E.; Kohler, Jack; Pedersen, Åshild Ø.; Loe, Leif E.; Coulson, Stephen J.; Larsen, Jan Otto; Varpe, Øystein</p> <p>2014-11-01</p> <p>One predicted consequence of global warming is an increased frequency of extreme weather events, such as heat waves, droughts, or heavy rainfalls. In parts of the Arctic, extreme warm spells and heavy rain-on-snow (ROS) events in winter are already more frequent. How these weather events impact snow-pack and permafrost characteristics is rarely documented empirically, and the implications for wildlife and society are hence far from understood. Here we characterize and document the effects of an extreme warm spell and ROS event that occurred in High Arctic Svalbard in January-February 2012, during the polar night. In this normally cold semi-desert environment, we recorded above-zero temperatures (up to 7 °C) across the entire archipelago and record-breaking precipitation, with up to 98 mm rainfall in one day (return period of >500 years prior to this event) and 272 mm over the two-week long warm spell. These precipitation amounts are equivalent to 25 and 70% respectively of the mean annual total precipitation. The extreme event caused significant increase in permafrost temperatures down to at least 5 m depth, induced slush avalanches with resultant damage to infrastructure, and left a significant ground-ice cover (˜5-20 cm thick basal ice). The ground-ice not only affected inhabitants by closing roads and airports as well as reducing mobility and thereby tourism income, but it also led to high starvation-induced mortality in all monitored populations of the wild reindeer by blocking access to the winter food source. Based on empirical-statistical downscaling of global climate models run under the moderate RCP4.5 emission scenario, we predict strong future warming with average mid-winter temperatures even approaching 0 °C, suggesting increased frequency of ROS. This will have far-reaching implications for Arctic ecosystems and societies through the changes in snow-pack and permafrost properties.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150002337','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150002337"><span>Possible Mechanisms for Turbofan Engine Ice Crystal Icing at High Altitude</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Tsao, Jen-Ching; Struk, Peter M.; Oliver, Michael</p> <p>2014-01-01</p> <p>A thermodynamic model is presented to describe possible mechanisms of ice formation on unheated surfaces inside a turbofan engine compression system from fully glaciated ice crystal clouds often formed at high altitude near deep convective weather systems. It is shown from the analysis that generally there could be two distinct types of ice formation: (1) when the "surface freezing fraction" is in the range of 0 to 1, dominated by the freezing of water melt from fully or partially melted ice crystals, the ice structure is formed from accretion with strong adhesion to the surface, and (2) when the "surface melting fraction" is the range of 0 to 1, dominated by the further melting of ice crystals, the ice structure is formed from accumulation of un-melted ice crystals with relatively weak bonding to the surface. The model captures important qualitative trends of the fundamental ice-crystal icing phenomenon reported earlier1,2 from the research collaboration work by NASA and the National Research Council (NRC) of Canada. Further, preliminary analysis of test data from the 2013 full scale turbofan engine ice crystal icing test3 conducted in the NASA Glenn Propulsion Systems Laboratory (PSL) has also suggested that (1) both types of ice formation occurred during the test, and (2) the model has captured some important qualitative trend of turning on (or off) the ice crystal ice formation process in the tested engine low pressure compressor (LPC) targeted area under different icing conditions that ultimately would lead to (or suppress) an engine core roll back (RB) event.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20160011109','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20160011109"><span>Possible Mechanisms for Turbofan Engine Ice Crystal Icing at High Altitude</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Tsao, Jen-Ching; Struk, Peter M.; Oliver, Michael J.</p> <p>2016-01-01</p> <p>A thermodynamic model is presented to describe possible mechanisms of ice formation on unheated surfaces inside a turbofan engine compression system from fully glaciated ice crystal clouds often formed at high altitude near deep convective weather systems. It is shown from the analysis that generally there could be two distinct types of ice formation: (1) when the "surface freezing fraction" is in the range of 0 to 1, dominated by the freezing of water melt from fully or partially melted ice crystals, the ice structure is formed from accretion with strong adhesion to the surface, and (2) when the "surface melting fraction" is the range of 0 to 1, dominated by the further melting of ice crystals, the ice structure is formed from accumulation of un-melted ice crystals with relatively weak bonding to the surface. The model captures important qualitative trends of the fundamental ice-crystal icing phenomenon reported earlier (Refs. 1 and 2) from the research collaboration work by NASA and the National Research Council (NRC) of Canada. Further, preliminary analysis of test data from the 2013 full scale turbofan engine ice crystal icing test (Ref. 3) conducted in the NASA Glenn Propulsion Systems Laboratory (PSL) has also suggested that (1) both types of ice formation occurred during the test, and (2) the model has captured some important qualitative trend of turning on (or off) the ice crystal ice formation process in the tested engine low pressure compressor (LPC) targeted area under different icing conditions that ultimately would lead to (or suppress) an engine core roll back (RB) event.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1245128','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1245128"><span>Battery Pack Life Estimation through Cell Degradation Data and Pack Thermal Modeling for BAS+ Li-Ion Batteries. Cooperative Research and Development Final Report, CRADA Number CRD-12-489</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Smith, Kandler</p> <p></p> <p>Battery Life estimation is one of the key inputs required for Hybrid applications for all GM Hybrid/EV/EREV/PHEV programs. For each Hybrid vehicle program, GM has instituted multi-parameter Design of Experiments generating test data at Cell level and also Pack level on a reduced basis. Based on experience, generating test data on a pack level is found to be very expensive, resource intensive and sometimes less reliable. The proposed collaborative project will focus on a methodology to estimate Battery life based on cell degradation data combined with pack thermal modeling. NREL has previously developed cell-level battery aging models and pack-level thermal/electricalmore » network models, though these models are currently not integrated. When coupled together, the models are expected to describe pack-level thermal and aging response of individual cells. GM and NREL will use data collected for GM's Bas+ battery system for evaluation of the proposed methodology and assess to what degree these models can replace pack-level aging experiments in the future.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19810010552','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19810010552"><span>Survey of aircraft icing simulation test facilities in North America</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Olsen, W.</p> <p>1981-01-01</p> <p>A survey was made of the aircraft icing simulation facilities in North America: there are 12 wind tunnels, 28 engine test facilities, 6 aircraft tankers and 14 low velocity facilities, that perform aircraft icing tests full or part time. The location and size of the facility, its speed and temperature range, icing cloud parameters, and the technical person to contact are surveyed. Results are presented in tabular form. The capabilities of each facility were estimated by its technical contact person. The adequacy of these facilities for various types of icing tests is discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20040172041&hterms=balance+sheet&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dbalance%2Bsheet','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20040172041&hterms=balance+sheet&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dbalance%2Bsheet"><span>Advances in Measuring Antarctic Sea-Ice Thickness and Ice-Sheet Elevations with ICESat Laser Altimetry</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Zwally, H. Jay</p> <p>2004-01-01</p> <p>NASA's Ice, Cloud and Land Elevation Satellite (ICESat) has been measuring elevations of the Antarctic ice sheet and sea-ice freeboard elevations with unprecedented accuracy. Since February 20,2003, data has been acquired during three periods of laser operation varying from 36 to 54 days, which is less than the continuous operation of 3 to 5 years planned for the mission. The primary purpose of ICESat is to measure time-series of ice-sheet elevation changes for determination of the present-day mass balance of the ice sheets, study of associations between observed ice changes and polar climate, and estimation of the present and future contributions of the ice sheets to global sea level rise. ICESat data will continue to be acquired for approximately 33 days periods at 3 to 6 month intervals with the second of ICESat's three lasers, and eventually with the third laser. The laser footprints are about 70 m on the surface and are spaced at 172 m along-track. The on-board GPS receiver enables radial orbit determinations to an accuracy better than 5 cm. The orbital altitude is around 600 km at an inclination of 94 degrees with a 8-day repeat pattern for the calibration and validation period, followed by a 91 -day repeat period for the rest of the mission. The expected range precision of single footprint measurements was 10 cm, but the actual range precision of the data has been shown to be much better at 2 to 3 cm. The star-tracking attitude-determination system should enable footprints to be located to 6 m horizontally when attitude calibrations are completed. With the present attitude calibration, the elevation accuracy over the ice sheets ranges from about 30 cm over the low-slope areas to about 80 cm over areas with slopes of 1 to 2 degrees, which is much better than radar altimetry. After the first period of data collection, the spacecraft attitude was controlled to point the laser beam to within 50 m of reference surface tracks over the ice sheets. Detection of ice elevation changes over select areas of the ice sheet is demonstrated with using both crossover analysis and precise-repeat track analysis. Sea ice freeboard-height distributions over the Antarctic sea pack are derived over distances of 50 km and converted into maps of average freeboard thickness and sea-ice thickness.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GeCoA.213...17B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GeCoA.213...17B"><span>Gypsum and hydrohalite dynamics in sea ice brines</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Butler, Benjamin M.; Papadimitriou, Stathys; Day, Sarah J.; Kennedy, Hilary</p> <p>2017-09-01</p> <p>Mineral authigenesis from their dissolved sea salt matrix is an emergent feature of sea ice brines, fuelled by dramatic equilibrium solubility changes in the large sub-zero temperature range of this cryospheric system on the surface of high latitude oceans. The multi-electrolyte composition of seawater results in the potential for several minerals to precipitate in sea ice, each affecting the in-situ geochemical properties of the sea ice brine system, the habitat of sympagic biota. The solubility of two of these minerals, gypsum (CaSO4 ·2H2O) and hydrohalite (NaCl · 2H2O), was investigated in high ionic strength multi-electrolyte solutions at below-zero temperatures to examine their dissolution-precipitation dynamics in the sea ice brine system. The gypsum dynamics in sea ice were found to be highly dependent on the solubilities of mirabilite and hydrohalite between 0.2 and - 25.0 ° C. The hydrohalite solubility between - 14.3 and - 25.0 ° C exhibits a sharp change between undersaturated and supersaturated conditions, and, thus, distinct temperature fields of precipitation and dissolution in sea ice, with saturation occurring at - 22.9 ° C. The sharp changes in hydrohalite solubility at temperatures ⩽-22.9 °C result from the formation of an ice-hydrohalite aggregate, which alters the structural properties of brine inclusions in cold sea ice. Favourable conditions for gypsum precipitation in sea ice were determined to occur in the region of hydrohalite precipitation below - 22.9 ° C and in conditions of metastable mirabilite supersaturation above - 22.9 ° C (investigated at - 7.1 and - 8.2 ° C here) but gypsum is unlikely to persist once mirabilite forms at these warmer (>-22.9 °C) temperatures. The dynamics of hydrohalite in sea ice brines based on its experimental solubility were consistent with that derived from thermodynamic modelling (FREZCHEM code) but the gypsum dynamics derived from the code were inconsistent with that indicated by its experimental solubility in this system. Incorporation of hydrohalite solubility into a 1D thermodynamic model of the growth of first-year Arctic sea ice showed its precipitation to initiate once the incoming shortwave radiation dropped to 0 W m-2, and that it can reach concentrations of 9.9 g kg-1 within the upper and coldest layers of the ice pack. This suggests a limited effect of hydrohalite on the albedo of sea ice. The insights provided by the solubility measurements into the behaviour of gypsum and hydrohalite in the ice-brine system cannot be gleaned from field investigations at present.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120018032','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120018032"><span>Ice Growth Measurements from Image Data to Support Ice Crystal and Mixed-Phase Accretion Testing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Struk, Peter M.; Lynch, Christopher J.</p> <p>2012-01-01</p> <p>This paper describes the imaging techniques as well as the analysis methods used to measure the ice thickness and growth rate in support of ice-crystal icing tests performed at the National Research Council of Canada (NRC) Research Altitude Test Facility (RATFac). A detailed description of the camera setup, which involves both still and video cameras, as well as the analysis methods using the NASA Spotlight software, are presented. Two cases, one from two different test entries, showing significant ice growth are analyzed in detail describing the ice thickness and growth rate which is generally linear. Estimates of the bias uncertainty are presented for all measurements. Finally some of the challenges related to the imaging and analysis methods are discussed as well as methods used to overcome them.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120014350','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120014350"><span>Ice Growth Measurements from Image Data to Support Ice-Crystal and Mixed-Phase Accretion Testing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Struk, Peter, M; Lynch, Christopher, J.</p> <p>2012-01-01</p> <p>This paper describes the imaging techniques as well as the analysis methods used to measure the ice thickness and growth rate in support of ice-crystal icing tests performed at the National Research Council of Canada (NRC) Research Altitude Test Facility (RATFac). A detailed description of the camera setup, which involves both still and video cameras, as well as the analysis methods using the NASA Spotlight software, are presented. Two cases, one from two different test entries, showing significant ice growth are analyzed in detail describing the ice thickness and growth rate which is generally linear. Estimates of the bias uncertainty are presented for all measurements. Finally some of the challenges related to the imaging and analysis methods are discussed as well as methods used to overcome them.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150019656','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150019656"><span>Method to Generate Full-Span Ice Shape on Swept Wing Using Icing Tunnel Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lee, Sam; Camello, Stephanie</p> <p>2015-01-01</p> <p>There is a collaborative research program by NASA, FAA, ONERA, and university partners to improve the fidelity of experimental and computational simulation methods for swept-wing ice accretion formulations and resultant aerodynamic effects on large transport aircraft. This research utilizes a 65 scale Common Research Model as the baseline configuration. In order to generate the ice shapes for the aerodynamic testing, ice-accretion testing will be conducted in the NASA Icing Research Tunnel utilizing hybrid model from the 20, 64, and 83 spanwise locations. The models will have full-scale leading edges with truncated chord in order to fit the IRT test section. The ice shapes from the IRT tests will be digitized using a commercially available articulated-arm 3D laser scanning system. The methodology to acquire 3D ice shapes using a laser scanner was developed and validated in a previous research effort. Each of these models will yield a 1.5ft span of ice than can be used. However, a full-span ice accretion will require 75 ft span of ice. This means there will be large gaps between these spanwise ice sections that must be filled, while maintaining all of the important aerodynamic features. A method was developed to generate a full-span ice shape from the three 1.5 ft span ice shapes from the three models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20060047585','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20060047585"><span>Forces Generated by High Velocity Impact of Ice on a Rigid Structure</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Pereira, J. Michael; Padula, Santo A., II; Revilock, Duane M.; Melis, Matthew E.</p> <p>2006-01-01</p> <p>Tests were conducted to measure the impact forces generated by cylindrical ice projectiles striking a relatively rigid target. Two types of ice projectiles were used, solid clear ice and lower density fabricated ice. Three forms of solid clear ice were tested: single crystal, poly-crystal, and "rejected" poly-crystal (poly-crystal ice in which defects were detected during inspection.) The solid ice had a density of approximately 56 lb/cu ft (0.9 gm/cu cm). A second set of test specimens, termed "low density ice" was manufactured by molding shaved ice into a cylindrical die to produce ice with a density of approximately 40 lb/cu ft (0.65 gm/cu cm). Both the static mechanical characteristics and the crystalline structure of the ice were found to have little effect on the observed transient response. The impact forces generated by low density ice projectiles, which had very low mechanical strength, were comparable to those of full density solid ice. This supports the hypothesis that at a velocity significantly greater than that required to produce fracture in the ice, the mechanical properties become relatively insignificant, and the impact forces are governed by the shape and mass of the projectile.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.C33E..07F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.C33E..07F"><span>Routine Mapping of the Snow Depth Distribution on Sea Ice</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Farrell, S. L.; Newman, T.; Richter-Menge, J.; Dattler, M.; Paden, J. D.; Yan, S.; Li, J.; Leuschen, C.</p> <p>2016-12-01</p> <p>The annual growth and retreat of the polar sea ice cover is influenced by the seasonal accumulation, redistribution and melt of snow on sea ice. Due to its high albedo and low thermal conductivity, snow is also a controlling parameter in the mass and energy budgets of the polar climate system. Under a changing climate scenario it is critical to obtain reliable and routine measurements of snow depth, across basin scales, and long time periods, so as to understand regional, seasonal and inter-annual variability, and the subsequent impacts on the sea ice cover itself. Moreover the snow depth distribution remains a significant source of uncertainty in the derivation of sea ice thickness from remote sensing measurements, as well as in numerical model predictions of future climate state. Radar altimeter systems flown onboard NASA's Operation IceBridge (OIB) mission now provide annual measurements of snow across both the Arctic and Southern Ocean ice packs. We describe recent advances in the processing techniques used to interpret airborne radar waveforms and produce accurate and robust snow depth results. As a consequence of instrument effects and data quality issues associated with the initial release of the OIB airborne radar data, the entire data set was reprocessed to remove coherent noise and sidelobes in the radar echograms. These reprocessed data were released to the community in early 2016, and are available for improved derivation of snow depth. Here, using the reprocessed data, we present the results of seven years of radar measurements collected over Arctic sea ice at the end of winter, just prior to melt. Our analysis provides the snow depth distribution on both seasonal and multi-year sea ice. We present the inter-annual variability in snow depth for both the Central Arctic and the Beaufort/Chukchi Seas. We validate our results via comparison with temporally and spatially coincident in situ measurements gathered during many of the OIB surveys. The results will influence future sensor suite development for sea ice studies, and they provide a new metric for comparison with other sea ice observations. Integrating these novel snow depth observations with modeling studies will help inform model development, and advance our predictive capabilities to help better understand how sea ice is responding to a changing climate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001EOSTr..82..611B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001EOSTr..82..611B"><span>Snow and Glacier Hydrology</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Brubaker, Kaye</p> <p></p> <p>The study of snow and ice is rich in both fundamental science and practical applications. Snow and Glacier Hydrology offers something for everyone, from resource practitioners in regions where water supply depends on seasonal snow pack or glaciers, to research scientists seeking to understand the role of the solid phase in the water cycle and climate. The book is aimed at the advanced undergraduate or graduate-level student. A perusal of online documentation for snow hydrology classes suggests that there is currently no single text or reference book on this topic in general use. Instructors rely on chapters from general hydrology texts or operational manuals, collections of journal papers, or their own notes. This variety reflects the fact that snow and ice regions differ in climate, topography, language, water law, hazards, and resource use (hydropower, irrigation, recreation). Given this diversity, producing a universally applicable book is a challenge.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-KSC-07pd2163.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-KSC-07pd2163.html"><span>KSC-07pd2163</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2007-08-03</p> <p>KENNEDY SPACE CENTER, FLA. -- Preparations to move the mobile service tower, or gantry, from around the Delta II 7925 rocket are under way under the lights on Launch Pad 17A at Cape Canaveral Air Force Station. Equipped with three stages and nine strap-on solid rocket motors, the Delta II rocket packs plenty of punch for sending the Phoenix spacecraft on its way toward Mars. Launch is targeted for Aug. 4 during one of two opportunities for liftoff: 5:26 or 6:02 a.m. EDT. Phoenix will land in icy soils near the north polar, permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. Photo credit: NASA/Jim Grossmann</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-KSC-07pd2167.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-KSC-07pd2167.html"><span>KSC-07pd2167</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2007-08-03</p> <p>KENNEDY SPACE CENTER, FLA. -- The solid rocket boosters on the Delta II 7925 rocket are revealed following the retraction of the mobile service tower, or gantry, on Launch Pad 17A at Cape Canaveral Air Force Station. Equipped with three stages and nine strap-on solid rocket motors, the Delta II rocket packs plenty of punch for sending the Phoenix spacecraft on its way toward Mars. Launch is targeted for Aug. 4 during one of two opportunities for liftoff: 5:26 or 6:02 a.m. EDT. Phoenix will land in icy soils near the north polar, permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. Photo credit: NASA/Jim Grossmann</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-KSC-07pd2165.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-KSC-07pd2165.html"><span>KSC-07pd2165</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2007-08-03</p> <p>KENNEDY SPACE CENTER, FLA. -- The Delta II 7925 rocket is revealed as the mobile service tower, or gantry, rolls back on Launch Pad 17A at Cape Canaveral Air Force Station. Equipped with three stages and nine strap-on solid rocket motors, the Delta II rocket packs plenty of punch for sending the Phoenix spacecraft on its way toward Mars. Launch is targeted for Aug. 4 during one of two opportunities for liftoff: 5:26 or 6:02 a.m. EDT. Phoenix will land in icy soils near the north polar, permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. Photo credit: NASA/Jim Grossmann</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-KSC-07pd2168.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-KSC-07pd2168.html"><span>KSC-07pd2168</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2007-08-03</p> <p>KENNEDY SPACE CENTER, FLA. -- Rollback of the mobile service tower, or gantry, from around the Delta II 7925 rocket is complete on Launch Pad 17A at Cape Canaveral Air Force Station. Equipped with three stages and nine strap-on solid rocket motors, the Delta II rocket packs plenty of punch for sending the Phoenix spacecraft on its way toward Mars. Launch is targeted for Aug. 4 during one of two opportunities for liftoff: 5:26 or 6:02 a.m. EDT. Phoenix will land in icy soils near the north polar, permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. Photo credit: NASA/Jim Grossmann</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title49-vol2/pdf/CFR-2010-title49-vol2-sec172-102.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title49-vol2/pdf/CFR-2010-title49-vol2-sec172-102.pdf"><span>49 CFR 172.102 - Special provisions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-10-01</p> <p>... bags, each packaging must correspond to a design type that has passed a leakproofness test at the... packaging must correspond to a design type that has passed a leakproofness test at the Packing Group II... packaging must correspond to a design type that has passed a leakproofness test at the Packing Group II...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title49-vol2/pdf/CFR-2014-title49-vol2-sec172-102.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title49-vol2/pdf/CFR-2014-title49-vol2-sec172-102.pdf"><span>49 CFR 172.102 - Special provisions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-10-01</p> <p>... packaging must correspond to a design type that has passed a leakproofness test at the Packing Group II... packaging must correspond to a design type that has passed a leakproofness test at the Packing Group II... packagings, each packaging must correspond to a design type that has passed a leakproofness test at the...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title49-vol2/pdf/CFR-2013-title49-vol2-sec172-102.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title49-vol2/pdf/CFR-2013-title49-vol2-sec172-102.pdf"><span>49 CFR 172.102 - Special provisions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-10-01</p> <p>... packaging must correspond to a design type that has passed a leakproofness test at the Packing Group II... packaging must correspond to a design type that has passed a leakproofness test at the Packing Group II... packagings, each packaging must correspond to a design type that has passed a leakproofness test at the...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/229584-use-bauxite-packing-material-steam-injection-wells','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/229584-use-bauxite-packing-material-steam-injection-wells"><span>Use of bauxite as packing material in steam injection wells</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Scoglio, J.; Joubert, G.; Gallardo, B.</p> <p>1995-12-31</p> <p>Cyclic steam injection, also known as steam soak, has proven to be the most efficient method for producing heavy crude oil and bitumen from unconsolidated sands. The application of steam injection may, however, generate sand production, causing, among other things, a decrease in production. The gravel pack technique is the most efficient way to prevent fines production from cold producing wells. But, once they are steam stimulated, a dissolution of quartz containing gravel material takes place reducing greatly the packing permeability and eventually sand production. Different types of packing material have been used to avoid sand production after cyclic steammore » injection, such as gravel, ceramics, bauxite, coated resin, and American sand. This paper presents the results of field test, using sinterized bauxite as a packing material, carried out in Venezuela`s heavy oil operations as a part of a comprehensive program aimed at increasing the packing durability and reducing sand production. This paper also verify the results of laboratory tests in which Bauxite was found to be less soluble than other packing material when steam injected.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/6836230-valve-leakage-inspection-testing-maintenance-process','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/6836230-valve-leakage-inspection-testing-maintenance-process"><span>Valve leakage inspection, testing, and maintenance process</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Aikin, J.A.; Reinwald, J.W.</p> <p>1989-01-01</p> <p>Atomic Energy of Canada Limited-Research Company (AECL-RC), Chalk River, has more than 50 person-years dedicated toward the leak-free valve. In the early 1970s, the Chalk River Nuclear Laboratories (CRNL) developed valve stem live-loading and recently completed the packing tests for the Electric Power Research Institute (EPRI)-funded Valve Packing Improvement Study. Current safety concerns with asbestos-based valve packings and the difficulty in removing newer graphite packings prompted CRNL to investigate methods to improve valve repacking procedures. The present practice of valve packing replacement is very labor-intensive, requiring use of hand tools such as corkscrew devices and special packing picks. Use ofmore » water jets to cut or fragment the packing for withdrawal from the stuffing box does improve the process, but removal of the lantern or junk rings is still difficult. To address these problems, AECL-RC has developed a unique valve maintenance process designed to reduce person-rem exposures, the risk of scoring the stem or stuffing box, and maintenance costs and to improve the engineering quality of valve repair.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <a id="backToTop" href="#top"> Top </a> <footer> <nav> <ul class="links"> <li><a href="/sitemap.html">Site Map</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://www.energy.gov/vulnerability-disclosure-policy" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>