Sample records for ice patrol mission

  1. U.S. Border Patrol OCONUS: Possible Contributions to the Whole of Government Approach to Stability Operations

    DTIC Science & Technology

    2010-06-11

    Force–Rural Area Police Patrol Unit (Unidad Móvil Policial Para Reas Rurales) also known as Los Leopardos (the Leopards ). USBP U.S. Border Patrol...99Ibid. 38 Antinarcotics Force--Rural Area Police Patrol Unit (Unidad Móvil Policial Para Reas Rurales) also known as Los Leopardos (the Leopards ). The...training or preparation time for this mission. Upon arrival he found that the inclement cold weather included snow , sleet, ice, and frigid cold

  2. Report of the International Ice Patrol in the North Atlantic. 1986 Season Bulletin Number 72

    DTIC Science & Technology

    1986-01-01

    business transac-tions from the season. Flight The Intemnational Ice Patrol Month Sooe these nhos requested that all ships transiting -Month Sorties hours...GERMANY 1 EASTERN SHELL UNKNOWN 1 EASTERN UNICORN PANAMA 1 1 ESPANA 1 FEDERAL REPUBLIC OF GERMANY 1 EUROPE BELGIUM 5 EVA FRANCE 1 1 EVERGREEN USA 15 1...when flown at 8000 ft similar pattern, but a winch failure computed using an algorithm (2438 m), maps a 50 km wide after 28 CTD stations resulted in

  3. Prescriptive Package. Improving Patrol Productivity. Volume I. Routine Patrol.

    ERIC Educational Resources Information Center

    Gay, William G.; Schack, Stephen

    Designed to assist police departments in improving the productivity of their patrol operations, this volume on routine patrol and a companion volume on specialized patrol operations are intended for use by various sizes of departments. The volume on routine patrol focuses on the major issues of patrol productivity and recommends a number of…

  4. Geosynchronous Patrol Orbit for Space Situational Awareness

    NASA Astrophysics Data System (ADS)

    Thompson, B.; Kelecy, T.; Kubancik, T.; Flora, T.; Chylla, M.; Rose, D.

    Applying eccentricity to a geosynchronous orbit produces both longitudinal and radial motion when viewed in Earth-fixed coordinates. An interesting family of orbits emerges, useful for “neighborhood patrol” space situational awareness and other missions. The basic result is a periodic (daily), quasielliptical, closed path around a fixed region of the geosynchronous (geo) orbit belt, keeping a sensor spacecraft in relatively close vicinity to designated geo objects. The motion is similar, in some regards, to the relative motion that may be encountered during spacecraft proximity operations, but on a much larger scale. The patrol orbit does not occupy a fixed slot in the geo belt, and the east-west motion can be combined with north-south motion caused by orbital inclination, leading to even greater versatility. Some practical uses of the geo patrol orbit include space surveillance (including catalog maintenance), and general space situational awareness. The patrol orbit offers improved, diverse observation geometry for angles-only sensors, resulting in faster, more accurate orbit determination compared to simple inclined geo orbits. In this paper, we analyze the requirements for putting a spacecraft in a patrol orbit, the unique station keeping requirements to compensate for perturbations, repositioning the patrol orbit to a different location along the geo belt, maneuvering into, around, and out of the volume for proximity operations with objects within the volume, and safe end-of-life disposal requirements.

  5. Managing IceBridge Airborne Mission Data at the National Snow and Ice Data Center

    NASA Astrophysics Data System (ADS)

    Brodzik, M.; Kaminski, M. L.; Deems, J. S.; Scambos, T. A.

    2010-12-01

    Operation IceBridge (OIB) is a NASA airborne geophysical survey mission conducting laser altimetry, ice-penetrating radar profiling, gravimetry and other geophysical measurements to monitor and characterize the Earth's cryosphere. The IceBridge mission will operate from 2009 until after the launch of ICESat-II (currently planned for 2015), and provides continuity of measurements between that mission and its predecessor. Data collection sites include the Greenland and Antarctic Ice Sheets and the sea ice pack regions of both poles. These regions include some of the most rapidly changing areas of the cryosphere. IceBridge is also collecting data in East Antarctica via the University of Texas ICECAP program and in Alaska via the University of Alaska, Fairbanks glacier mapping program. The NSIDC Distributed Active Archive Center at the University of Colorado at Boulder provides data archive and distribution support for the IceBridge mission. Our IceBridge work is based on two guiding principles: ensuring preservation of the data, and maximizing usage of the data. This broadens our work beyond the typical scope of a data archive. In addition to the necessary data management, discovery, distribution, and outreach functions, we are also developing tools that will enable broader use of the data, and integrating diverse data types to enable new science research. Researchers require expeditious access to data collected from the IceBridge missions; our archive approach balances that need with our long-term preservation goal. We have adopted a "fast-track" approach to publish data quickly after collection and make it available via FTP download. Subsequently, data sets are archived in the NASA EOSDIS ECS system, which enables data discovery and distribution with the appropriate backup, documentation, and metadata to assure its availability for future research purposes. NSIDC is designing an IceBridge data portal to allow interactive data search, exploration, and subsetting via

  6. A Mission to Observe Ice in Clouds from Space

    NASA Technical Reports Server (NTRS)

    Ackerman, S.; O'CStarr, D.; Skofronick-Jackson, G.; Evans, F.; Wang, J. R.; Racette, P.; Norris, P.; daSilva, A.; Soden, B.

    2006-01-01

    To date there have been multiple satellite missions to observe and retrieve cloud top properties and the liquid in, and precipitation from, clouds. There are currently a few missions that attempt to measure cloud ice properties as a byproduct of other observations. However, we do not yet quantitatively understand the processes that control the water budget of the upper troposphere where ice is the predominant phase, and how these processes are linked to precipitation processes and the radiative energy budget. The ice in clouds either melts into rain or is detrained, and persists, as cirrus clouds affecting the hydrological and energy cycle, respectively. Fully modeling the Earth's climate and improving weather and climate forecasts requires accurate satellite measurements of various cloud properties at the temporal and spatial scales of cloud processes. The uncertainty in knowledge of these ice characteristics is reflected in the large discrepancies in model simulations of the upper tropospheric water budget. Model simulations are sensitive to the partition of ice between precipitation and outflow processes, i.e., to the parameterization of ice clouds and ice processes. This presentation will describe the Submillimeter-wave InfraRed Ice Cloud Experiment (SIRICE) concept, a satellite mission designed to acquire global Earth radiance measurements in the infrared and submillimeter-wave region (183-874 GHz). If successful, this mission will bridge the measurement gap between microwave sounders and shorter-wavelength infrared and visible sensors. The brightness temperatures at submillimeter-wave frequencies are especially sensitive to cirrus ice particle sizes (because they are comparable to the wavelength). This allows for more accurate ice water path estimates when multiple channels are used to probe into the cloud layers. Further, submillimeter wavelengths offer simplicity in the retrieval algorithms because they do not probe into the liquid and near surface portions

  7. Sea-Ice Mission Requirements for the US FIREX and Canada RADARSAT programs

    NASA Technical Reports Server (NTRS)

    Carsey, F. D.; Ramseier, R. O.; Weeks, W. F.

    1982-01-01

    A bilateral synthetic aperture radar (SAR) satellite program is defined. The studies include addressing the requirements supporting a SAR mission posed by a number of disciplines including science and operations in sea ice covered waters. Sea ice research problems such as ice information and total mission requirements, the mission components, the radar engineering parameters, and an approach to the transition of spacecraft SAR from a research to an operational tool were investigated.

  8. Lunar polar ice deposits: scientific and utilization objectives of the Lunar Ice Discovery Mission proposal.

    PubMed

    Duke, Michael B

    2002-03-01

    The Clementine mission has revived interest in the possibility that ice exists in shadowed craters near the lunar poles. Theoretically, the problem is complex, with several possible sources of water (meteoroid, asteroid, comet impact), several possible loss mechanisms (impact vaporization, sputtering, photoionization), and burial by meteorite impact. Opinions of modelers have ranged from no ice to several times 10(16) g of ice in the cold traps. Clementine bistatic radar data have been interpreted in favor of the presence of ice, while Arecibo radar data do not confirm its presence. The Lunar Prospector mission, planned to be flown in the fall of 1997, could gather new evidence for the existence of ice. If ice is present, both scientific and utilitarian objectives would be addressed by a lunar polar rover, such as that proposed to the NASA Discovery program, but not selected. The lunar polar rover remains the best way to understand the distribution and characteristics of lunar polar ice. c2002 International Astronautical Federation. Published by Elsevier Science Ltd. All rights reserved.

  9. Ice/frost/debris assessment for space shuttle mission STS-26R

    NASA Technical Reports Server (NTRS)

    Stevenson, Charles G.; Katnik, Gregory N.; Higginbotham, Scott A.

    1988-01-01

    An Ice/Frost/Debris Assessment was conducted for Space Shuttle Mission STS-26R. Debris inspections of the flight elements and launch pad are performed before and after launch. Ice/Frost conditions are assessed by use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by an on-pad visual inspection. High speed photography is viewed after launch to identify ice/debris sources and evaluate potential vehicle damage. The Ice/Frost/Debris conditions of Mission 26R and their effect on the Space Shuttle Program is documented.

  10. Forest Service patrol captain and patrol commanders report: nationwide study

    Treesearch

    Deborah J. Chavez; Joanne F. Tynon

    2007-01-01

    This is the third in a series of studies to evaluate perceptions of USDA Forest Service law enforcement personnel of the roles, responsibilities, and issues entailed in their jobs. An e-mail survey was administered to the 79 Forest Service patrol captains and patrol commanders (PCs) across the United States. Seventy completed and returned the questionnaire....

  11. Goodyear aerospace conceptual design maritime patrol airship ZP3G. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, N.D.

    1979-04-01

    A Conceptual design of a modern technology airship with precision hover capability for use in maritime patrol is described. The size and major characteristics are established by a series of United States Coast Guard missions set forth by the contracting agency.

  12. KSC ice/frost/debris assessment for space shuttle mission STS-29R

    NASA Technical Reports Server (NTRS)

    Stevenson, Charles G.; Katnik, Gregory N.; Higginbotham, Scott A.

    1989-01-01

    An ice/frost/debris assessment was conducted for Space Shuttle Mission STS-29R. Debris inspections of the flight elements and launch pad are performed before and after launch. Ice/frost conditions on the external tank are assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by an on-pad visual inspection. High speed photography is analyzed after launch to identify ice/debris sources and evaluate potential vehicle damage. The ice/frost/debris conditions of Mission STS-29R and their effect on the Space Shuttle Program are documented.

  13. KSC ice/frost/debris assessment for Space Shuttle Mission STS-30R

    NASA Technical Reports Server (NTRS)

    Stevenson, Charles G.; Katnik, Gregory N.; Higginbotham, Scott A.

    1989-01-01

    An ice/frost/debris assessment was conducted for Space Shuttle Mission STS-30R. Debris inspections of the flight elements and launch pad are performed before and after launch. Ice/frost conditions on the external tank are assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by an on-pad visual inspection. High speed photography is analyzed after launch to identify ice/debris sources and evaluate potential vehicle damage. The ice/frost/debris conditions of Mission STS-30R and their overall effect on the Space Shuttle Program is documented.

  14. Debris/Ice/TPS Assessment and Photographic Analysis for Shuttle Mission STS-39

    NASA Technical Reports Server (NTRS)

    Katnik, Gregory N.; Higginbotham, Scott A.; Davis, J. Bradley

    1991-01-01

    A Debris/Ice/TPS (thermal protection system) assessment and photographic analysis was conducted for Space Shuttle Mission STS-39. Debris inspections of the flight elements and launch pad were performed before and after launch. Ice/frost conditions on the external tank were assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography of launch was analyzed to identify ice/debris anomalies. The debris/ice/TPS conditions and photographic analysis of Mission STS-39, and their overall effect on the Space Shuttle Program are documented.

  15. Integrating mobile GIS, real-time D-GPS, and high-resolution satellite imagery for land use patrolling

    NASA Astrophysics Data System (ADS)

    Xu, Zhu; Chen, Xianwei; Liu, Guoxiang; Chen, Tao; Meng, Yanzi; Jiang, Lianjiang; Wang, Mei

    2009-06-01

    The illegal use of lands has come to impose a serious threat to land resources protection and land use plan implementation in China. Land use patrolling has long been proven to be an effective means for detection, investigation and prevention of illegal land use. However, land use patrolling performed in the traditional way is laborious and cumbersome. Central and regional government authorities are both seeking high-technology solution to enhance this job. In an effort to satisfy such requirements, we have designed and implemented an integrated system of mobile GIS, D-GPS and wireless Internet to assist land use patrolling and investigation. Details of this system are presented in this paper, including those of the system architecture, the field work-assisting subsystem, the Internet-based D-GPS subsystem ... etc. The main finding is that such technology is indispensable for land use patrolling and similar tasks. It can dramatically promote the patrolling or field work efficiency and tightly connect field and office staff to better perform the mission. Problems encountered in building the system are also discussed.

  16. Debris/Ice/TPS Assessment and Photographic Analysis for Shuttle Mission STS-38

    NASA Technical Reports Server (NTRS)

    Higginbotham, Scott A.; Davis, J. Bradley

    1991-01-01

    A debris/ice/TPS assessment and photographic analysis was conducted for the Space Shuttle Mission STS-38. Debris inspection of the flight elements and launch pad were performed before and after launch. Ice/frost conditions on the external tank were assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography was analyzed after launch to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. The debris/ice/TPS conditions and photographic analysis of Mission STS-38, and their overall effect on the Space Shuttle Program are documented.

  17. Debris/ice/TPS assessment and photographic analysis of shuttle mission STS-48

    NASA Technical Reports Server (NTRS)

    Higginbotham, Scott A.; Davis, J. Bradley

    1991-01-01

    A Debris/Ice/TPS assessment and photographic analysis was conducted for Space Shuttle Mission STS-48. Debris inspection of the flight elements and launch pad were performed before and after launch. Ice/frost conditions on the External Tank were assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography was analyzed after launch to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. The debris/ice/TPS conditions and photographic analysis of Mission STS-48 are documented, along with their overall effect on the Space Shuttle Program.

  18. Debris/Ice/TPS Assessment and Photographic Analysis for Shuttle Mission STS-37

    NASA Technical Reports Server (NTRS)

    Katnik, Gregory N.; Higginbotham, Scott A.; Davis, J. Bradley

    1991-01-01

    A Debris/Ice/TPS assessment and photographic analysis was conducted for Space Shuttle Mission STS-37. Debris inspections of the flight elements and launch pad were performed before and after launch. Ice/frost conditions on the External Tank were assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography of launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or inflight anomalies. The debris/ice/TPS conditions and photographic analysis of Mission STS-37 are documented, along with their overall effect on the Space Shuttle Program.

  19. Debris/ice/TPS assessment and photographic analysis for Shuttle Mission STS-36

    NASA Technical Reports Server (NTRS)

    Stevenson, Charles G.; Katnik, Gregory N.; Higginbotham, Scott A.

    1990-01-01

    A Debris/Ice/TPS (Thermal Protection System) assessment and photographic analysis was conducted for Space Shuttle Mission STS-36. Debris inspections of the flight elements and launch pad are performed before and after launch. Ice/frost conditions on the External Tank are assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography is analyzed after launch to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. The debris/ice/TPS conditions and photographic analysis of Mission STS-36, and their overall effect on the Space Shuttle Program are documented.

  20. Debris/ice/TPS assessment and photographic analysis for Shuttle Mission STS-42

    NASA Technical Reports Server (NTRS)

    Katnik, Gregory N.; Higginbotham, Scott A.; Davis, J. Bradley

    1992-01-01

    A Debris/Ice/TPS (Thermal Protection System) assessment and photographic analysis was conducted for Shuttle Mission STS-42. Debris inspection of the flight elements and launch pad were performed before and after launch. Ice/frost conditions on the External Tank were assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography was analyzed after launch to identify ice/debris sources and evaluate potential vehicle damage and/or in-flighr anomalies. The debris/ice/TPS conditions are documented along with photographic analysis of Mission STS-42, and their overall effect on the Space Shuttle Program.

  1. Debris/ice/TPS assessment and photographic analysis for Shuttle Mission STS-34

    NASA Technical Reports Server (NTRS)

    Stevenson, Charles G.; Katnik, Gregory N.; Higginbotham, Scott A.

    1989-01-01

    A Debris/Ice/Thermal Protection System (TPS) assessment and photographic analysis was conducted for Space Shuttle Mission STS-34. Debris inspections of the flight elements and launch pad are performed before and after launch. Ice/frost conditions on the External Tank are assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography is analyzed after launch to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. The debris/ice/TPS conditions and photographic analysis of Mission STS-34, and their overall effect on the Space Shuttle Program are documented.

  2. NASA's Lunar Polar Ice Prospector, RESOLVE: Mission Rehearsal in Apollo Valley

    NASA Technical Reports Server (NTRS)

    Larson, William E.; Picard, Martin; Quinn, Jacqueline; Sanders, Gerald B.; Colaprete, Anthony; Elphic, Richard C.

    2012-01-01

    After the completion of the Apollo Program, space agencies didn't visit the moon for many years. But then in the 90's, the Clementine and Lunar Prospector missions returned and showed evidence of water ice at the poles. Then in 2009 the Lunar Crater Observation and Sensing Satellite indisputably showed that the Cabeus crater contained water ice and other useful volatiles. Furthermore, instruments aboard the Lunar Reconnaissance Orbiter (LRO) show evidence that the water ice may also be present in areas that receive several days of continuous sunlight each month. However, before we can factor this resource into our mission designs, we must understand the distribution and quantity of ice or other volatiles at the poles and whether it can be reasonably harvested for use as propellant or mission consumables. NASA, in partnership with the Canadian Space Agency (CSA), has been developing a payload to answer these questions. The payload is named RESOLVE. RESOLVE is on a development path that will deliver a tested flight design by the end of 2014. The team has developed a Design Reference Mission using LRO data that has RESOLVE landing near Cabeus Crater in May of2016. One of the toughest obstacles for RESOLVE's solar powered mission is its tight timeline. RESOLVE must be able to complete its objectives in the 5-7 days of available sunlight. The RESOLVE team must be able to work around obstacles to the mission timeline in real time. They can't afford to take a day off to replan as other planetary missions have done. To insure that this mission can be executed as planned, a prototype version of RESOLVE was developed this year and tested at a lunar analog site on Hawaii, known as Apollo Valley, which was once used to train the Apollo astronauts. The RESOLVE team planned the mission with the same type of orbital imagery that would be available from LRO. The simulation team prepositioned a Lander in Apollo Valley with RESOLVE on top mounted on its CSA rover. Then the mission

  3. Debris/ice/TPS assessment and photographic analysis for shuttle mission STS-35

    NASA Technical Reports Server (NTRS)

    Katnik, Gregory N.; Higginbotham, Scott A.; Davis, James Bradley

    1991-01-01

    A debris/ice/Thermal Protection System (TPS) assessment and photographic analysis was conducted for Space Shuttle Mission STS-35. Debris inspections of the flight elements and launch pad were performed before and after the launch. Ice/frost conditions on the External Tank were assessed by the use of computer programs, monographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography was analyzed after launch to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. Documented here are the debris/ice/TPS conditions and photographic analysis of Mission STS-35, and the overall effect of these conditions on the Space Shuttle Program.

  4. Debris/Ice/TPS Assessment and Photographic Analysis for Shuttle Mission STS-41

    NASA Technical Reports Server (NTRS)

    Higginbotham, Scott A.; Davis, J. Bradley

    1990-01-01

    A Debris/Ice/Thermal Protection System (TPS) assessment and photographic analysis was conducted for Space Shuttle Mission STS-41. Debris inspections of the flight elements and launch pad were performed before and after launch. Ice/frost conditions on the External Tank were assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography was analyzed after launch to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. Documented here are the debris/ice/TPS conditions and photographic analysis of Mission STS-41, and their overall effect on the Space Shuttle Program.

  5. Debris/ice/TPS assessment and integrated photographic analysis for Shuttle Mission STS-55

    NASA Technical Reports Server (NTRS)

    Katnik, Gregory N.; Bowen, Barry C.; Davis, J. Bradley

    1993-01-01

    A Debris/Ice/TPS assessment and integrated photographic analysis was conducted for Shuttle mission STS-55. Debris inspections of the flight elements and launch pad were performed before and after launch. Ice/Frost conditions on the External Tank were assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography was analyzed after launch to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the debris/ice/TPS conditions and integrated photographic analysis of Shuttle mission STS-55, and the resulting effect on the Space Shuttle Program.

  6. Debris/ice/TPS assessment and integrated photographic analysis of Shuttle Mission STS-53

    NASA Technical Reports Server (NTRS)

    Katnik, Gregory N.; Higginbotham, Scott A.; Davis, J. Bradley

    1993-01-01

    A Debris/Ice/TPS assessment and integrated photographic analysis was conducted for Shuttle Mission STS-53. Debris inspections of the flight elements and launch pad were performed before and after launch. Ice/Frost conditions on the External Tank were assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography was analyzed after launch to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the debris/ice/TPS conditions and integrated photographic analysis of Shuttle Mission STS-53, and the resulting effect on the Space Shuttle Program.

  7. Debris/ice/TPS assessment and integrated photographic analysis for Shuttle Mission STS-54

    NASA Technical Reports Server (NTRS)

    Katnik, Gregory N.; Higginbotham, Scott A.; Davis, J. Bradley

    1993-01-01

    A Debris/Ice/TPS assessment and integrated photographic analysis was conducted for Shuttle Mission STS-54. Debris inspections of the flight elements and launch pad were performed before and after launch. Ice/frost conditions on the External Tank were assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography was analyzed after launch to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the debris/ice/TPS conditions and integrated photographic analysis of Shuttle Mission STS-54, and the resulting effect on the Space Shuttle Program.

  8. Debris/ice/TPS assessment and integrated photographic analysis for Shuttle mission STS-47

    NASA Technical Reports Server (NTRS)

    Katnik, Gregory N.; Higginbotham, Scott A.; Davis, J. Bradley

    1992-01-01

    A debris/ice/TPS assessment and integrated photographic analysis was conducted for Shuttle Mission STS-47. Debris inspections of the flight elements and launch pad were performed before and after launch. Ice/frost conditions on the External Tank were assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography was analyzed after launch to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the debris/ice/TPS conditions and integrated photographic analysis of Shuttle Mission STS-47, and the resulting effect on the Space Shuttle Program.

  9. Ice/frost/debris assessment for space shuttle mission STS-27R, December 2, 1988

    NASA Technical Reports Server (NTRS)

    Katnik, Gregory N.; Higginbotham, Scott A.

    1989-01-01

    An Ice/Frost/Debris assessment was conducted for Space Shuttle Mission STS-27R. Debris inspections of the flight elements and launch pad are performed before and after launch. Ice/frost conditions are assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by an on-pad visual inspection. High speed photography is viewed after launch to identify ice/debris sources and evaluate potential vehicle damage. The Ice/Frost/Debris conditions of Mission STS-27R and their effect on the Space Shuttle Program are documented.

  10. Multi-A Graph Patrolling and Partitioning

    NASA Astrophysics Data System (ADS)

    Elor, Y.; Bruckstein, A. M.

    2012-12-01

    We introduce a novel multi agent patrolling algorithm inspired by the behavior of gas filled balloons. Very low capability ant-like agents are considered with the task of patrolling an unknown area modeled as a graph. While executing the proposed algorithm, the agents dynamically partition the graph between them using simple local interactions, every agent assuming the responsibility for patrolling his subgraph. Balanced graph partition is an emergent behavior due to the local interactions between the agents in the swarm. Extensive simulations on various graphs (environments) showed that the average time to reach a balanced partition is linear with the graph size. The simulations yielded a convincing argument for conjecturing that if the graph being patrolled contains a balanced partition, the agents will find it. However, we could not prove this. Nevertheless, we have proved that if a balanced partition is reached, the maximum time lag between two successive visits to any vertex using the proposed strategy is at most twice the optimal so the patrol quality is at least half the optimal. In case of weighted graphs the patrol quality is at least (1)/(2){lmin}/{lmax} of the optimal where lmax (lmin) is the longest (shortest) edge in the graph.

  11. United States Coast Guard Fiscal Year 2009 Performance Report

    DTIC Science & Technology

    2010-02-01

    flooding. The International Ice Patrol facilitates interna- tional commerce by broadcasting information on iceberg locations to vessels transiting...SEA also provided back-up capability for the U.S. Antarctic Deep Freeze resupply mission. • The United States Coast Guard International Ice Patrol...tracked over 1,200 icebergs which drifted into the transatlantic shipping lanes continuing its perfect record, 96 years, of preventing ship collisions

  12. Debris/ice/TPS assessment and photographic analysis for Shuttle Mission STS-33R

    NASA Technical Reports Server (NTRS)

    Stevenson, Charles G.; Katnik, Gregory N.; Higginbotham, Scott A.

    1989-01-01

    A debris/ice/Thermal Protection System (TPS) assessment and photographic analysis was conducted for Space Shuttle Mission STS-33R. Debris inspections of the flight elements and launch pad are performed before and after launch. Ice/frost conditions on the external tank are assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography is analyzed after launch to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the debris/ice/TPS conditions and photographic analysis of Mission STS-33R, and their overall effect on the Space Shuttle Program.

  13. Debris/ice/TPS assessment and photographic analysis for shuttle mission STS-31R

    NASA Technical Reports Server (NTRS)

    Katnik, Gregory N.; Higginbotham, Scott A.; Davis, J. Bradley

    1990-01-01

    A Debris/Ice/Thermal Protection System (TPS) assessment and photographic analysis was conducted for Space Shuttle Mission STS-31R. Debris inspections of the flight elements and launch pad are performed before and after launch. Ice/frost conditions on the External Tank are assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography is analyzed after launch to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. The debris/ice/TPS conditions and photographic analysis of Mission STS-31R, is presented along with their overall effect on the Space Shuttle Program.

  14. Debris/ice/tps Assessment and Integrated Photographic Analysis of Shuttle Mission STS-81

    NASA Technical Reports Server (NTRS)

    Katnik, Gregory N.; Lin, Jill D.

    1997-01-01

    A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-81. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Shuttle mission STS-81 and the resulting effect on the Space Shuttle Program.

  15. Debris/ice/tps Assessment and Integrated Photographic Analysis of Shuttle Mission STS-83

    NASA Technical Reports Server (NTRS)

    Lin, Jill D.; Katnik, Gregory N.

    1997-01-01

    A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-83. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Shuttle mission STS-83 and the resulting effect on the Space Shuttle Program.

  16. Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-103

    NASA Technical Reports Server (NTRS)

    Katnik, Gregory N.

    2000-01-01

    A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-103. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Space Shuttle mission STS-103 and the resulting effect on the Space Shuttle Program.

  17. Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-91

    NASA Technical Reports Server (NTRS)

    Katnik, Gregory N.

    1998-01-01

    A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-91. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Space Shuttle mission STS-91 and the resulting effect on the Space Shuttle Program.

  18. Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-93

    NASA Technical Reports Server (NTRS)

    Katnik, Gregory N.

    1999-01-01

    A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-93. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis findings of Space Shuttle mission STS-93 and the resulting effect on the Space Shuttle Program.

  19. Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-95

    NASA Technical Reports Server (NTRS)

    Katnik, Gregory N.

    1999-01-01

    A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-95. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Space Shuttle mission STS-95 and the resulting effect on the Space Shuttle Program.

  20. Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-90

    NASA Technical Reports Server (NTRS)

    Katnik, Gregory N.

    1998-01-01

    A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-90. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection system-conditions and integrated photographic analysis of Space Shuttle mission STS-90 and the resulting effect on the Space Shuttle Program.

  1. Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-80

    NASA Technical Reports Server (NTRS)

    Katnik, Gregory N.; Lin, Jill D.

    1997-01-01

    A debris/ice/thermal protection system (TPS) assessment and integrated photographic analysis was conducted for Shuttle mission STS-80. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Shuttle mission Space Transportation System (STS-80) and the resulting effect on the Space Shuttle Program.

  2. Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-89

    NASA Technical Reports Server (NTRS)

    Katnik, Gregory N.

    1998-01-01

    A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-89. Debris inspections of the flight element and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection systems conditions and integrated photographic analysis of Space Shuttle mission STS-89 and the resulting effect on the Space Shuttle Program.

  3. Debris/ice/TPS assessment and integrated photographic analysis of Shuttle Mission STS-71

    NASA Technical Reports Server (NTRS)

    Katnik, Gregory N.; Bowen, Barry C.; Davis, J. Bradley

    1995-01-01

    A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-71. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanner data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Shuttle mission STS-71 and the resulting effect on the Space Shuttle Program.

  4. Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-102

    NASA Technical Reports Server (NTRS)

    Rivera, Jorge E.; Kelly, J. David (Technical Monitor)

    2001-01-01

    A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-102. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch were analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or inflight anomalies. This report documents the debris/ice /thermal protection system conditions and integrated photographic analysis of Space Shuttle mission STS-102 and the resulting effect on the Space Shuttle Program.

  5. Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-94

    NASA Technical Reports Server (NTRS)

    Bowen, Barry C.; Lin, Jill D.

    1997-01-01

    A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-94. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Shuttle mission STS-94 and the resulting effect on the Space Shuttle Program.

  6. Debris/ice/tps Assessment and Integrated Photographic Analysis of Shuttle Mission STS-79

    NASA Technical Reports Server (NTRS)

    Katnik, Gregory N.; Lin, Jill D.

    1996-01-01

    A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-79. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Shuttle mission STS-79 and the resulting effect on the Space Shuttle Program.

  7. Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-112

    NASA Technical Reports Server (NTRS)

    Oliu, Armando

    2002-01-01

    A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-112. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. The report documents the debris/ice/thermal protection system conditions and integrated photographic analysis of Space Shuttle mission STS-112 and the resulting effect of the Space Shuttle Program.

  8. Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-74

    NASA Technical Reports Server (NTRS)

    Katnik, Gregory N.; Bowen, Barry C.; Lin, Jill D.

    1996-01-01

    A debris/ice/thermal protection system (TPS) assessment and integrated photographic analysis was conducted for shuttle mission STS-74. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanner data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of shuttle mission STS-74 and the resulting effect on the Space Shuttle Program.

  9. Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-87

    NASA Technical Reports Server (NTRS)

    Katnik, Gregory N.

    1998-01-01

    A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-87. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the-use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Space Shuttle mission STS-87 and the resulting effect on the Space Shuttle Program.

  10. Debris/ice/tps Assessment and Integrated Photographic Analysis of Shuttle Mission STS-96

    NASA Technical Reports Server (NTRS)

    Katnik, Gregory N.

    1999-01-01

    A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-96. Debris inspections of the flight elements and launch pad were performed before and after launch. icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Space Shuttle mission STS-96 and the resulting effect on the Space Shuttle Program.

  11. Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-101

    NASA Technical Reports Server (NTRS)

    Katnik, Gregory N.

    2000-01-01

    A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle Mission STS-101. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Space Shuttle mission STS-101 and the resulting effect on the Space Shuttle Program.

  12. Debris/ice/TPS assessment and integrated photographic analysis of Shuttle mission STS-73

    NASA Technical Reports Server (NTRS)

    Katnik, Gregory N.; Bowen, Barry C.; Lin, Jill D.

    1995-01-01

    A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-73. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanner data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Shuttle Mission STS-73 and the resulting effect on the Space Shuttle Program.

  13. Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-88

    NASA Technical Reports Server (NTRS)

    Katnik, Gregory N.

    1999-01-01

    A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-88. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Space Shuttle mission STS-88 and the resulting effect on the Space Shuttle Program.

  14. Debris/ice/TPS assessment and integrated photographic analysis of Shuttle mission STS-68

    NASA Technical Reports Server (NTRS)

    Rivera, Jorge E.; Bowen, Barry C.; Davis, J. Bradley; Speece, Robert F.

    1994-01-01

    A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-68. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report-documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Shuttle mission STS-68, and the resulting effect on the Space Shuttle Program.

  15. Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-111

    NASA Technical Reports Server (NTRS)

    Oliu, Armando

    2005-01-01

    A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-111. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. The report documents the debris/ice/thermal protection system conditions and integrated photographic analysis of Space Shuttle mission STS-111 and the resulting effect of the Space Shuttle Program.

  16. Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-99

    NASA Technical Reports Server (NTRS)

    Katnik, Gregory N.

    2000-01-01

    A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-99. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the debris/ice/thermal protection system conditions and integrated photographic analysis of Space Shuttle mission STS-99 and the resulting effect on the Space Shuttle Program.

  17. Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-98

    NASA Technical Reports Server (NTRS)

    Speece, Robert F.

    2004-01-01

    A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle Mission STS-98. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the debris/ice/thermal protection system conditions and integrated photographic analysis of Space Shuttle mission STS-98 and the resulting effect on the Space Shuttle Program.

  18. Debris/ice/TPS assessment and integrated photographic analysis of shuttle mission STS-63

    NASA Technical Reports Server (NTRS)

    Katnik, Gregory N.; Bowen, Barry C.; Davis, J. Bradley

    1995-01-01

    A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for shuttle mission STS-63. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the external tank were assessed by the use of computer programs, monographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of shuttle mission STS-63, and the resulting effect on the space shuttle program.

  19. Debris/ice/TPS assessment and integrated photographic analysis of Shuttle mission STS-66

    NASA Technical Reports Server (NTRS)

    Katnik, Gregory N.; Bowen, Barry C.; Davis, J. Bradley

    1995-01-01

    A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-66. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer program nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Shuttle mission STS-66, and the resulting effect on the Space Shuttle Program.

  20. Debris/Ice/TPS Assessment and Integrated Photographic Analysis for Shuttle Mission STS-49

    NASA Technical Reports Server (NTRS)

    Katnik, Gregory N.; Higginbotham, Scott A.; Davis, J. Bradley

    1992-01-01

    A debris/ice/Thermal Protection System (TPS) assessment and integrated photographic analysis was conducted for Shuttle Mission STS-49. Debris inspections of the flight elements and launch pad were performed before and after launch. Ice/frost conditions on the External Tank were assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography was analyzed after launch to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. Debris/ice/TPS conditions and integrated photographic analysis of Shuttle Mission STS-49, and the resulting effect on the Space Shuttle Program are discussed.

  1. Debris/Ice/TPS assessment and integrated photographic analysis of shuttle mission STS-76

    NASA Technical Reports Server (NTRS)

    Lin, Jill D.

    1996-01-01

    A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-76. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Shuttle mission STS-76 and the resulting effect on the Space Shuttle Program.

  2. Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-97

    NASA Technical Reports Server (NTRS)

    Rivera, Jorge E.; Kelly, J. David (Technical Monitor)

    2001-01-01

    A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-97. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch were analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the debris /ice/thermal protection system conditions and integrated photographic analysis of Space Shuttle mission STS-97 and the resulting effect on the Space Shuttle Program.

  3. Debris/Ice/TPS assessment and integrated photographic analysis of Shuttle Mission STS-77

    NASA Technical Reports Server (NTRS)

    Katnik, GregoryN.; Lin, Jill D. (Compiler)

    1996-01-01

    A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-77. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Shuttle mission STS-77 and the resulting effect on the Space Shuttle Program.

  4. Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-86

    NASA Technical Reports Server (NTRS)

    Katnik, Gregory N.; Lin, Jill D.

    1997-01-01

    A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-86. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Space Shuttle mission STS-86 and the resulting affect on the Space Shuttle Program.

  5. Debris/ice/TPS assessment and integrated photographic analysis of Shuttle Mission STS-70

    NASA Technical Reports Server (NTRS)

    Katnik, Gregory N.; Bowen, Barry C.; Davis, J. Bradley

    1995-01-01

    A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-70. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanner data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Shuttle mission STS-70 and the resulting effect on the Space Shuttle Program.

  6. Debris/ice/TPS assessment and integrated photographic analysis for Shuttle Mission STS-51

    NASA Technical Reports Server (NTRS)

    Katnik, Gregory N.; Bowen, Barry C.; Davis, J. Bradley

    1993-01-01

    A debris/ice/thermal protection system (TPS) assessment and integrated photographic analysis was conducted for shuttle mission STS-51. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the external tank were assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography was analyzed after launch to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the debris/ice/TPS conditions and integrated photographic analysis of Shuttle mission STS-51 and the resulting effect on the Space Shuttle Program.

  7. Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-100

    NASA Technical Reports Server (NTRS)

    Oliu, Armando

    2004-01-01

    A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-100. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. The report documents the debris/ice/thermal protection system conditions and integrated photographic analysis of Space Shuttle mission STS-100 and the resulting effect of the Space Shuttle Program.

  8. Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-92

    NASA Technical Reports Server (NTRS)

    Katnik, Gregory N.

    2000-01-01

    A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-92. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the debris/ice/thermal protection system conditions and integrated photographic analysis of Space Shuttle mission STS-92 and the resulting effect, if any, on the Space Shuttle Program.

  9. Debris/ice/TPS assessment and integrated photographic analysis of Shuttle mission STS-69

    NASA Technical Reports Server (NTRS)

    Katnik, Gregory N.; Bowen, Barry C.; Davis, J. Bradley

    1995-01-01

    A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-69. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanner data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in flight anomalies. This report documents the ice/debris/thermal protection system condition and integrated photographic analysis of Shuttle Mission STS-69 and the resulting effect on the Space Shuttle Program.

  10. Debris/ice/TPS assessment and integrated photographic analysis for Shuttle Mission STS-52

    NASA Technical Reports Server (NTRS)

    Katnik, Gregory N.; Higginbotham, Scott A.; Davis, J. Bradley

    1992-01-01

    A debris/ice/Thermal Protection System (TPS) assessment and integrated photographic analysis was conducted for Shuttle Mission STS-47. Debris inspections of the flight elements and launch pad were performed before and after launch. Ice/frost conditions on the external tank were assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography was analyzed after launch to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the debris/ice/TPS conditions and integrated photographic analysis of Shuttle Mission STS-52, and the resulting effect on the Space Shuttle Program.

  11. Debris/ice/TPS assessment and integrated photographic analysis of Shuttle Mission STS-65

    NASA Technical Reports Server (NTRS)

    Katnik, Gregory N.; Bowen, Barry C.; Davis, J. Bradley

    1994-01-01

    A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for shuttle mission STS-65. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the external tank were assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of shuttle mission STS-65, and the resulting effect on the Space Shuttle Program.

  12. Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-106

    NASA Technical Reports Server (NTRS)

    Katnik, Gregory N.; Kelley, J. David (Technical Monitor)

    2000-01-01

    A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-106. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and in-flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Space Shuttle mission STS-106 and the resulting effect on the Space Shuttle Program.

  13. Debris/Ice/TPS assessment and integrated photographic analysis for Shuttle Mission STS-61

    NASA Technical Reports Server (NTRS)

    Katnik, Gregory N.; Bowen, Barry C.; Davis, J. Bradley

    1994-01-01

    A debris/ice/thermal protection system (TPS) assessment and integrated photographic analysis was conducted for shuttle mission STS-61. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the external tank were assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/TPS conditions and integrated photographic analysis of shuttle mission STS-61, and the resulting effect on the space shuttle program.

  14. Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-72

    NASA Technical Reports Server (NTRS)

    Katnik, Gregory N.; Bowen, Barry C.; Lin, Jill D.

    1996-01-01

    A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-72. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Shuttle mission STS-72 and the resulting effect on the Space Shuttle Program.

  15. Debris/ice/TPS assessment and integrated photographic analysis for Shuttle mission STS-58

    NASA Technical Reports Server (NTRS)

    Davis, J. Bradley; Rivera, Jorge E.; Katnik, Gregory N.; Bowen, Barry C.; Speece, Robert F.; Rosado, Pedro J.

    1994-01-01

    A debris/ice/thermal protection system (TPS) assessment and integrated photographic analysis was conducted for Shuttle mission STS-58. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. The ice/debris/TPS conditions and integrated photographic analysis of Shuttle mission STS-58, and the resulting effect on the Space Shuttle Program are documented.

  16. Debris/ice/TPS assessment and photographic analysis for Shuttle Mission STS-28R

    NASA Technical Reports Server (NTRS)

    Stevenson, Charles G.; Katnik, Gregory N.; Higginbotham, Scott A.

    1989-01-01

    A Debris/Ice/TPS assessment and photographic analysis was conducted for Space Shuttle Mission STS-28R. Debris inspections of the flight elements and launch pad are performed before and after launch. Ice/Frost conditions on the External Tank are assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography is analyzed after launch to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. The debris/ice/TPS conditions and photographic analysis of Mission STS-28R is documented along with their overall effect on the Space Shuttle Program.

  17. Core to Atmosphere Exploration of Ice Giants: A Uranus Mission Concept Study

    NASA Astrophysics Data System (ADS)

    Jensema, R. J.; Arias-Young, T. M.; Wilkins, A. N.; Ermakov, A.; Bennett, C.; Dietrich, A.; Hemingway, D.; Klein, V.; Mane, P.; Marr, K. D.; Masterson, J.; Siegel, V.; Stober, K. J.; Talpe, M.; Vines, S. K.; Wetteland, C. J.

    2014-12-01

    Ice giants remain largely unexplored, as their large distance from the Sun limits both Earth-based observations and spacecraft visits. The significant occurrence of ice giant-sized planets among detected exoplanets presents an impetus to study Uranus to understand planetary formation, dynamics, and evolution. In addition, Uranus is also uniquely interesting, given the large inclination of its rotation axis and magnetospheric configuration. In this work, we design a mission concept that aims to maximize scientific return by measuring Uranus' chemical composition, internal structure, and magnetosphere, the first two being primary indicators of ice giant formation mechanisms. For this study, we analyze the trade space for a Uranus mission constrained by a cost cap of $1B. We discuss the decision making processes behind our choices of the science priorities, instrument suite and orbital configuration. Trade space decisions include a strong onboard instrument suite in lieu of a descent probe, an orbiter instead of a flyby mission, and design constraints on the power and propulsion systems. The mission, CAELUS (Core and Atmospheric Evolution Laboratory for Uranus Science), is designed for an August 2023 launch. Following a 14-year cruise with multiple planetary gravity assists, the spacecraft would begin its science mission, which consists of a series of ten 30-day near-polar orbits around Uranus. The instrument suite would consist of a microwave radiometer, Doppler seismometer, magnetometer, and UV spectrometer. These four instruments, along with a high-gain antenna capable of gravity science, would provide a comprehensive science return that meets the bulk of the scientific objectives of the 2013 NRC Planetary Science Decadal Survey for ice giants, most notably those regarding the chemical composition, interior structure, and dynamo of Uranus. This mission concept was created as part of an educational exercise for the 2014 Planetary Science Summer School at the Jet

  18. 46 CFR 78.47-23 - Supervised patrol stations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 3 2012-10-01 2012-10-01 false Supervised patrol stations. 78.47-23 Section 78.47-23... Fire and Emergency Equipment, Etc. § 78.47-23 Supervised patrol stations. (a) Each supervised patrol clock or key station shall be numbered. (b) [Reserved] ...

  19. 46 CFR 78.47-23 - Supervised patrol stations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 3 2011-10-01 2011-10-01 false Supervised patrol stations. 78.47-23 Section 78.47-23... Fire and Emergency Equipment, Etc. § 78.47-23 Supervised patrol stations. (a) Each supervised patrol clock or key station shall be numbered. (b) [Reserved] ...

  20. 46 CFR 78.47-23 - Supervised patrol stations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Supervised patrol stations. 78.47-23 Section 78.47-23... Fire and Emergency Equipment, Etc. § 78.47-23 Supervised patrol stations. (a) Each supervised patrol clock or key station shall be numbered. (b) [Reserved] ...

  1. Debris/ice/TPS assessment and integrated photographic analysis for Shuttle Mission STS-50

    NASA Technical Reports Server (NTRS)

    Higginbotham, Scott A.; Davis, J. Bradley; Katnik, Gregory N.

    1992-01-01

    Thermal Protection System (TPS) assessment and integrated photographic analysis was conducted for Shuttle Mission STS-50. Debris inspections of the flight elements and launch pad were performed before and after launch. Ice/frost conditions on the external tank were assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography was analyzed after launch to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. The debris/ice/TPS conditions and integrated photographic analysis of Shuttle Mission STS-50, and the resulting effect on the Space Shuttle Program are documented.

  2. Evaluation of arterial service patrol programs.

    DOT National Transportation Integrated Search

    2009-12-01

    This evaluation of the Arterial Service Patrol named I-64 Traffic Response (TR) is an interim report covering the first full year of operation. This Arterial Service Patrol was part of a regional traffic management strategy to address mobility issues...

  3. Ice/frost/debris assessment for space shuttle Mission STS-32 (61-C)

    NASA Technical Reports Server (NTRS)

    Stevenson, Charles G.; Katnik, Gregory N.; Speece, Robert F.

    1986-01-01

    An Ice/Frost/Debris assessment was conducted for Space Shuttle Mission STS-32 (61-C). This assessment begins with debris inspections of the flight elements and launch facilities before and after launch. Ice/Frost formations are calculated during cryogenic loading of the external tank followed by an on-pad assessment of the Shuttle vehicle and pad at T-3 hours in the countdown. High speed films are reviewed after launch to identify Ice/Frost/Debris sources and investigate potential vehicle damage. The Ice/Frost/Debris conditions and their effects on the Space Shuttle are documented.

  4. Utah ski patrol: assessing training types and resources.

    PubMed

    Sagalyn, Emily B; McDevitt, Marion C; Ernst, Ryan

    2014-12-01

    Skiers and snowboarders incur a variety of injuries and medical emergencies each year at ski resorts. The ski patrol is primarily responsible for initial triage, assessment and stabilization of these problems. The purpose of this study was to subjectively evaluate the type of training, resources, and equipment available to local ski patrols within Utah. Ski patrol directors at ski resorts in Utah were asked to complete a voluntary computerized survey. Of the 14 ski areas in Utah, ski patrol directors representing 8 resorts responded. The majority of patrols in Utah use Outdoor Emergency Care (OEC) as their primary education and certification source. Most programs also include site-specific training in addition to basic certification. All responding resorts had basic first responder equipment, including splinting devices, basic airway management, and hemorrhage control. Six of 8 responding resorts had affiliated clinics, and all had access to aeromedical transport. All of the responding ski patrol directors believed the current training level was adequate. Utah area ski patrollers frequently see trauma-related injuries and have the resources to assess and provide initial immobilization techniques. Many resorts have affiliated clinics with advanced providers, and all have access to aeromedical support to rapidly transfer patients to trauma centers. Medical directors may be of use for training as well as developing extended scope of practice protocols for advanced airway use or medication administration. Patrols may benefit from additional resort-specific training that addresses other frequently seen injuries or illnesses. Copyright © 2014 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.

  5. Optimal Patrol to Detect Attacks at Dispersed Heterogeneous Locations

    DTIC Science & Technology

    2013-12-01

    path with one revisit SPR2 Shortest path with two revisits SPR3 Shortest path with three revisits TSP Traveling salesman problem UAV Unmanned aerial...path patrol pattern. Finding the shortest-path patrol pattern is an example of solving a traveling salesman problem , as described in Section 16.5 of...use of patrol paths based on the traveling salesman prob- lem (TSP), where patrollers follow the shortest Hamiltonian cycle in a graph in order to

  6. 46 CFR 169.821 - Patrol person.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Patrol person. 169.821 Section 169.821 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Operations § 169.821 Patrol person. (a) The master shall designate a member of the ship's company to be a roving...

  7. 46 CFR 169.821 - Patrol person.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Patrol person. 169.821 Section 169.821 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Operations § 169.821 Patrol person. (a) The master shall designate a member of the ship's company to be a roving...

  8. Ice Dragon: A Mission to Address Science and Human Exploration Objectives on Mars

    NASA Technical Reports Server (NTRS)

    Stoker, Carol R.; Davila, A.; Sanders, G.; Glass, Brian; Gonzales, A.; Heldmann, Jennifer; Karcz, J.; Lemke, L.; Sanders, G.

    2012-01-01

    We present a mission concept where a SpaceX Dragon capsule lands a payload on Mars that samples ground ice to search for evidence of life, assess hazards to future human missions, and demonstrate use of Martian resources.

  9. Ice Dragon: A Mission to Address Science and Human Exploration Objectives on Mars

    NASA Astrophysics Data System (ADS)

    Stoker, C.; Davilla, A.; Davis, S.; Glass, B.; Gonzales, A.; Heldmann, J.; Karcz, J.; Lemke, L.; Sanders, G.

    2012-06-01

    We present a mission concept where a SpaceX Dragon capsule lands a payload on Mars that samples ground ice to search for evidence of life, assess hazards to future human missions, and demonstrate use of Martian resources.

  10. Improving mobility : saving lives : safety service patrols

    DOT National Transportation Integrated Search

    1999-01-01

    This brochure describes how safety service patrols can be of value in minimizing disruption of incidents and maximizing traffic flow. The service patrols are equipped to handle emergencies and are a cost effective component of traffic management syst...

  11. Microsensors for border patrol applications

    NASA Astrophysics Data System (ADS)

    Falkofske, Dwight; Krantz, Brian; Shimazu, Ron; Berglund, Victor

    2005-05-01

    A top concern in homeland security efforts is the lack of ability to monitor the thousands of miles of open border with our neighbors. It is not currently feasible to continually monitor the borders for illegal intrusions. The MicroSensor System (MSS) seeks to achieve a low-cost monitoring solution that can be efficiently deployed for border patrol applications. The modifications and issues regarding the unique requirements of this application will be discussed and presented. The MicroSensor System was developed by the Defense Microelectronics Activity (DMEA) for military applications, but border patrol applications, with their unique sensor requirements, demand careful adaptation and modification from the military application. Adaptation of the existing sensor design for border applications has been initiated. Coverage issues, communications needs, and other requirements need to be explored for the border patrol application. Currently, border patrol has a number of deficiencies that can be addressed with a microsensor network. First, a distributed networked sensor field could mitigate the porous border intruder detection problem. Second, a unified database needs to be available to identify aliens attempting to cross into the United States. This database needs to take unique characteristics (e.g. biometrics, fingerprints) recovered from a specialized field unit to reliably identify intruders. Finally, this sensor network needs to provide a communication ability to allow border patrol officers to have quick access to intrusion information as well as equipment tracking and voice communication. MSS already addresses the sensing portion of the solution, including detection of acoustic, infrared, magnetic, and seismic events. MSS also includes a low-power networking protocol to lengthen the battery life. In addition to current military requirements, MSS needs a solar panel solution to extend its battery life to 5 years, and an additional backbone communication link

  12. Lunar Ice Cube: Development of a Deep Space Cubesat Mission

    NASA Astrophysics Data System (ADS)

    Clark, P. E.; Malphrus, B.; McElroy, D.; Schabert, J.; Wilczewski, S.; Farrell, W.; Brambora, C.; Macdowall, R.; Folta, D.; Hurford, T.; Patel, D.; Banks, S.; Reuter, D.; Brown, K.; Angkasa, K.; Tsay, M.

    2017-10-01

    Lunar Ice Cube, a 6U deep space cubesat mission, will be deployed by EM1. It will demonstrate cubesat propulsion, the Busek BIT 3 RF Ion engine, and a compact instrument capable of addressing HEOMD Strategic Knowledge Gaps related to lunar volatiles.

  13. Service patrol handbook.

    DOT National Transportation Integrated Search

    2008-11-01

    This Handbook provides an overview of the Full-Function Service Patrol (FFSP) and describes desired program characteristics from the viewpoint of an agency that is responsible for funding, managing, and operating the services. Presented guidelines an...

  14. Debris/ice/TPS assessment and photographic analysis for Shuttle Mission STS-43

    NASA Technical Reports Server (NTRS)

    Katnik, Gregory N.; Higginbotham, Scott A.; Davis, James Bradley

    1991-01-01

    A debris/ice Thermal Protection System (TPS) assessment and photographic analysis was conducted for Space Station Mission STS-43. Debris inspections of the flight elements and launch pad were performed before and after launch. Ice/frost conditions on the External Tank (ET) were assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography was analyzed after launch to identify ice/debris sources and to evaluate potential vehicle damage and/or in-flight anomalies.

  15. Debris/Ice/TPS Assessment and Photographic Analysis for Shuttle Mission STS-40

    NASA Technical Reports Server (NTRS)

    Katnik, Gregory N.; Higginbotham, Scott A.; Davis, J. Bradley

    1991-01-01

    A debris, ice, Thermal Protection System (TPS) assessment and photographic analysis for Space Shuttle Mission STS-40 was conducted. Debris inspections of the flight elements and launch pad were performed before and after launch. Ice and frost conditions on the External Tank were assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography was analyzed after launch to identify ice and debris sources and to evaluate potential vehicle damage and/or in-flight anomalies.

  16. Decentralized Patrolling Under Constraints in Dynamic Environments.

    PubMed

    Shaofei Chen; Feng Wu; Lincheng Shen; Jing Chen; Ramchurn, Sarvapali D

    2016-12-01

    We investigate a decentralized patrolling problem for dynamic environments where information is distributed alongside threats. In this problem, agents obtain information at a location, but may suffer attacks from the threat at that location. In a decentralized fashion, each agent patrols in a designated area of the environment and interacts with a limited number of agents. Therefore, the goal of these agents is to coordinate to gather as much information as possible while limiting the damage incurred. Hence, we model this class of problem as a transition-decoupled partially observable Markov decision process with health constraints. Furthermore, we propose scalable decentralized online algorithms based on Monte Carlo tree search and a factored belief vector. We empirically evaluate our algorithms on decentralized patrolling problems and benchmark them against the state-of-the-art online planning solver. The results show that our approach outperforms the state-of-the-art by more than 56% for six agents patrolling problems and can scale up to 24 agents in reasonable time.

  17. The ODINUS Mission Concept: a Mission to the Ice Giant Planets

    NASA Astrophysics Data System (ADS)

    Turrini, Diego; Politi, Romolo; Peron, Roberto; Grassi, Davide; Plainaki, Christina; Barbieri, Mauro; Massimo Lucchesi, David; Magni, Gianfranco; Altieri, Francesca; Cottini, Valeria; Gorius, Nicolas; Gaulme, Patrick; Schmider, François-Xavier; Adriani, Alberto; Piccioni, Giuseppe

    2014-05-01

    We present the scientific case and the mission concept for the comparative exploration of the ice giant planets Uranus and Neptune and their satellites with a pair of twin spacecraft: ODINUS (Origins, Dynamics and Interiors of Neptunian and Uranian Systems). The ODINUS proposal was submitted in response to the call for white papers for the definition of the themes of the L2 and L3 mission in the framework of the ESA Cosmic Vision 2015-2025 program. The goal of ODINUS is the advancement of our understanding of the ancient past of the Solar System and, more generally, of how planetary systems form and evolve. The mission concept is focused on providing elements to answer to the scientific themes of the Cosmic Vision 2015-2025 program: What are the conditions for planetary formation and the emergency of life? How does the Solar System work? What are the fundamental physical laws of the Universe? In order to achieve its goals, the ODINUS mission concept proposed the use of two twin spacecraft to be put in orbit around Uranus and Neptune respectively, with selected flybys of their satellites. The proposed measurements aim to study the atmospheres and magnetospheres of the planets, the surfaces of the satellites, and the interior structure and composition of both satellites and planets. An important possibility for performing fundamental physics studies (among them tests of general relativity theory) is offered by the cruise phase. After the extremely positive evaluation of ESA Senior Survey Committee, who stated that 'the exploration of the icy giants appears to be a timely milestone, fully appropriate for an L class mission', we discuss strategies to comparatively study Uranus and Neptune with future international missions.

  18. Multi-Agent Patrolling under Uncertainty and Threats.

    PubMed

    Chen, Shaofei; Wu, Feng; Shen, Lincheng; Chen, Jing; Ramchurn, Sarvapali D

    2015-01-01

    We investigate a multi-agent patrolling problem where information is distributed alongside threats in environments with uncertainties. Specifically, the information and threat at each location are independently modelled as multi-state Markov chains, whose states are not observed until the location is visited by an agent. While agents will obtain information at a location, they may also suffer damage from the threat at that location. Therefore, the goal of the agents is to gather as much information as possible while mitigating the damage incurred. To address this challenge, we formulate the single-agent patrolling problem as a Partially Observable Markov Decision Process (POMDP) and propose a computationally efficient algorithm to solve this model. Building upon this, to compute patrols for multiple agents, the single-agent algorithm is extended for each agent with the aim of maximising its marginal contribution to the team. We empirically evaluate our algorithm on problems of multi-agent patrolling and show that it outperforms a baseline algorithm up to 44% for 10 agents and by 21% for 15 agents in large domains.

  19. Security Games Involving Search and Patrolling

    DTIC Science & Technology

    2017-04-28

    AFRL-AFOSR-UK-TR-2017-0032 Security Games Involving Search and Patrolling Steve Alpern UNIVERSITY OF WARWICK Final Report 04/28/2017 DISTRIBUTION A...From - To) 01 Feb 2014 to 31 Jan 2017 4. TITLE AND SUBTITLE Security Games Involving Search and Patrolling 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER...interview sequentially has been recently published. Work of Alpern and Howard (2016) solves a class of winner-take-all games which include the

  20. Debris/ice/TPS assessment and integrated photographic analysis of Shuttle Mission STS-64 on 9 August 1994

    NASA Technical Reports Server (NTRS)

    Davis, J. Bradley; Bowen, Barry C.; Rivera, Jorge E.; Speece, Robert F.; Katnik, Gregory N.

    1994-01-01

    A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-64. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Shuttle mission STS-64, and the resulting effect on the Space Shuttle Program.

  1. Results of the first Seismometer to Investigate Ice and Ocean Structure (SIIOS) Analogue Mission

    NASA Astrophysics Data System (ADS)

    Della-Giustina, Daniella; Bray, Veronica; "Hop" Bailey, Samuel; Pettit, Erin; Schmerr, Nicholas; Dahl, Peter; Avenson, Brad; Byrne, Shane; SIIOS Team

    2017-10-01

    The icy moons of Europa and Enceladus are thought to have global subsurface oceans in contact with mineral-rich interiors, likely providing the ingredients needed for life as we know it. The possibility of life forming in the ocean or in melt pockets, relies on the presence of a source of energy and chemistry for biological molecule formation. A thick, stagnant ice crust would likely prevent transfer of oxidants from the surface to the water, halting the development of life. The ice thickness and structure is therefore one of the most important and controversial topics in astrobiology.The best way to access an icy moon’s interior structure is with a lander-based seismometer. Our team has identified a commercial-off-the-shelf device as a flight-candidate for operation in the extreme environment of the icy moons. Based on estimates of Europan seismicity, the flight candidate device is sensitive enough to detect the ice-water boundary and pockets of liquid within the ice. Its low mass and low power enables deployment of multiple seismometers in a short-baseline array on a lander. The performance, mass, and volume of this device meet or exceed flight requirements identified in lander studies making a field test of these seismometers highly representative of a flight unit developed for an Ocean Worlds mission.We report the results of the first field campaign for the SIIOS Analogue Mission Program (AMP), which has evaluates the performance of the flight candidate seismometer in Ocean World terrestrial analogue environments. In particular, the first SIIOS AMP field exercise is performed at Gulkana Glacier, Alaska. During the summer melt season Gulkana provides kilometer-scale regions of coexisting ice, water, and silicate material, thereby providing areas with the desired analogue seismic contrasts. During this first mission, we have demonstrated device sensitivity to the detection of seismicity from high frequency (> 50 Hz) active and passive sources, the depth of ice

  2. Coast Guard: Strategies for Mitigating the Loss of Patrol Boats Are Achieving Results in the Near Term, but They Come at a Cost and Longer Term Sustainability Is Unknown

    DTIC Science & Technology

    2008-06-01

    Committee on Commerce, Science, and Transportation, U.S. Senate The Coast Guard’s 110-foot patrol boats are used for a number of missions, such as...implemented a number of strategies. These mitigation strategies nclude: using the crews from the eight patrol boats removed from service to ugment...55 Page i GAO-08-660 Coast Guard Tables Table 1: Information on the Vessel Classes Used to Provide Operational Hours in

  3. The International Cometary Explorer (ICE) mission to comet Giacobini-Zinner (G/Z)

    NASA Technical Reports Server (NTRS)

    Brandt, J. C.; Farquhar, R. W.; Maran, S. P.; Niedner, M. B.; Von Rosenvinge, T.

    1985-01-01

    The primary objectives of the International Cometary Explorer (ICE) mission is to provide in situ data on the interaction between solar wind and the atmosphere of the P/Giacobini-Zinner comet (G/Z), making measurements of particles, fields, and waves while passing through the cometary tail of G/Z on September 11, 1985. Following the G/Z tail intercept, the ICE measurements will complement the later upstream measurements obtained by the Comet Halley probe. The major ICE payload includes a vector helium magnetometer, the plasma-wave experiment, the radio-wave experiment, the plasma-electron experiment, and the plasma ion experiment. Other experiments are intended to measure energetic protons, X-rays, low energy to high energy cosmic rays, cosmic ray electrons, and gamma-ray bursts. The ICE measurements of G/Z will be supplemented with ground-based measurements. Schematic diagrams are included.

  4. Forensic science information needs of patrol officers: The perceptions of the patrol officers, their supervisors and administrators, detectives, and crime scene technicians

    NASA Astrophysics Data System (ADS)

    Aydogdu, Eyup

    Thanks to the rapid developments in science and technology in recent decades, especially in the past two decades, forensic sciences have been making invaluable contributions to criminal justice systems. With scientific evaluation of physical evidence, policing has become more effective in fighting crime and criminals. On the other hand, law enforcement personnel have made mistakes during the detection, protection, collection, and evaluation of physical evidence. Law enforcement personnel, especially patrol officers, have been criticized for ignoring or overlooking physical evidence at crime scenes. This study, conducted in a large American police department, was aimed to determine the perceptions of patrol officers, their supervisors and administrators, detectives, and crime scene technicians about the forensic science needs of patrol officers. The results showed no statistically significant difference among the perceptions of the said groups. More than half of the respondents perceived that 14 out of 16 areas of knowledge were important for patrol officers to have: crime scene documentation, evidence collection, interviewing techniques, firearm evidence, latent and fingerprint evidence, blood evidence, death investigation information, DNA evidence, document evidence, electronically recorded evidence, trace evidence, biological fluid evidence, arson and explosive evidence, and impression evidence. Less than half of the respondents perceived forensic entomology and plant evidence as important for patrol officers.

  5. A Practical Spanish Grammar for Border Patrol Officers.

    ERIC Educational Resources Information Center

    Border Patrol Academy, El Paso, TX.

    Designed to be used in the Spanish training program for probationary officers at the Border Patrol Academy in El Paso, Texas, this revised 21-lesson traditional grammar text includes special features that make it pertinent to the job of a patrol inspector in the Mexican border area. An extensive appendix is comprised of exercise translations,…

  6. The Lunar IceCube Mission Challenge: Attaining Science Orbit Parameters from a Constrained Approach Trajectory

    NASA Technical Reports Server (NTRS)

    Folta, David C.; Bosanac, Natasha; Cox, Andrew; Howell, Kathleen C.

    2017-01-01

    The challenges of targeting specific lunar science orbit parameters from a concomitant Sun-EarthMoon system trajectory are examined. While the concept of ballistic lunar capture is well-studied, achieving and controlling the time evolution of the orbital elements to satisfy mission constraints is especially problematic when the spacecraft is equipped with a low-thrust propulsion system. Satisfying these requirements on the lunar approach and capture segments is critical to the success of the Lunar IceCube mission, a 6U CubeSat that will prospect for water in solid (ice), liquid, and vapor forms and other lunar volatiles from a low-periapsis, highly inclined elliptical lunar orbit.

  7. The Lunar IceCube Mission Challenge: Attaining Science Orbit Parameters from a Constrained Approach Trajectory

    NASA Technical Reports Server (NTRS)

    Folta, David C.; Bosanac, Natasha; Cox, Andrew; Howell, Kathleen C.

    2017-01-01

    The challenges of targeting specific lunar science orbit parameters from a concomitant Sun-Earth/Moon system trajectory are examined. While the concept of ballistic lunar capture is well-studied, achieving and controlling the time evolution of the orbital elements to satisfy mission constraints is especially problematic when the spacecraft is equipped with a low-thrust propulsion system. Satisfying these requirements on the lunar approach and capture segments is critical to the success of the Lunar IceCube mission, a 6U CubeSat that will prospect for water in solid (ice), liquid, and vapor forms and other lunar volatiles from a low-periapsis, highly inclined elliptical lunar orbit.

  8. Broken ice

    NASA Image and Video Library

    2017-12-08

    An area of broken glacier ice seen from the IceBridge DC-8 on Oct. 22, 2012. Credit: NASA / George Hale NASA's Operation IceBridge is an airborne science mission to study Earth's polar ice. For more information about IceBridge, visit: www.nasa.gov/icebridge NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  9. The Ice, Cloud, and land Elevation Satellite (ICESat) Summary Mission Timeline and Performance Relative to Pre-Launch Mission Success Criteria

    NASA Technical Reports Server (NTRS)

    Webb, Charles E.; Zwally H. Jay; Abdalati, Waleed

    2012-01-01

    The Ice, Cloud and land Elevation Satellite (ICESat) mission was conceived, primarily, to quantify the spatial and temporal variations in the topography of the Greenland and Antarctic ice sheets. It carried on board the Geoscience Laser Altimeter System (GLAS), which measured the round-trip travel time of a laser pulse emitted from the satellite to the surface of the Earth and back. Each range derived from these measurements was combined with precise, concurrent orbit and pointing information to determine the location of the laser spot centroid on the Earth. By developing a time series of precise topographic maps for each ice sheet, changes in their surface elevations can be used to infer their mass balances.

  10. Trajectory design for a cislunar CubeSat leveraging dynamical systems techniques: The Lunar IceCube mission

    NASA Astrophysics Data System (ADS)

    Bosanac, Natasha; Cox, Andrew D.; Howell, Kathleen C.; Folta, David C.

    2018-03-01

    Lunar IceCube is a 6U CubeSat that is designed to detect and observe lunar volatiles from a highly inclined orbit. This spacecraft, equipped with a low-thrust engine, is expected to be deployed from the upcoming Exploration Mission-1 vehicle. However, significant uncertainty in the deployment conditions for secondary payloads impacts both the availability and geometry of transfers that deliver the spacecraft to the lunar vicinity. A framework that leverages dynamical systems techniques is applied to a recently updated set of deployment conditions and spacecraft parameter values for the Lunar IceCube mission, demonstrating the capability for rapid trajectory design.

  11. Ice Sheet Roughness Estimation Based on Impulse Responses Acquired in the Global Ice Sheet Mapping Orbiter Mission

    NASA Astrophysics Data System (ADS)

    Niamsuwan, N.; Johnson, J. T.; Jezek, K. C.; Gogineni, P.

    2008-12-01

    The Global Ice Sheet Mapping Orbiter (GISMO) mission was developed to address scientific needs to understand the polar ice subsurface structure. This NASA Instrument Incubator Program project is a collaboration between Ohio State University, the University of Kansas, Vexcel Corporation and NASA. The GISMO design utilizes an interferometric SAR (InSAR) strategy in which ice sheet reflected signals received by a dual-antenna system are used to produce an interference pattern. The resulting interferogram can be used to filter out surface clutter so as to reveal the signals scattered from the base of the ice sheet. These signals are further processed to produce 3D-images representing basal topography of the ice sheet. In the past three years, the GISMO airborne field campaigns that have been conducted provide a set of useful data for studying geophysical properties of the Greenland ice sheet. While topography information can be obtained using interferometric SAR processing techniques, ice sheet roughness statistics can also be derived by a relatively simple procedure that involves analyzing power levels and the shape of the radar impulse response waveforms. An electromagnetic scattering model describing GISMO impulse responses has previously been proposed and validated. This model suggested that rms-heights and correlation lengths of the upper surface profile can be determined from the peak power and the decay rate of the pulse return waveform, respectively. This presentation will demonstrate a procedure for estimating the roughness of ice surfaces by fitting the GISMO impulse response model to retrieved waveforms from selected GISMO flights. Furthermore, an extension of this procedure to estimate the scattering coefficient of the glacier bed will be addressed as well. Planned future applications involving the classification of glacier bed conditions based on the derived scattering coefficients will also be described.

  12. A 2D chaotic path planning for mobile robots accomplishing boundary surveillance missions in adversarial conditions

    NASA Astrophysics Data System (ADS)

    Curiac, Daniel-Ioan; Volosencu, Constantin

    2014-10-01

    The path-planning algorithm represents a crucial issue for every autonomous mobile robot. In normal circumstances a patrol robot will compute an optimal path to ensure its task accomplishment, but in adversarial conditions the problem is getting more complicated. Here, the robot’s trajectory needs to be altered into a misleading and unpredictable path to cope with potential opponents. Chaotic systems provide the needed framework for obtaining unpredictable motion in all of the three basic robot surveillance missions: area, points of interests and boundary monitoring. Proficient approaches have been provided for the first two surveillance tasks, but for boundary patrol missions no method has been reported yet. This paper addresses the mentioned research gap by proposing an efficient method, based on chaotic dynamic of the Hénon system, to ensure unpredictable boundary patrol on any shape of chosen closed contour.

  13. An evaluation of the benefits of the Alabama service and assistance patrol : final report.

    DOT National Transportation Integrated Search

    2009-12-01

    The Alabama Service and Assistance Patrol (A.S.A.P.) is a freeway service patrol operated by : the Alabama Department of Transportation (ALDOT) in the Birmingham region of Alabama. : This patrol of service vehicles travels continuously on approximate...

  14. The ODINUS Mission Concept: a Mission for the exploration the Ice Giant Planets

    NASA Astrophysics Data System (ADS)

    Peron, Roberto

    We present the scientific case and the mission concept of a proposal for the the comparative exploration of the ice giant planets Uranus and Neptune and their satellites with a pair of twin spacecraft: ODINUS (Origins, Dynamics and Interiors of Neptunian and Uranian Systems). The ODINUS proposal was submitted in response to the call for white papers for the definition of the themes of the L2 and L3 mission in the framework of ESA Cosmic Vision 2015-2025 program. The goal of ODINUS is the advancement of our understanding of the ancient past of the Solar System and, more generally, of how planetary systems form and evolve. The mission concept is focused on providing elements to answer to the scientific themes of the Cosmic Vision 2015-2025 program: What are the conditions for planetary formation and the emergency of life? How does the Solar System work? What are the fundamental physical laws of the Universe? In order to achieve its goals, ODINUS foresees the use of two twin spacecraft to be placed in orbit around Uranus and Neptune respectively, with selected flybys of their satellites. The proposed measurements aim to study the atmospheres and magnetospheres of the planets, the surfaces of the satellites, and the interior structure and composition of both satellites and planets. An important possibility for performing fundamental physics studies (among them tests of general relativity theory) is offered by the cruise phase. After the extremely positive evaluation of ESA Senior Survey Committee, who stated that ``the exploration of the icy giants appears to be a timely milestone, fully appropriate for an L class mission'', we discuss strategies to comparatively study Uranus and Neptune with future international missions.

  15. Ice Bridge Antarctic Sea Ice

    NASA Image and Video Library

    2009-10-21

    Sea ice is seen out the window of NASA's DC-8 research aircraft as it flies 2,000 feet above the Bellingshausen Sea in West Antarctica on Wednesday, Oct., 21, 2009. This was the fourth science flight of NASA’s Operation Ice Bridge airborne Earth science mission to study Antarctic ice sheets, sea ice, and ice shelves. Photo Credit: (NASA/Jane Peterson)

  16. The Europa Lander Mission Concept and Science Goals — Highlighting Ice Properties and Surface Activity

    NASA Astrophysics Data System (ADS)

    Hand, K. P.; Murray, A. E.; Garvin, J.; Horst, S.; Brinckerhoff, W.; Edgett, K.; Hoehler, T.; Russell, M.; Rhoden, A.; Yingst, R. A.; German, C.; Schmidt, B.; Paranicas, C.; Smith, D.; Willis, P.; Hayes, A.; Ehlmann, B.; Lunine, J.; Templeton, A.; Nealson, K.; Christner, B.; Cable, M.; Craft, K.; Pappalardo, R.; Hofmann, A.; Nordheim, T.; Phillips, C.

    2018-06-01

    The Europa Lander mission concept would address key questions regarding ice properties and surface activity, including characterizing any plume deposits, understanding local topography, searching for evidence of interactions with liquid water.

  17. Flying High With Civil Air Patrol: The Sierra Blanca Civil Air Patrol Squadron.

    ERIC Educational Resources Information Center

    Carnicom, Gene E.

    The Sierra Blanca Civil Air Patrol (CAP) Cadet Squadron from Mescalero, New Mexico, is a program funded by the tribe and the state of New Mexico for Mescalero Apache youth. The national CAP Cadet Program promotes moral leadership, aerospace education, leadership, and physical fitness; Mescalero cadets have learned self-confidence and leadership…

  18. MUSE - Mission to the Uranian system: Unveiling the evolution and formation of ice giants

    NASA Astrophysics Data System (ADS)

    Bocanegra-Bahamón, Tatiana; Bracken, Colm; Costa Sitjà, Marc; Dirkx, Dominic; Gerth, Ingo; Konstantinidis, Kostas; Labrianidis, Christos; Laneuville, Matthieu; Luntzer, Armin; MacArthur, Jane L.; Maier, Andrea; Morschhauser, Achim; Nordheim, Tom A.; Sallantin, Renaud; Tlustos, Reinhard

    2015-05-01

    The planet Uranus, one of the two ice giants in the Solar System, has only been visited once by the Voyager 2 spacecraft in 1986. Ice giants represent a fundamental class of planets, and many known exoplanets fall within this category. Therefore, a dedicated mission to an ice giant is crucial to improve the understanding of the formation, evolution and current characteristics of such planets in order to extend the knowledge of both the Solar System and exoplanetary systems. In the study at hand, the rationale, selection, and conceptual design for a mission to investigate the Uranian system, as an archetype for ice giants, is presented. A structured analysis of science questions relating to the Uranian system is performed, categorized by the themes atmosphere, interior, moons and rings, and magnetosphere. In each theme, science questions are defined, with their relative importance in the theme quantified. Additionally, top-level weights for each theme are defined, with atmosphere and interior weighted the strongest, as they are more related to both exoplanetary systems and the Uranian system, than the other two themes (which are more specific for the planet itself). Several top level mission architecture aspects have been defined, from which the most promising concepts were generated using heuristic methods. A trade-off analysis of these concepts is presented, separately, for engineering aspects, such as cost, complexity, and risk, and for science aspects. The science score for each mission is generated from the capability of each mission concept to answer the science questions. The trade-off results in terms of relative science and engineering weight are presented, and competitive mission concepts are analyzed based on the preferred mission type. A mission design point for a typical flagship science mission is selected from the trade space. It consists of a Uranus orbiter with a dry mass of 2073 kg including 402 kg of payload and a Uranus entry probe, which is to

  19. 32 CFR 700.922 - Shore patrol.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... on the part of any person on liberty. The senior patrol officer shall communicate with the chief of... the parent command, and providing other services that favorably influence discipline and morale. (b) A...

  20. The Aeronomy of Ice in the Mesosphere Mission: Overview and Early Results

    NASA Astrophysics Data System (ADS)

    Russell, J. M.; Bailey, S. M.; Thomas, G.; Rusch, D.; Gordley, L. L.; Hervig, M.; Horanyi, M.; Randall, C.; McClintock, W.; Siskind, D. E.; Stevens, M.; Englert, C.; Taylor, M.; Summeers, M.; Merkel, A.

    2007-12-01

    The Aeronomy of Ice in the Mesosphere (AIM) mission was launched from Vandenberg Air Force Base in California at 1:26:03 PDT on April 25, 2007 becoming the first satellite mission dedicated to the study of noctilucent clouds. A Pegasus XL rocket launched the satellite into a near perfect 600 km sun synchronous circular orbit. AIM carries three instruments - a nadir imager, a solar occultation instrument and in-situ cosmic dust detectors - that were specifically selected because of their ability to provide key measurements needed to address the six AIM science objectives. Brief descriptions of the science, instruments and observation scenario will be presented along with early science results.

  1. Warrants, design, and safety of road ranger service patrols : draft final report.

    DOT National Transportation Integrated Search

    2016-11-01

    This research project created a decision support system for managers who must decide if a roadway warrants the addition of the Safety Service Patrol (SSP). Meetings with Florida Department of Transportation (FDOT) service patrol program manager...

  2. Ice Bridge Antarctic Sea Ice

    NASA Image and Video Library

    2009-10-21

    An iceberg is seen out the window of NASA's DC-8 research aircraft as it flies 2,000 feet above the Amundsen Sea in West Antarctica on Wednesday, Oct., 21, 2009. This was the fourth science flight of NASA’s Operation Ice Bridge airborne Earth science mission to study Antarctic ice sheets, sea ice, and ice shelves. Photo Credit: (NASA/Jane Peterson)

  3. Securing the Borders: Creation of the Border Patrol Auxiliary

    DTIC Science & Technology

    2007-05-05

    auxiliary members will be the elite members of the BPA who will attend training at the Border Patrol Academy to gain the knowledge and skills required to...recruits and greatly reducing start-up costs for the Border Patrol. It would appeal directly to ideal candidates for the elite tier-two service: new...program, which is a small, elite , and highly selective service. Tier-two members will have to be recruited from specific target populations. Based on the

  4. Patrol force allocation for law enforcement: An introductory planning guide

    NASA Technical Reports Server (NTRS)

    Sohn, R. L.; Kennedy, R. D.

    1976-01-01

    Previous and current methods for analyzing police patrol forces are reviewed and discussed. The steps in developing an allocation analysis procedure are defined, including the prediction of the rate of calls for service, determination of the number of patrol units needed, designing sectors, and analyzing dispatch strategies. Existing computer programs used for this purpose are briefly described, and some results of their application are given.

  5. Airborne Polarimetric, Two-Color Laser Altimeter Measurements of Lake Ice Cover: A Pathfinder for NASA's ICESat-2 Spaceflight Mission

    NASA Technical Reports Server (NTRS)

    Harding, David; Dabney, Philip; Valett, Susan; Yu, Anthony; Vasilyev, Aleksey; Kelly, April

    2011-01-01

    The ICESat-2 mission will continue NASA's spaceflight laser altimeter measurements of ice sheets, sea ice and vegetation using a new measurement approach: micropulse, single photon ranging at 532 nm. Differential penetration of green laser energy into snow, ice and water could introduce errors in sea ice freeboard determination used for estimation of ice thickness. Laser pulse scattering from these surface types, and resulting range biasing due to pulse broadening, is assessed using SIMPL airborne data acquired over icecovered Lake Erie. SIMPL acquires polarimetric lidar measurements at 1064 and 532 nm using the micropulse, single photon ranging measurement approach.

  6. Ice Stars

    NASA Image and Video Library

    2017-12-08

    Ice Stars - August 4th, 2002 Description: Like distant galaxies amid clouds of interstellar dust, chunks of sea ice drift through graceful swirls of grease ice in the frigid waters of Foxe Basin near Baffin Island in the Canadian Arctic. Sea ice often begins as grease ice, a soupy slick of tiny ice crystals on the ocean's surface. As the temperature drops, grease ice thickens and coalesces into slabs of more solid ice. Credit: USGS/NASA/Landsat 7 To learn more about the Landsat satellite go to: landsat.gsfc.nasa.gov/ NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook

  7. 33 CFR 100.40 - Patrol of the regatta or marine parade.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Patrol of the regatta or marine parade. 100.40 Section 100.40 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY REGATTAS AND MARINE PARADES SAFETY OF LIFE ON NAVIGABLE WATERS § 100.40 Patrol of the regatta or...

  8. Iceberg in sea ice

    NASA Image and Video Library

    2017-12-08

    An iceberg embedded in sea ice as seen from the IceBridge DC-8 over the Bellingshausen Sea on Oct. 19, 2012. Credit: NASA / James Yungel NASA's Operation IceBridge is an airborne science mission to study Earth's polar ice. For more information about IceBridge, visit: www.nasa.gov/icebridge NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  9. Balancing Play, Meaning and Reality: The Design Philosophy of LEVEE PATROLLER

    ERIC Educational Resources Information Center

    Harteveld, Casper; Guimaraes, Rui; Mayer, Igor S.; Bidarra, Rafael

    2010-01-01

    Most serious games have been developed without a proper and comprehensive design theory. To contribute to the development of such a theory, this article presents the underlying design philosophy of LEVEE PATROLLER, a game to train levee patrollers in the Netherlands. This philosophy stipulates that the design of a digital serious game is a…

  10. Iceberg trapped in sea ice

    NASA Image and Video Library

    2012-11-01

    An iceberg trapped in sea ice in the Amundsen Sea, seen from the IceBridge DC-8 during the Getz 07 mission on Oct. 27. Credit: NASA / Maria-Jose Vinas NASA's Operation IceBridge is an airborne science mission to study Earth's polar ice. For more information about IceBridge, visit: www.nasa.gov/icebridge NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  11. 33 CFR 100.40 - Patrol of the regatta or marine parade.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Patrol of the regatta or marine... SECURITY REGATTAS AND MARINE PARADES SAFETY OF LIFE ON NAVIGABLE WATERS § 100.40 Patrol of the regatta or marine parade. (a) The Commander of a Coast Guard District in which a regatta or marine parade is to be...

  12. 33 CFR 100.40 - Patrol of the regatta or marine parade.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Patrol of the regatta or marine... SECURITY REGATTAS AND MARINE PARADES SAFETY OF LIFE ON NAVIGABLE WATERS § 100.40 Patrol of the regatta or marine parade. (a) The Commander of a Coast Guard District in which a regatta or marine parade is to be...

  13. Peculiarities of Professional Training of the Us Border Patrol Special Operations Group's Agents

    ERIC Educational Resources Information Center

    Bloshchynskyi, Ihor

    2017-01-01

    Professional training of the agents of the US Border Patrol Special Operations Groups has been substantiated in the article. Special attention has been paid to revealing Selection and Training Course (STC) of the Border Patrol Tactical Unit (BORTAC) and the Border Patrol Search, Trauma, and Rescue Unit (BORSTAR). It has been determined that BORTAC…

  14. Clouds Over Sea Ice

    NASA Image and Video Library

    2012-11-01

    Low-lying clouds over sea ice on the Bellingshausen Sea. Credit: NASA / Maria-Jose Vinas NASA's Operation IceBridge is an airborne science mission to study Earth's polar ice. For more information about IceBridge, visit: www.nasa.gov/icebridge NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  15. Edge of Ice Shelf

    NASA Image and Video Library

    2017-12-08

    Edge of an ice shelf in Adelaide Island, off the Antarctic Peninsula. Credit: NASA / Maria-Jose Vinas NASA's Operation IceBridge is an airborne science mission to study Earth's polar ice. For more information about IceBridge, visit: www.nasa.gov/icebridge NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  16. Sunlight off the ice

    NASA Image and Video Library

    2017-12-08

    Sunlight reflecting off of ice in the Bellingshausen Sea on Oct. 19, 2012. Credit: NASA / George Hale NASA's Operation IceBridge is an airborne science mission to study Earth's polar ice. For more information about IceBridge, visit: www.nasa.gov/icebridge NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  17. Group augmentation, collective action, and territorial boundary patrols by male chimpanzees

    PubMed Central

    Langergraber, Kevin E.; Watts, David P.; Mitani, John C.

    2017-01-01

    How can collective action evolve when individuals benefit from cooperation regardless of whether they pay its participation costs? According to one influential perspective, collective action problems are common, especially when groups are large, but may be solved when individuals who have more to gain from the collective good or can produce it at low costs provide it to others as a byproduct. Several results from a 20-y study of one of the most striking examples of collective action in nonhuman animals, territorial boundary patrolling by male chimpanzees, are consistent with these ideas. Individuals were more likely to patrol when (i) they had more to gain because they had many offspring in the group; (ii) they incurred relatively low costs because of their high dominance rank and superior physical condition; and (iii) the group size was relatively small. However, several other findings were better explained by group augmentation theory, which proposes that individuals should bear the short-term costs of collective action even when they have little to gain immediately if such action leads to increases in group size and long-term increases in reproductive success. In support of this theory, (i) individual patrolling effort was higher and less variable than participation in intergroup aggression in other primate species; (ii) males often patrolled when they had no offspring or maternal relatives in the group; and (iii) the aggregate patrolling effort of the group did not decrease with group size. We propose that group augmentation theory deserves more consideration in research on collective action. PMID:28630310

  18. Embedded ice with lead

    NASA Image and Video Library

    2017-12-08

    Iceberg embedded in sea ice with a lead on one side. This opening was likely caused by winds blowing against the side of the iceberg. Credit: NASA / George Hale NASA's Operation IceBridge is an airborne science mission to study Earth's polar ice. For more information about IceBridge, visit: www.nasa.gov/icebridge NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  19. 46 CFR 193.05-1 - Fire detecting, manual alarm, and supervised patrol systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Fire detecting, manual alarm, and supervised patrol...) OCEANOGRAPHIC RESEARCH VESSELS FIRE PROTECTION EQUIPMENT Fire Detecting and Extinguishing Equipment, Where Required § 193.05-1 Fire detecting, manual alarm, and supervised patrol systems. (a) Fire detecting, manual...

  20. 46 CFR 193.05-1 - Fire detecting, manual alarm, and supervised patrol systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Fire detecting, manual alarm, and supervised patrol...) OCEANOGRAPHIC RESEARCH VESSELS FIRE PROTECTION EQUIPMENT Fire Detecting and Extinguishing Equipment, Where Required § 193.05-1 Fire detecting, manual alarm, and supervised patrol systems. (a) Fire detecting, manual...

  1. 46 CFR 193.05-1 - Fire detecting, manual alarm, and supervised patrol systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Fire detecting, manual alarm, and supervised patrol...) OCEANOGRAPHIC RESEARCH VESSELS FIRE PROTECTION EQUIPMENT Fire Detecting and Extinguishing Equipment, Where Required § 193.05-1 Fire detecting, manual alarm, and supervised patrol systems. (a) Fire detecting, manual...

  2. 46 CFR 193.05-1 - Fire detecting, manual alarm, and supervised patrol systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Fire detecting, manual alarm, and supervised patrol...) OCEANOGRAPHIC RESEARCH VESSELS FIRE PROTECTION EQUIPMENT Fire Detecting and Extinguishing Equipment, Where Required § 193.05-1 Fire detecting, manual alarm, and supervised patrol systems. (a) Fire detecting, manual...

  3. 46 CFR 95.05-1 - Fire detecting, manual alarm, and supervised patrol systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Fire detecting, manual alarm, and supervised patrol... AND MISCELLANEOUS VESSELS FIRE PROTECTION EQUIPMENT Fire Detecting and Extinguishing Equipment, Where Required § 95.05-1 Fire detecting, manual alarm, and supervised patrol systems. (a) Fire detecting, manual...

  4. 46 CFR 95.05-1 - Fire detecting, manual alarm, and supervised patrol systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Fire detecting, manual alarm, and supervised patrol... AND MISCELLANEOUS VESSELS FIRE PROTECTION EQUIPMENT Fire Detecting and Extinguishing Equipment, Where Required § 95.05-1 Fire detecting, manual alarm, and supervised patrol systems. (a) Fire detecting, manual...

  5. 46 CFR 193.05-1 - Fire detecting, manual alarm, and supervised patrol systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Fire detecting, manual alarm, and supervised patrol...) OCEANOGRAPHIC RESEARCH VESSELS FIRE PROTECTION EQUIPMENT Fire Detecting and Extinguishing Equipment, Where Required § 193.05-1 Fire detecting, manual alarm, and supervised patrol systems. (a) Fire detecting, manual...

  6. 46 CFR 95.05-1 - Fire detecting, manual alarm, and supervised patrol systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Fire detecting, manual alarm, and supervised patrol... AND MISCELLANEOUS VESSELS FIRE PROTECTION EQUIPMENT Fire Detecting and Extinguishing Equipment, Where Required § 95.05-1 Fire detecting, manual alarm, and supervised patrol systems. (a) Fire detecting, manual...

  7. Patrol Officer Daily Noise Exposure.

    PubMed

    Gilbertson, Lynn R; Vosburgh, Donna J H

    2015-01-01

    Previous research shows that police officers are at a higher risk for noise induced hearing loss (NIHL). Little data exists on the occupational tasks, outside of the firing range, that might lead to the increased risk of NIHL. The current study collected noise dosimetry from patrol officers in a smaller department and a larger department in southern Wisconsin, United States. The noise dosimeters simultaneously measured noise in three virtual dosimeters that had different thresholds, criterion levels, and exchange rates. The virtual dosimeters were set to: the Occupational Safety and Health Administration (OSHA) hearing conservation criteria (OSHA-HC), the OSHA permissible exposure level criteria (OSHA-PEL), and the American Conference of Governmental Industrial Hygienists (ACGIH). In addition to wearing a noise dosimeter during their respective work days, officers completed a log form documenting the type of task performed, the duration of that task, if the task involved the use of a siren, and officer characteristics that may have influenced their noise exposure, such as the type of dispatch radio unit worn. Analysis revealed that the normalized 8-hour time weighted averages (TWA) for all officers fell below the recommended OSHA and ACGIH exposure limits. The tasks involving the use of the siren had significantly higher levels than the tasks without (p = 0.005). The highest noise exposure levels were encountered when patrol officers were assisting other public safety agencies such as a fire department or emergency medical services (79 dBA). Canine officers had higher normalized 8-hr TWA noise exposure than regular patrol officers (p = 0.002). Officers with an evening work schedule had significantly higher noise exposure than the officers with a day or night work schedule (p = 0.023). There were no significant differences in exposure levels between the two departments (p = 0.22). Results suggest that this study population is unlikely to experience NIHL as

  8. Pregnancy outcomes after paternal radiofrequency field exposure aboard fast patrol boats.

    PubMed

    Baste, Valborg; Moen, Bente E; Oftedal, Gunnhild; Strand, Leif Age; Bjørge, Line; Mild, Kjell Hansson

    2012-04-01

    To investigate adverse reproductive outcomes among male employees in the Royal Norwegian Navy exposed to radiofrequency electromagnetic fields aboard fast patrol boats. Cohort study of Royal Norwegian Navy servicemen linked to the Medical Birth Registry of Norway, including singleton offspring born between 1967 and 2008 (n = 37,920). Exposure during the last 3 months before conception (acute) and exposure more than 3 months before conception (nonacute) were analyzed. Perinatal mortality and preeclampsia increased after service aboard fast patrol boats during an acute period and also after increased estimated radiofrequency exposure during an acute period, compared with service aboard other vessels. No associations were found between nonacute exposure and any of the reproductive outcomes. Paternal work aboard fast patrol boats during an acute period was associated with perinatal mortality and preeclampsia, but the cause is not clear.

  9. Cardiometabolic Health in Submariners Returning from a 3-Month Patrol

    PubMed Central

    Gasier, Heath G.; Young, Colin R.; Gaffney-Stomberg, Erin; McAdams, Douglas C.; Lutz, Laura J.; McClung, James P.

    2016-01-01

    Confined space, limited exercise equipment, rotating shift work and reduced sleep may affect cardiometabolic health in submariners. To test this hypothesis, 53 male U.S. Submariners (20–39 years) were studied before and after a 3-month routine submarine patrol. Measures included anthropometrics, dietary and physical activity, biomarkers of cardiometabolic health, energy and appetite regulation, and inflammation. Before deployment, 62% of submariners had a body fat % (BF%) ≥ 25% (obesity), and of this group, 30% met the criteria for metabolic syndrome. In obese volunteers, insulin, the homeostatic model assessment of insulin resistance (HOMA-IR), leptin, the leptin/adiponectin ratio, and pro-inflammatory chemokines growth-related oncogene and macrophage-derived chemokine were significantly higher compared to non-obese submariners. Following the patrol, a significant mean reduction in body mass (5%) and fat-mass (11%) occurred in the obese group as a result of reduced energy intake (~2000 kJ) during the patrol; and, independent of group, modest improvements in serum lipids and a mean reduction in interferon γ-induced protein 10 and monocyte chemotactic protein 1 were observed. Since 43% of the submariners remained obese, and 18% continued to meet the criteria for metabolic syndrome following the patrol, the magnitude of weight loss was insufficient to completely abolish metabolic dysfunction. Submergence up to 3-months, however, does not appear to be the cause of obesity, which is similar to that of the general population. PMID:26867201

  10. The Aeronomy of Ice in the Mesosphere (AIM) mission: Overview and early science results

    NASA Astrophysics Data System (ADS)

    Russell, James M., III; Bailey, Scott M.; Gordley, Larry L.; Rusch, David W.; Horányi, Mihály; Hervig, Mark E.; Thomas, Gary E.; Randall, Cora E.; Siskind, David E.; Stevens, Michael H.; Summers, Michael E.; Taylor, Michael J.; Englert, Christoph R.; Espy, Patrick J.; McClintock, William E.; Merkel, Aimee W.

    2009-03-01

    The Aeronomy of Ice in the Mesosphere (AIM) mission was launched from Vandenberg Air Force Base in California at 1:26:03 PDT on April 25, 2007 becoming the first satellite mission dedicated to the study of polar mesospheric clouds. A Pegasus XL rocket launched the satellite into a near perfectly circular 600 km sun synchronous orbit. AIM carries three instruments selected because of their ability to provide key measurements needed to address the AIM goal which is to determine why these clouds form and vary. The instrument payload includes a nadir imager, a solar occultation instrument and an in-situ cosmic dust detector. Detailed descriptions of the science, instruments and observation scenario are presented. Early science results from the first northern and southern hemisphere seasons show a highly variable cloud morphology, clouds that are ten times brighter than measured by previous space-based instruments, and complex features that are reminiscent of tropospheric weather phenomena. The observations also confirm a previously theorized but never before directly observed population of small ice particles in the altitude region above the main Polar Mesospheric Cloud (PMC) layer that are widely believed to be the indirect cause of summertime radar echoes.

  11. Study of ground handling characteristics of a maritime patrol airship

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Mooring concepts appropriate for maritime patrol airship (MPA) vehicles are investigated. The evolution of ground handling systems and procedures for all airship types is reviewed to ensure that appropriate consideration is given to past experiences. A tri-rotor maritime patrol airship is identified and described. Wind loads on a moored airship and the effects of these loads on vehicle design are analyzed. Several mooring concepts are assessed with respect to the airship design, wind loads, and mooring site considerations. Basing requirements and applicability of expeditionary mooring also are addressed.

  12. Practical results from a mathematical analysis of guard patrols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Indusi, Joseph P.

    1978-12-01

    Using guard patrols as a primary detection mechanism is not generally viewed as a highly efficient detection method when compared to electronic means. Many factors such as visibility, alertness, and the space-time coincidence of guard and adversary presence all have an effect on the probability of detection. Mathematical analysis of the guard patrol detection problem is related to that of classical search theory originally developed for naval search operations. The results of this analysis tend to support the current practice of using guard forces to assess and respond to previously detected intrusions and not as the primary detection mechanism. 6more » refs.« less

  13. Blue Beaufort Sea Ice from Operation IceBridge

    NASA Image and Video Library

    2017-12-08

    Mosaic image of sea ice in the Beaufort Sea created by the Digital Mapping System (DMS) instrument aboard the IceBridge P-3B. The dark area in the middle of the image is open water seen through a lead, or opening, in the ice. Light blue areas are thick sea ice and dark blue areas are thinner ice formed as water in the lead refreezes. Leads are formed when cracks develop in sea ice as it moves in response to wind and ocean currents. DMS uses a modified digital SLR camera that points down through a window in the underside of the plane, capturing roughly one frame per second. These images are then combined into an image mosaic using specialized computer software. Credit: NASA/DMS NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  14. RxPATROL: a Web-based tool for combating pharmacy theft.

    PubMed

    Smith, Meredith Y; Graham, J Aaron; Haddox, J David; Steffey, Amy

    2009-01-01

    To report the incidence of pharmacy-related burglaries and robberies and characteristics of pharmacies where such crimes have occurred using recent data from Rx Pattern Analysis Tracking Robberies & Other Losses (RxPATROL), a national Web-based information clearinghouse on pharmacy-related theft of prescription medications and over-the-counter products. Descriptive, nonexperimental study. United States between 2005 and 2006. Not applicable. Not applicable. Number of pharmacy theft reports received; incident type, date, and location; point of entry; and pharmacy security features. Between 2005 and 2006, 202 pharmacy burglary and 299 pharmacy robbery reports from 45 different states were filed with RxPATROL. More than 70% of pharmacies reporting such crimes lacked a security camera. Among those reporting a burglary, 60% lacked dead bolt locks, a solid exterior door, a motion detector device, or a safe or vault for storage of controlled substances. Burglars most often obtained access to the pharmacy via the front door. RxPATROL is a Web-based tool that can assist pharmacies and law enforcement in collaborating more effectively to combat and prevent pharmacy-related crimes.

  15. Investigation of ice particle habits to be used for ice cloud remote sensing for the GCOM-C satellite mission

    NASA Astrophysics Data System (ADS)

    Letu, Husi; Ishimoto, Hiroshi; Riedi, Jerome; Nakajima, Takashi Y.; -Labonnote, Laurent C.; Baran, Anthony J.; Nagao, Takashi M.; Sekiguchi, Miho

    2016-09-01

    In this study, various ice particle habits are investigated in conjunction with inferring the optical properties of ice clouds for use in the Global Change Observation Mission-Climate (GCOM-C) satellite programme. We develop a database of the single-scattering properties of five ice habit models: plates, columns, droxtals, bullet rosettes, and Voronoi. The database is based on the specification of the Second Generation Global Imager (SGLI) sensor on board the GCOM-C satellite, which is scheduled to be launched in 2017 by the Japan Aerospace Exploration Agency. A combination of the finite-difference time-domain method, the geometric optics integral equation technique, and the geometric optics method is applied to compute the single-scattering properties of the selected ice particle habits at 36 wavelengths, from the visible to the infrared spectral regions. This covers the SGLI channels for the size parameter, which is defined as a single-particle radius of an equivalent volume sphere, ranging between 6 and 9000 µm. The database includes the extinction efficiency, absorption efficiency, average geometrical cross section, single-scattering albedo, asymmetry factor, size parameter of a volume-equivalent sphere, maximum distance from the centre of mass, particle volume, and six nonzero elements of the scattering phase matrix. The characteristics of calculated extinction efficiency, single-scattering albedo, and asymmetry factor of the five ice particle habits are compared. Furthermore, size-integrated bulk scattering properties for the five ice particle habit models are calculated from the single-scattering database and microphysical data. Using the five ice particle habit models, the optical thickness and spherical albedo of ice clouds are retrieved from the Polarization and Directionality of the Earth's Reflectances-3 (POLDER-3) measurements, recorded on board the Polarization and Anisotropy of Reflectances for Atmospheric Sciences coupled with Observations from a

  16. Development of a safety service patrol uniform standard.

    DOT National Transportation Integrated Search

    1998-01-01

    The Virginia Department of Transportation's (VDOT) Safety Service Patrollers (SSP) use different color uniforms depending on their geographic location. Red jumpsuits are used in the Northern Virginia District, orange jumpsuits are used in the Frederi...

  17. GATEWAY Demonstrations: Trial Demonstration of Area Lighting Retrofit, Yuma Border Patrol, Yuma, Arizona

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilkerson, A. M.; McCullough, J. J.

    Along the Yuma Sector Border Patrol Area in Yuma, Arizona, the GATEWAY program conducted a trial demonstration in which the incumbent quartz metal halide area lighting was replaced with LED at three pole locations at the Yuma Sector Border Patrol Area in Yuma, Arizona. The retrofit was documented to better understand LED technology performance in high-temperature environments.

  18. Sea Ice Mass Reconciliation Exercise (SIMRE) for altimetry derived sea ice thickness data sets

    NASA Astrophysics Data System (ADS)

    Hendricks, S.; Haas, C.; Tsamados, M.; Kwok, R.; Kurtz, N. T.; Rinne, E. J.; Uotila, P.; Stroeve, J.

    2017-12-01

    Satellite altimetry is the primary remote sensing data source for retrieval of Arctic sea-ice thickness. Observational data sets are available from current and previous missions, namely ESA's Envisat and CryoSat as well as NASA ICESat. In addition, freeboard results have been published from the earlier ESA ERS missions and candidates for new data products are the Sentinel-3 constellation, the CNES AltiKa mission and NASA laser altimeter successor ICESat-2. With all the different aspects of sensor type and orbit configuration, all missions have unique properties. In addition, thickness retrieval algorithms have evolved over time and data centers have developed different strategies. These strategies may vary in choice of auxiliary data sets, algorithm parts and product resolution and masking. The Sea Ice Mass Reconciliation Exercise (SIMRE) is a project by the sea-ice radar altimetry community to bridge the challenges of comparing data sets across missions and algorithms. The ESA Arctic+ research program facilitates this project with the objective to collect existing data sets and to derive a reconciled estimate of Arctic sea ice mass balance. Starting with CryoSat-2 products, we compare results from different data centers (UCL, AWI, NASA JPL & NASA GSFC) at full resolution along selected orbits with independent ice thickness estimates. Three regions representative of first-year ice, multiyear ice and mixed ice conditions are used to compare the difference in thickness and thickness change between products over the seasonal cycle. We present first results and provide an outline for the further development of SIMRE activities. The methodology for comparing data sets is designed to be extendible and the project is open to contributions by interested groups. Model results of sea ice thickness will be added in a later phase of the project to extend the scope of SIMRE beyond EO products.

  19. 33 CFR 5.48 - Auxiliary Patrol Boat ensign.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... this part. (b) The field of the Auxiliary Patrol Boat ensign is white. A medium blue (Coast Guard blue... hoist, by two narrow, parallel stripes, first a white stripe and then a medium blue (Coast Guard blue...

  20. 33 CFR 5.48 - Auxiliary Patrol Boat ensign.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... this part. (b) The field of the Auxiliary Patrol Boat ensign is white. A medium blue (Coast Guard blue... hoist, by two narrow, parallel stripes, first a white stripe and then a medium blue (Coast Guard blue...

  1. 33 CFR 5.48 - Auxiliary Patrol Boat ensign.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... this part. (b) The field of the Auxiliary Patrol Boat ensign is white. A medium blue (Coast Guard blue... hoist, by two narrow, parallel stripes, first a white stripe and then a medium blue (Coast Guard blue...

  2. 33 CFR 5.48 - Auxiliary Patrol Boat ensign.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... this part. (b) The field of the Auxiliary Patrol Boat ensign is white. A medium blue (Coast Guard blue... hoist, by two narrow, parallel stripes, first a white stripe and then a medium blue (Coast Guard blue...

  3. 33 CFR 5.48 - Auxiliary Patrol Boat ensign.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... this part. (b) The field of the Auxiliary Patrol Boat ensign is white. A medium blue (Coast Guard blue... hoist, by two narrow, parallel stripes, first a white stripe and then a medium blue (Coast Guard blue...

  4. Are ranger patrols effective in reducing poaching-related threats within protected areas?

    USGS Publications Warehouse

    Moore, Jennnifer F.; Mulindahabi, Felix; Masozera, Michel K.; Nichols, James; Hines, James; Turikunkiko, Ezechiel; Oli, Madan K.

    2018-01-01

    Poaching is one of the greatest threats to wildlife conservation world-wide. However, the spatial and temporal patterns of poaching activities within protected areas, and the effectiveness of ranger patrols and ranger posts in mitigating these threats, are relatively unknown.We used 10 years (2006–2015) of ranger-based monitoring data and dynamic multi-season occupancy models to quantify poaching-related threats, to examine factors influencing the spatio-temporal dynamics of these threats and to test the efficiency of management actions to combat poaching in Nyungwe National Park (NNP), Rwanda.The probability of occurrence of poaching-related threats was highest at lower elevations (1,801–2,200 m), especially in areas that were close to roads and tourist trails; conversely, occurrence probability was lowest at high elevation sites (2,601–3,000 m), and near the park boundary and ranger posts. The number of ranger patrols substantially increased the probability that poaching-related threats disappear at a site if threats were originally present (i.e. probability of extinction of threats). Without ranger visits, the annual probability of extinction of poaching-related threats was an estimated 7%; this probability would increase to 20% and 57% with 20 and 50 ranger visits per year, respectively.Our results suggest that poaching-related threats can be effectively reduced in NNP by adding ranger posts in areas where they do not currently exist, and by increasing the number of patrols to sites where the probability of poaching activities is high.Synthesis and applications. Our application of dynamic occupancy models to predict the probability of presence of poaching-related threats is novel, and explicitly considers imperfect detection of illegal activities. Based on the modelled relationships, we identify areas that are most vulnerable to poaching, and offer insights regarding how ranger patrols can be optimally deployed to reduce poaching-related threats and

  5. ICESCAPE Mission

    NASA Image and Video Library

    2010-07-08

    Dartmouth College's Chris Polashenski cuts a block of ice from below a melt pond on sea ice in the Chukchi Sea on July 9, 2010, for analysis upon return from the mission. The research is part of NASA's ICESCAPE mission onboard the U.S. Coast Guard icebreaker Healy to sample the physical, chemical and biological characteristics of the ocean and sea ice. Impacts of Climate change on the Eco-Systems and Chemistry of the Arctic Pacific Environment (ICESCAPE) is a multi-year NASA shipborne project. The bulk of the research will take place in the Beaufort and Chukchi Sea’s in summer of 2010 and fall of 2011. Photo Credit: (NASA/Kathryn Hansen)

  6. Aligning policing and public health promotion: Insights from the world of foot patrol.

    PubMed

    Wood, Jennifer D; Taylor, Caitlin J; Groff, Elizabeth R; Ratcliffe, Jerry H

    2015-05-01

    Foot patrol work is rarely described in relation to public health, even though police routinely encounter health risk behaviors and environments. Through a qualitative study of foot patrol policing in violent 'hotspots' of Philadelphia, we explore some prospects and challenges associated with bridging security and public health considerations in law enforcement. Noting existing efforts to help advance police officer knowledge of, and attitudes toward health vulnerabilities, we incorporate perspectives from environmental criminology to help advance this bridging agenda. Extending the notion of capable guardianship to understand foot patrol work, we suggest that the way forward for theory, policy and practice is not solely to rely on changing officer culture and behavior, but rather to advance a wider agenda for enhancing collective guardianship, and especially 'place management' for harm reduction in the city.

  7. 78 FR 21610 - Expansion Funds for the Support of the Senior Medicare Patrol (SMP) Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-11

    ... the Support of the Senior Medicare Patrol (SMP) Program ACTION: Notice of intent to provide expansion... funds for the support of the Senior Medicare Patrol (SMP) Program. This additional funding opportunity... program capacity to recruit, train, and support the SMP volunteer network. In addition, this funding...

  8. Investigation of ice particle habits to be used for ice cloud remote sensing for the GCOM-C satellite mission

    NASA Astrophysics Data System (ADS)

    Letu, H.; Ishimoto, H.; Riedi, J.; Nakajima, T. Y.; -Labonnote, L. C.; Baran, A. J.; Nagao, T. M.; Skiguchi, M.

    2015-11-01

    Various ice particle habits are investigated in conjunction with inferring the optical properties of ice cloud for the Global Change Observation Mission-Climate (GCOM-C) satellite program. A database of the single-scattering properties of five ice particle habits, namely, plates, columns, droxtals, bullet-rosettes, and Voronoi, is developed. The database is based on the specification of the Second Generation Global Imager (SGLI) sensor onboard the GCOM-C satellite, which is scheduled to be launched in 2017 by Japan Aerospace Exploration Agency (JAXA). A combination of the finite-difference time-domain (FDTD) method, Geometric Optics Integral Equation (GOIE) technique, and geometric optics method (GOM) are applied to compute the single-scattering properties of the selected ice particle habits at 36 wavelengths, from the visible-to-infrared spectral region, covering the SGLI channels for the size parameter, which is defined with respect to the equivalent-volume radius sphere, which ranges between 6 and 9000. The database includes the extinction efficiency, absorption efficiency, average geometrical cross-section, single-scattering albedo, asymmetry factor, size parameter of an equivalent volume sphere, maximum distance from the center of mass, particle volume, and six non-zero elements of the scattering phase matrix. The characteristics of the calculated extinction efficiency, single-scattering albedo, and asymmetry factor of the five ice particle habits are compared. Furthermore, the optical thickness and spherical albedo of ice clouds using the five ice particle habit models are retrieved from the Polarization and Directionality of the Earth's Reflectances-3 (POLDER-3) measurements on board the Polarization and Anisotropy of Reflectances for Atmospheric Sciences coupled with Observations from a Lidar (PARASOL). The optimal ice particle habit for retrieving the SGLI ice cloud properties was investigated by adopting the spherical albedo difference (SAD) method. It is

  9. IceBridge team members

    NASA Image and Video Library

    2013-11-13

    These IceBridge team members aboard a huge U.S. Air Force C-17 transport aircraft are ready to step out into the cold Antarctic air. The C-17 aircraft that fly to Antarctica are operated by the U.S. Air Force's 62nd and 446th Airlift Wings based at Joint Base Lewis-McChord near Seattle, Wash. Credit: NASA/Goddard/Michael Studinger NASA's Operation IceBridge is an airborne science mission to study Earth's polar ice. For more information about IceBridge, visit: www.nasa.gov/icebridge NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  10. IceBridge Survey Flight Over Saunders Island and Wolstenholme Fjord

    NASA Image and Video Library

    2017-12-08

    This image of Saunders Island and Wolstenholme Fjord with Kap Atholl in the background was taken during an Operation IceBridge survey flight in April, 2013. Sea ice coverage in the fjord ranges from thicker, white ice seen in the background, to thinner grease ice and leads showing open ocean water in the foreground. In March 2013, NASA's Operation IceBridge scientists began another season of research activity over Arctic ice sheets and sea ice. IceBridge, a six-year NASA mission, is the largest airborne survey of Earth's polar ice ever flown. It will yield an unprecedented three-dimensional view of Arctic and Antarctic ice sheets, ice shelves and sea ice. These flights will provide a yearly, multi-instrument look at the behavior of the rapidly changing features of the Greenland and Antarctic ice. Image Credit: NASA / Michael Studinger Read more about the mission here: www.nasa.gov/mission_pages/icebridge/index.html NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  11. Aligning policing and public health promotion: Insights from the world of foot patrol

    PubMed Central

    Wood, Jennifer D.; Taylor, Caitlin J.; Groff, Elizabeth R.; Ratcliffe, Jerry H.

    2013-01-01

    Foot patrol work is rarely described in relation to public health, even though police routinely encounter health risk behaviors and environments. Through a qualitative study of foot patrol policing in violent ‘hotspots’ of Philadelphia, we explore some prospects and challenges associated with bridging security and public health considerations in law enforcement. Noting existing efforts to help advance police officer knowledge of, and attitudes toward health vulnerabilities, we incorporate perspectives from environmental criminology to help advance this bridging agenda. Extending the notion of capable guardianship to understand foot patrol work, we suggest that the way forward for theory, policy and practice is not solely to rely on changing officer culture and behavior, but rather to advance a wider agenda for enhancing collective guardianship, and especially ‘place management’ for harm reduction in the city. PMID:26085825

  12. Antarctic Ice Shelf Loss Comes From Underneath

    NASA Image and Video Library

    2017-12-08

    Calving front of an ice shelf in West Antarctica. The traditional view on ice shelves, the floating extensions of seaward glaciers, has been that they mostly lose ice by shedding icebergs. A new study by NASA and university researchers has found that warm ocean waters melting the ice sheets from underneath account for 55 percent of all ice shelf mass loss in Antarctica. This image was taken during the 2012 Antarctic campaign of NASA's Operation IceBridge, a mission that provided data for the new ice shelf study. Read more: www.nasa.gov/topics/earth/features/earth20130613.html Credit: NASA/GSFC/Jefferson Beck NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  13. Assessment of Selected Lighter-Than-Air Vehicles for Mission Tasks of the U.S. Coast Guard

    DTIC Science & Technology

    1978-05-01

    this analysis assumed that the LTA would be performing a primary mission of, perhaps, IELT or MEP, and evaluated it in a secondary SAR role...Patrol (IIP); the Airborne Radiation Thermometer (ART) surveys; and miscellaneous support on specific tasks for government agencies and academic

  14. Missions and vehicle concepts for modern, propelled, lighter-than-air vehicles

    NASA Technical Reports Server (NTRS)

    Ardema, M. D.

    1984-01-01

    The results of studies conducted over the last 15 years to assess missions and vehicle concepts for modern, propelled, lighter-than-air vehicles (airships) were surveyed. Rigid and non-rigid airship concepts are considered. The use of airships for ocean patrol and surveillance is discussed along with vertical heavy lift airships. Military and civilian needs for high altitude platforms are addressed.

  15. Seasonal influence over serum and urine metabolic markers in submariners during prolonged patrols

    PubMed Central

    Holy, Xavier; Bégot, Laurent; Renault, Sylvie; Butigieg, Xavier; André, Catherine; Bonneau, Dominique; Savourey, Gustave; Collombet, Jean-Marc

    2015-01-01

    Within the framework of earlier publications, we have consistently dedicated our investigations to eliciting the effects of both seasonal vitamin D deficiency and submarine-induced hypercapnia on serum parameters for acid–base balance and bone metabolism in submariners over a 2-month winter (WP) or summer (SP) patrols. The latest findings reported herein, contribute further evidence with regard to overall physiological regulations in the same submariner populations that underwent past scrutiny. Hence, urine and blood samples were collected in WP and SP submariners at control prepatrol time as well as on submarine patrol days 20, 41, and 58. Several urine and serum metabolic markers were quantified, namely, deoxypyridinoline (DPD), lactate, albumin, creatinine, nonesterified fatty acids (NEFA), and ionized sodium (Na+) or potassium (K+), with a view to assessing bone, muscle, liver, or kidney metabolisms. We evidenced bone metabolism alteration (urine DPD, calcium, and phosphorus) previously recorded in submarine crewmembers under prolonged patrols. We also highlighted transitory modifications in liver metabolism (serum albumin) occurring within the first 20 days of submersion. We further evidenced changes in submariners’ renal physiology (serum creatinine) throughout the entire patrol time span. Measurements of ionic homeostasis (serum Na+ and K+) displayed potential seasonal impact over active ionic pumps in submariners. Finally, there is some evidence that submersion provides beneficial conditions prone to fend off seasonal lactic acidosis (serum lactate) detected in WP submariners. PMID:26265754

  16. Long-Endurance, Ice-capable Autonomous Seagliders

    NASA Astrophysics Data System (ADS)

    Lee, C. M.; Gobat, J. I.; Shilling, G.; Curry, B.

    2012-12-01

    Autonomous Seagliders capable of extended (many months) operation in ice-covered waters have been developed and successfully employed as part of the US Arctic Observing Network. Seagliders operate routinely in lower-latitude oceans for periods of up to 9 months to provide persistent sampling in difficult, remote conditions, including strong boundary currents and harsh wintertime subpolar seas. The Arctic Observing Network calls for sustained occupation of key sections within the Arctic Ocean and across the critical gateways that link the Arctic to lower-latitude oceans, motivating the extension of glider technologies to permit operation in ice-covered waters. When operating in open water, gliders rely on GPS for navigation and Iridium satellite phones for data and command telemetry. Ice cover blocks access to the sea surface and thus prevents gliders from using these critical services. When operating under ice, ice-capable Seagliders instead navigate by trilateration from an array of RAFOS acoustic sound sources and employ advanced autonomy to make mission-critical decisions (previously the realm of the human pilot) and identify and exploit leads in the ice to allow intermittent communication through Iridium. Davis Strait, one of the two primary pathways through which Arctic waters exit into the subpolar North Atlantic, provided a convenient site for development of ice-capable Seagliders at a location where the resulting measurements could greatly augment the existing observing system. Initial testing of 780 Hz RAFOS sources in Davis Strait, substantiated by the performance of the operational array, indicates effective ranges of 100-150 km in ice-covered waters. Surface ducting and reflection off the ice bottom significantly degrade the range from the 500+ km expected in ice-free conditions. Comparisons between GPS and acoustically-derived positions collected during operations in ice-free conditions suggest 1-2 km uncertainty in the acoustically-derived positions

  17. Long-Endurance, Ice-capable Autonomous Seagliders

    NASA Astrophysics Data System (ADS)

    Lee, Craig; Gobat, Jason; Shilling, Geoff; Curry, Beth

    2013-04-01

    Autonomous Seagliders capable of extended (many months) operation in ice-covered waters have been developed and successfully employed as part of the US Arctic Observing Network. Seagliders operate routinely in lower-latitude oceans for periods of up to 9 months to provide persistent sampling in difficult, remote conditions, including strong boundary currents and harsh wintertime subpolar seas. The Arctic Observing Network calls for sustained occupation of key sections within the Arctic Ocean and across the critical gateways that link the Arctic to lower-latitude oceans, motivating the extension of glider technologies to permit operation in ice-covered waters. When operating in open water, gliders rely on GPS for navigation and Iridium satellite phones for data and command telemetry. Ice cover blocks access to the sea surface and thus prevents gliders from using these critical services. When operating under ice, ice-capable Seagliders instead navigate by trilateration from an array of RAFOS acoustic sound sources and employ advanced autonomy to make mission-critical decisions (previously the realm of the human pilot) and identify and exploit leads in the ice to allow intermittent communication through Iridium. Davis Strait, one of the two primary pathways through which Arctic waters exit into the subpolar North Atlantic, provided a convenient site for development of ice-capable Seagliders at a location where the resulting measurements could greatly augment the existing observing system. Initial testing of 780 Hz RAFOS sources in Davis Strait, substantiated by the performance of the operational array, indicates effective ranges of 100-150 km in ice-covered waters. Surface ducting and reflection off the ice bottom significantly degrade the range from the 500+ km expected in ice-free conditions. Comparisons between GPS and acoustically-derived positions collected during operations in ice-free conditions suggest 1-2 km uncertainty in the acoustically-derived positions

  18. It Takes a Village. Collaborative Outer Planet Missions

    NASA Technical Reports Server (NTRS)

    Rymer, A. M.; Turtle, E. P.; Hofstadter, M. D.; Simon, A. A.; Hospodarsky, G. B.

    2017-01-01

    A mission to one or both of our local Ice Giants (Uranus and Neptune) emerged as a high priority in the most recent Planetary Science Decadal Survey and was also specifically mentioned supportively in the Heliophysics Decadal Survey. In 2016, NASA convened a science definition team to study ice giant mission concepts in more detail. Uranus and Neptune represent the last remaining planetary type in our Solar System to have a dedicated orbiting mission. The case for a Uranus mission has been made eloquently in the Decadal Surveys. Here we summarize some of the major drivers that lead to enthusiastic support for an Ice Giant mission in general, and use the example of a Uranus Mission concept to illustrate opportunities such a mission might provide for cross-division collaboration and cost-sharing.

  19. The Aeronomy of Ice in the Mesosphere Mission: Science Results After Three PMC Seasons

    NASA Astrophysics Data System (ADS)

    Russell, J. M.; Bailey, S. M.; Rusch, D.; Thomas, G. E.; Gordley, L. L.; Hervig, M. E.; Horanyi, M.

    2008-12-01

    The Aeronomy of Ice in the Mesosphere (AIM) satellite was launched from Vandenberg Air Force Base in California at 1:26:03 PDT on April 25, 2007 becoming the first satellite mission dedicated to the study of Polar Mesospheric Clouds (PMCs). A Pegasus XL rocket launched the satellite into a near perfect 600 km sun synchronous circular orbit. AIM carries three instruments - a nadir imager, a solar occultation sounder and an in-situ cosmic dust detector. Brief instrument descriptions, data quality and key science results will be presented. AIM has observed three PMC seasons at this point in time including two in the northern hemisphere (2007 and 2008) and one in the south (2007/2008). The observations are providing extraordinary detail on the horizontal and vertical extent of PMCs and their variability. Results show that the mesospheric ice layer extends up to the mesopause, there are voids in the PMC fields of both hemispheres and for the two northern seasons, temporal trends are remarkably similar.

  20. The Antartic Ice Borehole Probe

    NASA Technical Reports Server (NTRS)

    Behar, A.; Carsey, F.; Lane, A.; Engelhardt, H.

    2000-01-01

    The Antartic Ice Borehole Probe mission is a glaciological investigation, scheduled for November 2000-2001, that will place a probe in a hot-water drilled hole in the West Antartic ice sheet. The objectives of the probe are to observe ice-bed interactions with a downward looking camera, and ice inclusions and structure, including hypothesized ice accretion, with a side-looking camera.

  1. Ice Waves

    NASA Image and Video Library

    2017-12-08

    Ice Waves - May 21st, 2001 Description: Along the southeastern coast of Greenland, an intricate network of fjords funnels glacial ice to the Atlantic Ocean. During the summer melting season, newly calved icebergs join slabs of sea ice and older, weathered bergs in an offshore slurry that the southward-flowing East Greenland Current sometimes swirls into stunning shapes. Exposed rock of mountain peaks, tinted red in this image, hints at a hidden landscape. Credit: USGS/NASA/Landsat 7 To learn more about the Landsat satellite go to: landsat.gsfc.nasa.gov/ NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook

  2. Characterizing Arctic Sea Ice Topography Using High-Resolution IceBridge Data

    NASA Technical Reports Server (NTRS)

    Petty, Alek; Tsamados, Michel; Kurtz, Nathan; Farrell, Sinead; Newman, Thomas; Harbeck, Jeremy; Feltham, Daniel; Richter-Menge, Jackie

    2016-01-01

    We present an analysis of Arctic sea ice topography using high resolution, three-dimensional, surface elevation data from the Airborne Topographic Mapper, flown as part of NASA's Operation IceBridge mission. Surface features in the sea ice cover are detected using a newly developed surface feature picking algorithm. We derive information regarding the height, volume and geometry of surface features from 2009-2014 within the Beaufort/Chukchi and Central Arctic regions. The results are delineated by ice type to estimate the topographic variability across first-year and multi-year ice regimes.

  3. ICESat-2, its retrievals of ice sheet elevation change and sea ice freeboard, and potential synergies with CryoSat-2

    NASA Astrophysics Data System (ADS)

    Neumann, Thomas; Markus, Thorsten; Smith, Benjamin; Kwok, Ron

    2017-04-01

    Understanding the causes and magnitudes of changes in the cryosphere remains a priority for Earth science research. Over the past decade, NASA's and ESA's Earth-observing satellites have documented a decrease in both the areal extent and thickness of Arctic sea ice, and an ongoing loss of grounded ice from the Greenland and Antarctic ice sheets. Understanding the pace and mechanisms of these changes requires long-term observations of ice-sheet mass, sea-ice thickness, and sea-ice extent. NASA's ICESat-2 mission is the next-generation space-borne laser altimeter mission and will use three pairs of beams, each pair separated by about 3 km across-track with a pair spacing of 90 m. The spot size is 17 m with an along-track sampling interval of 0.7 m. This measurement concept is a result of the lessons learned from the original ICESat mission. The multi-beam approach is critical for removing the effects of ice sheet surface slope from the elevation change measurements of most interest. For sea ice, the dense spatial sampling (eliminating along-track gaps) and the small footprint size are especially useful for sea surface height measurements in the, often narrow, leads needed for sea ice freeboard and ice thickness retrievals. Currently, algorithms are being developed to calculate ice sheet elevation change and sea ice freeboard from ICESat-2 data. The orbits of ICESat-2 and Cryosat-2 both converge at 88 degrees of latitude, though the orbit altitude differences result in different ground track patterns between the two missions. This presentation will present an overview of algorithm approaches and how ICESat-2 and Cryosat-2 data may augment each other.

  4. Risk factors for dermatitis in submariners during a submerged patrol: an observational cohort study.

    PubMed

    Flaxman, Amy; Allen, Elizabeth; Lindemann, Claudia; Yamaguchi, Yuko; O'Shea, Matthew K; Fallowfield, Joanne L; Lindsay, Michael; Gunner, Frances; Knox, Kyle; Wyllie, David H

    2016-06-02

    The aim of this pilot study was to determine risk factors, including Staphylococcus aureus nasal carriage, for dermatitis in submariners during a submarine patrol. 36 submariners undertaking a submerged 6-week patrol participated in the study. Severity of dermatitis and its impact was assessed using visual analogue scales and questionnaires at baseline and weekly throughout the patrol. S. aureus carriage levels in submariners were determined by nasal swabbing at baseline and shortly before disembarking the submarine. Occurrence of any skin or soft tissue infections (SSTI) were reported to the medical officer and swabs of the area were taken for subsequent analysis. S. aureus carriers were significantly more likely than non-carriers to have previously received treatment for a cutaneous abscess (39% vs 5%, OR=13 (95% CI 1.3 to 130)) with a trend to being submariners longer (p=0.051). Skin scores at baseline and on patrol were not significantly associated with carriage status. Higher dermatitis scores were observed in those who had been submariners longer (p=0.045). Smoking and allergies were not found to be linked to carriage status or skin health score in this cohort. This small pilot study investigates S. aureus carriage status and skin health in submariners. Length of submarine service but not S. aureus carriage was identified as a risk factor for worsening skin health in this small cohort during a 6-week patrol. This does not support S. aureus decolonisation to improve skin health in this population. Further investigation into causes of dermatitis in submariners is required. This data supports a better understanding of the potential impact of exposure to environmental factors that could affect skin health in submariners. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  5. Employment of Personnel at the Tucson Border Patrol Station

    DTIC Science & Technology

    2017-06-09

    RESEARCH METHODOLOGY How should the Tucson Border Patrol Station optimally employ personnel? Using a case study research methodology141 provided...BORSTAR provide better capabilities to respond and greater mobility in risk management.155 The methodologies of case study comparatives include the...35 CHAPTER 3 RESEARCH METHODOLOGY

  6. Venus, Mars, and the ices on Mercury and the moon: astrobiological implications and proposed mission designs.

    PubMed

    Schulze-Makuch, Dirk; Dohm, James M; Fairén, Alberto G; Baker, Victor R; Fink, Wolfgang; Strom, Robert G

    2005-12-01

    Venus and Mars likely had liquid water bodies on their surface early in the Solar System history. The surfaces of Venus and Mars are presently not a suitable habitat for life, but reservoirs of liquid water remain in the atmosphere of Venus and the subsurface of Mars, and with it also the possibility of microbial life. Microbial organisms may have adapted to live in these ecological niches by the evolutionary force of directional selection. Missions to our neighboring planets should therefore be planned to explore these potentially life-containing refuges and return samples for analysis. Sample return missions should also include ice samples from Mercury and the Moon, which may contain information about the biogenic material that catalyzed the early evolution of life on Earth (or elsewhere). To obtain such information, science-driven exploration is necessary through varying degrees of mission operation autonomy. A hierarchical mission design is envisioned that includes spaceborne (orbital), atmosphere (airborne), surface (mobile such as rover and stationary such as lander or sensor), and subsurface (e.g., ground-penetrating radar, drilling, etc.) agents working in concert to allow for sufficient mission safety and redundancy, to perform extensive and challenging reconnaissance, and to lead to a thorough search for evidence of life and habitability.

  7. Imparting protean behavior to mobile robots accomplishing patrolling tasks in the presence of adversaries.

    PubMed

    Curiac, Daniel-Ioan; Volosencu, Constantin

    2015-10-08

    Providing unpredictable trajectories for patrol robots is essential when coping with adversaries. In order to solve this problem we developed an effective approach based on the known protean behavior of individual prey animals-random zig-zag movement. The proposed bio-inspired method modifies the normal robot's path by incorporating sudden and irregular direction changes without jeopardizing the robot's mission. Such a tactic is aimed to confuse the enemy (e.g. a sniper), offering less time to acquire and retain sight alignment and sight picture. This idea is implemented by simulating a series of fictive-temporary obstacles that will randomly appear in the robot's field of view, deceiving the obstacle avoiding mechanism to react. The new general methodology is particularized by using the Arnold's cat map to obtain the timely random appearance and disappearance of the fictive obstacles. The viability of the proposed method is confirmed through an extensive simulation case study.

  8. Change detection on UGV patrols with respect to a reference tour using VIS imagery

    NASA Astrophysics Data System (ADS)

    Müller, Thomas

    2015-05-01

    Autonomous driving robots (UGVs, Unmanned Ground Vehicles) equipped with visual-optical (VIS) cameras offer a high potential to automatically detect suspicious occurrences and dangerous or threatening situations on patrol. In order to explore this potential, the scene of interest is recorded first on a reference tour representing the 'everything okay' situation. On further patrols changes are detected with respect to the reference in a two step processing scheme. In the first step, an image retrieval is done to find the reference images that are closest to the current camera image on patrol. This is done efficiently based on precalculated image-to-image registrations of the reference by optimizing image overlap in a local reference search (after a global search when that is needed). In the second step, a robust spatio-temporal change detection is performed that widely compensates 3-D parallax according to variations of the camera position. Various results document the performance of the presented approach.

  9. The cloud imaging and particle size experiment on the aeronomy of ice in the mesosphere mission: Cloud morphology for the northern 2007 season

    NASA Astrophysics Data System (ADS)

    Rusch, D. W.; Thomas, G. E.; McClintock, W.; Merkel, A. W.; Bailey, S. M.; Russell, J. M., III; Randall, C. E.; Jeppesen, C.; Callan, M.

    2009-03-01

    The Aeronomy of Ice in the Mesosphere (AIM) mission was launched from Vandenberg Air Force Base in California at 4:26:03 EDT on April 25, 2007, becoming the first satellite mission dedicated to the study of noctilucent clouds (NLCs), also known as polar mesospheric clouds (PMC) when viewed from space. We present the first results from one of the three instruments on board the satellite, the Cloud Imaging and Particle Size (CIPS) instrument. CIPS has produced detailed morphology of the Northern 2007 PMC and Southern 2007/2008 seasons with 5 km horizontal spatial resolution. CIPS, with its very large angular field of view, images cloud structures at multiple scattering angles within a narrow spectral bandpass centered at 265 nm. Spatial coverage is 100% above about 70° latitude, where camera views overlap from orbit to orbit, and terminates at about 82°. Spatial coverage decreases to about 50% at the lowest latitudes where data are collected (35°). Cloud structures have for the first time been mapped out over nearly the entire summertime polar region. These structures include [`]ice rings', spatially small but bright clouds, and large regions ([`]ice-free regions') in the heart of the cloud season essentially devoid of ice particles. The ice rings bear a close resemblance to tropospheric convective outflow events, suggesting a point source of mesospheric convection. These rings (often circular arcs) are most likely Type IV NLC ([`]whirls' in the standard World Meteorological Organization (WMO) nomenclature).

  10. Ice Giant Exploration

    NASA Astrophysics Data System (ADS)

    Rymer, A. M.; Arridge, C. S.; Masters, A.; Turtle, E. P.; Simon, A. A.; Hofstadter, M. D.; Turrini, D.; Politi, R.

    2015-12-01

    The Ice Giants in our solar system, Uranus and Neptune, are fundamentally different from their Gas Giant siblings Jupiter and Saturn, from the different proportions of rock and ice to the configuration of their planetary magnetic fields. Kepler space telescope discoveries of exo-planets indicate that planets of this type are among the most ubiquitous universally and therefore a future mission to explore the nature of the Ice Giants in our own solar system will provide insights into the nature of extra-solar system objects in general. Uranus has the smallest self- luminosity of all the planets, potentially related to catastrophic events early in the planet's history, which also may explain Uranus' large obliquity. Uranus' atmosphere is subject to extreme seasonal forcing making it unique in the Solar System. Neptune is also unique in a number of ways, notably its large moon Triton which is likely a captured Kuiper Belt Object and one of only two moons in the solar system with a robustly collisional atmosphere. Similar to Uranus, the angle between the solar wind and the magnetic dipole axis is subject to large-amplitude variations on both diurnal and seasonal timescales, but peculiarly it has one of the quietest magnetospheres of the solar system, at least according to Voyager 2, the only spacecraft to encounter Neptune to date. A comprehensive mission, as advocated in the Decadal Survey, would provide enormous science return but is also challenging and expensive. In this presentation we will discuss mission scenarios and suggest how collaboration between disciplines and internationally can help us to pursue a mission that includes Ice Giant exploration.

  11. Under-Ice Operations with AUVS in High Latitudes

    NASA Astrophysics Data System (ADS)

    Ferguson, J.; Kaminski, C. D.

    2012-12-01

    In 2010 and 2011, ISE Explorer Autonomous Underwater Vehicles (AUV), built for Natural Resources Canada (NRCan), were deployed to Canada's high Arctic. The mission was to undertake under-ice bathymetric surveys supporting Canada's submission under the United Nations Convention on the Law of the Sea (UNCLOS). During these deployments several under-ice records were broken and several new technologies were demonstrated. The NRCan AUV is a 5000 meter depth rated vehicle, with several innovative additions to make it suitable for arctic survey work. Most notable are a depth rated variable ballast system, a 1300 Hz long-range homing system, and under-ice charging and data transfer capabilities. The Explorer's range was extended to approximately 450 km by adding a hull section to accommodate extra batteries. The scientific payload onboard included a Seabird SBE49 Conductivity-Temperature-Depth (CTD) sensor, Knudsen singlebeam echosounder, and a Kongsberg Simrad EM2000 multibeam echosounder. In 2010, operations were conducted from an ice camp near Borden Island (78°14'N, 112°39'W) operating through an ice hole. Following several test missions, the AUV spent 10 days surveying under ice before being successfully recovered. In total, close to 1100 km of under-ice survey was undertaken at depths to 3160 meters. A further set of operations was carried out in August and September 2011 from the Canadian Icebreaker CCGS Louis St. Laurent operating with the American Icebreaker USCGS Healy. Here the operations were much further north to latitudes of 88°30' N and to depths of 3500 meters. In this paper, the 2010 ice camp and the 2011 icebreaker missions are described, with an outline of technology developments that were undertaken, the preparations that were necessary for the success of the missions and finally, the outcome of the missions themselves.

  12. ICESCAPE Mission

    NASA Image and Video Library

    2010-07-08

    Clark University's Luke Trusel works amid sea ice in the Chukchi Sea on July 9, 2010, and logs the depths at which measurements are collected below the ice. The research is part of NASA's ICESCAPE mission to sample the physical, chemical and biological characteristics of the ocean and sea ice. Impacts of Climate change on the Eco-Systems and Chemistry of the Arctic Pacific Environment (ICESCAPE) is a multi-year NASA shipborne project. The bulk of the research will take place in the Beaufort and Chukchi Sea’s in summer of 2010 and fall of 2011. Photo Credit: (NASA/Kathryn Hansen)

  13. Effects of seasonal vitamin D deficiency and respiratory acidosis on bone metabolism markers in submarine crewmembers during prolonged patrols.

    PubMed

    Holy, Xavier; Collombet, Jean-Marc; Labarthe, Frédéric; Granger-Veyron, Nicolas; Bégot, Laurent

    2012-02-01

    The aim of the study was to determine the seasonal influence of vitamin D status on bone metabolism in French submariners over a 2-mo patrol. Blood samples were collected as follows: prepatrol and patrol days 20, 41, and 58 on crewmembers from both a winter (WP; n = 20) and a summer patrol (SP; n = 20), respectively. Vitamin D status was evaluated for WP and SP. Moreover, extended parameters for acid-base balance (Pco(2), pH, and bicarbonate), bone metabolism (bone alkaline phosphatase and COOH-terminal telopeptide of type I collagen), and mineral homeostasis (parathyroid hormone, ionized calcium and phosphorus) were scrutinized. As expected, SP vitamin D status was higher than WP vitamin D status, regardless of the considered experimental time. A mild chronic respiratory acidosis (CRA) was identified in both SP and WP submariners, up to patrol day 41. Such an occurrence paired up with an altered bone remodeling coupling (decreased bone alkaline phosphatase-to-COOH-terminal telopeptide of type I collagen ratio). At the end of the patrol (day 58), a partial compensation of CRA episode, combined with a recovered normal bone remodeling coupling, was observed in SP, not, however, in WP submariners. The mild CRA episode displayed over the initial 41-day submersion period was mainly induced by a hypercapnia resulting from the submarine-enriched CO(2) level. The correlated impaired bone remodeling may imply a physiological attempt to compensate this acidosis via bone buffering. On patrol day 58, the discrepancy observed in terms of CRA compensation between SP and WP may result from the seasonal influence on vitamin D status.

  14. NASA Launches Eighth Year of Antarctic Ice Change Airborne Survey

    NASA Image and Video Library

    2017-12-08

    At the southern end of the Earth, a NASA plane carrying a team of scientists and a sophisticated instrument suite to study ice is returning to surveying Antarctica. For the past eight years, Operation IceBridge has been on a mission to build a record of how polar ice is evolving in a changing environment. The information IceBridge has gathered in the Antarctic, which includes data on the thickness and shape of snow and ice, as well as the topography of the land and ocean floor beneath the ocean and the ice, has allowed scientists to determine that the West Antarctic Ice Sheet may be in irreversible decline. Researchers have also used IceBridge data to evaluate climate models of Antarctica and map the bedrock underneath Antarctic ice. Read more:http://go.nasa.gov/2dxczkd NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  15. PRELIMINARY FINDINGS ON THE ASSESSMENT OF POTENTIAL CAR-RELATED OCCUPATIONAL PM AND AIR TOXIC EXPOSURE TO PATROL TROOPERS (COPP STUDY)

    EPA Science Inventory

    In-vehicle, roadside and community-based measurements of particulate matter (PM) and select air toxics were measured as part of a study involving patrol cars from the North Carolina Highway Patrol. One goal of this study was to characterize PM and related air pollutant concentra...

  16. Discharge of New Subglacial Lake on Whillians Ice Stream: Implication for Ice Stream Flow Dynamics.

    NASA Astrophysics Data System (ADS)

    Sergienko, O. V.; Fricker, H. A.; Bindschadler, R. A.; Vornberger, P. L.; Macayeal, D. R.

    2006-12-01

    One of the surprise discoveries made possible by the ICESat laser altimeter mission of 2004-2006 is the presence of a large subglacial lake below the grounding zone of Whillians Ice Stream (dubbed here `Lake Helen' after the discoverer, Helen Fricker). What is even more surprising is the fact that this lake discharged a substantial portion of its volume during the ICESat mission, and changes in lake volume and surface elevation of the ice stream are documented in exquisite detail [Fricker et al., in press]. The presence and apparent dynamism of large subglacial lakes in the grounding zone of a major ice stream raises questions about their effects on ice-stream dynamics. Being liquid and movable, water modifies basal friction spatially and temporally. Melting due to shear heating and geothermal flux reduces basal traction, making the ice stream move fast. However, when water collects in a depression to form a lake, it potentially deprives the surrounding bed of lubricating water, and additionally makes the ice surface flat, thereby locally decreasing the ice stream driving stress. We study the effect of formation and discharge of a subglacial lake at the mouth of and ice stream using a two dimensional, vertically integrated, ice-stream model. The model is forced by the basal friction, ice thickness and surface elevation. The basal friction is obtained by inversion of the ice surface velocity, ice thickness and surface elevation come from observations. To simulate the lake formation we introduce zero basal friction and "inflate" the basal elevation of the ice stream at the site of the lake. Sensitivity studies of the response of the surrounding ice stream and ice shelf flow are performed to delineate the influence of near-grounding-line subglacial water storage for ice streams in general.

  17. Ice pack heat sink subsystem - Phase 1, Volume 1

    NASA Technical Reports Server (NTRS)

    Roebelen, G. J., Jr.

    1973-01-01

    The design, development, fabrication, and test at one-g of a functional laboratory model (non-flight) ice pack heat sink subsystem to be used eventually for astronaut cooling during manned space missions are discussed. In normal use, excess heat in the liquid cooling garment (LCG) coolant is transferred to a reusable/regenerable ice pack heat sink. For emergency operation, or for extension of extravehicular activity mission time after all the ice has melted, water from the ice pack is boiled to vacuum, thereby continuing to remove heat from the LCG coolant. This subsystem incorporates a quick connect/disconnect thermal interface between the ice pack heat sink and the subsystem heat exchanger.

  18. Four years of meteor spectra patrol

    NASA Technical Reports Server (NTRS)

    Harvey, G. A.

    1974-01-01

    The development of the NASA-Langley Research Center meteor spectra patrol is described in general terms. The recording of very faint meteors was made possible by three great strides in optical and photographic technology in the 1960's: (1) the availability of optical-grade fused silica at modest cost, (2) the development of large transmission gratings with high blaze efficiency, and (3) the development of a method for avoiding plate fogging due to background skylight, which consisted of using a photoelectric meteor detector which actuates the spectrograph shutter when a meteor occurs in the field. The classification scheme for meteor spectra developed by Peter M. Millman is described.

  19. Planetary Protection for Polar Mars Missions

    NASA Technical Reports Server (NTRS)

    Rummel, J. D.

    2003-01-01

    The picture of Mars that is emerging from the Mars Global Surveyor and Odyssey results contrasts markedly from that portrayed shortly after the Viking missions ended. Particularly intriguing is the abundance of water ice seen both in the polar caps themselves, and in lower latitudes outside of the polar regions. Along with the new data comes a heightened consideration of the potential for biological contamination that may be carried by future missions, and its possible effects. Particularly challenging are scenarios where missions carrying perennial heat sources of high capacity and longevity (e.g., Radioisotope Thermoelectric Generators) could, by non-nominal landings or other mission operations be introduced to close contact with water ice on Mars - potentially forming Earthlike environments that could accommodate the growth of contaminant organisms.

  20. Sea ice thickness derived from radar altimetry: achievements and future plans

    NASA Astrophysics Data System (ADS)

    Ricker, R.; Hendricks, S.; Paul, S.; Kaleschke, L.; Tian-Kunze, X.

    2017-12-01

    The retrieval of Arctic sea ice thickness is one of the major objectives of the European CryoSat-2 radar altimeter mission and the 7-year long period of operation has produced an unprecedented record of monthly sea ice thickness information. We present CryoSat-2 results that show changes and variability of Arctic sea ice from the winter season 2010/2011 until fall 2017. CryoSat-2, however, was designed to observe thick perennial sea ice, while an accurate retrieval of thin seasonal sea ice is more challenging. We have therefore developed a method of completing and improving Arctic sea ice thickness information within the ESA SMOS+ Sea Ice project by merging CryoSat-2 and SMOS sea ice thickness retrievals. Using these satellite missions together overcomes several issues of single-mission retrievals and provides a more accurate and comprehensive view on the state of Arctic sea-ice thickness at higher temporal resolution. However, stand-alone CryoSat-2 observations can be used as reference data for the exploitation of older pulse-limited radar altimetry data sets over sea ice. In order to observe trends in sea ice thickness, it is required to minimize inter-mission biases between subsequent satellite missions. Within the ESA Climate Change Initiative (CCI) on Sea Ice, a climate data record of sea ice thickness derived from satellite radar altimetry has been developed for both hemispheres, based on the 15-year (2002-2017) monthly retrievals from Envisat and CryoSat-2 and calibrated in the 2010-2012 overlap period. The next step in promoting the utilization of sea ice thickness information from radar altimetry is to provide products by a service that meets the requirements for climate applications and operational systems. This task will be pursued within a Copernicus Climate Change Service project (C3S). This framework also aims to include additional sensors such as onboard Sentinel-3 and we will show first results of Sentinel-3 Arctic sea-ice thickness. These

  1. Performance analysis of Virginia's safety service patrol programs : a case study approach.

    DOT National Transportation Integrated Search

    2006-01-01

    Many state departments of transportation (DOTs) operate safety service patrols (SSPs) as part of their incident management programs. The primary objectives of SSPs are to minimize the duration of freeway incidents, restore full capacity of the freewa...

  2. The Lunar IceCube Mission Design: Construction of Feasible Transfer Trajectories with a Constrained Departure

    NASA Technical Reports Server (NTRS)

    Folta, David C.; Bosanac, Natasha; Cox, Andrew; Howell, Kathleen C.

    2016-01-01

    Lunar IceCube, a 6U CubeSat, will prospect for water and other volatiles from a low-periapsis, highly inclined elliptical lunar orbit. Injected from Exploration Mission-1, a lunar gravity assisted multi-body transfer trajectory will capture into a lunar science orbit. The constrained departure asymptote and value of trans-lunar energy limit transfer trajectory types that re-encounter the Moon with the necessary energy and flight duration. Purdue University and Goddard Space Flight Center's Adaptive Trajectory Design tool and dynamical system research is applied to uncover cislunar spatial regions permitting viable transfer arcs. Numerically integrated transfer designs applying low-thrust and a design framework are described.

  3. Ice Sheet and Sea Ice Observations from Unmanned Aircraft Systems

    NASA Astrophysics Data System (ADS)

    Crocker, R. I.; Maslanik, J. A.

    2011-12-01

    A suite of sensors has been assembled to map ice sheet and sea ice surface topography with fine-resolution from small unmanned aircraft systems (UAS). This payload is optimized to provide coincident surface elevation and imagery data, and with its low cost and ease of reproduction, it has the potential to become a widely-distributed observational resource to complement polar manned-aircraft and satellite missions. To date, it has been deployed to map ice sheet elevations near Jakobshavn Isbræ in Greenland, and to measure sea ice freeboard and roughness in Fram Strait off the coast of Svalbard. Data collected during these campaigns have facilitate a detailed assessment of the system's surface elevation measurement accuracy, and provide a glimpse of the summer 2009 Fram Strait sea ice conditions. These findings are presented, along with a brief overview of our future Arctic UAS operations.

  4. Report of the International Ice Patrol in the North Atlantic. Bulletin Number 76

    DTIC Science & Technology

    1990-01-01

    lIP’s iceberg predictions. Ice were updated by Scobie dynamic height, resulting in a and Schultz (1976). Figure low estimate of the current Page 78 I...0. - 9 *460 460 440 1. 4 40 I42*N 9 .’I...........1 442*N 53OW 510 490 470 450W Figure C-2. Mean Dynamic Topography Relative to 1000 db ( Scobie and...Schultz, 1976). Paqle 79 MI magnitude. Scobie and PREVIOUS CHANGES TO Kassler and Shuhy I Schultz (1976) substantially THE 1979 CURRENT FILE also

  5. Improving Arctic Sea Ice Edge Forecasts by Assimilating High Horizontal Resolution Sea Ice Concentration Data into the US Navy’s Ice Forecast Systems

    DTIC Science & Technology

    2016-06-13

    Global Ocean Forecast System 3.1 also showed a substantial improvement in ice edge location over a system using the SSMIS sea ice concentration product... Global Ocean Fore- cast System (GOFS 3.1). Prior to 2 February 2015, the ice concentration fields from both ACNFS and GOFS 3.1 had been updated with...Scanning Radiometer (AMSR2) on the Japan Aerospace Exploration Agency (JAXA) Global Change Observation Mission – Water (GCOM-W) platform became available

  6. STS-48 ESC Earth observation of ice pack, Antarctic Ice Shelf

    NASA Technical Reports Server (NTRS)

    1991-01-01

    STS-48 Earth observation taken aboard Discovery, Orbiter Vehicle (OV) 103, is of the breakup of pack ice along the periphery of the Antarctic Ice Shelf. Strong offshore winds, probably associated with katabatic downdrafts from the interior of the continent, are seen peeling off the edges of the ice shelf into long filaments of sea ice, icebergs, bergy bits, and growlers to flow northward into the South Atlantic Ocean. These photos are used to study ocean wind, tide and current patterns. Similar views photographed during previous missions, when analyzed with these recent views may yield information about regional ice drift and breakup of ice packs. The image was captured using an electronic still camera (ESC), was stored on a removable hard disk or small optical disk, and was converted to a format suitable for downlink transmission. The ESC documentation was part of Development Test Objective (DTO) 648, Electronic Still Photography.

  7. Europa Ice Rafts

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This high resolution image shows the ice-rich crust of Europa, one of the moons of Jupiter. Seen here are crustal plates ranging up to 13 kilometers (8 miles) across, which have been broken apart and 'rafted' into new positions, superficially resembling the disruption of pack-ice on polar seas during spring thaws on Earth. The size and geometry of these features suggest that motion was enabled by ice-crusted water or soft ice close to the surface at the time of disruption.

    The area shown is about 34 kilometers by 42 kilometers (21 miles by 26 miles), centered at 9.4 degrees north latitude, 274 degrees west longitude, and the resolution is 54 meters (59 yards). This picture was taken by the Solid State Imaging system on board the Galileo spacecraft on February 20, 1997, from a distance of 5,340 kilometers (3,320 miles) during the spacecraft's close flyby of Europa.

    The Jet Propulsion Laboratory, Pasadena, CA, manages the mission for NASA's Office of Space Science, Washington D.C. This image and other images and data received from Galileo are posted on the World Wide Web Galileo mission home page at: http://galileo.jpl.nasa.gov.

  8. Coordinated Mapping of Sea Ice Deformation Features with Autonomous Vehicles

    NASA Astrophysics Data System (ADS)

    Maksym, T.; Williams, G. D.; Singh, H.; Weissling, B.; Anderson, J.; Maki, T.; Ackley, S. F.

    2016-12-01

    Decreases in summer sea ice extent in the Beaufort and Chukchi Seas has lead to a transition from a largely perennial ice cover, to a seasonal ice cover. This drives shifts in sea ice production, dynamics, ice types, and thickness distribution. To examine how the processes driving ice advance might also impact the morphology of the ice cover, a coordinated ice mapping effort was undertaken during a field campaign in the Beaufort Sea in October, 2015. Here, we present observations of sea ice draft topography from six missions of an Autonomous Underwater Vehicle run under different ice types and deformation features observed during autumn freeze-up. Ice surface features were also mapped during coordinated drone photogrammetric missions over each site. We present preliminary results of a comparison between sea ice surface topography and ice underside morphology for a range of sample ice types, including hummocked multiyear ice, rubble fields, young ice ridges and rafts, and consolidated pancake ice. These data are compared to prior observations of ice morphological features from deformed Antarctic sea ice. Such data will be useful for improving parameterizations of sea ice redistribution during deformation, and for better constraining estimates of airborne or satellite sea ice thickness.

  9. GATEWAY Demonstrations: LED System Performance in a Trial Installation--Two Years Later, Yuma Border Patrol, Yuma, Arizona

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilkerson, Andrea M.; Sullivan, Gregory P.; Davis, Robert G.

    Along the Yuma Sector Border Patrol Area in Yuma, Arizona, the GATEWAY program conducted a trial demonstration in which the incumbent quartz metal halide area lighting was replaced with LED at three pole locations at the Yuma Sector Border Patrol Area in Yuma, Arizona. The retrofit was documented to better understand LED technology performance in high-temperature environments. This report follows the GATEWAY Yuma Phase 1.1 Report and reflects LED system results documented two years after the demonstration began.

  10. GATEWAY Demonstrations: LED System Performance in a Trial Installation--One Year Later, Yuma Border Patrol, Yuma, Arizona

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilkerson, A. M.; Davis, R. G.

    Along the Yuma Sector Border Patrol Area in Yuma, Arizona, the GATEWAY program conducted a trial demonstration in which the incumbent quartz metal halide area lighting was replaced with LED at three pole locations at the Yuma Sector Border Patrol Area in Yuma, Arizona. The retrofit was documented to better understand LED technology performance in high-temperature environments. This report follows the GATEWAY Yuma Phase 1.0 Report and reflects LED system results documented one year after the demonstration began.

  11. ICESCAPE Mission

    NASA Image and Video Library

    2010-07-03

    Scientists on the sea ice in the Chukchi Sea off the north coast of Alaska disperse equipment on July 4, 2010, as they prepare to collect data on and below the ice. The research is part of NASA's ICESCAPE mission onboard the U.S. Coast Guard icebreaker Healy to sample the physical, chemical and biological characteristics of the ocean and sea ice. Impacts of Climate change on the Eco-Systems and Chemistry of the Arctic Pacific Environment (ICESCAPE) is a multi-year NASA shipborne project. The bulk of the research will take place in the Beaufort and Chukchi Sea’s in summer of 2010 and fall of 2011. Photo Credit: (NASA/Kathryn Hansen)

  12. Improving Our Understanding of Antarctic Sea Ice with NASA's Operation IceBridge and the Upcoming ICESat-2 Mission

    NASA Technical Reports Server (NTRS)

    Petty, Alek A.; Markus, Thorsten; Kurtz, Nathan T.

    2017-01-01

    Antarctic sea ice is a crucial component of the global climate system. Rapid sea ice production regimes around Antarctica feed the lower branch of the Southern Ocean overturning circulation through intense brine rejection and the formation of Antarctic Bottom Water (e.g., Orsi et al. 1999; Jacobs 2004), while the northward transport and subsequent melt of Antarctic sea ice drives the upper branch of the overturning circulation through freshwater input (Abernathy et al. 2016). Wind-driven trends in Antarctic sea ice (Holland Kwok 2012) have likely increased the transport of freshwater away from the Antarctic coastline, significantly altering the salinity distribution of the Southern Ocean (Haumann et al. 2016). Conversely, weaker sea ice production and the lack of shelf water formation over the Amundsen and Bellingshausen shelf seas promote intrusion of warm Circumpolar Deep Water onto the continental shelf and the ocean-driven melting of several ice shelves fringing the West Antarctic Ice Sheet (e.g., Jacobs et al. 2011; Pritchard et al. 2012; Dutrieux et al. 2014). Sea ice conditions around Antarctica are also increasingly considered an important factor impacting local atmospheric conditions and the surface melting of Antarctic ice shelves (e.g., Scambos et al. 2017). Sea ice formation around Antarctica is responsive to the strong regional variability in atmospheric forcing present around Antarctica, driving this bimodal variability in the behavior and properties of the underlying shelf seas (e.g., Petty et al. 2012; Petty et al. 2014).

  13. Exploration Strategy for the Ice Dwarf Planets 2013-2022

    NASA Astrophysics Data System (ADS)

    Grundy, W. M.; McKinnon, W. B.

    2009-12-01

    The past decade saw the discovery of many ice dwarf planets, a new category distinct from terrestrial and giant planets. Future ice dwarf missions depend on increasing our knowledge of these objects as a class. Competing needs to broaden the sample and to explore individual objects in greater detail must be balanced so that neither is excluded. A balance also needs to be struck between development of enabling technologies and making use of those available today. We propose this strategy for dwarf planet investigation during 2013-2022: 1. NASA should encourage and support ground- and space-based observations along with associated theoretical and laboratory work to investigate the ice dwarfs as a population, to motivate missions to individual objects and to provide context for mission results. Access to a range of telescope capabilities is essential to complete the inventory of ice dwarfs, determine their gross characteristics, and monitor their seasonal behavior. NASA's best course of action is to ensure adequate community access to facilities such as HST, Keck, VLT, Herschel, etc., to work for access to and ensure moving target tracking capabilities in future projects such as JWST, ALMA, SIM, and future large aperture ground-based telescopes still on the drawing board, and to support improvements to the IRTF. Funding support is needed for observational, laboratory, and theoretical studies to ensure availability of researchers to undertake needed work and to inform mission development activities, independent of whether or not there is a new mission start for ice dwarfs. Additional increments are also needed for thorough analysis of New Horizons and Dawn data. 2. A New Frontiers class mission using existing, proven technology to an unexplored ice dwarf should be a candidate for NASA AOs during the next decade. The Haumea system could be a particularly compelling target, as it could significantly advance understanding of the diversity and the role of collisions in ice

  14. Dancing on Thinning Ice: Choreography and Science in the Chukchi Sea

    NASA Astrophysics Data System (ADS)

    Sperling, J.

    2016-12-01

    In 2014, Jody Sperling was the first-ever choreographer in residence to participate in a polar science mission, thanks to an invitation from Dr. Robert Pickart (Woods Hole Oceanographic Institution). This 43-day mission (SUBICE) aboard the USCGC Healy traveled to the Chukchi Sea with Sperling serving as part of an outreach team on climate science communication. Since the mission, Sperling has shared her Arctic experience with more than 4,200 people through dozens of live performances, lectures and workshops, plus press coverage across the US. Her film "Ice Floe," created during SUBICE, won a Creative Climate Award and has been aired on Alaska Public Television reaching thousands more. While Arctic sea ice is vitally important to the global climate system, the public knows little about its function (other than as a habitat for polar bears) or its precipitous decline. Sperling's research during the mission focused on sea ice and had three components: 1) As a contributor to SUBICE's Ice Watch Survey, she learned the descriptive nomenclature for sea ice and its processes of formation to transport its dynamics and aesthetics to the stage. This information served as critical inspiration for the creation of her dance work "Ice Cycle" (2015); 2) Sperling collected media samples of sea ice that were subsequently used in performances of "Ice Cycle" as well as her frequent public lectures; 3) Sperling danced on sea ice at a dozen ice stations. In collaboration with the WHOI outreach team, the SUBICE science party and the Healy crew, she created the dance film short "Ice Floe". Sperling's dance company, Time Lapse Dance, has performed "Ice Cycle" as part of the larger program "Bringing the Arctic Home" at many venues nationally and the work has been mounted on students at Brenau University in Georgia. Wherever she performs, Sperling programs talkbacks, lectures and panels with scientists, artists and climate educators, with the aim of increasing awareness of sea ice, the rapid

  15. Physiological Stresses Related to Hypercapnia during Patrols on Submarines

    DTIC Science & Technology

    1975-12-01

    Acid- base balance, CO., storage, and calcium homeostasis | I am trying to show that this delayed renal response in low level chronic hypercapnia is 1...C02 Co, P BONE 4 1 BLOOD Fig. 11. Cycles in acid- base balance, bone buffering, and renal regulation during prolonged exposure to 0.7...patrols on submarines K. E. SCHAEFER Naval Submarine Medical Research Laboratory, Naval Submarine Base . Groton. CT 06340 Schaefer, K. E. 1979

  16. IceCube

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halzen, Francis

    Neutrino astronomy beyond the Sun was first imagined in the late 1950s; by the 1970s, it was realized that kilometer-scale neutrino detectors were required. The first such instrument, IceCube, is near completion and taking data. Its scientific missions include the observation of Galactic supernova explosions, the search for dark matter, and the study of the neutrinos themselves. These reach energies more than two orders of magnitude beyond those produced by accelerator beams. In these lectures, we will focus on IceCube's most publicized mission, the search for the sources of cosmic rays. We will conclude with an overview of the firstmore » results obtained with the partially completed detector.These lectures are based on a review paper co-authored with Spencer Klein (arXiv:astroph.HE/1007.1247) to be published in Review of Scientific Instruments.« less

  17. Greenland Ice Sheet in 3D Cutaway

    NASA Image and Video Library

    2017-12-08

    Peering into the thousands of frozen layers inside Greenland’s ice sheet is like looking back in time. Each layer provides a record of what Earth’s climate was like at the dawn of civilization, or during the last ice age, or during an ancient period of warmth similar to the one we experience today. Scientists using ice-penetrating radar data collected by NASA’s Operation IceBridge and earlier airborne campaigns have built the first-ever comprehensive map of layers deep inside the Greenland Ice Sheet. View the full video: youtu.be/u0VbPE0TOtQ Credit: NASA’s Goddard Space Flight Center NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  18. Environmental Activities of the U.S. Coast Guard

    DTIC Science & Technology

    2009-05-07

    Antarctic , and provides supplies to remote stations. The USCG also participates in the International Ice Patrol, which monitors iceberg danger in...the northwest Atlantic, particularly in the area of the Grand Banks of Newfoundland. The iceberg season is usually from February to July, but the Ice...Patrol is logistically flexible and can commence operations when iceberg conditions dictate

  19. Healy at 3rd Ice Station

    NASA Image and Video Library

    2012-06-07

    On July 6, 2011, the U.S. Coast Guard Cutter Healy parked in an ice floe for the 2011 ICESCAPE mission's third ice station in the Chukchi Sea. The ICESCAPE mission, or "Impacts of Climate on Ecosystems and Chemistry of the Arctic Pacific Environment," is a NASA shipborne investigation to study how changing conditions in the Arctic affect the ocean's chemistry and ecosystems. The bulk of the research took place in the Beaufort and Chukchi seas in summer 2010 and 2011. Credit: NASA/Kathryn Hansen NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  20. U.S. border patrol potential applications of internetted unattended ground sensors

    NASA Astrophysics Data System (ADS)

    Eaton, Wilbur W., Jr.; Schatzmann, Larry A.

    1997-07-01

    The U.S. Border Patrol monitors the traffic on the Mexican/U.S. Border, the Canadian/U.S. Border and along some coastal areas. Measures have been taken to reduce or eliminate illegal immigration and smuggling. An automated border surveillance sub-system based on the DARPA Internetted Unattended Ground Sensors Program is discussed.

  1. A return on investment study of the Hampton Roads Safety Service Patrol program.

    DOT National Transportation Integrated Search

    2007-01-01

    Safety Service Patrol (SSP) programs are widely used to help mitigate the effects of nonrecurring congestion on our nation's highways and have become an increasingly vital element of incident management programs. SSPs are typically deployed in areas ...

  2. Satellite/Submarine Arctic Sea Ice Remote Sensing in 2004 and 2007

    NASA Astrophysics Data System (ADS)

    Hughes, N. E.; Wadhams, P.; Rodrigues, J.

    2007-12-01

    After an interlude of 8 years the U.K. Royal Navy returned to the Arctic Ocean with an under-ice mission by the submarine shape HMS Tireless in April 2004. A full environmental monitoring programme in which U.K. civilian scientists were allowed to participate was integrated into the mission. This was subsequently followed by a second expedition, in March 2007, which allowed further measurements to be acquired. These have so far been the only opportunities for civilian scientists to utilise navy submarines in the Arctic since the demise of the U.S. SCICEX programme in 2000. This paper presents some of the data collected on these new missions and uses it for validation of sea ice information derived from coincident acquisitions by modern satellite sensors such as the ESA Envisat ASAR and NASA MODIS. In both the 2004 and 2007 expeditions shape Tireless took a track north of Greenland along the latitude 85° N. This was similar to the route used for an earlier submarine-aircraft combined survey in April 1987 with which our results shall be compared. In all three missions the submarine was equipped with a standard upward-looking echosounder and sidescan for ice observations and a full range of satellite-borne, or airborne in the case of the earlier mission, microwave and optical sensors were available for validation. In this study we concentrate on the submarine track north of Greenland from the Marginal Ice Zone (MIZ) in Fram Strait through to the Lincoln Sea around 65° W. This transect encompasses a wide range of differing sea ice conditions, from the highly mobile mixture of first year and multi year ice being transported on the trans-polar drift through to the highly deformed ice north of Greenland and Ellesmere Island. The combination of submarine measurements of ice thickness and satellite/aircraft top-side measurements gives an accurate indication of how changes in the ice regime are taking place and allows the potential development of multi-sensor data fusion

  3. Traffic Patrol Service Platform Scheduling and Containment Optimization Strategy

    NASA Astrophysics Data System (ADS)

    Wang, Tiane; Niu, Taiyang; Wan, Baocheng; Li, Jian

    This article is based on the traffic and patrol police service platform settings and scheduling, in order to achieve the main purpose of rapid containment for the suspect in an emergency event. Proposing new boundary definition based on graph theory, using 0-1 programming, Dijkstra algorithm, the shortest path tree (SPT) and some of the related knowledge establish a containment model. Finally, making a combination with a city-specific data and using this model obtain the best containment plan.

  4. Effector CD4+ T cells recognize intravascular antigen presented by patrolling monocytes.

    PubMed

    Westhorpe, Clare L V; Norman, M Ursula; Hall, Pam; Snelgrove, Sarah L; Finsterbusch, Michaela; Li, Anqi; Lo, Camden; Tan, Zhe Hao; Li, Songhui; Nilsson, Susan K; Kitching, A Richard; Hickey, Michael J

    2018-02-21

    Although effector CD4 + T cells readily respond to antigen outside the vasculature, how they respond to intravascular antigens is unknown. Here we show the process of intravascular antigen recognition using intravital multiphoton microscopy of glomeruli. CD4 + T cells undergo intravascular migration within uninflamed glomeruli. Similarly, while MHCII is not expressed by intrinsic glomerular cells, intravascular MHCII-expressing immune cells patrol glomerular capillaries, interacting with CD4 + T cells. Following intravascular deposition of antigen in glomeruli, effector CD4 + T-cell responses, including NFAT1 nuclear translocation and decreased migration, are consistent with antigen recognition. Of the MHCII + immune cells adherent in glomerular capillaries, only monocytes are retained for prolonged durations. These cells can also induce T-cell proliferation in vitro. Moreover, monocyte depletion reduces CD4 + T-cell-dependent glomerular inflammation. These findings indicate that MHCII + monocytes patrolling the glomerular microvasculature can present intravascular antigen to CD4 + T cells within glomerular capillaries, leading to antigen-dependent inflammation.

  5. NASA’s Operation IceBridge Completes Twin Polar Campaigns

    NASA Image and Video Library

    2017-12-08

    Heimdal Glacier in southern Greenland, in an image captured on Oct. 13, 2015, from NASA Langley Research Center's Falcon 20 aircraft flying 33,000 feet above mean sea level. NASA’s Operation IceBridge, an airborne survey of polar ice, recently finalized two overlapping campaigns at both of Earth’s poles. Down south, the mission observed a big drop in the height of two glaciers situated in the Antarctic Peninsula, while in the north it collected much needed measurements of the status of land and sea ice at the end of the Arctic summer melt season. This was the first time in its seven years of operations that IceBridge carried out parallel flights in the Arctic and Antarctic. Every year, the mission flies to the Arctic in the spring and to Antarctica in the fall to keep collect an uninterrupted record of yearly changes in the height of polar ice. Read more: www.nasa.gov/feature/goddard/nasa-s-operation-icebridge-c... Credits: NASA/Goddard/John Sonntag NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  6. Incident management assistance patrols - assessment of benefits/costs, route selection, and prioritization : final report.

    DOT National Transportation Integrated Search

    2016-09-21

    The North Carolina Department of Transportation's (NCDOTs) Incident Management Assistance Patrol (IMAP) program provides a critically important service to North Carolinas traveling public. The highly trained and well-equipped IMAP operators pro...

  7. Cutting Through Multiyear Ice

    NASA Image and Video Library

    2012-06-07

    ICESCAPE scientists watched from the deck of the Healy as it cut a path through thick multiyear ice on July 6, 2011. Cutting the path is key for getting researchers to remote research sites amid the sea ice. Credit: NASA/Kathryn Hansen The ICESCAPE mission, or "Impacts of Climate on Ecosystems and Chemistry of the Arctic Pacific Environment," is a NASA shipborne investigation to study how changing conditions in the Arctic affect the ocean's chemistry and ecosystems. The bulk of the research took place in the Beaufort and Chukchi seas in summer 2010 and 2011. Credit: NASA/Kathryn Hansen NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  8. Education Requirements of Command Positions in the U.S. Border Patrol

    DTIC Science & Technology

    2015-06-12

    BIBLIOGRAPHY ............................................................................................................110 viii ACRONYMS BPA ...and ports of entry.3 As the USBP changed, so did the requirements of its positions. The duties of the Border Patrol Agent ( BPA ) position today are...more complex, challenging, and demanding than they were twenty years ago.4 In just over a decade, most BPA positions increased in grade, including

  9. National Ice Center Visiting Scientist Program

    NASA Technical Reports Server (NTRS)

    Austin, Meg

    2001-01-01

    The objectives of the work done by Dr. Kim Partington were to manage NASA's polar research program, including its strategic direction, research funding and interagency and international collaborations. The objectives of the UCAR Visiting Scientist Program at the National Ice Center (NIC) are to: (1) Manage a visiting scientist program for the NIC Science Center in support of the mission of the NIC; (2) Provide a pool of researchers who will share expertise with the NIC and the science community; (3) Facilitate communications between the research and operational communities for the purpose of identifying work ready for validation and transition to an operational environment; and (4) Act as a focus for interagency cooperation. The NIC mission is to provide worldwide operational sea ice analyses and forecasts for the armed forces of the US and allied nations, the Departments of Commerce and Transportation, and other US Government and international agencies, and the civil sector. The NIC produces these analyses and forecasts of Arctic, Antarctic, Great Lakes, and Chesapeake Bay ice conditions to support customers with global, regional, and tactical scale interests. The NIC regularly deploys Naval Ice Center NAVICECEN Ice Reconnaissance personnel to the Arctic and Antarctica in order to perform aerial ice observation and analysis in support of NIC customers. NIC ice data are a key part of the US contribution to international global climate and ocean observing systems.

  10. Changes in water quality along the course of a river - Classic monitoring versus patrol monitoring

    NASA Astrophysics Data System (ADS)

    Absalon, Damian; Kryszczuk, Paweł; Rutkiewicz, Paweł

    2017-11-01

    Monitoring of water quality is a tool necessary to assess the condition of waterbodies in order to properly formulate water management plans. The paper presents the results of patrol monitoring of a 40-kilometre stretch of the Oder between Racibórz and Koźle. It has been established that patrol monitoring is a good tool for verifying the distribution of points of classic stationary monitoring, particularly in areas subject to varied human impact, where tributaries of the main river are very diversified as regards hydrochemistry. For this reason the results of operational monitoring carried out once every few years may not be reliable and the presented condition of the monitored waterbodies may be far from reality.

  11. Data assimilation of surface altimetry on the North-Easter Ice Stream using the Ice Sheet System Model (ISSM)

    NASA Astrophysics Data System (ADS)

    Larour, Eric; Utke, Jean; Morlighem, Mathieu; Seroussi, Helene; Csatho, Beata; Schenk, Anton; Rignot, Eric; Khazendar, Ala

    2014-05-01

    Extensive surface altimetry data has been collected on polar ice sheets over the past decades, following missions such as Envisat and IceSat. This data record will further increase in size with the new CryoSat mission, the ongoing Operation IceBridge Mission and the soon to launch IceSat-2 mission. In order to make the best use of these dataset, ice flow models need to improve on the way they ingest surface altimetry to infer: 1) parameterizations of poorly known physical processes such as basal friction; 2) boundary conditions such as Surface Mass Balance (SMB). Ad-hoc sensitivity studies and adjoint-based inversions have so far been the way ice sheet models have attempted to resolve the impact of 1) on their results. As for boundary conditions or the lack thereof, most studies assume that they are a fixed quantity, which, though prone to large errors from the measurement itself, is not varied according to the simulated results. Here, we propose a method based on automatic differentiation to improve boundary conditions at the base and surface of the ice sheet during a short-term transient run for which surface altimetry observations are available. The method relies on minimizing a cost-function, the best fit between modeled surface evolution and surface altimetry observations, using gradients that are computed for each time step from automatic differentiation of the ISSM (Ice Sheet System Model) code. The approach relies on overloaded operators using the ADOLC (Automatic Differentiation by OverLoading in C++) package. It is applied to the 79 North Glacier, Greenland, for a short term transient spanning a couple of decades before the start of the retreat of the Zachariae Isstrom outlet glacier. Our results show adjustments required on the basal friction and the SMB of the whole basin to best fit surface altimetry observations, along with sensitivities each one of these parameters has on the overall cost function. Our approach presents a pathway towards assimilating

  12. Palmer Quest: A Feasible Nuclear Fission "Vision Mission" to the Mars Polar Caps

    NASA Technical Reports Server (NTRS)

    Carsey, F. D.; Beegle, L. W.; Nakagawa, R.; Elliott, J. O.; Matthews, J. B.; Coleman, M. L.; Hecht, M. H.; Ivaniov, A. B.; Head, J. W.; Milkovich, S.

    2005-01-01

    We are engaged in a NASA Vision Mission study, called Palmer Quest after the American Antarctic explorer Nathaniel Palmer, to assess the presence of life and evaluate the habitability of the basal domain of the Mars polar caps. We address this goal through four objectives: 1. Determine the presence of amino acids, nutrients, and geochemical heterogeneity in the ice sheet. 2. Quantify and characterize the provenance of the amino acids in Mars ice. 3. Assess the stratification of outcropped units for indications of habitable zones. 4. Determine the accumulation of ice, mineralogic material, and amino acids in Mars ice caps over the present epoch. Because of the defined scientific goal for the vision mission, the Palmer Quest focus is astrobiological; however, the results of the study make us optimistic that aggressive multi-platform in-situ missions that address a wide range of objectives, such as climate change, can be supported by variations of the approach used on this mission. Mission Overview: The Palmer Quest baseline

  13. Predictors of patrol officer interest in cybercrime training and investigation in selected United States police departments.

    PubMed

    Holt, Thomas J; Bossler, Adam M

    2012-09-01

    Cybercrime has created substantial challenges for law enforcement, particularly at the local level. Most scholars and police administrators believe that patrol officers need to become more effective first responders to cybercrime calls. The evidence illustrates, however, that many patrol officers are neither adequately prepared nor strongly interested in taking an active role in addressing cybercrime at the local level. This study, therefore, examined the factors that predicted patrol officer interest in cybercrime training and investigations in two southeastern U.S. cities. The study specifically examined the relationship between demographics, cybercrime exposure, computer training, computer proficiency, Internet and cybercrime perceptions, and views on policing cybercrime with officer interest in cybercrime investigation training and conducting cybercrime investigations in the future. Officer views on policing cybercrime, particularly whether they valued cybercrime investigations and believed that cybercrime would dramatically change policing, along with their computer skills, were the strongest predictors of interest in cybercrime efforts. Officers who had received previous computer training were less interested in additional training and conducting investigations. These findings support the argument that more command and departmental meetings focusing on the value of investigating these types of crime need to be held in order to increase officer interest.

  14. Midlatitude ice-rich ground on mars as a target in the search for evidence of life and for in situ resource utilization on human missions.

    PubMed

    Heldmann, J L; Schurmeier, L; McKay, C; Davila, A; Stoker, C; Marinova, M; Wilhelm, M B

    2014-02-01

    Midlatitude ground ice on Mars is of significant scientific interest for understanding the history and evolution of ice stability on Mars and is relevant for human exploration as a possible in situ resource. For both science and exploration, assessing the astrobiological potential of the ice is important in terms of (1) understanding the potential for life on Mars and (2) evaluating the presence of possible biohazards in advance of human exploration. In the present study, we review the evidence for midlatitude ground ice on Mars, discuss the possible explanations for its occurrence, and assess its potential habitability. During the course of study, we systematically analyzed remote-sensing data sets to determine whether a viable landing site exists in the northern midlatitudes to enable a robotic mission that conducts in situ characterization and searches for evidence of life in the ice. We classified each site according to (1) presence of polygons as a proxy for subsurface ice, (2) presence and abundance of rough topographic obstacles (e.g., large cracks, cliffs, uneven topography), (3) rock density, (4) presence and abundance of large boulders, and (5) presence of craters. We found that a suitable landing site exists within Amazonis Planitia near ground ice that was recently excavated by a meteorite impact.

  15. Aeronomy of Ice in the Mesosphere Mission Overview and Collaborative Studies Using the AIM and TIMED Data Sets

    NASA Astrophysics Data System (ADS)

    Rusell, J. M.; Bailey, S. M.; Rusch, D.; Gordley, L. L.; Hervig, M. E.; Merkel, A.

    2007-12-01

    The Aeronomy of Ice in the Mesosphere (AIM) mission was launched from Vandenberg Air Force Base in California on April 25, 2007 becoming the first satellite mission dedicated to the study of noctilucent clouds that occur at approximately 83km altitude. A Pegasus XL rocket launched the satellite into a near perfect 600 km sun synchronous circular orbit. AIM carries three instruments - a nadir imager, a solar occultation instrument and an in-situ cosmic dust detector - that were specifically selected because of their ability to provide key measurements needed to address the six AIM science objectives. The Thermosphere Ionosphere Mesosphere Energetics and Dynamics mission was launched from Vandenberg Air Force Base on December 7, 2001 and is dedicated to the study of the structure, chemistry, energetics and dynamics of the atmospheric region between 60 km and 180 km altitude. TIMED carries four instruments including an infrared limb sounder to characteristic the temperature, chemistry, energetics and dynamics of the region; a global ultraviolet imager; a solar flux monitor and an instrument to measure winds. Together AIM and TIMED form an important component of the Heliophysics Great Observatory. This paper will provide an overview of the AIM mission and will discuss collaborative studies using the combined AIM/TIMED data sets in a synergistic way to advance our knowledge of this region where the sun first interacts with Earth's atmosphere.

  16. ICESCAPE Mission

    NASA Image and Video Library

    2010-07-03

    The terrain for the scientific work conducted by ICESCAPE scientists on July 4, 2010, is Arctic sea ice and melt ponds in the Chukchi Sea. The five-week field mission is dedicated to sampling the physical, chemical and biological characteristics of the ocean and sea ice. Impacts of Climate change on the Eco-Systems and Chemistry of the Arctic Pacific Environment (ICESCAPE) is a multi-year NASA shipborne project. The bulk of the research will take place in the Beaufort and Chukchi Sea’s in summer of 2010 and fall of 2011. Photo Credit: (NASA/Kathryn Hansen)

  17. High Ice Water Content: DC-8 Aeronautics Campaign

    NASA Image and Video Library

    2015-09-10

    During the month of August, NASA’s DC-8 completed flights in Florida aimed at collecting data on high-altitude crystals for the High Ice Water Content (HIWC) mission. High ice water content can be found within large convective storms and can result in aircraft engines losing power or not functioning properly. Researchers will use the data to develop technology that can be used onboard commercial aircraft to avoid high ice water content conditions and provide a safer flight for passengers. This video gives an inside look at the HIWC mission, including research done in and around Hurricane Danny, as well as a look at the instruments being used onboard the research aircraft. Researchers and pilots onboard worked with satellite information from the ground to find regions of high ice water content within the convective systems.

  18. Environmental Activities of the U.S. Coast Guard

    DTIC Science & Technology

    2007-01-16

    icebreakers in the Arctic and Antarctic , and provides supplies to remote stations. These icebreakers typically carry about 40 scientists from universities as...the International Ice Patrol, which monitors iceberg danger in the northwest Atlantic, particularly in the area of the Grand Banks of Newfoundland...The iceberg season is usually from February to July, but the Ice Patrol is logistically flexible and can commence operations when iceberg conditions

  19. Environmental Activities of the U.S. Coast Guard

    DTIC Science & Technology

    2007-04-25

    Guard operates three icebreakers in the Arctic and Antarctic , and provides supplies to remote stations. These icebreakers typically carry about 40...USCG also participates in the International Ice Patrol, which monitors iceberg danger in the northwest Atlantic, particularly in the area of the Grand...Banks of Newfoundland. The iceberg season is usually from February to July, but the Ice Patrol is logistically flexible and can commence operations

  20. Triton: The Connection between Rosetta, New Horizons and a future Ice Giants Mission

    NASA Astrophysics Data System (ADS)

    Mandt, K.; Luspay-Kuti, A.; Mousis, O.

    2017-12-01

    Several planetary missions have made observations intended to evaluate the origin and evolution of volatiles in solar system atmospheres. This is an important topic that connects how planets, moons and small bodies formed to the question of past or present habitability. Comet isotope observations have been ongoing and have played a crucial role in this research. Measurements of the D/H in cometary water and 14N/15N in NH3, in particular, have been critical for evaluating the origin of water and nitrogen in the terrestrial planet atmospheres and for that of Saturn's moon Titan. We have conducted comparative studies modeling the escape, photochemistry and evolution of the atmospheres of Titan and Pluto to try to understand whether the nitrogen in these atmospheres originated as N2 or NH3 in the protosolar nebula. The origin of Titan's nitrogen has been well constrained, but uncertainties about isotope processes in Pluto's atmosphere leave the origin of Pluto's nitrogen difficult to resolve. Because of their similarities, Triton is subject to the same uncertainties and is of particular interest for understanding the origin of Triton's and Pluto's volatiles as well as of Kuiper Belt Objects in general. We will discuss how Rosetta, New Horizons and a future Ice Giants mission will each contribute to understanding the origin of nitrogen in these atmospheres and to the origin of volatiles in atmospheres throughout outer solar system.

  1. Ultraviolet spectrophotometry of comet Giacobini-Zinner during the ICE encounter. [International Cometary Explorer (ICE)

    NASA Technical Reports Server (NTRS)

    Ahearn, Michael F.; Mcfadden, Lucy A.; Feldman, Paul D.; Boehnhardt, Hermann; Rahe, Juergen; Festou, Michael; Brandt, John C.; Maran, Stephen P.; Niedner, Malcom B.; Smith, Andrew M.

    1986-01-01

    The IUE spectrophotometry of Comet P/Giacobini-Zinner was acquired in support of the International Cometary Explorer (ICE) mission. The abundances (or upper limits) of UV-active species were calculated. During the ICE encounter the H2O production rate was 3 times 10 to the 28th power/sec, + or - 50%, consistent with values derived from the ICE experiments. Comparison of the abundance of CO2(+) ions with the total electron density measured by the plasma electron experiment on ICE indicates a deficiency of ions relative to electrons indicating a population of ions not detected by remote sensing. The absence of detectable Mg(+) rules out this species as a possible ion of M/Q = 24 detected by the Ion Composition Instrument, part of the ICE complement of instruments.

  2. Recent Changes in Ices Mass Balance of the Amundsen Sea Sector

    NASA Astrophysics Data System (ADS)

    Sutterley, T. C.; Velicogna, I.; Rignot, E. J.; Mouginot, J.; Flament, T.; van den Broeke, M. R.; van Wessem, M.; Reijmer, C.

    2014-12-01

    The glaciers flowing into the Amundsen Sea Embayment (ASE) sector of West Antarctica were confirmed in the Ice Sheet Mass Balance Inter-comparison Exercise (IMBIE) to be the dominant contributors to the current Antarctic ice mass loss, and recently recognized to be undergoing marine ice sheet instability. Here, we investigate their regional ice mass balance using a time series of satellite and airborne data combined with model output products from the Regional Atmospheric and Climate Model (RACMO). Our dataset includes laser altimetry from NASA's ICESat-1 satellite mission and from Operation IceBridge (OIB) airborne surveys, satellite radar altimetry data from ESA's Envisat mission, time-variable gravity data from NASA/DLR's GRACE mission, surface mass balance products from RACMO, ice velocity from a combination of international synthetic aperture radar satellites and ice thickness data from OIB. We find a record of ice mass balance for the ASE where all the analyzed techniques agree remarkably in magnitude and temporal variability. The mass loss of the region has been increasing continuously since 1992, with no indication of a slow down. The mass loss during the common period averaged 91 Gt/yr and accelerated 20 Gt/yr2. In 1992-2013, the ASE contributed 4.5 mm global sea level rise. Overall, our results demonstrate the synergy of multiple analysis techniques for examining Antarctic Ice Sheet mass balance at the regional scale. This work was performed at UCI and JPL under a contract with NASA.

  3. Towards decadal time series of Arctic and Antarctic sea ice thickness from radar altimetry

    NASA Astrophysics Data System (ADS)

    Hendricks, S.; Rinne, E. J.; Paul, S.; Ricker, R.; Skourup, H.; Kern, S.; Sandven, S.

    2016-12-01

    The CryoSat-2 mission has demonstrated the value of radar altimetry to assess the interannual variability and short-term trends of Arctic sea ice over the existing observational record of 6 winter seasons. CryoSat-2 is a particular successful mission for sea ice mass balance assessment due to its novel radar altimeter concept and orbit configuration, but radar altimetry data is available since 1993 from the ERS-1/2 and Envisat missions. Combining these datasets promises a decadal climate data record of sea ice thickness, but inter-mission biases must be taken into account due to the evolution of radar altimeters and the impact of changing sea ice conditions on retrieval algorithm parametrizations. The ESA Climate Change Initiative on Sea Ice aims to extent the list of data records for Essential Climate Variables (ECV's) with a consistent time series of sea ice thickness from available radar altimeter data. We report on the progress of the algorithm development and choices for auxiliary data sets for sea ice thickness retrieval in the Arctic and Antarctic Oceans. Particular challenges are the classification of surface types and freeboard retrieval based on radar waveforms with significantly varying footprint sizes. In addition, auxiliary data sets, e.g. for snow depth, are far less developed in the Antarctic and we will discuss the expected skill of the sea ice thickness ECV's in both hemispheres.

  4. NASA’s Aerial Survey of Polar Ice Expands Its Arctic Reach

    NASA Image and Video Library

    2017-12-08

    For the past eight years, Operation IceBridge, a NASA mission that conducts aerial surveys of polar ice, has produced unprecedented three-dimensional views of Arctic and Antarctic ice sheets, providing scientists with valuable data on how polar ice is changing in a warming world. Now, for the first time, the campaign will expand its reach to explore the Arctic’s Eurasian Basin through two research flights based out of Svalbard, a Norwegian archipelago in the northern Atlantic Ocean. More: go.nasa.gov/2ngAxX2 Credits: NASA/Nathan Kurtz NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  5. A Synthesis of RA-2 Envisat Observations over the Antarctic Ice Sheet, Before Altika, on SARAL, as a Follow-On 35-D Mission

    NASA Astrophysics Data System (ADS)

    Remy, Frederique; Flament, Thomas

    2013-09-01

    Since March 2002 Envisat, a 35-d repeat orbit altimetric mission, surveyed the Greenland and Antarctica ice sheet, providing a unique data set for ice sheet mass balance studies. In November 2010, Envisat was transferred on a drifting orbit, so that up to 80 repeat cycles are available. The whole Envisat data set may now be processed along-track in order to provide height change with a good space resolution. Next summer, a joint CNES/ISRO mission, SARAL, with AltiKa on board, will be launched exactly on the same orbit (more or less 1 km in the across track direction). This allows an extension of previous ESA missions. However, AltiKa operates in Ka-band (36.8 GHz), a higher frequency than the classical Ku-band (13.6 GHz), leading to important modifications of the interaction between radar wave and snow pack. In particular, the effect of temporal changes of the snowpack characteristics and the effect of the radar antenna polarization will be different, so that preliminary studies should be performed in order to be compared with previous observations.We present in this paper a synthesis of all available information derived from Envisat mission for the scientific exploitation (mean and temporal derivative of the height, but also of the backscatter and of the two waveform parameters, snowpack changes corrections, antenna polarization correction, flag for the height temporal behavior) and for an optimization of the comparison with AltiKa (penetration depth estimated at ICESat-Envisat cross-over, and precise surface slope in both directions at the kilometer scale). These data should be available through Aviso as soon as possible after SARAL launch.

  6. NASA’s Aerial Survey of Polar Ice Expands Its Arctic Reach

    NASA Image and Video Library

    2017-12-08

    For the past eight years, Operation IceBridge, a NASA mission that conducts aerial surveys of polar ice, has produced unprecedented three-dimensional views of Arctic and Antarctic ice sheets, providing scientists with valuable data on how polar ice is changing in a warming world. Now, for the first time, the campaign will expand its reach to explore the Arctic’s Eurasian Basin through two research flights based out of Svalbard, a Norwegian archipelago in the northern Atlantic Ocean. More: go.nasa.gov/2ngAxX2 Caption: Ellesmere Island mountain tops bathed in light as the sun began to peak over the horizon during Operation IceBridge’s first flight of its 2017 Arctic campaign, on March 9, 2017. Credits: NASA/Nathan Kurtz NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  7. Sea ice in the Greenland Sea

    NASA Image and Video Library

    2017-12-08

    As the northern hemisphere experiences the heat of summer, ice moves and melts in the Arctic waters and the far northern lands surrounding it. The Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA’s Aqua satellite captured this true-color image of sea ice off Greenland on July 16, 2015. Large chunks of melting sea ice can be seen in the sea ice off the coast, and to the south spirals of ice have been shaped by the winds and currents that move across the Greenland Sea. Along the Greenland coast, cold, fresh melt water from the glaciers flows out to the sea, as do newly calved icebergs. Frigid air from interior Greenland pushes the ice away from the shoreline, and the mixing of cold water and air allows some sea ice to be sustained even at the height of summer. According to observations from satellites, 2015 is on track to be another low year for arctic summer sea ice cover. The past ten years have included nine of the lowest ice extents on record. The annual minimum typically occurs in late August or early September. The amount of Arctic sea ice cover has been dropping as global temperatures rise. The Arctic is two to three times more sensitive to temperature changes as the Earth as a whole. Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  8. Sea Ice in the Bellingshausen Sea

    NASA Image and Video Library

    2017-12-08

    Antarctica—the continent at the southernmost reach of the planet—is fringed by cold, often frozen waters of the Southern Ocean. The extent of sea ice around the continent typically reaches a peak in September and a minimum in February. The photograph above shows Antarctic sea ice on November 5, 2014, during the annual cycle of melt. The image was acquired by the Digital Mapping System (DMS), a digital camera installed in the belly of research aircraft to capture images of terrain below. In this case, the system flew on the DC-8 during a flight as part of NASA’s Operation IceBridge. Most of the view shows first-year sea ice in the Bellingshausen Sea, as it appeared from an altitude of 328 meters (1,076 feet). The block of ice on the right side of the image is older, thicker, and was once attached to the Antarctic Ice Sheet. By the time this image was acquired, however, the ice had broken away to form an iceberg. Given its close proximity to the ice sheet, this could have been a relatively new berg. Read more: earthobservatory.nasa.gov/IOTD/view.php?id=86721 Credit: NASA/Goddard/IceBridge DMS L0 Raw Imagery courtesy of the Digital Mapping System (DMS) team and the NASA DAAC at the National Snow and Ice Data Center Credit: NASA Earth Observatory NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  9. Design of an Autonomous Underwater Vehicle to Calibrate the Europa Clipper Ice-Penetrating Radar

    NASA Astrophysics Data System (ADS)

    Stone, W.; Siegel, V.; Kimball, P.; Richmond, K.; Flesher, C.; Hogan, B.; Lelievre, S.

    2013-12-01

    Jupiter's moon Europa has been prioritized as the target for the Europa Clipper flyby mission. A key science objective for the mission is to remotely characterize the ice shell and any subsurface water, including their heterogeneity, and the nature of surface-ice-ocean exchange. This objective is a critical component of the mission's overarching goal of assessing the habitability of Europa. The instrument targeted for addressing key aspects of this goal is an ice-penetrating radar (IPR). As a primary goal of our work, we will tightly couple airborne IPR studies of the Ross Ice Shelf by the Europa Clipper radar team with ground-truth data to be obtained from sub-glacial sonar and bio-geochemical mapping of the corresponding ice-water and water-rock interfaces using an advanced autonomous underwater vehicle (AUV). The ARTEMIS vehicle - a heavily morphed long-range, low drag variant of the highly successful 4-degree-of-freedom hovering sub-ice ENDURANCE bot -- will be deployed from a sea-ice drill hole adjacent the McMurdo Ice Shelf (MIS) and will perform three classes of missions. The first includes original exploration and high definition mapping of both the ice-water interface and the benthic interface on a length scale (approximately 10 kilometers under-ice penetration radius) that will definitively tie it to the synchronous airborne IPR over-flights. These exploration and mapping missions will be conducted at up to 10 different locations along the MIS in order to capture varying ice thickness and seawater intrusion into the ice shelf. Following initial mapping characterization, the vehicle will conduct astrobiology-relevant proximity operations using bio-assay sensors (custom-designed UV fluorescence and machine-vision-processed optical imagery) followed by point-targeted studies at regions of interest. Sample returns from the ice-water interface will be triggered autonomously using real-time-processed instrument data and onboard decision-to-collect algorithms

  10. The Inferred Distribution of Liquid Water in Europa's Ice Shell: Implications for the Europa Lander Mission

    NASA Astrophysics Data System (ADS)

    Noviello, J. L.; Torrano, Z. A.; Rhoden, A.; Manga, M.

    2017-12-01

    A key objective of the Europa lander mission is to identify liquid water within 30 km of the lander (Europa Lander SDT report, 2017), to provide essential context with which to evaluate samples and enable assessment of Europa's overall habitability. To inform lander mission development, we utilize a model of surface feature formation that invokes liquid water within Europa's ice shell to map out the implied 3D distribution of liquid water and assess the likelihood of a lander to be within 30 km of liquid water given regional variability. Europa's surface displays a variety of microfeatures, also called lenticulae, including pits, domes, spots, and microchaos. A recent model by Manga and Michaut (2017) attributes these features to various stages in the thermal-mechanical evolution of liquid water intrusions (i.e. sills) within the ice shell, from sill emplacement to surface breaching (in the case of microchaos) to freezing of the sill. Pits are of particular interest because they appear only when liquid water is still present. Another key feature of the model is that the size of a microfeature at the surface is controlled by the depth of the sill. Hence, we can apply this model to regions of Europa that contain microfeatures to infer the size, depth, and spatial distribution of liquid water within the ice shell. We are creating a database of microfeatures that includes digitized, collated data from previous mapping efforts along with our own mapping study. We focus on images with 220 m/pixel resolution, which includes the regional mapping data sets. Analysis of a preliminary study area suggests that sills are typically located at depths of 2km or less from the surface. We will present analysis of the full database of microfeatures and the corresponding 3D distribution of sills implied by the model. Our preliminary analysis also shows that pits are clustered in some regions, consistent with previous results, although individual pits are also observed. We apply a

  11. Laser Altimetry Sampling Strategies over Sea Ice

    NASA Technical Reports Server (NTRS)

    Farrell, Sinead L.; Markus, Thorsten; Kwok, Ron; Connor, Laurence

    2011-01-01

    With the conclusion of the science phase of the Ice, Cloud and land Elevation Satellite (ICESat) mission in late 2009, and the planned launch of ICESat-2 in late 2015, NASA has recently established the IceBridge program to provide continuity between missions. A major goal of IceBridge is to obtain a sea-ice thickness time series via airborne surveys over the Arctic and Southern Oceans. Typically two laser altimeters, the Airborne Topographic Mapper (ATM) and the Land, Vegetation and Ice Sensor (LVIS), are utilized during IceBridge flights. Using laser altimetry simulations of conventional analogue systems such as ICESat, LVIS and ATM, with the multi-beam system proposed for ICESat-2, we investigate differences in measurements gathered at varying spatial resolutions and the impact on sea-ice freeboard. We assess the ability of each system to reproduce the elevation distributions of two seaice models and discuss potential biases in lead detection and sea-surface elevation, arising from variable footprint size and spacing. The conventional systems accurately reproduce mean freeboard over 25km length scales, while ICESat-2 offers considerable improvements over its predecessor ICESat. In particular, its dense along-track sampling of the surface will allow flexibility in the algorithmic approaches taken to optimize the signal-to-noise ratio for accurate and precise freeboard retrieval.

  12. Sea Ice off the Princess Astrid Coast

    NASA Image and Video Library

    2015-04-08

    On April 5, 2015, the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Terra satellite acquired this natural-color image of sea ice off the coast of East Antarctica’s Princess Astrid Coast. White areas close to the continent are sea ice, while white areas in the northeast corner of the image are clouds. One way to better distinguish ice from clouds is with false-color imagery. In the false-color view of the scene here, ice is blue and clouds are white. The image was acquired after Antarctic sea ice had passed its annual minimum extent (reached on February 20, 2015), and had resumed expansion toward its maximum extent (usually reached in September). Credit: NASA image by Jeff Schmaltz, LANCE/EOSDIS Rapid Response. Caption by Kathryn Hansen via NASA's Earth Observatory Read more: www.nasa.gov/content/sea-ice-off-east-antarcticas-princes... NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  13. Sea Ice Thickness, Freeboard, and Snow Depth products from Operation IceBridge Airborne Data

    NASA Technical Reports Server (NTRS)

    Kurtz, N. T.; Farrell, S. L.; Studinger, M.; Galin, N.; Harbeck, J. P.; Lindsay, R.; Onana, V. D.; Panzer, B.; Sonntag, J. G.

    2013-01-01

    The study of sea ice using airborne remote sensing platforms provides unique capabilities to measure a wide variety of sea ice properties. These measurements are useful for a variety of topics including model evaluation and improvement, assessment of satellite retrievals, and incorporation into climate data records for analysis of interannual variability and long-term trends in sea ice properties. In this paper we describe methods for the retrieval of sea ice thickness, freeboard, and snow depth using data from a multisensor suite of instruments on NASA's Operation IceBridge airborne campaign. We assess the consistency of the results through comparison with independent data sets that demonstrate that the IceBridge products are capable of providing a reliable record of snow depth and sea ice thickness. We explore the impact of inter-campaign instrument changes and associated algorithm adaptations as well as the applicability of the adapted algorithms to the ongoing IceBridge mission. The uncertainties associated with the retrieval methods are determined and placed in the context of their impact on the retrieved sea ice thickness. Lastly, we present results for the 2009 and 2010 IceBridge campaigns, which are currently available in product form via the National Snow and Ice Data Center

  14. ICESCAPE Mission

    NASA Image and Video Library

    2010-07-03

    Teams of scientists set up equipment on sea ice not far from the U.S. Coast Guard icebreaker Healy in the Chukchi Sea on July 4, 2010, where they spent the day collecting data. The research is part of NASA's ICESCAPE oceanographic mission to sample the physical, chemical and biological characteristics of the ocean and sea ice. Impacts of Climate change on the Eco-Systems and Chemistry of the Arctic Pacific Environment (ICESCAPE) is a multi-year NASA shipborne project. The bulk of the research will take place in the Beaufort and Chukchi Sea’s in summer of 2010 and fall of 2011. Photo Credit: (NASA/Kathryn Hansen)

  15. ICESCAPE Mission

    NASA Image and Video Library

    2010-07-03

    Clark University student Christie Wood lowers a water sampler into a borehole on July 4, 2010, to collect water samples from below the Arctic sea ice off the north coast of Alaska. The research is part of NASA's ICESCAPE oceanographic mission to sample the physical, chemical and biological characteristics of the ocean and sea ice. Impacts of Climate change on the Eco-Systems and Chemistry of the Arctic Pacific Environment (ICESCAPE) is a multi-year NASA shipborne project. The bulk of the research will take place in the Beaufort and Chukchi Sea’s in summer of 2010 and fall of 2011. Photo Credit: (NASA/Kathryn Hansen)

  16. ICESCAPE Mission

    NASA Image and Video Library

    2010-07-03

    Clark University's Karen Frey and Luke Trusel work amid sea ice in the Chukchi Sea on July 4, 2010, setting up an instrument that measures the optical properties of melt ponds. The research is part of NASA's ICESCAPE mission to sample the physical, chemical and biological characteristics of the ocean and sea ice. Impacts of Climate change on the Eco-Systems and Chemistry of the Arctic Pacific Environment (ICESCAPE) is a multi-year NASA shipborne project. The bulk of the research will take place in the Beaufort and Chukchi Sea’s in summer of 2010 and fall of 2011. Photo Credit: (NASA/Kathryn Hansen)

  17. Sea ice off western Alaska

    NASA Image and Video Library

    2015-02-20

    On February 4, 2014 the Moderate Resolution Imaging Spectroradiometer (MODIS) flying aboard NASA’s Aqua satellite captured a true-color image of sea ice off of western Alaska. In this true-color image, the snow and ice covered land appears bright white while the floating sea ice appears a duller grayish-white. Snow over the land is drier, and reflects more light back to the instrument, accounting for the very bright color. Ice overlying oceans contains more water, and increasing water decreases reflectivity of ice, resulting in duller colors. Thinner ice is also duller. The ocean waters are tinted with green, likely due to a combination of sediment and phytoplankton. Alaska lies to the east in this image, and Russia to the west. The Bering Strait, covered with ice, lies between to two. South of the Bering Strait, the waters are known as the Bering Sea. To the north lies the Chukchi Sea. The bright white island south of the Bering Strait is St. Lawrence Island. Home to just over 1200 people, the windswept island belongs to the United States, but sits closer to Russia than to Alaska. To the southeast of the island a dark area, loosely covered with floating sea ice, marks a persistent polynya – an area of open water surrounded by more frozen sea ice. Due to the prevailing winds, which blow the sea ice away from the coast in this location, the area rarely completely freezes. The ice-covered areas in this image, as well as the Beaufort Sea, to the north, are critical areas for the survival of the ringed seal, a threatened species. The seals use the sea ice, including ice caves, to rear their young, and use the free-floating sea ice for molting, raising the young and breeding. In December 2014, the National Oceanic and Atmospheric Administration (NOAA) proposed that much of this region be set aside as critical, protected habitat for the ringed seal. Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center

  18. Arctic Sea Ice Is Losing Its Bulwark Against Warming Summers

    NASA Image and Video Library

    2017-12-08

    Arctic sea ice, the vast sheath of frozen seawater floating on the Arctic Ocean and its neighboring seas, has been hit with a double whammy over the past decades: as its extent shrunk, the oldest and thickest ice has either thinned or melted away, leaving the sea ice cap more vulnerable to the warming ocean and atmosphere. “What we’ve seen over the years is that the older ice is disappearing,” said Walt Meier, a sea ice researcher at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “This older, thicker ice is like the bulwark of sea ice: a warm summer will melt all the young, thin ice away but it can’t completely get rid of the older ice. But this older ice is becoming weaker because there’s less of it and the remaining old ice is more broken up and thinner, so that bulwark is not as good as it used to be.” Read more: go.nasa.gov/2dPJ9zT NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  19. EXPOSURE TO PARTICULATE MATTER, VOLATILE ORGANIC COMPOUNDS, AND OTHER AIR POLLUTANTS INSIDE PATROL CARS

    EPA Science Inventory

    People driving in a vehicle might receive an enhanced dose of mobile source pollutants that are considered a potential risk for cardiovascular diseases. The exposure to components of air pollution in highway patrol vehicles, at an ambient, and a roadside location was determined d...

  20. Ice Pack Heat Sink Subsystem - Phase I. [astronaut liquid cooling garment design and testing

    NASA Technical Reports Server (NTRS)

    Roebelen, G. J., Jr.

    1973-01-01

    This paper describes the design and test at one-g of a functional laboratory model (non-flight) Ice Pack Heat Sink Subsystem to be used eventually for astronaut cooling during manned space missions. In normal use, excess heat in the liquid cooling garment (LCG) coolant is transferred to a reusable/regenerable ice pack heat sink. For emergency operation, or for extension of extravehicular activity mission time after all the ice has melted, water from the ice pack is boiled to vacuum, thereby continuing to remove heat from the LCG coolant. This subsystem incorporates a quick connect/disconnect thermal interface between the ice pack heat sink and the subsystem heat exchanger.

  1. Approaching the 2015 Arctic Sea Ice Minimum

    NASA Image and Video Library

    2017-12-08

    As the sun sets over the Arctic, the end of this year’s melt season is quickly approaching and the sea ice cover has already shrunk to the fourth lowest in the satellite record. With possibly some days of melting left, the sea ice extent could still drop to the second or third lowest on record. Arctic sea ice, which regulates the planet’s temperature by bouncing solar energy back to space, has been on a steep decline for the last two decades. This animation shows the evolution of Arctic sea ice in 2015, from its annual maximum wintertime extent, reached on February 25, to September 6. Credit: NASA Scientific Visualization Studio DOWNLOAD THIS VIDEO HERE: svs.gsfc.nasa.gov/cgi-bin/details.cgi?aid=11999 NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  2. Maiden Voyage of the Under-Ice Float

    NASA Astrophysics Data System (ADS)

    Shcherbina, A.; D'Asaro, E. A.; Light, B.; Deming, J. W.; Rehm, E.

    2016-02-01

    The Under-Ice Float (UIF) is a new autonomous platform for sea ice and upper ocean observations in the marginal ice zone (MIZ). UIF is based on the Mixed Layer Lagrangian Float design, inheriting its accurate buoyancy control and relatively heavy payload capability. A major challenge for sustained autonomous observations in the MIZ is detection of open water for navigation and telemetry surfacings. UIF employs the new surface classification algorithm based on the spectral analysis of surface roughness sensed by an upward-looking sonar. A prototype UIF was deployed in the MIZ of the central Arctic Ocean in late August 2015. The main payload of the first UIF was a bio-optical suit consisting of upward- and downward hyperspectral radiometers; temperature, salinity, chlorophyll, turbidity, and dissolved oxygen sensors, and a high-definition photo camera. In the early stages of its mission, the float successfully avoided ice, detected leads, surfaced in open water, and transmitted data and photographs. We will present the analysis of these observations from the full UIF mission extending into the freeze-up season.

  3. The ICESat-2 Mission: Concept, Pre-Launch Activities, and Opportunities

    NASA Technical Reports Server (NTRS)

    Markus, Thorsten; Neumann, Tom; Csatho, Beata M.

    2011-01-01

    Ice sheet and sea level changes have been explicitly identified as a priority in the President's Climate Change Science Program, the Arctic Climate Impact Assessment, the 4th Assessment Report of the IPee and other national and international policy documents. Following recommendations from the National Research Council for an ICESat follow-on mission, the ICESat-2 mission is now under development for launch in early 2016. The primary aims of the ICESat-2 mission are to continue measurements of sea-ice thickness change, and ice sheet elevation changes at scales from outlet glaciers to the entire ice sheet as established by ICES at. In contrast to ICES at, ICESat-2 will employ a 6-beam micro-pulse laser photon-counting approach. The current concept uses a high repetition rate (10 kHz; equivalent to 70 cm on the ground) low-power laser in conjunction with single-photon sensitive detectors to measure range using approximately 532nm (green) light. The concept will enable the generation of seasonal maps of ice sheet elevation of Greenland and Antarctica, monthly maps of sea ice thickness of the polar ocean, a dense map of land elevation (2 km track spacing at the equator after two years) enabling the determination of canopy height, as well as ocean heights. While the mission has been optimized for cryospheric science and vast amount of high precision elevation measurements taken over land and over the ocean as well as of the atmosphere will provide scientists with a wealth of opportunities to explore the utility of ICESat-2. Those will range from the retrieval of cloud properties, to river stages, to snow cover, to land use changes and more. The presentation will review the measurement concept and physical principles of ICESat-2, current and planned activities to assess instrument performance and develop geophysical algorithms, as well as potential opportunities outside the main objectives of ICESat-2.

  4. The Europa Clipper Mission Concept

    NASA Astrophysics Data System (ADS)

    Pappalardo, Robert; Goldstein, Barry; Magner, Thomas; Prockter, Louise; Senske, David; Paczkowski, Brian; Cooke, Brian; Vance, Steve; Wes Patterson, G.; Craft, Kate

    2014-05-01

    A NASA-appointed Science Definition Team (SDT), working closely with a technical team from the Jet Propulsion Laboratory (JPL) and the Applied Physics Laboratory (APL), recently considered options for a future strategic mission to Europa, with the stated science goal: Explore Europa to investigate its habitability. The group considered several mission options, which were fully technically developed, then costed and reviewed by technical review boards and planetary science community groups. There was strong convergence on a favored architecture consisting of a spacecraft in Jupiter orbit making many close flybys of Europa, concentrating on remote sensing to explore the moon. Innovative mission design would use gravitational perturbations of the spacecraft trajectory to permit flybys at a wide variety of latitudes and longitudes, enabling globally distributed regional coverage of the moon's surface, with nominally 45 close flybys at altitudes from 25 to 100 km. We will present the science and reconnaissance goals and objectives, a mission design overview, and the notional spacecraft for this concept, which has become known as the Europa Clipper. The Europa Clipper concept provides a cost-efficient means to explore Europa and investigate its habitability, through understanding the satellite's ice and ocean, composition, and geology. The set of investigations derived from the Europa Clipper science objectives traces to a notional payload for science, consisting of: Ice Penetrating Radar (for sounding of ice-water interfaces within and beneath the ice shell), Topographical Imager (for stereo imaging of the surface), ShortWave Infrared Spectrometer (for surface composition), Neutral Mass Spectrometer (for atmospheric composition), Magnetometer and Langmuir Probes (for inferring the satellite's induction field to characterize an ocean), and Gravity Science (to confirm an ocean).The mission would also include the capability to perform reconnaissance for a future lander

  5. Planning and Management of Real-Time Geospatialuas Missions Within a Virtual Globe Environment

    NASA Astrophysics Data System (ADS)

    Nebiker, S.; Eugster, H.; Flückiger, K.; Christen, M.

    2011-09-01

    This paper presents the design and development of a hardware and software framework supporting all phases of typical monitoring and mapping missions with mini and micro UAVs (unmanned aerial vehicles). The developed solution combines state-of-the art collaborative virtual globe technologies with advanced geospatial imaging techniques and wireless data link technologies supporting the combined and highly reliable transmission of digital video, high-resolution still imagery and mission control data over extended operational ranges. The framework enables the planning, simulation, control and real-time monitoring of UAS missions in application areas such as monitoring of forest fires, agronomical research, border patrol or pipeline inspection. The geospatial components of the project are based on the Virtual Globe Technology i3D OpenWebGlobe of the Institute of Geomatics Engineering at the University of Applied Sciences Northwestern Switzerland (FHNW). i3D OpenWebGlobe is a high-performance 3D geovisualisation engine supporting the web-based streaming of very large amounts of terrain and POI data.

  6. The Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2): Science Requirements, Concept, and Implementation

    NASA Technical Reports Server (NTRS)

    Markus, Thorsten; Neumann, Tom; Martino, Anthony; Abdalati, Waleed; Brunt, Kelly; Csatho, Beata; Farrell, Sinead; Fricker, Helen; Gardner, Alex; Harding, David; hide

    2017-01-01

    The Ice, Cloud, and land Elevation Satellite (ICESat) mission used laser altimetry measurements to determine changes in elevations of glaciers and ice sheets, as well as sea ice thickness distribution. These measurements have provided important information on the response of the cryosphere (Earths frozen surfaces) to changes in atmosphere and ocean condition. ICESat operated from 2003-2009 and provided repeat altimetry measurements not only to the cryosphere scientific community but also to the ocean, terrestrial and atmospheric scientific communities. The conclusive assessment of significant ongoing rapid changes in the Earths ice cover, in part supported by ICESat observations, has strengthened the need for sustained, high accuracy, repeat observations similar to what was provided by the ICESat mission. Following recommendations from the National Research Council for an ICESat follow-on mission, the ICESat-2 mission is now under development for planned launch in 2018. The primary scientific aims of the ICESat-2 mission are to continue measurements of sea ice freeboard and ice sheet elevation to determine their changes at scales from outlet glaciers to the entire ice sheet, and from 10s of meters to the entire polar oceans for sea ice freeboard. ICESat carried a single beam profiling laser altimeter that produced approximately 70 m diameter footprints on the surface of the Earth at approximately 150 m along-track intervals. In contrast, ICESat-2 will operate with three pairs of beams, each pair separated by about 3 km across-track with a pair spacing of 90 m. Each of the beams will have a nominal 17 m diameter footprint with an along-track sampling interval of 0.7 m. The differences in the ICESat-2 measurement concept are a result of overcoming some limitations associated with the approach used in the ICESat mission. The beam pair configuration of ICESat-2 allows for the determination of local cross-track slope, a significant factor in measuring elevation change

  7. Mass Balance Changes and Ice Dynamics of Greenland and Antarctic Ice Sheets from Laser Altimetry

    NASA Astrophysics Data System (ADS)

    Babonis, G. S.; Csatho, B.; Schenk, T.

    2016-06-01

    During the past few decades the Greenland and Antarctic ice sheets have lost ice at accelerating rates, caused by increasing surface temperature. The melting of the two big ice sheets has a big impact on global sea level rise. If the ice sheets would melt down entirely, the sea level would rise more than 60 m. Even a much smaller rise would cause dramatic damage along coastal regions. In this paper we report about a major upgrade of surface elevation changes derived from laser altimetry data, acquired by NASA's Ice, Cloud and land Elevation Satellite mission (ICESat) and airborne laser campaigns, such as Airborne Topographic Mapper (ATM) and Land, Vegetation and Ice Sensor (LVIS). For detecting changes in ice sheet elevations we have developed the Surface Elevation Reconstruction And Change detection (SERAC) method. It computes elevation changes of small surface patches by keeping the surface shape constant and considering the absolute values as surface elevations. We report about important upgrades of earlier results, for example the inclusion of local ice caps and the temporal extension from 1993 to 2014 for the Greenland Ice Sheet and for a comprehensive reconstruction of ice thickness and mass changes for the Antarctic Ice Sheets.

  8. Entry Probe Missions to the Giant Planets

    NASA Astrophysics Data System (ADS)

    Spilker, T. R.; Atkinson, D. H.; Atreya, S. K.; Colaprete, A.; Cuzzi, J. N.; Spilker, L. J.; Coustenis, A.; Venkatapathy, E.; Reh, K.; Frampton, R.

    2009-12-01

    The primary motivation for in situ probe missions to the outer planets derives from the need to constrain models of solar system formation and the origin and evolution of atmospheres, to provide a basis for comparative studies of the gas and ice giants, and to provide a valuable link to extrasolar planetary systems. As time capsules of the solar system, the gas and ice giants offer a laboratory to better understand the atmospheric chemistries, dynamics, and interiors of all the planets, including Earth; and it is within the atmospheres and interiors of the giant planets that material diagnostic of the epoch of formation can be found, providing clues to the local chemical and physical conditions existing at the time and location at which each planet formed. Measurements of current conditions and processes in those atmospheres inform us about their evolution since formation and into the future, providing information about our solar system’s evolution, and potentially establishing a framework for recognizing extrasolar giant planets in different stages of their evolution. Detailed explorations and comparative studies of the gas and ice giant planets will provide a foundation for understanding the integrated dynamic, physical, and chemical origins, formation, and evolution of the solar system. To allow reliable conclusions from comparative studies of gas giants Jupiter and Saturn, an entry probe mission to Saturn is needed to complement the Galileo Probe measurements at Jupiter. These measurements provide the basis for a significantly better understanding of gas giant formation in the context of solar system formation. A probe mission to either Uranus or Neptune will be needed for comparative studies of the gas giants and the ice giants, adding knowledge of ice giant origins and thus making further inroads in our understanding of solar system formation. Recognizing Jupiter’s spatial variability and the need to understand its implications for global composition

  9. NASA Sea Ice and Snow Validation Program for the DMSP SSM/I: NASA DC-8 flight report

    NASA Technical Reports Server (NTRS)

    Cavalieri, D. J.

    1988-01-01

    In June 1987 a new microwave sensor called the Special Sensor Microwave Imager (SSM/I) was launched as part of the Defense Meteorological Satellite Program (DMSP). In recognition of the importance of this sensor to the polar research community, NASA developed a program to acquire the data, to convert the data into sea ice parameters, and finally to validate and archive both the SSM/I radiances and the derived sea ice parameters. Central to NASA's sea ice validation program was a series of SSM/I aircraft underflights with the NASA DC-8 airborne Laboratory. The mission (the Arctic '88 Sea Ice Mission) was completed in March 1988. This report summarizes the mission and includes a summary of aircraft instrumentation, coordination with participating Navy aircraft, flight objectives, flight plans, data collected, SSM/I orbits for each day during the mission, and lists several piggyback experiments supported during this mission.

  10. Upper-Tropospheric Cloud Ice from IceCube

    NASA Astrophysics Data System (ADS)

    Wu, D. L.

    2017-12-01

    Cloud ice plays important roles in Earth's energy budget and cloud-precipitation processes. Knowledge of global cloud ice and its properties is critical for understanding and quantifying its roles in Earth's atmospheric system. It remains a great challenge to measure these variables accurately from space. Submillimeter (submm) wave remote sensing has capability of penetrating clouds and measuring ice mass and microphysical properties. In particular, the 883-GHz frequency is a highest spectral window in microwave frequencies that can be used to fill a sensitivity gap between thermal infrared (IR) and mm-wave sensors in current spaceborne cloud ice observations. IceCube is a cubesat spaceflight demonstration of 883-GHz radiometer technology. Its primary objective is to raise the technology readiness level (TRL) of 883-GHz cloud radiometer for future Earth science missions. By flying a commercial receiver on a 3U cubesat, IceCube is able to achieve fast-track maturation of space technology, by completing its development, integration and testing in 2.5 years. IceCube was successfully delivered to ISS in April 2017 and jettisoned from the International Space Station (ISS) in May 2017. The IceCube cloud-ice radiometer (ICIR) has been acquiring data since the jettison on a daytime-only operation. IceCube adopted a simple design without payload mechanism. It makes maximum utilization of solar power by spinning the spacecraft continuously about the Sun vector at a rate of 1.2° per second. As a result, the ICIR is operated under the limited resources (8.6 W without heater) and largely-varying (18°C-28°C) thermal environments. The spinning cubesat also allows ICIR to have periodical views between the Earth (atmosphere and clouds) and cold space (calibration), from which the first 883-GHz cloud map is obtained. The 883-GHz cloud radiance, sensitive to ice particle scattering, is proportional to cloud ice amount above 10 km. The ICIR cloud map acquired during June 20-July 2

  11. Advances in Measuring Antarctic Sea-Ice Thickness and Ice-Sheet Elevations with ICESat Laser Altimetry

    NASA Technical Reports Server (NTRS)

    Zwally, H. Jay

    2004-01-01

    NASA's Ice, Cloud and Land Elevation Satellite (ICESat) has been measuring elevations of the Antarctic ice sheet and sea-ice freeboard elevations with unprecedented accuracy. Since February 20,2003, data has been acquired during three periods of laser operation varying from 36 to 54 days, which is less than the continuous operation of 3 to 5 years planned for the mission. The primary purpose of ICESat is to measure time-series of ice-sheet elevation changes for determination of the present-day mass balance of the ice sheets, study of associations between observed ice changes and polar climate, and estimation of the present and future contributions of the ice sheets to global sea level rise. ICESat data will continue to be acquired for approximately 33 days periods at 3 to 6 month intervals with the second of ICESat's three lasers, and eventually with the third laser. The laser footprints are about 70 m on the surface and are spaced at 172 m along-track. The on-board GPS receiver enables radial orbit determinations to an accuracy better than 5 cm. The orbital altitude is around 600 km at an inclination of 94 degrees with a 8-day repeat pattern for the calibration and validation period, followed by a 91 -day repeat period for the rest of the mission. The expected range precision of single footprint measurements was 10 cm, but the actual range precision of the data has been shown to be much better at 2 to 3 cm. The star-tracking attitude-determination system should enable footprints to be located to 6 m horizontally when attitude calibrations are completed. With the present attitude calibration, the elevation accuracy over the ice sheets ranges from about 30 cm over the low-slope areas to about 80 cm over areas with slopes of 1 to 2 degrees, which is much better than radar altimetry. After the first period of data collection, the spacecraft attitude was controlled to point the laser beam to within 50 m of reference surface tracks over the ice sheets. Detection of ice

  12. Ku/Ka band observations over polar ice sheets

    NASA Astrophysics Data System (ADS)

    Thibaut, Pierre; Lasne, Yannick; Guillot, Amandine; Picot, Nicolas; Rémy, Frédérique

    2015-04-01

    For the first time, comparisons between Ku and Ka altimeter measurements are possible thanks to the new AltiKa instrument embarked onboard the Saral mission launched on February 25, 2013. This comparison is of particular interest when dealing with ice sheet observations because both frequencies have different penetration characteristics. We propose in this paper to revisit the estimation of the ice sheet topography (and other related parameters) with altimeter systems and to present illustrations of the differences observed in Ku and Ka bands using AltiKa, Envisat/RA-2 but also Cryosat-2 measurements. Working on AltiKa waveforms in the frame of the PEACHI project has allowed us to better understand the impact of the penetration depth on the echo shape, to improve the estimation algorithm and to compare its output with historical results obtained on Envisat and ERS missions. In particular, analyses at cross-overs of the Cryosat-2 and Saral data will be presented. Sentinel-3 mission should be launch during 2015. Operating in Ku band and in delay/doppler mode, it will be crucial to account for penetration effects in order to accurately derive the ice sheet heights and trends. The results of the work presented here, will benefit to the Sentinel-3 mission.

  13. Extraction of Ice Sheet Layers from Two Intersected Radar Echograms Near Neem Ice Core in Greenland

    NASA Astrophysics Data System (ADS)

    Xiong, S.; Muller, J.-P.

    2016-06-01

    Accumulation of snow and ice over time result in ice sheet layers. These can be remotely sensed where there is a contrast in electromagnetic properties, which reflect variations of the ice density, acidity and fabric orientation. Internal ice layers are assumed to be isochronous, deep beneath the ice surface, and parallel to the direction of ice flow. The distribution of internal layers is related to ice sheet dynamics, such as the basal melt rate, basal elevation variation and changes in ice flow mode, which are important parameters to model the ice sheet. Radar echo sounder is an effective instrument used to study the sedimentology of the Earth and planets. Ice Penetrating Radar (IPR) is specific kind of radar echo sounder, which extends studies of ice sheets from surface to subsurface to deep internal ice sheets depending on the frequency utilised. In this study, we examine a study site where folded ice occurs in the internal ice sheet south of the North Greenland Eemian ice drilling (NEEM) station, where two intersected radar echograms acquired by the Multi-channel Coherent Radar Depth Sounder (MCoRDS) employed in the NASA's Operation IceBridge (OIB) mission imaged this folded ice. We propose a slice processing flow based on a Radon Transform to trace and extract these two sets of curved ice sheet layers, which can then be viewed in 3-D, demonstrating the 3-D structure of the ice folds.

  14. Antarctic ice sheet mass loss estimates using Modified Antarctic Mapping Mission surface flow observations

    NASA Astrophysics Data System (ADS)

    Ren, Diandong; Leslie, Lance M.; Lynch, Mervyn J.

    2013-03-01

    The long residence time of ice and the relatively gentle slopes of the Antarctica Ice Sheet make basal sliding a unique positive feedback mechanism in enhancing ice discharge along preferred routes. The highly organized ice stream channels extending to the interior from the lower reach of the outlets are a manifestation of the role of basal granular material in enhancing the ice flow. In this study, constraining the model-simulated year 2000 ice flow fields with surface velocities obtained from InSAR measurements permits retrieval of the basal sliding parameters. Forward integrations of the ice model driven by atmospheric and oceanic parameters from coupled general circulation models under different emission scenarios provide a range of estimates of total ice mass loss during the 21st century. The total mass loss rate has a small intermodel and interscenario spread, rising from approximately -160 km3/yr at present to approximately -220 km3/yr by 2100. The accelerated mass loss rate of the Antarctica Ice Sheet in a warming climate is due primarily to a dynamic response in the form of an increase in ice flow speed. Ice shelves contribute to this feedback through a reduced buttressing effect due to more frequent systematic, tabular calving events. For example, by 2100 the Ross Ice Shelf is projected to shed 40 km3 during each systematic tabular calving. After the frontal section's attrition, the remaining shelf will rebound. Consequently, the submerged cross-sectional area will reduce, as will the buttressing stress. Longitudinal differential warming of ocean temperature contributes to tabular calving. Because of the prevalence of fringe ice shelves, oceanic effects likely will play a very important role in the future mass balance of the Antarctica Ice Sheet, under a possible future warming climate.

  15. NASA's Observes Effects of Summer Melt on Greenland Ice Sheet

    NASA Image and Video Library

    2017-12-08

    NASA's IceBridge, an airborne survey of polar ice, flew over the Helheim/Kangerdlugssuaq region of Greenland on Sept. 11, 2016. This photograph from the flight captures Greenland's Steenstrup Glacier, with the midmorning sun glinting off of the Denmark Strait in the background. IceBridge completed the final flight of the summer campaign to observe the impact of the summer melt season on the ice sheet on Sept. 16. The IceBridge flights, which began on Aug. 27, are mostly repeats of lines that the team flew in early May, so that scientists can observe changes in ice elevation between the spring and late summer. For this short, end-of-summer campaign, the IceBridge scientists flew aboard an HU-25A Guardian aircraft from NASA's Langley Research Center in Hampton, Virginia. Credit: NASA/John Sonntag NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  16. Multi-decadal Arctic sea ice roughness.

    NASA Astrophysics Data System (ADS)

    Tsamados, M.; Stroeve, J.; Kharbouche, S.; Muller, J. P., , Prof; Nolin, A. W.; Petty, A.; Haas, C.; Girard-Ardhuin, F.; Landy, J.

    2017-12-01

    The transformation of Arctic sea ice from mainly perennial, multi-year ice to a seasonal, first-year ice is believed to have been accompanied by a reduction of the roughness of the ice cover surface. This smoothening effect has been shown to (i) modify the momentum and heat transfer between the atmosphere and ocean, (ii) to alter the ice thickness distribution which in turn controls the snow and melt pond repartition over the ice cover, and (iii) to bias airborne and satellite remote sensing measurements that depend on the scattering and reflective characteristics over the sea ice surface topography. We will review existing and novel remote sensing methodologies proposed to estimate sea ice roughness, ranging from airborne LIDAR measurement (ie Operation IceBridge), to backscatter coefficients from scatterometers (ASCAT, QUICKSCAT), to multi angle maging spectroradiometer (MISR), and to laser (Icesat) and radar altimeters (Envisat, Cryosat, Altika, Sentinel-3). We will show that by comparing and cross-calibrating these different products we can offer a consistent multi-mission, multi-decadal view of the declining sea ice roughness. Implications for sea ice physics, climate and remote sensing will also be discussed.

  17. Ice pack heat sink subsystem, phase 2. [astronaut life support cooling system

    NASA Technical Reports Server (NTRS)

    Roebelen, G. J., Jr.; Kellner, J. D.

    1975-01-01

    The report describes the design, development, fabrication, and test at one gravity of a prototype ice pack heat sink subsystem to be used eventually for astronaut cooling during manned space missions; the investigation of thermal storage material with the objective of uncovering materials with heats of fusion and/or solution in the range of 300 Btu/lb (700 kilojoules/kilogram); and the planned procedure for implementing an ice pack heat sink subsystem flight experiment. In normal use, excess heat in the liquid cooling garment (LCG) coolant is transferred to a reusable/regenerable ice pack heat sink. For emergency operation, or for extension of extravehicular activity mission time after all the ice has melted, water from the ice pack is boiled to vacuum, thereby continuing to remove heat from the LCG coolant. This subsystem incorporates a quick disconnect thermal interface between the ice pack heat sink and the subsystem heat exchanger.

  18. The Multiple Altimeter Beam Experimental Lidar (MABEL), an Airborne Simulator for the ICESat-2 Mission

    NASA Technical Reports Server (NTRS)

    McGill, Matthew; Markus, Thorsten; Scott, V. Stanley; Neumann, Thomas

    2012-01-01

    The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) mission is currently under development by NASA. The primary mission of ICESat-2 will be to measure elevation changes of the Greenland and Antarctic ice sheets, document changes in sea ice thickness distribution, and derive important information about the current state of the global ice coverage. To make this important measurement, NASA is implementing a new type of satellite-based surface altimetry based on sensing of laser pulses transmitted to, and reflected from, the surface. Because the ICESat-2 measurement approach is different from that used for previous altimeter missions, a high-fidelity aircraft instrument, the Multiple Altimeter Beam Experimental Lidar (MABEL), was developed to demonstrate the measurement concept and provide verification of the ICESat-2 methodology. The MABEL instrument will serve as a prototype for the ICESat-2 mission and also provides a science tool for studies of land surface topography. This paper outlines the science objectives for the ICESat-2 mission, the current measurement concept for ICESat-2, and the instrument concept and preliminary data from MABEL.

  19. ICESCAPE Mission

    NASA Image and Video Library

    2010-07-08

    Scientists and Coast Guard swimmers test the integrity a melt pond on sea ice in the Chukchi Sea on July 9, 2010, before drilling holes through which instruments can be deployed to collect data. The research is part of NASA's ICESCAPE mission onboard the U.S. Coast Guard icebreaker Healy to sample the physical, chemical and biological characteristics of the ocean and sea ice. Impacts of Climate change on the Eco-Systems and Chemistry of the Arctic Pacific Environment (ICESCAPE) is a multi-year NASA shipborne project. The bulk of the research will take place in the Beaufort and Chukchi Sea’s in summer of 2010 and fall of 2011. Photo Credit: (NASA/Kathryn Hansen)

  20. Energy-Efficient Systems Eliminate Icing Danger for UAVs

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Ames Research Center engineer Leonard Haslim invented an anti-icing t echnology called an electroexpulsive separation system, which uses m echanical force to shatter potentially dangerous ice buildup on an ai rcraft surface. Temecula, California-based Ice Management Systems (no w known as IMS-ESS) licensed the technology from Ames and has discov ered a niche market for the lightweight, energy-efficient technology: unmanned aerial vehicles (UAVs). IMS-ESS systems now prevent damagi ng ice accumulation on military UAVs, allowing the vehicles to carry out crucial missions year round.

  1. Robust Exploration and Commercial Missions to the Moon Using LANTR Propulsion and In-Situ Propellants Derived From Lunar Polar Ice (LPI) Deposits

    NASA Technical Reports Server (NTRS)

    Borowski, Stanley K.; Ryan, Stephen W.; Burke, Laura M.; McCurdy, David R.; Fittje, James E.; Joyner, Claude R.

    2017-01-01

    Since the 1960s, scientists have conjectured that water icecould survive in the cold, permanently shadowed craters located at the Moons poles Clementine (1994), Lunar Prospector (1998),Chandrayaan-1 (2008), and Lunar Reconnaissance Orbiter (LRO) and Lunar CRater Observation and Sensing Satellite(LCROSS) (2009) lunar probes have provided data indicating the existence of large quantities of water ice at the lunar poles The Mini-SAR onboard Chandrayaan-1discovered more than 40 permanently shadowed craters near the lunar north pole that are thought to contain 600 million metric tons of water ice. Using neutron spectrometer data, the Lunar Prospector science team estimated a water ice content (1.5 +-0.8 wt in the regolith) found in the Moons polar cold trap sand estimated the total amount of water at both poles at 2 billion metric tons Using Mini-RF and spectrometry data, the LRO LCROSS science team estimated the water ice content in the regolith in the south polar region to be 5.6 +-2.9 wt. On the basis of the above scientific data, it appears that the water ice content can vary from 1-10 wt and the total quantity of LPI at both poles can range from 600 million to 2 billion metric tons NTP offers significant benefits for lunar missions and can take advantage of the leverage provided from using LDPs when they become available by transitioning to LANTR propulsion. LANTR provides a variablethrust and Isp capability, shortens burn times and extends engine life, and allows bipropellant operation The combination of LANTR and LDP has performance capability equivalent to that of a hypothetical gaseousfuel core NTR (effective Isp 1575 s) and can lead to a robust LTS with unique mission capabilities that include short transit time crewed cargo transports and routine commuter flights to the Moon The biggest challenge to making this vision a reality will be the production of increasing amounts of LDP andthe development of propellant depots in LEO, LLO and LPO. An industry

  2. Ice Station Diagrams

    NASA Image and Video Library

    2017-12-08

    On July 18, 2011, Melinda Webster of University of Washington, calculated distances between sampling locations during the 2011 ICESCAPE mission's eighth sea ice station in the Arctic Ocean. The ICESCAPE mission, or "Impacts of Climate on Ecosystems and Chemistry of the Arctic Pacific Environment," is a NASA shipborne investigation to study how changing conditions in the Arctic affect the ocean's chemistry and ecosystems. The bulk of the research took place in the Beaufort and Chukchi seas in summer 2010 and 2011. Credit: NASA/Kathryn Hansen NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  3. Mars together and FIRE and ICE: Report of the joint US/Russian technical working groups

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The Cold War's end opened an opportunity for greater cooperation in planetary exploration for the United States and Russia. Two study groups were formed, Mars Together and FIRE and ICE. The Mars Together team developed a concept for a flight in 1998 that merged one U.S. Mars Surveyor 98 mission with the former Russian Mars 96 mission to further understanding of the Mars surface and atmosphere. The FIRE and ICE team developed concepts for a dual-spacecraft mission to the solar corona and for a mission to Pluto. The missions, scientific potential, and open issues are described.

  4. Mars together and FIRE and ICE: Report of the joint US/Russian technical working groups

    NASA Astrophysics Data System (ADS)

    1994-10-01

    The Cold War's end opened an opportunity for greater cooperation in planetary exploration for the United States and Russia. Two study groups were formed, Mars Together and FIRE and ICE. The Mars Together team developed a concept for a flight in 1998 that merged one U.S. Mars Surveyor 98 mission with the former Russian Mars 96 mission to further understanding of the Mars surface and atmosphere. The FIRE and ICE team developed concepts for a dual-spacecraft mission to the solar corona and for a mission to Pluto. The missions, scientific potential, and open issues are described.

  5. A New Catalog of Contact Binary Stars from ROTSE-I Sky Patrols

    NASA Astrophysics Data System (ADS)

    Gettel, S. J.; McKay, T. A.; Geske, M. T.

    2005-05-01

    Over 65,000 variable stars have been detected in the data from the ROTSE-I Sky Patrols. Using period-color and light curve selection techniques, about 5000 objects have been identified as contact binaries. This selection is tested for completeness against EW objects in the GCVS. By utilizing infrared color data from 2MASS, we fit a period-color-luminosity relation to these stars and estimate their distances.

  6. Aquarius Radiometer and Scatterometer Weekly Polar-Gridded Products to Monitor Ice Sheets, Sea Ice, and Frozen Soil

    NASA Technical Reports Server (NTRS)

    Brucker, Ludovic; Dinnat, Emmanuel; Koenig, Lora

    2014-01-01

    Space-based microwave sensors have been available for several decades, and with time more frequencies have been offered. Observations made at frequencies between 7 and 183 GHz were often used for monitoring cryospheric properties (e.g. sea ice concentration, snow accumulation, snow melt extent and duration). Since 2009, satellite observations are available at the low frequency of 1.4 GHz. Such observations are collected by the Soil Moisture and Ocean Salinity (SMOS) mission, and the Aquarius/SAC-D mission. Even though these missions have been designed for the monitoring of soil moisture and sea surface salinity, new applications are being developed to study the cryosphere. For instance, L-band observations can be used to monitor soil freeze/thaw (e.g. Rautiainen et al., 2012), and thin sea ice thickness (e.g. Kaleschke et al., 2010, Huntemann et al., 2013). Moreover, with the development of satellite missions comes the need for calibration and validation sites. These sites must have stable characteristics, such as the Antarctic Plateau (Drinkwater et al., 2004, Macelloni et al., 2013). Therefore, studying the cryosphere with 1.4 GHz observations is relevant for both science applications, and remote sensing applications.

  7. Aquarius Radiometer and Scatterometer Weekly-Polar-Gridded Products to Monitor Ice Sheets, Sea Ice, and Frozen Soil

    NASA Technical Reports Server (NTRS)

    Brucker, Ludovic; Dinnat, Emmanuel; Koenig, Lora

    2014-01-01

    Space-based microwave sensors have been available for several decades, and with time more frequencies have been offered. Observations made at frequencies between 7 and 183 GHz were often used for monitoring cryospheric properties (e.g. sea ice concentration, snow accumulation, snow melt extent and duration). Since 2009, satellite observations are available at the low frequency of 1.4 GHz. Such observations are collected by the Soil Moisture and Ocean Salinity (SMOS) mission, and the AquariusSAC-D mission. Even though these missions have been designed for the monitoring of soil moisture and sea surface salinity, new applications are being developed to study the cryosphere. For instance, L-band observations can be used to monitor soil freezethaw (e.g. Rautiainen et al., 2012), and thin sea ice thickness (e.g. Kaleschke et al., 2010, Huntemann et al., 2013). Moreover, with the development of satellite missions comes the need for calibration and validation sites. These sites must have stable characteristics, such as the Antarctic Plateau (Drinkwater et al., 2004, Macelloni et al., 2013). Therefore, studying the cryosphere with 1.4 GHz observations is relevant for both science applications, and remote sensing applications.

  8. Patrol of the short wavelength activity and flares of Sun as star

    NASA Astrophysics Data System (ADS)

    Afanasiev, I.; Avakyan, S.; Leonov, N.; Serova, A.; Voronin, N.

    Monitoring of the spectral range which most affects solar-terrestrial relationship - soft X-ray and extreme UV-radiations allows to solve ? problem of solar activity influence on all aspects of the Sun - Earth ties and to select the most important precursors of solar flares and the solar events related with a flare (such as proton events, high-velocity plasma streams in the solar wind, shock waves, coronal mass ejection and, the most important, the beginning of principal magnetic storms). Solar activity is constantly monitored at present (in the USA) only in two sections of the spectrum of ionizing radiation: <0.8 nm and >115 (119) nm. However, so far there has been no monitoring of the flux in the most geoeffective region of the spectrum (0.8-115 nm) from the entire disk of the sun; this region completely monitors the main part of the ionosphere of the earth and the ionosphere of the other planets of the solar system, including the formation and status of the main ionospheric maxima. This occurs solely because of technical and methodological difficulties in performing the measurements and calibration in this spectral range on spacecraft, because it is necessity to use only windowless optics. At the present the solar the optical - electronic equipment (OEE) is testing and there are plans to launch OEE of Space Solar Patrol (SSP) consisting of solar radiometers and spectrometers at the Russian Module of the International Space Station. So the solving the problem of the permanent monitoring-patrol of ionizing radiation from the full disk of the Sun appears in the main tasks of fundamental scientific studies in space. The results of this monitoring can be contribution in development of simultaneous studies in several sciences, such as: - solar astrophysics (state of all solar atmospheric regions), - meteorology, physics of atmosphere (the influence of solar activity on global changes, climate and weather including the effects of atmo s pheric electricity), - aeronomy

  9. Inferring unknow boundary conditions of the Greenland Ice Sheet by assimilating ICESat-1 and IceBridge altimetry intothe Ice Sheet System Model.

    NASA Astrophysics Data System (ADS)

    Larour, E. Y.; Khazendar, A.; Seroussi, H. L.; Schlegel, N.; Csatho, B. M.; Schenk, A. F.; Rignot, E. J.; Morlighem, M.

    2014-12-01

    Altimetry signals from missions such as ICESat-1, CryoSat, EnviSat, as well as altimeters onboard Operation IceBridge provide vital insights into processes such as surface mass balance, mass transport and ice-flow dynamics. Historically however, ice-flow models have been focused on assimilating surface velocities from satellite-based radar observations, to infer properties such as basal friction or the position of the bedrock. Here, we leverage a new methodology based on automatic differentation of the Ice Sheet System Model to assimilate surface altimetry data into a reconstruction of the past decade of ice flow on the North Greenland area. We infer corrections to boundary conditions such as basal friction and surface mass balance, as well as corrections to the ice hardness, to best-match the observed altimetry record. We compare these corrections between glaciers such as Petermann Glacier, 79 North and Zacchariae Isstrom. The altimetry signals exhibit very different patterns between East and West, which translate into very different signatures for the inverted boundary conditions. This study gives us greater insights into what differentiates different basins, both in terms of mass transport and ice-flow dynamics, and what could bethe controlling mechanisms behind the very different evolutions of these basins.

  10. Prolonged mounted patrolling is a risk factor for developing knee pain in Danish military personnel deployed to the Helmand Province.

    PubMed

    Lundin, Christina Rydahl; Houe, T; Sevelsted, A; Nissen, L

    2016-10-01

    Non-battle injuries have been the leading cause of medical evacuation in the recent wars in Afghanistan and Iraq. This study investigates the hypothesis, that the occurrence of knee problems could be associated with mounted patrolling in armoured vehicles independent of other risk factors. Retrospective questionnaire-based cohort study of Danish soldiers deployed to Afghanistan during 1 February-31 July 2013. 307 soldiers included. Response rate 70%. 33% reported knee pain. Significant association between knee pain and time spent weekly on mounted patrols (OR 1.23, CI 1.07 to 1.41, p=0.003). Controlled for confounders age, body mass index and duration of military employment (OR 1.22, CI 1.06 to 1.41, p=0.006). Adjusted for confounders and all other risk factors (OR 1.25, CI 1.07 to 1.48, p=0.007). The main finding in a subset of the 33% with knee pain: Significant association between more severe knee problems with Knee injury and Osteoarthritis Outcome Score below 400 and time spent weekly on mounted patrols (OR 1.49, CI 1.17 to 1.56, p=0.002). A major concern regarding knee problems among Danish deployed military personnel is identified. The risk of suffering from knee problems and the severity of symptoms increase with the amount of time spent inside a vehicle on mounted patrols. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  11. Warming Seas and Melting Ice Sheets

    NASA Image and Video Library

    2017-12-08

    Sea level rise is a natural consequence of the warming of our planet. We know this from basic physics. When water heats up, it expands. So when the ocean warms, sea level rises. When ice is exposed to heat, it melts. And when ice on land melts and water runs into the ocean, sea level rises. For thousands of years, sea level has remained relatively stable and human communities have settled along the planet’s coastlines. But now Earth’s seas are rising. Globally, sea level has risen about eight inches since the beginning of the 20th century and more than two inches in the last 20 years alone. All signs suggest that this rise is accelerating. Read more: go.nasa.gov/1heZn29 Caption: An iceberg floats in Disko Bay, near Ilulissat, Greenland, on July 24, 2015. The massive Greenland ice sheet is shedding about 300 gigatons of ice a year into the ocean, making it the single largest source of sea level rise from melting ice. Credits: NASA/Saskia Madlener NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  12. Perennial water ice identified in the south polar cap of Mars

    NASA Astrophysics Data System (ADS)

    Bibring, Jean-Pierre; Langevin, Yves; Poulet, François; Gendrin, Aline; Gondet, Brigitte; Berthé, Michel; Soufflot, Alain; Drossart, Pierre; Combes, Michel; Bellucci, Giancarlo; Moroz, Vassili; Mangold, Nicolas; Schmitt, Bernard; OMEGA Team; Erard, S.; Forni, O.; Manaud, N.; Poulleau, G.; Encrenaz, T.; Fouchet, T.; Melchiorri, R.; Altieri, F.; Formisano, V.; Bonello, G.; Fonti, S.; Capaccioni, F.; Cerroni, P.; Coradini, A.; Kottsov, V.; Ignatiev, N.; Titov, D.; Zasova, L.; Pinet, P.; Sotin, C.; Hauber, E.; Hoffman, H.; Jaumann, R.; Keller, U.; Arvidson, R.; Mustard, J.; Duxbury, T.; Forget, F.

    2004-04-01

    The inventory of water and carbon dioxide reservoirs on Mars are important clues for understanding the geological, climatic and potentially exobiological evolution of the planet. From the early mapping observation of the permanent ice caps on the martian poles, the northern cap was believed to be mainly composed of water ice, whereas the southern cap was thought to be constituted of carbon dioxide ice. However, recent missions (NASA missions Mars Global Surveyor and Odyssey) have revealed surface structures, altimetry profiles, underlying buried hydrogen, and temperatures of the south polar regions that are thermodynamically consistent with a mixture of surface water ice and carbon dioxide. Here we present the first direct identification and mapping of both carbon dioxide and water ice in the martian high southern latitudes, at a resolution of 2km, during the local summer, when the extent of the polar ice is at its minimum. We observe that this south polar cap contains perennial water ice in extended areas: as a small admixture to carbon dioxide in the bright regions; associated with dust, without carbon dioxide, at the edges of this bright cap; and, unexpectedly, in large areas tens of kilometres away from the bright cap.

  13. CBSIT 2009: Airborne Validation of Envisat Radar Altimetry and In Situ Ice Camp Measurements Over Arctic Sea Ice

    NASA Technical Reports Server (NTRS)

    Connor, Laurence; Farrell, Sinead; McAdoo, David; Krabill, William; Laxon, Seymour; Richter-Menge, Jacqueline; Markus, Thorsten

    2010-01-01

    The past few years have seen the emergence of satellite altimetry as valuable tool for taking quantitative sea ice monitoring beyond the traditional surface extent measurements and into estimates of sea ice thickness and volume, parameters that arc fundamental to improved understanding of polar dynamics and climate modeling. Several studies have now demonstrated the use of both microwave (ERS, Envisat/RA-2) and laser (ICESat/GLAS) satellite altimeters for determining sea ice thickness. The complexity of polar environments, however, continues to make sea ice thickness determination a complicated remote sensing task and validation studies remain essential for successful monitoring of sea ice hy satellites. One such validation effort, the Arctic Aircraft Altimeter (AAA) campaign of2006. included underflights of Envisat and ICESat north of the Canadian Archipelago using NASA's P-3 aircraft. This campaign compared Envisat and ICESat sea ice elevation measurements with high-resolution airborne elevation measurements, revealing the impact of refrozen leads on radar altimetry and ice drift on laser altimetry. Continuing this research and validation effort, the Canada Basin Sea Ice Thickness (CBSIT) experiment was completed in April 2009. CBSIT was conducted by NOAA. and NASA as part of NASA's Operation Ice Bridge, a gap-filling mission intended to supplement sea and land ice monitoring until the launch of NASA's ICESat-2 mission. CBIST was flown on the NASA P-3, which was equipped with a scanning laser altimeter, a Ku-band snow radar, and un updated nadir looking photo-imaging system. The CB5IT campaign consisted of two flights: an under flight of Envisat along a 1000 km track similar to that flown in 2006, and a flight through the Nares Strait up to the Lincoln Sea that included an overflight of the Danish GreenArc Ice Camp off the coast of northern Greenland. We present an examination of data collected during this campaign, comparing airborne laser altimeter measurements

  14. Radar studies of arctic ice and development of a real-time Arctic ice type identification system

    NASA Technical Reports Server (NTRS)

    Rouse, J. W., Jr.; Schell, J. A.; Permenter, J. A.

    1973-01-01

    Studies were conducted to develop a real-time Arctic ice type identification system. Data obtained by NASA Mission 126, conducted at Pt. Barrow, Alaska (Site 93) in April 1970 was analyzed in detail to more clearly define the major mechanisms at work affecting the radar energy illuminating a terrain cell of sea ice. General techniques for reduction of the scatterometer data to a form suitable for application of ice type decision criteria were investigated, and the electronic circuit requirements for implementation of these techniques were determined. Also, consideration of circuit requirements are extended to include the electronics necessary for analog programming of ice type decision algorithms. After completing the basic circuit designs a laboratory model was constructed and a preliminary evaluation performed. Several system modifications for improved performance are suggested. (Modified author abstract)

  15. Global Measurements of Optically Thin Ice Clouds Using CALIOP

    NASA Technical Reports Server (NTRS)

    Ryan, R.; Avery, M.; Tackett, J.

    2017-01-01

    Optically thin ice clouds have been shown to have a net warming effect on the globe but, because passive instruments are not sensitive to optically thin clouds, the occurrence frequency of this class of clouds is greatly underestimated in historical passive sensor cloud climatology. One major strength of CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization), onboard the CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) spacecraft, is its ability to detect these thin clouds, thus filling an important missing piece in the historical data record. This poster examines the full mission of CALIPSO Level 2 data, focusing on those CALIOP retrievals identified as thin ice clouds according to the definition shown to the right. Using this definition, thin ice clouds are identified and counted globally and vertically for each season. By examining the spatial and seasonal distributions of these thin clouds we hope to gain a better understanding these thin ice clouds and how their global distribution has changed over the mission. This poster showcases when and where CALIOP detects thin ice clouds and examines a case study of the eastern pacific and the effects seen from the El Nino-Southern Oscillation (ENSO).

  16. Sea ice around Ostrov Sakhalin, eastern Russia

    NASA Image and Video Library

    2017-12-08

    Located off the east coast of Russia, the Sea of Okhotsk stretches down to 45 degrees North latitude, and sea ice forms regularly in the basin. In fact, it is the lowest latitude for seasonal sea ice formation in the world. On January 4, 2015, the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Terra satellite captured this true-color image of the ice-covered Sea of Okhotsk. Every winter, winds from East Siberia, frigid air temperatures, and a large amount of freshwater flowing out from rivers promote the formation of sea ice in the region. Much of the freshwater comes from the Amur River, one of the ten longest rivers in the world. From year to year, variations in temperature and wind speed can cause large fluctuations in sea ice extent. The sea spans more than 1,500,000 square kilometers (600,000 square miles), and ice cover can spread across 50 to 90 percent of it at its annual peak. On average, that ice persists for 180 days. According to research published in 2014, the region's sea ice has been decreasing over a 34-year period. Annual ice production in the Sea of Okhotsk dropped by more than 11 percent from 1974 to 2008. The researchers suggest that this decline has, at least in part, "led to weakening of the overturning in the North Pacific." Water with less sea ice is fresher, less dense, and unable to sink and circulate as well as salty, dense water. A weakened circulation in the North Pacific has implications for the supply of nutrients, such as iron, that affect biological productivity. Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  17. Red Dragon drill missions to Mars

    NASA Astrophysics Data System (ADS)

    Heldmann, Jennifer L.; Stoker, Carol R.; Gonzales, Andrew; McKay, Christopher P.; Davila, Alfonso; Glass, Brian J.; Lemke, Larry L.; Paulsen, Gale; Willson, David; Zacny, Kris

    2017-12-01

    We present the concept of using a variant of a Space Exploration Technologies Corporation (SpaceX) Dragon space capsule as a low-cost, large-capacity, near-term, Mars lander (dubbed ;Red Dragon;) for scientific and human precursor missions. SpaceX initially designed the Dragon capsule for flight near Earth, and Dragon has successfully flown many times to low-Earth orbit (LEO) and successfully returned the Dragon spacecraft to Earth. Here we present capsule hardware modifications that are required to enable flight to Mars and operations on the martian surface. We discuss the use of the Dragon system to support NASA Discovery class missions to Mars and focus in particular on Dragon's applications for drilling missions. We find that a Red Dragon platform is well suited for missions capable of drilling deeper on Mars (at least 2 m) than has been accomplished to date due to its ability to land in a powered controlled mode, accommodate a long drill string, and provide payload space for sample processing and analysis. We show that a Red Dragon drill lander could conduct surface missions at three possible targets including the ice-cemented ground at the Phoenix landing site (68 °N), the subsurface ice discovered near the Viking 2 (49 °N) site by fresh impact craters, and the dark sedimentary subsurface material at the Curiosity site (4.5 °S).

  18. "Solid State" Chemistry in Titan Ice Particles

    NASA Image and Video Library

    2016-09-20

    Scientists from NASA's Cassini mission suggested in a 2016 paper that the appearance of a cloud of dicyanoacetylene (C4N2) ice in Titan's stratosphere may be explained by "solid-state" chemistry taking place inside ice particles. The particles have an inner layer of cyanoacetylene (HC3N) ice coated with an outer layer of hydrogen cyanide (HCN) ice. Left: When a photon of light penetrates the outer shell, it can interact with the HC3N, producing C3N and H. Center: The C3N then reacts with HCN to yield C4N2 and H (shown at right). Another reaction that also yields C4N2 ice and H also is possible, but the researchers think it is less likely. http://photojournal.jpl.nasa.gov/catalog/PIA20715

  19. Europa Ice Floes

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Jupiter's moon Europa, as seen in this image taken June 27, 1996 by NASA's Galileo spacecraft, displays features in some areas resembling ice floes seen in Earth's polar seas. Europa, about the size of Earth's moon, has an icy crust that has been severely fractured, as indicated by the dark linear, curved, and wedged-shaped bands seen here. These fractures have broken the crust into plates as large as 30 kilometers (18.5 miles) across. Areas between the plates are filled with material that was probably icy slush contaminated with rocky debris. Some individual plates were separated and rotated into new positions. Europa's density indicates that it has a shell of water ice thicker than 100 kilometers (about 60 miles), parts of which could be liquid. Currently, water ice could extend from the surface down to the rocky interior, but the features seen in this image suggest that motion of the disrupted icy plates was lubricated by soft ice or liquid water below the surface at the time of disruption. This image covers part of the equatorial zone of Europa and was taken from a distance of 156,000 kilometers (about 96,300 miles) by the Solid-state Imaging Subsystem on the Galileo spacecraft. North is to the right and the sun is nearly directly overhead. The area shown is about 510 by 989 kilometers (310-by-600 miles), and the smallest visible feature is about 1.6 kilometers (1 mile) across.

    The Jet Propulsion Laboratory manages the Galileo mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web Galileo mission home page at http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at http:// www.jpl.nasa.gov/galileo/sepo.

  20. CALIPSO V1.00 L3 IceCloud Formal Release Announcement

    Atmospheric Science Data Center

    2018-06-13

    ... The Atmospheric Science Data Center (ASDC) at NASA Langley Research Center in collaboration with the CALIPSO mission team announces the ... distributions of ice cloud extinction coefficients and ice water content histograms on a uniform spatial grid.  All parameters are ...

  1. Water Ice on Pluto

    NASA Image and Video Library

    2015-10-16

    The Ralph instrument on NASA's New Horizons spacecraft detected water ice on Pluto's surface, picking up on the ice's near-infrared spectral characteristics. (See featured image from Oct. 8, 2015.) The middle panel shows a region west of Pluto's "heart" feature -- which the mission team calls Tombaugh Regio -- about 280 miles (450 kilometers) across. It combines visible imagery from Ralph's Multispectral Visible Imaging Camera (MVIC) with infrared spectroscopy from the Linear Etalon Imaging Spectral Array (LEISA). Areas with the strongest water ice spectral signature are highlighted in blue. Major outcrops of water ice occur in regions informally called Viking Terra, along Virgil Fossa west of Elliot crater, and in Baré Montes. Numerous smaller outcrops are associated with impact craters and valleys between mountains. In the lower left panel, LEISA spectra are shown for two regions indicated by cyan and magenta boxes. The white curve is a water ice model spectrum, showing similar features to the cyan spectrum. The magenta spectrum is dominated by methane ice absorptions. The lower right panel shows an MVIC enhanced color view of the region in the white box, with MVIC's blue, red and near-infrared filters displayed in blue, green and red channels, respectively. The regions showing the strongest water ice signature are associated with terrains that are actually a lighter shade of red. http://photojournal.jpl.nasa.gov/catalog/PIA20030

  2. Sea Ice Patterns

    NASA Image and Video Library

    2017-12-08

    On July 20, the U.S. Coast Guard Cutter Healy steamed south in the Arctic Ocean toward the edge of the sea ice. The ICESCAPE mission, or "Impacts of Climate on Ecosystems and Chemistry of the Arctic Pacific Environment," is NASA's two-year shipborne investigation to study how changing conditions in the Arctic affect the ocean's chemistry and ecosystems. The bulk of the research takes place in the Beaufort and Chukchi seas in summer 2010 and 2011. Credit: NASA/Kathryn Hansen For updates on the five-week ICESCAPE voyage, visit the mission blog at: go.usa.gov/WwU NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  3. Design and characterization of a low cost CubeSat multi-band optical receiver to map water ice on the lunar surface for the Lunar Flashlight mission

    NASA Astrophysics Data System (ADS)

    Vinckier, Quentin; Crabtree, Karlton; Paine, Christopher G.; Hayne, Paul O.; Sellar, Glenn R.

    2017-08-01

    Lunar Flashlight is an innovative NASA CubeSat mission dedicated to mapping water ice in the permanently shadowed regions of the Moon, which may act as cold traps for volatiles. To this end, a multi-band reflectometer will be sent to orbit the Moon. This instrument consists of an optical receiver aligned with four lasers, each of which emits sequentially at a different wavelength in the near-infrared between 1 μm and 2 μm. The receiver measures the laser light reflected from the lunar surface; continuum/absorption band ratios are then analyzed to quantify water ice in the illuminated spot. Here, we present the current state of the optical receiver design. To optimize the optical signal-to-noise ratio, we have designed the receiver so as to maximize the laser signal collected, while minimizing the stray light reaching the detector from solarilluminated areas of the lunar surface outside the field-of-view, taking into account the complex lunar topography. Characterization plans are also discussed. This highly mass- and volume-constrained mission will demonstrate several firsts, including being one of the first CubeSats performing science measurements beyond low Earth orbit.

  4. NASA: First Map Of Thawed Areas Under Greenland Ice Sheet

    NASA Image and Video Library

    2017-12-08

    NASA researchers have helped produce the first map showing what parts of the bottom of the massive Greenland Ice Sheet are thawed – key information in better predicting how the ice sheet will react to a warming climate. Greenland’s thick ice sheet insulates the bedrock below from the cold temperatures at the surface, so the bottom of the ice is often tens of degrees warmer than at the top, because the ice bottom is slowly warmed by heat coming from the Earth’s depths. Knowing whether Greenland’s ice lies on wet, slippery ground or is anchored to dry, frozen bedrock is essential for predicting how this ice will flow in the future, But scientists have very few direct observations of the thermal conditions beneath the ice sheet, obtained through fewer than two dozen boreholes that have reached the bottom. Now, a new study synthesizes several methods to infer the Greenland Ice Sheet’s basal thermal state –whether the bottom of the ice is melted or not– leading to the first map that identifies frozen and thawed areas across the whole ice sheet. Map caption: This first-of-a-kind map, showing which parts of the bottom of the Greenland Ice Sheet are likely thawed (red), frozen (blue) or still uncertain (gray), will help scientists better predict how the ice will flow in a warming climate. Credit: NASA Earth Observatory/Jesse Allen Read more: go.nasa.gov/2avKgl2 NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  5. Leakage of the Greenland Ice Sheet through accelerated ice flow

    NASA Astrophysics Data System (ADS)

    Rignot, E.

    2005-12-01

    A map of coastal velocities of the Greenland ice sheet was produced from Radarsat-1 acquired during the background mission of 2000 and combined with radio echo sounding data to estimate the ice discharge from the ice sheet. On individual glaciers, ice discharge was compared with snow input from the interior and melt above the flux gate to determine the glacier mass balance. Time series of velocities on several glaciers at different latitudes reveal seasonal fluctuations of only 7-8 percent so that winter velocities are only 2 percent less than the yearly mean. The results show the northern Greenland glaciers to be close to balance yet losing mass. No change in ice flow is detected on Petermann, 79north and Zachariae Isstrom in 2000-2004. East Greenland glaciers are in balance and flowing steadily north of Kangerdlussuaq, but Kangerdlussuaq, Helheim and all the southeastern glaciers are thinning dramatically. All these glaciers accelerated, Kangerdlussuaq in 2000, Helheim prior to 2004, and southeast Greenland glaciers accelerated 10 to 50 percent in 2000-2004. Glacier acceleration is generally brutal, probably once the glacier reached a threshold, and sustained. In the northwest, most glaciers are largely out of balance. Jakobshavn accelerated significantly in 2002, and glaciers in its immediate vicinity accelerated more than 50 percent in 2000-2004. Less is known about southwest Greenland glaciers due to a lack of ice thickness data but the glaciers have accelerated there as well and are likely to be strongly out of balance despite thickening of the interior. Overall, I estimate the mass balance of the Greenland ice sheet to be about -80 +/-10 cubic km of ice per year in 2000 and -110 +/-15 cubic km of ice per year in 2004, i.e. more negative than based on partial altimetry surveys of the outlet glaciers. As climate continues to warm, more glaciers will accelerate, and the mass balance will become increasingly negative, regardless of the evolution of the ice sheet

  6. Juno Mission Simulation

    NASA Technical Reports Server (NTRS)

    Lee, Meemong; Weidner, Richard J.

    2008-01-01

    The Juno spacecraft is planned to launch in August of 2012 and would arrive at Jupiter four years later. The spacecraft would spend more than one year orbiting the planet and investigating the existence of an ice-rock core; determining the amount of global water and ammonia present in the atmosphere, studying convection and deep- wind profiles in the atmosphere; investigating the origin of the Jovian magnetic field, and exploring the polar magnetosphere. Juno mission management is responsible for mission and navigation design, mission operation planning, and ground-data-system development. In order to ensure successful mission management from initial checkout to final de-orbit, it is critical to share a common vision of the entire mission operation phases with the rest of the project teams. Two major challenges are 1) how to develop a shared vision that can be appreciated by all of the project teams of diverse disciplines and expertise, and 2) how to continuously evolve a shared vision as the project lifecycle progresses from formulation phase to operation phase. The Juno mission simulation team addresses these challenges by developing agile and progressive mission models, operation simulations, and real-time visualization products. This paper presents mission simulation visualization network (MSVN) technology that has enabled a comprehensive mission simulation suite (MSVN-Juno) for the Juno project.

  7. Operating Ferret on a patrol boat

    NASA Astrophysics Data System (ADS)

    Bédard, Jacques

    2006-05-01

    Ferret is an acoustic system that detects, recognizes and localizes the source and direction of small arms fire. The system comprises a small array of microphones and pressure sensors connected to a standard PC-104 computer that analyzes, displays, reports and logs the parameters of a recognized shot. The system operates by detecting and recognizing the ballistic shock waves created by the supersonic bullet, combined with the muzzle blast wave propagating from the weapon. The system was recently installed and tested on a patrol boat operated by the Royal Canadian Mounted Police (RCMP). An electronic compass with tilt compensation and a GPS was incorporated into the system. This allows the system to correct for the motion of the boat and provide the full coordinates of the shooter. The system also updates the azimuth to the shooter in real time as the boat turns. This paper presents the results of our test and evaluation based on a live firing experiment. Ferret is the result of a collaborative effort by Defence R&D Canada and MacDonald Dettwiler and Associates.

  8. An analysis of arthropod interceptions by APHIS-PPQ and Customs and Border Patrol in Puerto Rico

    USDA-ARS?s Scientific Manuscript database

    USDA Animal Plant Health Inspection Service Plant Protection and Quarantine (APHIS-PPQ) and Customs and Border Patrol (CBP) inspect traffic entering the United States for arthropods that pose a threat to national agriculture and/or ecosystems. We analyzed interceptions made by these agencies in Puer...

  9. High-speed railway signal trackside equipment patrol inspection system

    NASA Astrophysics Data System (ADS)

    Wu, Nan

    2018-03-01

    High-speed railway signal trackside equipment patrol inspection system comprehensively applies TDI (time delay integration), high-speed and highly responsive CMOS architecture, low illumination photosensitive technique, image data compression technique, machine vision technique and so on, installed on high-speed railway inspection train, and achieves the collection, management and analysis of the images of signal trackside equipment appearance while the train is running. The system will automatically filter out the signal trackside equipment images from a large number of the background image, and identify of the equipment changes by comparing the original image data. Combining with ledger data and train location information, the system accurately locate the trackside equipment, conscientiously guiding maintenance.

  10. The ICESat-2 Mission: Concept, pre-launch activities, and opportunities

    NASA Astrophysics Data System (ADS)

    Markus, T.; Neumann, T.; Csatho, B. M.

    2011-12-01

    Ice sheet and sea level changes have been explicitly identified as a priority in the President's Climate Change Science Program, the Arctic Climate Impact Assessment, the 4th Assessment Report of the IPCC and other national and international policy documents. Following recommendations from the National Research Council for an ICESat follow-on mission, the ICESat-2 mission is now under development for launch in early 2016. The primary aims of the ICESat-2 mission are to continue measurements of sea-ice thickness change, and ice sheet elevation changes at scales from outlet glaciers to the entire ice sheet as established by ICESat. In contrast to ICESat, ICESat-2 will employ a 6-beam micro-pulse laser photon-counting approach. The current concept uses a high repetition rate (10 kHz; equivalent to 70 cm on the ground) low-power laser in conjunction with single-photon sensitive detectors to measure range using ~532nm (green) light. The concept will enable the generation of seasonal maps of ice sheet elevation of Greenland and Antarctica, monthly maps of sea ice thickness of the polar ocean, a dense map of land elevation (2 km track spacing at the equator after two years) enabling the determination of canopy height, as well as ocean heights. While the mission has been optimized for cryospheric science and vast amount of high precision elevation measurements taken over land and over the ocean as well as of the atmosphere will provide scientists with a wealth of opportunities to explore the utility of ICESat-2. Those will range from the retrieval of cloud properties, to river stages, to snow cover, to land use changes and more. The presentation will review the measurement concept and physical principles of ICESat-2, current and planned activities to assess instrument performance and develop geophysical algorithms, as well as potential opportunities outside the main objectives of ICESat-2.

  11. IceCube: CubeSat 883-GHz Radiometry for Future Ice Cloud Remote Sensing

    NASA Technical Reports Server (NTRS)

    Wu, Dongliang; Esper, Jaime; Ehsan, Negar; Johnson, Thomas; Mast, William; Piepmeier, Jeffery R.; Racette, Paul E.

    2015-01-01

    Ice clouds play a key role in the Earth's radiation budget, mostly through their strong regulation of infrared radiation exchange. Accurate observations of global cloud ice and its distribution have been a challenge from space, and require good instrument sensitivities to both cloud mass and microphysical properties. Despite great advances from recent spaceborne radar and passive sensors, uncertainty of current ice water path (IWP) measurements is still not better than a factor of 2. Submillimeter (submm) wave remote sensing offers great potential for improving cloud ice measurements, with simultaneous retrievals of cloud ice and its microphysical properties. The IceCube project is to enable this cloud ice remote sensing capability in future missions, by raising 874-GHz receiver technology TRL from 5 to 7 in a spaceflight demonstration on 3-U CubeSat in a low Earth orbit (LEO) environment. The NASAs Goddard Space Flight Center (GSFC) is partnering with Virginia Diodes Inc (VDI) on the 874-GHz receiver through its Vector Network Analyzer (VNA) extender module product line, to develop an instrument with precision of 0.2 K over 1-second integration and accuracy of 2.0 K or better. IceCube is scheduled to launch to and subsequent release from the International Space Station (ISS) in mid-2016 for nominal operation of 28 plus days. We will present the updated design of the payload and spacecraft systems, as well as the operation concept. We will also show the simulated 874-GHz radiances from the ISS orbits and cloud scattering signals as expected for the IceCube cloud radiometer.

  12. A lander mission to probe subglacial water on Saturn's moon Enceladus for life

    NASA Astrophysics Data System (ADS)

    Konstantinidis, Konstantinos; Flores Martinez, Claudio L.; Dachwald, Bernd; Ohndorf, Andreas; Dykta, Paul; Bowitz, Pascal; Rudolph, Martin; Digel, Ilya; Kowalski, Julia; Voigt, Konstantin; Förstner, Roger

    2015-01-01

    The plumes discovered by the Cassini mission emanating from the south pole of Saturn's moon Enceladus and the unique chemistry found in them have fueled speculations that Enceladus may harbor life. The presumed aquiferous fractures from which the plumes emanate would make a prime target in the search for extraterrestrial life and would be more easily accessible than the moon's subglacial ocean. A lander mission that is equipped with a subsurface maneuverable ice melting probe will be most suitable to assess the existence of life on Enceladus. A lander would have to land at a safe distance away from a plume source and melt its way to the inner wall of the fracture to analyze the plume subsurface liquids before potential biosignatures are degraded or destroyed by exposure to the vacuum of space. A possible approach for the in situ detection of biosignatures in such samples can be based on the hypothesis of universal evolutionary convergence, meaning that the independent and repeated emergence of life and certain adaptive traits is wide-spread throughout the cosmos. We thus present a hypothetical evolutionary trajectory leading towards the emergence of methanogenic chemoautotrophic microorganisms as the baseline for putative biological complexity on Enceladus. To detect their presence, several instruments are proposed that may be taken aboard a future subglacial melting probe. The "Enceladus Explorer" (EnEx) project funded by the German Space Administration (DLR), aims to develop a terrestrial navigation system for a subglacial research probe and eventually test it under realistic conditions in Antarctica using the EnEx-IceMole, a novel maneuverable subsurface ice melting probe for clean sampling and in situ analysis of ice and subglacial liquids. As part of the EnEx project, an initial concept study is foreseen for a lander mission to Enceladus to deploy the IceMole near one of the active water plumes on the moon's South-Polar Terrain, where it will search for

  13. The Europa Clipper mission concept

    NASA Astrophysics Data System (ADS)

    Pappalardo, Robert; Lopes, Rosaly

    Jupiter's moon Europa may be a habitable world. Galileo spacecraft data suggest that an ocean most likely exists beneath Europa’s icy surface and that the “ingredients” necessary for life (liquid water, chemistry, and energy) could be present within this ocean today. Because of the potential for revolutionizing our understanding of life in the solar system, future exploration of Europa has been deemed an extremely high priority for planetary science. A NASA-appointed Science Definition Team (SDT), working closely with a technical team from the Jet Propulsion Laboratory (JPL) and the Applied Physics Laboratory (APL), recently considered options for a future strategic mission to Europa, with the stated science goal: Explore Europa to investigate its habitability. The group considered several mission options, which were fully technically developed, then costed and reviewed by technical review boards and planetary science community groups. There was strong convergence on a favored architecture consisting of a spacecraft in Jupiter orbit making many close flybys of Europa, concentrating on remote sensing to explore the moon. Innovative mission design would use gravitational perturbations of the spacecraft trajectory to permit flybys at a wide variety of latitudes and longitudes, enabling globally distributed regional coverage of the moon’s surface, with nominally 45 close flybys at altitudes from 25 to 100 km. We will present the science and reconnaissance goals and objectives, a mission design overview, and the notional spacecraft for this concept, which has become known as the Europa Clipper. The Europa Clipper concept provides a cost-efficient means to explore Europa and investigate its habitability, through understanding the satellite’s ice and ocean, composition, and geology. The set of investigations derived from these science objectives traces to a notional payload for science, consisting of: Ice Penetrating Radar (for sounding of ice-water interfaces

  14. The International Cometary Explorer (ICE)wallsheet teacher's guide

    NASA Technical Reports Server (NTRS)

    Maran, S. P. (Editor)

    1985-01-01

    On September 11, 1985, the veteran NASA spacecraft ISEE-3 which has been renamed the International Cometary Explorer (ICE) will make the first visit of a spacecraft to a comet. A teachers' guide to the NASA wallsheet on the ICE and its mission is presented. This circumstance of course results from the current interest in the return of Halley's Comet. This teacher's guide will be helpful in understanding scientists strong interest in sending the ICE spacecraft to investigate the tail of a much less famous object Comet Giacobin-Zinner.

  15. Sea Ice Patterns

    NASA Image and Video Library

    2017-12-08

    On July 20, the U.S. Coast Guard Cutter Healy steamed south in the Arctic Ocean toward the edge of the sea ice. The ICESCAPE mission, or "Impacts of Climate on Ecosystems and Chemistry of the Arctic Pacific Environment," is a NASA shipborne investigation to study how changing conditions in the Arctic affect the ocean's chemistry and ecosystems. The bulk of the research took place in the Beaufort and Chukchi seas in summer 2010 and 2011. Credit: NASA/Kathryn Hansen NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  16. Structures of twilight patrol in the "Churyumov's Unified network" to ensure continuous monitoring

    NASA Astrophysics Data System (ADS)

    Churyumov, K. I.; Steklov, A. F.; Vidmachenko, A. P.; Dashkiev, G. N.; Steklov, E. A.; Slipchenko, A. S.; Romaniuk, Ya. O.; Nevodovskyi, P. V.

    2016-10-01

    calibrating control of facts and traces of all kinds of dangerous invasions. 3. Twilight patrol of "Churyumov Unified Network" and the study of invasions of fragments of cometary nuclei in the Earth's atmosphere. The costs of the study of the comet Churyumov-Gerasimenko 67P and its nuclei, on all mission of Rosetta-Philae, amounted to about EUR 2 billion [6]. Its results have significantly improved our understanding of the physics of cometary phenomena have further exacerbated problems of asteroid and comet hazard. In 2016, astronomers a lot of effort and time allocated for study of the disintegration of cometary nucleus of Ikeya - Murakami (P / 2010 V1) at least 17 of fragments. The authors have created a twilight patrol of "United Network Churyumov" to implement of daytime and twilight observations

  17. A Vision for Ice Giant Exploration

    NASA Technical Reports Server (NTRS)

    Hofstadter, M.; Simon, A.; Atreya, S.; Banfield, D.; Fortney, J.; Hayes, A.; Hedman, M.; Hospodarsky, G.; Mandt, K.; Masters, A.; hide

    2017-01-01

    From Voyager to a Vision for 2050: NASA and ESA have just completed a study of candidate missionsto Uranus and Neptune, the so-called ice giant planets. It is a Pre-Decadal Survey Study, meant to inform the next Planetary Science Decadal Survey about opportunities for missions launching in the 2020's and early 2030's. There have been no space flight missions to the ice giants since the Voyager 2 flybys of Uranus in 1986 and Neptune in 1989. This paper presents some conclusions of that study (hereafter referred to as The Study), and how the results feed into a vision for where planetary science can be in 2050. Reaching that vision will require investments in technology andground-based science in the 2020's, flight during the 2030's along with continued technological development of both ground- and space-based capabilities, and data analysis and additional flights in the 2040's. We first discuss why exploring the ice giants is important. We then summarize the science objectives identified by The Study, and our vision of the science goals for 2050. We then review some of the technologies needed to make this vision a reality.

  18. The Concept Of A Potential Operational CryoSat Follow-on Mission

    NASA Astrophysics Data System (ADS)

    Cullen, R.

    2016-12-01

    CryoSat was a planned as a 3 year mission with clear mission objectives to allow the assessment rates of change of thickness in the land and marine ice fields with reduced uncertainties with relation to other non-dedicated missions. Although CryoSat suffered a launch failure in Oct 2005, the mission was recovered with a launch in April 2010 of CryoSat-2. The nominal mission has now been completed, all mission requirements have been fulfilled and CryoSat has been shown to be most successful as a dedicated polar ice sheet measurement system demonstrated by nearly 200 peer reviewed publications within the first four years of launch. Following the completion of the nominal mission in Oct 2013 the platform was shown to be in good health and with a scientific backing provided by the ESA Earth Science Advisory Committee (ESAC) the mission has been extended until Feb 2017 by the ESA Programme Board for Earth Observation. Though not designed to provide data for science and operational services beyond its original mission requirements, a number of services have been developed for exploitation and these are expected to increase over the next few years. Services cover a number of aspects of land and marine ice fields in addition to complementary activities covering glacial monitoring, inland water in addition to coastal and open ocean surface topography science that CryoSat has demonstrated world leading advances with. This paper will present the overall concept for a potential low-cost continuity to the CryoSat mission with the objective to provide both continuity of the existing CryoSat based data sets, i.e., longer term science and operational services that cannot be provided by the existing Copernicus complement of satellites. This is, in part, due to the high inclination (92°) drifting orbit and state of the art Synthetic Aperture Interferometer Radar Altimeter (SIRAL). In addition, further improvements in performance are expected by use of improved modes of operation

  19. Identification of core functions and development of a deployment planning tool for safety service patrols in Virginia.

    DOT National Transportation Integrated Search

    2006-01-01

    The purpose of this study was to identify and document the core functions of the Virginia Department of Transportation's (VDOT) Safety Service Patrol (SSP) programs and to develop a deployment planning tool that would help VDOT decision-makers when c...

  20. An Examination of Issues Related to a Europa Subsurface Component for the JIMO Mission

    NASA Technical Reports Server (NTRS)

    Carsey, F. D.; Hecht, M. H.; Wilcox, B. H.; Behar, A. E.; Holland, P. M.

    2003-01-01

    The Galileo Europa data set served to revolutionize our view of Europa. In particular the strong evidence of a large, cold, salty Ocean beneath 5-30 km of ice has profoundly altered the significance of Europa in our thinking, especially of context of habitability in the solar system. While much remains to be learned from spacecraft observations of several sorts, there are significant questions answerable only by in-situ techniques; these relate to the formation of Europa, the nature of its ocean, and the prospects for life in its ocean, sediments, and ice. We feel that wide-ranging discussion of an in-situ subsurface mission to Europa, as part of JIMO, should proceed. The science objective of the mission is to characterize the icy shell of Europa to resolve its provenance, estimate the composition of brine of the Europa ocean, and search for evidence of Earth-like life. Probably anyone would agree that an in-situ mission to Europa would be of great value, but he or she would also immediately take the position that such a mission is utterly impractical. We take the position here of defining the least complex mission that can nonetheless justify its cost and to argue that such a mission is realistic enough that it should be seriously considered. Our mission thinking has been: 1) Soft landing. A soft lander is required on a site sufficiently flat to offer a stable platform; no further site selectivity is required. 2) Subsurface exploration. The Europa subsurface must be examined. Surficial processes on Europa arguably have exposed the upper 200 m of shell to chemical effects from the Jovian radiation belts as well as cometary infall, etc; to examine native ice we must descend below that point to, for discussion, 300 m. At that depth we argue that the ice is characteristic of ice at depth and possibly is effectively sea ice. 3) Science data. A few simple measurements at various depths and at 300 m constitute a scientifically successful mission. Measurements would

  1. Thermal stability of water ice in Ceres' crater Oxo

    NASA Astrophysics Data System (ADS)

    Formisano, Michelangelo; Federico, Costanzo; De Sanctis, Maria Cristina; Frigeri, Alessandro; Magni, Gianfranco; Tosi, Federico

    2016-10-01

    Dwarf planet Ceres, target of the NASA Dawn mission, exhibits evidences of ammoniated phyllosilicates on its surface [1], compatible with a likely outer Solar System origin. Considerable amounts of water ice have recently been detected in some craters by the Visible InfraRed mapping spectrometer (VIR) onboard Dawn in some small fresh crater, such as Oxo, located at about 40° N. The exposure mechanism of water ice is unknown: cryovolcanism, cometary type sublimation/recondensation [2]or impacts with other bodies are likely mechanisms. The evaluation of the time stability of the water ice is crucial to understand the plausible mechanism for its existence. For this purpose, we developed a 3D finite-elements model (FEM) by using the topography given by the shape model of Ceres derived on the basis of images acquired by the Framing Camera in the Survey mission phase. The illumination conditions are provided by the SPICE toolkit. We performed several simulations by analyzing the effect of thermal inertia and albedo on the temperature and rate of ice sublimation. The results of the simulations about the stability of water ice will be presented.[1] De Sanctis et al. NATURE, doi:10.1038/nature16172[2] Formisano et al. MNRAS, doi: 10.1093/mnras/stv2344

  2. Females roam while males patrol: divergence in breeding season movements of pack-ice polar bears (Ursus maritimus).

    PubMed

    Laidre, Kristin L; Born, Erik W; Gurarie, Eliezer; Wiig, Øystein; Dietz, Rune; Stern, Harry

    2013-02-07

    Intraspecific differences in movement behaviour reflect different tactics used by individuals or sexes to favour strategies that maximize fitness. We report movement data collected from n = 23 adult male polar bears with novel ear-attached transmitters in two separate pack ice subpopulations over five breeding seasons. We compared movements with n = 26 concurrently tagged adult females, and analysed velocities, movement tortuosity, range sizes and habitat selection with respect to sex, reproductive status and body mass. There were no differences in 4-day displacements or sea ice habitat selection for sex or population. By contrast, adult females in all years and both populations had significantly more linear movements and significantly larger breeding range sizes than males. We hypothesized that differences were related to encounter rates, and used observed movement metrics to parametrize a simulation model of male-male and male-female encounter. The simulation showed that the more tortuous movement of males leads to significantly longer times to male-male encounter, while having little impact on male-female encounter. By contrast, linear movements of females are consistent with a prioritized search for sparsely distributed prey. These results suggest a possible mechanism for explaining the smaller breeding range sizes of some solitary male carnivores compared to females.

  3. The Lunar Prospector Discovery Mission: mission and measurement description.

    NASA Astrophysics Data System (ADS)

    Hubbard, G. S.; Binder, A. B.; Feldman, W.

    1998-06-01

    Lunar Prospector, the first competitively selected planetary mission in NASA's Discovery Program, is described with emphasis on the radiation spectrometer instrumentation and anticipated scientific data return. Scheduled to be launched in January 1998, the mission will conduct a one year orbital survey of the Moon's composition and structure. The suite of five instruments are outlined: neutron spectrometer, alpha particle spectrometer, gamma-ray spectrometer, electron reflectometer and magnetometer. Scientific requirements and measurement approach to detect water/ice to a sensitivity of 50 ppm (hydrogen), measure key elemental constituents, detect radioactive gas release events and accurately map the Moon's gravitational and magnetic fields are given. A brief overview of the programmatic accomplishments in meeting a tightly constrained schedule and budget is also provided.

  4. The Lunar Prospector discovery mission: mission and measurement description.

    NASA Astrophysics Data System (ADS)

    Hubbard, G. S.; Binder, A. B.; Feldman, W.

    Lunar Prospector, the first competitively selected planetary mission in NASA's discovery program, is described with emphasis on the radiation spectrometer instrumentation and anticipated scientific data return. Scheduled to be launched in January 1998, the mission will conduct a one year orbital survey of the moon's composition and structure. The suite of five instruments will be outlined: neutron spectrometer, alpha particle spectrometer, gamma-ray spectrometer, electron reflectometer and magnetometer. Scientific requirements and measurement approach to detect water ice to a sensitivity of 50 ppm (hydrogen), measure key elemental constituents, detect radioactive gas release events and accurately map the moon's gravitational and magnetic fields are given. A brief overview of the programmatic accomplishments in meeting a tightly constrained schedule and budget is also provided.

  5. Routing design and fleet allocation optimization of freeway service patrol: Improved results using genetic algorithm

    NASA Astrophysics Data System (ADS)

    Sun, Xiuqiao; Wang, Jian

    2018-07-01

    Freeway service patrol (FSP), is considered to be an effective method for incident management and can help transportation agency decision-makers alter existing route coverage and fleet allocation. This paper investigates the FSP problem of patrol routing design and fleet allocation, with the objective of minimizing the overall average incident response time. While the simulated annealing (SA) algorithm and its improvements have been applied to solve this problem, they often become trapped in local optimal solution. Moreover, the issue of searching efficiency remains to be further addressed. In this paper, we employ the genetic algorithm (GA) and SA to solve the FSP problem. To maintain population diversity and avoid premature convergence, niche strategy is incorporated into the traditional genetic algorithm. We also employ elitist strategy to speed up the convergence. Numerical experiments have been conducted with the help of the Sioux Falls network. Results show that the GA slightly outperforms the dual-based greedy (DBG) algorithm, the very large-scale neighborhood searching (VLNS) algorithm, the SA algorithm and the scenario algorithm.

  6. Mapping an Ice Station

    NASA Image and Video Library

    2017-12-08

    On July 10, 2011, Melinda Webster of University of Washington mapped the locations where measurements were collected during the 2011 ICESCAPE mission's fourth sea ice station in the Chukchi Sea. The ICESCAPE mission, or "Impacts of Climate on Ecosystems and Chemistry of the Arctic Pacific Environment," is a NASA shipborne investigation to study how changing conditions in the Arctic affect the ocean's chemistry and ecosystems. The bulk of the research took place in the Beaufort and Chukchi seas in summer 2010 and 2011. Credit: NASA/Kathryn Hansen NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  7. The IceBridge Portal - Automated Metadata Generation for Enhanced Data Access

    NASA Astrophysics Data System (ADS)

    Tanner, S.; Schwab, M.; Beam, K.; Deems, J. S.; Fitzgerrell, A.

    2016-12-01

    NASA's Operation IceBridge (OIB) mission, initiated in 2009, collects airborne remote sensing measurements over the polar regions to bridge the gap between NASA's Ice, Cloud and Land Elevation satellite (ICESat) mission and the upcoming ICESat-2 mission in 2017. OIB combines an evolving mix of instruments to gather data on topography, ice and snow thickness, high-resolution photography, and other properties that are more difficult or impossible to measure via satellite. Once collected, these data are stored and made available at the National Snow and Ice Data Center (NSIDC) in Boulder, Colorado. To date, there are nearly 200 terabytes of data available, and with several more campaigns to go. Initially, OIB data could be difficult to discover and access, due to a lack of consistent metadata. However, the Project Office made a decision to revamp the data delivery process. This has led to substantial data reformatting and better adherence to NASA standards as well as the generation of far more metadata associated with each data product. Because of this change, NSIDC has been able to develop a powerful map-based portal for search, discovery and access of these data products. The tools used for automated metadata generation, and the resulting new data portal will be presented.

  8. Subsonic Aircraft Safety Icing Study

    NASA Technical Reports Server (NTRS)

    Jones, Sharon Monica; Reveley, Mary S.; Evans, Joni K.; Barrientos, Francesca A.

    2008-01-01

    NASA's Integrated Resilient Aircraft Control (IRAC) Project is one of four projects within the agency s Aviation Safety Program (AvSafe) in the Aeronautics Research Mission Directorate (ARMD). The IRAC Project, which was redesigned in the first half of 2007, conducts research to advance the state of the art in aircraft control design tools and techniques. A "Key Decision Point" was established for fiscal year 2007 with the following expected outcomes: document the most currently available statistical/prognostic data associated with icing for subsonic transport, summarize reports by subject matter experts in icing research on current knowledge of icing effects on control parameters and establish future requirements for icing research for subsonic transports including the appropriate alignment. This study contains: (1) statistical analyses of accident and incident data conducted by NASA researchers for this "Key Decision Point", (2) an examination of icing in other recent statistically based studies, (3) a summary of aviation safety priority lists that have been developed by various subject-matter experts, including the significance of aircraft icing research in these lists and (4) suggested future requirements for NASA icing research. The review of several studies by subject-matter experts was summarized into four high-priority icing research areas. Based on the Integrated Resilient Aircraft Control (IRAC) Project goals and objectives, the IRAC project was encouraged to conduct work in all of the high-priority icing research areas that were identified, with the exception of the developing of methods to sense and document actual icing conditions.

  9. Path Planning Algorithms for Autonomous Border Patrol Vehicles

    NASA Astrophysics Data System (ADS)

    Lau, George Tin Lam

    This thesis presents an online path planning algorithm developed for unmanned vehicles in charge of autonomous border patrol. In this Pursuit-Evasion game, the unmanned vehicle is required to capture multiple trespassers on its own before any of them reach a target safe house where they are safe from capture. The problem formulation is based on Isaacs' Target Guarding problem, but extended to the case of multiple evaders. The proposed path planning method is based on Rapidly-exploring random trees (RRT) and is capable of producing trajectories within several seconds to capture 2 or 3 evaders. Simulations are carried out to demonstrate that the resulting trajectories approach the optimal solution produced by a nonlinear programming-based numerical optimal control solver. Experiments are also conducted on unmanned ground vehicles to show the feasibility of implementing the proposed online path planning algorithm on physical applications.

  10. EM Bias-Correction for Ice Thickness and Surface Roughness Retrievals over Rough Deformed Sea Ice

    NASA Astrophysics Data System (ADS)

    Li, L.; Gaiser, P. W.; Allard, R.; Posey, P. G.; Hebert, D. A.; Richter-Menge, J.; Polashenski, C. M.

    2016-12-01

    The very rough ridge sea ice accounts for significant percentage of total ice areas and even larger percentage of total volume. The commonly used Radar altimeter surface detection techniques are empirical in nature and work well only over level/smooth sea ice. Rough sea ice surfaces can modify the return waveforms, resulting in significant Electromagnetic (EM) bias in the estimated surface elevations, and thus large errors in the ice thickness retrievals. To understand and quantify such sea ice surface roughness effects, a combined EM rough surface and volume scattering model was developed to simulate radar returns from the rough sea ice `layer cake' structure. A waveform matching technique was also developed to fit observed waveforms to a physically-based waveform model and subsequently correct the roughness induced EM bias in the estimated freeboard. This new EM Bias Corrected (EMBC) algorithm was able to better retrieve surface elevations and estimate the surface roughness parameter simultaneously. In situ data from multi-instrument airborne and ground campaigns were used to validate the ice thickness and surface roughness retrievals. For the surface roughness retrievals, we applied this EMBC algorithm to co-incident LiDAR/Radar measurements collected during a Cryosat-2 under-flight by the NASA IceBridge missions. Results show that not only does the waveform model fit very well to the measured radar waveform, but also the roughness parameters derived independently from the LiDAR and radar data agree very well for both level and deformed sea ice. For sea ice thickness retrievals, validation based on in-situ data from the coordinated CRREL/NRL field campaign demonstrates that the physically-based EMBC algorithm performs fundamentally better than the empirical algorithm over very rough deformed sea ice, suggesting that sea ice surface roughness effects can be modeled and corrected based solely on the radar return waveforms.

  11. A Decade of Arctic Sea Ice Thickness Change from Airborne and Satellite Altimetry (Invited)

    NASA Astrophysics Data System (ADS)

    Farrell, S. L.; Richter-Menge, J.; Kurtz, N. T.; McAdoo, D. C.; Newman, T.; Zwally, H.; Ruth, J.

    2013-12-01

    Altimeters on both airborne and satellite platforms provide direct measurements of sea ice freeboard from which sea ice thickness may be calculated. Satellite altimetry observations of Arctic sea ice from ICESat and CryoSat-2 indicate a significant decline in ice thickness, and volume, over the last decade. During this time the ice pack has experienced a rapid change in its composition, transitioning from predominantly thick, multi-year ice to thinner, increasingly seasonal ice. We will discuss the regional trends in ice thickness derived from ICESat and IceBridge altimetry between 2003 and 2013, contrasting observations of the multi-year ice pack with seasonal ice zones. ICESat ceased operation in 2009, and the final, reprocessed data set became available recently. We extend our analysis to April 2013 using data from the IceBridge airborne mission, which commenced operations in 2009. We describe our current efforts to more accurately convert from freeboard to ice thickness, with a modified methodology that corrects for range errors, instrument biases, and includes an enhanced treatment of snow depth, with respect to ice type. With the planned launch by NASA of ICESat-2 in 2016 we can expect continuity of the sea ice thickness time series through the end of this decade. Data from the ICESat-2 mission, together with ongoing observations from CryoSat-2, will allow us to understand both the decadal trends and inter-annual variability in the Arctic sea ice thickness record. We briefly present the status of planned ICESat-2 sea ice data products, and demonstrate the utility of micro-pulse, photon-counting laser altimetry over sea ice.

  12. ICESat's First Year of Measurements Over the Polar Ice Sheets

    NASA Astrophysics Data System (ADS)

    Shuman, C. A.

    2004-05-01

    NASA's Ice, Cloud and Land Elevation Satellite (ICESat) mission was developed to measure changes in elevation of the Greenland and Antarctic ice sheets. Its primary mission goal is to significantly refine estimates of polar ice sheet mass balance. Obtaining precise, spatially dense, ice sheet elevations through time is the first step towards this goal. ICESat data will then enable study of associations between observed ice changes and dynamic or climatic forcing factors, and thus enable improved estimation of the present and future contributions of the ice sheets to global sea level rise. ICESat was launched on January 12, 2003 and acquired science data from February 20th to March 29th with the first of the three lasers of the Geoscience Laser Altimeter System (GLAS). Data acquisition with the second laser began on September 25th and continued until November 18th, 2003. For one-year change detection, the second laser is scheduled for operation from approximately February 17th to March 20th, 2004. Additional operational periods will be selected to 1) enable periodic measurements through the year, and 2) to support of other NASA Earth Science Enterprise missions and activities. To obtain these precise ice sheet elevations, GLAS has a 1064 nm wavelength laser operating at 40 Hz with a designed range precision of about 10 cm. The laser footprints are about 70 m in diameter on the Earth's surface and are spaced every 172 m along-track. The on-board GPS receiver enables radial orbit determinations to an accuracy better than 5 cm. The star-tracking attitude-determination system will enable laser footprints to be located to 6 m horizontally when attitude calibration is completed. The orbital altitude averages 600 km at an inclination of 94 degrees with coverage extending from 86 degrees N and S latitude. The spacecraft attitude can be controlled to point the laser beam to within 50 m of surface reference tracks over the ice sheets and to point off-nadir up to 5 degrees to

  13. SUCCESS Evidence for Cirrus Cloud Ice Nucleation Mechanisms

    NASA Technical Reports Server (NTRS)

    Jensen, Eric; Gore, Warren J. Y. (Technical Monitor)

    1997-01-01

    During the SUCCESS mission, several measurements were made which should improve our understanding of ice nucleation processes in cirrus clouds. Temperature and water vapor concentration were made with a variety of instruments on the NASA DC-8. These observations should provide accurate upper tropospheric humidities. In particular, we will evaluate what humidities are required for ice nucleation. Preliminary results suggest that substantial supersaturations frequently exist in the upper troposphere. The leading-edge region of wave-clouds (where ice nucleation occurs) was sampled extensively at temperatures near -40 and -60C. These observations should give precise information about conditions required for ice nucleation. In addition, we will relate the observed aerosol composition and size distributions to the ice formation observed to evaluate the role of soot or mineral particles on ice nucleation. As an alternative technique for determining what particles act as ice nuclei, numerous samples of aerosols inside ice crystals were taken. In some cases, large numbers of aerosols were detected in each crystal, indicating that efficient scavenging occurred. Analysis of aerosols in ice crystals when only one particle per crystal was detected should help with the ice nucleation issue. Direct measurements of the ice nucleating activity of ambient aerosols drawn into airborne cloud chambers were also made. Finally, measurements of aerosols and ice crystals in contrails should indicate whether aircraft exhaust soot particles are effective ice nuclei.

  14. Risk analysis of Safety Service Patrol (SSP) systems in Virginia.

    PubMed

    Dickey, Brett D; Santos, Joost R

    2011-12-01

    The transportation infrastructure is a vital backbone of any regional economy as it supports workforce mobility, tourism, and a host of socioeconomic activities. In this article, we specifically examine the incident management function of the transportation infrastructure. In many metropolitan regions, incident management is handled primarily by safety service patrols (SSPs), which monitor and resolve roadway incidents. In Virginia, SSP allocation across highway networks is based typically on average vehicle speeds and incident volumes. This article implements a probabilistic network model that partitions "business as usual" traffic flow with extreme-event scenarios. Results of simulated network scenarios reveal that flexible SSP configurations can improve incident resolution times relative to predetermined SSP assignments. © 2011 Society for Risk Analysis.

  15. Detecting and characterizing ice units with the WISDOM Radar

    NASA Astrophysics Data System (ADS)

    Ciarletti, V.; Plettemeier, D.; Dorizon, S.; Clifford, S. M.; Biancheri-Astier, M.; Dechambre, M.; Saintenoy, A. C.; Costard, F.

    2012-12-01

    The WISDOM (Water Ice Subsurface Deposit Observation on Mars) Ground Penetrating Radar (GPR) is one of the instruments that have been selected as part of the Pasteur payload of ESA's 2018 ExoMars Rover mission. WISDOM main objectives are to understand the geology and evolution of the landing site and to help identifying locations in the shallow subsurface where organic molecules are the most likely to be found and well-preserved. In the context of the ExoMars mission, the importance of the WISDOM GPR is particularly enhanced by its ability to investigate the distribution and state of subsurface water - both as a liquid and as ice. For example, within the diurnally active thermal layer of the subsurface (i.e., the top ~15 - 25 cm), the transient melting and freezing of subsurface ice and brine may be detectable by comparing day- and night-time radar observations at the same location. Moreover, while the biological significance of liquid water on Mars is obvious, a more readily accessible and enduring record of biological activity may be organic biomarkers preserved in subsurface ice. Unfortunately, the dielectric contrast between rock, soil and ice is small, and therefore, differentiating between mixtures of ice-rich and ice-poor regolith in the Martian subsurface is an extraordinarily difficult task. Preliminary tests in both natural (glacier in the Alps and caves in Austria) and artificial (cold chamber) icy environments have been performed with a prototype representative of the WISDOM instrument flight model. These investigations have demonstrated WISDOM's ability to detect and characterize subsurface ice in various forms. Specific examples will be discussed that demonstrate the instrument's depth of sounding, dielectric sensitivity, spatial resolution, full polarimetric and 3-D capability.

  16. Arctic Sea Ice Sets New Record Winter Low

    NASA Image and Video Library

    2015-03-19

    The sea ice cap of the Arctic appeared to reach its annual maximum winter extent on February 25, according to data from the NASA-supported National Snow and Ice Data Center (NSIDC) at the University of Colorado, Boulder. At 5.61 million square miles (14.54 million square kilometers), this year’s maximum extent was the smallest on the satellite record and also one of the earliest. Credit: NASA Goddard Space Flight Center NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  17. ICESat's Laser Measurements of Polar Ice, Atmosphere, Ocean, and Land

    NASA Technical Reports Server (NTRS)

    Zwally, H. J.; Schutz, B.; Abdalati, W.; Abshire, J.; Bentley, C.; Brenner, A.; Bufton, J.; Dezio, J.; Hancock, D.; Harding, D.; hide

    2001-01-01

    The Ice, Cloud and Land Elevation Satellite (ICESat) mission will measure changes in elevation of the Greenland and Antarctic ice sheets as part of NASA's Earth Observing System (EOS) of satellites. Time-series of elevation changes will enable determination of the present-day mass balance of the ice sheets, study of associations between observed ice changes and polar climate, and estimation of the present and future contributions of the ice sheets to global sea level rise. Other scientific objectives of ICESat include: global measurements of cloud heights and the vertical structure of clouds and aerosols; precise measurements of land topography and vegetation canopy heights; and measurements of sea ice roughness, sea ice thickness, ocean surface elevations, and surface reflectivity. The Geoscience Laser Altimeter System (GLAS) on ICESat has a 1064 nm laser channel for surface altimetry and dense cloud heights and a 532 nm lidar channel for the vertical distribution of clouds and aerosols. The accuracy of surface ranging is 10 cm, averaged over 60 m diameter laser footprints spaced at 172 m along-track. The orbital altitude will be around 600 km at an inclination of 94 deg with a 183-day repeat pattern. The onboard GPS receiver will enable radial orbit determinations to better than 5 cm, and star-trackers will enable footprints to be located to 6 m horizontally. The spacecraft attitude will be controlled to point the laser beam to within +/- 35 m of reference surface tracks at high latitudes. ICESat is designed to operate for 3 to 5 years and should be followed by successive missions to measure ice changes for at least 15 years.

  18. What Lies Below a Martian Ice Cap

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Surveyor mission.

    NPLD stands for the north polar layered deposits.

    BU stands for basal unit, an ice-sand deposit that lies beneath parts of the north polar layered deposits.

    The Shallow Radar instrument was provided by the Italian Space Agency. Its operations are led by the University of Rome and its data are analyzed by a joint U.S.-Italian science team. JPL, a division of the California Institute of Technology, Pasadena, manages the Mars Reconnaissance Orbiter for the NASA Science Mission Directorate, Washington.

  19. Ice_Sheets_CCI: Essential Climate Variables for the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Forsberg, R.; Sørensen, L. S.; Khan, A.; Aas, C.; Evansberget, D.; Adalsteinsdottir, G.; Mottram, R.; Andersen, S. B.; Ahlstrøm, A.; Dall, J.; Kusk, A.; Merryman, J.; Hvidberg, C.; Khvorostovsky, K.; Nagler, T.; Rott, H.; Scharrer, M.; Shepard, A.; Ticconi, F.; Engdahl, M.

    2012-04-01

    As part of the ESA Climate Change Initiative (www.esa-cci.org) a long-term project "ice_sheets_cci" started January 1, 2012, in addition to the existing 11 projects already generating Essential Climate Variables (ECV) for the Global Climate Observing System (GCOS). The "ice_sheets_cci" goal is to generate a consistent, long-term and timely set of key climate parameters for the Greenland ice sheet, to maximize the impact of European satellite data on climate research, from missions such as ERS, Envisat and the future Sentinel satellites. The climate parameters to be provided, at first in a research context, and in the longer perspective by a routine production system, would be grids of Greenland ice sheet elevation changes from radar altimetry, ice velocity from repeat-pass SAR data, as well as time series of marine-terminating glacier calving front locations and grounding lines for floating-front glaciers. The ice_sheets_cci project will involve a broad interaction of the relevant cryosphere and climate communities, first through user consultations and specifications, and later in 2012 optional participation in "best" algorithm selection activities, where prototype climate parameter variables for selected regions and time frames will be produced and validated using an objective set of criteria ("Round-Robin intercomparison"). This comparative algorithm selection activity will be completely open, and we invite all interested scientific groups with relevant experience to participate. The results of the "Round Robin" exercise will form the algorithmic basis for the future ECV production system. First prototype results will be generated and validated by early 2014. The poster will show the planned outline of the project and some early prototype results.

  20. Determination of Local Slope on the Greenland Ice Sheet Using a Multibeam Photon-Counting Lidar in Preparation for the ICESat-2 Mission

    NASA Technical Reports Server (NTRS)

    Brunt, Kelly M.; Neumann, Thomas Allen; Walsh, Kaitlin M.; Markus, Thorsten

    2013-01-01

    The greatest changes in elevation in Greenland and Antarctica are happening along the margins of the ice sheets where the surface frequently has significant slopes. For this reason, the upcoming Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) mission utilizes pairs of laser altimeter beams that are perpendicular to the flight direction in order to extract slope information in addition to elevation. The Multiple Altimeter Beam Experimental Lidar (MABEL) is a high-altitude airborne laser altimeter designed as a simulator for ICESat-2. The MABEL design uses multiple beams at fixed angles and allows for local slope determination. Here, we present local slopes as determined by MABEL and compare them to those determined by the Airborne Topographic Mapper (ATM) over the same flight lines in Greenland. We make these comparisons with consideration for the planned ICESat-2 beam geometry. Results indicate that the mean slope residuals between MABEL and ATM remain small (< 0.05 degrees) through a wide range of localized slopes using ICESat-2 beam geometry. Furthermore, when MABEL data are subsampled by a factor of 4 to mimic the planned ICESat-2 transmit-energy configuration, the results are indistinguishable from the full-data-rate analysis. Results from MABEL suggest that ICESat-2 beam geometry and transmit-energy configuration are appropriate for the determination of slope on approx. 90-m spatial scales, a measurement that will be fundamental to deconvolving the effects of surface slope from the ice-sheet surface change derived from ICESat-2.

  1. Determination of Local Slope on the Greenland Ice Sheet Using a Multibeam Photon-Counting Lidar in Preparation for the ICESat-2 Mission

    NASA Technical Reports Server (NTRS)

    Brunt, Kelly M.; Neumann, Thomas A.; Walsh, Kaitlin M.; Markus, Thorsten

    2014-01-01

    The greatest changes in elevation in Greenland and Antarctica are happening along the margins of the ice sheets where the surface frequently has significant slopes. For this reason, the upcoming Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) mission utilizes pairs of laser altimeter beams that are perpendicular to the flight direction in order to extract slope information in addition to elevation. The Multiple Altimeter Beam Experimental Lidar (MABEL) is a high-altitude airborne laser altimeter designed as a simulator for ICESat-2. The MABEL design uses multiple beams at fixed angles and allows for local slope determination. Here, we present local slopes as determined by MABEL and compare them to those determined by the Airborne Topographic Mapper (ATM) over the same flight lines in Greenland. We make these comparisons with consideration for the planned ICESat-2 beam geometry. Results indicate that the mean slope residuals between MABEL and ATM remain small (< 0.05?) through a wide range of localized slopes using ICESat-2 beam geometry. Furthermore, when MABEL data are subsampled by a factor of 4 to mimic the planned ICESat-2 transmit-energy configuration, the results are indistinguishable from the full-data-rate analysis. Results from MABEL suggest that ICESat-2 beam geometry and transmit-energy configuration are appropriate for the determination of slope on 90-m spatial scales, a measurement that will be fundamental to deconvolving the effects of surface slope from the ice-sheet surface change derived from ICESat-2.

  2. IceBridge Data Management and Access Strategies at NSIDC

    NASA Astrophysics Data System (ADS)

    Oldenburg, J.; Tanner, S.; Collins, J. A.; Lewis, S.; FitzGerrell, A.

    2013-12-01

    NASA's Operation IceBridge (OIB) mission, initiated in 2009, collects airborne remote sensing measurements over the polar regions to bridge the gap between NASA's Ice, Cloud and Land Elevation satellite (ICESat) mission and the upcoming ICESat-2 mission in 2016. OIB combines an evolving mix of instruments to gather data on topography, ice and snow thickness, high-resolution photography, and other properties that are more difficult or impossible to measure via satellite. Once collected, these data are stored and made available at the National Snow and Ice Data Center (NSIDC) in Boulder, Colorado. To date, there are nearly 90 terabytes of data available, and there are about three more years of data collection left. The main challenges faced in data management at NSIDC are derived from the quantity and heterogeneity of the data. To deal with the quantity of data, the technical teams at NSIDC have significantly automated the data ingest, metadata generation, and other required data management steps. Heterogeneity of data and the evolution of the Operation over time make technical automation complex. To limit complexity, the IceBridge team has agreed to such practices as using specific data file formats, limiting file sizes, using specific filename templates, etc. These agreements evolve as Operation IceBridge moves forward. The metadata generated about the flights and the data collected thereon make the storage of the data more robust, and enable data discoverability. With so much metadata, users can search the vast collection with ease using specific parameters about the data they seek. An example of this in action is the IceBridge data portal developed at NSIDC, http://nsidc.org/icebridge/portal/. This portal uses the GPS data from the flights projected onto maps as well as other flight and instrument metadata to help the user find the exact data file they seek. This implementation is only possible with dependable data management beneath the surface. The data files

  3. Planning Coverage Campaigns for Mission Design and Analysis: Clasp for the Proposed DESDynI Mission

    NASA Technical Reports Server (NTRS)

    Knight, Russell; McLaren, David; Hu, Steven

    2012-01-01

    Mission design and analysis present challenges in that almost all variables are in constant flux, yet the goal is to achieve an acceptable level of performance against a concept of operations, which might also be in flux. To increase responsiveness, our approach is to use automated planning tools that allow for the continual modification of spacecraft, ground system, staffing, and concept of operations while returning metrics that are important to mission evaluation, such as area covered, peak memory usage, and peak data throughput. We have applied this approach to DESDynI (Deformation, Ecosystem Structure, and Dynamics of Ice) mission design concept using the CLASP (Compressed Large-scale Activity Scheduler/Planner) planning system [7], but since this adaptation many techniques have changed under the hood for CLASP and the DESDynI mission concept has undergone drastic changes, including that it has been renamed the Earth Radar Mission. Over the past two years, we have run more than fifty simulations with the CLASP-DESDynI adaptation, simulating different mission scenarios with changing parameters including targets, swaths, instrument modes, and data and downlink rates. We describe the evolution of simulations through the DESDynI MCR (Mission Concept Review) and afterwards.

  4. Insights Into Ice-Ocean Interactions on Earth and Europa

    NASA Astrophysics Data System (ADS)

    Lawrence, J.; Schmidt, B. E.; Winslow, L.; Doran, P. T.; Kim, S.; Walker, C. C.; Buffo, J.; Skidmore, M. L.; Soderlund, K. M.; Blankenship, D. D.; Bramall, N. E.; Johnson, A.; Rack, F. R.; Stone, W.; Kimball, P.; Clark, E.

    2016-12-01

    Europa and Earth appear to be drastically different worlds, yet below their icy crusts the two likely share similar oceanic conditions including temperatures, pressures (relatively), and salinity. Earth's ice shelves provide an important analog for the physiochemical, and potentially microbial, characteristics of icy worlds. NASA's ASTEP program funded Sub-Ice Marine and PLanetary-analog Ecosystems (SIMPLE) to help address the fundamental processes occurring at ice ocean interfaces, the extent and limitations of life in sub-ice environments, and how environmental properties and biological communities interact. The relationships between currents, temperature, and salinity with physical processes such as melt, freeze, and marine ice accretion at the basal surfaces of ice shelves influence habitability yet are poorly understood even on Earth. Resultant processes such as the inclusion of ocean-derived material in ice shelves and the transport of biotics from the interface towards the surface via ablation, convection, and diapirism also have important astrobiological implications for Europa.Here, we present results from CTD and imaging data gathered at multiple locations beneath the McMurdo Ice Shelf (MIS) to highlight how the ice and ocean interact in a Europan analog environment. Over the course of three years, the SIMPLE team observed heterogeneity in the water column and basal ice beneath the MIS. During the recent 2015 field season we deployed ARTEMIS, an AUV capable of characterizing the interface over multiple kilometer missions, and conducted daily CTD casts to 480 m (bottom depth 529 m) in November adjacent to the terminus of the MIS to capture temporal variation in the water column. These casts show the presence of transient water masses related to the tidal period, each containing a single or double temperature minimum (down to -1.97 °C from -1.93 °C) between 60 to 150 m depth. Further comparisons between years and sampling locations demonstrate the

  5. Into the Deep Black Sea: The Icefin Modular AUV for Ice-Covered Ocean Exploration

    NASA Astrophysics Data System (ADS)

    Meister, M. R.; Schmidt, B. E.; West, M. E.; Walker, C. C.; Buffo, J.; Spears, A.

    2015-12-01

    The Icefin autonomous underwater vehicle (AUV) was designed to enable long-range oceanographic exploration of physical and biological ocean environments in ice-covered regions. The vehicle is capable of surveying under-ice geometry, ice and ice-ocean interface properties, as well as water column conditions beneath the ice interface. It was developed with both cryospheric and planetary-analog exploration in mind. The first Icefin prototype was successfully operated in Antarctica in Austral summer 2014. The vehicle was deployed through a borehole in the McMurdo Ice Shelf near Black Island and successfully collected sonar, imaging, video and water column data down to 450 m depth. Icefin was developed using a modular design. Each module is designed to perform specific tasks, dependent on the mission objective. Vehicle control and data systems can be stably developed, and power modules added or subtracted for mission flexibility. Multiple sensor bays can be developed in parallel to serve multiple science objectives. This design enables the vehicle to have greater depth capability as well as improved operational simplicity compared to larger vehicles with equivalent capabilities. As opposed to those vehicles that require greater logistics and associated costs, Icefin can be deployed through boreholes drilled in the ice. Thus, Icefin satisfies the demands of achieving sub-ice missions while maintaining a small form factor and easy deployment necessary for repeated, low-logistical impact field programs. The current Icefin prototype is 10.5 inches in diameter by 10 feet long and weighs 240 pounds. It is comprised of two thruster modules with hovering capabilities, an oceanographic sensing module, main control module and a forward-sensing module for obstacle avoidance. The oceanographic sensing module is fitted with a side scan sonar (SSS), CT sensor, altimetry profiler and Doplar Velocity Log (DVL) with current profiling. Icefin is depth-rated to 1500 m and is equipped with

  6. Ice thickness measurements over Pine Island and Thwaites Glaciers

    NASA Astrophysics Data System (ADS)

    Kanagaratnam, P.; Casassa, G.; Thomas, R.; Gogineni, S.

    2003-04-01

    The Pine Island and Thwaites glaciers (PIG and TG) are the fastest measured glaciers in Antarctica and have been identified as the part of the West Antarctica ice sheet most prone to instability. However, the reasons for the rapid retreat of these glaciers have not been resolved due to insufficient data. In particular, the role of ice shelves in regulating the ice discharge of these glaciers has been a point of contention in the glaciology community. To help resolve this issue the Centro de Estudios Científicos (CECS) and NASA with the support of the Armada de Chile conducted four airborne remote sensing missions over the PIG/TG regions. In addition, two missions were conducted over the Antarctic Peninsula. The University of Kansas operated its Coherent Radar Depth Sounder (CORDS) to measure the thickness of the ice sheet in these regions. CORDS is a pulse-compression radar that has proven its utility in the glaciological surveys over Greenland. The combination of pulse compression and coherent processing has allowed us to obtain high-sensitivity and high-resolution in the along-track direction while keeping the transmitted power low. CORDS transmits a 140-160 MHz chirp signal with 200 Watts of peak power and has a vertical resolution of about 5 meters in ice. We used a four-element dipole array on either side of the wing to transmit and receive the radar signals. We successfully mapped the thickness of the ice sheet over 99% of the PIG/TG flight lines. In this paper we will provide a description of the radar, experiment and signal processing. We will also discuss samples results of the ice thickness, basal conditions and surface roughness.

  7. Ice Surfaces In False Color

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    The theme for the weeks of 1/17 and 1/24 is the north polar region of Mars as seen in false color THEMIS images. Ice/frost will typically appear as bright blue in color; dust mantled ice will appear in tones of red/orange.

    This full resolution image shows a marked difference in the 'blueness' of the ice surfaces. The lower (presumably older) surface is oranger and the top (presumably younger) surface is blue. This may represent the fresher ice of the upper surface which has not yet covered with as much dust as the lower surface.

    Image information: VIS instrument. Latitude 80.8, Longitude 302.1 East (57.9 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  8. Comparison of Envisat ASAR and Submarine Sea Ice Thickness Statistics

    NASA Astrophysics Data System (ADS)

    Hughes, Nicolas E.; Rodrigues, Joao; Wadhams, Peter

    2010-12-01

    In April 2004 and March 2007 the Royal Navy sent the submarine HMS Tireless on missions into the Arctic Ocean. On both occasions the submarine traversed the area of remaining multi-year sea ice at latitude 85°N north of Greenland acquiring ice draft measurements using upward-looking sonar. The area is outside of the "Gore Box" used for the release of U.S. Submarine data and was beyond the latitude range of the radar altimeter satellites available at that time. This paper compares ice draft statistics with contemporary data from Envisat ASAR to evaluate the level of correlation between SAR backscatter and sea ice thickness. The decline in sea ice volume over the past decade has predominantly been caused by the loss of old multi-year ice due to increased outflow through Fram Strait. Although Tireless found little decrease in the overall ice thickness between 2004 and 2007, the ice rheology was significantly changed with greatly increased quantities of first- and second-year ice in 2007 than had been encountered in 2004. These are evident in changes to the ice draft probability density functions (PDFs) and the ice appearance as seen by the SAR, and presented here.

  9. IceCube: An Instrument for Neutrino Astronomy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    IceCube Collaboration; Halzen, F.; Klein, S.

    Neutrino astronomy beyond the Sun was first imagined in the late 1950s; by the 1970s, it was realized that kilometer-scale neutrino detectors were required. The first such instrument, IceCube, is near completion and taking data. The IceCube project transforms a cubic kilometer of deep and ultra-transparent Antarctic ice into a particle detector. A total of 5,160 optical sensors are embedded into a gigaton of Antarctic ice to detect the Cherenkov light emitted by secondary particles produced when neutrinos interact with nuclei in the ice. Each optical sensor is a complete data acquisition system, including a phototube, digitization electronics, control andmore » trigger systems and LEDs for calibration. The light patterns reveal the type (flavor) of neutrino interaction and the energy and direction of the neutrino, making neutrino astronomy possible. The scientific missions of IceCube include such varied tasks as the search for sources of cosmic rays, the observation of Galactic supernova explosions, the search for dark matter, and the study of the neutrinos themselves. These reach energies well beyond those produced with accelerator beams.« less

  10. IceBridge: Bringing a Field Campaign Home

    NASA Astrophysics Data System (ADS)

    Woods, J.; Beck, J.; Bartholow, S.

    2015-12-01

    IceBridge, a six-year NASA mission, is the largest airborne survey of Earth's polar ice ever flown. It will yield an unprecedented three-dimensional view of Arctic and Antarctic ice sheets, ice shelves and sea ice. These flights will provide a yearly, multi-instrument look at the behavior of the rapidly changing features of the Greenland and Antarctic ice. Data collected during IceBridge will help scientists bridge the gap in polar observations between NASA's Ice, Cloud and Land Elevation Satellite (ICESat) -- in orbit since 2003 -- and ICESat-2, planned for 2017. ICESat stopped collecting science data in 2009, making IceBridge critical for ensuring a continuous series of observations. IceBridge will use airborne instruments to map Arctic and Antarctic areas once a year at a minimum, with new campaigns being developed during the Arctic melt season. IceBridge flights are conducted in the spring and summer for the Arctic and in the fall over Antarctica. Other smaller airborne surveys around the world are also part of the IceBridge campaign. IceBridge actively engages the public and educators through a variety of outlets ranging from communications strategies through social media outlets, to larger organized efforts such as PolarTREC. In field activities include blog posts, photo updates, in flight chat sessions, and more intensive live events to include google hangouts, where field team members can interact with the public during a scheduled broadcast. The IceBridge team provides scientists and other team members with the training and support to become communicators in their own right. There is an exciting new initiative where IceBridge will be collaborating with Undergraduate and Graduate students to integrate the next generation of scientists and communicators into the Science Teams. This will be explored through partnerships with institutions that are interested in mentoring through project based initiatives.

  11. ISEE/ICE plasma wave data analysis

    NASA Technical Reports Server (NTRS)

    Greenstadt, E. W.

    1989-01-01

    The work performed for the period 1 Jan. 1985 to 30 Oct. 1989 is presented. The objective was to provide reduction and analysis of data from a scientific instrument designed to study solar wind and plasma wave phenomena on the International Sun Earth Explorer 3 (ISEE-3)/International Cometary Explorer (ICE) missions.

  12. Short-term sea ice forecasts with the RASM-ESRL coupled model: A testbed for improving simulations of ocean-ice-atmosphere interactions in the marginal ice zone

    NASA Astrophysics Data System (ADS)

    Solomon, A.; Cox, C. J.; Hughes, M.; Intrieri, J. M.; Persson, O. P. G.

    2015-12-01

    The dramatic decrease of Arctic sea-ice has led to a new Arctic sea-ice paradigm and to increased commercial activity in the Arctic Ocean. NOAA's mission to provide accurate and timely sea-ice forecasts, as explicitly outlined in the National Ocean Policy and the U.S. National Strategy for the Arctic Region, needs significant improvement across a range of time scales to improve safety for human activity. Unfortunately, the sea-ice evolution in the new Arctic involves the interaction of numerous physical processes in the atmosphere, ice, and ocean, some of which are not yet understood. These include atmospheric forcing of sea-ice movement through stress and stress deformation; atmospheric forcing of sea-ice melt and formation through energy fluxes; and ocean forcing of the atmosphere through new regions of seasonal heat release. Many of these interactions involve emerging complex processes that first need to be understood and then incorporated into forecast models in order to realize the goal of useful sea-ice forecasting. The underlying hypothesis for this study is that errors in simulations of "fast" atmospheric processes significantly impact the forecast of seasonal sea-ice retreat in summer and its advance in autumn in the marginal ice zone (MIZ). We therefore focus on short-term (0-20 day) ice-floe movement, the freeze-up and melt-back processes in the MIZ, and the role of storms in modulating stress and heat fluxes. This study uses a coupled ocean-atmosphere-seaice forecast model as a testbed to investigate; whether ocean-sea ice-atmosphere coupling improves forecasts on subseasonal time scales, where systematic biases develop due to inadequate parameterizations (focusing on mixed-phase clouds and surface fluxes), how increased atmospheric resolution of synoptic features improves the forecasts, and how initialization of sea ice area and thickness and snow depth impacts the skill of the forecasts. Simulations are validated with measurements at pan-Arctic land

  13. Mapping the Ice Depth of Europa with Ultrahigh Energy Particles

    NASA Astrophysics Data System (ADS)

    Romero-Wolf, A.; Naudet, C. J.

    2012-12-01

    There has been recent interest in applying radio emission of ultra-high energy neutrinos interacting in the ice of Europa. The idea was first described by Gorham (2004)[1] in the context of ultra-high energy particle detection. Shoji, Kurita, and Tanaka (2011)[2] proposed a technique for measuring ice depth using the radio intensity distribution of radio impulses emitted by interactions deep in the Europan ice. Miller, Schaefer, and Sequeira (2012)[3] follow up this study with a simulation of a radio detector mission to constrain the ice depth of Europa. The radio signal results from an effect proposed by Askar'yan (1962)[4] where the particle shower induced by the neutrino interaction accumulates a charge excess traveling faster than the speed of light in the medium and produces a coherent Cherenkov pulse at radio frequencies. We evaluate the feasibility of such a mission given the current state of knowledge of ultra-high energy particle detection and radio pulse production. References [1] Gorham (2004), Planet-sized Detectors for Ultra-high Energy Neutrinos & Cosmic Rays, NASA Advanced Planning Office's Capability Roadmap Public Workshop, Nov. 30, 2004, astro-ph/0411510 [2] Shoji, Kurita, and Tanaka (2011), Constraint of Europan ice thickness by measuring electromagnetic emissions induced by neutrino interaction, Geophysical Research Letters, 38, L08202 [3] Miller, Shaefer, Sequeira, PRIDE (Passive Radio [frequency] Ice Depth Experiment): An instrument to passively measure ice depth from a Europan orbiter using neutrinos, Icarus 220 877-888 [4] Askar'yan (1962), Excess negative charge of an electron photon shower and its coherent radiation originating from it. Radio recording of showers under the ground and on the Moon, Sov. Phys. JETP, 14, 441-443.

  14. The Development Of Enabling Technologies For Submillimeter-Wave Remote Sensing of Ice Clouds From Space

    NASA Technical Reports Server (NTRS)

    Racette, Paul; Wang, James R.; Ackerman, Steven; Skofronick-Jackson, Gail; Evans, K. Frank; O'CStarr, David

    2006-01-01

    This paper presents the chronological development of technologies and techniques that have led to a satellite mission concept aimed at quantifying the temporal and spatial distributions of upper tropospheric ice clouds. The Submillimeter-wave and Infrared Ice Cloud Experiment (SIRICE) is an Earth System Science Pathfinder mission concept designed to improve our understanding of the upper tropospheric water cycle and its coupling to the Earth s radiation budget. Ice outflow from convective storm systems is known to play an important role in regional energy budgets; however, ice generation and subsequent precipitation and sublimation are poorly quantified. SIRICE will provide measurements of ice cloud distributions and microphysical properties which are needed for understanding the crucial link between the hydrologic and energy cycles. The SIRICE measurement platform is comprised of two integrated instruments, the Submillimeter/millimeter-wave radiometer (SM4) and the Infrared Cloud Ice Radiometer (IRCIR). The primary instrument is the SM4, a conical scanner that provides a 1600 km swath of the Earth's surface at 53 degree incidence. The SM4 has 6 linearly polarized receivers measuring 12 spectral bands centered at 183 GHz, 325 GHz, 448 GHz, 643 GHz and 874 GHz; two receivers at 643 GHz measure horizontal and vertical polarizations. Submillimeter-wavelengths are well suited to the remote sensing of ice clouds due to the relative size of the wavelengths to particle sizes. Upwelling emission from lower tropospheric water vapor is scattered by the ice clouds thus causing a brightness temperature depression at submillimeter wavelengths. The IRCIR is a push broom imager with approximately 1500 km swath and spectral channels at 11 and 12 micrometers. This combination of coincident infrared and submillimeter-wavelength measurements were chosen because of its ability to provide retrieval of ice water path and median particle size for a wide range of ice clouds from thin

  15. Laboratory experiments to investigate sublimation rates of water ice in nighttime lunar regolith

    NASA Astrophysics Data System (ADS)

    Piquette, Marcus; Horányi, Mihály; Stern, S. Alan

    2017-09-01

    The existence of water ice on the lunar surface has been a long-standing topic with implications for both lunar science and in-situ resource utilization (ISRU). Cold traps on the lunar surface may have conditions necessary to retain water ice, but no laboratory experiments have been conducted to verify modeling results. We present an experiment testing the ability to thermally control bulk samples of lunar regolith simulant mixed with water ice under vacuum in an effort to constrain sublimation rates. The simulant used was JSC-1A lunar regolith simulant developed by NASA's Johnson Space Center. Samples with varying ratios of water ice and JSC-1A regolith simulant, totally about 1 kg, were placed under vacuum and cooled to 100 K to simulate conditions in lunar cold traps. The resulting sublimation of water ice over an approximately five-day period was measured by comparing the mass of the samples before and after the experimental run. Our results indicate that water ice in lunar cold traps is stable on timescales comparable to the lunar night, and should continue to be studied as possible resources for future utilization. This experiment also gauges the efficacy of the synthetic lunar atmosphere mission (SLAM) as a low-cost water resupply mission to lunar outposts.

  16. Mars 2007 Phoenix Scout Mission Organic Free Blank: Method to Distinguish Mars Organics from Terrestrial Organics

    NASA Technical Reports Server (NTRS)

    Ming, D. W.; Morris, R. V.; Woida, R.; Sutter, B.; Lauer, H. V.; Shinohara, C.; Golden, D. C.; Boynton, W. V.; Arvidson, R. E.; Stewart, R. L.; hide

    2008-01-01

    The Mars 2007 Phoenix Scout Mission successfully launched on August 4, 2007, for a 10-month journey to Mars. The Phoenix spacecraft is scheduled to land on May 25, 2008. The primary mission objective is to study the history of water and evaluate the potential for past and present habitability in Martian arctic ice-rich soil [1]. Phoenix will land near 68 N latitude on polygonal terrain presumably created by ice layers that are expected to be a few centimeters under loose soil materials [2,3]. The Phoenix Mission will assess the potential for habitability by searching for organic molecules in ice or icy soils at the landing site. Organic molecules are necessary building blocks for life, although their presence in the ice or soil does not indicate life itself. Phoenix will search for organic molecules by heating soil/ice samples in the Thermal and Evolved-Gas Analyzer (TEGA, [4]). TEGA consists of 8 differential scanning calorimeter (DSC) ovens integrated with a magnetic-sector mass spectrometer with a mass range of 2-140 daltons [4]. Endothermic and exothermic reactions are recorded by the TEGA DSC as samples are heated from ambient to approx.1000 C. Evolved gases, including organic molecules and fragments if present, are simultaneously measured by the mass spectrometer during heating.

  17. Sea-Ice Freeboard Retrieval Using Digital Photon-Counting Laser Altimetry

    NASA Technical Reports Server (NTRS)

    Farrell, Sinead L.; Brunt, Kelly M.; Ruth, Julia M.; Kuhn, John M.; Connor, Laurence N.; Walsh, Kaitlin M.

    2015-01-01

    Airborne and spaceborne altimeters provide measurements of sea-ice elevation, from which sea-ice freeboard and thickness may be derived. Observations of the Arctic ice pack by satellite altimeters indicate a significant decline in ice thickness, and volume, over the last decade. NASA's Ice, Cloud and land Elevation Satellite-2 (ICESat-2) is a next-generation laser altimeter designed to continue key sea-ice observations through the end of this decade. An airborne simulator for ICESat-2, the Multiple Altimeter Beam Experimental Lidar (MABEL), has been deployed to gather pre-launch data for mission development. We present an analysis of MABEL data gathered over sea ice in the Greenland Sea and assess the capabilities of photon-counting techniques for sea-ice freeboard retrieval. We compare freeboard estimates in the marginal ice zone derived from MABEL photon-counting data with coincident data collected by a conventional airborne laser altimeter. We find that freeboard estimates agree to within 0.03m in the areas where sea-ice floes were interspersed with wide leads, and to within 0.07m elsewhere. MABEL data may also be used to infer sea-ice thickness, and when compared with coincident but independent ice thickness estimates, MABEL ice thicknesses agreed to within 0.65m or better.

  18. Allometric Scaling of Patrolling Rate and Nest Volume in Constrictotermes cyphergaster Termites: Hints on the Settlement of Inquilines

    PubMed Central

    DeSouza, Og; Araújo, Ana Paula Albano; Florencio, Daniela Faria; Rosa, Cassiano Sousa; Marins, Alessandra; Costa, Diogo Andrade; Rodrigues, Vinicius Barros; Cristaldo, Paulo Fellipe

    2016-01-01

    Structural and functional traits of organisms are known to be related to the size of individuals and to the size of their colonies when they belong to one. Among such traits, propensity to inquilinism in termites is known to relate positively to colony size. Larger termitaria hold larger diversity of facultative inquilines than smaller nests, whereas obligate inquilines seem unable to settle in nests smaller than a threshold volume. Respective underlying mechanisms, however, remain hypothetical. Here we test one of such hypotheses, namely, that nest defence correlates negatively to nest volume in Constrictotermes cyphergaster termites (Termitidae: Nasutitermitinae). As a surrogate to defence, we used ‘patrolling rate’, i.e., the number of termite individuals attending per unit time an experimentally damaged spot on the outer wall of their termitaria. We found that patrolling rate decayed allometrically with increasing nest size. Conspicuously higher patrolling rates occurred in smaller nests, while conspicuously lower rates occurred in larger nests presenting volumes in the vicinity of the threshold value for the establishment of inquilinism. This could be proven adaptive for the host and guest. At younger nest age, host colonies are smaller and presumably more vulnerable and unstable. Enhanced defence rates may, hence, prevent eventual risks to hosts from inquilinism at the same time that it prevents inquilines to settle in a still unstable nest. Conversely, when colonies grow and maturate enough to stand threats, they would invest in priorities other than active defence, opening an opportunity for inquilines to settle in nests which are more suitable or less risky. Under this two-fold process, cohabitation between host and inquiline could readily stabilize. PMID:26808197

  19. Comparing elevation and freeboard from IceBridge and four different CryoSat-2 retrackers for coincident sea ice observations

    NASA Astrophysics Data System (ADS)

    Yi, D.; Kurtz, N. T.; Harbeck, J.

    2017-12-01

    The airborne IceBridge and spaceborne Cryosat-2 missions observe polar sea ice at different altitudes with different footprint sizes and often at different time and locations. Many studies use different retrackers to derive Cryosat-2 surface elevation, which we find causes large differences in the elevation and freeboard comparisons of IceBridge and Cryosat-2. In this study, we compare sea ice surface elevation and freeboard using 8 coincident CryoSat-2, ATM, and LVIS observations with IceBridge airplanes under flying the Cryosat-2 ground tracks. We apply identical ellipsoid, geoid model, tide model, and atmospheric correction to CryoSat-2 and IceBridge data to reduce elevation bias due to their differences. IceBridge's ATM and LVIS elevation and freeboard and Snow Radar snow depth are averaged at each CryoSat-2 footprint for comparison. The four different Cryosat-2 retrackers (ESA, GSFC, AWI, and JPL) show distinct differences in mean elevation up to 0.35 meters over leads and over floes, which suggests that systematic elevation bias exists between the retrackers. The mean IceBridge elevation over leads is within the mean elevation distribution of the four Cryosat-2 retrackers. The mean IceBridge elevation over floes is above the mean elevation distribution of the four Cryosat-2 retrackers. After removing the snow depth from IceBridge elevation, over floe, the mean elevation of IceBridge is within the mean elevation distribution of the four Cryosat-2 retrackers. By identifying the strengths and weaknesses of the retrackers, this study provides a mechanism to improve freeboard retrievals from existing methods.

  20. Scientific Value of a Saturn Atmospheric Probe Mission

    NASA Technical Reports Server (NTRS)

    Simon-Miller, A. A.; Lunine, J. I.; Atreya, S. K.; Spilker, T. R.; Coustenis, A.; Atkinson, D. H.

    2012-01-01

    Atmospheric entry probe mISSions to the giant planets can uniquely discriminate between competing theories of solar system formation and the origin and evolution of the giant planets and their atmospheres. This provides for important comparative studies of the gas and ice giants, and to provide a laboratory for studying the atmospheric chemistries, dynamics, and interiors of all the planets including Earth. The giant planets also represent a valuable link to extrasolar planetary systems. As outlined in the recent Planetary Decadal Survey, a Saturn Probe mission - with a shallow probe - ranks as a high priority for a New Frontiers class mission [1].

  1. A structural analysis of an ocean going patrol boat subjected to planning loads

    NASA Technical Reports Server (NTRS)

    Clark, James H.; Lafreniere, Robert; Stoodt, Robert; Wiedenheft, John

    1987-01-01

    A static structural analysis of an ocean going patrol vessel subjected to hydrodynamic planning loads is discussed. The analysis required the development of a detailed model that included hull plating, five structural bulkheads, longitudinal and transverse stiffners, and a coarse representation of the superstructure. The finite element model was developed from fabrication drawings using the Navy computer aided design system. Various stress and displacement contours are shown for the entire hull. Because several critical areas appeared to be overstressed, these areas were remeshed for detail and are presented for completeness.

  2. A Potential Operational CryoSat Follow-on Mission Concept and Design

    NASA Astrophysics Data System (ADS)

    Cullen, R.

    2015-12-01

    CryoSat was a planned as a 3 year mission with clear mission objectives to allow the assessment rates of change of thickness in the land and marine ice fields with reduced uncertainties with relation to other non-dedicated missions. Although CryoSat suffered a launch failure in Oct 2005, the mission was recovered with a launch in April 2010 of CryoSat-2. The nominal mission has now been completed, all mission requirements have been fulfilled and CryoSat has been shown to be most successful as a dedicated polar ice sheet measurement system demonstrated by nearly 200 peer reviewed publications within the first four years of launch. Following the completion of the nominal mission in Oct 2013 the platform was shown to be in good health and with a scientific backing provided by the ESA Earth Science Advisory Committee (ESAC) the mission has been extended until Feb 2017 by the ESA Programme Board for Earth Observation. Though not designed to provide data for science and operational services beyond its original mission requirements, a number of services have been developed for exploitation and these are expected to increase over the next few years. Services cover a number of aspects of land and marine ice fields in addition to complementary activities covering glacial monitoring, inland water in addition to coastal and open ocean surface topography science that CryoSat has demonstrated world leading advances with. This paper will present the overall concept for a potential low-cost follow-on to the CryoSat mission with the objective to provide both continuity of the existing CryoSat based data sets, i.e., longer term science and operational services that cannot be provided by the existing Copernicus complement of satellites. This is, in part, due to the high inclination (92°) drifting orbit and state of the art Synthetic Aperture Interferometer Radar Altimeter (SIRAL). In addition, further improvements in performance are expected by use of the instrument timing and

  3. The Civil Air Patrol's role in medical countermeasure distribution in Michigan.

    PubMed

    Hankinson, Jennifer Lixey; Chamberlain, Kerry; Doctor, Suzanne M; Macqueen, Mary

    2011-12-01

    Michigan's unique geological features and highly variable climatic conditions make distribution of medical countermeasures during a public health emergency situation very challenging. To enhance distribution during these situations, the Civil Air Patrol (CAP) has agreed to support the state of Michigan by transporting life-saving medical countermeasures to remote areas of the state. The Michigan Strategic National Stockpile (MISNS) program has successfully developed, exercised, and enhanced its partnership with the CAP to include distribution of federally provided Strategic National Stockpile (SNS) assets. The CAP has proven to be a reliable and valuable partner, as well as a cost-effective and time-efficient means of transporting vital resources during a public health emergency. © Mary Ann Liebert, Inc.

  4. Dielectric properties of Jovian satellite ice analogs for subsurface radar exploration: A review

    NASA Astrophysics Data System (ADS)

    Pettinelli, Elena; Cosciotti, Barbara; Di Paolo, Federico; Lauro, Sebastian Emanuel; Mattei, Elisabetta; Orosei, Roberto; Vannaroni, Giuliano

    2015-09-01

    The first European mission dedicated to the exploration of Jupiter and its icy moons (JUpiter ICy moons Explorer—JUICE) will be launched in 2022 and will reach its final destination in 2030. The main goals of this mission are to understand the internal structure of the icy crusts of three Galilean satellites (Europa, Ganymede, and Callisto) and, ultimately, to detect Europa's subsurface ocean, which is believed to be the closest to the surface among those hypothesized to exist on these moons. JUICE will be equipped with the 9 MHz subsurface-penetrating radar RIME (Radar for Icy Moon Exploration), which is designed to image the ice down to a depth of 9 km. Moreover, a parallel mission to Europa, which will host onboard REASON (Radar for Europa Assessment and Sounding: Ocean to Near-surface) equipped with 9MHz and 60MHz antennas, has been recently approved by NASA. The success of these experiments strongly relies on the accurate prediction of the radar performance and on the optimal processing and interpretation of radar echoes that, in turn, depend on the dielectric properties of the materials composing the icy satellite crusts. In the present review we report a complete range of potential ice types that may occur on these icy satellites to understand how they may affect the results of the proposed missions. First, we discuss the experimental results on pure and doped water ice in the framework of the Jaccard theory, highlighting the critical aspects in terms of a lack of standard laboratory procedures and inconsistency in data interpretation. We then describe the dielectric behavior of extraterrestrial ice analogs like hydrates and icy mixtures, carbon dioxide ice and ammonia ice. Building on this review, we have selected the most suitable data to compute dielectric attenuation, velocity, vertical resolution, and reflection coefficients for such icy moon environments, with the final goal being to estimate the potential capabilities of the radar missions as a

  5. Sea Ice Freeboard and Thickness from the 2013 IceBridge ATM and DMS Data in Ross Sea, Antarctica

    NASA Astrophysics Data System (ADS)

    Xie, H.; Tian, L.; Tang, J.; Ackley, S. F.

    2016-12-01

    In November (20, 21, 27, and 28) 2013, NASA's IceBridge mission flew over the Ross Sea, Antarctica and collected important sea ice data with the ATM and DMS for the first time. We will present our methods to derive the local sea level and total freeboard for ice thickness retrieval from these two datasets. The methods include (1) leads classification from DMS data using an automated lead detection method, (2) potential leads from the reflectance of less than 0.25 from the ATM laser shots of L1B data, (3) local sea level retrieval based on these qualified ATM laser shots (L1B) within the DMS-derived leads (after outliers removal from the mean ± 2 standard deviation of these ATM elevations), (4) establishment of an empirical equation of local sea level as a function of distance from the starting point of each IceBridge flight, (5) total freeboard retrieval from the ATM L2 elevations by subtracting the local sea level derived from the empirical equation, and (6) ice thickness retrieval. The ice thickness derived from this method will be analyzed and compared with ICESat data (2003-2009) and other available data for the same region at the similar time period. Possible change and potential reasons will be identified and discussed.

  6. Sea Ice in the Chukchi Sea

    NASA Image and Video Library

    2017-12-08

    The U.S. Coast Guard Cutter Healy encountered only small patches of sea ice in the Chukchi Sea during the final days collecting ocean data for the 2011 ICESCAPE mission. The ICESCAPE mission, or "Impacts of Climate on Ecosystems and Chemistry of the Arctic Pacific Environment," is a NASA shipborne investigation to study how changing conditions in the Arctic affect the ocean's chemistry and ecosystems. The bulk of the research took place in the Beaufort and Chukchi seas in summer 2010 and 2011. Credit: NASA/Kathryn Hansen NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  7. Shuttle Imaging Radar B (SIR-B) Weddell Sea ice observations - A comparison of SIR-B and scanning multichannel microwave radiometer ice concentrations

    NASA Technical Reports Server (NTRS)

    Martin, Seelye; Holt, Benjamin; Cavalieri, Donald J.; Squire, Vernon

    1987-01-01

    Ice concentrations over the Weddell Sea were studied using SIR-B data obtained during the October 1984 mission, with special attention given to the effect of ocean waves on the radar return at the ice edge. Sea ice concentrations were derived from the SIR-B data using two image processing methods: the classification scheme at JPL and the manual classification method at Scott Polar Research Institute (SPRI), England. The SIR ice concentrations were compared with coincident concentrations from the Nimbus-7 SMMR. For concentrations greater than 40 percent, which was the smallest concentration observed jointly by SIR-B and the SMMR, the mean difference between the two data sets for 12 points was 2 percent. A comparison between the JPL and the SPRI SIR-B algorithms showed that the algorithms agree to within 1 percent in the interior ice pack, but the JPL algorithm gives slightly greater concentrations at the ice edge (due to the fact that the algorithm is affected by the wind waves in these areas).

  8. Sea Ice Topography Profiling using Laser Altimetry from Small Unmanned Aircraft Systems

    NASA Astrophysics Data System (ADS)

    Crocker, Roger Ian

    Arctic sea ice is undergoing a dramatic transition from a perennial ice pack with a high prevalence of old multiyear ice, to a predominantly seasonal ice pack comprised primarily of young first-year and second-year ice. This transition has brought about changes in the sea ice thickness and topography characteristics, which will further affect the evolution and survivability of the ice pack. The varying ice conditions have substantial implications for commercial operations, international affairs, regional and global climate, our ability to model climate dynamics, and the livelihood of Arctic inhabitants. A number of satellite and airborne missions are dedicated to monitoring sea ice, but they are limited by their spatial and temporal resolution and coverage. Given the fast rate of sea ice change and its pervasive implications, enhanced observational capabilities are needed to augment the current strategies. The CU Laser Profilometer and Imaging System (CULPIS) is designed specifically for collecting fine-resolution elevation data and imagery from small unmanned aircraft systems (UAS), and has a great potential to compliment ongoing missions. This altimeter system has been integrated into four different UAS, and has been deployed during Arctic and Antarctic science campaigns. The CULPIS elevation measurement accuracy is shown to be 95±25 cm, and is limited primarily by GPS positioning error (<25 cm), aircraft attitude determination error (<20 cm), and sensor misalignment error (<20 cm). The relative error is considerably smaller over short flight distances, and the measurement precision is shown to be <10 cm over a distance of 200 m. Given its fine precision, the CULPIS is well suited for measuring sea ice topography, and observed ridge height and ridge separation distributions are found to agree with theoretical distributions to within 5%. Simulations demonstrate the inability of course-resolution measurements to accurately represent the theoretical distributions

  9. EPOXI Mission Press Conference

    NASA Image and Video Library

    2010-11-18

    Michael A'Hearn, EPOXI Principal Investigator, University of Maryland, holds a plastic bottle containing ice to illustrate a point during a press conference, Thursday, Nov. 18, 2010, at NASA Headquarters in Washington. The press conference was held to discuss the Nov. 4 successful flyby of Comet Hartley 2 by NASA's EPOXI Mission Spacecraft. Images from the flyby provided scientists the most extensive observations of a comet in history. Photo Credit: (NASA/Paul E. Alers)

  10. Intrepid: A Mission to Pluto

    NASA Technical Reports Server (NTRS)

    Behling, Michael; Buchman, Donald; Marcus, Andres; Procopis, Stephanie; Wassgren, Carl; Ziemer, Sarah

    1990-01-01

    A proposal for an exploratory spacecraft mission to Pluto/Charon system was written in response to the request for proposal for an unmannned probe to pluto (RFP). The design requirements of the RFP are presented and under the guidance of these requirements, the spacecraft Intrepid was designed. The RPF requirement that was of primary importance is the minimization of cost. Also, the reduction of flight time was of extreme importance because the atmosphere of Pluto is expected to collapse close to the Year 2020. If intrepid should arrive after the collapse, the mission would be a failure; for Pluto would be only a solid rock of ice. The topics presented include: (1) scientific instrumentation; (2) mission management, planning, and costing; (3) power and propulsion subsystem; (4) structural subsystem; (5) command, control, and communications; and (6) attitude and articulation control.

  11. Persistent Ice on Lake Superior

    NASA Image and Video Library

    2017-12-08

    reported at 59.9 percent; Lake Huron was nearly 30.4 percent. News outlets noted that as many as 70 ships have been backed up in Lakes Michigan, Huron, and Erie, waiting for passage into ports on Lake Superior. The U.S. Coast Guard has been grouping ships together into small convoys after they pass through locks at Sault Ste. Marie, in order to maximize ice-breaking efficiency and to protect ships from damage. Superior is the world’s largest freshwater lake by area (82,100 square kilometers or 31,700 square miles) and the third largest by volume. The waters average 147 meters (483 feet) in depth, and the basin is believed to hold about 10 percent of the world’s liquid fresh water. NASA image courtesy Jeff Schmaltz LANCE/EOSDIS MODIS Rapid Response Team, GSFC. Caption by Mike Carlowicz. Read more: earthobservatory.nasa.gov/IOTD/view.php?id=83541&eocn... Credit: NASA Earth Observatory NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  12. A century of variation in the dependence of Greenland iceberg calving on ice sheet surface mass balance and regional climate change.

    PubMed

    Bigg, G R; Wei, H L; Wilton, D J; Zhao, Y; Billings, S A; Hanna, E; Kadirkamanathan, V

    2014-06-08

    Iceberg calving is a major component of the total mass balance of the Greenland ice sheet (GrIS). A century-long record of Greenland icebergs comes from the International Ice Patrol's record of icebergs (I48N) passing latitude 48° N, off Newfoundland. I48N exhibits strong interannual variability, with a significant increase in amplitude over recent decades. In this study, we show, through a combination of nonlinear system identification and coupled ocean-iceberg modelling, that I48N's variability is predominantly caused by fluctuation in GrIS calving discharge rather than open ocean iceberg melting. We also demonstrate that the episodic variation in iceberg discharge is strongly linked to a nonlinear combination of recent changes in the surface mass balance (SMB) of the GrIS and regional atmospheric and oceanic climate variability, on the scale of the previous 1-3 years, with the dominant causal mechanism shifting between glaciological (SMB) and climatic (ocean temperature) over time. We suggest that this is a change in whether glacial run-off or under-ice melting is dominant, respectively. We also suggest that GrIS calving discharge is episodic on at least a regional scale and has recently been increasing significantly, largely as a result of west Greenland sources.

  13. Mission Performance of the GLAS Thermal Control System - 7 Years In Orbit

    NASA Technical Reports Server (NTRS)

    Grob, Eric W.

    2010-01-01

    ICESat (Ice, Cloud and land Elevation Satellite) was launched in 2003 carrying a single science instrument - the Geoscience Laser Altimeter System (GLAS). Its primary mission was to measure polar ice thickness. The GLAS thermal control architecture utilized propylene Loop Heat Pipe (LHP) technology to provide selectable and stable temperature control for the lasers and other electronics over a widely varying mission thermal environment. To minimize expected degradation of the radiators, Optical Solar Reflectors (OSRs) were used for both LHP radiators to minimize degradation caused by UV exposure in the various spacecraft attitudes necessary throughout the mission. Developed as a Class C mission, with selective redundancy, the thermal architecture was single st ring, except for temperature sensors used for heater control during normal operations. Although originally planned for continuous laser operations over the nominal three year science mission, laser anomalies limited operations to discrete measurement campaigns repeated throughout the year. For trending of the science data, these periods were selected to occur at approximately the same time each year, which resulted in operations during similar attitudes and beta angles. Despite the laser life issues, the LHPs have operated nearly continuously over this time, being non-operational for only brief periods. Using mission telemetry, this paper looks at the performance of the thermal subsystem during these periods and provides an assessment of radiator degradation over the mission lifetime.

  14. Arctic and Antarctic sea-ice thickness from CryoSat and Envisat radar altimetry

    NASA Astrophysics Data System (ADS)

    Hendricks, S.; Rinne, E. J.; Paul, S.; Ricker, R.; Skourup, H.; Kern, S.; Sandven, S.

    2017-12-01

    One objective of the ESA Climate Change Initiative (CCI) on Sea Ice is the generation of a climate data record of sea-ice thickness from satellite radar altimetry in both hemispheres. We report on the results of the second phase of the CCI project, which are based on the15-year (2002-2017) monthly data record from Envisat and CryoSat-2 radar altimeter data. The data records needs to maintain consistency in the freeboard retrieval, freeboard to thickness conversion and uncertainty estimation for the full observational period. The main challenge has been to maintain consistency in the sea-ice freeboard retrieval due to the different radar altimeter concepts and footprints between Envisat and CryoSat-2. We have developed a novel empirical algorithm for both missions to minimize inter-mission biases for surface type classification as well as freeboard retrieval based on CryoSat reference data for the overlap period from November 2010 to March 2012. The parametrization takes differences between sea-ice surface properties in both hemisphere and the seasonal cycle into account. We report on the changes of sea-ice thickness in the Arctic winter seasons since 2002 and the comparison to independent freeboard and thickness observations. Far less validation data exists for the southern hemisphere and we provide an overview of changes and the expected skill of Antarctic sea ice thickness of the full seasonal cycle.

  15. Overseas trip report, CV 990 underflight mission. [Norwegian Sea, Greenland ice sheet, and Alaska

    NASA Technical Reports Server (NTRS)

    Gloersen, P.; Crawford, J.; Hardis, L.

    1980-01-01

    The scanning microwave radiometer-7 simulator, the ocean temperature scanner, and an imaging scatterometer/altimeter operating at 14 GHz were carried onboard the NASA CV-990 over open oceans, sea ice, and continental ice sheets to gather surface truth information. Data flights were conducted over the Norwegian Sea to map the ocean polar front south and west of Bear Island and to transect several Nimbus-7 footprints in a rectangular pattern parallel to the northern shoreline of Norway. Additional flights were conducted to obtain correlative data on the cryosphere parameters and characteristics of the Greenland ice sheet, and study the frozen lakes near Barrow. The weather conditions and flight path way points for each of the nineteen flights are presented in tables and maps.

  16. ispace's Polar Ice Explorer: Commerically Exploring the Poles of the Moon

    NASA Astrophysics Data System (ADS)

    Calzada-Diaz, A.; Acierno, K.; Rasera, J. N.; Lamamy, J.-A.

    2018-04-01

    This work provides the background, rationales, and scientific objectives for the ispace Polar Ice Explorer Project, an ISRU exploratory mission that aims to provide data about the lunar polar environment.

  17. Ice Cold Sunrise on Mars

    NASA Technical Reports Server (NTRS)

    2008-01-01

    From the location of NASA's Phoenix Mars Lander, above the Martian arctic circle, the sun does not set during the peak of the Martian summer.

    This period of maximum solar energy is past on Sol 86, the 86th Martian day after the Phoenix landing, the sun fully set behind a slight rise to the north for about half an hour.

    This red-filter image taken by the lander's Surface Stereo Imager, shows the sun rising on the morning of sol 90, Aug. 25, 2008, the last day of the Phoenix nominal mission.

    The image was taken at 51 minutes past midnight local solar time during the slow sunrise that followed a 75 minute 'night.' The skylight in the image is light scattered off atmospheric dust particles and ice crystals.

    The setting sun does not mean the end of the mission. In late July, the Phoenix Mission was extended through September, rather than the 90-sol duration originally planned as the prime mission.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  18. EOS Aqua AMSR-E Sea Ice Validation Program: Meltpond2000 Flight Report

    NASA Technical Reports Server (NTRS)

    Cavalieri, Donald J.

    2000-01-01

    This flight report describes the field component of Meltpond2000, the first in a series of Arctic and Antarctic aircraft campaigns planned as part of NASA's Earth Observing System Aqua sea ice validation program for the Advanced Microwave Scanning Radiometer (AMSR-E). This prelaunch Arctic field campaign was carried out between June 25 and July 6, 2000 from Thule, Greenland, with the objective of quantifying the errors incurred by the AMSR-E sea ice algorithms resulting from the presence of melt ponds. A secondary objective of the mission was to develop a microwave capability to discriminate between melt ponds and seawater using low-frequency microwave radiometers. Meltpond2000 was a multiagency effort involving personnel from the Navy, NOAA, and NASA. The field component of the mission consisted of making five 8-hour flights from Thule Air Base with a Naval Air Warfare Center P-3 aircraft over portions of Baffin Bay and the Canadian Arctic. The aircraft sensors were provided and operated by the Microwave Radiometry Group of NOAA's Environmental TechnologyLaboratory. A Navy ice observer from the National Ice Center provided visual documentation of surface ice conditions during each of the flights. Two of the five flights were coordinated with Canadian scientists making surface measurements of melt ponds at an ice camp located near Resolute Bay, Canada. Coordination with the Canadians will provide additional information on surface characteristics and will be of great value in the interpretation of the aircraft and high-resolution satellite data sets.

  19. Overview of Ice-Sheet Mass Balance and Dynamics from ICESat Measurements

    NASA Technical Reports Server (NTRS)

    Zwally, H. Jay

    2010-01-01

    The primary purpose of the ICESat mission was to determine the present-day mass balance of the Greenland and Antarctic ice sheets, identify changes that may be occurring in the surface-mass flux and ice dynamics, and estimate their contributions to global sea-level rise. Although ICESat's three lasers were planned to make continuous measurements for 3 to 5 years, the mission was re-planned to operate in 33-day campaigns 2 to 3 times each year following failure of the first laser after 36 days. Seventeen campaigns were conducted with the last one in the Fall of 2009. Mass balance maps derived from measured ice-sheet elevation changes show that the mass loss from Greenland has increased significantly to about 170 Gt/yr for 2003 to 2007 from a state of near balance in the 1990's. Increased losses (189 Gt/yr) from melting and dynamic thinning are over seven times larger'than increased gains (25 gt/yr) from precipitation. Parts of the West Antarctic ice sheet and the Antarctic Peninsula are losing mass at an increasing rate, but other parts of West Antarctica and the East Antarctic ice sheet are gaining mass at an increasing rate. Increased losses of 35 Gt/yr in Pine Island, Thwaites-Smith, and Marie-Bryd.Coast are more than balanced by gains in base of Peninsula and ice stream C, D, & E systems. From the 1992-2002 to 2003-2007 period, the overall mass balance for Antarctica changed from a loss of about 60 Gt/yr to near balance or slightly positive.

  20. Arctic sea ice concentration observed with SMOS during summer

    NASA Astrophysics Data System (ADS)

    Gabarro, Carolina; Martinez, Justino; Turiel, Antonio

    2017-04-01

    The Arctic Ocean is under profound transformation. Observations and model predictions show dramatic decline in sea ice extent and volume [1]. A retreating Arctic ice cover has a marked impact on regional and global climate, and vice versa, through a large number of feedback mechanisms and interactions with the climate system [2]. The launch of the Soil Moisture and Ocean Salinity (SMOS) mission, in 2009, marked the dawn of a new type of space-based microwave observations. Although the mission was originally conceived for hydrological and oceanographic studies [3,4], SMOS is also making inroads in the cryospheric sciences by measuring the thin ice thickness [5,6]. SMOS carries an L-band (1.4 GHz), passive interferometric radiometer (the so-called MIRAS) that measures the electromagnetic radiation emitted by the Earth's surface, at about 50 km spatial resolution, continuous multi-angle viewing, large wide swath (1200-km), and with a 3-day revisit time at the equator, but more frequently at the poles. A novel radiometric method to determine sea ice concentration (SIC) from SMOS is presented. The method uses the Bayesian-based Maximum Likelihood Estimation (MLE) approach to retrieve SIC. The advantage of this approach with respect to the classical linear inversion is that the former takes into account the uncertainty of the tie-point measured data in addition to the mean value, while the latter only uses a mean value of the tie-point data. When thin ice is present, the SMOS algorithm underestimates the SIC due to the low opacity of the ice at this frequency. However, using a synergistic approach with data from other satellite sensors, it is possible to obtain accurate thin ice thickness estimations with the Bayesian-based method. Despite its lower spatial resolution relative to SSMI or AMSR-E, SMOS-derived SIC products are little affected by the atmosphere and the snow (almost transparent at L-band). Moreover L-band measurements are more robust in front of the

  1. Lasers, penguins, and polar bears: Novel outreach and education approaches for NASA's ICESat-2 mission

    NASA Astrophysics Data System (ADS)

    Casasanto, Valerie A.; Campbell, Brian; Manrique, Adriana; Ramsayer, Kate; Markus, Thorsten; Neumann, Thomas

    2018-07-01

    NASA's Ice, Cloud, and land Elevation Satellite (ICESat-2), to be launched in 2018, will measure the height of Earth from space using lasers, collecting the most precise and detailed account yet of our planet's elevation. The mission will allow scientists to investigate how global warming is changing the planet's icy polar regions and to take stock of Earth's vegetation. ICESat-2's emphasis on polar ice, as well as its unique measurement approach, will provide an intriguing and accessible focus for the mission's education and outreach programs. Sea ice and land ice are areas that have experienced significant change in recent years. It is key to communicate why we are measuring these areas and their importance. ICESat-2 science data will provide much-needed answers to climate change questions such as, "Is the ice really melting in the polar regions?" and "What does studying Earth's frozen regions tell us about our changing climate?" In this paper, lessons-learned and novel techniques for engaging and educating all audiences in the mission will be discussed, such as including results of a unique collaboration with art design school the Savannah College of Art Design (SCAD) to create fun and exciting products such as animated characters and interactive stories. Future collaborations with wildlife researchers, a new citizen science program in collaboration with GLOBE, and evidence from other STEAM (Science, Technology, Engineering, Arts, Math) education approaches will also be detailed in this paper.

  2. Microorganisms on comets, Europa, and the polar ice caps of Mars

    NASA Astrophysics Data System (ADS)

    Hoover, Richard B.; Pikuta, Elena V.

    2004-02-01

    Microbial extremophiles live on Earth wherever there is liquid water and a source of energy. Observations by ground-based observatories, space missions, and satellites have provided strong evidence that water ice exists today on comets, Europa, Callisto, and Ganymede and in the snow, permafrost, glaciers and polar ice caps of Mars. Studies of the cryoconite pools and ice bubble systems of Antarctica suggest that solar heating of dark rocks entrained in ice can cause localized melting of ice providing ideal conditions for the growth of microbial communities with the creation of micro-environments where trapped metabolic gasses produce entrained isolated atmospheres as in the Antarctic ice-bubble systems. It is suggested that these considerations indicate that several groups of microorganisms should be capable of episodic growth within liquid water envelopes surrounding dark rocks in cometary ices and the permafrost and polar caps of Mars. We discuss some of the types of microorganisms we have encountered within the permafrost and snow of Siberia, the cryoconite pools of Alaska, and frozen deep within the Antarctic ice sheet above Lake Vostok.

  3. The Icebreaker Life Mission to Mars: A Search for Biomolecular Evidence for Life

    NASA Technical Reports Server (NTRS)

    Mckay, Christopher P.; Stoker, Carol R.; Glass, Brian J.; Dave, Arwen I.; Davila, Alfonso F.; Heldmann, Jennifer L.; Marinova, Margarita M.; Fairen, Alberto G; Quinn, Richard C; Zacny, Kris A.; hide

    2012-01-01

    The search for evidence of life on Mars is the primary motivation for the exploration of that planet. The results from previous missions, and the Phoenix mission in particular, indicate that the ice-cemented ground in the north polar plains is likely to be the most recently habitable place that is currently known on Mars. The near-surface ice likely provided adequate water activity during periods of high obliquity, 5 Myr ago. Carbon dioxide and nitrogen is present in the atmosphere, and nitrates may be present in the soil. Perchlorate in the soil together with iron in basaltic rock provides a possible energy source for life. Furthermore, the presence of organics must once again be considered, as the results of the Viking GCMS are now suspect given the discovery of the thermally reactive perchlorate. Ground-ice may provide a way to preserve organic molecules for extended periods of time, especially organic biomarkers. The Mars Icebreaker Life mission focuses on the following science goals: 1. Search for specific biomolecules that would be conclusive evidence of life. 2. A general search for organic molecules in the ground ice. 3. Determine the processes of ground ice formation and the role of liquid water. 4. Understand the mechanical properties of the Mars polar ice-cemented soil. 5. Assess the recent habitability of the environment with respect to required elements to support life, energy sources, and possible toxic elements. And 6. Compare the elemental composition of the northern plains with mid-latitude sites. The Icebreaker Life payload has been designed around the Phoenix spacecraft and is targeted to a site near the Phoenix landing site. However, the Icebreaker payload could be supported on other Mars landing systems. Preliminary studies of the SpaceX Dragon lander show that it could support the Icebreaker payload for a landing either at the Phoenix site or at mid-latitudes. Duplicate samples could be cached as a target for possible return by a Mars Sample

  4. The Icebreaker Life Mission to Mars: a search for biomolecular evidence for life.

    PubMed

    McKay, Christopher P; Stoker, Carol R; Glass, Brian J; Davé, Arwen I; Davila, Alfonso F; Heldmann, Jennifer L; Marinova, Margarita M; Fairen, Alberto G; Quinn, Richard C; Zacny, Kris A; Paulsen, Gale; Smith, Peter H; Parro, Victor; Andersen, Dale T; Hecht, Michael H; Lacelle, Denis; Pollard, Wayne H

    2013-04-01

    The search for evidence of life on Mars is the primary motivation for the exploration of that planet. The results from previous missions, and the Phoenix mission in particular, indicate that the ice-cemented ground in the north polar plains is likely to be the most recently habitable place that is currently known on Mars. The near-surface ice likely provided adequate water activity during periods of high obliquity, ≈ 5 Myr ago. Carbon dioxide and nitrogen are present in the atmosphere, and nitrates may be present in the soil. Perchlorate in the soil together with iron in basaltic rock provides a possible energy source for life. Furthermore, the presence of organics must once again be considered, as the results of the Viking GCMS are now suspect given the discovery of the thermally reactive perchlorate. Ground ice may provide a way to preserve organic molecules for extended periods of time, especially organic biomarkers. The Mars Icebreaker Life mission focuses on the following science goals: (1) Search for specific biomolecules that would be conclusive evidence of life. (2) Perform a general search for organic molecules in the ground ice. (3) Determine the processes of ground ice formation and the role of liquid water. (4) Understand the mechanical properties of the martian polar ice-cemented soil. (5) Assess the recent habitability of the environment with respect to required elements to support life, energy sources, and possible toxic elements. (6) Compare the elemental composition of the northern plains with midlatitude sites. The Icebreaker Life payload has been designed around the Phoenix spacecraft and is targeted to a site near the Phoenix landing site. However, the Icebreaker payload could be supported on other Mars landing systems. Preliminary studies of the SpaceX Dragon lander show that it could support the Icebreaker payload for a landing either at the Phoenix site or at midlatitudes. Duplicate samples could be cached as a target for possible return by

  5. The International Cometary Explorer mission to comets Giacobini-Zinner and Halley - An update

    NASA Technical Reports Server (NTRS)

    Brandt, J. C.

    1986-01-01

    Aspects of the International Cometary Explorer (ICE) flight to the comet Giacobini-Zinner (GZ) are discussed. The most important experiments to be performed by ICE are reviewed, and the orbital parameters of GZ are described. The dust characteristics of GZ that pose a hazard to the spacecraft are addressed, and the ICE targeting strategy toward the comet is discussed. Requested ground-based coverage of GZ is indicated, and the complementarity of the GZ coverage with that given to the Halley mission is shown.

  6. Europa Sample Return Mission Utilizing High Specific Impulse Propulsion Refueled with Indigenous Resources

    NASA Astrophysics Data System (ADS)

    Paniagua, J.; Powell, J. R.; Maise, G.

    2002-01-01

    We have conducted studies of a revolutionary new concept for conducting a Europa Sample Return Mission. Robotic spacecraft exploration of the Solar System has been severely constrained by the large energy requirements of interplanetary trajectories and the inherent delta V limitations of chemical rockets. Current missions use gravitational assists from intermediate planets to achieve these high-energy trajectories restricting payload size and increasing flight times. We propose a 6-year Europa Sample Return mission with very modest launch requirements enabled by MITEE. A new nuclear thermal propulsion engine design, termed MITEE (MIniature reacTor EnginE), has over twice the delta V capability of H2/O2 rockets (and much greater when refueled with H2 propellant from indigenous extraterrestrial resources) enabling unique missions that are not feasible with chemical propulsion. The MITEE engine is a compact, ultra-lightweight, thermal nuclear rocket that uses hydrogen as the propellant. MITEE, with its small size (50 cm O.D.), low mass (200 kg), and high specific impulse (~1000 sec), can provide a quantum leap in the capability for space science and exploration missions. The Robotic Europa Explorer (REE) spacecraft has a two-year outbound direct trajectory and lands on the satellite surface for an approximate 9 month stay. During this time, the vehicle is refueled with H2 propellant derived from Europa ice by the Autonomous Propellant Producer (APP), while collecting samples and searching for life. A small nuclear-heated submarine probe, the Autonomous Submarine Vehicle (ASV), based on MITEE technology, would melt through the ice and explore the undersea realm. The spacecraft has approximately a three year return to Earth after departure from Europa with samples onboard. Spacecraft payload is 430 kg at the start of the mission and can be launched with a single, conventional medium-sized Delta III booster. The spacecraft can bring back 25 kg of samples from Europa

  7. Science Objectives and Mission Concepts for Europa Exploration

    NASA Astrophysics Data System (ADS)

    Tamppari, L. K.; Senske, D. A.; Johnson, T. V.; Oberto, R.; Zimmerman, W.; JPL's Team-X Team

    2000-10-01

    Since the arrival of the Galileo spacecraft to the Jovian system in 1995, evidence indicating a liquid water ocean beneath the icy Europan crust has become much stronger. This evidence combined with the fact that Europa is greater than 90 wt% water [1] makes it a candidate body to harbor extant or extinct life. The outstanding Europa science questions [2] are to determine whether or not there is or has been a liquid water layer under the ice and whether or not liquid water currently exists on the surface or has in the geologically recent past, what geological processes create the ice rafts and other ice-tectonic processes that affect the surface, the composition of the deep interior , geochemical sources of energy, the nature of the neutral atmosphere and ionosphere, and the nature of the radiation environment, especially with regard to its implications for organic and biotic chemistry. In addition, in situ studies of the surface of Europa would offer the opportunity to characterize the chemistry of the ice including organics, pH, salinity, and redox potential. In order to address these scientific objectives, a Europa program, involving multiple spacecraft, is envisioned. The JPL Outer Planets program has been helping to lay the groundwork for such a program. This effort is being conducted with particular emphasis on compiling and identifying science objectives which will flow down to a Europa mission architecture. This poster will show the tracability of observational methods from the science objectives. Also in support of developing a Europa mission architecture, JPL's Team-X has conducted a variety of Europa mission studies . A comparison of the studies done to date will be presented, highlighting science objectives accomplished, technological challenges, and cost. A more detailed presentation will be given on a Europa Lander concept study. First, the science objectives and instrumentation will be shown, including instrument mass, power usage, volume, and data

  8. Modeling the U.S. Border Patrol Tucson Sector for the Deployment and Operations of Border Security Forces

    DTIC Science & Technology

    2006-03-01

    Crime_Trends_2005.pdf (accessed August 3, 2005). Consejo de Seguridad Publica , “Programa de Mediano Plazo 2004 - 2009: Seguridad Publica ,” http...international Southwest border. The issue of illegal human smuggling is not new to the United States- Mexico border or to law enforcement agencies...Operation Gatekeeper; Operation Hold the Line; Operation Stonegarden; Tucson Sector; US Border Patrol; US- Mexico border. 16. PRICE CODE 17. SECURITY

  9. Arecibo Observatory support of the US international cometary Explorer mission encounter at comet Giacobini-Zinner

    NASA Technical Reports Server (NTRS)

    Gordon, D. D.; Ward, M. T.

    1986-01-01

    The Arecibo Observatory in Puerto Rico participated in the support of the U.S. International Cometary Explorer (ICE) mission when the ICE spacecraft passed through the tail of comet Giacobini-Zinner on September 11, 1985. The Arecibo Observatory is a research facility of the National Astronomy and Ionosphere Center (NAIC) operated by Cornell University under contract to the National Science Foundation (NSF). Coverage of the encounter involved the use of the observatory's 305-m (1000-ft) radio reflector antenna and RF and data system equipment fabricated or modified specifically for support of the ICE mission. The successful implementation, testing, and operation of this temporary receive, record, and data relay capability resulted from a cooperative effort by personnel at the Arecibo Observatory, the Goddard Space Flight Center, and the Jet Propulsion Laboratory.

  10. New Techniques for Radar Altimetry of Sea Ice and the Polar Oceans

    NASA Astrophysics Data System (ADS)

    Armitage, T. W. K.; Kwok, R.; Egido, A.; Smith, W. H. F.; Cullen, R.

    2017-12-01

    Satellite radar altimetry has proven to be a valuable tool for remote sensing of the polar oceans, with techniques for estimating sea ice thickness and sea surface height in the ice-covered ocean advancing to the point of becoming routine, if not operational, products. Here, we explore new techniques in radar altimetry of the polar oceans and the sea ice cover. First, we present results from fully-focused SAR (FFSAR) altimetry; by accounting for the phase evolution of scatterers in the scene, the FFSAR technique applies an inter-burst coherent integration, potentially over the entire duration that a scatterer remains in the altimeter footprint, which can narrow the effective along track resolution to just 0.5m. We discuss the improvement of using interleaved operation over burst-more operation for applying FFSAR processing to data acquired by future missions, such as a potential CryoSat follow-on. Second, we present simulated sea ice retrievals from the Ka-band Radar Interferometer (KaRIn), the instrument that will be launched on the Surface Water and Ocean Topography (SWOT) mission in 2021, that is capable of producing swath images of surface elevation. These techniques offer the opportunity to advance our understanding of the physics of the ice-covered oceans, plus new insight into how we interpret more conventional radar altimetry data in these regions.

  11. In depth review of the 1979 AIAA Lighter-Than-Air Systems Technology Conference

    NASA Technical Reports Server (NTRS)

    Ardema, M. D.

    1979-01-01

    The lighter than air (LTA) systems technology conference is reviewed. Highlights of the conference were: (1) the interest shown in patrol and surveillance airships, particularly for coastal patrol missions; (2) the session devoted to overviews of foreign activity; and (3) heavy lift and long range transport aircraft design considerations.

  12. Europa's Broken Ice

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Jupiter's moon Europa, as seen in this image taken June 27, 1996 by NASA's Galileo spacecraft, displays features in some areas resembling ice floes seen in Earth's polar seas. Europa, about the size of Earth's moon, has an icy crust that has been severely fractured, as indicated by the dark linear, curved, and wedged-shaped bands seen here. These fractures have broken the crust into plates as large as 30 kilometers (18.5 miles) across. Areas between the plates are filled with material that was probably icy slush contaminated with rocky debris. Some individual plates were separated and rotated into new positions. Europa's density indicates that it has a shell of water ice as thick as 100 kilometers (about 60 miles), parts of which could be liquid. Currently, water ice could extend from the surface down to the rocky interior, but the features seen in this image suggest that motion of the disrupted icy plates was lubricated by soft ice or liquid water below the surface at the time of disruption. This image covers part of the equatorial zone of Europa and was taken from a distance of 156,000 kilometers (about 96,300 miles) by the solid-state imager camera on the Galileo spacecraft. North is to the right and the sun is nearly directly overhead. The area shown is about 360 by 770 kilometers (220-by-475 miles or about the size of Nebraska), and the smallest visible feature is about 1.6 kilometers (1 mile) across. The Jet Propulsion Laboratory manages the Galileo mission for NASA's Office of Space Science.

  13. A Synthesis of the Basal Thermal State of the Greenland Ice Sheet

    NASA Technical Reports Server (NTRS)

    Macgregor, J. A.; Fahnestock, M. A.; Catania, G. A.; Aschwanden, A.; Clow, G. D.; Colgan, W. T.; Gogineni, S. P.; Morlighem, M.; Nowicki, S. M. J.; Paden, J. D.; hide

    2016-01-01

    Greenland's thick ice sheet insulates the bedrock below from the cold temperatures at the surface, so the bottom of the ice is often tens of degrees warmer than at the top, because the ice bottom is slowly warmed by heat coming from the Earth's depths. Knowing whether Greenland's ice lies on wet, slippery ground or is anchored to dry, frozen bedrock is essential for predicting how this ice will flow in the future. But scientists have very few direct observations of the thermal conditions beneath the ice sheet, obtained through fewer than two dozen boreholes that have reached the bottom. Our study synthesizes several independent methods to infer the Greenland Ice Sheet's basal thermal state -whether the bottom of the ice is melted or not-leading to the first map that identifies frozen and thawed areas across the whole ice sheet. This map will guide targets for future investigations of the Greenland Ice Sheet toward the most vulnerable and poorly understood regions, ultimately improving our understanding of its dynamics and contribution to future sea-level rise. It is of particular relevance to ongoing Operation IceBridge activities and future large-scale airborne missions over Greenland.

  14. Towards automated mapping of lake ice using RADARSAT-2 and simulated RCM compact polarimetric data

    NASA Astrophysics Data System (ADS)

    Duguay, Claude

    2016-04-01

    The Canadian Ice Service (CIS) produces a weekly ice fraction product (a text file with a single lake-wide ice fraction value, in tenth, estimated for about 140 large lakes across Canada and northern United States) created from the visual interpretation of RADARSAT-2 ScanSAR dual-polarization (HH and HV) imagery, complemented by optical satellite imagery (AVHRR, MODIS and VIIRS). The weekly ice product is generated in support of the Canadian Meteorological Centre (CMC) needs for lake ice coverage in their operational numerical weather prediction model. CIS is interested in moving from its current (manual) way of generating the ice fraction product to a largely automated process. With support from the Canadian Space Agency, a project was recently initiated to assess the potential of polarimetric SAR data for lake ice cover mapping in light of the upcoming RADARSAT Constellation Mission (to be launched in 2018). The main objectives of the project are to evaluate: 1) state-of-the-art image segmentation algorithms and 2) RADARSAT-2 polarimetric and simulated RADARSAT Constellation Mission (RCM) compact polarimetric SAR data for ice/open water discrimination. The goal is to identify the best segmentation algorithm and non-polarimetric/polarimetric parameters for automated lake ice monitoring at CIS. In this talk, we will present the background and context of the study as well as initial results from the analysis of RADARSAT-2 Standard Quad-Pol data acquired during the break-up and freeze-up periods of 2015 on Great Bear Lake, Northwest Territories.

  15. MIE Lidar proposed for the German Space Shuttle Mission D2

    NASA Technical Reports Server (NTRS)

    Renger, W.; Endemann, M.; Quenzel, H.; Werner, C.

    1986-01-01

    Firm plans for a second German Spacelab mission (D2-mission), originally scheduled for late 1988 is basically a zero-g mission, but will also include earth observation experiments. On board the D2-facility will allow performance of a number of different measurements with the goal to obtain performance data (cloud top heights, height of the planetary boundary layer, optical thickness, and cloud base height of thin and medium thick clouds, ice/water phase discriminatin for clouds, tropopause height, tropaspheric height, tropospheric aerosols, and stratospheric aerosols.

  16. CHANGES IN LUNG FUNCTION OBSERVED IN A STUDY OF PM AND AIR TOXICS EXPOSURE TO NC HIGHWAY PATROL TROOPERS (COPP-STUDY)

    EPA Science Inventory

    Introduction: Car emissions have been identified as a major source of respirable particles. Individuals whose jobs involve being on the road, such as patrol troopers, may be exposed to high cencentrations of toxic air pollutants from vehicle emissions. This exposure might a...

  17. Castalia - A Mission to a Main Belt Comet

    NASA Astrophysics Data System (ADS)

    Jones, G. H.; Snodgrass, C.

    2015-10-01

    Main Belt Comets (MBCs), or Active Asteroids, constitute a newly identified class of solar system objects. They have stable, asteroid-like orbits and some exhibit a recurrent comet-like appearance. It is believed that they survived the age of the solarsystem in a dormant state and that their current ice sublimation driven activity only began recently. Buried water ice is the only volatile expected to survive under an insulating surface. Excavation by an impact can expose the ice and trigger the start of MBC activity. We present the case for a mission to one of these objects. The specific science goals of the Castalia mission are: 1. Characterize a new Solar System family, the MBCs, by in-situ investigation 2. Understand the physics of activity on MBCs 3. Directly sample water in the asteroid belt and test if MBCs are a viable source for Earth's water 4. Use the observed structure of an MBC as a tracer of planetary system formation and evolution. These goals can be achieved by a spacecraft designed to rendezvous with and orbit an MBC for a time interval of some months, arriving before the active period for mapping and then sampling the gas and dust released during the active phase. Given the low level of activity of MBCs, and the expectation that their activity comes from only a localized patch on the surface, the orbiting spacecraft will have to be able to maintain a very close orbit over extended periods - the Castalia plan envisages an orbiter capable of 'hovering' autonomously at distances of only a few km from the surface of the MBC. The strawman payload comprises a Visible and near-infrared spectral imager, Thermal infrared imager, Radio science,Subsurface radar, Dust impact detector, Dust composition analyser, Neutral/ion mass spectrometer, Magnetometer, and Plasma package. In addition to this, a surface science package is being considered. At the moment, MBC 133P/Elst Pizarro is the bestknown target for such a mission. A design study for the Castalia mission

  18. Future Plans in US Flight Missions: Using Laser Remote Sensing for Climate Science Observations

    NASA Technical Reports Server (NTRS)

    Callahan, Lisa W.

    2010-01-01

    Laser Remote Sensing provides critical climate science observations necessary to better measure, understand, model and predict the Earth's water, carbon and energy cycles. Laser Remote Sensing applications for studying the Earth and other planets include three dimensional mapping of surface topography, canopy height and density, atmospheric measurement of aerosols and trace gases, plume and cloud profiles, and winds measurements. Beyond the science, data from these missions will produce new data products and applications for a multitude of end users including policy makers and urban planners on local, national and global levels. NASA Missions in formulation including Ice, Cloud, and land Elevation Satellite (ICESat 2) and the Deformation, Ecosystem Structure, and Dynamics of Ice (DESDynI), and future missions such as the Active Sensing of CO2 Emissions over Nights, Days and Seasons (ASCENDS), will incorporate the next generation of LIght Detection And Ranging (lidar) instruments to measure changes in the surface elevation of the ice, quantify ecosystem carbon storage due to biomass and its change, and provide critical data on CO 2 in the atmosphere. Goddard's plans for these instruments and potential uses for the resulting data are described below. For the ICESat 2 mission, GSFC is developing a micro-pulse multi-beam lidar. This instrument will provide improved ice elevation estimates over high slope and very rough areas and result in improved lead detection for sea ice estimates. Data about the sea ice and predictions related to sea levels will continue to help inform urban planners as the changes in the polar ice accelerate. DESDynI is planned to be launched in 2017 and includes both lidar and radar instruments. GSFC is responsible for the lidar portion of the DESDynI mission and is developing a scanning laser altimeter that will measure the Earth's topography, the structure of tree canopies, biomass, and surface roughness. The DESDynI lidar will also measure and

  19. CHANGES IN HEART RATE VARIABILITY AND LUNG FUNCTION OBSERVED IN NC PATROL TROOPERS EXPOSED TO PM AND AIR TOXICS

    EPA Science Inventory

    Changes in Heart Rate Variability and Lung Function in NC Patrol Troopers exposed to PM and Air Toxics

    Michael Riediker1, Wayne E Cascio1, Robert B Devlin2, Thomas Griggs1&4, Margaret Herbst1, Ronald W Williams3, Steve P McCorquodale4, Philip A Bromberg1
    1) University o...

  20. Europa: Perspectives Halfway through the GEM Mission

    NASA Astrophysics Data System (ADS)

    Chapman, C. R.; Galileo Imaging Team

    1998-09-01

    We are now nearly a year past the end of the prime Galileo mission (orbital tour) and are approaching the halfway point of the Galileo Europa Mission (GEM). Plans are being formulated for follow-on missions. I will review Galileo results concerning Europa, emphasizing evidence from imaging concerning the near-surface interior of Europa (i.e. the putative sub-ice ocean). It is the photogeologist's difficult task to infer the nature of the subsurface third dimension from two-dimensional images of a planet's surface. The remarkably intricate patterns of ridges, cracks, pits, domes, and chaotic zones on Europa strongly constrain surface processes but are less diagnostic of the subsurface. The issue of time (ages and rates) is always a conundrum in geology and it is especially significant for Europa. Does Europa present us with a frozen tableau of the ancient past or a snapshot of a currently active world with surface units only hundreds of thousands to millions of years old? Is its geological style cyclical or even episodic? Does the evidence for "liquidity" below Europa's brittle crust imply actual water or only low-viscosity ice? If water, how close to the surface is it (a) on average and (b) at the shallowest locations? Galileo's evidence suggests, but has not yet proved, that Europa is the most likely currently habitable place in the solar system beyond the Earth.

  1. CryoSat swath altimetry to measure ice cap and glacier surface elevation change

    NASA Astrophysics Data System (ADS)

    Tepes, P.; Gourmelen, N.; Escorihuela, M. J.; Wuite, J.; Nagler, T.; Foresta, L.; Brockley, D.; Baker, S.; Roca, M.; Shepherd, A.; Plummer, S.

    2016-12-01

    Satellite altimetry has been used extensively in the past few decades to observe changes affecting large and remote regions covered by land ice such as the Greenland and Antarctic ice sheets. Glaciers and ice caps have been studied less extensively due to limitation of altimetry over complex topography. However their role in current sea-level budgets is significant and is expected to continue over the next century and beyond (Gardner et al., 2011), particularly in the Arctic where mean annual surface temperatures have recently been increasing twice as fast as the global average (Screen and Simmonds, 2010). Radar altimetry is well suited to monitor elevation changes over land ice due to its all-weather year-round capability of observing ice surfaces. Since 2010, the Synthetic Interferometric Radar Altimeter (SIRAL) on board the European Space Agency (ESA) radar altimetry CryoSat (CS) mission has been collecting ice elevation measurements over glaciers and ice caps. Its Synthetic Aperture Radar Interferometric (SARIn) processing feature reduces the size of the footprint along-track and locates the across-track origin of a surface reflector in the presence of a slope. This offers new perspectives for the measurement of regions marked by complex topography. More recently, data from the CS-SARIn mode have been used to infer elevation beyond the point of closest approach (POCA) with a novel approach known as "swath processing" (Hawley et al., 2009; Gray et al., 2013; Christie et al., 2016; Smith et al., 2016). Together with a denser ground track interspacing of the CS mission, the swath processing technique provides unprecedented spatial coverage and resolution for space borne altimetry, enabling the study of key processes that underlie current changes of ice caps and glaciers. In this study, we use CS swath observations to generate maps of ice elevation change for selected ice caps and glaciers. We present a validation exercise and discuss the benefit of swath

  2. Comparison of CryoSat-2 and ENVISAT radar freeboard over Arctic sea ice: toward an improved Envisat freeboard retrieval

    NASA Astrophysics Data System (ADS)

    Guerreiro, Kevin; Fleury, Sara; Zakharova, Elena; Kouraev, Alexei; Rémy, Frédérique; Maisongrande, Philippe

    2017-09-01

    Over the past decade, sea-ice freeboard has been monitored with various satellite altimetric missions with the aim of producing long-term time series of ice thickness. While recent studies have demonstrated the capacity of the CryoSat-2 mission (2010-present) to provide accurate freeboard measurements, the current estimates obtained with the Envisat mission (2002-2012) still require some large improvements. In this study, we first estimate Envisat and CryoSat-2 radar freeboard by using the exact same processing algorithms. We then analyse the freeboard difference between the two estimates over the common winter periods (November 2010-April 2011 and November 2011-March 2012). The analysis of along-track data and gridded radar freeboard in conjunction with Envisat pulse-peakiness (PP) maps suggests that the discrepancy between the two sensors is related to the surface properties of sea-ice floes and to the use of a threshold retracker. Based on the relation between the Envisat pulse peakiness and the radar freeboard difference between Envisat and CryoSat-2, we produce a monthly CryoSat-2-like version of Envisat freeboard. The improved Envisat data set freeboard displays a similar spatial distribution to CryoSat-2 (RMSD = 1.5 cm) during the two ice growth seasons and for all months of the period of study. The comparison of the altimetric data sets with in situ ice draught measurements during the common flight period shows that the improved Envisat data set (RMSE = 12-28 cm) is as accurate as CryoSat-2 (RMSE = 15-21 cm) and much more accurate than the uncorrected Envisat data set (RMSE = 178-179 cm). The comparison of the improved Envisat radar freeboard data set is then extended to the rest of the Envisat mission to demonstrate the validity of PP correction from the calibration period. The good agreement between the improved Envisat data set and the in situ ice draught data set (RMSE = 13-32 cm) demonstrates the potential of the PP correction to produce accurate

  3. Sentinel-2 mission status

    NASA Astrophysics Data System (ADS)

    Hoersch, Bianca

    2017-04-01

    The SENTINEL-2 mission is the European Multispectral Imaging Mission for the Copernicus joint initiative of the European Commission (EC) and the European Space Agency (ESA). The SENTINEL-2 mission includes 13-spectral band multispectral optical imager with different resolution (down to 10 m) and a swath width of 290km. It provides very short revisit times and rapid product delivery. The mission is composed of a constellation of two satellite units, SENTINEL-2A and SENTINEL-2B, sharing the same orbital plane and featuring a short repeat cycle of 5 days at the equator optimized to mitigate the impact of clouds for science and applications. SENTINEL-2 enables exploitation for a variety of land and coastal applications such as agriculture, forestry, land cover and land cover change, urban mapping, emergency, as well as inland water, ice, glaciers and also coastal zone and closed seas applications. Following the launch of the Sentinel-2A in June 2015 and successful operations and data delivery since December 2015, the Sentinel-2B satellite is set for launch in March 2017. The full operation capacity is foreseen after the in-orbit commissioning phase of the Sentinel-2B unit in early summer 2017. The objective of the talk is to provide information about the mission status, and the way to achieve full operational capacity with 2 satellites.

  4. EOS Aqua AMSR-E Sea Ice Validation Program: Meltpond 2000 Flight Report

    NASA Technical Reports Server (NTRS)

    Cavalieri, Donald J.

    2000-01-01

    This flight report describes the field component of Meltpond2000, the first in a series of Arctic and Antarctic aircraft campaigns planned as part of NASA's Earth Observing System Aqua sea ice validation program for the Advanced Microwave Scanning Radiometer (AMSR-E). This prelaunch Arctic field campaign was carried out between June 25 and July 6, 2000 from Thule, Greenland, with the objective of quantifying the errors incurred by the AMSR-E sea ice algorithms resulting from the presence of melt ponds. A secondary objective of the mission was to develop a microwave capability to discriminate between melt ponds and seawater using low-frequency microwave radiometers. Meltpond2000 was a multiagency effort involving personnel from the Navy, National Oceanic and Atmospheric Administration (NOAA), and NASA. The field component of the mission consisted of making five eight-hour flights from Thule Air Base with a Naval Air Warfare Center P-3 aircraft over portions of Baffin Bay and the Canadian Arctic. The aircraft sensors were provided and operated by the Microwave Radiometry Group of NOAA's Environmental Technology Laboratory. A Navy ice observer from the National Ice Center provided visual documentation of surface ice conditions during each of the flights. Two of the five flights were coordinated with Canadian scientists making surface measurements of melt ponds at an ice camp located near Resolute Bay, Canada. Coordination with the Canadians will provide additional information on surface characteristics and will be of great value in the interpretation of the aircraft and high-resolution satellite data sets.

  5. Trajectory Design for a Cislunar Cubesat Leveraging Dynamical Systems Techniques: The Lunar Icecube Mission

    NASA Technical Reports Server (NTRS)

    Bosanac, Natasha; Cox, Andrew; Howell, Kathleen C.; Folta, David C.

    2017-01-01

    Lunar IceCube is a 6U CubeSat that is designed to detect and observe lunar volatiles from a highly inclined orbit. This spacecraft, equipped with a low-thrust engine, will be deployed from the upcoming Exploration Mission-1 vehicle in late 2018. However, significant uncertainty in the deployment conditions for secondary payloads impacts both the availability and geometry of transfers that deliver the spacecraft to the lunar vicinity. A framework that leverages dynamical systems techniques is applied to a recently updated set of deployment conditions and spacecraft parameter values for the Lunar IceCube mission, demonstrating the capability for rapid trajectory design.

  6. STS-34: Mission Overview Briefing

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Live footage shows Milt Heflin, the Lead Flight Director participating in the STS-34 Mission Briefing. He addresses the primary objective, and answered questions from the audience and other NASA Centers. Heflin also mentions the Shuttle Solar Backscatter Ultraviolet secondary payload, and several experiments. These experiments include Growth Hormone Crystal Distribution (Plants), Polymer Morphology, Sensor Technology Experiment, Mesoscale Lightning Experiment, Shuttle Student Involvement Program "Ice Crystals", and the Air Force Maui Optical Site.

  7. Airborne radar surveys of snow depth over Antarctic sea ice during Operation IceBridge

    NASA Astrophysics Data System (ADS)

    Panzer, B.; Gomez-Garcia, D.; Leuschen, C.; Paden, J. D.; Gogineni, P. S.

    2012-12-01

    comparison of snow depths with two weeks elapsed between passes. [1] Farrell, S.L., et al., "A First Assessment of IceBridge Snow and Ice Thickness Data Over Arctic Sea Ice," IEEE Tran. Geoscience and Remote Sensing, Vol. 50, No. 6, pp. 2098-2111, June 2012. [2] Kwok, R., and G. F. Cunningham, "ICESat over Arctic sea ice: Estimation of snow depth and ice thickness," J. Geophys. Res., 113, C08010, 2008. [3] Kwok, R., et al., "Airborne surveys of snow depth over Arctic sea ice," J. Geophys. Res., 116, C11018, 2011. [4] Panzer, B., et al., "An ultra-wideband, microwave radar for measuring snow thickness on sea ice and mapping near-surface internal layers in polar firn," Submitted to J. Glaciology, July 23, 2012. [5] Wingham, D.J., et al., "CryoSat: A Mission to Determine the Fluctuations in Earth's Land and Marine Ice Fields," Advances in Space Research, Vol. 37, No. 4, pp. 841-871, 2006. [6] Zwally, H. J., et al., "ICESat's laser measurements of polar ice, atmosphere, ocean, and land," J. Geodynamics, Vol. 34, No. 3-4, pp. 405-445, Oct-Nov 2002. [7] Zwally, H. J., et al., "ICESat measurements of sea ice freeboard and estimates of sea ice thickness in the Weddell Sea," J. Geophys. Res., 113, C02S15, 2008.

  8. Observing Ice in Clouds from Space

    NASA Technical Reports Server (NTRS)

    Ackerman, S.; Star, D. O'C.; Skofronick-Jackson, G.; Evans, F.; Wang, J. R.; Norris, P.; daSilva, A.; Soden, B.

    2006-01-01

    brightness temperatures to ice. The next step is a satellite mission designed to acquire global Earth radiance measurements in the submillimeter-wave region, thus bridging the measurement gap between microwave sounders and shorter-wavelength infrared and visible sensors. This presentation provides scientific justification and an approach to measuring ice water path and particle size from a satellite platform that spans a range encompassing both the hydrologically active and radiatively active components of cloud systems.

  9. An Analysis of Eruptions Detected by the LMSAL Eruption Patrol

    NASA Astrophysics Data System (ADS)

    Hurlburt, N. E.; Higgins, P. A.; Jaffey, S.

    2014-12-01

    Observations of the solar atmosphere reveals a wide range of real and apparent motions, from small scale jets and spicules to global-scale coronal mass ejections. Identifying and characterizing these motions are essential to advance our understanding the drivers of space weather. Automated and visual identifications are used in identifying CMEs. To date, the precursors to these — eruptions near the solar surface — have been identified primarily by visual inspection. Here we report on an analysis of the eruptions detected by the Eruption Patrol, a data mining module designed to automatically identify eruptions from data collected by Solar Dynamics Observatory's Atmospheric Imaging Assembly (SDO/AIA). We describe the module and use it both to explore relations with other solar events recorded in the Heliophysics Event Knowledgebase and to identify and access data collected by the Interface Region Imaging Spectrograph (IRIS) and Solar Optical Telescope (SOT) on Hinode for further analysis.

  10. National Ice Center Visiting Scientist Program

    NASA Technical Reports Server (NTRS)

    Austin, Meg

    2002-01-01

    The long-term goal of the University Corporation for Atmospheric Research (UCAR) Visiting Scientist Program at the National Ice Center (NIC) is to recruit the highest quality visiting scientists in the ice research community for the broad purpose of strengthening the relationship between the operational and research communities in the atmospheric and oceanic sciences. The University Corporation for Atmospheric Research supports the scientific community by creating, conducting, and coordinating projects that strengthen education and research in the atmospheric, oceanic and earth sciences. UCAR accomplishes this mission by building partnerships that are national or global in scope. The goal of UCAR is to enable researchers and educators to take on issues and activities that require the combined and collaborative capabilities of a broadly engaged scientific community.

  11. Ice Clouds in Martian Arctic (Accelerated Movie)

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Clouds scoot across the Martian sky in a movie clip consisting of 10 frames taken by the Surface Stereo Imager on NASA's Phoenix Mars Lander.

    This clip accelerates the motion. The camera took these 10 frames over a 10-minute period from 2:52 p.m. to 3:02 p.m. local solar time at the Phoenix site during Sol 94 (Aug. 29), the 94th Martian day since landing.

    Particles of water-ice make up these clouds, like ice-crystal cirrus clouds on Earth. Ice hazes have been common at the Phoenix site in recent days.

    The camera took these images as part of a campaign by the Phoenix team to see clouds and track winds. The view is toward slightly west of due south, so the clouds are moving westward or west-northwestward.

    The clouds are a dramatic visualization of the Martian water cycle. The water vapor comes off the north pole during the peak of summer. The northern-Mars summer has just passed its peak water-vapor abundance at the Phoenix site. The atmospheric water is available to form into clouds, fog and frost, such as the lander has been observing recently.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  12. Science goals for a Mars Polar Cap subsurface mission : optical approaches for investiagations of inclusions in ice

    NASA Technical Reports Server (NTRS)

    Mogensen, Claus T.; Carsey, Frank D.; Behar, Alberto; Engelhardt, Hermann; Lane, Arthur L.

    2002-01-01

    The Mars Polar Caps are highly interesting features of Mars and have received much recent attention with new and exciting data on morphology, basal units, and layered outcroppings. We have examined the climatological, glaciological, and geological issues associated with a subsurface exploration of the Mars North Polar Cap and have determined that a finescale optical examination of ice in a borehole, to examine the stratigraphy, geochemistry and geochronology of the ice, is feasible. This information will enable reconstruction of the development of the cap as well as predication of the properties of its ice. We present visible imagery taken of dust inclusions in archived Greenland ice cores as well as in-situ images of accreted lithologic inclusions in West Antarctica, and we argue for use of this kind of data in Mars climate reconstruction as has been successful with Greenland and Antarctic ice core anlaysis.

  13. Science goals for a Mars Polar Cap subsurface mission : optical approaches for investigations of inclusions in ice

    NASA Technical Reports Server (NTRS)

    Carsey, Frank; Mogensen, Claus T.; Behar, Alberto; Engelhardt, Hermann; Lane, Arthur L.

    2002-01-01

    The Mars Polar Caps are highly interesting features of Mars and have received much recent attention with new and exciting data on morphology, basal units, and layered outcroppings. We have examined the climatological, glaciological, and geological issues associated with a subsurface exploration of the Mars North Polar Cap and have determined that a finescale optical examination of ice in a borehole, to examine the stratigraphy, geochemistry and geochronology of the ice, is feasible. This information will enable reconstruction of the development of the cap as well as prediction of the properties of its ice. We present visible imagery taken of dust inclusions in archived Greenland ice cores as well as in-situ images of accreted lithologic inclusions in West Antarctica, and we argue for use of this kind of data in Mars climate reconstruction as has been successful with Greenland and Antarctic ice core analysis. .

  14. Evaluation of CryoSat-2 SARIn vs. SAR Arctic Sea Ice Freeboard

    NASA Astrophysics Data System (ADS)

    Di Bella, A.; Skourup, H.; Forsberg, R.

    2017-12-01

    Earth climate is a complex system which behaviour is dictated by the interaction among many components. Sea ice, one of these fundamental components, interacts directly with the oceans and the atmosphere playing an important role in defining heat exchange processes and, thus, impacting weather patterns on a global scale. Sea ice thickness estimates have notably improved in the last couple of decades, however, the uncertainty of such estimates is still significant. For the past 7 years, the ESA CryoSat-2 (CS2) mission has provided a unique opportunity to observe polar regions due to its extended coverage up to 88° N/S. The SIRAL radar altimeter on board CS2 enables the sea ice community to estimate sea ice thickness by measuring the sea ice freeboard. Studies by Armitage and Davidson [2014] and Di Bella et al. [submitted] showed that the interferometric capabilities of SIRAL can be used to retrieve an increased number of valid sea surface heights in sea ice covered regions and thus reduce the random uncertainty of the estimated freeboards, especially in areas with a sparse lead distribution. This study focuses on the comparison between sea ice freeboard estimates obtained by processing L1B SARIn data inside the Wingham box - an area in the Arctic Ocean where SIRAL has acquired SARIn data for 4 years - and those obtained by processing L1B SAR data in the area surrounding the box. This comparison evaluates CS2 performance on Arctic sea ice from a statistical perspective by analysing the continuity of freeboard estimates in areas where SIRAL switches between SAR and SARIn acquisition modes. Data collected during the Operation IceBridge and CryoVEx field campaigns are included in the study as an additional validation. Besides investigating the possibility of including the phase information from SIRAL in currently available freeboard estimates, this results provide valuable information for a possible SARIn CryoSat follow-on mission.

  15. Lunar Ice Cube: Searching for Lunar Volatiles with a lunar cubesat orbiter

    NASA Astrophysics Data System (ADS)

    Clark, Pamela E.; Malphrus, Ben; Brown, Kevin; Hurford, Terry; Brambora, Cliff; MacDowall, Robert; Folta, David; Tsay, Michael; Brandon, Carl; Lunar Ice Cube Team

    2016-10-01

    Lunar Ice Cube, a NASA HEOMD NextSTEP science requirements-driven deep space exploration 6U cubesat, will be deployed, with 12 others, by NASA's EM1 mission. The mission's high priority science application is understanding volatile origin, distribution, and ongoing processes in the inner solar system. JPL's Lunar Flashlight, and Arizona State University's LunaH-Map, also lunar orbiters to be deployed by EM1, will provide complementary observations. Lunar Ice Cube utilizes a versatile GSFC-developed payload: BIRCHES, Broadband InfraRed Compact, High-resolution Exploration Spectrometer, a miniaturized version of OVIRS on OSIRIS-REx. BIRCHES is a compact (1.5U, 2 kg, 20 W including cryocooler) point spectrometer with a compact cryocooled HgCdTe focal plane array for broadband (1 to 4 micron) measurements and Linear Variable Filter enabling 10 nm spectral resolution. The instrument will achieve sufficient SNR to identify water in various forms, mineral bands, and potentially other volatiles seen by LCROSS (e.g., CH4) as well. GSFC is developing compact instrument electronics easily configurable for H1RG family of focal plane arrays. The Lunar Ice Cube team is led by Morehead State University, who will provide build, integrate and test the spacecraft and provide mission operations. Onboard communication will be provided by the X-band JPL Iris Radio and dual X-band patch antennas. Ground communication will be provided by the DSN X-band network, particularly the Morehead State University 21-meter substation. Flight Dynamics support is provided by GSFC. The Busek micropropulsion system in a low energy trajectory will allow the spacecraft to achieve the science orbit less than a year. The high inclination, equatorial periapsis orbit will allow coverage of overlapping swaths once every lunar cycle at up to six different times of day (from dawn to dusk) as the mission progresses during its nominal six month science mapping period. Led by the JPL Science PI, the Lunar Ice Cube

  16. Atmospheric Form Drag Coefficients Over Arctic Sea Ice Using Remotely Sensed Ice Topography Data, Spring 2009-2015

    NASA Technical Reports Server (NTRS)

    Petty, Alek A.; Tsamados, Michel C.; Kurtz, Nathan T.

    2017-01-01

    Sea ice topography significantly impacts turbulent energy/momentum exchange, e.g., atmospheric (wind) drag, over Arctic sea ice. Unfortunately, observational estimates of this contribution to atmospheric drag variability are spatially and temporally limited. Here we present new estimates of the neutral atmospheric form drag coefficient over Arctic sea ice in early spring, using high-resolution Airborne Topographic Mapper elevation data from NASA's Operation IceBridge mission. We utilize a new three-dimensional ice topography data set and combine this with an existing parameterization scheme linking surface feature height and spacing to form drag. To be consistent with previous studies investigating form drag, we compare these results with those produced using a new linear profiling topography data set. The form drag coefficient from surface feature variability shows lower values [less than 0.5-1 × 10(exp. -3)] in the Beaufort/Chukchi Seas, compared with higher values [greater than 0.5-1 ×10(exp. -3)] in the more deformed ice regimes of the Central Arctic (north of Greenland and the Canadian Archipelago), which increase with coastline proximity. The results show moderate interannual variability, including a strong increase in the form drag coefficient from 2013 to 2014/2015 north of the Canadian Archipelago. The form drag coefficient estimates are extrapolated across the Arctic with Advanced Scatterometer satellite radar backscatter data, further highlighting the regional/interannual drag coefficient variability. Finally, we combine the results with existing parameterizations of form drag from floe edges (a function of ice concentration) and skin drag to produce, to our knowledge, the first pan-Arctic estimates of the total neutral atmospheric drag coefficient (in early spring) from 2009 to 2015.

  17. IceBridge Provides Novel Evidence for Thick Units of Basal Freeze-on Ice Along Petermann Glacier, Greenland

    NASA Astrophysics Data System (ADS)

    Bell, R. E.; Tinto, K. J.; Wolovick, M.; Block, A. E.; Frearson, N.; Das, I.; Abdi, A.; Creyts, T. T.; Cochran, J. R.; Csatho, B. M.; Babonis, G. S.

    2011-12-01

    The Petermann Glacier, one of the major outlet glaciers in Greenland, drains six percent of the Greenland ice from a basin largely below sea level. Petermann Glacier and its large ice shelf may be susceptible to increased change as the waters along the Greenland margin warm. The 2010 and 2011 Operation IceBridge mission, acquired a comprehensive aerogeophysical data set over the Petermann Glacier that provides insights into the ice sheet structure. This analysis employs most of the data streams acquired by the Icebridge platform including ice-penetrating radar, laser altimetry, gravity and magnetics. An orthogonal 10 km grid extends from 60 km upstream of the grounding line to 240 km inland. The ice velocities in the region range from <50m/yr to >200m/yr. On the interior lines the internal layers are pulled down over 2-3 km wide regions. Up to 400m of ice from the base of the ice sheet appears to be absent in these regions. We interpret these pulled down regions as basal melt. These melt regions are mainly located along the upstream side of a 80 km wide east-west trending topographic ridge that separates the interior ice from the Petermann Fjord. The IceBridge magnetic data indicates that this broad flat ridge is the boundary between the Franklinian Basins and the Ellsmerian Foldbelt to the north. Downstream of these pull-down layers we have identified 4 distinct packages of ice that thicken downstream and are characterized by a strong upper reflector. These packages develop at the base of the ice sheet and reach thicknesses of 500-700m over distances of 10-20 km. These basal packages can be traced for 30-100 km following the direction of flow, and may be present close to the grounding line. These basal reflectors deflect the overlying internal layers upward indicating the addition of ice to the base of the ice sheet. The IceBridge gravity data indicates that these features are probably not off-nadir topography since these would show up as around 30mGal anomalies

  18. Ice Shelf-Ocean Interactions Near Ice Rises and Ice Rumples

    NASA Astrophysics Data System (ADS)

    Lange, M. A.; Rückamp, M.; Kleiner, T.

    2013-12-01

    The stability of ice shelves depends on the existence of embayments and is largely influenced by ice rises and ice rumples, which act as 'pinning-points' for ice shelf movement. Of additional critical importance are interactions between ice shelves and the water masses underlying them in ice shelf cavities, particularly melting and refreezing processes. The present study aims to elucidate the role of ice rises and ice rumples in the context of climate change impacts on Antarctic ice shelves. However, due to their smaller spatial extent, ice rumples react more sensitively to climate change than ice rises. Different forcings are at work and need to be considered separately as well as synergistically. In order to address these issues, we have decided to deal with the following three issues explicitly: oceanographic-, cryospheric and general topics. In so doing, we paid particular attention to possible interrelationships and feedbacks in a coupled ice-shelf-ocean system. With regard to oceanographic issues, we have applied the ocean circulation model ROMBAX to ocean water masses adjacent to and underneath a number of idealized ice shelf configurations: wide and narrow as well as laterally restrained and unrestrained ice shelves. Simulations were performed with and without small ice rises located close to the calving front. For larger configurations, the impact of the ice rises on melt rates at the ice shelf base is negligible, while for smaller configurations net melting rates at the ice-shelf base differ by a factor of up to eight depending on whether ice rises are considered or not. We employed the thermo-coupled ice flow model TIM-FD3 to simulate the effects of several ice rises and one ice rumple on the dynamics of ice shelf flow. We considered the complete un-grounding of the ice shelf in order to investigate the effect of pinning points of different characteristics (interior or near calving front, small and medium sized) on the resulting flow and stress fields

  19. Dynamics of the global meridional ice flow of Europa's icy shell

    NASA Astrophysics Data System (ADS)

    Ashkenazy, Yosef; Sayag, Roiy; Tziperman, Eli

    2018-01-01

    Europa is one of the most probable places in the solar system to find extra-terrestrial life1,2, motivating the study of its deep ( 100 km) ocean3-6 and thick icy shell3,7-11. The chaotic terrain patterns on Europa's surface12-15 have been associated with vertical convective motions within the ice8,10. Horizontal gradients of ice thickness16,17 are expected due to the large equator-to-pole gradient of surface temperature and can drive a global horizontal ice flow, yet such a flow and its observable implications have not been studied. We present a global ice flow model for Europa composed of warm, soft ice flowing beneath a cold brittle rigid ice crust3. The model is coupled to an underlying (diffusive) ocean and includes the effect of tidal heating and convection within the ice. We show that Europa's ice can flow meridionally due to pressure gradients associated with equator-to-pole ice thickness differences, which can be up to a few km and can be reduced both by ice flow and due to ocean heat transport. The ice thickness and meridional flow direction depend on whether the ice convects or not; multiple (convecting and non-convecting) equilibria are found. Measurements of the ice thickness and surface temperature from future Europa missions18,19 can be used with our model to deduce whether Europa's icy shell convects and to constrain the effectiveness of ocean heat transport.

  20. DEM, tide and velocity over sulzberger ice shelf, West Antarctica

    USGS Publications Warehouse

    Baek, S.; Shum, C.K.; Lee, H.; Yi, Y.; Kwoun, Oh-Ig; Lu, Z.; Braun, Andreas

    2005-01-01

    Arctic and Antarctic ice sheets preserve more than 77% of the global fresh water and could raise global sea level by several meters if completely melted. Ocean tides near and under ice shelves shifts the grounding line position significantly and are one of current limitations to study glacier dynamics and mass balance. The Sulzberger ice shelf is an area of ice mass flux change in West Antarctica and has not yet been well studied. In this study, we use repeat-pass synthetic aperture radar (SAR) interferometry data from the ERS-1 and ERS-2 tandem missions for generation of a high-resolution (60-m) Digital Elevation Model (DEM) including tidal deformation detection and ice stream velocity of the Sulzberger Ice Shelf. Other satellite data such as laser altimeter measurements with fine foot-prints (70-m) from NASA's ICESat are used for validation and analyses. The resulting DEM has an accuracy of-0.57??5.88 m and is demonstrated to be useful for grounding line detection and ice mass balance studies. The deformation observed by InSAR is found to be primarily due to ocean tides and atmospheric pressure. The 2-D ice stream velocities computed agree qualitatively with previous methods on part of the Ice Shelf from passive microwave remote-sensing data (i.e., LANDSAT). ?? 2005 IEEE.

  1. Elevation Change of the Southern Greenland Ice Sheet from Satellite Radar Altimeter Data

    NASA Technical Reports Server (NTRS)

    Haines, Bruce J.

    1999-01-01

    Long-term changes in the thickness of the polar ice sheets are important indicators of climate change. Understanding the contributions to the global water mass balance from the accumulation or ablation of grounded ice in Greenland and Antarctica is considered crucial for determining the source of the about 2 mm/yr sea-level rise in the last century. Though the Antarctic ice sheet is much larger than its northern counterpart, the Greenland ice sheet is more likely to undergo dramatic changes in response to a warming trend. This can be attributed to the warmer Greenland climate, as well as a potential for amplification of a global warming trend in the polar regions of the Northern Hemisphere. In collaboration with Drs. Curt Davis and Craig Kluever of the University of Missouri, we are using data from satellite radar altimeters to measure changes in the elevation of the Southern Greenland ice sheet from 1978 to the present. Difficulties with systematic altimeter measurement errors, particularly in intersatellite comparisons, beset earlier studies of the Greenland ice sheet thickness. We use altimeter data collected contemporaneously over the global ocean to establish a reference for correcting ice-sheet data. In addition, the waveform data from the ice-sheet radar returns are reprocessed to better determine the range from the satellite to the ice surface. At JPL, we are focusing our efforts principally on the reduction of orbit errors and range biases in the measurement systems on the various altimeter missions. Our approach emphasizes global characterization and reduction of the long-period orbit errors and range biases using altimeter data from NASA's Ocean Pathfinder program. Along-track sea-height residuals are sequentially filtered and backwards smoothed, and the radial orbit errors are modeled as sinusoids with a wavelength equal to one revolution of the satellite. The amplitudes of the sinusoids are treated as exponentially-correlated noise processes with a

  2. The Europa Ocean Discovery mission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edwards, B.C.; Chyba, C.F.; Abshire, J.B.

    1997-06-01

    Since it was first proposed that tidal heating of Europa by Jupiter might lead to liquid water oceans below Europa`s ice cover, there has been speculation over the possible exobiological implications of such an ocean. Liquid water is the essential ingredient for life as it is known, and the existence of a second water ocean in the Solar System would be of paramount importance for seeking the origin and existence of life beyond Earth. The authors present here a Discovery-class mission concept (Europa Ocean Discovery) to determine the existence of a liquid water ocean on Europa and to characterize Europa`smore » surface structure. The technical goal of the Europa Ocean Discovery mission is to study Europa with an orbiting spacecraft. This goal is challenging but entirely feasible within the Discovery envelope. There are four key challenges: entering Europan orbit, generating power, surviving long enough in the radiation environment to return valuable science, and complete the mission within the Discovery program`s launch vehicle and budget constraints. The authors will present here a viable mission that meets these challenges.« less

  3. Lunar Prospector: developing a very low cost planetary mission.

    NASA Astrophysics Data System (ADS)

    Hubbard, G. S.

    Lunar Prospector, the first competitively selected planetary mission in NASA's Discovery Program, is described with emphasis on the lessons learned from managing a very low cost project. Insights into government-industry teaming, project management, contractual arrangements, schedule and budget reserve approach are discussed. The mission is conducting an orbital survey of the Moon's composition and structure. A mission overview and scientific data return is briefly described in the context of low cost mission development. The suite of five instruments is outlined: neutron spectrometer (NS), alpha particle spectrometer (APS), gamma ray spectrometer (GRS), magnetometer (MAG) and an electron reflectometer (ER). Scientific requirements and measurement approaches to detect water ice to a sensitivity of 50 ppm (hydrogen), measure key elemental constituents, detect gas release events and accurately map the Moon's gravitational and magnetic fields are described.

  4. RADARSAT-2 Polarimetric Radar Imaging for Lake Ice Mapping

    NASA Astrophysics Data System (ADS)

    Pan, F.; Kang, K.; Duguay, C. R.

    2016-12-01

    Changes in lake ice dates and duration are useful indicators for assessing long-term climate trends and variability in northern countries. Lake ice cover observations are also a valuable data source for predictions with numerical ice and weather forecasting models. In recent years, satellite remote sensing has assumed a greater role in providing observations of lake ice cover extent for both modeling and climate monitoring purposes. Polarimetric radar imaging has become a promising tool for lake ice mapping at high latitudes where meteorological conditions and polar darkness severely limit observations from optical sensors. In this study, we assessed and characterized the physical scattering mechanisms of lake ice from fully polarimetric RADARSAT-2 datasets obtained over Great Bear Lake, Canada, with the intent of classifying open water and different ice types during the freeze-up and break-up periods. Model-based and eigen-based decompositions were employed to construct the coherency matrix into deterministic scattering mechanisms. These procedures as well as basic polarimetric parameters were integrated into modified convolutional neural networks (CNN). The CNN were modified via introduction of a Markov random field into the higher iterative layers of networks for acquiring updated priors and classifying ice and open water areas over the lake. We show that the selected polarimetric parameters can help with interpretation of radar-ice/water interactions and can be used successfully for water-ice segmentation, including different ice types. As more satellite SAR sensors are being launched or planned, such as the Sentinel-1a/b series and the upcoming RADARSAT Constellation Mission, the rapid volume growth of data and their analysis require the development of robust automated algorithms. The approach developed in this study was therefore designed with the intent of moving towards fully automated mapping of lake ice for consideration by ice services.

  5. 2015 Arctic Sea Ice Maximum Annual Extent Is Lowest On Record

    NASA Image and Video Library

    2015-03-19

    The sea ice cap of the Arctic appeared to reach its annual maximum winter extent on Feb. 25, according to data from the NASA-supported National Snow and Ice Data Center (NSIDC) at the University of Colorado, Boulder. At 5.61 million square miles (14.54 million square kilometers), this year’s maximum extent was the smallest on the satellite record and also one of the earliest. Read more: 1.usa.gov/1Eyvelz Credit: NASA's Goddard Space Flight Center NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  6. Investigations of Spatial and Temporal Variability of Ocean and Ice Conditions in and Near the Marginal Ice Zone. The “Marginal Ice Zone Observations and Processes Experiment” (MIZOPEX) Final Campaign Summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeMott, P. J.; Hill, T. C.J.

    Despite the significance of the marginal ice zones of the Arctic Ocean, basic parameters such as sea surface temperature (SST) and a range of sea-ice characteristics are still insufficiently understood in these areas, and especially so during the summer melt period. The field campaigns summarized here, identified collectively as the “Marginal Ice Zone Ocean and Ice Observations and Processes Experiment” (MIZOPEX), were funded by U.S. National Aeronautic and Space Administration (NASA) with the intent of helping to address these information gaps through a targeted, intensive observation field campaign that tested and exploited unique capabilities of multiple classes of unmanned aerialmore » systems (UASs). MIZOPEX was conceived and carried out in response to NASA’s request for research efforts that would address a key area of science while also helping to advance the application of UASs in a manner useful to NASA for assessing the relative merits of different UASs. To further exercise the potential of unmanned systems and to expand the science value of the effort, the field campaign added further challenges such as air deployment of miniaturized buoys and coordinating missions involving multiple aircraft. Specific research areas that MIZOPEX data were designed to address include relationships between ocean skin temperatures and subsurface temperatures and how these evolve over time in an Arctic environment during summer; variability in sea-ice conditions such as thickness, age, and albedo within the marginal ice zone (MIZ); interactions of SST, salinity, and ice conditions during the melt cycle; and validation of satellite-derived SST and ice concentration fields provided by satellite imagery and models.« less

  7. Application of ant colony algorithm in path planning of the data center room robot

    NASA Astrophysics Data System (ADS)

    Wang, Yong; Ma, Jianming; Wang, Ying

    2017-05-01

    According to the Internet Data Center (IDC) room patrol robot as the background, the robot in the search path of autonomous obstacle avoidance and path planning ability, worked out in advance of the robot room patrol mission. The simulation experimental results show that the improved ant colony algorithm for IDC room patrol robot obstacle avoidance planning, makes the robot along an optimal or suboptimal and safe obstacle avoidance path to reach the target point to complete the task. To prove the feasibility of the method.

  8. Science requirements for free-flying imaging radar (FIREX) experiment for sea ice, renewable resources, nonrenewable resources and oceanography

    NASA Technical Reports Server (NTRS)

    Carsey, F.

    1982-01-01

    A future bilateral SAR program was studied. The requirements supporting a SAR mission posed by science and operations in sea-ice-covered waters, oceanography, renewable resources, and nonrenewable resources are addressed. The instrument, mission, and program parameters were discussed. Research investigations supporting a SAR flight and the subsequent overall mission requirements and tradeoffs are summarized.

  9. Lunar and Planetary Science XXXV: Missions and Instruments: Hopes and Hope Fulfilled

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The titles in this section include: 1) Mars Global Surveyor Mars Orbiter Camera in the Extended Mission: The MOC Toolkit; 2) Mars Odyssey THEMIS-VIS Calibration; 3) Early Science Operations and Results from the ESA Mars Express Mission: Focus on Imaging and Spectral Mapping; 4) The Mars Express/NASA Project at JPL; 5) Beagle 2: Mission to Mars - Current Status; 6) The Beagle 2 Microscope; 7) Mars Environmental Chamber for Dynamic Dust Deposition and Statics Analysis; 8) Locating Targets for CRISM Based on Surface Morphology and Interpretation of THEMIS Data; 9) The Phoenix Mission to Mars; 10) First Studies of Possible Landing Sites for the Phoenix Mars Scout Mission Using the BMST; 11) The 2009 Mars Telecommunications Orbiter; 12) The Aurora Exploration Program - The ExoMars Mission; 13) Electron-induced Luminescence and X-Ray Spectrometer (ELXS) System Development; 14) Remote-Raman and Micro-Raman Studies of Solid CO2, CH4, Gas Hydrates and Ice; 15) The Compact Microimaging Spectrometer (CMIS): A New Tool for In-Situ Planetary Science; 16) Preliminary Results of a New Type of Surface Property Measurement Ideal for a Future Mars Rover Mission; 17) Electrodynamic Dust Shield for Solar Panels on Mars; 18) Sensor Web for Spatio-Temporal Monitoring of a Hydrological Environment; 19) Field Testing of an In-Situ Neutron Spectrometer for Planetary Exploration: First Results; 20) A Miniature Solid-State Spectrometer for Space Applications - Field Tests; 21) Application of Laser Induced Breakdown Spectroscopy (LIBS) to Mars Polar Exploration: LIBS Analysis of Water Ice and Water Ice/Soil Mixtures; 22) LIBS Analysis of Geological Samples at Low Pressures: Application to Mars, the Moon, and Asteroids; 23) In-Situ 1-D and 2-D Mapping of Soil Core and Rock Samples Using the LIBS Long Spark; 24) Rocks Analysis at Stand Off Distance by LIBS in Martian Conditions; 25) Evaluation of a Compact Spectrograph/Detection System for a LIBS Instrument for In-Situ and Stand-Off Detection

  10. NASA Operation IceBridge Flies Into the Classroom!

    NASA Astrophysics Data System (ADS)

    Kane, M.

    2017-12-01

    Field research opportunities for educators is leveraged as an invaluable tool to increase public engagement in climate research and the geosciences. We investigate the influence of educator's authentic fieldwork by highlighting the post-field impacts of a PolarTREC Teacher who participated in two campaigns, including NASA Operation IceBridge campaign over Antarctica in 2016. NASA's Operation IceBridge has hosted PolarTREC teachers since 2012, welcoming five teachers aboard multiple flights over the Arctic and one over Antarctica. The continuity of teacher inclusion in Operation IceBridge campaigns has facilitated a platform for collaborative curriculum development and revision, integration of National Snow and Ice Data Center (NSIDC) data into multiple classrooms, and given us a means whereby students can interact with science team members. I present impacts to my teaching and classrooms as I grapple with "Big Data" to allow students to work directly with lidar and radar data, I examine public outreach impacts through analytics from virtual networking tools including social media, NASA's Mission Tools Suite for Education, and field blog interactions.

  11. A Prototype Ice-Melting Probe for Collecting Biological Samples from Cryogenic Ice at Low Pressure

    NASA Astrophysics Data System (ADS)

    Davis, Ashley

    2017-08-01

    In the Solar System, the surface of an icy moon is composed of irregular ice formations at cryogenic temperatures (<200 K), with an oxidized surface layer and a tenuous atmosphere at very low pressure (<10-6 atm). A lander mission, whose aim is to collect and analyze biological samples from the surface ice, must contain a device that collects samples without refreezing liquid and without sublimation of ice. In addition, if the samples are biological in nature, then precautions must be taken to ensure the samples do not overheat or mix with the oxidized layer. To achieve these conditions, the collector must maintain temperatures close to maintenance or growth conditions of the organism (<293 K), and it must separate or neutralize the oxidized layer and be physically gentle. Here, we describe a device that addresses these requirements and is compatible with low atmospheric pressure while using no pumps. The device contains a heated conical probe with a central orifice, which is forced into surface ice and directs the meltwater upward into a reservoir. The force on the probe is proportional to the height of meltwater (pressure) obtained in the system and allows regulation of the melt rate and temperature of the sample. The device can collect 5-50 mL of meltwater from the surface of an ice block at 233-208 K with an environmental pressure of less than 10-2 atm while maintaining a sample temperature between 273 and 293 K. These conditions maintain most biological samples in a pristine state and maintain the integrity of most organisms' structure and function.

  12. High Artic Glaciers and Ice Caps Ice Mass Change from GRACE, Regional Climate Model Output and Altimetry.

    NASA Astrophysics Data System (ADS)

    Ciraci, E.; Velicogna, I.; Fettweis, X.; van den Broeke, M. R.

    2016-12-01

    The Arctic hosts more than the 75% of the ice covered regions outside from Greenland and Antarctica. Available observations show that increased atmospheric temperatures during the last century have contributed to a substantial glaciers retreat in all these regions. We use satellite gravimetry by the NASA's Gravity Recovery and Climate Experiment (GRACE), and apply a least square fit mascon approach to calculate time series of ice mass change for the period 2002-2016. Our estimates show that arctic glaciers have constantly contributed to the sea level rise during the entire observation period with a mass change of -170+/-20 Gt/yr equivalent to the 80% of the total ice mass change from the world Glacier and Ice Caps (GIC) excluding the Ice sheet peripheral GIC, which we calculated to be -215+/-32 GT/yr, with an acceleration of 9+/-4 Gt/yr2. The Canadian Archipelago is the main contributor to the total mass depletion with an ice mass trend of -73+/-9 Gt/yr and a significant acceleration of -7+/-3 Gt/yr2. The increasing mass loss is mainly determined by melting glaciers located in the northern part of the archipelago.In order to investigate the physical processes driving the observed ice mass loss we employ satellite altimetry and surface mass balance (SMB) estimates from Regional climate model outputs available for the same time period covered by the gravimetry data. We use elevation data from the NASA ICESat (2003-2009) and ESA CryoSat-2 (2010-2016) missions to estimate ice elevation changes. We compare GRACE ice mass estimates with time series of surface mass balance from the Regional Climate Model (RACMO-2) and the Modèle Atmosphérique Régional (MAR) and determine the portion of the total mass change explained by the SMB signal. We find that in Iceland and in the and the Canadian Archipelago the SMB signal explains most of the observed mass changes, suggesting that ice discharge may play a secondary role here. In other region, e.g. in Svalbar, the SMB signal

  13. Sea Ice and Phytoplankton Mix in the Northwestern Passage

    NASA Image and Video Library

    2017-12-08

    The remnants of sea ice along the Northwestern Passage in northern Canada are seen swirling with the blue green of phytoplankton in this image from the Suomi NPP VIIRS sensor, acquired on August 11, 2013. NASA/NOAA NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  14. A Newly Updated Database of Elevation-changes of the Greenand Ice Sheet to Study Surface Processes and Ice Dynamics

    NASA Astrophysics Data System (ADS)

    Schenk, A. F.; Csatho, B. M.; van den Broeke, M.; Kuipers Munneke, P.

    2015-12-01

    years. Our presentation will show the improvement of the reconstruction of the total changes, those caused by SMB and ice dynamic during the ICESat mission (2003-2009). Moreover we will review changes on scales from individual outlet glaciers to drainage basins and the entire ice sheet.

  15. Invited review article: IceCube: an instrument for neutrino astronomy.

    PubMed

    Halzen, Francis; Klein, Spencer R

    2010-08-01

    Neutrino astronomy beyond the Sun was first imagined in the late 1950s; by the 1970s, it was realized that kilometer-scale neutrino detectors were required. The first such instrument, IceCube, is near completion and taking data. The IceCube project transforms 1 km(3) of deep and ultratransparent Antarctic ice into a particle detector. A total of 5160 optical sensors is embedded into a gigaton of Antarctic ice to detect the Cherenkov light emitted by secondary particles produced when neutrinos interact with nuclei in the ice. Each optical sensor is a complete data acquisition system including a phototube, digitization electronics, control and trigger systems, and light-emitting diodes for calibration. The light patterns reveal the type (flavor) of neutrino interaction and the energy and direction of the neutrino, making neutrino astronomy possible. The scientific missions of IceCube include such varied tasks as the search for sources of cosmic rays, the observation of galactic supernova explosions, the search for dark matter, and the study of the neutrinos themselves. These reach energies well beyond those produced with accelerator beams. The outline of this review is as follows: neutrino astronomy and kilometer-scale detectors, high-energy neutrino telescopes: methodologies of neutrino detection, IceCube hardware, high-energy neutrino telescopes: beyond astronomy, and future projects.

  16. Arctic and Antarctic Sea-Ice Freeboard and Thickness Retrievals from CryoSat-2 and EnviSat

    NASA Astrophysics Data System (ADS)

    Ricker, Robert; Hendricks, Stefan; Schwegmann, Sandra; Helm, Veit; Rinne, Eero

    2016-04-01

    The CryoSat-2 satellite is now in the 6th year of data acquisition. With its synthetic aperture radar altimeter, CryoSat-2 achieves great improvements in the along track resolution compared to previous radar altimeter missions like ERS or Envisat. The latitudinal coverage contains major parts of the Arctic marine ice fields where previous missions left a big data gap around the North Pole and especially over the multiyear ice zone north of Greenland. With this unique data set, changes in sea-ice thickness can be investigated in the context of the rapid reduction of the Arctic sea-ice cover which has been observed during the last decades. We present the current state of the CryoSat-2 Arctic sea-ice thickness retrieval that is processed at the Alfred Wegener Institute and available via seaiceportal.de (originally: meereisportal.de). Though biases in sea-ice thickness may occur due to the interpretation of waveforms, airborne and ground-based validation measurements give confidence that the retrieval algorithm enables us to capture the actual distributions of sea-ice regimes. Nevertheless, long time series of data retrievals are essential to estimate trends in sea-ice thickness and volume. Today, more than 20 years of radar altimeter data are potentially available and capable to derive sea ice thickness. However, data originate from satellites with different sensor characteristics. Therefore, it is crucial to study the consistency between single sensors to derive long and consistent time series. We present results from the tested consistency between Antarctic freeboard measurements of the radar altimeters on-board of Envisat and CryoSat-2 for their overlap period in 2011.

  17. Trends in Arctic Sea Ice Volume 2010-2013 from CryoSat-2

    NASA Astrophysics Data System (ADS)

    Tilling, R.; Ridout, A.; Wingham, D.; Shepherd, A.; Haas, C.; Farrell, S. L.; Schweiger, A. J.; Zhang, J.; Giles, K.; Laxon, S.

    2013-12-01

    Satellite records show a decline in Arctic sea ice extent over the past three decades with a record minimum in September 2012, and results from the Pan-Arctic Ice-Ocean Modelling and Assimilation System (PIOMAS) suggest that this has been accompanied by a reduction in volume. We use three years of measurements recorded by the European Space Agency CryoSat-2 (CS-2) mission, validated with in situ data, to generate estimates of seasonal variations and inter-annual trends in Arctic sea ice volume between 2010 and 2013. The CS-2 estimates of sea ice thickness agree with in situ estimates derived from upward looking sonar measurements of ice draught and airborne measurements of ice thickness and freeboard to within 0.1 metres. Prior to the record minimum in summer 2012, autumn and winter Arctic sea ice volume had fallen by ~1300 km3 relative to the previous year. Using the full 3-year period of CS-2 observations, we estimate that winter Arctic sea ice volume has decreased by ~700 km3/yr since 2010, approximately twice the average rate since 1980 as predicted by the PIOMAS.

  18. Scrambled Ice

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This complex area on the side of Europa which faces away from Jupiter shows several types of features which are formed by disruptions of Europa's icy crust. North is to the top of the image, taken by NASA's Galileo spacecraft, and the Sun illuminates the surface from the left. The prominent wide, dark bands are up to 20 kilometers (12 miles) wide and over 50 kilometers (30 miles) long. They are believed to have formed when Europa's icy crust fractured, separated and filled in with darker, 'dirtier' ice or slush from below. A relatively rare type of feature on Europa is the 15-kilometer-diameter (9.3-mile) impact crater in the lower left corner. The small number of impact craters on Europa's surface is an indication of its relatively young age. A region of chaotic terrain south of this impact crater contains crustal plates which have broken apart and rafted into new positions. Some of these 'ice rafts' are nearly 1 kilometer (about half a mile) across. Other regions of chaotic terrain are visible and indicate heating and disruption of Europa's icy crust from below. The youngest features in this scene are the long, narrow cracks in the ice which cut across all other features. One of these cracks is about 30 kilometers (18 miles) to the right of the impact crater and extends for hundreds of miles from the top to the bottom of the image.

    The image, centered near 23 degrees south latitude and 179 degrees longitude, covers an area about 240 by 215 kilometers (150 by 130 miles) across. The finest details that can be discerned in this picture are about 460 meters (500 yards) across. The image was taken as Galileo flew by Europa on March 29, 1998. The image was taken by the onboard solid state imaging system camera from an altitude of 23,000 kilometers (14,000 miles).

    The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech

  19. Space Radar Image of Patagonian Ice Fields

    NASA Image and Video Library

    1999-04-15

    This pair of images illustrates the ability of multi-parameter radar imaging sensors such as the Spaceborne Imaging Radar-C/X-band Synthetic Aperture radar to detect climate-related changes on the Patagonian ice fields in the Andes Mountains of Chile and Argentina. The images show nearly the same area of the south Patagonian ice field as it was imaged during two space shuttle flights in 1994 that were conducted five-and-a-half months apart. The images, centered at 49.0 degrees south latitude and 73.5degrees west longitude, include several large outlet glaciers. The images were acquired by SIR-C/X-SAR on board the space shuttle Endeavour during April and October 1994. The top image was acquired on April 14, 1994, at 10:46 p.m. local time, while the bottom image was acquired on October 5,1994, at 10:57 p.m. local time. Both were acquired during the 77th orbit of the space shuttle. The area shown is approximately 100 kilometers by 58 kilometers (62 miles by 36 miles) with north toward the upper right. The colors in the images were obtained using the following radar channels: red represents the C-band (horizontally transmitted and received); green represents the L-band (horizontally transmitted and received); blue represents the L-band (horizontally transmitted and vertically received). The overall dark tone of the colors in the central portion of the April image indicates that the interior of the ice field is covered with thick wet snow. The outlet glaciers, consisting of rough bare ice, are the brightly colored yellow and purple lobes which terminate at calving fronts into the dark waters of lakes and fiords. During the second mission the temperatures were colder and the corresponding change in snow and ice conditions is readily apparent by comparing the images. The interior of the ice field is brighter because of increased radar return from the dryer snow. The distinct green/orange boundary on the ice field indicates an abrupt change in the structure of the snowcap

  20. Extensive Ice Fractures in the Beaufort Sea

    NASA Image and Video Library

    2017-12-08

    much heat the surface was emitting as VIIRS surveyed the area. Cooler areas (sea ice) appear white, while warmer areas (open water) are dark. The light gray plume near the cracks is warmer, moister air escaping from the ocean and blowing downwind. Clouds do not show up well in the VIIRS thermal band, so the storms that fueled the fracturing are not readily visible. While fracturing events are common, few events sprawl across such a large area or produce cracks as long and wide as those seen here. The age of the sea ice in this area was one of the key reasons this event became so widespread. “The region is covered almost completely by seasonal or first-year ice—ice that has formed since last September,” said Meier. “This ice is thinner and weaker than the older, multi-year ice, so it responds more readily to winds and is more easily broken up.” NASA Earth Observatory images by Jesse Allen using VIIRS day-night band data from the Suomi National Polar-orbiting Partnership. Suomi NPP is the result of a partnership between NASA, the National Oceanic and Atmospheric Administration, and the Department of Defense. Caption by Adam Voiland. Instrument: Suomi NPP - VIIRS For more info go to: earthobservatory.nasa.gov/IOTD/view.php?id=80752 Credit: NASA Earth Observatory NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  1. IcePod - A versatile Science Platform for the New York Air National Guard's LC-130 Aircraft

    NASA Astrophysics Data System (ADS)

    Frearson, N.; Bell, R. E.; Zappa, C. J.

    2011-12-01

    The ICEPOD program is a five-year effort to develop an ice imaging system mounted on New York Air National Guard (NYANG) LC-130 aircraft to map the surface and sub-surface topography of ice sheets, ice streams and outlet glaciers for the NSF Major Research Instrumentation program. The project is funded by the American Recovery and Reinvestment Act. The fundamental goal of the ICEPOD program is to develop an instrumentation package that can capture the dynamics of the changing polar regions, focusing on ice and ocean systems. The vision is that this instrumentation will be operated both on routine flights of the NYANG in the polar regions, such as on missions between McMurdo and South Pole Station, and on targeted science missions, from mapping sea ice and outlet glaciers such as those surrounding Ross Island or Greenland to quantifying the drainage systems from large subglacial lakes in East Antarctica. It is a key aspect of the design that at the conclusion of this program, the Pod, Deployment Arm and Data Acquisition and Management system will become available for use by the science community at large to install their own instruments onto. The science requirements for the primary instruments in the Icepod program have been defined and can be viewed on-line at www.ldeo.columbia.edu/icepod. As a consequence, the instrumentation will consist of a scanning laser for precise measurements of the ice surface, stereo-photogrammetry from both visible and infrared imaging cameras to document the ice surface and temperature, a VHF coherent, pulsed radar to recover ice thickness and constrain the distribution of water at the ice sheet bed and an L-band radar to measure surface accumulation or sea-ice thickness. All instrument data sets will be time-tagged and geo-referenced by recording precision GPS satellite data integrated with inertial measurement technology integrated into the pod. There will also be two operational modes - a low altitude flight mode that will optimize

  2. The MetOp second generation 3MI mission

    NASA Astrophysics Data System (ADS)

    Manolis, Ilias; Caron, Jérôme; Grabarnik, Semen; Bézy, Jean-Loup; Betto, Maurizio; Barré, Hubert; Mason, Graeme; Meynart, Roland

    2017-11-01

    ESA is currently running two parallel, competitive phase A/B1 studies for MetOp Second Generation (MetOp-SG). MetOp-SG is the space segment of EUMETSAT Polar System (EPS-SG) consisting of the satellites and instruments. The Phase A/B1 studies will be completed in the first quarter of 2013. The final implementation phases (B2/C/D) are planned to start 2013. ESA is responsible for instrument design of five missions, namely Microwave Sounding Mission (MWS), Scatterometer mission (SCA), Radio Occultation mission (RO), Microwave Imaging mission (MWI), Ice Cloud Imaging (ICI) mission, and Multiviewing, Multi-channel, Multi-polarization imaging mission (3MI). This paper will present the instrument main design elements of the 3MI mission, primarily aimed at providing aerosol characterization for climate monitoring, Numerical Weather Prediction (NWP), atmospheric chemistry and air quality. The 3MI instrument is a passive radiometer measuring the polarized radiances reflected by the Earth under different viewing geometries and across several spectral bands spanning the visible and short-wave infrared spectrum. The paper will present the main performances of the instrument and will concentrate mainly on the performance improvements with respect to its heritage derived by the POLDER instrument. The engineering of some key performance requirements (multiviewing, polarization sensitivity, etc.) will also be discussed.

  3. Consolidated B-24M Liberator Equipped for Icing Research

    NASA Image and Video Library

    1946-07-21

    A Consolidated B-25M Liberator modified for icing research by the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory. NACA Lewis performed a limited amount of icing research during World War II, but the program expanded significantly in 1946. The accumulation of ice on aircraft was a continual problem. The ice formations could result in extra weight, aerodynamic penalties, and blockage engine inlets. Although the Lewis icing researchers utilized numerous aircraft, the program’s two workhorses were the B-24M Liberator, seen here, and a North American XB-25E Mitchell. The Consolidated Aircraft Company created the four-engine bomber in the early 1940s. During World War II the bomber was employed on long-duration bombing missions in both Europe and the Pacific. Production of the B-24M version did not begin until October 1944 with the end of the war in Europe approaching. This resulted in scores of unneeded bombers when hostilities ended. This B-24M arrived at the NACA Lewis laboratory in November 1945. At Lewis the B-24M was repeatedly modified to study ice accretion on aircraft components. Researchers analyzed different anti-icing and deicing strategies and gathered statistical ice measurement data. The B-24M was also used to study ice buildup on jet engines. A General Electric I-16 engine was installed in the aircraft’s waist compartment with an air scoop on the top of the aircraft to duct air to the engine. Water spray nozzles inside the aircraft were employed to simulate icing conditions at the turbojet’s inlet.

  4. Overview of the ICESat Mission and Results

    NASA Astrophysics Data System (ADS)

    Zwally, H.

    2004-12-01

    NASA's Ice, Cloud, and Land Elevation Satellite (ICESat), launched in January, 2003, has been measuring surface elevations of ice and land, vertical distributions of clouds and aerosols, vegetation-canopy heights, and other features with unprecedented accuracy and sensitivity. The ICESat mission, which was designed to operate continuously for 3 to 5 years, has so far acquired science data during five periods of laser operation ranging from 33 to 54 days each. The primary purpose of ICESat has been to acquire time-series of ice-sheet elevation changes for determination of the present-day mass balance of the ice sheets, study of associations between observed ice changes and polar climate, and improve estimates of the present and future contributions to global sea level rise. ICEsat's atmospheric measurements are providing fundamentally new information on the precise vertical structure of clouds and aerosols. In particular, cloud heights are important for understanding radiation balance and their effects on climate change. Other applications include mapping of polar sea-ice freeboard and thickness, high-resolution mapping of ocean eddies, glacier topography, and lake and river levels. ICESat has a 1064 nm laser channel for near-surface altimetry with a designed range precision of 10 cm that is actually 2 cm on-orbit. Vertical distributions of clouds and aerosols are obtained with 75 m resolution from both the 1064 nm channel and the more sensitive 532 nm channel. The laser footprints are about 70 m spaced at 170 m along-track. The accuracy of the satellite-orbital heights is about 3 cm. The star-tracking attitude-determination system should enable footprints to be located to 6 m horizontally when attitude calibration is completed. The spacecraft attitude is controlled to point the laser beam to within 100 m (35 m goal) of reference surface tracks at high latitudes and to point off-nadir up to 5 degrees to targets of interest. The remaining laser lifetime will be used

  5. Instrumentation for Testing Whether the Icy Moons of the Gas and Ice Giants Are Inhabited.

    PubMed

    Chela-Flores, Julian

    2017-10-01

    Evidence of life beyond Earth may be closer than we think, given that the forthcoming missions to the jovian system will be equipped with instruments capable of probing Europa's icy surface for possible biosignatures, including chemical biomarkers, despite the strong radiation environment. Geochemical biomarkers may also exist beyond Europa on icy moons of the gas giants. Sulfur is proposed as a reliable geochemical biomarker for approved and forthcoming missions to the outer solar system. Key Words: JUICE mission-Clipper mission-Geochemical biomarkers-Europa-Moons of the ice giants-Geochemistry-Mass spectrometry. Astrobiology 17, 958-961.

  6. Ice swimming - 'Ice Mile' and '1 km Ice event'.

    PubMed

    Knechtle, Beat; Rosemann, Thomas; Rüst, Christoph A

    2015-01-01

    Ice swimming for 1 mile and 1 km is a new discipline in open-water swimming since 2009. This study examined female and male performances in swimming 1 mile ('Ice Mile') and 1 km ('1 km Ice event') in water of 5 °C or colder between 2009 and 2015 with the hypothesis that women would be faster than men. Between 2009 and 2015, 113 men and 38 women completed one 'Ice Mile' and 26 men and 13 completed one '1 km Ice event' in water colder than +5 °C following the rules of International Ice Swimming Association (IISA). Differences in performance between women and men were determined. Sex difference (%) was calculated using the equation ([time for women] - [time for men]/[time for men] × 100). For 'Ice Mile', a mixed-effects regression model with interaction analyses was used to investigate the influence of sex and environmental conditions on swimming speed. The association between water temperature and swimming speed was assessed using Pearson correlation analyses. For 'Ice Mile' and '1 km Ice event', the best men were faster than the best women. In 'Ice Mile', calendar year, number of attempts, water temperature and wind chill showed no association with swimming speed for both women and men. For both women and men, water temperature was not correlated to swimming speed in both 'Ice Mile' and '1 km Ice event'. In water colder than 5 °C, men were faster than women in 'Ice Mile' and '1 km Ice event'. Water temperature showed no correlation to swimming speed.

  7. Retrieving improved multi-temporal CryoSat elevations over ice caps and glaciers - a case study of Barnes ice cap

    NASA Astrophysics Data System (ADS)

    Nilsson, Johan; Burgess, David

    2014-05-01

    The CryoSat mission was launched in 2010 to observe the Earth's cryosphere. In contrast to previous satellite radar altimeters, this mission is expected to monitor the elevation of small ice caps and glaciers, which according to the IPCC will be the largest contributor to 21st century sea level rise. To date the ESA CryoSat SARiN level-2 (L2) elevation product is not yet fully optimized for use over these types of glaciated regions, as its processed with a more universal algorithm. Thus the aim of this study is to demonstrate that with the use of improved processing CryoSat SARiN data can be used for more accurate topography mapping and elevation change detection for ice caps and glaciers. To demonstrate this, elevations and elevation changes over Barnes ice cap, located on Baffin Island in the Canadian Arctic, have been estimated from available data from the years 2010-2013. ESA's CryoSat level-1b (L1b) SARiN baseline "B" data product was used and processed in-house to estimate surface elevations. The resulting product is referred to as DTU-L2. The processing focused on improving the retracker, reducing phase noise and correcting phase ambiguities. The accuracy of the DTU-L2 and the ESA-L2 product was determined by comparing the measured elevations against NASA's IceBridge Airborne Topographic Mapper (ATM) elevations from May 2011. The resulting difference in accuracy was determined by comparing their associated errors. From the multi-temporal measurements spanning the period 2010-2013, elevation changes where estimated and compared to ICESat derived changes from 2003-2009. The result of the study shows good agreement between the NASA measured ATM elevations and the DTU-L2 data. It also shows that the pattern of elevation change is similar to that derived from ICESat data. The accuracy of the DTU-L2 estimated elevations is on average several factors higher compared to the ESA-L2 elevation product. These preliminary results demonstrates that CryoSat elevation data

  8. A Prototype Ice-Melting Probe for Collecting Biological Samples from Cryogenic Ice at Low Pressure.

    PubMed

    Davis, Ashley

    2017-08-01

    In the Solar System, the surface of an icy moon is composed of irregular ice formations at cryogenic temperatures (<200 K), with an oxidized surface layer and a tenuous atmosphere at very low pressure (<10 -6 atm). A lander mission, whose aim is to collect and analyze biological samples from the surface ice, must contain a device that collects samples without refreezing liquid and without sublimation of ice. In addition, if the samples are biological in nature, then precautions must be taken to ensure the samples do not overheat or mix with the oxidized layer. To achieve these conditions, the collector must maintain temperatures close to maintenance or growth conditions of the organism (<293 K), and it must separate or neutralize the oxidized layer and be physically gentle. Here, we describe a device that addresses these requirements and is compatible with low atmospheric pressure while using no pumps. The device contains a heated conical probe with a central orifice, which is forced into surface ice and directs the meltwater upward into a reservoir. The force on the probe is proportional to the height of meltwater (pressure) obtained in the system and allows regulation of the melt rate and temperature of the sample. The device can collect 5-50 mL of meltwater from the surface of an ice block at 233-208 K with an environmental pressure of less than 10 -2 atm while maintaining a sample temperature between 273 and 293 K. These conditions maintain most biological samples in a pristine state and maintain the integrity of most organisms' structure and function. Key Words: Europa-Icy moon-Microbe-Eukaryote-Spacecraft. Astrobiology 17, 709-720.

  9. A Case for Microorganisms on Comets, Europa and the Polar Ice Caps of Mars

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.; Pikuta, Elena V.

    2003-01-01

    Microbial extremophiles live on Earth wherever there is liquid water and a source of energy. Observations by ground-based observatories, space missions, and satellites have provided strong evidence that water ice exists today on comets, Europa, Callisto, and Ganymede and in the snow, permafrost, glaciers and polar ice caps of Mars. Studies of the cryoconite pools and ice bubble systems of Antarctica suggest that solar heating of dark rocks entrained in ice can cause localized melting of ice providing ideal conditions for the growth of microbial communities with the creation of micro-environments where trapped metabolic gasses produce entrained isolated atmospheres as in the Antarctic ice-bubble systems. It is suggested that these considerations indicate that several groups of microorganisms should be capable of episodic growth within liquid water envelopes surrounding dark rocks in cometary ices and the permafrost and polar caps of Mars. We discuss some of the types of microorganisms we have encountered within the permafrost and snow of Siberia, the cryoconite pools of Alaska, and frozen deep within the Antarctic ice sheet above Lake Vostok.

  10. The Icebreaker Mission to Search for Life on Mars

    NASA Technical Reports Server (NTRS)

    Stoker, C.; Mckay, C.; Brinckerhoff, W.; Davila, A.; Parro, V.; Quinn, R.

    2015-01-01

    The search for evidence of life on Mars is the ultimate motivation for its scientific exploration. The results from the Phoenix mission indicate that the high N. latitude ice-rich regolith at low elevations is likely to be a recently habitable place on Mars [Stoker et al., 2010]. The near-surface ice likely provided adequate water activity during periods of high obliquity, 3 to 10 Myr ago. Carbon dioxide and nitrogen are present in the atmosphere, and nitrates may be present in the soil. Together with iron in basaltic rocks and perchlorate in the soil they provide carbon and energy sources, and oxidative power to drive metabolism. Furthermore, the presence of organics is possible, as thermally reactive perchlorate would have prevented their detection by Viking and Phoenix. The Mars Icebreaker Life mission [McKay et al., 2013] focuses on the following science goals: (1) Search for biomolecular evidence of life; (2) Search for organic matter from either exogeneous or endogeneous sources using methods that are not effected by the presence of perchlorate; (3) Characterize oxidative species that produced reactivity of soils seen by Viking; and 4) Assess the habitability of the ice bearing soils. The Icebreaker Life payload (Figure 1) includes a 1-m rotary percussive drill that brings cuttings samples to the surface where they are delivered to three instruments (Fig. 1), the Signs of Life Detector (SOLID) [Parro et al., 2011] for biomolecular analysis, Laser Desorption Mass Spectrometer (LDMS) [??? 2015]) for broad spectrum organic analysis, and Wet Chemistry Laboratory (WCL) [Hecht et al., 2009] for detecting soluble species of nutrients and reactive oxidants. The Icebreaker payload fits on the Phoenix spacecraft and can land at the well-characterized Phoe-nix landing site in 2020 in a Discovery-class mission.

  11. A Water Rich Mars Surface Mission Scenario

    NASA Technical Reports Server (NTRS)

    Hoffman, Stephen J.; Andrews, Alida; Joosten, B. Kent; Watts, Kevin

    2017-01-01

    In an on-going effort to make human Mars missions more affordable and sustainable, NASA continues to investigate the innovative leveraging of technological advances in conjunction with the use of accessible Martian resources directly applicable to these missions. One of the resources with the broadest utility for human missions is water. Many past studies of human Mars missions assumed a complete lack of water derivable from local sources. However, recent advances in our understanding of the Martian environment provides growing evidence that Mars may be more "water rich" than previously suspected. This is based on data indicating that substantial quantities of water are mixed with surface regolith, bound in minerals located at or near the surface, and buried in large glacier-like forms. This paper describes an assessment of what could be done in a "water rich" human Mars mission scenario. A description of what is meant by "water rich" in this context is provided, including a quantification of the water that would be used by crews in this scenario. The different types of potential feedstock that could be used to generate these quantities of water are described, drawing on the most recently available assessments of data being returned from Mars. This paper specifically focuses on sources that appear to be buried quantities of water ice. (An assessment of other potential feedstock materials is documented in another paper.) Technologies and processes currently used in terrestrial Polar Regions are reviewed. One process with a long history of use on Earth and with potential application on Mars - the Rodriguez Well - is described and results of an analysis simulating the performance of such a well on Mars are presented. These results indicate that a Rodriguez Well capable of producing the quantities of water identified for a "water rich" human mission are within the capabilities assumed to be available on the Martian surface, as envisioned in other comparable Evolvable

  12. A Water Rich Mars Surface Mission Scenario

    NASA Technical Reports Server (NTRS)

    Hoffman, Stephen J.; Andrews, Alida; Joosten, B. Kent; Watts, Kevin

    2017-01-01

    In an on-going effort to make human Mars missions more affordable and sustainable, NASA continues to investigate the innovative leveraging of technological advances in conjunction with the use of accessible Martian resources directly applicable to these missions. One of the resources with the broadest utility for human missions is water. Many past studies of human Mars missions assumed a complete lack of water derivable from local sources. However, recent advances in our understanding of the Martian environment provides growing evidence that Mars may be more "water rich" than previously suspected. This is based on data indicating that substantial quantities of water are mixed with surface regolith, bound in minerals located at or near the surface, and buried in large glacier-like forms. This paper describes an assessment of what could be done in a "water rich" human Mars mission scenario. A description of what is meant by "water rich" in this context is provided, including a quantification of the water that would be used by crews in this scenario. The different types of potential feedstock that could be used to generate these quantities of water are described, drawing on the most recently available assessments of data being returned from Mars. This paper specifically focuses on sources that appear to be buried quantities of water ice. (An assessment of other potential feedstock materials is documented in another paper.) Technologies and processes currently used in terrestrial polar regions is reviewed. One process with a long history of use on Earth and with potential application on Mars - the Rodriguez Well - is described and results of an analysis simulating the performance of such a well on Mars are presented. These results indicate that a Rodriguez Well capable of producing the quantities of water identified for a "water rich" human mission are within the capabilities assumed to be available on the Martian surface, as envisioned in other comparable Evolvable

  13. Balloons on Ice: Launch # 2 takes flight in Antarctica

    NASA Image and Video Library

    2017-12-08

    The second of three missions as part of NASA’s Antarctica Long Duration Balloon Flight Campaign was successfully launched at 8:10 a.m. EDT, Dec. 2. The Antarctic Impulsive Transient Antenna (ANITA) from the University of Hawaii at Manoa was launched from Antarctica’s Ross Ice Shelf near McMurdo Station with support from the National Science Foundation’s United States Antarctic Program. Scientists will use ANITA’s instruments to study the reactions in the core of stars and as they explode via the release of neutrinos that travel to Earth and interact with the Antarctica ice. More: go.nasa.gov/2ghR6Le

  14. Pack ice along the Kamchatka Peninsula, Russia as seen from STS-60

    NASA Image and Video Library

    1994-02-09

    STS060-73-038 (3-11 Feb 1994) --- Pack ice is documented in this photograph along the coast of the Kamchatka Peninsula of Russia in Zaliv Ozernoj. Newly formed ice continually breaks away from the land and takes the form imposed by coastal currents. Detailed photographs of the ice provide information to scientists in both Russia and the united States about the location and fluctuation of ice edges, and how this new sea ice interacts with ocean and littoral currents. This information results in better ice warnings to shipping traffic and provides data points for long-range climate change research for both the Mission-To-Planet Earth and the Russian Priroda ("Nature") monitoring and assessment programs that are respectively coordinated by NASA and the Russian Academy of Sciences. This photography of ice development in the North Pacific, North Atlantic, the Southern Ocean, the Baltic and North Seas, and the Great Lakes is of great interest to the international scientific community. NASA scientists feel high-resolution analog and digital photography from the Space Shuttle and future craft can be a particularly important component in satisfying their data needs on both an operational and a long-term research basis.

  15. New NASA Laser Technology Reveals How Ice Measures Up

    NASA Image and Video Library

    2014-01-28

    NASA's Multiple Altimeter Beam Experimental Lidar flew over Southwest Greenland's glaciers and sea ice to test a new method of measuring the height of Earth from space. Read more here: 1.usa.gov/1fkvoBp Credit: NASA/Tim Williams NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  16. The role of satellites in snow and ice measurements

    NASA Technical Reports Server (NTRS)

    Wiesnet, D. R.

    1974-01-01

    Earth-orbiting polar satellites are desirable platforms for the remote sensing of snow and ice. Geostationary satellites at a very high altitude (35,900 km) are also desirable platforms for many remote sensors, for communications relay, for flood warning systems, and for telemetry of data from unattended instrumentation in remote, inaccessible places such as the Arctic, Antarctic, or mountain tops. Optimum use of satellite platforms is achieved only after careful consideration of the temporal, spatial, and spectral requirements of the environmental mission. The National Environmental Satellite Service will maintain both types of environmental satellites as part of its mission.

  17. Phoenix - the First Mars Scout Mission

    NASA Technical Reports Server (NTRS)

    Goldstein, Barry; Shotwell, Robert

    2008-01-01

    As the first of the new Mars Scouts missions, the Phoenix project was selected by NASA in August of 2003. Four years later, almost to the day, Phoenix was launched from Cape Canaveral Air Station and successfully injected into an interplanetary trajectory on its way to Mars. This paper will highlight some of the key changes since the 2006 IEEE paper of the same name, as well as activities, challenges and problems encountered on the way to the launch pad. Phoenix Follows the water responding directly to the recently published data from Dr. William Boynton, PI (and Phoenix co-I) of the Mars Odyssey Gamma Ray Spectrometer (GRS). GRS data indicate extremely large quantities of water ice (up to 50% by mass) within the upper 50 cm of the northern polar regolith. Phoenix will land within the north polar region at 68.2 N, 233.4 W identified by GRS to harbor near surface water ice and provide in-situ confirmation of this extraordinary find. Our mission will investigate water in all its phases, and will investigate the history of water as evidenced in the soil characteristics that will be carefully examined by the powerful suite of onboard instrumentation. Access to the critical subsurface region expected to contain this information is made possible by a third generation robotic arm capable of excavating the expected Martian regolith to a depth of 1m. Phoenix has four primary science objectives: 1) Determine the polar climate and weather, interaction with the surface, and composition of the lower atmosphere around 70 N for at least 90 sols focusing on water, ice, dust, noble gases, and CO2. Determine the atmospheric characteristics during descent through the atmosphere. 2) Characterize the geomorphology and active processes shaping the northern plains and the physical properties of the near surface regolith focusing on the role of water. 3) Determine the aqueous mineralogy and chemistry as well as the adsorbed gases and organic content of the regolith. Verify the Odyssey

  18. LIFE: Life Investigation For Enceladus A Sample Return Mission Concept in Search for Evidence of Life.

    PubMed

    Tsou, Peter; Brownlee, Donald E; McKay, Christopher P; Anbar, Ariel D; Yano, Hajime; Altwegg, Kathrin; Beegle, Luther W; Dissly, Richard; Strange, Nathan J; Kanik, Isik

    2012-08-01

    Life Investigation For Enceladus (LIFE) presents a low-cost sample return mission to Enceladus, a body with high astrobiological potential. There is ample evidence that liquid water exists under ice coverage in the form of active geysers in the "tiger stripes" area of the southern Enceladus hemisphere. This active plume consists of gas and ice particles and enables the sampling of fresh materials from the interior that may originate from a liquid water source. The particles consist mostly of water ice and are 1-10 μ in diameter. The plume composition shows H(2)O, CO(2), CH(4), NH(3), Ar, and evidence that more complex organic species might be present. Since life on Earth exists whenever liquid water, organics, and energy coexist, understanding the chemical components of the emanating ice particles could indicate whether life is potentially present on Enceladus. The icy worlds of the outer planets are testing grounds for some of the theories for the origin of life on Earth. The LIFE mission concept is envisioned in two parts: first, to orbit Saturn (in order to achieve lower sampling speeds, approaching 2 km/s, and thus enable a softer sample collection impact than Stardust, and to make possible multiple flybys of Enceladus); second, to sample Enceladus' plume, the E ring of Saturn, and the Titan upper atmosphere. With new findings from these samples, NASA could provide detailed chemical and isotopic and, potentially, biological compositional context of the plume. Since the duration of the Enceladus plume is unpredictable, it is imperative that these samples are captured at the earliest flight opportunity. If LIFE is launched before 2019, it could take advantage of a Jupiter gravity assist, which would thus reduce mission lifetimes and launch vehicle costs. The LIFE concept offers science returns comparable to those of a Flagship mission but at the measurably lower sample return costs of a Discovery-class mission.

  19. Art as a key tool for engaging the public with the ICESat-2 mission

    NASA Astrophysics Data System (ADS)

    Casasanto, V.; Markus, T.

    2017-12-01

    NASA's Ice, Cloud, and land Elevation Satellite (ICESat-2), to be launched in the Fall of 2018, will measure the height of Earth from space using lasers, collecting the most precise and detailed account yet of our planet's elevation. The mission will allow scientists to investigate how global warming is changing the planet's icy polar regions and to take stock of Earth's vegetation. ICESat-2's emphasis on polar ice, as well as its unique measurement approach, has provided an intriguing and accessible focus for the mission's education and outreach programs. Sea ice and land ice are areas have experienced significant change in recent years. It is key to communicate what is happening, why we are measuring these areas and their importance to our global climate. Art is a powerful tool to inspire, engage, and provide an emotional connection to these remote areas. This paper will detail ICESat-2's art/science collaborations, including results from a unique collaboration with art and design school the Savannah College of Art Design (SCAD). Additional programs will be discussed including a multimedia live music program to engage on an emotional level, to communicate the importance of the polar regions to our global climate, and to inspire to take action.

  20. Overview of Mount Washington Icing Sensors Project

    NASA Technical Reports Server (NTRS)

    Ryerson, Charles C.; Politovich, Marcia K.; Rancourt, Kenneth L.; Koenig, George G.; Reinking, Roger F.; Miller, Dean R.

    2003-01-01

    NASA, the FAA, the Department of Defense, the National Center for Atmospheric Research and NOAA are developing techniques for retrieving cloud microphysical properties from a variety of remote sensing technologies. The intent is to predict aircraft icing conditions ahead of aircraft. The Mount Washington Icing Sensors Project MWISP), conducted in April, 1999 at Mt. Washington, NH, was organized to evaluate technologies for the prediction of icing conditions ahead of aircraft in a natural environment, and to characterize icing cloud and drizzle environments. April was selected for operations because the Summit is typically in cloud, generally has frequent freezing precipitation in spring, and the clouds have high liquid water contents. Remote sensing equipment, consisting of radars, radiometers and a lidar, was placed at the base of the mountain, and probes measuring cloud particles, and a radiometer, were operated from the Summit. NASA s Twin Otter research aircraft also conducted six missions over the site. Operations spanned the entire month of April, which was dominated by wrap-around moisture from a low pressure center stalled off the coast of Labrador providing persistent upslope clouds with relatively high liquid water contents and mixed phase conditions. Preliminary assessments indicate excellent results from the lidar, radar polarimetry, radiosondes and summit and aircraft measurements.

  1. Incorporation of New Convective Ice Microphysics into the NASA GISS GCM and Impacts on Cloud Ice Water Path (IWP) Simulation

    NASA Technical Reports Server (NTRS)

    Elsaesser, Greg; Del Genio, Anthony

    2015-01-01

    The CMIP5 configurations of the GISS Model-E2 GCM simulated a mid- and high latitude ice IWP that decreased by 50 relative to that simulated for CMIP3 (Jiang et al. 2012; JGR). Tropical IWP increased by 15 in CMIP5. While the tropical IWP was still within the published upper-bounds of IWP uncertainty derived using NASA A-Train satellite observations, it was found that the upper troposphere (200 mb) ice water content (IWC) exceeded the published upper-bound by a factor of 2. This was largely driven by IWC in deep-convecting regions of the tropics.Recent advances in the model-E2 convective parameterization have been found to have a substantial impact on tropical IWC. These advances include the development of both a cold pool parameterization (Del Genio et al. 2015) and new convective ice parameterization. In this presentation, we focus on the new parameterization of convective cloud ice that was developed using data from the NASA TC4 Mission. Ice particle terminal velocity formulations now include information from a number of NASA field campaigns. The new parameterization predicts both an ice water mass weighted-average particle diameter and a particle cross sectional area weighted-average size diameter as a function of temperature and ice water content. By assuming a gamma-distribution functional form for the particle size distribution, these two diameter estimates are all that are needed to explicitly predict the distribution of ice particles as a function of particle diameter.GCM simulations with the improved convective parameterization yield a 50 decrease in upper tropospheric IWC, bringing the tropical and global mean IWP climatologies into even closer agreement with the A-Train satellite observation best estimates.

  2. Incorporation of New Convective Ice Microphysics into the NASA GISS GCM and Impacts on Cloud Ice Water Path (IWP) Simulation

    NASA Astrophysics Data System (ADS)

    Elsaesser, G.; Del Genio, A. D.

    2015-12-01

    The CMIP5 configurations of the GISS Model-E2 GCM simulated a mid- and high-latitude ice IWP that decreased by ~50% relative to that simulated for CMIP3 (Jiang et al. 2012; JGR). Tropical IWP increased by ~15% in CMIP5. While the tropical IWP was still within the published upper-bounds of IWP uncertainty derived using NASA A-Train satellite observations, it was found that the upper troposphere (~200 mb) ice water content (IWC) exceeded the published upper-bound by a factor of ~2. This was largely driven by IWC in deep-convecting regions of the tropics. Recent advances in the model-E2 convective parameterization have been found to have a substantial impact on tropical IWC. These advances include the development of both a cold pool parameterization (Del Genio et al. 2015) and new convective ice parameterization. In this presentation, we focus on the new parameterization of convective cloud ice that was developed using data from the NASA TC4 Mission. Ice particle terminal velocity formulations now include information from a number of NASA field campaigns. The new parameterization predicts both an ice water mass weighted-average particle diameter and a particle cross sectional area weighted-average size diameter as a function of temperature and ice water content. By assuming a gamma-distribution functional form for the particle size distribution, these two diameter estimates are all that are needed to explicitly predict the distribution of ice particles as a function of particle diameter. GCM simulations with the improved convective parameterization yield a ~50% decrease in upper tropospheric IWC, bringing the tropical and global mean IWP climatologies into even closer agreement with the A-Train satellite observation best estimates.

  3. Ice Crystal Icing Research at NASA

    NASA Technical Reports Server (NTRS)

    Flegel, Ashlie B.

    2017-01-01

    Ice crystals found at high altitude near convective clouds are known to cause jet engine power-loss events. These events occur due to ice crystals entering a propulsion system's core flowpath and accreting ice resulting in events such as uncommanded loss of thrust (rollback), engine stall, surge, and damage due to ice shedding. As part of a community with a growing need to understand the underlying physics of ice crystal icing, NASA has been performing experimental efforts aimed at providing datasets that can be used to generate models to predict the ice accretion inside current and future engine designs. Fundamental icing physics studies on particle impacts, accretion on a single airfoil, and ice accretions observed during a rollback event inside a full-scale engine in the Propulsion Systems Laboratory are summarized. Low fidelity code development using the results from the engine tests which identify key parameters for ice accretion risk and the development of high fidelity codes are described. These activities have been conducted internal to NASA and through collaboration efforts with industry, academia, and other government agencies. The details of the research activities and progress made to date in addressing ice crystal icing research challenges are discussed.

  4. Ice Crystal Icing Research at NASA

    NASA Technical Reports Server (NTRS)

    Flegel, Ashlie B.

    2017-01-01

    Ice crystals found at high altitude near convective clouds are known to cause jet engine power-loss events. These events occur due to ice crystals entering a propulsion systems core flowpath and accreting ice resulting in events such as uncommanded loss of thrust (rollback), engine stall, surge, and damage due to ice shedding. As part of a community with a growing need to understand the underlying physics of ice crystal icing, NASA has been performing experimental efforts aimed at providing datasets that can be used to generate models to predict the ice accretion inside current and future engine designs. Fundamental icing physics studies on particle impacts, accretion on a single airfoil, and ice accretions observed during a rollback event inside a full-scale engine in the Propulsion Systems Laboratory are summarized. Low fidelity code development using the results from the engine tests which identify key parameters for ice accretion risk and the development of high fidelity codes are described. These activities have been conducted internal to NASA and through collaboration efforts with industry, academia, and other government agencies. The details of the research activities and progress made to date in addressing ice crystal icing research challenges are discussed.

  5. Systems Engineering Challenges for GSFC Space Science Mission Operations

    NASA Technical Reports Server (NTRS)

    Thienel, Julie; Harman, Richard R.

    2017-01-01

    The NASA Goddard Space Flight Center Space Science Mission Operations (SSMO) project currently manages19 missions for the NASA Science Mission Directorate, within the Planetary, Astrophysics, and Heliophysics Divisions. The mission lifespans range from just a few months to more than20 years. The WIND spacecraft, the oldest SSMO mission, was launched in 1994. SSMO spacecraft reside in low earth, geosynchronous,highly elliptical, libration point, lunar, heliocentric,and Martian orbits. SSMO spacecraft range in size from 125kg (Aeronomy of Ice in the Mesosphere (AIM)) to over 4000kg (Fermi Gamma-Ray Space Telescope (Fermi)). The attitude modes include both spin and three-axis stabilized, with varying requirements on pointing accuracy. The spacecraft are operated from control centers at Goddard and off-site control centers;the Lunar Reconnaissance Orbiter (LRO), the Solar Dynamics Observatory (SDO) and Magnetospheric MultiScale (MMS)mission were built at Goddard. The Advanced Composition Explorer (ACE) and Wind are operated out of a multi-mission operations center, which will also host several SSMO-managed cubesats in 2017. This paper focuses on the systems engineeringchallenges for such a large and varied fleet of spacecraft.

  6. Summary of Research Issues in Behavior and Performance in Isolated and Confined Extreme (ICE) Environments

    NASA Technical Reports Server (NTRS)

    Palinkas, Lawrence A.

    2000-01-01

    The papers presented in this section describe changes in behavior and performance in various isolated and confined extreme (ICE) environments, including Antarctic expeditions and research stations, space simulators and isolation chambers, and submarines. Each of these environments possesses characteristics that are in some way analogous to those found on long-duration space missions. Despite differences in length of mission, characteristics of mission personnel or crew, and characteristics in the physical environment, the various ICE environments described in this collection of papers appear to produce similar changes in behavior and performance. These changes include increased disturbances of mood, increased rates of psychiatric disorder, increased interpersonal tension, and a disruption of circadian rhythms. However, these environments do not inherently produce decrements in performance. Palinkas and colleagues suggest that prolonged exposure to the isolation and confinement in the Antarctic can actually have positive or "salutogenic" effects as well, evidenced by a decrease in mood disturbances and increase in performance measures.

  7. Intercomparison of snow depth retrievals over Arctic sea ice from radar data acquired by Operation IceBridge

    NASA Astrophysics Data System (ADS)

    Kwok, Ron; Kurtz, Nathan T.; Brucker, Ludovic; Ivanoff, Alvaro; Newman, Thomas; Farrell, Sinead L.; King, Joshua; Howell, Stephen; Webster, Melinda A.; Paden, John; Leuschen, Carl; MacGregor, Joseph A.; Richter-Menge, Jacqueline; Harbeck, Jeremy; Tschudi, Mark

    2017-11-01

    Since 2009, the ultra-wideband snow radar on Operation IceBridge (OIB; a NASA airborne mission to survey the polar ice covers) has acquired data in annual campaigns conducted during the Arctic and Antarctic springs. Progressive improvements in radar hardware and data processing methodologies have led to improved data quality for subsequent retrieval of snow depth. Existing retrieval algorithms differ in the way the air-snow (a-s) and snow-ice (s-i) interfaces are detected and localized in the radar returns and in how the system limitations are addressed (e.g., noise, resolution). In 2014, the Snow Thickness On Sea Ice Working Group (STOSIWG) was formed and tasked with investigating how radar data quality affects snow depth retrievals and how retrievals from the various algorithms differ. The goal is to understand the limitations of the estimates and to produce a well-documented, long-term record that can be used for understanding broader changes in the Arctic climate system. Here, we assess five retrieval algorithms by comparisons with field measurements from two ground-based campaigns, including the BRomine, Ozone, and Mercury EXperiment (BROMEX) at Barrow, Alaska; a field program by Environment and Climate Change Canada at Eureka, Nunavut; and available climatology and snowfall from ERA-Interim reanalysis. The aim is to examine available algorithms and to use the assessment results to inform the development of future approaches. We present results from these assessments and highlight key considerations for the production of a long-term, calibrated geophysical record of springtime snow thickness over Arctic sea ice.

  8. Ice sheet margins and ice shelves

    NASA Technical Reports Server (NTRS)

    Thomas, R. H.

    1984-01-01

    The effect of climate warming on the size of ice sheet margins in polar regions is considered. Particular attention is given to the possibility of a rapid response to warming on the order of tens to hundreds of years. It is found that the early response of the polar regions to climate warming would be an increase in the area of summer melt on the ice sheets and ice shelves. For sufficiently large warming (5-10C) the delayed effects would include the breakup of the ice shelves by an increase in ice drainage rates, particularly from the ice sheets. On the basis of published data for periodic changes in the thickness and melting rates of the marine ice sheets and fjord glaciers in Greenland and Antarctica, it is shown that the rate of retreat (or advance) of an ice sheet is primarily determined by: bedrock topography; the basal conditions of the grounded ice sheet; and the ice shelf condition downstream of the grounding line. A program of satellite and ground measurements to monitor the state of ice sheet equilibrium is recommended.

  9. 25 years of elevation changes of the Greenland Ice Sheet from ERS, Envisat, and CryoSat-2 radar altimetry

    NASA Astrophysics Data System (ADS)

    Sandberg Sørensen, Louise; Simonsen, Sebastian B.; Forsberg, René; Khvorostovsky, Kirill; Meister, Rakia; Engdahl, Marcus E.

    2018-08-01

    The shape of the large ice sheets responds rapidly to climate change, making the elevation changes of these ice-covered regions an essential climate variable. Consistent, long time series of these elevation changes are of great scientific value. Here, we present a newly-developed data product of 25 years of elevation changes of the Greenland Ice Sheet, derived from satellite radar altimetry. The data product is made publicly available within the Greenland Ice Sheets project as part of the ESA Climate Change Initiative programme. Analyzing repeated elevation measurements from radar altimetry is widely used for monitoring changes of ice-covered regions. The Greenland Ice Sheet has been mapped by conventional radar altimetry since the launch of ERS-1 in 1991, which was followed by ERS-2, Envisat and currently CryoSat-2. The recently launched Sentinel-3A will provide a continuation of the radar altimetry time series. Since 2010, CryoSat-2 has for the first time measured the changes in the coastal regions of the ice sheet with radar altimetry, with its novel SAR Interferometric (SARIn) mode, which provides improved measurement over regions with steep slopes. Here, we apply a mission-specific combination of cross-over, along-track and plane-fit elevation change algorithms to radar data from the ERS-1, ERS-2, Envisat and CryoSat-2 radar missions, resulting in 25 years of nearly continuous elevation change estimates (1992-2016) of the Greenland Ice Sheet. This analysis has been made possible through the recent reprocessing in the REAPER project, of data from the ERS-1 and ERS-2 radar missions, making them consistent with Envisat data. The 25 years of elevation changes are evaluated as 5-year running means, shifted almost continuously by one year. A clear acceleration in thinning is evident in the 5-year maps of elevation following 2003, while only small elevation changes observed in the maps from the 1990s.

  10. Underground Martian Ice Deposit Exposed at Scarp

    NASA Image and Video Library

    2018-01-11

    Click on the image for larger version A cross-section of a thick sheet of underground ice is exposed at the steep slope (or scarp) that appears bright blue in this enhanced-color view from the High Resolution Imaging Science Experiment (HiRISE) camera on NASA's Mars Reconnaissance Orbiter. The view covers an area about 550 yards (500 meters) wide. Figure 1 includes a 100-meter (109-yard) scale bar. North is toward the top. The upper third of the image shows level ground that is about 140 yards (130 meters) higher in elevation than the ground in the bottom third. In between, the scarp descends sharply, exposing about 260 vertical feet (80 vertical meters) of water ice. Color is exaggerated to make differences in surface materials easier to see. The presence of exposed water ice at this site was confirmed by observation with the same orbiter's Compact Reconnaissance Imaging Spectrometer for Mars (CRISM). In January 2018, in the journal Science, researchers reported finding and studying eight such ice-exposing scarps in the middle latitudes of Mars. The presence of vast underground ice deposits in Mars' middle latitudes was known previously. The report of unusual sites where they are exposed provides new information about their depth and layering. It also identifies potential water resources for future Mars missions and possibilities for studying Martian climate history by examining the ice layers holding a record of past climate cycles. The ice may have been deposited as snow when the tilt of Mars' rotation axis was greater than it is now. HiRISE observation ESP_022389_1230 was made on May 7, 2011, at 56.6 degrees south latitude, 114.1 degrees east longitude. https://photojournal.jpl.nasa.gov/catalog/PIA22077

  11. Midlatitude Ice-Rich Ground on Mars: An Important Target for Science and In Situ Resource Utilization on Human Missions

    NASA Technical Reports Server (NTRS)

    Stoker, Carol; Heldmann, Jennifer

    2015-01-01

    The region of ROI is characterized by proven presence of near surface ground ice and numerous periglacial features. Midlatitude ground ice on Mars is of significant scientific interest for understanding the history and evolution of ice stability on Mars, the impact that changes in insolation produced by variations in Mars’ orbital parameters has on the regions climate, and could provide human exploration with a reliable and plentiful in situ resource. For both science and exploration, assessing the astrobiological potential of the ice is important in terms of (1) understanding the potential for life on Mars and (2) evaluating the presence of possible biohazards in advance of human exploration. Heldmann et al. (2014) studied locations on Mars in the Amazonis Planitia region where near surface ground ice was exposed by new impact craters (Byrne et al. 2009). The study examined whether sites in this region were suitable for human exploration including reviewing the evidence for midlatitude ground ice, discussing the possible explanations for its occurrence, assessing its potential habitability for modern life, and evaluating the resource potential. They systematically analyzed remote-sensing data sets to identify a viable landing site. Five sites where ground ice was exposed were examined with HiRise imaging and were classified according to (1) presence of polygons as a proxy for subsurface ice, (2) presence and abundance of rough topographic obstacles (e.g., large cracks, cliffs, uneven topography), (3) rock density, (4) presence and abundance of large boulders, and (5) presence of craters. A suitable landing site was found having ground ice at only 0.15m depth, and no landing site hazards within a 25 km landing ellipse. This paper presents results of that study and examines the relevance of this ROI to the workshop goals.

  12. A Water Rich Mars Surface Mission Scenario

    NASA Technical Reports Server (NTRS)

    Hoffman, Stephen; Andrews, Alida; Joosten, Kent; Watts, Kevin

    2017-01-01

    The surface of Mars once had abundant water flowing on its surface, but now there is a general perception that this surface is completely dry. Several lines of research have shown that there are sources of potentially large quantities of water at many locations on the surface, including regions considered as candidates for future human missions. Traditionally, system designs for these human missions are constrained to tightly recycle water and oxygen, and current resource utilization strategies involve ascent vehicle oxidizer production only. But the assumption of relatively abundant extant water may change this. Several scenarios were constructed to evaluate water requirements for human Mars expeditions to assess the impact to system design if locally produced water is available. Specifically, we have assessed water resources needed for 1) ascent vehicle oxidizer and fuel production, 2) open-loop water and oxygen life support requirements along with more robust usage scenarios, and 3) crew radiation protection augmentation. In this assessment, production techniques and the associated chemistry to transform Martian water and atmosphere into these useful commodities are identified, but production mass and power requirements are left to future analyses. The figure below illustrates the type of water need assessment performed and that will be discussed. There have been several sources of feedstock material discussed in recent literature that could be used to produce these quantities of water. This paper will focus on Mars surface features that resemble glacier-like forms on Earth. Several lines of evidence indicate that some of these features are in fact buried ice, likely remnants from an earlier ice age on Mars. This paper examines techniques and hardware systems used in the polar regions of Earth to access this buried ice and withdraw water from it. These techniques and systems will be described to illustrate options available. A technique known as a Rodriguez Well

  13. STS-121: Discovery Mission Management Team Briefing

    NASA Technical Reports Server (NTRS)

    2006-01-01

    The briefing opened with Bruce Buckingham (NASA Public Affairs) introducing John Shannon (Chairman, Mission Management Team, JSC), John Chapman (External Tank Project Manager), Mike Leinbach (Shuttle Launch Director), and 1st Lt. Kaleb Nordgren (USAF 45th Weather Squadron). John Shannon reported that the team for hydrogen loading was proceeding well and the external tank detanking was completed. During detanking the inspection team cracked foam caused by condensation and ice formation as the tank expanded and contracted. Aerothermal analysis and analysis fro ice formation will be completed before launch. John Chapman explained the mechanics of the external tank design, the foam cracking, bracket design, etc. Mike Leinbach discussed the inspection teams and their inspection final inspection for ice formation before and after external tank filling. The inspection team of eight very experienced personnel also use telescopes with cameras to find any problems before launch. Kaleb Nordgren discussed weather and said there was a 40% chance of weather prohibiting launch. The floor was the opened for questions from the press.

  14. Sea Ice Flows, Sea of Okhotsk, CIS

    NASA Image and Video Library

    1991-05-06

    STS039-84-29AL (28 April-6 May 1991) --- This nearly vertical photograph of the North Atlantic, taken outside of the sunglint pattern, illustrates the extreme contrast between highly reflective ice, having a large percentage of between-crystal air space, and the low-reflectance water, which absorbs most of the light that propagates into it from the air. The ice drifts along with the surface currents and wind and may therefore be used as a natural Langranian* tracer. Photographs such as this, taken several times over the course of a mission, may be used to investigate near-surface circulation in high-latitude oceans. *A Langranian tracer is anything that can be tracked as it drifts along with the water, as opposed to staying in one position and measuring how fast the water goes by.

  15. Ice Layer Cross-Section In False Color

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    The theme for the weeks of 1/17 and 1/24 is the north polar region of Mars as seen in false color THEMIS images. Ice/frost will typically appear as bright blue in color; dust mantled ice will appear in tones of red/orange.

    This image of shows a cross sectional view of the ice layers. Note the subtle peach banding on the left side of the image. The time variation that the bands represent is not yet understood.

    Image information: VIS instrument. Latitude 83.5, Longitude 118.2 East (241.8 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  16. Airborne geophysics for mesoscale observations of polar sea ice in a changing climate

    NASA Astrophysics Data System (ADS)

    Hendricks, S.; Haas, C.; Krumpen, T.; Eicken, H.; Mahoney, A. R.

    2016-12-01

    Sea ice thickness is an important geophysical parameter with a significant impact on various processes of the polar energy balance. It is classified as Essential Climate Variable (ECV), however the direct observations of the large ice-covered oceans are limited due to the harsh environmental conditions and logistical constraints. Sea-ice thickness retrieval by the means of satellite remote sensing is an active field of research, but current observational capabilities are not able to capture the small scale variability of sea ice thickness and its evolution in the presence of surface melt. We present an airborne observation system based on a towed electromagnetic induction sensor that delivers long range measurements of sea ice thickness for a wide range of sea ice conditions. The purpose-built sensor equipment can be utilized from helicopters and polar research aircraft in multi-role science missions. While airborne EM induction sounding is used in sea ice research for decades, the future challenge is the development of unmanned aerial vehicle (UAV) platform that meet the requirements for low-level EM sea ice surveys in terms of range and altitude of operations. The use of UAV's could enable repeated sea ice surveys during the the polar night, when manned operations are too dangerous and the observational data base is presently very sparse.

  17. Ice, Ice, Baby!

    NASA Astrophysics Data System (ADS)

    Hamilton, C.

    2008-12-01

    The Center for Remote Sensing of Ice Sheets (CReSIS) has developed an outreach program based on hands-on activities called "Ice, Ice, Baby". These lessons are designed to teach the science principles of displacement, forces of motion, density, and states of matter. These properties are easily taught through the interesting topics of glaciers, icebergs, and sea level rise in K-8 classrooms. The activities are fun, engaging, and simple enough to be used at science fairs and family science nights. Students who have participated in "Ice, Ice, Baby" have successfully taught these to adults and students at informal events. The lessons are based on education standards which are available on our website www.cresis.ku.edu. This presentation will provide information on the activities, survey results from teachers who have used the material, and other suggested material that can be used before and after the activities.

  18. Extensive Ice Fractures in the Beaufort Sea [detail

    NASA Image and Video Library

    2017-12-08

    much heat the surface was emitting as VIIRS surveyed the area. Cooler areas (sea ice) appear white, while warmer areas (open water) are dark. The light gray plume near the cracks is warmer, moister air escaping from the ocean and blowing downwind. Clouds do not show up well in the VIIRS thermal band, so the storms that fueled the fracturing are not readily visible. While fracturing events are common, few events sprawl across such a large area or produce cracks as long and wide as those seen here. The age of the sea ice in this area was one of the key reasons this event became so widespread. “The region is covered almost completely by seasonal or first-year ice—ice that has formed since last September,” said Meier. “This ice is thinner and weaker than the older, multi-year ice, so it responds more readily to winds and is more easily broken up.” NASA Earth Observatory images by Jesse Allen using VIIRS day-night band data from the Suomi National Polar-orbiting Partnership. Suomi NPP is the result of a partnership between NASA, the National Oceanic and Atmospheric Administration, and the Department of Defense. Caption by Adam Voiland. Instrument: Suomi NPP - VIIRS For more info go to: earthobservatory.nasa.gov/IOTD/view.php?id=80752 Credit: NASA Earth Observatory NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  19. Extensive Ice Fractures in the Beaufort Sea [annotated

    NASA Image and Video Library

    2017-12-08

    much heat the surface was emitting as VIIRS surveyed the area. Cooler areas (sea ice) appear white, while warmer areas (open water) are dark. The light gray plume near the cracks is warmer, moister air escaping from the ocean and blowing downwind. Clouds do not show up well in the VIIRS thermal band, so the storms that fueled the fracturing are not readily visible. While fracturing events are common, few events sprawl across such a large area or produce cracks as long and wide as those seen here. The age of the sea ice in this area was one of the key reasons this event became so widespread. “The region is covered almost completely by seasonal or first-year ice—ice that has formed since last September,” said Meier. “This ice is thinner and weaker than the older, multi-year ice, so it responds more readily to winds and is more easily broken up.” NASA Earth Observatory images by Jesse Allen using VIIRS day-night band data from the Suomi National Polar-orbiting Partnership. Suomi NPP is the result of a partnership between NASA, the National Oceanic and Atmospheric Administration, and the Department of Defense. Caption by Adam Voiland. Instrument: Suomi NPP - VIIRS For more info go to: earthobservatory.nasa.gov/IOTD/view.php?id=80752 Credit: NASA Earth Observatory NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  20. Nimbus-7 (-G) post launch report: Mission success

    NASA Technical Reports Server (NTRS)

    Edelson, B. I.

    1983-01-01

    Nimbus-7, the last of the Nimbus series satellites, was launched from the Space and Missile Test Center at Vandenberg Air Force Base, California on October 24, 1978. The purpose of the mission was to collect global data of the Earth's atmosphere, oceans and polar ice with a payload of eight interdisciplinary research experiments. These experiments represent both domestic and international, scientific and governmental communities.

  1. NASA Briefing New Mission to Weigh in on Earth's Changing Water

    NASA Image and Video Library

    2018-04-30

    At a NASA media briefing on April 30, scientists discussed an upcoming mission that will provide unique insights into Earth’s changing climate and have far-reaching benefits to society, such as improved water resource management. The Gravity Recovery and Climate Experiment Follow-On (GRACE-FO) mission will measure monthly changes in how mass is redistributed within and among Earth’s atmosphere, oceans, land and ice sheets. GRACE-FO’s pair of spacecraft are in final preparations for a California launch no earlier than Saturday, May 19.

  2. Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-109

    NASA Technical Reports Server (NTRS)

    Oliu, Armando

    2005-01-01

    The Debris Team has developed and implemented measures to control damage from debris in the Shuttle operational environment and to make the control measures a part of routine launch flows. These measures include engineering surveillance during vehicle processing and closeout operations, facility and flight hardware inspections before and after launch, and photographic analysis of mission events. Photographic analyses of mission imagery from launch, on-orbit, and landing provide significant data in verifying proper operation of systems and evaluating anomalies. In addition to the Kennedy Space Center Photo/Video Analysis, reports from Johnson Space Center and Marshall Space Flight Center are also included in this document to provide an integrated assessment of the mission.

  3. Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-110

    NASA Technical Reports Server (NTRS)

    Oliu, Armando

    2005-01-01

    The Debris Team has developed and implemented measures to control damage from debris in the Shuttle operational environment and to make the control measures a part of routine launch flows. These measures include engineering surveillance during vehicle processing and closeout operations, facility and flight hardware inspections before and after launch, and photographic analysis of mission events. Photographic analyses of mission imagery from launch, on-orbit, and landing provide significant data in verifying proper operation of systems and evaluating anomalies. In addition to the Kennedy Space Center Photo/Video Analysis, reports from Johnson Space Center and Marshall Space Flight Center are also included in this document to provide an integrated assessment of the mission.

  4. Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-105

    NASA Technical Reports Server (NTRS)

    Oliu, Armando

    2005-01-01

    The Debris Team has developed and implemented measures to control damage from debris in the Shuttle operational environment and to make the control measures a part of routine launch flows. These measures include engineering surveillance during vehicle processing and closeout operations, facility and flight hardware inspections before and after launch, and photographic analysis of mission events. Photographic analyses of mission imagery from launch, on-orbit, and landing provide significant data in verifying proper operation of systems and evaluating anomalies. In addition to the Kennedy Space Center Photo/Video Analysis, reports from Johnson Space Center and Marshall Space Flight Center are also included in this document to provide an integrated assessment of the mission.

  5. Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-104

    NASA Technical Reports Server (NTRS)

    Oliu, Armando

    2005-01-01

    The Debris Team has developed and implemented measures to control damage from debris in the Shuttle operational environment and to make the control measures a part of routine launch flows. These measures include engineering surveillance during vehicle processing and closeout operations, facility and flight hardware inspections before and after launch, and photographic analysis of mission events. Photographic analyses of mission imagery from launch, on-orbit, and landing provide significant data in verifying proper operation of systems and evaluating anomalies. In addition to the Kennedy Space Center Photo/Video Analysis, reports from Johnson Space Center and Marshall Space Flight Center are also included in this document to provide an integrated assessment of the mission.

  6. Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-108

    NASA Technical Reports Server (NTRS)

    Oliu, Armando

    2005-01-01

    The Debris Team has developed and implemented measures to control damage from debris in the Shuttle operational environment and to make the control measures a part of routine launch flows. These measures include engineering surveillance during vehicle processing and closeout operations, facility and flight hardware inspections before and after launch, and photographic analysis of mission events. Photographic analyses of mission imagery from launch, on-orbit, and landing provide significant data in verifying proper operation of systems and evaluating anomalies. In addition to the Kennedy Space Center Photo/Video Analysis, reports from Johnson Space Center and Marshall Space Flight Center are also included in this document to provide an integrated assessment of the mission.

  7. Debris/ice/TPS assessment and integrated photographic analysis for Shuttle Mission STS-45

    NASA Technical Reports Server (NTRS)

    Katnik, Gregory N.; Higginbotham, Scott A.; Davis, J. Bradley

    1992-01-01

    The Debris Team has developed and implemented measures to control damage from debris in the Shuttle operational environment and to make the control measures a part of routine launch flows. These measures include engineering surveillance during vehicle processing and closeout operations, facility and flight hardware inspections before and after launch, and photographic analysis of mission events. Photographic analyses of mission imagery from launch, on-orbit, and landing provide significant data in verifying proper operation of systems and evaluating anomalies. In addition to the Kennedy Space Center (KSC) Photo/Video Analysis, reports from Johnson Space Center, Marshall Space Flight Center, and Rockwell International-Downey are also included to provide an integrated assessment of each Shuttle mission.

  8. Ice Clouds in Color IR

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Released August 9, 2004 This image shows two representations of the same infra-red image in the Elysium region of Mars. On the left is a grayscale image showing surface temperature, and on the right is a false-color composite made from 3 individual THEMIS bands. The false-color image is colorized using a technique called decorrelation stretch (DCS), which emphasizes the spectral differences between the bands to highlight compositional variations.

    The light blue area in the center of this image is a very nice example of a water ice cloud. Water ice is frequently present in the Martian atmosphere as a thin haze. Clouds such as this one can be difficult to identify in a temperature image, but are easy to spot in the DCS images. In this case, the water ice is relatively confined and concentrated which may be due to the topography of the Elysium volcanic construct.

    Image information: IR instrument. Latitude 23.2, Longitude 150.1 East (209.9 West). 100 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed

  9. ICESat Laser Altimeter Pointing, Ranging and Timing Calibration from Integrated Residual Analysis: A Summary of Early Mission Results

    NASA Technical Reports Server (NTRS)

    Lutchke, Scott B.; Rowlands, David D.; Harding, David J.; Bufton, Jack L.; Carabajal, Claudia C.; Williams, Teresa A.

    2003-01-01

    On January 12, 2003 the Ice, Cloud and land Elevation Satellite (ICESat) was successfUlly placed into orbit. The ICESat mission carries the Geoscience Laser Altimeter System (GLAS), which consists of three near-infrared lasers that operate at 40 short pulses per second. The instrument has collected precise elevation measurements of the ice sheets, sea ice roughness and thickness, ocean and land surface elevations and surface reflectivity. The accurate geolocation of GLAS's surface returns, the spots from which the laser energy reflects on the Earth's surface, is a critical issue in the scientific application of these data Pointing, ranging, timing and orbit errors must be compensated to accurately geolocate the laser altimeter surface returns. Towards this end, the laser range observations can be fully exploited in an integrated residual analysis to accurately calibrate these geolocation/instrument parameters. Early mission ICESat data have been simultaneously processed as direct altimetry from ocean sweeps along with dynamic crossovers resulting in a preliminary calibration of laser pointing, ranging and timing. The calibration methodology and early mission analysis results are summarized in this paper along with future calibration activities

  10. Analytical Incorporation of Velocity Parameters into Ice Sheet Elevation Change Rate Computations

    NASA Astrophysics Data System (ADS)

    Nagarajan, S.; Ahn, Y.; Teegavarapu, R. S. V.

    2014-12-01

    NASA, ESA and various other agencies have been collecting laser, optical and RADAR altimetry data through various missions to study the elevation changes of the Cryosphere. The laser altimetry collected by various airborne and spaceborne missions provides multi-temporal coverage of Greenland and Antarctica since 1993 to now. Though these missions have increased the data coverage, considering the dynamic nature of the ice surface, it is still sparse both spatially and temporally for accurate elevation change detection studies. The temporal and spatial gaps are usually filled by interpolation techniques. This presentation will demonstrate a method to improve the temporal interpolation. Considering the accuracy, repeat coverage and spatial distribution, the laser scanning data has been widely used to compute elevation change rate of Greenland and Antarctica ice sheets. A major problem with these approaches is non-consideration of ice sheet velocity dynamics into change rate computations. Though the correlation between velocity and elevation change rate have been noticed by Hurkmans et al., 2012, the corrections for velocity changes were applied after computing elevation change rates by assuming linear or higher polynomial relationship. This research will discuss the possibilities of parameterizing ice sheet dynamics as unknowns (dX and dY) in the adjustment mathematical model that computes elevation change (dZ) rates. It is a simultaneous computation of changes in all three directions of the ice surface. Also, the laser points between two time epochs in a crossover area have different distribution and count. Therefore, a registration method that does not require point-to-point correspondence is required to recover the unknown elevation and velocity parameters. This research will experiment the possibilities of registering multi-temporal datasets using volume minimization algorithm, which determines the unknown dX, dY and dZ that minimizes the volume between two or

  11. The Lunar Reconnaissance Orbiter, a Planning Tool for Missions to the Moon

    NASA Astrophysics Data System (ADS)

    Keller, J. W.; Petro, N. E.

    2017-12-01

    The Lunar Reconnaissance Orbiter Mission was conceived as a one year exploration mission to pave the way for a return to the lunar surface, both robotically and by humans. After a year in orbit LRO transitioned to a science mission but has operated in a duel role of science and exploration ever since. Over the years LRO has compiled a wealth of data that can and is being used for planning future missions to the Moon by NASA, other national agencies and by private enterprises. While collecting this unique and unprecedented data set, LRO's science investigations have uncovered new questions that motivate new missions and targets. Examples include: when did volcanism on the Moon cease, motivating a sample return mission from an irregular mare patch such as Ina-D; or, is there significant water ice sequestered near the poles outside of the permanently shaded regions? In this presentation we will review the data products, tools and maps that are available for mission planning, discuss how the operating LRO mission can further enhance future missions, and suggest new targets motivated by LRO's scientific investigations.

  12. Ice stream activity scaled to ice sheet volume during Laurentide Ice Sheet deglaciation.

    PubMed

    Stokes, C R; Margold, M; Clark, C D; Tarasov, L

    2016-02-18

    The contribution of the Greenland and West Antarctic ice sheets to sea level has increased in recent decades, largely owing to the thinning and retreat of outlet glaciers and ice streams. This dynamic loss is a serious concern, with some modelling studies suggesting that the collapse of a major ice sheet could be imminent or potentially underway in West Antarctica, but others predicting a more limited response. A major problem is that observations used to initialize and calibrate models typically span only a few decades, and, at the ice-sheet scale, it is unclear how the entire drainage network of ice streams evolves over longer timescales. This represents one of the largest sources of uncertainty when predicting the contributions of ice sheets to sea-level rise. A key question is whether ice streams might increase and sustain rates of mass loss over centuries or millennia, beyond those expected for a given ocean-climate forcing. Here we reconstruct the activity of 117 ice streams that operated at various times during deglaciation of the Laurentide Ice Sheet (from about 22,000 to 7,000 years ago) and show that as they activated and deactivated in different locations, their overall number decreased, they occupied a progressively smaller percentage of the ice sheet perimeter and their total discharge decreased. The underlying geology and topography clearly influenced ice stream activity, but--at the ice-sheet scale--their drainage network adjusted and was linked to changes in ice sheet volume. It is unclear whether these findings can be directly translated to modern ice sheets. However, contrary to the view that sees ice streams as unstable entities that can accelerate ice-sheet deglaciation, we conclude that ice streams exerted progressively less influence on ice sheet mass balance during the retreat of the Laurentide Ice Sheet.

  13. Sensitivity of Lunar Resource Economic Model to Lunar Ice Concentration

    NASA Technical Reports Server (NTRS)

    Blair, Brad; Diaz, Javier

    2002-01-01

    Lunar Prospector mission data indicates sufficient concentration of hydrogen (presumed to be in the form of water ice) to form the basis for lunar in-situ mining activities to provide a source of propellant for near-Earth and solar system transport missions. A model being developed by JPL, Colorado School of Mines, and CSP, Inc. generates the necessary conditions under which a commercial enterprise could earn a sufficient rate of return to develop and operate a LEO propellant service for government and commercial customers. A combination of Lunar-derived propellants, L-1 staging, and orbital fuel depots could make commercial LEO/GEO development, inter-planetary missions and the human exploration and development of space more energy, cost, and mass efficient.

  14. Convection Models for Ice-Water System: Dynamical Investigation of Phase Transition

    NASA Astrophysics Data System (ADS)

    Allu Peddinti, D.; McNamara, A. K.

    2012-12-01

    Ever since planetary missions of Voyager and Galileo revealed a dynamically altered surface of the icy moon Europa, a possible subsurface ocean under an icy shell has been speculated and surface features have been interpreted from an interior dynamics perspective. The physics of convection in a two phase water-ice system is governed by a wide set of physical parameters that include melting viscosity of ice, the variation of viscosity due to pressure and temperature, temperature contrast across and tidal heating within the system, and the evolving thickness of each layer. Due to the extreme viscosity contrast between liquid water and solid ice, it is not feasible to model the entire system to study convection. However, using a low-viscosity proxy (higher viscosity than the liquid water but much lower than solid ice) for the liquid phase provides a convenient approximation of the system, and allows for a relatively realistic representation of convection within the ice layer while also providing a self-consistent ice layer thickness that is a function of the thermal state of the system. In order to apply this method appropriately, we carefully examine the upper bound of viscosity required for the low-viscosity proxy to adequately represent the liquid phase. We identify upper bounds on the viscosity of the proxy liquid such that convective dynamics of the ice are not affected by further reductions of viscosity. Furthermore, we investigate how the temperature contrast across the system and viscosity contrast between liquid and ice control ice layer thickness. We also investigate ice shell thickening as a function of cooling, particularly how viscosity affects the conduction-to-convection transition within the ice shell. Finally, we present initial results that investigate the effects that latent heat of fusion (due to the ice-water phase transition) has on ice convection.

  15. Stennis engineer part of LCROSS moon mission

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Karma Snyder, a project manager at NASA's John C. Stennis Space Center, was a senior design engineer on the RL10 liquid rocket engine that powered the Centaur, the upper stage of the rocket used in NASA's Lunar CRater Observation and Sensing Satellite (LCROSS) mission in October 2009. Part of the LCROSS mission was to search for water on the moon by striking the lunar surface with a rocket stage, creating a plume of debris that could be analyzed for water ice and vapor. Snyder's work on the RL10 took place from 1995 to 2001 when she was a senior design engineer with Pratt & Whitney Rocketdyne. Years later, she sees the project as one of her biggest accomplishments in light of the LCROSS mission. 'It's wonderful to see it come into full service,' she said. 'As one of my co-workers said, the original dream was to get that engine to the moon, and we're finally realizing that dream.'

  16. Europa Explorer: A Mission to Explore Europa and Investigate Its Habitability

    NASA Astrophysics Data System (ADS)

    Pappalardo, Robert T.; Clark, K.; Greeley, R.; Abelson, R.; Bills, B.; Blankenship, D.; Jorgenson, E.; Kahn, P.; Khurana, K.; Kirby, K.; Klaasen, K.; Lock, R.; Man, G.; McCord, T.; Moore, W.; Paranicas, C.; Prockter, L.; Rasmussen, R.; Sogin, M.

    2007-10-01

    Europa is the astrobiological archetype for icy satellite habitability, with a warm, salty, water ocean with plausible chemical energy sources. It is also a geophysical wonderland of interrelated ice shell processes that are intimately related to the ocean and tides, and of complex interactions among its interior, surface, atmosphere, and particles and fields environments. The Europa Explorer is a mature orbiter mission concept to explore Europa and investigate its habitability, fulfilling objectives laid out by the National Research Council's Planetary Science Decadal Survey. The mission examines Europa's ocean, ice shell, chemistry, geology, external environment (fields, particles, and atmosphere), and neighborhood (the Jupiter system). Science questions for Europa are well-honed, yet we anticipate being surprised by discoveries. Europa Explorer would nominally launch in June 2015, on a Venus-Earth-Earth Gravity Assist trajectory with a 6 year flight time to the Jupiter system. It would orbit Jupiter for 2 years using gravity assists of the icy Galilean satellites to lower its energy, providing the opportunity for significant Jupiter system science. It would then enter Europa orbit at an altitude of 100-200 km, where it would perform science investigations for 1 year. A campaign-based operations scenario has been developed which permits return of 5.4 Tbits of science data beginning in July 2021, and emphasizing the highest priority Europa science objectives early in the orbital phase of the mission. The baseline mission concept includes 11 instruments that address high-priority investigations while providing the flexibility to respond to discoveries. The radiation design approach has been independently reviewed and validated, and a statistical lifetime prediction method has been developed. Past technology investments have reduced mission risk, making the Europa Explorer mission ready to move forward in order to address the high-priority astrobiological and

  17. Assessment of Cloud Screening with Apparent Surface Reflectance in Support of the ICESat-2 Mission

    NASA Technical Reports Server (NTRS)

    Yang, Yuekui; Marshak, Alexander; Palm, Stephen P.; Wang, Zhuosen; Schaaf, Crystal

    2011-01-01

    The separation of cloud and clear scenes is usually one of the first steps in satellite data analysis. Before deriving a geophysical product, almost every satellite mission requires a cloud mask to label a scene as either clear or cloudy through a cloud detection procedure. For clear scenes, products such as surface properties may be retrieved; for cloudy scenes, scientist can focus on studying the cloud properties. Hence the quality of cloud detection directly affects the quality of most satellite operational and research products. This is certainly true for the Ice, Cloud, and land Elevation Satellite-2 (lCESat-2), which is the successor to the ICESat-l. As a top priority mission, ICESat-2 will continue to provide measurements of ice sheets and sea ice elevation on a global scale. Studies have shown that clouds can significantly affect the accuracy of the retrieved results. For example, some of the photons (a photon is a basic unit of light) in the laser beam will be scattered by cloud particles on its way. So instead of traveling in a straight line, these photons are scattered sideways and have traveled a longer path. This will result in biases in ice sheet elevation measurements. Hence cloud screening must be done and be done accurately before the retrievals.

  18. Dynamic Ice-Water Interactions Form Europa's Chaos Terrains

    NASA Astrophysics Data System (ADS)

    Blankenship, D. D.; Schmidt, B. E.; Patterson, G. W.; Schenk, P.

    2011-12-01

    Unique to the surface of Europa, chaos terrain is diagnostic of the properties and dynamics of its icy shell. We present a new model that suggests large melt lenses form within the shell and that water-ice interactions above and within these lenses drive the production of chaos. This model is consistent with key observations of chaos, predicts observables for future missions, and indicates that the surface is likely still active today[1]. We apply lessons from ice-water interaction in the terrestrial cryosphere to hypothesize a dynamic lense-collapse model to for Europa's chaos terrain. Chaos terrain morphology, like that of Conamara chaos and Thera Macula, suggests a four-phase formation [1]: 1) Surface deflection occurs as ice melts over ascending thermal plumes, as regularly occurs on Earth as subglacial volcanoes activate. The same process can occur at Europa if thermal plumes cause pressure melt as they cross ice-impurity eutectics. 2) Resulting hydraulic gradients and driving forces produce a sealed, pressurized melt lense, akin to the hydraulic sealing of subglacial caldera lakes. On Europa, the water cannot escape the lense due to the horizontally continuous ice shell. 3) Extension of the brittle ice lid above the lense opens cracks, allowing for the ice to be hydrofractured by pressurized water. Fracture, brine injection and percolation within the ice and possible iceberg toppling produces ice-melange-like granular matrix material. 4) Refreezing of the melt lense and brine-filled pores and cracks within the matrix results in raised chaos. Brine soaking and injection concentrates the ice in brines and adds water volume to the shell. As this englacial water freezes, the now water-filled ice will expand, not unlike the process of forming pingos and other "expansion ice" phenomena on Earth. The refreezing can raise the surface and create the oft-observed matrix "domes" In this presentation, we describe how catastrophic ice-water interactions on Earth have

  19. Submillimeter-Wave Cloud Ice Radiometry

    NASA Technical Reports Server (NTRS)

    Walter, Steven J.

    1999-01-01

    Submillimeter-wave cloud ice radiometry is a new and innovative technique for characterizing cirrus ice clouds. Cirrus clouds affect Earth's climate and hydrological cycle by reflecting incoming solar energy, trapping outgoing IR radiation, sublimating into vapor, and influencing atmospheric circulation. Since uncertainties in the global distribution of cloud ice restrict the accuracy of both climate and weather models, successful development of this technique could provide a valuable tool for investigating how clouds affect climate and weather. Cloud ice radiometry could fill an important gap in the observational capabilities of existing and planned Earth-observing systems. Using submillimeter-wave radiometry to retrieve properties of ice clouds can be understood with a simple model. There are a number of submillimeter-wavelength spectral regions where the upper troposphere is transparent. At lower tropospheric altitudes water vapor emits a relatively uniform flux of thermal radiation. When cirrus clouds are present, they scatter a portion of the upwelling flux of submillimeter-wavelength radiation back towards the Earth as shown in the diagram, thus reducing the upward flux o f energy. Hence, the power received by a down-looking radiometer decreases when a cirrus cloud passes through the field of view causing the cirrus cloud to appear radiatively cool against the warm lower atmospheric thermal emissions. The reduction in upwelling thermal flux is a function of both the total cloud ice content and mean crystal size. Radiometric measurements made at multiple widely spaced frequencies permit flux variations caused by changes in crystal size to be distinguished from changes in ice content, and polarized measurements can be used to constrain mean crystal shape. The goal of the cloud ice radiometry program is to further develop and validate this technique of characterizing cirrus. A multi-frequency radiometer is being designed to support airborne science and

  20. LCROSS: A High Return, Small Satellite Mission

    NASA Technical Reports Server (NTRS)

    Andrews, Daniel R.

    2010-01-01

    Early in 2006, the NASA Exploration Systems Mission Directorate (ESMD) held a competition for NASA Centers to propose innovative ideas for a secondary payload mission to launch with the Lunar Reconnaissance Orbiter (LRO) to the Moon. The successful proposal could cost no more than $80 million dollars (less was preferred), would have to be ready to launch with the LRO in 31 months, could weigh no more than 1000 kg (fuelled), and would be designated a risk-tolerant "Class D" mission. In effect, NASA was offering a fixed-price contract to the winning NASA team to stay within a cost and schedule cap by accepting an unusually elevated risk position. To address this Announcement of Opportunity to develop a cost-and-schedule-capped secondary payload mission to fly with LRO, NASA Ames Research Center (ARC) in Moffett Field, CA, USA embarked on a brainstorming effort termed "Blue Ice" in which a small team was asked to explore a number of mission scenarios that might have a good chance for success and still fit within the stated programmatic constraints. From this work, ARC developed and submitted six of the nineteen mission proposals received by ESMD from throughout the Agency, one of which was LCROSS - a collaborative effort between ARC and its industrial partner, Northrop-Grumman (NG) in Redondo Beach, CA, USA.