Sample records for ice rolling technologies

  1. Research and industrialization of near-net rolling technology used in shaft parts

    NASA Astrophysics Data System (ADS)

    Hu, Zhenghuan; Wang, Baoyu; Zheng, Zhenhua

    2017-11-01

    Shaft part rolling is an efficient and green nearnet shaping technology offering many advantages, including high production efficiency, high material utilization rate, high product quality, and excellent production environment. In this paper, the features of shaft part rolling are introduced along with the working principles of two main shaft part rolling technologies, namely, cross wedge rolling (CWR) and skew rolling (SR). In relation to this technology, some R&D achievements gained by the University of Science and Technology Beijing are summarized. Finally, the latest developments in shaft part rolling are presented, including SR steel balls, precise forming of camshaft blank by CWR, SR phosphorous copper balls at room temperature, and CWR hollow axle sleeve. Although the shaft part rolling technology has been widely used in China, it only accounts for about 15% of applicable parts at present. Nevertheless, this technology has broad application prospects.

  2. Research and industrialization of near-net rolling technology used in shaft parts

    NASA Astrophysics Data System (ADS)

    Hu, Zhenghuan; Wang, Baoyu; Zheng, Zhenhua

    2018-03-01

    Shaft part rolling is an efficient and green nearnet shaping technology offering many advantages, including high production efficiency, high material utilization rate, high product quality, and excellent production environment. In this paper, the features of shaft part rolling are introduced along with the working principles of two main shaft part rolling technologies, namely, cross wedge rolling (CWR) and skew rolling (SR). In relation to this technology, some R&D achievements gained by the University of Science and Technology Beijing are summarized. Finally, the latest developments in shaft part rolling are presented, including SR steel balls, precise forming of camshaft blank by CWR, SR phosphorous copper balls at room temperature, and CWR hollow axle sleeve. Although the shaft part rolling technology has been widely used in China, it only accounts for about 15% of applicable parts at present. Nevertheless, this technology has broad application prospects.

  3. NASA's aircraft icing technology program

    NASA Technical Reports Server (NTRS)

    Reinmann, John J.

    1991-01-01

    NASA' Aircraft Icing Technology program is aimed at developing innovative technologies for safe and efficient flight into forecasted icing. The program addresses the needs of all aircraft classes and supports both commercial and military applications. The program is guided by three key strategic objectives: (1) numerically simulate an aircraft's response to an in-flight icing encounter, (2) provide improved experimental icing simulation facilities and testing techniques, and (3) offer innovative approaches to ice protection. Our research focuses on topics that directly support stated industry needs, and we work closely with industry to assure a rapid and smooth transfer of technology. This paper presents selected results that illustrate progress towards the three strategic objectives, and it provides a comprehensive list of references on the NASA icing program.

  4. NASA's program on icing research and technology

    NASA Technical Reports Server (NTRS)

    Reinmann, John J.; Shaw, Robert J.; Ranaudo, Richard J.

    1989-01-01

    NASA's program in aircraft icing research and technology is reviewed. The program relies heavily on computer codes and modern applied physics technology in seeking icing solutions on a finer scale than those offered in earlier programs. Three major goals of this program are to offer new approaches to ice protection, to improve our ability to model the response of an aircraft to an icing encounter, and to provide improved techniques and facilities for ground and flight testing. This paper reviews the following program elements: (1) new approaches to ice protection; (2) numerical codes for deicer analysis; (3) measurement and prediction of ice accretion and its effect on aircraft and aircraft components; (4) special wind tunnel test techniques for rotorcraft icing; (5) improvements of icing wind tunnels and research aircraft; (6) ground de-icing fluids used in winter operation; (7) fundamental studies in icing; and (8) droplet sizing instruments for icing clouds.

  5. Process optimization of rolling for zincked sheet technology using response surface methodology and genetic algorithm

    NASA Astrophysics Data System (ADS)

    Ji, Liang-Bo; Chen, Fang

    2017-07-01

    Numerical simulation and intelligent optimization technology were adopted for rolling and extrusion of zincked sheet. By response surface methodology (RSM), genetic algorithm (GA) and data processing technology, an efficient optimization of process parameters for rolling of zincked sheet was investigated. The influence trend of roller gap, rolling speed and friction factor effects on reduction rate and plate shortening rate were analyzed firstly. Then a predictive response surface model for comprehensive quality index of part was created using RSM. Simulated and predicted values were compared. Through genetic algorithm method, the optimal process parameters for the forming of rolling were solved. They were verified and the optimum process parameters of rolling were obtained. It is feasible and effective.

  6. Preliminary Findings of Inflight Icing Field Test to Support Icing Remote Sensing Technology Assessment

    NASA Technical Reports Server (NTRS)

    King, Michael; Reehorst, Andrew; Serke, Dave

    2015-01-01

    NASA and the National Center for Atmospheric Research have developed an icing remote sensing technology that has demonstrated skill at detecting and classifying icing hazards in a vertical column above an instrumented ground station. This technology has recently been extended to provide volumetric coverage surrounding an airport. Building on the existing vertical pointing system, the new method for providing volumetric coverage will utilize a vertical pointing cloud radar, a multifrequency microwave radiometer with azimuth and elevation pointing, and a NEXRAD radar. The new terminal area icing remote sensing system processes the data streams from these instruments to derive temperature, liquid water content, and cloud droplet size for each examined point in space. These data are then combined to ultimately provide icing hazard classification along defined approach paths into an airport.

  7. Modeling the Deterioration of Engine and Low Pressure Compressor Performance During a Roll Back Event Due to Ice Accretion

    NASA Technical Reports Server (NTRS)

    Veres, Joseph P.; Jorgenson, Philip, C. E.; Jones, Scott M.

    2014-01-01

    The main focus of this study is to apply a computational tool for the flow analysis of the engine that has been tested with ice crystal ingestion in the Propulsion Systems Laboratory (PSL) of NASA Glenn Research Center. A data point was selected for analysis during which the engine experienced a full roll back event due to the ice accretion on the blades and flow path of the low pressure compressor. The computational tool consists of the Numerical Propulsion System Simulation (NPSS) engine system thermodynamic cycle code, and an Euler-based compressor flow analysis code, that has an ice particle melt estimation code with the capability of determining the rate of sublimation, melting, and evaporation through the compressor blade rows. Decreasing the performance characteristics of the low pressure compressor (LPC) within the NPSS cycle analysis resulted in matching the overall engine performance parameters measured during testing at data points in short time intervals through the progression of the roll back event. Detailed analysis of the fan-core and LPC with the compressor flow analysis code simulated the effects of ice accretion by increasing the aerodynamic blockage and pressure losses through the low pressure compressor until achieving a match with the NPSS cycle analysis results, at each scan. With the additional blockages and losses in the LPC, the compressor flow analysis code results were able to numerically reproduce the performance that was determined by the NPSS cycle analysis, which was in agreement with the PSL engine test data. The compressor flow analysis indicated that the blockage due to ice accretion in the LPC exit guide vane stators caused the exit guide vane (EGV) to be nearly choked, significantly reducing the air flow rate into the core. This caused the LPC to eventually be in stall due to increasing levels of diffusion in the rotors and high incidence angles in the inlet guide vane (IGV) and EGV stators. The flow analysis indicating

  8. On the impact of forced roll convection on vertical turbulent transport in cold air outbreaks

    NASA Astrophysics Data System (ADS)

    Gryschka, Micha; Fricke, Jens; Raasch, Siegfried

    2014-11-01

    We investigated the impact of roll convection on the convective boundary layer and vertical transports in different cold air outbreak (CAO) scenarios using large eddy simulations (LES). The organization of convection into rolls was triggered by upstream heterogeneities in the surface temperature, representing ice and water. By changing the sea ice distribution in our LES, we were able to simulate a roll and a nonroll case for each scenario. Furthermore, the roll wavelength was varied by changing the scale of the heterogeneity. The characteristics of the simulated rolls and cloud streets, such as aspect ratios, orientation of the roll axes, and downstream extensions of single rolls agreed closely with observations in CAO situations. The vertical turbulent fluxes, calculated for each simulation, were decomposed into contributions from rolls and from unorganized turbulence. Even though our results confirmed that rolls triggered by upstream heterogeneities can substantially contribute to vertical turbulent fluxes, the total fluxes were not affected by the rolls.

  9. Manufacturing Demonstration Facility: Roll-to-Roll Processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Datskos, Panos G; Joshi, Pooran C; List III, Frederick Alyious

    This Manufacturing Demonstration Facility (MDF)e roll-to-roll processing effort described in this report provided an excellent opportunity to investigate a number of advanced manufacturing approaches to achieve a path for low cost devices and sensors. Critical to this effort is the ability to deposit thin films at low temperatures using nanomaterials derived from nanofermentation. The overarching goal of this project was to develop roll-to-roll manufacturing processes of thin film deposition on low-cost flexible substrates for electronics and sensor applications. This project utilized ORNL s unique Pulse Thermal Processing (PTP) technologies coupled with non-vacuum low temperature deposition techniques, ORNL s clean roommore » facility, slot dye coating, drop casting, spin coating, screen printing and several other equipment including a Dimatix ink jet printer and a large-scale Kyocera ink jet printer. The roll-to-roll processing project had three main tasks: 1) develop and demonstrate zinc-Zn based opto-electronic sensors using low cost nanoparticulate structures manufactured in a related MDF Project using nanofermentation techniques, 2) evaluate the use of silver based conductive inks developed by project partner NovaCentrix for electronic device fabrication, and 3) demonstrate a suite of low cost printed sensors developed using non-vacuum deposition techniques which involved the integration of metal and semiconductor layers to establish a diverse sensor platform technology.« less

  10. Innovative Control Effectors (ICE)

    DTIC Science & Technology

    1996-01-01

    Figure 4-1 shows the ICE high AOA roll performance goals compared to several current fighter aircraft. For this comparison, the 1-DOF roll equation ...9 ]Body The first bracketed term in equation (1) is recognizable as the expression for Cnpdyn. The second term represents control power for controls...deflected to provide Cn’MAX, trimmed in pitch and roll. The user selects the maximum sideslip to augment by specifying f. Equation (1) can be

  11. Roll-to-Roll production of carbon nanotubes based supercapacitors

    NASA Astrophysics Data System (ADS)

    Zhu, Jingyi; Childress, Anthony; Karakaya, Mehmet; Roberts, Mark; Arcilla-Velez, Margarita; Podila, Ramakrishna; Rao, Apparao

    2014-03-01

    Carbon nanomaterials provide an excellent platform for electrochemical double layer capacitors (EDLCs). However, current industrial methods for producing carbon nanotubes are expensive and thereby increase the costs of energy storage to more than 10 Wh/kg. In this regard, we developed a facile roll-to-roll production technology for scalable manufacturing of multi-walled carbon nanotubes (MWNTs) with variable density on run-of-the-mill kitchen Al foils. Our method produces MWNTs with diameter (heights) between 50-100 nm (10-100 μm), and a specific capacitance as high as ~ 100 F/g in non-aqueous electrolytes. In this talk, the fundamental challenges involved in EDLC-suitable MWNT growth, roll-to-roll production, and device manufacturing will be discussed along with electrochemical characteristics of roll-to-roll MWNTs. Research supported by NSF CMMI Grant1246800.

  12. Architecting Graphene Oxide Rolled-Up Micromotors: A Simple Paper-Based Manufacturing Technology.

    PubMed

    Baptista-Pires, Luis; Orozco, Jahir; Guardia, Pablo; Merkoçi, Arben

    2018-01-01

    A graphene oxide rolled-up tube production process is reported using wax-printed membranes for the fabrication of on-demand engineered micromotors at different levels of oxidation, thickness, and lateral dimensions. The resultant graphene oxide rolled-up tubes can show magnetic and catalytic movement within the addition of magnetic nanoparticles or sputtered platinum in the surface of graphene-oxide-modified wax-printed membranes prior to the scrolling process. As a proof of concept, the as-prepared catalytic graphene oxide rolled-up micromotors are successfully exploited for oil removal from water. This micromotor production technology relies on an easy, operator-friendly, fast, and cost-efficient wax-printed paper-based method and may offer a myriad of hybrid devices and applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Remote Sensing of In-Flight Icing Conditions: Operational, Meteorological, and Technological Considerations

    NASA Technical Reports Server (NTRS)

    Ryerson, Charles C.

    2000-01-01

    Remote-sensing systems that map aircraft icing conditions in the flight path from airports or aircraft would allow icing to be avoided and exited. Icing remote-sensing system development requires consideration of the operational environment, the meteorological environment, and the technology available. Operationally, pilots need unambiguous cockpit icing displays for risk management decision-making. Human factors, aircraft integration, integration of remotely sensed icing information into the weather system infrastructures, and avoid-and-exit issues need resolution. Cost, maintenance, power, weight, and space concern manufacturers, operators, and regulators. An icing remote-sensing system detects cloud and precipitation liquid water, drop size, and temperature. An algorithm is needed to convert these conditions into icing potential estimates for cockpit display. Specification development requires that magnitudes of cloud microphysical conditions and their spatial and temporal variability be understood at multiple scales. The core of an icing remote-sensing system is the technology that senses icing microphysical conditions. Radar and microwave radiometers penetrate clouds and can estimate liquid water and drop size. Retrieval development is needed; differential attenuation and neural network assessment of multiple-band radar returns are most promising to date. Airport-based radar or radiometers are the most viable near-term technologies. A radiometer that profiles cloud liquid water, and experimental techniques to use radiometers horizontally, are promising. The most critical operational research needs are to assess cockpit and aircraft system integration, develop avoid-and-exit protocols, assess human factors, and integrate remote-sensing information into weather and air traffic control infrastructures. Improved spatial characterization of cloud and precipitation liquid-water content, drop-size spectra, and temperature are needed, as well as an algorithm to

  14. Cold-Rolled Strip Steel Stress Detection Technology Based on a Magnetoresistance Sensor and the Magnetoelastic Effect.

    PubMed

    Guan, Ben; Zang, Yong; Han, Xiaohui; Zheng, Kailun

    2018-05-21

    Driven by the demands for contactless stress detection, technologies are being used for shape control when producing cold-rolled strips. This paper presents a novel contactless stress detection technology based on a magnetoresistance sensor and the magnetoelastic effect, enabling the detection of internal stress in manufactured cold-rolled strips. An experimental device was designed and produced. Characteristics of this detection technology were investigated through experiments assisted by theoretical analysis. Theoretically, a linear correlation exists between the internal stress of strip steel and the voltage output of a magneto-resistive sensor. Therefore, for this stress detection system, the sensitivity of the stress detection was adjusted by adjusting the supply voltage of the magnetoresistance sensor, detection distance, and other relevant parameters. The stress detection experimental results showed that this detection system has good repeatability and linearity. The detection error was controlled within 1.5%. Moreover, the intrinsic factors of the detected strip steel, including thickness, carbon percentage, and crystal orientation, also affected the sensitivity of the detection system. The detection technology proposed in this research enables online contactless detection and meets the requirements for cold-rolled steel strips.

  15. Cold-Rolled Strip Steel Stress Detection Technology Based on a Magnetoresistance Sensor and the Magnetoelastic Effect

    PubMed Central

    Guan, Ben; Zang, Yong; Han, Xiaohui; Zheng, Kailun

    2018-01-01

    Driven by the demands for contactless stress detection, technologies are being used for shape control when producing cold-rolled strips. This paper presents a novel contactless stress detection technology based on a magnetoresistance sensor and the magnetoelastic effect, enabling the detection of internal stress in manufactured cold-rolled strips. An experimental device was designed and produced. Characteristics of this detection technology were investigated through experiments assisted by theoretical analysis. Theoretically, a linear correlation exists between the internal stress of strip steel and the voltage output of a magneto-resistive sensor. Therefore, for this stress detection system, the sensitivity of the stress detection was adjusted by adjusting the supply voltage of the magnetoresistance sensor, detection distance, and other relevant parameters. The stress detection experimental results showed that this detection system has good repeatability and linearity. The detection error was controlled within 1.5%. Moreover, the intrinsic factors of the detected strip steel, including thickness, carbon percentage, and crystal orientation, also affected the sensitivity of the detection system. The detection technology proposed in this research enables online contactless detection and meets the requirements for cold-rolled steel strips. PMID:29883387

  16. The record of iceberg roll generated waves from sediments and seismics

    NASA Astrophysics Data System (ADS)

    Rosser, N. J.; Szczucinski, W.; Strzelecki, M.; Long, A. J.; Norman, E. C.; Dunning, S.; Drewniak, M.

    2013-12-01

    Iceberg-roll tsunamis in coastal settings have been observed to generate significant local waves, that hold potential to be recorded in coastal depositional records. Capturing the past magnitude and frequency of such events remains challenging, hindered by a lack of a good understanding of the nature, recurrence and scale of iceberg rolls, and more specifically those rolls that generate waves. Here we consider the sedimentary evidence for iceberg rolls in West Central Greenland, based upon survey of depositional environments in a range of open and confined coastal environments. We examine both an open 80 km fjord setting, and a series of confined ice-marginal beaches. We combine a detailed interpretation of sediment deposits from shore-normal transects with wider-scale high-resolution terrestrial laser scanning of sediments. Our sites - Vaigat, which separates Disko Island from the Nussuaq Peninsular, and the northern shore of Icefjord - both have a recent history of tsunamis, triggered variously by large rock avalanches, landslides and iceberg rolls. Icebergs in Vaigat and Icefjord are observed to undergo frequent failure and roll, generating - where circumstances permit - nearshore waves of meter-scale. To obtain a more detailed understanding of the likely recurrence of such iceberg roll waves and to consider their influence upon the preserved sedimentary record, we undertook an intensive 2-month monitoring campaign during sea-ice free conditions in summer 2013 to determine the patterns in the location, magnitude, frequency and timing of iceberg roll waves. Innovatively, using microseismic monitoring combined with time-lapse photography and weather monitoring, we derive a first-order model of the occurrence of iceberg roll waves. We then use this to inform our interpretation of deposits in these two environments, and consider the presence and absence of records of iceberg roll deposits in such settings. The study was funded by Polish National Science Centre grant

  17. Development of sea ice monitoring with aerial remote sensing technology

    NASA Astrophysics Data System (ADS)

    Jiang, Xuhui; Han, Lei; Dong, Liang; Cui, Lulu; Bie, Jun; Fan, Xuewei

    2014-11-01

    In the north China Sea district, sea ice disaster is very serious every winter, which brings a lot of adverse effects to shipping transportation, offshore oil exploitation, and coastal engineering. In recent years, along with the changing of global climate, the sea ice situation becomes too critical. The monitoring of sea ice is playing a very important role in keeping human life and properties in safety, and undertaking of marine scientific research. The methods to monitor sea ice mainly include: first, shore observation; second, icebreaker monitoring; third, satellite remote sensing; and then aerial remote sensing monitoring. The marine station staffs use relevant equipments to monitor the sea ice in the shore observation. The icebreaker monitoring means: the workers complete the test of the properties of sea ice, such as density, salinity and mechanical properties. MODIS data and NOAA data are processed to get sea ice charts in the satellite remote sensing means. Besides, artificial visual monitoring method and some airborne remote sensors are adopted in the aerial remote sensing to monitor sea ice. Aerial remote sensing is an important means in sea ice monitoring because of its strong maneuverability, wide watching scale, and high resolution. In this paper, several methods in the sea ice monitoring using aerial remote sensing technology are discussed.

  18. Roll-to-Roll Manufacturing of Robust Superhydrophobic Coating on Metallic Engineering Materials.

    PubMed

    Dong, Shuliang; Wang, Zhenlong; Wang, Yukui; Bai, Xuelin; Fu, Yong Qing; Guo, Bin; Tan, Chaoliang; Zhang, Jia; Hu, PingAn

    2018-01-17

    Creating a robust superhydrophobic surface on the conventional engineering materials at mass production is of great importance for a self-cleaning, anti-icing, nonwetting surface and low flow resistance in industrial applications. Herein, we report a roll-to-roll strategy to create durable and robust superhydrophobic surfaces with designed micro-/nanoscale hierarchical structures on many conventional engineering materials by combining electrical discharge machining and coating of carbon nanoparticles, followed by oil penetration and drying. The treated surface shows good superhydrophobic properties with a static water contact angle of 170 ± 2° and slide angle of 3 ± 1°. The treated surface also exhibits good resilience and maintains the performance after being tested in various harsh conditions, including water flushing for several days, sand abrasion, scratching with sandpapers, and corrosive solution. Significantly, the superhydrophobic surfaces also show a high efficiency of self-cleaning properties even after oil contamination during applications.

  19. In-Flight Icing Training for Pilots Using Multimedia Technology

    NASA Technical Reports Server (NTRS)

    Burke, Kevin M.; VanZante, Judith Foss; Bond, Thomas H.

    2004-01-01

    Over the last five years, the Aircraft Icing Project of the NASA Aviation Safety Program has developed a number of in-flight icing education and training aids to support increased awareness for pilots of the hazards associated with atmospheric icing conditions. Through the development of this work, a number of new instructional design approaches and media delivery methods have been introduced to enhance the learning experience, expand user interactivity and participation, and, hopefully, increase the learner retention rates. The goal of using these multimedia techniques is to increase the effectiveness of the training materials. This paper will describe the mutlimedia technology that has been introduced and give examples of how it was used.

  20. Technology for Ice Rinks

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Ron Urban's International Ice Shows set up portable ice rinks for touring troupes performing on temporary rinks at amusement parks, sports arenas, dinner theaters, shopping malls and civic centers. Key to enhanced rink portability, fast freezing and maintaining ice consistency is a mat of flexible tubing called ICEMAT, an offshoot of a solar heating system developed by Calmac, Mfg. under contract with Marshall.

  1. Possible Mechanisms for Turbofan Engine Ice Crystal Icing at High Altitude

    NASA Technical Reports Server (NTRS)

    Tsao, Jen-Ching; Struk, Peter M.; Oliver, Michael

    2014-01-01

    A thermodynamic model is presented to describe possible mechanisms of ice formation on unheated surfaces inside a turbofan engine compression system from fully glaciated ice crystal clouds often formed at high altitude near deep convective weather systems. It is shown from the analysis that generally there could be two distinct types of ice formation: (1) when the "surface freezing fraction" is in the range of 0 to 1, dominated by the freezing of water melt from fully or partially melted ice crystals, the ice structure is formed from accretion with strong adhesion to the surface, and (2) when the "surface melting fraction" is the range of 0 to 1, dominated by the further melting of ice crystals, the ice structure is formed from accumulation of un-melted ice crystals with relatively weak bonding to the surface. The model captures important qualitative trends of the fundamental ice-crystal icing phenomenon reported earlier1,2 from the research collaboration work by NASA and the National Research Council (NRC) of Canada. Further, preliminary analysis of test data from the 2013 full scale turbofan engine ice crystal icing test3 conducted in the NASA Glenn Propulsion Systems Laboratory (PSL) has also suggested that (1) both types of ice formation occurred during the test, and (2) the model has captured some important qualitative trend of turning on (or off) the ice crystal ice formation process in the tested engine low pressure compressor (LPC) targeted area under different icing conditions that ultimately would lead to (or suppress) an engine core roll back (RB) event.

  2. Possible Mechanisms for Turbofan Engine Ice Crystal Icing at High Altitude

    NASA Technical Reports Server (NTRS)

    Tsao, Jen-Ching; Struk, Peter M.; Oliver, Michael J.

    2016-01-01

    A thermodynamic model is presented to describe possible mechanisms of ice formation on unheated surfaces inside a turbofan engine compression system from fully glaciated ice crystal clouds often formed at high altitude near deep convective weather systems. It is shown from the analysis that generally there could be two distinct types of ice formation: (1) when the "surface freezing fraction" is in the range of 0 to 1, dominated by the freezing of water melt from fully or partially melted ice crystals, the ice structure is formed from accretion with strong adhesion to the surface, and (2) when the "surface melting fraction" is the range of 0 to 1, dominated by the further melting of ice crystals, the ice structure is formed from accumulation of un-melted ice crystals with relatively weak bonding to the surface. The model captures important qualitative trends of the fundamental ice-crystal icing phenomenon reported earlier (Refs. 1 and 2) from the research collaboration work by NASA and the National Research Council (NRC) of Canada. Further, preliminary analysis of test data from the 2013 full scale turbofan engine ice crystal icing test (Ref. 3) conducted in the NASA Glenn Propulsion Systems Laboratory (PSL) has also suggested that (1) both types of ice formation occurred during the test, and (2) the model has captured some important qualitative trend of turning on (or off) the ice crystal ice formation process in the tested engine low pressure compressor (LPC) targeted area under different icing conditions that ultimately would lead to (or suppress) an engine core roll back (RB) event.

  3. MORICE--new technology for mechanical oil recovery in ice infested waters.

    PubMed

    Jensen, Hans V; Mullin, Joseph V

    2003-01-01

    Mechanical oil recovery in ice infested waters (MORICE) was initiated in 1995 to develop technology for the recovery of oil spills in ice. It has been a multinational effort involving Norwegian, Canadian, American and German organizations and researchers. Through a stepwise approach with the development organized in six separate phases, laboratory tests and field experiments have been conducted to study various ideas and concepts, and to refine the ideas that were considered to have the best potential for removing oil in ice. Put together in one unit, these concepts included ice processing equipment and two alternative oil recovery units installed on a work platform. In January 2002, the final oil and ice testing with MORICE concepts was conducted at the Ohmsett test facility in Leonardo, New Jersey. The unit has been referred to as a harbor version to indicate the size and operating conditions, but the concepts could be scaled up to increase the capacity of oil and ice processing. For heavier ice conditions it would also be necessary to increase the overall strength.

  4. On the Influence of Surface Heterogeneities onto Roll Convection

    NASA Astrophysics Data System (ADS)

    Gryschka, M.; Drüe, C.; Raasch, S.; Etling, D.

    2009-04-01

    Roll convection is a common phenomenon in atmospheric convective boundary layers (CBL) with background wind. Roll convection is observed both over land and over sea for different synoptic situations. There is still some debate about the different types of roll convection and their causes or rather the necessary conditions for their appearance. The stability parameter ζ = -zi•L (zi: boundary layer height, L: Monin-Obukhov stability length) is widely used as a predictor for roll convection, since numerous studies suggest that convective rolls only appear when 0 < ζ < 20. In other words, roll development becomes unlikely for strong surface heating and weak vertical wind shear. In contrast to those studies the presence of roll convection in almost any polar cold air outbreak (as can be seen in numerous satellite images as cloud streets) reveals that even for large ζ roll convection can develop. Some studies report roll convection in cold air outbreaks for ζ = 250. Our large eddy simulations (LES) on roll convection suggests that the contrasting results concerning the dependency of roll convection on ζ are due to two different types of roll convection: One type which develops purely by self organization if ζ < 20 ("free rolls") and another type which is triggered by heterogeneities in surface temperature and develops also for large ζ ("forced rolls"). We think that most of the cloud streets observed in polar cold air outbreaks over open water are due to rolls of forced type which are tied to upstream located heterogeneities in the sea-ice distribution. The results of this study suggests that the omission of surface inhomogeneities in previous LES is the reason for the absence of rolls in all LES with strong surface heating and weak vertical wind shear so far. In this contribution we will present a large eddy simulation which successfully represents forced rolls under such conditions.

  5. Technology for a Thermo-chemical Ice Penetrator for Icy Moons

    NASA Astrophysics Data System (ADS)

    Arenberg, Jonathan; Harpole, George; Zamel, James; Sen, Bashwar; Lee, Greg; Ross, Floyd; Retherford, Kurt D.

    2016-10-01

    The ability to place sensors or to take samples below the ice surface enables a wide variety of potential scientific investigations. Penetrating an ice cap can be accomplished via a mechanical drill, laser drill, kinetic impactor, or heated penetrator. This poster reports on the development of technology for the latter most option, namely a self-heated probe driven by an exothermic chemical reaction: a Thermo-chemical ice penetrator (TChIP). Our penetrator design employs a eutectic mix of alkali metals that produce an exothermic reaction upon contact with an icy surface. This reaction increases once the ice starts melting, so no external power is required. This technology is inspired by a classified Cold-War era program developed at Northrop Grumman for the US Navy. Terrestrial demonstration of this technology took place in the Arctic; however, this device cannot be considered high TRL for application at the icy moons of the solar system due to the environmental differences between Earth's Arctic and the icy moons. These differences demand a TChIP design specific to these cold, low mass, airless worlds. It is expected that this model of TChIP performance will be complex, incorporating all of the forces on the penetrator, gravity, the thermo-chemistry at the interface between penetrator and ice, and multi-phase heat and mass transport, and hydrodynamics. Our initial efforts are aimed at the development of a validated set of tools and simulations to predict the performance of the penetrator for both the environment found on these icy moons and for a terrestrial environment. The purpose of the inclusion of the terrestrial environment is to aid in model validation. Once developed and validated, our models will allow us to design penetrators for a specific scientific application on a specific body. This poster discusses the range of scientific investigations that are enabled by TChIP. We also introduce the development plan to advance TChIP to the point where it can be

  6. Wave attenuation in the marginal ice zone during LIMEX

    NASA Technical Reports Server (NTRS)

    Liu, Antony K.; Peng, Chih Y.; Vachon, Paris W.

    1991-01-01

    During LIMEX'87 and '89, the CCRS CV-580 aircraft collected SAR (synthetic aperture radar) data over the marginal ice zone off the coast of Newfoundland. Based upon the wavenumber spectra from SAR data, the wave attenuation rate is estimated and compared with a model. The model-data comparisons are reasonably good for the ice conditions during LIMEX (Labrador Ice Margin Experiment). Both model and SAR-derived wave attenuation rates show a roll-over at high wavenumbers.

  7. Instrumented roll technology for the design space development of roller compaction process.

    PubMed

    Nesarikar, Vishwas V; Vatsaraj, Nipa; Patel, Chandrakant; Early, William; Pandey, Preetanshu; Sprockel, Omar; Gao, Zhihui; Jerzewski, Robert; Miller, Ronald; Levin, Michael

    2012-04-15

    Instrumented roll technology on Alexanderwerk WP120 roller compactor was developed and utilized successfully for the measurement of normal stress on ribbon during the process. The effects of process parameters such as roll speed (4-12 rpm), feed screw speed (19-53 rpm), and hydraulic roll pressure (40-70 bar) on normal stress and ribbon density were studied using placebo and active pre-blends. The placebo blend consisted of 1:1 ratio of microcrystalline cellulose PH102 and anhydrous lactose with sodium croscarmellose, colloidal silicon dioxide, and magnesium stearate. The active pre-blends were prepared using various combinations of one active ingredient (3-17%, w/w) and lubricant (0.1-0.9%, w/w) levels with remaining excipients same as placebo. Three force transducers (load cells) were installed linearly along the width of the roll, equidistant from each other with one transducer located in the center. Normal stress values recorded by side sensors and were lower than normal stress values recorded by middle sensor and showed greater variability than middle sensor. Normal stress was found to be directly proportional to hydraulic pressure and inversely to screw to roll speed ratio. For active pre-blends, normal stress was also a function of compressibility. For placebo pre-blends, ribbon density increased as normal stress increased. For active pre-blends, in addition to normal stress, ribbon density was also a function of gap. Models developed using placebo were found to predict ribbon densities of active blends with good accuracy and the prediction error decreased as the drug concentration of active blend decreased. Effective angle of internal friction and compressibility properties of active pre blend may be used as key indicators for predicting ribbon densities of active blend using placebo ribbon density model. Feasibility of on-line prediction of ribbon density during roller compaction was demonstrated using porosity-pressure data of pre-blend and normal stress

  8. Arctic Technology Evaluation 2014 Oil-in-Ice Demonstration Report

    DTIC Science & Technology

    2015-03-01

    Spills in Ice”, 2014 International Oil Spill Conference, Savannah, GA, May, 2014. Hansen, Kurt A., Scot T. Trip, Rich L. Hansen (2014) “Evaluating...Operations”, Woods Hole Oceanographic Institution (WHOI) report to BSEE, 2013. Arctic Technology Evaluation 2014 Oil-in-Ice Demonstration Report 40

  9. Development of a Rolling Process Design Tool for Use in Improving Hot Roll Slab Recovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Couch, R; Becker, R; Rhee, M

    2004-09-24

    Lawrence Livermore National Laboratory participated in a U. S. Department of Energy/Office of Industrial Technology sponsored research project 'Development of a Rolling Process Design Tool for Use in Improving Hot Roll Slab Recovery', as a Cooperative Agreement TC-02028 with the Alcoa Technical Center (ATC). The objective of the joint project with Alcoa is to develop a numerical modeling capability to optimize the hot rolling process used to produce aluminum plate. Product lost in the rolling process and subsequent recycling, wastes resources consumed in the energy-intensive steps of remelting and reprocessing the ingot. The modeling capability developed by project partners willmore » be used to produce plate more efficiently and with reduced product loss.« less

  10. Wind Tunnel Tests Conducted to Develop an Icing Flight Simulator

    NASA Technical Reports Server (NTRS)

    Ratvasky, Thomas P.

    2001-01-01

    As part of NASA's Aviation Safety Program goals to reduce aviation accidents due to icing, NASA Glenn Research Center is leading a flight simulator development activity to improve pilot training for the adverse flying characteristics due to icing. Developing flight simulators that incorporate the aerodynamic effects of icing will provide a critical element in pilot training programs by giving pilots a pre-exposure of icing-related hazards, such as ice-contaminated roll upset or tailplane stall. Integrating these effects into training flight simulators will provide an accurate representation of scenarios to develop pilot skills in unusual attitudes and loss-of-control events that may result from airframe icing. In order to achieve a high level of fidelity in the flight simulation, a series of wind tunnel tests have been conducted on a 6.5-percent-scale Twin Otter aircraft model. These wind tunnel tests were conducted at the Wichita State University 7- by 10-ft wind tunnel and Bihrle Applied Research's Large Amplitude Multiple Purpose Facility in Neuburg, Germany. The Twin Otter model was tested without ice (baseline), and with two ice configurations: 1) Ice on the horizontal tail only; 2) Ice on the wing, horizontal tail, and vertical tail. These wind tunnel tests resulted in data bases of aerodynamic forces and moments as functions of angle of attack; sideslip; control surface deflections; forced oscillations in the pitch, roll, and yaw axes; and various rotational speeds. A limited amount of wing and tail surface pressure data were also measured for comparison with data taken at Wichita State and with flight data. The data bases from these tests will be the foundation for a PC-based Icing Flight Simulator to be delivered to Glenn in fiscal year 2001.

  11. Icing: Accretion, Detection, Protection

    NASA Technical Reports Server (NTRS)

    Reinmann, John J.

    1994-01-01

    The global aircraft industry and its regulatory agencies are currently involved in three major icing efforts: ground icing; advanced technologies for in-flight icing; and tailplane icing. These three major icing topics correspondingly support the three major segments of any aircraft flight profile: takeoff; cruise and hold; and approach and land. This lecture addressess these three topics in the same sequence as they appear in flight, starting with ground deicing, followed by advanced technologies for in-flight ice protection, and ending with tailplane icing.

  12. Effect of Hot Rolling Process on Microstructure and Properties of Low-Carbon Al-Killed Steels Produced Through TSCR Technology

    NASA Astrophysics Data System (ADS)

    Paul, S. K.; Ahmed, U.; Megahed, G. M.

    2011-10-01

    Low-carbon Al-killed hot rolled strips for direct forming, cold rolling, and galvanizing applications are produced from the similar chemistry at Ezz Flat Steel (EFS) through thin slab casting and rolling (TSCR) technology. The desired mechanical and microstructural properties in hot bands for different applications are achieved through control of hot rolling parameters, which in turn control the precipitation and growth of AlN. Nitrogen in solid solution strongly influences the yield strength (YS), ductility, strain aging index (SAI), and other formability properties of steel. The equilibrium solubility of AlN in austenite at different temperatures and its isothermal precipitation have been studied. To achieve the formability properties for direct forming, soluble nitrogen is fixed as AlN by coiling the strip at higher temperatures. For stringent cold forming, boron was added below the stoichiometric ratio with nitrogen, which improved the formability properties dramatically. The requirements of hot band for processing into cold rolled and annealed deep drawing sheets are high SAI and fine-grain microstructure. Higher finish rolling and low coiling temperatures are used to achieve these. Fully processed cold rolled sheets from these hot strips at customer's end have shown good formability properties. Coil break marks observed in some coils during uncoiling were found to be associated with yielding phenomenon. The spike height (difference between upper and lower yield stresses) and yield point elongation (YPE) were found to be the key material parameters for the break marks. Factors affecting these parameters have been studied and the coiling temperature optimized to overcome the problem.

  13. Modeling Commercial Turbofan Engine Icing Risk With Ice Crystal Ingestion

    NASA Technical Reports Server (NTRS)

    Jorgenson, Philip C. E.; Veres, Joseph P.

    2013-01-01

    The occurrence of ice accretion within commercial high bypass aircraft turbine engines has been reported under certain atmospheric conditions. Engine anomalies have taken place at high altitudes that have been attributed to ice crystal ingestion, partially melting, and ice accretion on the compression system components. The result was degraded engine performance, and one or more of the following: loss of thrust control (roll back), compressor surge or stall, and flameout of the combustor. As ice crystals are ingested into the fan and low pressure compression system, the increase in air temperature causes a portion of the ice crystals to melt. It is hypothesized that this allows the ice-water mixture to cover the metal surfaces of the compressor stationary components which leads to ice accretion through evaporative cooling. Ice accretion causes a blockage which subsequently results in the deterioration in performance of the compressor and engine. The focus of this research is to apply an engine icing computational tool to simulate the flow through a turbofan engine and assess the risk of ice accretion. The tool is comprised of an engine system thermodynamic cycle code, a compressor flow analysis code, and an ice particle melt code that has the capability of determining the rate of sublimation, melting, and evaporation through the compressor flow path, without modeling the actual ice accretion. A commercial turbofan engine which has previously experienced icing events during operation in a high altitude ice crystal environment has been tested in the Propulsion Systems Laboratory (PSL) altitude test facility at NASA Glenn Research Center. The PSL has the capability to produce a continuous ice cloud which are ingested by the engine during operation over a range of altitude conditions. The PSL test results confirmed that there was ice accretion in the engine due to ice crystal ingestion, at the same simulated altitude operating conditions as experienced previously in

  14. Molecular Insight into the Slipperiness of Ice.

    PubMed

    Weber, Bart; Nagata, Yuki; Ketzetzi, Stefania; Tang, Fujie; Smit, Wilbert J; Bakker, Huib J; Backus, Ellen H G; Bonn, Mischa; Bonn, Daniel

    2018-05-16

    Measurements of the friction coefficient of steel-on-ice over a large temperature range reveal very high friction at low temperatures (-100 °C) and a steep decrease in the friction coefficient with increasing temperature. Very low friction is only found over the limited temperature range typical for ice skating. The strong decrease in the friction coefficient with increasing temperature exhibits Arrhenius behavior with an activation energy of E a ≈ 11.5 kJ mol -1 . Remarkably, molecular dynamics simulations of the ice-air interface reveal a very similar activation energy for the mobility of surface molecules. Weakly hydrogen-bonded surface molecules diffuse over the surface in a rolling motion, their number and mobility increasing with increasing temperature. This correlation between macroscopic friction and microscopic molecular mobility indicates that slippery ice arises from the high mobility of its surface molecules, making the ice surface smooth and the shearing of the weakly bonded surface molecules easy.

  15. Comparison of roll-to-roll replication approaches for microfluidic and optical functions in lab-on-a-chip diagnostic devices

    NASA Astrophysics Data System (ADS)

    Brecher, Christian; Baum, Christoph; Bastuck, Thomas

    2015-03-01

    Economically advantageous microfabrication technologies for lab-on-a-chip diagnostic devices substituting commonly used glass etching or injection molding processes are one of the key enablers for the emerging market of microfluidic devices. On-site detection in fields of life sciences, point of care diagnostics and environmental analysis requires compact, disposable and highly functionalized systems. Roll-to-roll production as a high volume process has become the emerging fabrication technology for integrated, complex high technology products within recent years (e.g. fuel cells). Differently functionalized polymer films enable researchers to create a new generation of lab-on-a-chip devices by combining electronic, microfluidic and optical functions in multilayer architecture. For replication of microfluidic and optical functions via roll-to-roll production process competitive approaches are available. One of them is to imprint fluidic channels and optical structures of micro- or nanometer scale from embossing rollers into ultraviolet (UV) curable lacquers on polymer substrates. Depending on dimension, shape and quantity of those structures there are alternative manufacturing technologies for the embossing roller. Ultra-precise diamond turning, electroforming or casting polymer materials are used either for direct structuring or manufacturing of roller sleeves. Mastering methods are selected for application considering replication quality required and structure complexity. Criteria for the replication quality are surface roughness and contour accuracy. Structure complexity is evaluated by shapes producible (e.g. linear, circular) and aspect ratio. Costs for the mastering process and structure lifetime are major cost factors. The alternative replication approaches are introduced and analyzed corresponding to the criteria presented. Advantages and drawbacks of each technology are discussed and exemplary applications are presented.

  16. Upper-Tropospheric Cloud Ice from IceCube

    NASA Astrophysics Data System (ADS)

    Wu, D. L.

    2017-12-01

    Cloud ice plays important roles in Earth's energy budget and cloud-precipitation processes. Knowledge of global cloud ice and its properties is critical for understanding and quantifying its roles in Earth's atmospheric system. It remains a great challenge to measure these variables accurately from space. Submillimeter (submm) wave remote sensing has capability of penetrating clouds and measuring ice mass and microphysical properties. In particular, the 883-GHz frequency is a highest spectral window in microwave frequencies that can be used to fill a sensitivity gap between thermal infrared (IR) and mm-wave sensors in current spaceborne cloud ice observations. IceCube is a cubesat spaceflight demonstration of 883-GHz radiometer technology. Its primary objective is to raise the technology readiness level (TRL) of 883-GHz cloud radiometer for future Earth science missions. By flying a commercial receiver on a 3U cubesat, IceCube is able to achieve fast-track maturation of space technology, by completing its development, integration and testing in 2.5 years. IceCube was successfully delivered to ISS in April 2017 and jettisoned from the International Space Station (ISS) in May 2017. The IceCube cloud-ice radiometer (ICIR) has been acquiring data since the jettison on a daytime-only operation. IceCube adopted a simple design without payload mechanism. It makes maximum utilization of solar power by spinning the spacecraft continuously about the Sun vector at a rate of 1.2° per second. As a result, the ICIR is operated under the limited resources (8.6 W without heater) and largely-varying (18°C-28°C) thermal environments. The spinning cubesat also allows ICIR to have periodical views between the Earth (atmosphere and clouds) and cold space (calibration), from which the first 883-GHz cloud map is obtained. The 883-GHz cloud radiance, sensitive to ice particle scattering, is proportional to cloud ice amount above 10 km. The ICIR cloud map acquired during June 20-July 2

  17. The NASA aircraft icing research program

    NASA Technical Reports Server (NTRS)

    Shaw, Robert J.; Reinmann, John J.

    1990-01-01

    The objective of the NASA aircraft icing research program is to develop and make available to industry icing technology to support the needs and requirements for all-weather aircraft designs. Research is being done for both fixed wing and rotary wing applications. The NASA program emphasizes technology development in two areas, advanced ice protection concepts and icing simulation. Reviewed here are the computer code development/validation, icing wind tunnel testing, and icing flight testing efforts.

  18. Rolling Process Modeling Report: Finite-Element Prediction of Roll Separating Force and Rolling Defects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soulami, Ayoub; Lavender, Curt A.; Paxton, Dean M.

    2014-04-23

    Pacific Northwest National Laboratory (PNNL) has been investigating manufacturing processes for the uranium-10% molybdenum (U-10Mo) alloy plate-type fuel for the U.S. high-performance research reactors. This work supports the Convert Program of the U.S. Department of Energy’s National Nuclear Security Administration (DOE/NNSA) Global Threat Reduction Initiative. This report documents modeling results of PNNL’s efforts to perform finite-element simulations to predict roll separating forces and rolling defects. Simulations were performed using a finite-element model developed using the commercial code LS-Dyna. Simulations of the hot rolling of U-10Mo coupons encapsulated in low-carbon steel have been conducted following two different schedules. Model predictions ofmore » the roll-separation force and roll-pack thicknesses at different stages of the rolling process were compared with experimental measurements. This report discusses various attributes of the rolled coupons revealed by the model (e.g., dog-boning and thickness non-uniformity).« less

  19. Bioinspired Surfaces with Superwettability for Anti-Icing and Ice-Phobic Application: Concept, Mechanism, and Design.

    PubMed

    Zhang, Songnan; Huang, Jianying; Cheng, Yan; Yang, Hui; Chen, Zhong; Lai, Yuekun

    2017-12-01

    Ice accumulation poses a series of severe issues in daily life. Inspired by the nature, superwettability surfaces have attracted great interests from fundamental research to anti-icing and ice-phobic applications. Here, recently published literature about the mechanism of ice prevention is reviewed, with a focus on the anti-icing and ice-phobic mechanisms, encompassing the behavior of condensate microdrops on the surface, wetting, ice nucleation, and freezing. Then, a detailed account of the innovative fabrication and fundamental research of anti-icing materials with special wettability is summarized with a focus on recent progresses including low-surface energy coatings and liquid-infused layered coatings. Finally, special attention is paid to a discussion about advantages and disadvantages of the technologies, as well as factors that affect the anti-icing and ice-phobic efficiency. Outlooks and the challenges for future development of the anti-icing and ice-phobic technology are presented and discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Terahertz metamaterials and systems based on rolled-up 3D elements: designs, technological approaches, and properties

    PubMed Central

    Prinz, Victor Ya.; Naumova, Elena V.; Golod, Sergey V.; Seleznev, Vladimir A.; Bocharov, Andrey A.; Kubarev, Vitaliy V.

    2017-01-01

    Electromagnetic metamaterials opened the way to extraordinary manipulation of radiation. Terahertz (THz) and optical metamaterials are usually fabricated by traditional planar-patterning approaches, while the majority of practical applications require metamaterials with 3D resonators. Making arrays of precise 3D micro- and nanoresonators is still a challenging problem. Here we present a versatile set of approaches to fabrication of metamaterials with 3D resonators rolled-up from strained films, demonstrate novel THz metamaterials/systems, and show giant polarization rotation by several chiral metamaterials/systems. The polarization spectra of chiral metamaterials on semiconductor substrates exhibit ultrasharp quasiperiodic peaks. Application of 3D printing allowed assembling more complex systems, including the bianisotropic system with optimal microhelices, which showed an extreme polarization azimuth rotation of 85° with drop by 150° at a frequency shift of 0.4%. We refer the quasiperiodic peaks in the polarization spectra of metamaterial systems to the interplay of different resonances, including peculiar chiral waveguide resonance. Formed metamaterials cannot be made by any other presently available technology. All steps of presented fabrication approaches are parallel, IC-compatible and allow mass fabrication with scaling of rolled-up resonators up to visible frequencies. We anticipate that the rolled-up meta-atoms will be ideal building blocks for future generations of commercial metamaterials, devices and systems on their basis. PMID:28256587

  1. Terahertz metamaterials and systems based on rolled-up 3D elements: designs, technological approaches, and properties

    NASA Astrophysics Data System (ADS)

    Prinz, Victor Ya.; Naumova, Elena V.; Golod, Sergey V.; Seleznev, Vladimir A.; Bocharov, Andrey A.; Kubarev, Vitaliy V.

    2017-03-01

    Electromagnetic metamaterials opened the way to extraordinary manipulation of radiation. Terahertz (THz) and optical metamaterials are usually fabricated by traditional planar-patterning approaches, while the majority of practical applications require metamaterials with 3D resonators. Making arrays of precise 3D micro- and nanoresonators is still a challenging problem. Here we present a versatile set of approaches to fabrication of metamaterials with 3D resonators rolled-up from strained films, demonstrate novel THz metamaterials/systems, and show giant polarization rotation by several chiral metamaterials/systems. The polarization spectra of chiral metamaterials on semiconductor substrates exhibit ultrasharp quasiperiodic peaks. Application of 3D printing allowed assembling more complex systems, including the bianisotropic system with optimal microhelices, which showed an extreme polarization azimuth rotation of 85° with drop by 150° at a frequency shift of 0.4%. We refer the quasiperiodic peaks in the polarization spectra of metamaterial systems to the interplay of different resonances, including peculiar chiral waveguide resonance. Formed metamaterials cannot be made by any other presently available technology. All steps of presented fabrication approaches are parallel, IC-compatible and allow mass fabrication with scaling of rolled-up resonators up to visible frequencies. We anticipate that the rolled-up meta-atoms will be ideal building blocks for future generations of commercial metamaterials, devices and systems on their basis.

  2. Terahertz metamaterials and systems based on rolled-up 3D elements: designs, technological approaches, and properties.

    PubMed

    Prinz, Victor Ya; Naumova, Elena V; Golod, Sergey V; Seleznev, Vladimir A; Bocharov, Andrey A; Kubarev, Vitaliy V

    2017-03-03

    Electromagnetic metamaterials opened the way to extraordinary manipulation of radiation. Terahertz (THz) and optical metamaterials are usually fabricated by traditional planar-patterning approaches, while the majority of practical applications require metamaterials with 3D resonators. Making arrays of precise 3D micro- and nanoresonators is still a challenging problem. Here we present a versatile set of approaches to fabrication of metamaterials with 3D resonators rolled-up from strained films, demonstrate novel THz metamaterials/systems, and show giant polarization rotation by several chiral metamaterials/systems. The polarization spectra of chiral metamaterials on semiconductor substrates exhibit ultrasharp quasiperiodic peaks. Application of 3D printing allowed assembling more complex systems, including the bianisotropic system with optimal microhelices, which showed an extreme polarization azimuth rotation of 85° with drop by 150° at a frequency shift of 0.4%. We refer the quasiperiodic peaks in the polarization spectra of metamaterial systems to the interplay of different resonances, including peculiar chiral waveguide resonance. Formed metamaterials cannot be made by any other presently available technology. All steps of presented fabrication approaches are parallel, IC-compatible and allow mass fabrication with scaling of rolled-up resonators up to visible frequencies. We anticipate that the rolled-up meta-atoms will be ideal building blocks for future generations of commercial metamaterials, devices and systems on their basis.

  3. PSL Icing Facility Upgrade Overview

    NASA Technical Reports Server (NTRS)

    Griffin, Thomas A.; Dicki, Dennis J.; Lizanich, Paul J.

    2014-01-01

    The NASA Glenn Research Center Propulsion Systems Lab (PSL) was recently upgraded to perform engine inlet ice crystal testing in an altitude environment. The system installed 10 spray bars in the inlet plenum for ice crystal generation using 222 spray nozzles. As an altitude test chamber, the PSL is capable of simulating icing events at altitude in a groundtest facility. The system was designed to operate at altitudes from 4,000 to 40,000 ft at Mach numbers up to 0.8M and inlet total temperatures from -60 to +15 degF. This paper and presentation will be part of a series of presentations on PSL Icing and will cover the development of the icing capability through design, developmental testing, installation, initial calibration, and validation engine testing. Information will be presented on the design criteria and process, spray bar developmental testing at Cox and Co., system capabilities, and initial calibration and engine validation test. The PSL icing system was designed to provide NASA and the icing community with a facility that could be used for research studies of engine icing by duplicating in-flight events in a controlled ground-test facility. With the system and the altitude chamber we can produce flight conditions and cloud environments to simulate those encountered in flight. The icing system can be controlled to set various cloud uniformities, droplet median volumetric diameter (MVD), and icing water content (IWC) through a wide variety of conditions. The PSL chamber can set altitudes, Mach numbers, and temperatures of interest to the icing community and also has the instrumentation capability of measuring engine performance during icing testing. PSL last year completed the calibration and initial engine validation of the facility utilizing a Honeywell ALF502-R5 engine and has duplicated in-flight roll back conditions experienced during flight testing. This paper will summarize the modifications and buildup of the facility to accomplish these tests.

  4. Rolling-Element Bearings

    NASA Technical Reports Server (NTRS)

    Hamrock, B. J.; Anderson, W. J.

    1983-01-01

    Rolling element bearings are a precision, yet simple, machine element of great utility. A brief history of rolling element bearings is reviewed and the type of rolling element bearings, their geometry and kinematics, as well as the materials they are made from and the manufacturing processes they involve are described. Unloaded and unlubricated rolling element bearings, loaded but unlubricated rolling element bearings and loaded and lubricated rolling element bearings are considered. The recognition and understanding of elastohydrodynamic lubrication covered, represents one of the major development in rolling element bearings.

  5. The Development Of Enabling Technologies For Submillimeter-Wave Remote Sensing of Ice Clouds From Space

    NASA Technical Reports Server (NTRS)

    Racette, Paul; Wang, James R.; Ackerman, Steven; Skofronick-Jackson, Gail; Evans, K. Frank; O'CStarr, David

    2006-01-01

    This paper presents the chronological development of technologies and techniques that have led to a satellite mission concept aimed at quantifying the temporal and spatial distributions of upper tropospheric ice clouds. The Submillimeter-wave and Infrared Ice Cloud Experiment (SIRICE) is an Earth System Science Pathfinder mission concept designed to improve our understanding of the upper tropospheric water cycle and its coupling to the Earth s radiation budget. Ice outflow from convective storm systems is known to play an important role in regional energy budgets; however, ice generation and subsequent precipitation and sublimation are poorly quantified. SIRICE will provide measurements of ice cloud distributions and microphysical properties which are needed for understanding the crucial link between the hydrologic and energy cycles. The SIRICE measurement platform is comprised of two integrated instruments, the Submillimeter/millimeter-wave radiometer (SM4) and the Infrared Cloud Ice Radiometer (IRCIR). The primary instrument is the SM4, a conical scanner that provides a 1600 km swath of the Earth's surface at 53 degree incidence. The SM4 has 6 linearly polarized receivers measuring 12 spectral bands centered at 183 GHz, 325 GHz, 448 GHz, 643 GHz and 874 GHz; two receivers at 643 GHz measure horizontal and vertical polarizations. Submillimeter-wavelengths are well suited to the remote sensing of ice clouds due to the relative size of the wavelengths to particle sizes. Upwelling emission from lower tropospheric water vapor is scattered by the ice clouds thus causing a brightness temperature depression at submillimeter wavelengths. The IRCIR is a push broom imager with approximately 1500 km swath and spectral channels at 11 and 12 micrometers. This combination of coincident infrared and submillimeter-wavelength measurements were chosen because of its ability to provide retrieval of ice water path and median particle size for a wide range of ice clouds from thin

  6. Ultrashort-pulsed laser processing and solution based coating in roll-to-roll manufacturing of organic photovoltaics

    NASA Astrophysics Data System (ADS)

    Hördemann, C.; Hirschfelder, K.; Schaefer, M.; Gillner, A.

    2015-09-01

    The breakthrough of flexible organic electronics and especially organic photovoltaics is highly dependent on cost-efficient production technologies. Roll-2-Roll processes show potential for a promising solution in terms of high throughput and low-cost production of thin film organic components. Solution based material deposition and integrated laser patterning processes offer new possibilities for versatile production lines. The use of flexible polymeric substrates brings along challenges in laser patterning which have to be overcome. One main challenge when patterning transparent conductive layers on polymeric substrates are material bulges at the edges of the ablated area. Bulges can lead to short circuits in the layer system leading to device failure. Therefore following layers have to have a sufficient thickness to cover and smooth the ridge. In order to minimize the bulging height, a study has been carried out on transparent conductive ITO layers on flexible PET substrates. Ablation results using different beam shapes, such as Gaussian beam, Top-Hat beam and Donut-shaped beam, as well as multi-pass scribing and double-pulsed ablation are compared. Furthermore, lab scale methods for cleaning the patterned layer and eliminating bulges are contrasted to the use of additional water based sacrificial layers in order to obtain an alternative procedure suitable for large scale Roll-2-Roll manufacturing. Besides progress in research, ongoing transfer of laser processes into a Roll-2-Roll demonstrator is illustrated. By using fixed optical elements in combination with a galvanometric scanner, scribing, variable patterning and edge deletion can be performed individually.

  7. Anti-icing/frosting and self-cleaning performance of superhydrophobic aluminum alloys

    NASA Astrophysics Data System (ADS)

    Feng, Libang; Yan, Zhongna; Shi, Xueting; Sultonzoda, Firdavs

    2018-02-01

    Ice formation and frost deposition on cryogenic equipment and systems can result in serious problems and huge economic loss. Hence, it is quite necessary to develop new materials to prevent icing and frosting on cold surfaces in engineering fields. Here, a superhydrophobic aluminum alloy with enhanced anti-frosting, anti-icing, and self-cleaning performance has been developed by a facile one-step method. The anti-frosting/icing performance of superhydrophobic aluminum alloys is confirmed by frosting/icing time delay, consolidating and freezing temperature reduction, and lower amount of frost/ice adhesion. Meanwhile, the excellent self-cleaning performance is authenticated by the fact that simulated pollution particles can be cleaned out by rolling water droplets completely. Finally, based on the classical nucleation theory, anti-icing and anti-frosting mechanisms of the superhydrophobic aluminum alloys are deduced. Results show that grounded on "air cushion" and "heat insulation" effect, a larger nucleation barrier and a lower crystal growth rate can be observed, which, hence, inhibit ice formation and frost deposition. It can be concluded that preparing superhydrophobic surfaces would be an effective strategy for improving anti-icing, anti-frosting, and self-cleaning performance of aluminum alloys.

  8. Investigation of pattern transfer to piezoelectric jetted polymer using roll-to-roll nanoimprint lithography

    NASA Astrophysics Data System (ADS)

    Menezes, Shannon John

    Nanoimprint Lithography (NIL) has existed since the mid 1990s as a proven concept of creating micro- and nanostructures using direct mechanical pattern transfer. Initially seen as a viable option to replace conventional lithography methods, the lack of technology to support large-scale manufacturing using NIL has motivated researchers to explore the application of NIL to create a better, more cost-efficient process with the ability to integrate NIL into a mass manufacturing system. One such method is the roll-to-roll process, similar to that used in printing presses of newspapers and plastics. This thesis is an investigation to characterize polymer deposition using a piezoelectric jetting head and attempt to create micro- and nanostructures on the polymer using R2RNIL technique.

  9. Advances in roll to roll processing of optics

    NASA Astrophysics Data System (ADS)

    Watts, Michael P. C.

    2008-02-01

    Today, there are a number of successful commercial applications that utilize roll to roll processing and almost all involve optics; unpatterned film, patterned film, and devices on film. The largest applications today are in holograms, and brightness enhancement film (BEF) for LCD. Solar cells are rapidly growing. These are mostly made in large captive facilities with their own proprietary equipment, materials and pattern generation capability. World wide roll to roll volume is > 100M meters2 year -1, and generates sales of > $5B. The vast majority of the sales are in BEF film by 3M.

  10. CONTROL FOR ROLLING MILL

    DOEpatents

    Shuck, A.B.; Shaw, W.C.

    1961-06-20

    A plutonium-rolling apparatus is patented that has two sets of feed rolls, shaping rolls between the feed rolls, and grippers beyond the feed rolls, which ready a workpiece for a new pass through the shaping rolls by angularly shifting the workpiece about its axis or transversely moving it on a line parallel to the axes of the shaping rolls. Actuation of each gripper for gripping or releasing the workpiece is produced by the relative positions assumed by the feed rolls adjacent to the gripper as the workpiece enters or leaves the feed rolls.

  11. Origins and spread of fluted-point technology in the Canadian Ice-Free Corridor and eastern Beringia.

    PubMed

    Smith, Heather L; Goebel, Ted

    2018-04-17

    Fluted projectile points have long been recognized as the archaeological signature of early humans dispersing throughout the Western Hemisphere; however, we still lack a clear understanding of their appearance in the interior "Ice-Free Corridor" of western Canada and eastern Beringia. To solve this problem, we conducted a geometric morphometric shape analysis and a phylogenetic analysis of technological traits on fluted points from the archaeological records of northern Alaska and Yukon, in combination with artifacts from further south in Canada, the Great Plains, and eastern United States to investigate the plausibility of historical relatedness and evolutionary patterns in the spread of fluted-point technology in the latest Pleistocene and earliest Holocene. Results link morphologies and technologies of Clovis, certain western Canadian, and northern fluted points, suggesting that fluting technology arrived in the Arctic from a proximate source in the interior Ice-Free Corridor and ultimately from the earliest populations in temperate North America, complementing new genomic models explaining the peopling of the Americas.

  12. Development of technology for manufacture of ragi ice cream.

    PubMed

    Patel, I J; Dharaiya, C N; Pinto, S V

    2015-07-01

    Ragi (Finger millet) improves the nutritional value of ice cream by enhancing the iron and fibre content. Caramel flavoured medium fat ice cream (6 % fat) was prepared by addition of gelatinized malted ragi flour roasted in butter (MRB) @ 8 %, 9 % and 10 % by weight of mix and compared with control (C) i.e. vanilla ice cream containing 10 % fat. The overall acceptability score of product prepared using 9 % MRB was statistically (P > 0.05) at par with the C, hence, it was selected. In the next part of the study, ragi ice cream was prepared using 4 different flavours viz. vanilla, mango, chocolate and caramel. Chocolate flavoured ragi ice cream was adjudged as best, followed by mango, caramel and vanilla ice cream. The iron and fibre content of chocolate flavoured ragi ice cream was found to be 12.8 ppm and 1.36 % respectively. vs. 1.5 ppm and 0.18 % respectively in control (C). Heat shock treatment as well as storage up to 30 days had no adverse effect on the sensory quality of the chocolate flavored ragi ice cream. Incorporation of finger millet in ice cream resulted in reduction in the amount of stabilizer used and effectively functioned as fat replacer in ice cream.

  13. Phase-field modeling of liquids splitting between separating surfaces and its application to high-resolution roll-based printing technologies

    NASA Astrophysics Data System (ADS)

    Hizir, F. E.; Hardt, D. E.

    2017-05-01

    An in-depth understanding of the liquid transport in roll-based printing systems is essential for advancing the roll-based printing technology and enhancing the performance of the printed products. In this study, phase-field simulations are performed to characterize the liquid transport in roll-based printing systems, and the phase-field method is shown to be an effective tool to simulate the liquid transport. In the phase-field simulations, the liquid transport through the ink transfer rollers is approximated as the stretching and splitting of liquid bridges with pinned or moving contact lines between vertically separating surfaces. First, the effect of the phase-field parameters and the mesh characteristics on the simulation results is examined. The simulation results show that a sharp interface limit is approached as the capillary width decreases while keeping the mobility proportional to the capillary width squared. Close to the sharp interface limit, the mobility changes over a specified range are observed to have no significant influence on the simulation results. Next, the ink transfer from the cells on the surface of an ink-metering roller to the surface of stamp features is simulated. Under negligible inertial effects and in the absence of gravity, the amount of liquid ink transferred from an axisymmetric cell with low surface wettability to a stamp with high surface wettability is found to increase as the cell sidewall steepness and the cell surface wettability decrease and the stamp surface wettability and the capillary number increase. Strategies for improving the resolution and quality of roll-based printing are derived based on an analysis of the simulation results. The application of novel materials that contain cells with irregular surface topography to stamp inking in high-resolution roll-based printing is assessed.

  14. Toward large-area roll-to-roll printed nanophotonic sensors

    NASA Astrophysics Data System (ADS)

    Karioja, Pentti; Hiltunen, Jussi; Aikio, Sanna M.; Alajoki, Teemu; Tuominen, Jarkko; Hiltunen, Marianne; Siitonen, Samuli; Kontturi, Ville; Böhlen, Karl; Hauser, Rene; Charlton, Martin; Boersma, Arjen; Lieberzeit, Peter; Felder, Thorsten; Eustace, David; Haskal, Eliav

    2014-05-01

    Polymers have become an important material group in fabricating discrete photonic components and integrated optical devices. This is due to their good properties: high optical transmittance, versatile processability at relative low temperatures and potential for low-cost production. Recently, nanoimprinting or nanoimprint lithography (NIL) has obtained a plenty of research interest. In NIL, a mould is pressed against a substrate coated with a moldable material. After deformation of the material, the mold is separated and a replica of the mold is formed. Compared with conventional lithographic methods, imprinting is simple to carry out, requires less-complicated equipment and can provide high-resolution with high throughput. Nanoimprint lithography has shown potential to become a method for low-cost and high-throughput fabrication of nanostructures. We show the development process of nano-structured, large-area multi-parameter sensors using Photonic Crystal (PC) and Surface Enhanced Raman Scattering (SERS) methodologies for environmental and pharmaceutical applications. We address these challenges by developing roll-to-roll (R2R) UV-nanoimprint fabrication methods. Our development steps are the following: Firstly, the proof of concept structures are fabricated by the use of wafer-level processes in Si-based materials. Secondly, the master molds of successful designs are fabricated, and they are used to transfer the nanophotonic structures into polymer materials using sheet-level UV-nanoimprinting. Thirdly, the sheet-level nanoimprinting processes are transferred to roll-to-roll fabrication. In order to enhance roll-to-roll manufacturing capabilities, silicone-based polymer material development was carried out. In the different development phases, Photonic Crystal and SERS sensor structures with increasing complexities were fabricated using polymer materials in order to enhance sheet-level and roll-to-roll manufacturing processes. In addition, chemical and molecular

  15. Inflationary dynamics with a smooth slow-roll to constant-roll era transition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Odintsov, S.D.; Oikonomou, V.K., E-mail: odintsov@ieec.uab.es, E-mail: v.k.oikonomou1979@gmail.com

    In this paper we investigate the implications of having a varying second slow-roll index on the canonical scalar field inflationary dynamics. We shall be interested in cases that the second slow-roll can take small values and correspondingly large values, for limiting cases of the function that quantifies the variation of the second slow-roll index. As we demonstrate, this can naturally introduce a smooth transition between slow-roll and constant-roll eras. We discuss the theoretical implications of the mechanism we introduce and we use various illustrative examples in order to better understand the new features that the varying second slow-roll index introduces.more » In the examples we will present, the second slow-roll index has exponential dependence on the scalar field, and in one of these cases, the slow-roll era corresponds to a type of α-attractor inflation. Finally, we briefly discuss how the combination of slow-roll and constant-roll may lead to non-Gaussianities in the primordial perturbations.« less

  16. Computer-aided roll pass design in rolling of airfoil shapes

    NASA Technical Reports Server (NTRS)

    Akgerman, N.; Lahoti, G. D.; Altan, T.

    1980-01-01

    This paper describes two computer-aided design (CAD) programs developed for modeling the shape rolling process for airfoil sections. The first program, SHPROL, uses a modular upper-bound method of analysis and predicts the lateral spread, elongation, and roll torque. The second program, ROLPAS, predicts the stresses, roll separating force, the roll torque and the details of metal flow by simulating the rolling process, using the slab method of analysis. ROLPAS is an interactive program; it offers graphic display capabilities and allows the user to interact with the computer via a keyboard, CRT, and a light pen. The accuracy of the computerized models was evaluated by (a) rolling a selected airfoil shape at room temperature from 1018 steel and isothermally at high temperature from Ti-6Al-4V, and (b) comparing the experimental results with computer predictions. The comparisons indicated that the CAD systems, described here, are useful for practical engineering purposes and can be utilized in roll pass design and analysis for airfoil and similar shapes.

  17. Rolling the dice on the ice; New modes for underway data acquisition in the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Coakley, B.; Dove, D.

    2012-12-01

    Exploration of the Arctic Ocean has always depended on the sea ice. It has been a platform supporting drifting ice stations and an obstacle to be over come by force (icebreakers) or finesse (US Navy fast attack submarines). Reduced seasonal sea ice cover has made it possible to work more freely in the peripheral Arctic Ocean, opening relatively unknown regions to scientific exploration and study. In September 2011, the RV Marcus G. Langseth set sail from Dutch Harbor, Alaska bound through Bering Strait for the Arctic Ocean. This was the first Arctic Ocean trip for MGG data acquisition by a US academic research vessel since 1994, when the RV Maurice Ewing collected a 2-D MCS profile across the Bering Shelf, through the Strait and along the Beaufort Shelf, stopping near Barrow, Alaska. RV Langseth arrived on the mid-Chukchi shelf and streamed gear just south of the "Crackerjack" well, drilled by Shell Exploration in the late eighties. The ship sailed north, crossing the "Popcorn" well and then set a course to the NW, setting the baseline for the survey parallel to the Beaufort Shelf edge. Sailing through almost entirely ice-free waters, approximately 5300 km of multi-channel seismic reflection data were acquired on a NW-SE oriented grid, which straddled the transition from Chukchi Shelf to the Chukchi Borderland. It would not have been possible for Langseth, which is not ice reinforced, to acquire these data prior to 2007. The dramatic expansion of late Summer open water in the western Arctic Ocean made it possible to use this ship effectively across a broad swath of the shelf and the periphery of the deep central basin. While the survey region was almost entirely ice free during this cruise, which straddled the ice minimum for 2011, it was not possible to predict this a priori, despite expectations set by the previous five years of ice edge retreat. For this reason, the Canadian Ice Service was engaged to provide interpreted ice imagery, multiple times per day

  18. Rolling into spatial disorientation: simulator demonstration of the post-roll (Gillingham) illusion.

    PubMed

    Nooij, Suzanne A E; Groen, Eric L

    2011-05-01

    Spatial disorientation (SD) is still a contributing factor in many aviation accidents, stressing the need for adequate SD training scenarios. In this article we focused on the post-roll effect (the sensation of rolling back after a roll maneuver, such as an entry of a coordinated turn) and investigated the effect of roll stimuli on the pilot's ability to stabilize their roll attitude. This resulted in a ground-based demonstration scenario for pilots. The experiments took place in the advanced 6-DOF Desdemona motion simulator, with the subject in a supine position. Roll motions were either fully automated with the subjects blindfolded (BLIND), automated with the subject viewing the cockpit interior (COCKPIT), or self-controlled (LEAD). After the roll stimulus subjects had to cancel all perceived simulator motion without any visual feedback. Both the roll velocity and duration were varied. In 68% of all trials subjects corrected for the perceived motion of rolling back by initiating a roll motion in the same direction as the preceeding roll. The effect was dependent on both rate and duration, in a manner consistent with semicircular canal dynamics. The effect was smallest in the BLIND scenario, but differences between simulation scenarios were non-significant. The results show that the effects of the post-roll illusion on aircraft control can be demonstrated adequately in a flight simulator using an attitude control task. The effect is present even after short roll movements, occurring frequently in flight. Therefore this demonstration is relevant for spatial disorientation training programs for pilots.

  19. Defect Analysis of Roll-to-Roll SAIL Manufactured Flexible Display Backplanes

    DTIC Science & Technology

    2011-01-01

    tenting defect through the SAIL process Figure 5: Flexible backplane electrical tester Figure 6: R2R optical inspection system Figure 7: TEM of TFT ...Analysis of Roll-to-Roll SAIL Manufactured Flexible Display...Marcia Almanza-Workman, Robert A. Garcia, HanJun Kim, Ohseung Kwon, Frank Jeffrey HP Laboratories HPL-2011-35 SAIL, flexible displays, roll-to-roll HP

  20. High-rate, roll-to-roll nanomanufacturing of flexible systems

    NASA Astrophysics Data System (ADS)

    Cooper, Khershed P.; Wachter, Ralph F.

    2012-10-01

    Since the National Nanotechnology Initiative was first announced in 2000, nanotechnology has developed an impressive catalog of nano-scale structures with building-blocks such as nanoparticles, nanotubes, nanorods, nanopillars, and quantum dots. Similarly, there are accompanying materials processes such as, atomic layer deposition, pulsed layer deposition, nanoprinting, nanoimprinting, transfer printing, nanolithography and nanopatterning. One of the challenges of nanomanufacturing is scaling up these processes reliably and affordably. Roll-to-roll manufacturing is a means for scaling up, for increasing throughput. It is high-speed production using a continuous, moving platform such as a web or a flexible substrate. The adoption of roll-to-roll to nanomanufacturing is novel. The goal is to build structures and devices with nano-scale features and specific functionality. The substrate could be a polymer, metal foil, silk, cloth or paper. The materials to build the structures and multi-level devices could be organic, inorganic or biological. Processing could be solution-based, e.g., ink-jet printing, or vacuum-based, e.g., chemical vapor deposition. Products could be electronics, optoelectronics, membranes, catalysts, microfluidics, lab-on-film, filters, etc. By this means, processing of large and conformal areas is achievable. High-throughput translates into low cost, which is the attraction of roll-to-roll nanomanufacturing. There are technical challenges requiring fundamental scientific advances in materials and process development and in manufacturing and system-integration where achieving nano-scale feature size, resolution and accuracy at high speeds can be major hurdles. We will give an overview of roll-to-roll nanomanufacturing with emphasis on the need to understand the material, process and system complexities, the need for instrumentation, measurement, and process control and describe the concept of cyber-enabled nanomanufacturing for reliable and

  1. The Winter Olympics--On Ice.

    ERIC Educational Resources Information Center

    Hoover, Barbara G.

    1998-01-01

    Describes several science activities designed around the upcoming Winter Olympics ice skating events which demonstrate the scientific principles behind the sport. Students learn that increasing the pressure on ice will lead to the ice melting, the principle involved in the spinning swing, and the technology of skates and skating outfits. (PVD)

  2. Rolling Contact Fatigue Workshop July 26-27, 2011

    DOT National Transportation Integrated Search

    2012-08-01

    In July 2011, the Transportation Technology Center, Inc., coordinated the joint Federal Railroad Association/Association of American Railroads Workshop on Rolling Contact Fatigue (RCF). The workshop was held at the Congress Plaza Hotel in Chicago, IL...

  3. Proceedings of the Airframe Icing Workshop

    NASA Technical Reports Server (NTRS)

    Colantonio, Ron O. (Editor)

    2009-01-01

    The NASA Glenn Research Center (GRC) has a long history of working with its partners towards the understanding of ice accretion formation and its associated degradation of aerodynamic performance. The June 9, 2009, Airframe Icing Workshop held at GRC provided an opportunity to examine the current NASA airframe icing research program and to dialogue on remaining and emerging airframe icing issues and research with the external community. Some of the airframe icing gaps identified included, but are not limited to, ice accretion simulation enhancements, three-dimensional benchmark icing database development, three-dimensional iced aerodynamics modeling, and technology development for a smart icing system.

  4. Inflation with a smooth constant-roll to constant-roll era transition

    NASA Astrophysics Data System (ADS)

    Odintsov, S. D.; Oikonomou, V. K.

    2017-07-01

    In this paper, we study canonical scalar field models, with a varying second slow-roll parameter, that allow transitions between constant-roll eras. In the models with two constant-roll eras, it is possible to avoid fine-tunings in the initial conditions of the scalar field. We mainly focus on the stability of the resulting solutions, and we also investigate if these solutions are attractors of the cosmological system. We shall calculate the resulting scalar potential and, by using a numerical approach, we examine the stability and attractor properties of the solutions. As we show, the first constant-roll era is dynamically unstable towards linear perturbations, and the cosmological system is driven by the attractor solution to the final constant-roll era. As we demonstrate, it is possible to have a nearly scale-invariant power spectrum of primordial curvature perturbations in some cases; however, this is strongly model dependent and depends on the rate of the final constant-roll era. Finally, we present, in brief, the essential features of a model that allows oscillations between constant-roll eras.

  5. ICE SLURRY APPLICATIONS

    PubMed Central

    Kauffeld, M.; WANG, M. J.; Goldstein, V.; Kasza, K. E.

    2011-01-01

    The role of secondary refrigerants is expected to grow as the focus on the reduction of greenhouse gas emissions increases. The effectiveness of secondary refrigerants can be improved when phase changing media are introduced in place of single phase media. Operating at temperatures below the freezing point of water, ice slurry facilitates several efficiency improvements such as reductions in pumping energy consumption as well as lowering the required temperature difference in heat exchangers due to the beneficial thermo-physical properties of ice slurry. Research has shown that ice slurry can be engineered to have ideal ice particle characteristics so that it can be easily stored in tanks without agglomeration and then be extractable for pumping at very high ice fraction without plugging. In addition ice slurry can be used in many direct contact food and medical protective cooling applications. This paper provides an overview of the latest developments in ice slurry technology. PMID:21528014

  6. Improvement of rolling 6 mm thin plates in plate rolling mill PT. Krakatau Posco

    NASA Astrophysics Data System (ADS)

    Pujiyanto, Hamdani

    2017-01-01

    A 6-mm thin plate is difficult to produce especially if the product requires wide size and high strength. Flatness is the main quality issue in rolling 6-mm plate using a 4-high reversing mill which use ±1100-mm work roll. Thus some methods are applied to overcome such issue in order to comply to customer quality requirement. Pre-rolling, rolling, and post-rolling conditions have to be considered comprehensively. Roll unit management will be the key factor before rolling condition. The roll unit itself has a significant impact on work roll crown wearness in relation with work roll intial crown and thermal crown. Work roll crown along with the modification of hydraulic gap control (HGC) could directly alter the flatness of the plate.

  7. Ocean-Forced Ice-Shelf Thinning in a Synchronously Coupled Ice-Ocean Model

    NASA Astrophysics Data System (ADS)

    Jordan, James R.; Holland, Paul R.; Goldberg, Dan; Snow, Kate; Arthern, Robert; Campin, Jean-Michel; Heimbach, Patrick; Jenkins, Adrian

    2018-02-01

    The first fully synchronous, coupled ice shelf-ocean model with a fixed grounding line and imposed upstream ice velocity has been developed using the MITgcm (Massachusetts Institute of Technology general circulation model). Unlike previous, asynchronous, approaches to coupled modeling our approach is fully conservative of heat, salt, and mass. Synchronous coupling is achieved by continuously updating the ice-shelf thickness on the ocean time step. By simulating an idealized, warm-water ice shelf we show how raising the pycnocline leads to a reduction in both ice-shelf mass and back stress, and hence buttressing. Coupled runs show the formation of a western boundary channel in the ice-shelf base due to increased melting on the western boundary due to Coriolis enhanced flow. Eastern boundary ice thickening is also observed. This is not the case when using a simple depth-dependent parameterized melt, as the ice shelf has relatively thinner sides and a thicker central "bulge" for a given ice-shelf mass. Ice-shelf geometry arising from the parameterized melt rate tends to underestimate backstress (and therefore buttressing) for a given ice-shelf mass due to a thinner ice shelf at the boundaries when compared to coupled model simulations.

  8. Tradition and Technology: Sea Ice Science on Inuit Sleds

    NASA Astrophysics Data System (ADS)

    Wilkinson, Jeremy P.; Hanson, Susanne; Hughes, Nick E.; James, Alistair; Jones, Bryn; MacKinnon, Rory; Rysgaard, Søren; Toudal, Leif

    2011-01-01

    The Arctic is home to a circumpolar community of native people whose culture and traditions have enabled them to thrive in what most would perceive as a totally inhospitable and untenable environment. In many ways, sea ice can be viewed as the glue that binds these northern communities together; it is utilized in all aspects of their daily life. Sea ice acts as highways of the north; indeed, one can travel on these highways with dogsleds and snowmobiles. These travels over the frozen ocean occur at all periods of the sea ice cycle and over different ice types and ages. Excursions may be hunting trips to remote regions or social visits to nearby villages. Furthermore, hunting on the sea ice contributes to the health, culture, and commercial income of a community.

  9. Icing Sensor Probe

    NASA Technical Reports Server (NTRS)

    Emery, Edward; Kok, Gregory L.

    2002-01-01

    Aircraft icing is a serious safety problem for the general aviation and some commuter transport airplanes. There has been tremendous growth in the commuter aviation industry in the last few years, Since these type of aircraft generally operate at lower altitudes they consequently spend a far greater proportion of their time operating in icing conditions. For the past thirty years airborne and ground based facilities have relied primarily on two types of cloud physics instrumentation to measure the characteristics of icing clouds: hot wire liquid water content probes and laser based particle sizing probes for the measurement of water droplet size. The instrumentation is severely limited by the technology that was developed during the 1970's and is quite large in size. The goal of this research is to develop one instrument with a wide bandwidth, better response time, higher resolution, user selectability, and small and lightweight. NASA Glenn Research Center, Droplet Measurement Technology, and Meteorology Society of Canada have developed a collaborative effort to develop such an instrument. This paper describes the development and test results of the prototype Icing Sensor Probe.

  10. Development of a paper based roll-to-roll nanoimprinting machine

    NASA Astrophysics Data System (ADS)

    Son, Byungwook

    Nanoimprint lithography (NIL) has been developed and studied since 1995. It is a technique where micro- or nanoscale patterns are transferred to soft materials such as polymer through pressing a stamp with certain patterns into this materials and then solidifying it by cooling at lower temperature or curing under ultra violet excitement. High Cost and low throughput of batch mode nanoimprint lithography (NIL) processes are limiting its wide range of applications in meeting industry manufacturing requirements. The roll-to-roll (R2R) nanoimprinting technology is emerged as a solution to this issue. This thesis study presents the design, build and test of an innovative R2R T-NIL process machine for nanofabrication and MEMS fabrication applications, which consists of individual modules of heating, inking, pressuring, and rotational speed control. The system utilizes PDMS as mold material, PMMA as imprinting material, and paper as substrate material. In order to achieve a uniform pressure on PMMA during imprinting process, an innovative air pressure device (APD) was developed and integrated with R2R machine. The APD replaces the conventional 2-roll line contact pressure approach and can cover one third of the surface of the imprinting roller with a uniform pressure (1-3 psi). During the imprinting experiment, a mixture of PMMA (20w %) and 2-Ethoxyethyl acetate is applied on the paper substrate by an inking roller using capillary force and an IR heater is used for pre-heating and drying of polymer layers before it is fed into the imprinting module. Two 500-Watt cartridge heaters are installed on the roller and provide the heat to raise the PMMA film temperature during the imprinting.

  11. An Ice Protection and Detection Systems Manufacturer's Perspective

    NASA Technical Reports Server (NTRS)

    Sweet, Dave

    2009-01-01

    Accomplishments include: World Class Aircraft Icing Research Center and Facility. Primary Sponsor/Partner - Aircraft Icing Consortia/Meetings. Icing Research Tunnel. Icing Test Aircraft. Icing Codes - LEWICE/Scaling, et al. Development of New Technologies (SBIR, STTR, et al). Example: Look Ahead Ice Detection. Pilot Training Materials. Full Cooperation with Academia, Government and Industry.

  12. Determination Of Slitting Criterion Parameter During The Multi Slit Rolling Process

    NASA Astrophysics Data System (ADS)

    Stefanik, Andrzej; Mróz, Sebastian; Szota, Piotr; Dyja, Henryk

    2007-05-01

    The rolling of rods with slitting of the strip calls for the use of special mathematical models that would allow for the separating of metal. A theoretical analysis of the effect of the gap of slitting rollers on the process of band slitting during the rolling of 20 mm and 16 mm-diameter ribbed rods rolled according to the two-strand technology was carried out within this study. For the numerical modeling of strip slitting the Forge3® computer program was applied. The strip slitting in the simulation is implemented by the algorithm of removing elements in which the critical value of the normalized Cockroft - Latham criterion has been exceeded. To determine the value of the criterion the inverse method was applied. Distance between a point, where crack begins, and point of contact metal with the slitting rollers was the parameter for analysis. Power and rolling torque during slit rolling were presented. Distribution and change of the stress in strand while slitting were presented.

  13. Analytical study on web deformation by tension in roll-to-roll printing process

    NASA Astrophysics Data System (ADS)

    Kang, Y. S.; Hong, M. S.; Lee, S. H.; Jeon, Y. H.; Kang, D.; Lee, N. K.; Lee, M. G.

    2017-08-01

    Recently, flexible devices have gained high intentions for flexible display, Radio Frequency Identification (RFID), bio-sensor and so on. For manufacturing of the flexible devices, roll-to-roll process is a good candidate because of its low production cost and high productivity. Flexible substrate has a non-uniform deformation distribution by tension. Because the roll-to-roll process carries out a number of overlay printing processes, the deformation affect overlay printing precision and printable areas. In this study, the deformation of flexible substrate was analyzed by using finite element analysis and it was verified through experiments. More deformation occurred in the middle region in the direction parallel to rolling of the flexible substrate. It is confirmed through experiments and analysis that deformation occurs less at the both ends than in the middle region. Based on these results, a hourglass roll is proposed as a mechanical design of the roll to compensate the non-uniform deformation of the flexible substrate. In the hourglass roll, high stiffness material is used in the core and low stiffness material such as an elastic material is wrapped. The diameter of the core roll was designed to be the minimum at the middle and the maximum at both ends. We tried to compensate the non-uniform deformation distribution of the flexible substrate by using the variation of the contact stiffness between the roll and the flexible substrate. Deformation distribution of flexible substrates was confirmed by finite element analysis by applying hourglass roll shape. In the analysis when using the hourglass roll, it is confirmed that the stress distribution is compensated by about 70% and the strain distribution is compensated by about 67% compared to the case using the hourglass roll. To verify the compensation of the non-uniform deformation distribution due to the tension, deformation measurement experiment when using the proposed hourglass roll was carried out

  14. Application of double laser interferometer in the measurement of translational stages' roll characteristics

    NASA Astrophysics Data System (ADS)

    Jin, Tao; Shen, Lu; Ke, Youlong; Hou, Wenmei; Ju, Aisong; Yang, Wei; Luo, Jialin

    2016-10-01

    In order to achieve rapid measurement of larger travel translation stages' roll-angle error in industry and to study the roll characteristics, this paper designs a small roll-angle measurement system based on laser heterodyne interferometry technology, test and researched on the roll characteristics of ball screw linear translation stage to fill the blank of the market. The results show that: during the operation of the ball screw linear translation stage, the workbench's roll angle changes complexly, its value is not only changing with different positions, but also shows different levels of volatility, what's more, the volatility varies with the workbench's work speed . Because of the non uniform stiffness of ball screw, at the end of each movement, the elastic potential energy being stored from the working process should release slowly, and the workbench will cost a certain time to roll fluctuate before it achieves a stable tumbling again.

  15. Investigation of Condensing Ice Heat Exchangers for MTSA Technology Development

    NASA Technical Reports Server (NTRS)

    Padilla, Sebastian; Powers, Aaron; Ball, Tyler; Iacomini, Christie; Paul, Heather, L.

    2008-01-01

    Metabolic heat regenerated Temperature Swing Adsorption (MTSA) technology is being developed for thermal, carbon dioxide (CO2) and humidity control for a Portable Life Support Subsystem (PLSS). Metabolically-produced CO2 present in the ventilation gas of a PLSS is collected using a CO2selective adsorbent via temperature swing adsorption. The temperature swing is initiated through cooling to well below metabolic temperatures. Cooling is achieved with a sublimation heat exchanger using water or liquid carbon dioxide (LCO2) expanded below sublimation temperature when exposed to low pressure or vacuum. Subsequent super heated vapor, as well as additional coolant, is used to further cool the astronaut. The temperature swing on the adsorbent is then completed by warming the adsorbent with a separate condensing ice heat exchanger (CIHX) using metabolic heat from moist ventilation gas. The condensed humidity in the ventilation gas is recycled at the habitat. The water condensation from the ventilation gas is a significant heat transfer mechanism for the warming of the adsorbent bed because it represents as much as half of the energy potential in the moist ventilation gas. Designing a heat exchanger to efficiently transfer this energy to the adsorbent bed and allow the collection of the water is a challenge since the CIHX will operate in a temperature range from 210K to 280K. The ventilation gas moisture will first freeze and then thaw, sometimes existing in three phases simultaneously. A NASA Small Business Innovative Research (SBIR) Phase 1 contract was performed to investigate condensing and icing as applied to MTSA to enable higher fidelity modeling and assess the impact of geometry variables on CIHX performance for future CIHX design optimization. Specifically, a design tool was created using analytical relations to explore the complex, interdependent design space of a condensing ice heat exchanger. Numerous variables were identified as having nontrivial contributions

  16. Geometrical accuracy improvement in flexible roll forming lines

    NASA Astrophysics Data System (ADS)

    Larrañaga, J.; Berner, S.; Galdos, L.; Groche, P.

    2011-01-01

    The general interest to produce profiles with variable cross section in a cost-effective way has increased in the last few years. The flexible roll forming process allows producing profiles with variable cross section lengthwise in a continuous way. Until now, only a few flexible roll forming lines were developed and built up. Apart from the flange wrinkling along the transition zone of u-profiles with variable cross section, the process limits have not been investigated and solutions for shape deviations are unknown. During the PROFOM project a flexible roll forming machine has been developed with the objective of producing high technological components for automotive body structures. In order to investigate the limits of the process, different profile geometries and steel grades including high strength steels have been applied. During the first experimental tests, several errors have been identified, as a result of the complex stress states generated during the forming process. In order to improve the accuracy of the target profiles and to meet the tolerance demands of the automotive industry, a thermo-mechanical solution has been proposed. Additional mechanical devices, supporting flexible the roll forming process, have been implemented in the roll forming line together with local heating techniques. The combination of both methods shows a significant increase of the accuracy. In the present investigation, the experimental results of the validation process are presented.

  17. Advanced ice protection systems test in the NASA Lewis icing research tunnel

    NASA Technical Reports Server (NTRS)

    Bond, Thomas H.; Shin, Jaiwon; Mesander, Geert A.

    1991-01-01

    Tests of eight different deicing systems based on variations of three different technologies were conducted in the NASA Lewis Research Center Icing Research Tunnel (IRT) in June and July 1990. The systems used pneumatic, eddy current repulsive, and electro-expulsive means to shed ice. The tests were conducted on a 1.83 m span, 0.53 m chord NACA 0012 airfoil operated at a 4 degree angle of attack. The models were tested at two temperatures: a glaze condition at minus 3.9 C and a rime condition at minus 17.2 C. The systems were tested through a range of icing spray times and cycling rates. Characterization of the deicers was accomplished by monitoring power consumption, ice shed particle size, and residual ice. High speed video motion analysis was performed to quantify ice particle size.

  18. Rolled-out collectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shurcliff, W.A.

    1979-04-01

    SolaRoll is a solar collector material composed of extruded strips of black ethylene propylene diene monomer (EPDM) that is suitable for water or air type collectors. SolaRoll is provided in rolls and consists of an absorber mat with tubes and fins and a framing strip comprising all the parts of the collector frame. The rolls are bent in a counterflow pattern to cover the entire collector area and the mat is fastened with a thermosetting mastic adhesive. The heat transfer fluid is plain water as freezing does not injure the EPDM. Installation of the glazing in the framing strip ismore » described. EPDM has the disadvantage of low thermal conductivity but its use does not require antifreeze or a heat exchanger. Design options and suitable applications of SolaRoll systems are discussed.« less

  19. New Fluid Prevents Railway Ice

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Through a licensing agreement between NASA's Ames Research Center and Midwest Industrial Supply, Inc. (MIS), two MIS products have been enhanced with NASA's anti-icing fluid technology. MIS offers the new fluid in two commercial products, the Zero Gravity(TM) Third Rail Anti-Icer/Deicer and the Ice Free Switch(R). Using NASA's fluid technology, these products form a protective-coating barrier that prevents the buildup of ice and snow. Applying the fluid to the railway components prior to ice or snowstorm works as an anti-icing fluid, remaining in place to melt precipitation as it hits the surface. It also functions as a deicing fluid. If applied to an already frozen switch or rail, it will quickly melt the ice, free the frozen parts, and then remain in place to prevent refreezing. Additional benefits include the ability to cling to vertical rail surfaces and resist the effects of rain and wind. With the Ice Free Switch, it takes only five minutes to treat the switch by spraying, brushing, or pouring on the product. Ice Free Switch requires as little as one gallon per switch whereas other deicing fluids require five to ten gallons of liquid to effectively melt ice. Zero Gravity serves the same anti-icing/deicing purposes but applies fluid to the third rail through a system that is easily installed onto mass transit cars. A tank of fluid and a dispensing system are placed underneath the train car and the fluid is applied as the train runs its route.

  20. Rolling-element bearings in China: From ancient times to the 20th century

    NASA Astrophysics Data System (ADS)

    Sun, Lie; Li, Ang

    2016-03-01

    The development of rolling-element bearings in China has spanned a long period. Based on several typical and important cases, the present article reconstructs the history of rolling-element bearings in China by dividing it into four stages according to the various characteristics of the bearings. The first stage represents the origin of rolling bearings in China, which remains controversial because of several suspected races and cages that were likely the components of bearings more than a millennium ago. At the second stage, a type of simple roller bearing was used for astronomical instruments not later than the 13th century based on clear philological and physical evidence. A similar bearing was also applied to an abridged armillary in the 17th century. Another type of spherical thrust bearings with rolling elements, which is a key component of a traditional Chinese windmill, could support a rotating shaft that moves rotationally and at an angle. At the third stage, the Chinese began studying and using the so-called Europeanstyle bearing since the 17th century. Moreover, over the last 100 years, the modern rolling bearing industry was gradually established in China, particularly because of the technology transfer from the Soviet Union in the 1950s. At the fourth stage, the Chinese government initiated the relatively rapid development of bearing technology. The government launched the "bearing movement" from the 1950s to the 1960s to establish the modern bearing industry and to promote rolling bearings as replacement for traditional sliding bearings. Furthermore, a number of large professional factories and institutions in China have continually introduced advanced technology and equipment. At present, these companies and institutions play a significant role in the international bearing industry.

  1. High volume nanoscale roll-based imprinting using jet and flash imprint lithography

    NASA Astrophysics Data System (ADS)

    Ahn, Se Hyun; Miller, Michael; Yang, Shuqiang; Ganapathisubramanian, Maha; Menezes, Marlon; Singh, Vik; Wan, Fen; Choi, Jin; Xu, Frank; LaBrake, Dwayne; Resnick, Douglas J.; Hofemann, Paul; Sreenivasan, S. V.

    2014-03-01

    Extremely large-area roll-to-roll manufacturing on flexible substrates is ubiquitous for applications such as paper and plastic processing. The challenge is to extend this approach to the realm of nanopatterning and realize similar benefits. Display applications, including liquid crystal (LCD), organic light emitting diode (OLED) and flexible displays are particularly interesting because of the ability to impact multiple levels in the basic display. Of particular interest are the polarizer, DBEF, thin film transistor and color filter; roll-based imprinting has the opportunity to create high performance components within the display while improving the cost of ownership of the panel. Realization of these devices requires both a scalable imprinting technology and tool. In this paper, we introduce a high volume roll-based nanopatterning system, the LithoFlex 350TM. The LithoFlex 350 uses an inkjet based imprinting process similar to the technology demonstrator tool, the LithoFlex 100, introduced in 2012. The width of the web is 350mm and patterning width is 300mm. The system can be configured either for Plate-to-Roll (P2R) imprinting (in which a rigid template is used to pattern the flexible web material) or for Roll-to-Plate imprinting (R2P) (in which a web based template is used to pattern either wafers or panels). Also described in this paper are improvements to wire grid polarizer devices. By optimizing the deposition, patterning and etch processes, we have been able to create working WGPs with transmittance and extinction ratios as high as 44% and 50,000, respectively.

  2. Roll-to-roll nanopatterning using jet and flash imprint lithography

    NASA Astrophysics Data System (ADS)

    Ahn, Sean; Ganapathisubramanian, Maha; Miller, Mike; Yang, Jack; Choi, Jin; Xu, Frank; Resnick, Douglas J.; Sreenivasan, S. V.

    2012-03-01

    The ability to pattern materials at the nanoscale can enable a variety of applications ranging from high density data storage, displays, photonic devices and CMOS integrated circuits to emerging applications in the biomedical and energy sectors. These applications require varying levels of pattern control, short and long range order, and have varying cost tolerances. Extremely large area R2R manufacturing on flexible substrates is ubiquitous for applications such as paper and plastic processing. It combines the benefits of high speed and inexpensive substrates to deliver a commodity product at low cost. The challenge is to extend this approach to the realm of nanopatterning and realize similar benefits. The cost of manufacturing is typically driven by speed (or throughput), tool complexity, cost of consumables (materials used, mold or master cost, etc.), substrate cost, and the downstream processing required (annealing, deposition, etching, etc.). In order to achieve low cost nanopatterning, it is imperative to move towards high speed imprinting, less complex tools, near zero waste of consumables and low cost substrates. The Jet and Flash Imprint Lithography (J-FILTM) process uses drop dispensing of UV curable resists to assist high resolution patterning for subsequent dry etch pattern transfer. The technology is actively being used to develop solutions for memory markets including Flash memory and patterned media for hard disk drives. In this paper we address the key challenges for roll based nanopatterning by introducing a novel concept: Ink Jet based Roll-to-Roll Nanopatterning. To address this challenge, we have introduced a J-FIL based demonstrator product, the LithoFlex 100. Topics that are discussed in the paper include tool design and process performance. In addition, we have used the LithoFlex 100 to fabricate high performance wire grid polarizers on flexible polycarbonate (PC) films. Transmission of better than 80% and extinction ratios on the order of

  3. Disposable photonic integrated circuits for evanescent wave sensors by ultra-high volume roll-to-roll method.

    PubMed

    Aikio, Sanna; Hiltunen, Jussi; Hiitola-Keinänen, Johanna; Hiltunen, Marianne; Kontturi, Ville; Siitonen, Samuli; Puustinen, Jarkko; Karioja, Pentti

    2016-02-08

    Flexible photonic integrated circuit technology is an emerging field expanding the usage possibilities of photonics, particularly in sensor applications, by enabling the realization of conformable devices and introduction of new alternative production methods. Here, we demonstrate that disposable polymeric photonic integrated circuit devices can be produced in lengths of hundreds of meters by ultra-high volume roll-to-roll methods on a flexible carrier. Attenuation properties of hundreds of individual devices were measured confirming that waveguides with good and repeatable performance were fabricated. We also demonstrate the applicability of the devices for the evanescent wave sensing of ambient refractive index. The production of integrated photonic devices using ultra-high volume fabrication, in a similar manner as paper is produced, may inherently expand methods of manufacturing low-cost disposable photonic integrated circuits for a wide range of sensor applications.

  4. The Arctic Gakkel Vents (AGAVE) Expedition: Technology Development and the Search for Deep-Sea Hydrothermal Vent Fields Under the Arctic Ice Cap

    NASA Astrophysics Data System (ADS)

    Reves-Sohn, R. A.; Singh, H.; Humphris, S.; Shank, T.; Jakuba, M.; Kunz, C.; Murphy, C.; Willis, C.

    2007-12-01

    Deep-sea hydrothermal fields on the Gakkel Ridge beneath the Arctic ice cap provide perhaps the best terrestrial analogue for volcanically-hosted chemosynthetic biological communities that may exist beneath the ice-covered ocean of Europa. In both cases the key enabling technologies are robotic (untethered) vehicles that can swim freely under the ice and the supporting hardware and software. The development of robotic technology for deep- sea research beneath ice-covered oceans thus has relevance to both polar oceanography and future astrobiological missions to Europa. These considerations motivated a technology development effort under the auspices of NASA's ASTEP program and NSF's Office of Polar Programs that culminated in the AGAVE expedition aboard the icebreaker Oden from July 1 - August 10, 2007. The scientific objective was to study hydrothermal processes on the Gakkel Ridge, which is a key target for global studies of deep-sea vent fields. We developed two new autonomous underwater vehicles (AUVs) for the project, and deployed them to search for vent fields beneath the ice. We conducted eight AUV missions (four to completion) during the 40-day long expedition, which also included ship-based bathymetric surveys, CTD/rosette water column surveys, and wireline photographic and sampling surveys of remote sections of the Gakkel Ridge. The AUV missions, which lasted 16 hours on average and achieved operational depths of 4200 meters, returned sensor data that showed clear evidence of hydrothermal venting, but for a combination of technical reasons and time constraints, the AUVs did not ultimately return images of deep-sea vent fields. Nevertheless we used our wireline system to obtain images and samples of extensive microbial mats that covered fresh volcanic surfaces on a newly discovered set of volcanoes. The microbes appear to be living in regions where reducing and slightly warm fluids are seeping through cracks in the fresh volcanic terrain. These discoveries

  5. A Model to Assess the Risk of Ice Accretion Due to Ice Crystal Ingestion in a Turbofan Engine and its Effects on Performance

    NASA Technical Reports Server (NTRS)

    Jorgenson, Philip C. E.; Veres, Joseph P.; Wright, William B.; Struk, Peter M.

    2013-01-01

    The occurrence of ice accretion within commercial high bypass aircraft turbine engines has been reported under certain atmospheric conditions. Engine anomalies have taken place at high altitudes that were attributed to ice crystal ingestion, partially melting, and ice accretion on the compression system components. The result was one or more of the following anomalies: degraded engine performance, engine roll back, compressor surge and stall, and flameout of the combustor. The main focus of this research is the development of a computational tool that can estimate whether there is a risk of ice accretion by tracking key parameters through the compression system blade rows at all engine operating points within the flight trajectory. The tool has an engine system thermodynamic cycle code, coupled with a compressor flow analysis code, and an ice particle melt code that has the capability of determining the rate of sublimation, melting, and evaporation through the compressor blade rows. Assumptions are made to predict the complex physics involved in engine icing. Specifically, the code does not directly estimate ice accretion and does not have models for particle breakup or erosion. Two key parameters have been suggested as conditions that must be met at the same location for ice accretion to occur: the local wet-bulb temperature to be near freezing or below and the local melt ratio must be above 10%. These parameters were deduced from analyzing laboratory icing test data and are the criteria used to predict the possibility of ice accretion within an engine including the specific blade row where it could occur. Once the possibility of accretion is determined from these parameters, the degree of blockage due to ice accretion on the local stator vane can be estimated from an empirical model of ice growth rate and time spent at that operating point in the flight trajectory. The computational tool can be used to assess specific turbine engines to their susceptibility to

  6. Roll-to-roll light directed electrophoretic deposition system and method

    DOEpatents

    Pascall, Andrew J.; Kuntz, Joshua

    2017-06-06

    A roll-to-roll light directed electrophoretic deposition system and method advances a roll of a flexible electrode web substrate along a roll-to-roll process path, where a material source is positioned to provide on the flexible electrode web substrate a thin film colloidal dispersion of electrically charged colloidal material dispersed in a fluid. A counter electrode is also positioned to come in contact with the thin film colloidal dispersion opposite the flexible electrode web substrate, where one of the counter electrode and the flexible electrode web substrate is a photoconductive electrode. A voltage source is connected to produce an electric potential between the counter electrode and the flexible electrode web substrate to induce electrophoretic deposition on the flexible electrode web substrate when the photoconductive electrode is rendered conductive, and a patterned light source is arranged to illuminate the photoconductive electrode with a light pattern and render conductive illuminated areas of the photoconductive electrode so that a patterned deposit of the electrically charged colloidal material is formed on the flexible electrode web substrate.

  7. Energy-Efficient Systems Eliminate Icing Danger for UAVs

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Ames Research Center engineer Leonard Haslim invented an anti-icing t echnology called an electroexpulsive separation system, which uses m echanical force to shatter potentially dangerous ice buildup on an ai rcraft surface. Temecula, California-based Ice Management Systems (no w known as IMS-ESS) licensed the technology from Ames and has discov ered a niche market for the lightweight, energy-efficient technology: unmanned aerial vehicles (UAVs). IMS-ESS systems now prevent damagi ng ice accumulation on military UAVs, allowing the vehicles to carry out crucial missions year round.

  8. Metal-assisted exfoliation (MAE): green, roll-to-roll compatible method for transferring graphene to flexible substrates

    NASA Astrophysics Data System (ADS)

    Zaretski, Aliaksandr V.; Moetazedi, Herad; Kong, Casey; Sawyer, Eric J.; Savagatrup, Suchol; Valle, Eduardo; O'Connor, Timothy F.; Printz, Adam D.; Lipomi, Darren J.

    2015-01-01

    Graphene is expected to play a significant role in future technologies that span a range from consumer electronics, to devices for the conversion and storage of energy, to conformable biomedical devices for healthcare. To realize these applications, however, a low-cost method of synthesizing large areas of high-quality graphene is required. Currently, the only method to generate large-area single-layer graphene that is compatible with roll-to-roll manufacturing destroys approximately 300 kg of copper foil (thickness = 25 μm) for every 1 g of graphene produced. This paper describes a new environmentally benign and scalable process of transferring graphene to flexible substrates. The process is based on the preferential adhesion of certain thin metallic films to graphene; separation of the graphene from the catalytic copper foil is followed by lamination to a flexible target substrate in a process that is compatible with roll-to-roll manufacturing. The copper substrate is indefinitely reusable and the method is substantially greener than the current process that uses relatively large amounts of corrosive etchants to remove the copper. The sheet resistance of the graphene produced by this new process is unoptimized but should be comparable in principle to that produced by the standard method, given the defects observable by Raman spectroscopy and the presence of process-induced cracks. With further improvements, this green, inexpensive synthesis of single-layer graphene could enable applications in flexible, stretchable, and disposable electronics, low-profile and lightweight barrier materials, and in large-area displays and photovoltaic modules.

  9. Computational Analysis of Ares I Roll Control System Jet Interaction Effects on Rolling Moment

    NASA Technical Reports Server (NTRS)

    Deere, Karen A.; Pao, S. Paul; Abdol-Hamid, Khaled S.

    2011-01-01

    The computational flow solver USM3D was used to investigate the jet interaction effects from the roll control system on the rolling moment of the Ares I full protuberance configuration at wind tunnel Reynolds numbers. Solutions were computed at freestream Mach numbers from M = 0.5 to M = 5 at the angle of attack 0deg, at the angle of attack 3.5deg for a roll angle of 120deg, and at the angle of attack 7deg for roll angles of 120deg and 210deg. Results indicate that the RoCS housing provided a beneficial jet interaction effect on vehicle rolling moment for M > or = 0.9. Most of the components downstream of the roll control system housing contributed to jet interaction penalties on vehicle rolling moment.

  10. Roll-to-Roll Nanoforming of Metals Using Laser-Induced Superplasticity.

    PubMed

    Goswami, Debkalpa; Munera, Juan C; Pal, Aniket; Sadri, Behnam; Scarpetti, Caio Lui P G; Martinez, Ramses V

    2018-05-24

    This Letter describes a low-cost, scalable nanomanufacturing process that enables the continuous forming of thin metallic layers with nanoscale accuracy using roll-to-roll, laser-induced superplasticity (R2RLIS). R2RLIS uses a laser shock to induce the ultrahigh-strain-rate deformation of metallic films at room temperature into low-cost polymeric nanomolds, independently of the original grain size of the metal. This simple and inexpensive nanoforming method does not require access to cleanrooms and associated facilities, and can be easily implemented on conventional CO 2 lasers, enabling laser systems commonly used for rapid prototyping or industrial cutting and engraving to fabricate uniform and three-dimensional crystalline metallic nanostructures over large areas. Tuning the laser power during the R2RLIS process enables the control of the aspect ratio and the mechanical and optical properties of the fabricated nanostructures. This roll-to-roll technique successfully fabricates mechanically strengthened gold plasmonic nanostructures with aspect ratios as high as 5 that exhibit high oxidation resistance and strong optical field enhancements. The CO 2 laser used in R2RLIS can also integrate the fabricated nanostructures on transparent flexible substrates with robust interfacial contact. The ability to fabricate ultrasmooth metallic nanostructures using roll-to-roll manufacturing enables the large scale production, at a relatively low-cost, of flexible plasmonic devices toward emerging applications.

  11. Research on the rolling moment in the symmetrical and asymmetrical rolling process

    NASA Astrophysics Data System (ADS)

    Alexa, V.; Raţiu, S. A.; Kiss, I.; Cioată, C. G.

    2017-01-01

    Research distribution the rolling moments symmetrical and asymmetrical report presents great importance both in theory and to introduce clarifications to the calculation of rolling resistance line assemblies. Clarifying individuals of metallic material deformation between the rolls single cylinder diameters act of any difference of work and analysis of advance and delay phenomena. Torque drive value for each of the rolling cylinders was done by reducing the thickness of the laminate samples, an experimental facility located in the laboratory of plastic deformation of the Faculty of Engineering Hunedoara. The analysis of research results show that in terms of power consumption for deformation and safety equipment in operation is rational for mills which require such a difference between the work rolls to execute about one cylinder operated.

  12. Experimental investigation on the electrical contact behavior of rolling contact connector.

    PubMed

    Chen, Junxing; Yang, Fei; Luo, Kaiyu; Zhu, Mingliang; Wu, Yi; Rong, Mingzhe

    2015-12-01

    Rolling contact connector (RCC) is a new technology utilized in high performance electric power transfer systems with one or more rotating interfaces, such as radars, satellites, wind generators, and medical computed tomography machines. Rolling contact components are used in the RCC instead of traditional sliding contacts to transfer electrical power and/or signal. Since the requirement of the power transmission is increasing in these years, the rolling electrical contact characteristics become more and more important for the long-life design of RCC. In this paper, a typical form of RCC is presented. A series of experimental work are carried out to investigate the rolling electrical contact characteristics during its lifetime. The influence of a variety of factors on the electrical contact degradation behavior of RCC is analyzed under both vacuum and air environment. Based on the surface morphology and elemental composition changes in the contact zone, which are assessed by field emission scanning electron microscope and confocal laser scanning microscope, the mechanism of rolling electrical contact degradation is discussed.

  13. Light transport and general aviation aircraft icing research requirements

    NASA Technical Reports Server (NTRS)

    Breeze, R. K.; Clark, G. M.

    1981-01-01

    A short term and a long term icing research and technology program plan was drafted for NASA LeRC based on 33 separate research items. The specific items listed resulted from a comprehensive literature search, organized and assisted by a computer management file and an industry/Government agency survey. Assessment of the current facilities and icing technology was accomplished by presenting summaries of ice sensitive components and protection methods; and assessments of penalty evaluation, the experimental data base, ice accretion prediction methods, research facilities, new protection methods, ice protection requirements, and icing instrumentation. The intent of the research plan was to determine what icing research NASA LeRC must do or sponsor to ultimately provide for increased utilization and safety of light transport and general aviation aircraft.

  14. Icing Simulation Research Supporting the Ice-Accretion Testing of Large-Scale Swept-Wing Models

    NASA Technical Reports Server (NTRS)

    Yadlin, Yoram; Monnig, Jaime T.; Malone, Adam M.; Paul, Bernard P.

    2018-01-01

    The work summarized in this report is a continuation of NASA's Large-Scale, Swept-Wing Test Articles Fabrication; Research and Test Support for NASA IRT contract (NNC10BA05 -NNC14TA36T) performed by Boeing under the NASA Research and Technology for Aerospace Propulsion Systems (RTAPS) contract. In the study conducted under RTAPS, a series of icing tests in the Icing Research Tunnel (IRT) have been conducted to characterize ice formations on large-scale swept wings representative of modern commercial transport airplanes. The outcome of that campaign was a large database of ice-accretion geometries that can be used for subsequent aerodynamic evaluation in other experimental facilities and for validation of ice-accretion prediction codes.

  15. Simulation of the hot rolling of steel with direct iteration

    NASA Astrophysics Data System (ADS)

    Hanoglu, Umut; Šarler, Božidar

    2017-10-01

    In this study a simulation system based on the meshless Local Radial Basis Function Collocation Method (LRBFCM) is applied for the hot rolling of steel. Rolling is a complex, 3D, thermo-mechanical problem; however, 2D cross-sectional slices are used as computational domains that are aligned with the rolling direction and no heat flow or strain is considered in the direction that is orthogonal to the slices. For each predefined position with respect to the rolling direction, the solution procedure is repeated until the slice reaches the final rolling position. Collocation nodes are initially distributed over the domain and boundaries of the initial slice. A local solution is achieved by considering the overlapping influence domains with either 5 or 7 nodes. Radial Basis Functions (RBFs) are used for the temperature discretization in the thermal model and displacement discretization in the mechanical model. The meshless solution procedure does not require a mesh-generation algorithm in the classic sense. Strong-form mechanical and thermal models are run for each slice regarding the contact with the roll's surface. Ideal plastic material behavior is considered for the mechanical results, where the nonlinear stress-strain relation is solved with a direct iteration. The majority of the Finite Element Model (FEM) simulations, including commercial software, use a conventional Newton-Raphson algorithm. However, direct iteration is chosen here due to its better compatibility with meshless methods. In order to overcome any unforeseen stability issues, the redistribution of the nodes by Elliptic Node Generation (ENG) is applied to one or more slices throughout the simulation. The rolling simulation presented here helps the user to design, test and optimize different rolling schedules. The results can be seen minutes after the simulation's start in terms of temperature, displacement, stress and strain fields as well as important technological parameters, like the roll

  16. In-Roll Stress Analysis Considering Air-Entrainment at the Roll-Inlet with the Effect of Grooves on Nip Roll Surface

    NASA Astrophysics Data System (ADS)

    Sasaki, Masashi; Tanimoto, Koshi; Kohno, Kazukiyo; Takahashi, Sadamu; Kometani, Hideo; Hashimoto, Hiromu

    High-speed winding of paper web sometimes leads the winding system into unstable states, interlayer slippage of wound roll, paper breakage and so on, due to the excessive air-entrainment at the roll-inlet of nip contact region. These phenomena are more frequently observed on coated paper or plastic film comparing with newspaper, because the former allows little permeation of air and their surface roughness is small. Therefore, it is of vital importance to clarify the in-roll stress of wound roll considering the effect of air-entrainment. Generally, it is known that the amount of air-entrainment is affected by grooving shape of nip roll surface. In this paper, we focused on the grooving shape and investigated the relationship with the air-entrainment into two rolls being pressed each other and the grooving shape in order to achieve stable winding at high speed. We conducted experiments using small sized test machine. Entrained air-film thickness was evaluated applying the solution of the elasto-hydrodynamic lubrication for foil bearing with the consideration of nip profile at the grooved area. Air film thickness was measured to ensure the applicability of the above theory. Consequently, we found that the air film thickness can be estimated considering the effect of grooves on the nip roll surface, and that the validity of the above estimations was ensured from experimental investigations. Furthermore, it became to be able to propose the optimal shape of grooves on nip roll surface to maintain the stable winding at high speed and at large-diameter in reel.

  17. Roll-to-Roll Production of Transparent Silver-Nanofiber-Network Electrodes for Flexible Electrochromic Smart Windows.

    PubMed

    Lin, Sen; Bai, Xiaopeng; Wang, Haiyang; Wang, Haolun; Song, Jianan; Huang, Kai; Wang, Chang; Wang, Ning; Li, Bo; Lei, Ming; Wu, Hui

    2017-11-01

    Electrochromic smart windows (ECSWs) are considered as the most promising alternative to traditional dimming devices. However, the electrode technology in ECSWs remains stagnant, wherein inflexible indium tin oxide and fluorine-doped tin oxide are the main materials being used. Although various complicated production methods, such as high-temperature calcination and sputtering, have been reported, the mass production of flexible and transparent electrodes remains challenging. Here, a nonheated roll-to-roll process is developed for the continuous production of flexible, extralarge, and transparent silver nanofiber (AgNF) network electrodes. The optical and mechanical properties, as well as the electrical conductivity of these products (i.e., 12 Ω sq -1 at 95% transmittance) are comparable with those AgNF networks produced via high-temperature sintering. Moreover, the as-prepared AgNF network is successfully assembled into an A4-sized ECSW with short switching time, good coloration efficiency, and flexibility. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. A Terminal Area Icing Remote Sensing System

    NASA Technical Reports Server (NTRS)

    Reehorst, Andrew L.; Serke, David J.

    2014-01-01

    NASA and the National Center for Atmospheric Research (NCAR) have developed an icing remote sensing technology that has demonstrated skill at detecting and classifying icing hazards in a vertical column above an instrumented ground station. This technology is now being extended to provide volumetric coverage surrounding an airport. With volumetric airport terminal area coverage, the resulting icing hazard information will be usable by aircrews, traffic control, and airline dispatch to make strategic and tactical decisions regarding routing when conditions are conducive to airframe icing. Building on the existing vertical pointing system, the new method for providing volumetric coverage will utilize cloud radar, microwave radiometry, and NEXRAD radar. This terminal area icing remote sensing system will use the data streams from these instruments to provide icing hazard classification along the defined approach paths into an airport. Strategies for comparison to in-situ instruments on aircraft and weather balloons for a planned NASA field test are discussed, as are possible future applications into the NextGen airspace system.

  19. CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Effect of Rolling Massage on Particle Moving Behaviour in Blood Vessels

    NASA Astrophysics Data System (ADS)

    Yi, Hou-Hui; Fan, Li-Juan; Yang, Xiao-Feng; Chen, Yan-Yan

    2008-09-01

    The rolling massage manipulation is a classic Chinese massage, which is expected to eliminate many diseases. Here the effect of the rolling massage on the particle moving property in the blood vessels under the rolling massage manipulation is studied by the lattice Boltzmann simulation. The simulation results show that the particle moving behaviour depends on the rolling velocity, the distance between particle position and rolling position. The average values, including particle translational velocity and angular velocity, increase as the rolling velocity increases almost linearly. The result is helpful to understand the mechanism of the massage and develop the rolling techniques.

  20. Combined process "helical rolling-pressing" and its effect on the microstructure of ferrous and non-ferrous materials

    NASA Astrophysics Data System (ADS)

    Naizabekov, Abdrakhman; Lezhnev, Sergey; Arbuz, Alexandr; Panin, Evgeniy

    2018-02-01

    Ultrafine-grained materials are one of the most promising structural and functional materials. However, the known methods of obtaining them are not enough powerful and technologically advanced for profitable industrial applications. Development of the combined process "helical rolling-pressing" is an attempt to bring technology to produce ultrafine-grained materials to the industry. The combination of intense processing of the surface by helical rolling and the entire cross section of workpiece in equal channel angular matrix, with intense deformation by torsion between rolls and matrix will increase the degree of deformation per pass and allows to mutually compensate disadvantages of these methods in the case of their separate use. This paper describes the development of a laboratory stand and study of influence of combined process "helical rolling-pressing"on the microstructure of tool steel, technical copper and high alloy stainless high-temperature steel.

  1. Understanding Ice Shelf Basal Melting Using Convergent ICEPOD Data Sets: ROSETTA-Ice Study of Ross Ice Shelf

    NASA Astrophysics Data System (ADS)

    Bell, R. E.; Frearson, N.; Tinto, K. J.; Das, I.; Fricker, H. A.; Siddoway, C. S.; Padman, L.

    2017-12-01

    The future stability of the ice shelves surrounding Antarctica will be susceptible to increases in both surface and basal melt as the atmosphere and ocean warm. The ROSETTA-Ice program is targeted at using the ICEPOD airborne technology to produce new constraints on Ross Ice Shelf, the underlying ocean, bathymetry, and geologic setting, using radar sounding, gravimetry and laser altimetry. This convergent approach to studying the ice-shelf and basal processes enables us to develop an understanding of the fundamental controls on ice-shelf evolution. This work leverages the stratigraphy of the ice shelf, which is detected as individual reflectors by the shallow-ice radar and is often associated with surface scour, form close to the grounding line or pinning points on the ice shelf. Surface accumulation on the ice shelf buries these reflectors as the ice flows towards the calving front. This distinctive stratigraphy can be traced across the ice shelf for the major East Antarctic outlet glaciers and West Antarctic ice streams. Changes in the ice thickness below these reflectors are a result of strain and basal melting and freezing. Correcting the estimated thickness changes for strain using RIGGS strain measurements, we can develop decadal-resolution flowline distributions of basal melt. Close to East Antarctica elevated melt-rates (>1 m/yr) are found 60-100 km from the calving front. On the West Antarctic side high melt rates primarily develop within 10 km of the calving front. The East Antarctic side of Ross Ice Shelf is dominated by melt driven by saline water masses that develop in Ross Sea polynyas, while the melting on the West Antarctic side next to Hayes Bank is associated with modified Continental Deep Water transported along the continental shelf. The two sides of Ross Ice Shelf experience differing basal melt in part due to the duality in the underlying geologic structure: the East Antarctic side consists of relatively dense crust, with low amplitude

  2. GRCop-84 Rolling Parameter Study

    NASA Technical Reports Server (NTRS)

    Loewenthal, William S.; Ellis, David L.

    2008-01-01

    This report is a section of the final report on the GRCop-84 task of the Constellation Program and incorporates the results obtained between October 2000 and September 2005, when the program ended. NASA Glenn Research Center (GRC) has developed a new copper alloy, GRCop-84 (Cu-8 at.% Cr-4 at.% Nb), for rocket engine main combustion chamber components that will improve rocket engine life and performance. This work examines the sensitivity of GRCop-84 mechanical properties to rolling parameters as a means to better define rolling parameters for commercial warm rolling. Experiment variables studied were total reduction, rolling temperature, rolling speed, and post rolling annealing heat treatment. The responses were tensile properties measured at 23 and 500 C, hardness, and creep at three stress-temperature combinations. Understanding these relationships will better define boundaries for a robust commercial warm rolling process. The four processing parameters were varied within limits consistent with typical commercial production processes. Testing revealed that the rolling-related variables selected have a minimal influence on tensile, hardness, and creep properties over the range of values tested. Annealing had the expected result of lowering room temperature hardness and strength while increasing room temperature elongations with 600 C (1112 F) having the most effect. These results indicate that the process conditions to warm roll plate and sheet for these variables can range over wide levels without negatively impacting mechanical properties. Incorporating broader process ranges in future rolling campaigns should lower commercial rolling costs through increased productivity.

  3. Roll-to-Roll Screen Printed Radio Frequency Identification Transponder Antennas for Vehicle Tracking Systems

    NASA Astrophysics Data System (ADS)

    Zichner, Ralf; Baumann, Reinhard R.

    2013-05-01

    Vehicle tracking systems based on ultra high frequency (UHF) radio frequency identification (RFID) technology are already introduced to control the access to car parks and corporate premises. For this field of application so-called Windshield RFID transponder labels are used, which are applied to the inside of the windshield. State of the art for manufacturing these transponder antennas is the traditional lithography/etching approach. Furthermore the performance of these transponders is limited to a reading distance of approximately 5 m which results in car speed limit of 5 km/h for identification. However, to achieve improved performance compared to existing all-purpose transponders and a dramatic cost reduction, an optimized antenna design is needed which takes into account the special dielectric and in particular metallic car environment of the tag and an roll-to-roll (R2R) printing manufacturing process. In this paper we focus on the development of a customized UHF RFID transponder antenna design, which is adopted for vehicle geometry as well as R2R screen printing manufacturing processes.

  4. Digitalization in roll forming manufacturing

    NASA Astrophysics Data System (ADS)

    Sedlmaier, A.; Dietl, T.; Ferreira, P.

    2017-09-01

    Roll formed profiles are used in automotive chassis production as building blocks for the body-in-white. The ability to produce profiles with discontinuous cross sections, both in width and in depth, allows weight savings in the final automotive chassis through the use of load optimized cross sections. This has been the target of the 3D Roll Forming process. A machine concept is presented where a new forming concept for roll formed parts in combination with advanced robotics allowing freely positioned roll forming tooling in 3D space enables the production of complex shapes by roll forming. This is a step forward into the digitalization of roll forming manufacturing by making the process flexible and capable of rapid prototyping and production of small series of parts. Moreover, data collection in a large scale through the control system and integrated sensors lead to an increased understanding of the process and provide the basis to develop self-optimizing roll forming machines, increasing the productivity, quality and predictability of the roll-forming process. The first parts successfully manufactured with this new forming concept are presented.

  5. Rolling Reloaded

    ERIC Educational Resources Information Center

    Jones, Simon A.; Nieminen, John M.

    2008-01-01

    Not so long ago a new observation about rolling motion was described: for a rolling wheel, there is a set of points with instantaneous velocities directed at or away from the centre of the wheel; these points form a circle whose diameter connects the centre of the wheel to the wheel's point of contact with the ground (Sharma 1996 "Eur. J. Phys."…

  6. 75 FR 19369 - Certain Hot-Rolled Flat-Rolled Carbon Quality Steel Products from Brazil: Preliminary Results of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-14

    ...-Rolled Carbon Quality Steel Products from Brazil: Preliminary Results of Antidumping Duty Administrative... duty order on certain hot-rolled flat-rolled carbon quality steel products (hot-rolled steel) from... 1, 2008, through February 28, 2009. We preliminarily determine that the sale of hot-rolled steel...

  7. Deformation in Micro Roll Forming of Bipolar Plate

    NASA Astrophysics Data System (ADS)

    Zhang, P.; Pereira, M.; Rolfe, B.; Daniel, W.; Weiss, M.

    2017-09-01

    Micro roll forming is a new processing technology to produce bipolar plates for Proton Exchange Membrane Fuel Cells (PEMFC) from thin stainless steel foil. To gain a better understanding of the deformation of the material in this process, numerical studies are necessary before experimental implementation. In general, solid elements with several layers through the material thickness are required to analyse material thinning in processes where the deformation mode is that of bending combined with tension, but this results in high computational costs. This pure solid element approach is especially time-consuming when analysing roll forming processes which generally involves feeding a long strip through a number of successive roll stands. In an attempt to develop a more efficient modelling approach without sacrificing accuracy, two solutions are numerically analysed with ABAQUS/Explicit in this paper. In the first, a small patch of solid elements over the strip width and in the centre of the “pre-cut” sheet is coupled with shell elements while in the second approach pure shell elements are used to discretize the full sheet. In the first approach, the shell element enables accounting for the effect of material being held in the roll stands on material flow while solid elements can be applied to analyse material thinning in a small discrete area of the sheet. Experimental micro roll forming trials are performed to prove that the coupling of solid and shell elements can give acceptable model accuracy while using shell elements alone is shown to result in major deviations between numerical and experimental results.

  8. Transforming Roving-Rolling Explorer (TRREx) for Planetary Exploration

    NASA Astrophysics Data System (ADS)

    Edwin, Lionel Ernest

    All planetary surface exploration missions thus far have employed traditional rovers with a rocker-bogie suspension. These rovers can navigate moderately rough and flat terrain, but are not designed to traverse rugged terrain with steep slopes. The fact is, however, that many scientifically interesting missions require exploration platforms with capabilities for navigating such types of chaotic terrain. This issue motivates the development of new kinds of rovers that take advantage of the latest advances in robotic technologies to traverse rugged terrain efficiently. This dissertation proposes and analyses one such rover concept called the Transforming Roving-Rolling Explorer (TRREx) that is principally aimed at addressing the above issue. Biologically inspired by the way the armadillo curls up into a ball when threatened, and the way the golden wheel spider uses the dynamic advantages of a sphere to roll down hills when escaping danger, the novel TRREx rover can traverse like a traditional 6-wheeled rover over conventional terrain, but can also transform itself into a sphere, when necessary, to travel down steep inclines, or navigate rough terrain. This work presents the proposed design architecture and capabilities followed by the development of mathematical models and experiments that facilitate the mobility analysis of the TRREx in the rolling mode. The ability of the rover to self-propel in the rolling mode in the absence of a negative gradient increases its versatility and concept value. Therefore, a dynamic model of a planar version of the problem is first used to investigate the feasibility and value of such self-propelled locomotion - 'actuated rolling'. Construction and testing of a prototype Planar/Cylindrical TRREx that is capable of demonstrating actuated rolling is presented, and the results from the planar dynamic model are experimentally validated. This planar model is then built upon to develop a mathematical model of the spherical TRREx in the

  9. Roll compaction/dry granulation: comparison between roll mill and oscillating granulator in dry granulation.

    PubMed

    Sakwanichol, Jarunee; Puttipipatkhachorn, Satit; Ingenerf, Gernot; Kleinebudde, Peter

    2012-01-01

    Different experimental factorial designs were employed to evaluate granule properties obtained from oscillating granulator and roll mill. Four oscillating-granulator parameters were varied, i.e. rotor speed, oscillating angle, aperture of mesh screen and rotor type. Six roll-mill parameters that were throughput, speed ratio in both first and second stages, gap between roll pair in both stages and roll-surface texture were also investigated. Afterwards, the granule properties obtained from two milling types with similar median particle size were compared. All milling parameters in both milling types affected significantly the median particle size, size distribution and amount of fine particles (P < 0.05), except the rotor types of oscillating granulator on fines. Only three milling parameters influenced significantly the flowability (P < 0.05). These were the throughput and the gap size in the first stage of roll mill and the sieve size of oscillating granulator. In comparison between milling types, the differences of granule properties were not practically relevant. However, the roll mill had much higher capacity than the oscillating granulator about seven times, resulting in improving energy savings per unit of product. Consequently, the roll mill can be applied instead of oscillating granulator for roll compaction/dry granulation technique.

  10. Investigation of Probability Distributions Using Dice Rolling Simulation

    ERIC Educational Resources Information Center

    Lukac, Stanislav; Engel, Radovan

    2010-01-01

    Dice are considered one of the oldest gambling devices and thus many mathematicians have been interested in various dice gambling games in the past. Dice have been used to teach probability, and dice rolls can be effectively simulated using technology. The National Council of Teachers of Mathematics (NCTM) recommends that teachers use simulations…

  11. Fully Roll-to-Roll Gravure Printable Wireless (13.56 MHz) Sensor-Signage Tags for Smart Packaging

    NASA Astrophysics Data System (ADS)

    Kang, Hwiwon; Park, Hyejin; Park, Yongsu; Jung, Minhoon; Kim, Byung Chul; Wallace, Gordon; Cho, Gyoujin

    2014-06-01

    Integration of sensing capabilities with an interactive signage through wireless communication is enabling the development of smart packaging wherein wireless (13.56 MHz) power transmission is used to interlock the smart packaging with a wireless (13.56 MHz) reader or a smart phone. Assembly of the necessary componentry for smart packaging on plastic or paper foils is limited by the manufacturing costs involved with Si based technologies. Here, the issue of manufacturing cost for smart packaging has been obviated by materials that allow R2R (roll-to-roll) gravure in combination with R2R coating processes to be employed. R2R gravure was used to print the wireless power transmission device, called rectenna (antenna, diode and capacitor), and humidity sensor on poly(ethylene terephtalate) (PET) films while electrochromic signage units were fabricated by R2R coating. The signage units were laminated with the R2R gravure printed rectenna and sensor to complete the prototype smart packaging.

  12. Fully roll-to-roll gravure printable wireless (13.56 MHz) sensor-signage tags for smart packaging.

    PubMed

    Kang, Hwiwon; Park, Hyejin; Park, Yongsu; Jung, Minhoon; Kim, Byung Chul; Wallace, Gordon; Cho, Gyoujin

    2014-06-23

    Integration of sensing capabilities with an interactive signage through wireless communication is enabling the development of smart packaging wherein wireless (13.56 MHz) power transmission is used to interlock the smart packaging with a wireless (13.56 MHz) reader or a smart phone. Assembly of the necessary componentry for smart packaging on plastic or paper foils is limited by the manufacturing costs involved with Si based technologies. Here, the issue of manufacturing cost for smart packaging has been obviated by materials that allow R2R (roll-to-roll) gravure in combination with R2R coating processes to be employed. R2R gravure was used to print the wireless power transmission device, called rectenna (antenna, diode and capacitor), and humidity sensor on poly(ethylene terephtalate) (PET) films while electrochromic signage units were fabricated by R2R coating. The signage units were laminated with the R2R gravure printed rectenna and sensor to complete the prototype smart packaging.

  13. Evaluation of roll designs on a roll-crusher/ crusher/splitter biomass harvester: test bench results

    Treesearch

    Colin Ashmore; Donald L. Sirois; Bryce J. Stokes

    1987-01-01

    Four different roll designs were evaluated on a test bench roll crusher/splitter to determine feeding and crushing efficiencies. For each design, different gap settings for the primary and secondary rolls were tested at two hydraulic cylinder pressures on the primary crush roll to determine their ability to crush and/or feed tree bolts. Seven different diameter classes...

  14. Morpheus Lander Roll Control System and Wind Modeling

    NASA Technical Reports Server (NTRS)

    Gambone, Elisabeth A.

    2014-01-01

    The Morpheus prototype lander is a testbed capable of vertical takeoff and landing developed by NASA Johnson Space Center to assess advanced space technologies. Morpheus completed a series of flight tests at Kennedy Space Center to demonstrate autonomous landing and hazard avoidance for future exploration missions. As a prototype vehicle being tested in Earth's atmosphere, Morpheus requires a robust roll control system to counteract aerodynamic forces. This paper describes the control algorithm designed that commands jet firing and delay times based on roll orientation. Design, analysis, and testing are supported using a high fidelity, 6 degree-of-freedom simulation of vehicle dynamics. This paper also details the wind profiles generated using historical wind data, which are necessary to validate the roll control system in the simulation environment. In preparation for Morpheus testing, the wind model was expanded to create day-of-flight wind profiles based on data delivered by Kennedy Space Center. After the test campaign, a comparison of flight and simulation performance was completed to provide additional model validation.

  15. Depreciation of bearing blocks of rollers of roller conveyers of rolling mills

    NASA Astrophysics Data System (ADS)

    Artiukh, Viktor; Belyaev, Michael; Ignatovich, Igor; Miloradova, Nadezda

    2017-10-01

    Essential increase in functional durability of a node of a roller of the roller conveyer of the rolling mill by the rational choice of parameters of the small-size shock-absorber (buffer adapter) is shown. At the same time dimensions of a node don’t change, costs of reconstruction are small. The possibility of management of loadings in a bearing node without change of technology parameters of the process which is carried out by the rolling mill is confirmed.

  16. Airframe Icing Research Gaps: NASA Perspective

    NASA Technical Reports Server (NTRS)

    Potapczuk, Mark

    2009-01-01

    qCurrent Airframe Icing Technology Gaps: Development of a full 3D ice accretion simulation model. Development of an improved simulation model for SLD conditions. CFD modeling of stall behavior for ice-contaminated wings/tails. Computational methods for simulation of stability and control parameters. Analysis of thermal ice protection system performance. Quantification of 3D ice shape geometric characteristics Development of accurate ground-based simulation of SLD conditions. Development of scaling methods for SLD conditions. Development of advanced diagnostic techniques for assessment of tunnel cloud conditions. Identification of critical ice shapes for aerodynamic performance degradation. Aerodynamic scaling issues associated with testing scale model ice shape geometries. Development of altitude scaling methods for thermal ice protections systems. Development of accurate parameter identification methods. Measurement of stability and control parameters for an ice-contaminated swept wing aircraft. Creation of control law modifications to prevent loss of control during icing encounters. 3D ice shape geometries. Collection efficiency data for ice shape geometries. SLD ice shape data, in-flight and ground-based, for simulation verification. Aerodynamic performance data for 3D geometries and various icing conditions. Stability and control parameter data for iced aircraft configurations. Thermal ice protection system data for simulation validation.

  17. Finite-element model to predict roll-separation force and defects during rolling of U-10Mo alloys

    NASA Astrophysics Data System (ADS)

    Soulami, Ayoub; Burkes, Douglas E.; Joshi, Vineet V.; Lavender, Curt A.; Paxton, Dean

    2017-10-01

    A major goal of the Convert Program of the U.S. Department of Energy's National Nuclear Security Administration (DOE/NNSA) is to enable high-performance research reactors to operate with low-enriched uranium rather than the high-enriched uranium currently used. To this end, uranium alloyed with 10 wt% molybdenum (U-10Mo) represents an ideal candidate because of its stable gamma phase, low neutron caption cross section, acceptable swelling response, and predictable irradiation behavior. However, because of the complexities of the fuel design and the need for rolled monolithic U-10Mo foils, new developments in processing and fabrication are necessary. This study used a finite-element code, LS-DYNA, as a predictive tool to optimize the rolling process. Simulations of the hot rolling of U-10Mo coupons encapsulated in low-carbon steel were conducted following two different schedules. Model predictions of the roll-separation force and roll pack thicknesses at different stages of the rolling process were compared with experimental measurements. The study reported here discussed various attributes of the rolled coupons revealed by the model (e.g., waviness and thickness non-uniformity like dog-boning). To investigate the influence of the cladding material on these rolling defects, other cases were simulated: hot rolling with alternative can materials, namely, 304 stainless steel and Zircaloy-2, and bare-rolling. Simulation results demonstrated that reducing the mismatch in strength between the coupon and can material improves the quality of the rolled sheet. Bare-rolling simulation results showed a defect-free rolled coupon. The finite-element model developed and presented in this study can be used to conduct parametric studies of several process parameters (e.g., rolling speed, roll diameter, can material, and reduction).

  18. 75 FR 62566 - Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil, Japan, and Russia

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-12

    ...)] Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil, Japan, and Russia AGENCY: United... antidumping duty investigation on hot-rolled steel from Russia. SUMMARY: The Commission hereby gives notice of... suspended investigation on hot-rolled steel from Russia would be likely to lead to continuation or...

  19. 76 FR 34101 - Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil, Japan, and Russia

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-10

    ...] Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil, Japan, and Russia Determinations On...-quality steel products from Russia would be likely to lead to continuation or recurrence of material...) entitled Hot-Rolled Flat-Rolled Carbon-Quality Steel Products from Brazil, Japan, and Russia: Investigation...

  20. 75 FR 16504 - Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil, Japan, and Russia

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-01

    ...)] Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil, Japan, and Russia AGENCY: United... investigation on hot-rolled steel from Russia. SUMMARY: The Commission hereby gives notice that it has...-rolled steel from Russia would be likely to lead to continuation or recurrence of material injury...

  1. 75 FR 42782 - Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil, Japan, and Russia

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-22

    ...)] Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil, Japan, and Russia AGENCY: United... Brazil and Japan, and the suspended investigation on hot-rolled steel from Russia. SUMMARY: The... Japan, and the suspended investigation on hot-rolled steel from Russia would be likely to lead to...

  2. Ice-Binding Proteins and Their Function.

    PubMed

    Bar Dolev, Maya; Braslavsky, Ido; Davies, Peter L

    2016-06-02

    Ice-binding proteins (IBPs) are a diverse class of proteins that assist organism survival in the presence of ice in cold climates. They have different origins in many organisms, including bacteria, fungi, algae, diatoms, plants, insects, and fish. This review covers the gamut of IBP structures and functions and the common features they use to bind ice. We discuss mechanisms by which IBPs adsorb to ice and interfere with its growth, evidence for their irreversible association with ice, and methods for enhancing the activity of IBPs. The applications of IBPs in the food industry, in cryopreservation, and in other technologies are vast, and we chart out some possibilities.

  3. Flexure-based Roll-to-roll Platform: A Practical Solution for Realizing Large-area Microcontact Printing

    PubMed Central

    Zhou, Xi; Xu, Huihua; Cheng, Jiyi; Zhao, Ni; Chen, Shih-Chi

    2015-01-01

    A continuous roll-to-roll microcontact printing (MCP) platform promises large-area nanoscale patterning with significantly improved throughput and a great variety of applications, e.g. precision patterning of metals, bio-molecules, colloidal nanocrystals, etc. Compared with nanoimprint lithography, MCP does not require a thermal imprinting step (which limits the speed and material choices), but instead, extreme precision with multi-axis positioning and misalignment correction capabilities for large area adaptation. In this work, we exploit a flexure-based mechanism that enables continuous MCP with 500 nm precision and 0.05 N force control. The fully automated roll-to-roll platform is coupled with a new backfilling MCP chemistry optimized for high-speed patterning of gold and silver. Gratings of 300, 400, 600 nm line-width at various locations on a 4-inch plastic substrate are fabricated at a speed of 60 cm/min. Our work represents the first example of roll-to-roll MCP with high reproducibility, wafer scale production capability at nanometer resolution. The precision roll-to-roll platform can be readily applied to other material systems. PMID:26037147

  4. Ice, Ice, Baby: A Program for Sustained, Classroom-Based K-8 Teacher Professional Development

    NASA Astrophysics Data System (ADS)

    Hamilton, C.

    2009-12-01

    Ice, Ice, Baby is a K-8 science program created by the education team at the Center for the Remote Sensing of Ice Sheets (CReSIS), an NSF-funded science and technology center headquartered at the University of Kansas. The twenty-four hands-on activities, which constitute the Ice, Ice, Baby curriculum, were developed to help students understand the role of polar ice sheets in sea level rise. These activities, presented in classrooms by CReSIS' Educational Outreach Coordinator, demonstrate many of the scientific properties of ice, including displacement and density. Student journals are utilized with each lesson as a strategy for improving students' science process skills. Journals also help the instructor identify misconceptions, assess comprehension, and provide students with a year-long science reference log. Pre- and post- assessments are given to both teachers and students before and after the program, providing data for evaluation and improvement of the Ice, Ice, Baby program. While students are actively engaged in hands-on learning about the unusual topics of ice sheets, glaciers, icebergs and sea ice, the CReSIS' Educational Coordinator is able to model best practices in science education, such as questioning and inquiry-based methods of instruction. In this way, the Ice, Ice, Baby program also serves as ongoing, in-class, professional development for teachers. Teachers are also provided supplemental activities to do with their classes between CReSIS' visits to encourage additional science lessons, reinforce concepts taught in the Ice, Ice, Baby program, and to foster teachers' progression toward more reform-based science instruction.

  5. Roll paper pilot. [mathematical model for predicting pilot rating of aircraft in roll task

    NASA Technical Reports Server (NTRS)

    Naylor, F. R.; Dillow, J. D.; Hannen, R. A.

    1973-01-01

    A mathematical model for predicting the pilot rating of an aircraft in a roll task is described. The model includes: (1) the lateral-directional aircraft equations of motion; (2) a stochastic gust model; (3) a pilot model with two free parameters; and (4) a pilot rating expression that is a function of rms roll angle and the pilot lead time constant. The pilot gain and lead time constant are selected to minimize the pilot rating expression. The pilot parameters are then adjusted to provide a 20% stability margin and the adjusted pilot parameters are used to compute a roll paper pilot rating of the aircraft/gust configuration. The roll paper pilot rating was computed for 25 aircraft/gust configurations. A range of actual ratings from 2 to 9 were encountered and the roll paper pilot ratings agree quite well with the actual ratings. In addition there is good correlation between predicted and measured rms roll angle.

  6. A fully roll-to-roll gravure-printed carbon nanotube-based active matrix for multi-touch sensors

    PubMed Central

    Lee, Wookyu; Koo, Hyunmo; Sun, Junfeng; Noh, Jinsoo; Kwon, Kye-Si; Yeom, Chiseon; Choi, Younchang; Chen, Kevin; Javey, Ali; Cho, Gyoujin

    2015-01-01

    Roll-to-roll (R2R) printing has been pursued as a commercially viable high-throughput technology to manufacture flexible, disposable, and inexpensive printed electronic devices. However, in recent years, pessimism has prevailed because of the barriers faced when attempting to fabricate and integrate thin film transistors (TFTs) using an R2R printing method. In this paper, we report 20 × 20 active matrices (AMs) based on single-walled carbon nanotubes (SWCNTs) with a resolution of 9.3 points per inch (ppi) resolution, obtained using a fully R2R gravure printing process. By using SWCNTs as the semiconducting layer and poly(ethylene terephthalate) (PET) as the substrate, we have obtained a device yield above 98%, and extracted the key scalability factors required for a feasible R2R gravure manufacturing process. Multi-touch sensor arrays were achieved by laminating a pressure sensitive rubber onto the SWCNT-TFT AM. This R2R gravure printing system overcomes the barriers associated with the registration accuracy of printing each layer and the variation of the threshold voltage (Vth). By overcoming these barriers, the R2R gravure printing method can be viable as an advanced manufacturing technology, thus enabling the high-throughput production of flexible, disposable, and human-interactive cutting-edge electronic devices based on SWCNT-TFT AMs. PMID:26635237

  7. Unusual folding and rolling of Glacio-Lacustrine sediments, Upper Fraser Canyon, British Columbia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baxter, S.

    1987-05-01

    Folding and rolling of graded but unconsolidated sediments by at least 720/sup 0/ produced a structure resembling a large Swiss roll about 6 ft wide and 4 ft high. The sediments were initially horizontal and well sorted, grading from coarse sands to fine silts. About 50 ft away, at the same level, the sediments include irregular layers of poorly sorted, ice-rafted pebbles and boulders. The sequence is unconformably overlain by till. The axis of folding appears to be parallel to the eastern wall of the Fraser Canyon. The outcrop is in the Stevens Pit (sand and gravel) immediately east ofmore » the Trans-Canada Highway, 2 mi south of Lytton, B.C., at an elevation of 1000 ft, approximately 600 ft above the present level of the Fraser River. The sands and silts accumulated in a lake adjacent to the east margin of a stagnant and relatively small glacier occupying the upper part of the Frazer Canyon. Partial or complete melting of small icebergs caused deposition of coarser material. A subsequent cooling trend led to an advance of the glacier, an advance which at this location caused some of the adjacent and by now frozen sediments to be rolled up like an old carpet. Further advance of the glacier caused it to override and thus preserve the deformed sequence.« less

  8. Influences of rolling method on deformation force in cold roll-beating forming process

    NASA Astrophysics Data System (ADS)

    Su, Yongxiang; Cui, Fengkui; Liang, Xiaoming; Li, Yan

    2018-03-01

    In process, the research object, the gear rack was selected to study the influence law of rolling method on the deformation force. By the mean of the cold roll forming finite element simulation, the variation regularity of radial and tangential deformation was analysed under different rolling methods. The variation of deformation force of the complete forming racks and the single roll during the steady state under different rolling modes was analyzed. The results show: when upbeating and down beating, radial single point average force is similar, the tangential single point average force gap is bigger, the gap of tangential single point average force is relatively large. Add itionally, the tangential force at the time of direct beating is large, and the dire ction is opposite with down beating. With directly beating, deformation force loading fast and uninstall slow. Correspondingly, with down beating, deformat ion force loading slow and uninstall fast.

  9. Understanding Rolle's Theorem

    ERIC Educational Resources Information Center

    Parameswaran, Revathy

    2009-01-01

    This paper reports on an experiment studying twelfth grade students' understanding of Rolle's Theorem. In particular, we study the influence of different concept images that students employ when solving reasoning tasks related to Rolle's Theorem. We argue that students' "container schema" and "motion schema" allow for rich…

  10. In-line metrology for roll-to-roll UV assisted nanoimprint lithography using diffractometry

    NASA Astrophysics Data System (ADS)

    Kreuzer, Martin; Whitworth, Guy L.; Francone, Achille; Gomis-Bresco, Jordi; Kehagias, Nikolaos; Sotomayor-Torres, Clivia M.

    2018-05-01

    We describe and discuss the optical design of a diffractometer to carry out in-line quality control during roll-to-roll nanoimprinting. The tool measures diffractograms in reflection geometry, through an aspheric lens to gain fast, non-invasive information of any changes to the critical dimensions of target grating structures. A stepwise tapered linear grating with constant period was fabricated in order to detect the variation in grating linewidth through diffractometry. The minimum feature change detected was ˜40 nm to a precision of 10 nm. The diffractometer was then integrated with a roll-to-roll UV assisted nanoimprint lithography machine to gain dynamic measurements in situ.

  11. 75 FR 64246 - Certain Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil: Correction to Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-19

    ...-Rolled Carbon-Quality Steel Products From Brazil: Correction to Notice of Antidumping Duty Order AGENCY... certain hot-rolled flat-rolled carbon-quality steel products from Brazil. See Antidumping Duty Order: Certain Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil, 67 FR 11093 (March 12, 2002...

  12. Fully Roll-to-Roll Gravure Printable Wireless (13.56 MHz) Sensor-Signage Tags for Smart Packaging

    PubMed Central

    Kang, Hwiwon; Park, Hyejin; Park, Yongsu; Jung, Minhoon; Kim, Byung Chul; Wallace, Gordon; Cho, Gyoujin

    2014-01-01

    Integration of sensing capabilities with an interactive signage through wireless communication is enabling the development of smart packaging wherein wireless (13.56 MHz) power transmission is used to interlock the smart packaging with a wireless (13.56 MHz) reader or a smart phone. Assembly of the necessary componentry for smart packaging on plastic or paper foils is limited by the manufacturing costs involved with Si based technologies. Here, the issue of manufacturing cost for smart packaging has been obviated by materials that allow R2R (roll-to-roll) gravure in combination with R2R coating processes to be employed. R2R gravure was used to print the wireless power transmission device, called rectenna (antenna, diode and capacitor), and humidity sensor on poly(ethylene terephtalate) (PET) films while electrochromic signage units were fabricated by R2R coating. The signage units were laminated with the R2R gravure printed rectenna and sensor to complete the prototype smart packaging. PMID:24953037

  13. Influence of roll levelling on material properties and postforming springback

    NASA Astrophysics Data System (ADS)

    Galdos, Lander; Mendiguren, Joseba; de Argandoña, Eneko Saenz; Otegi, Nagore; Silvestre, Elena

    2018-05-01

    Roll levelling is commonly used in cut to length and blanking lines to flatten initial coils and produce residual stress free precuts. Roll straightener is also used to remove coil-set when progressive dies are used and the starting raw material is a coil. Industrial evidences have proved that roll leveler or straightener tuning is crucial to get a robust process and to obtain repetitive springback values after stamping. This is more relevant when using Advanced High Strength Steels and aluminum coils. However, the mechanisms affecting this material behavior are unknown and how the levelling technology affects the material properties has not been yet reported. In this paper, the influence the roll levelling process has on the final properties of a 6xxx aluminum alloy is studied. For that, as received coils have been relevelled using two different leveler set-ups and tensile tests have been performed using both initial and final material states. Aiming to quantify the effect of the material hardening on a real forming process, a new tangential bending prototype has been developed. As received and levelled precuts have been bent and the forming torques and the postforming angles have been compared.

  14. Icing Management for Coast Guard Assets

    DTIC Science & Technology

    2013-04-01

    Homola et al. (2006) summarized many ice detection concepts and assessed their near-term application potential to wind turbines . This re- port will...is attached, using adhe- sive, to the leading edge of an airfoil, aircraft or wind turbine , or any other surface that must be protected from icing...for ap- plication to wind turbines . ERDC/CRREL TR-13-7 287 Five optical ice detectors are currently mature technologies, but not all are

  15. Quantitative metrics for evaluating the phased roll-out of clinical information systems.

    PubMed

    Wong, David; Wu, Nicolas; Watkinson, Peter

    2017-09-01

    We introduce a novel quantitative approach for evaluating the order of roll-out during phased introduction of clinical information systems. Such roll-outs are associated with unavoidable risk due to patients transferring between clinical areas using both the old and new systems. We proposed a simple graphical model of patient flow through a hospital. Using a simple instance of the model, we showed how a roll-out order can be generated by minimising the flow of patients from the new system to the old system. The model was applied to admission and discharge data acquired from 37,080 patient journeys at the Churchill Hospital, Oxford between April 2013 and April 2014. The resulting order was evaluated empirically and produced acceptable orders. The development of data-driven approaches to clinical Information system roll-out provides insights that may not necessarily be ascertained through clinical judgment alone. Such methods could make a significant contribution to the smooth running of an organisation during the roll-out of a potentially disruptive technology. Unlike previous approaches, which are based on clinical opinion, the approach described here quantitatively assesses the appropriateness of competing roll-out strategies. The data-driven approach was shown to produce strategies that matched clinical intuition and provides a flexible framework that may be used to plan and monitor Clinical Information System roll-out. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  16. 49 CFR 393.134 - What are the rules for securing roll-on/roll-off or hook lift containers?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... or hook lift containers? 393.134 Section 393.134 Transportation Other Regulations Relating to... for securing roll-on/roll-off or hook lift containers? (a) Applicability. The rules in this section apply to the transportation of roll-on/roll-off or hook lift containers. (b) Securement of a roll-on...

  17. 49 CFR 393.134 - What are the rules for securing roll-on/roll-off or hook lift containers?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... or hook lift containers? 393.134 Section 393.134 Transportation Other Regulations Relating to... for securing roll-on/roll-off or hook lift containers? (a) Applicability. The rules in this section apply to the transportation of roll-on/roll-off or hook lift containers. (b) Securement of a roll-on...

  18. Controlled ice nucleation in the field of freeze-drying: fundamentals and technology review.

    PubMed

    Geidobler, R; Winter, G

    2013-10-01

    In the scientific community as well as in commercial freeze-drying, controlled ice nucleation has received a lot of attention because increasing the ice nucleation temperature can significantly reduce primary drying duration. Furthermore, controlled ice nucleation enables to reduce the randomness of the ice nucleation temperature, which can be a serious scale-up issue during process development. In this review, fundamentals of ice nucleation in the field of freeze-drying are presented. Furthermore, the impact of controlled ice nucleation on product qualities is discussed, and methods to achieve controlled ice nucleation are presented. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Interactions of frazil and anchor ice with sedimentary particles in a flume

    USGS Publications Warehouse

    Kempema, E.W.; Reimnitz, E.; Clayton, J.R.; Payne, J.R.

    1993-01-01

    Frazil and anchor ice forming in turbulent, supercooled water have been studied extensively because of problems posed to man-made hydraulic structures. In spite of many incidental observations of interactions of these ice forms with sediment, their geologic effects remain unknown. The present flume study was designed to learn about the effects of salinity, current speed, and sediment type on sediment dynamics in supercooled water. In fresh-water, frazil ice formed flocs as large as 8 cm in diameter that tended to roll along a sandy bottom and collect material from the bed. The heavy flocs often came to rest in the shelter of ripples, forming anchor ice that subsequently was buried by migrating ripples. Burial compressed porous anchor ice into ice-bonded, sediment-rich masses. This process disrupts normal ripple cross-bedding and may produce unique sedimentary structures. Salt-water flocs were smaller, incorporated less bed load, and formed less anchor ice than their fresh-water counterparts. In four experiments, frazil carried a high sediment load only for a short period in supercooled salt water, but released it with slight warming. This suggests that salt-water frazil is either sticky or traps particles only while surrounded by supercooled water (0.05 to 0.1 ??C supercooling), a short-lived phase in simple, small tanks. Salt water anchor ice formed readily on blocks of ice-bonded sediment, which may be common in nature. The theoretical maximum sediment load in neutrally-buoyant ice/sediment mixture is 122 g/l, never reported in nature so far. The maximum sediment load measured in this laboratory study was 88 g/l. Such high theoretical and measured sediment concentrations suggest that frazil and anchor ice are important sediment transport agents in rivers and oceans. ?? 1993.

  20. Modeling of Highly Instrumented Honeywell Turbofan Engine Tested with Ice Crystal Ingestion in the NASA Propulsion System Laboratory

    NASA Technical Reports Server (NTRS)

    Veres, Joseph P.; Jorgenson, Philip C. E.; Jones, Scott M.

    2016-01-01

    The Propulsion Systems Laboratory (PSL), an altitude test facility at NASA Glenn Research Center, has been used to test a highly instrumented turbine engine at simulated altitude operating conditions. This is a continuation of the PSL testing that successfully duplicated the icing events that were experienced in a previous engine (serial LF01) during flight through ice crystal clouds, which was the first turbofan engine tested in PSL. This second model of the ALF502R-5A serial number LF11 is a highly instrumented version of the previous engine. The PSL facility provides a continuous cloud of ice crystals with controlled characteristics of size and concentration, which are ingested by the engine during operation at simulated altitudes. Several of the previous operating points tested in the LF01 engine were duplicated to confirm repeatability in LF11. The instrumentation included video cameras to visually illustrate the accretion of ice in the low pressure compressor (LPC) exit guide vane region in order to confirm the ice accretion, which was suspected during the testing of the LF01. Traditional instrumentation included static pressure taps in the low pressure compressor inner and outer flow path walls, as well as total pressure and temperature rakes in the low pressure compressor region. The test data was utilized to determine the losses and blockages due to accretion in the exit guide vane region of the LPC. Multiple data points were analyzed with the Honeywell Customer Deck. A full engine roll back point was modeled with the Numerical Propulsion System Simulation (NPSS) code. The mean line compressor flow analysis code with ice crystal modeling was utilized to estimate the parameters that indicate the risk of accretion, as well as to estimate the degree of blockage and losses caused by accretion during a full engine roll back point. The analysis provided additional validation of the icing risk parameters within the LPC, as well as the creation of models for

  1. The surprising rolling spool: librational motion and failure of the pure rolling condition

    NASA Astrophysics Data System (ADS)

    Onorato, P.; Malgieri, M.; Mascheretti, P.; De Ambrosis, A.

    2015-05-01

    In a previous work (Onorato P, Malgieri M, Mascheretti P and De Ambrosis A 2014 The surprising rolling spool: experiments and theory from mechanics to phase transitions Eur. J. Phys. 35 055011) an asymmetric rolling spool (ARS) was investigated as a simple model for a second-order phase transition. Here, we deepen the study of this system to address critical aspects related both to the characteristic of the oscillatory anharmonic motion and to the role of friction forces in determining it. The experimental data show that for largely asymmetric bodies the rolling condition is not reliably fulfilled because the intensity of the friction force goes below the needed value to ensure rolling without slipping.

  2. Ice-Ocean Environmental Buoys (IOEB); Technology and Deployment in 1991- 1992

    DTIC Science & Technology

    1993-10-01

    110 Appendix D Sedim ent trap and W TS schedules ...ICE(15 ICZ 15 ICEPTTb STES TRSSI (42) (42) (42) ICE ICE ICESLAXAT & THEIRMS SEACAT k THMISd SEACAT & THEMJ (6,o) (10 (6 (1o0) (56) (,11o) Schedule ...user to schedule the time between filtering events, as well as the characteristics and limitations of the pumping operation. During the deployment of

  3. An approach to develop an algorithm to detect the climbing height in radial-axial ring rolling

    NASA Astrophysics Data System (ADS)

    Husmann, Simon; Hohmann, Magnus; Kuhlenkötter, Bernd

    2017-10-01

    Radial-axial ring rolling is the mainly used forming process to produce seamless rings, which are applied in miscellaneous industries like the energy sector, the aerospace technology or in the automotive industry. Due to the simultaneously forming in two opposite rolling gaps and the fact that ring rolling is a mass forming process, different errors could occur during the rolling process. Ring climbing is one of the most occurring process errors leading to a distortion of the ring's cross section and a deformation of the rings geometry. The conventional sensors of a radial-axial rolling machine could not detect this error. Therefore, it is a common strategy to roll a slightly bigger ring, so that random occurring process errors could be reduce afterwards by removing the additional material. The LPS installed an image processing system to the radial rolling gap of their ring rolling machine to enable the recognition and measurement of climbing rings and by this, to reduce the additional material. This paper presents the algorithm which enables the image processing system to detect the error of a climbing ring and ensures comparable reliable results for the measurement of the climbing height of the rings.

  4. Rolling Moments Due to Rolling and Yaw for Four Wing Models in Rotation

    NASA Technical Reports Server (NTRS)

    Knight, Montgomery; Wenzinger, Carl J

    1932-01-01

    This report presents the results of a series of autorotation and torque tests on four different rotating wing systems at various rates of roll and at several angles of yaw. The investigation covered an angle of attack range up to 90 degrees and angles of yaw of 0 degree, 5 degrees, 10 degrees, and 20 degrees. The tests were made in a 5-foot, closed-throat atmospheric wind tunnel. The object of the tests was primarily to determine the effects of various angles of yaw on the rolling moments of the rotating wings up to large angles of attack. It was found that at angles of attack above that of maximum lift the rolling moments on the wings due to yaw (or side slip) from 5 degrees to 20 degrees were roughly of the same magnitude as those due to rolling. There was a wide variation in magnitude of the rolling moment due to yaw angle. The rates and ranges of stable autorotation for the monoplane models were considerably increased by yaw, whereas for an unstaggered biplane they were little affected. The immediate cause of the rolling moment due to yaw is apparently the building up of large loads on the forward wing tip and the reduction of loads on the rearward wing tip.

  5. Influence of ice thickness and surface properties on light transmission through Arctic sea ice.

    PubMed

    Katlein, Christian; Arndt, Stefanie; Nicolaus, Marcel; Perovich, Donald K; Jakuba, Michael V; Suman, Stefano; Elliott, Stephen; Whitcomb, Louis L; McFarland, Christopher J; Gerdes, Rüdiger; Boetius, Antje; German, Christopher R

    2015-09-01

    The observed changes in physical properties of sea ice such as decreased thickness and increased melt pond cover severely impact the energy budget of Arctic sea ice. Increased light transmission leads to increased deposition of solar energy in the upper ocean and thus plays a crucial role for amount and timing of sea-ice-melt and under-ice primary production. Recent developments in underwater technology provide new opportunities to study light transmission below the largely inaccessible underside of sea ice. We measured spectral under-ice radiance and irradiance using the new Nereid Under-Ice (NUI) underwater robotic vehicle, during a cruise of the R/V Polarstern to 83°N 6°W in the Arctic Ocean in July 2014. NUI is a next generation hybrid remotely operated vehicle (H-ROV) designed for both remotely piloted and autonomous surveys underneath land-fast and moving sea ice. Here we present results from one of the first comprehensive scientific dives of NUI employing its interdisciplinary sensor suite. We combine under-ice optical measurements with three dimensional under-ice topography (multibeam sonar) and aerial images of the surface conditions. We investigate the influence of spatially varying ice-thickness and surface properties on the spatial variability of light transmittance during summer. Our results show that surface properties such as melt ponds dominate the spatial distribution of the under-ice light field on small scales (<1000 m 2 ), while sea ice-thickness is the most important predictor for light transmission on larger scales. In addition, we propose the use of an algorithm to obtain histograms of light transmission from distributions of sea ice thickness and surface albedo.

  6. Effects of Synchronous Rolling on Microstructure, Hardness, and Wear Resistance of Laser Multilayer Cladding

    NASA Astrophysics Data System (ADS)

    Zhao, W.; Zha, G. C.; Xi, M. Z.; Gao, S. Y.

    2018-03-01

    A synchronous rolling method was proposed to assist laser multilayer cladding, and the effects of this method on microstructure, microhardness, and wear resistance were studied. Results show that the microstructure and mechanical properties of the traditional cladding layer exhibit periodic inhomogeneity. Synchronous rolling breaks the columnar dendrite crystals to improve the uniformity of the organization, and the residual plastic energy promotes the precipitation of strengthening phases, as CrB, M7C3, etc. The hardness and wear resistance of the extruded cladding layer increase significantly because of the grain refinement, formation of dislocations, and dispersion strengthening. These positive significances of synchronous rolling provide a new direction for laser cladding technology.

  7. How Will Sea Ice Loss Affect the Greenland Ice Sheet? On the Puzzling Features of Greenland Ice-Core Isotopic Composition

    NASA Technical Reports Server (NTRS)

    Pausata, Francesco S. R.; Legrande, Allegra N.; Roberts, William H. G.

    2016-01-01

    The modern cryosphere, Earth's frozen water regime, is in fast transition. Greenland ice cores show how fast theses changes can be, presenting evidence of up to 15 C warming events over timescales of less than a decade. These events, called Dansgaard/Oeschger (D/O) events, are believed to be associated with rapid changes in Arctic sea ice, although the underlying mechanisms are still unclear. The modern demise of Arctic sea ice may, in turn, instigate abrupt changes on the Greenland Ice Sheet. The Arctic Sea Ice and Greenland Ice Sheet Sensitivity (Ice2Ice Chttps://ice2ice.b.uib.noD) initiative, sponsored by the European Research Council, seeks to quantify these past rapid changes to improve our understanding of what the future may hold for the Arctic. Twenty scientists gathered in Copenhagen as part of this initiative to discuss the most recent observational, technological, and model developments toward quantifying the mechanisms behind past climate changes in Greenland. Much of the discussion focused on the causes behind the changes in stable water isotopes recorded in ice cores. The participants discussed sources of variability for stable water isotopes and framed ways that new studies could improve understanding of modern climate. The participants also discussed how climate models could provide insights into the relative roles of local and nonlocal processes in affecting stable water isotopes within the Greenland Ice Sheet. Presentations of modeling results showed how a change in the source or seasonality of precipitation could occur not only between glacial and modern climates but also between abrupt events. Recent fieldwork campaigns illustrate an important role of stable isotopes in atmospheric vapor and diffusion in the final stable isotope signal in ice. Further, indications from recent fieldwork campaigns illustrate an important role of stable isotopes in atmospheric vapor and diffusion in the final stable isotope signal in ice. This feature complicates

  8. The SPectrometer for Ice Nuclei (SPIN): An instrument to investigate ice nucleation

    DOE PAGES

    Garimella, Sarvesh; Kristensen, Thomas Bjerring; Ignatius, Karolina; ...

    2016-07-06

    The SPectrometer for Ice Nuclei (SPIN) is a commercially available ice nucleating particle (INP) counter manufactured by Droplet Measurement Technologies in Boulder, CO. The SPIN is a continuous flow diffusion chamber with parallel plate geometry based on the Zurich Ice Nucleation Chamber and the Portable Ice Nucleation Chamber. This study presents a standard description for using the SPIN instrument and also highlights methods to analyze measurements in more advanced ways. It characterizes and describes the behavior of the SPIN chamber, reports data from laboratory measurements, and quantifies uncertainties associated with the measurements. Experiments with ammonium sulfate are used to investigatemore » homogeneous freezing of deliquesced haze droplets and droplet breakthrough. Experiments with kaolinite, NX illite, and silver iodide are used to investigate heterogeneous ice nucleation. SPIN nucleation results are compared to those from the literature. A machine learning approach for analyzing depolarization data from the SPIN optical particle counter is also presented (as an advanced use). Altogether, we report that the SPIN is able to reproduce previous INP counter measurements.« less

  9. Ice Storage System for School Complex.

    ERIC Educational Resources Information Center

    Montgomery, Ross D.

    1998-01-01

    Describes a project at the Manatee Education Center in Naples, Florida, which won an ASHRAE award. Project involved the implementation of ice-storage technology in 19 schools. Compares the performance of ice-storage systems with traditional chiller designs in two other schools. Tables illustrate costs for the campuses. Addresses the maintenance…

  10. ICE911 Research: Floating Safe Inert Materials to Preserve Ice and Conserve Water in Order to Mitigate Climate Change Impacts

    NASA Astrophysics Data System (ADS)

    Field, L. A.; Manzara, A.; Chetty, S.; Venkatesh, S.; Scholtz, A.

    2015-12-01

    Ice911 Research has conducted years of field testing to develop and test localized reversible engineering techniques to mitigate the negative impacts of polar ice melt. The technology uses environmentally safe materials to reflect energy in carefully selected, limited areas from summertime polar sun. The technology is now being adapted to help with California's drought. We have tested the albedo modification technique on a small scale over seven Winter/Spring seasons at sites including California's Sierra Nevada Mountains, a Canadian lake, and a small artificial pond in Minnesota about 100 ft in diameter and 6 ft deep at the center, using various materials and an evolving array of instrumentation. On the pond in Minnesota, this year's test results for ice preservation, using hollow glass spheres deployed over our largest test areas yet, showed that glass bubbles can provide an effective material for increasing albedo, significantly reducing the melting rate of ice. This year Ice911 also undertook its first small Arctic field test in Barrow, Alaska on a lake in Barrow's BEO area, and results are still coming in. The technology that Ice911 has been developing for ice preservation has also been shown to keep small test areas of water cooler, in various small-scale tests spanning years. We believe that with some adaptations of the technology, the materials can be applied to reservoirs and lakes to help stretch these precious resources further in California's ongoing drought. There are several distinct advantages for this method over alternatives such as large reverse osmosis projects or building new reservoirs, which could possibly allow a drought-stricken state to build fewer of these more-costly alternatives. First, applying an ecologically benign surface treatment of Ice911's materials can be accomplished within a season, at a lower cost, with far less secondary environmental impact, than such capital-and-time-intensive infrastructure projects. Second, keeping

  11. Microstructural and mechanical responses to various rolling speeds determined in multi-pass break-down rolling of AZ31B alloy

    NASA Astrophysics Data System (ADS)

    Jia, Weitao; Tang, Yan; Ning, Fangkun; Le, Qichi; Cui, Jianzhong

    2018-04-01

    Different rolling operations of as-cast AZ31B alloy were performed under different rolling speed (18 ∼ 72 m min‑1) and rolling pass conditions at 400 °C. Microstructural studies, tensile testing and formability evaluation relevant to each rolling operation were investigated. For 1-pass rolling, coarse average grain size (CAGS) region gradually approached the center layer as the rolling speed increased. Moreover, twins, shear bands and coarse-grain structures were the dominant components in the microstructure of plates rolled at 18, 48 and 72 m min‑1, respectively, indicating the severe deformation inhomogeneity under the high reduction per pass condition. For 2-pass rolling and 4-pass rolling, dynamic recrystallization was observed to be well and CAGS region has substantially disappeared, indicating the significant improvement in deformation uniformity and further the grain homogenization under the conditions. Microstructure uniformity degree of 2-pass rolled plates did not vary much as the rolling speed varied. On this basis, shear band distribution dominated the deformation behavior during the uniaxial tension of the 2-pass rolled plates. However, microstructure uniformity accompanied by twin distribution played a leading role in stretching the 4-pass rolled plates.

  12. Conical Euler analysis and active roll suppression for unsteady vortical flows about rolling delta wings

    NASA Technical Reports Server (NTRS)

    Lee-Rausch, Elizabeth M.; Batina, John T.

    1993-01-01

    A conical Euler code was developed to study unsteady vortex-dominated flows about rolling, highly swept delta wings undergoing either forced motions or free-to-roll motions that include active roll suppression. The flow solver of the code involves a multistage, Runge-Kutta time-stepping scheme that uses a cell-centered, finite-volume, spatial discretization of the Euler equations on an unstructured grid of triangles. The code allows for the additional analysis of the free to-roll case by simultaneously integrating in time the rigid-body equation of motion with the governing flow equations. Results are presented for a delta wing with a 75 deg swept, sharp leading edge at a free-stream Mach number of 1.2 and at 10 deg, 20 deg, and 30 deg angle of attack alpha. At the lower angles of attack (10 and 20 deg), forced-harmonic analyses indicate that the rolling-moment coefficients provide a positive damping, which is verified by free-to-roll calculations. In contrast, at the higher angle of attack (30 deg), a forced-harmonic analysis indicates that the rolling-moment coefficient provides negative damping at the small roll amplitudes. A free-to-roll calculation for this case produces an initially divergent response, but as the amplitude of motion grows with time, the response transitions to a wing-rock type of limit cycle oscillation, which is characteristic of highly swept delta wings. This limit cycle oscillation may be actively suppressed through the use of a rate-feedback control law and antisymmetrically deflected leading-edge flaps. Descriptions of the conical Euler flow solver and the free-to roll analysis are included in this report. Results are presented that demonstrate how the systematic analysis of the forced response of the delta wing can be used to predict the stable, neutrally stable, and unstable free response of the delta wing. These results also give insight into the flow physics associated with unsteady vortical flows about delta wings undergoing forced

  13. Rolled lawn as tool for industrial barren remediation

    NASA Astrophysics Data System (ADS)

    Gorbacheva, T. T.; Ivanova, L. A.; Kikuchi, R.; Gerardo, R.

    2009-04-01

    Fast development of the industrial and urban territories during last century has led to great disturbance of natural ecosystems in a lot of regions of the world. In the Far North the risk resulted from technogenic influence involves essentially more expressed negative consequences for the nature comparing to a regions of averages and southern latitudes due to higher sensitivity of northern ecosystems. Since thirtieth years of last century industrial complexes on extraction and processing of nonferrous metals ores are functioned on Kola peninsula territory. They are powerful sources of emissions of acidifying substances and heavy metals. Long term influence of these emissions resulted in deep degradation of terrestrial ecosystems up to industrial barren arising in immediate proximity to industrial centre Monchegorsk. The most radical way of disturbed territories rehabilitation is biological remediation. In 2006-2008 innovative methods of high-quality grass cover performance was developed in local enterprise «VIPON» in Apatity. Vermiculite trademark «VIPON» is characterized by not broken structure of minerals combined with week reactance, high mechanical durability, favorable рН equal 6.5-7.0, valuable absorptive and ion exchange properties. Final product of proposed technology was rolled lawn which successfully applied for remediation of disturbed sites in urban territories as such as industrial plots with low contamination. One of abstract authors namely L.Ivanova is one of technology implementators. During 2008 the field test was performed near the smelter complex (67°51'N, 32°48'E) to estimate suitability of proposed method for site remediation in more severe conditions such as in industrial barren. The method is based on cultivation of perennial grasses using hydroponics with thermally inflated vermiculite from local deposit (Kovdor) followed by rolled lawn placement on very contaminated sites near Monchegorsk. Great advantage of rolled lawn is short

  14. Multilength Scale Patterning of Functional Layers by Roll-to-Roll Ultraviolet-Light-Assisted Nanoimprint Lithography.

    PubMed

    Leitgeb, Markus; Nees, Dieter; Ruttloff, Stephan; Palfinger, Ursula; Götz, Johannes; Liska, Robert; Belegratis, Maria R; Stadlober, Barbara

    2016-05-24

    Top-down fabrication of nanostructures with high throughput is still a challenge. We demonstrate the fast (>10 m/min) and continuous fabrication of multilength scale structures by roll-to-roll UV-nanoimprint lithography on a 250 mm wide web. The large-area nanopatterning is enabled by a multicomponent UV-curable resist system (JRcure) with viscous, mechanical, and surface properties that are tunable over a wide range to either allow for usage as polymer stamp material or as imprint resist. The adjustable elasticity and surface chemistry of the resist system enable multistep self-replication of structured resist layers. Decisive for defect-free UV-nanoimprinting in roll-to-roll is the minimization of the surface energies of stamp and resist, and the stepwise reduction of the stiffness from one layer to the next is essential for optimizing the reproduction fidelity especially for nanoscale features. Accordingly, we demonstrate the continuous replication of 3D nanostructures and the high-throughput fabrication of multilength scale resist structures resulting in flexible polyethylenetherephtalate film rolls with superhydrophobic properties. Moreover, a water-soluble UV-imprint resist (JRlift) is introduced that enables residue-free nanoimprinting in roll-to-roll. Thereby we could demonstrate high-throughput fabrication of metallic patterns with only 200 nm line width.

  15. A survey of anti-icing practice in Virginia.

    DOT National Transportation Integrated Search

    1997-01-01

    This study documents the current Virginia Department of Transportation's anti-icing practice so that development of a coordinated statewide plan for implementing anti-icing technology can be considered. The researcher surveyed VDOT managers to determ...

  16. Roll forming of eco-friendly stud

    NASA Astrophysics Data System (ADS)

    Keum, Y. T.; Lee, S. Y.; Lee, T. H.; Sim, J. K.

    2013-12-01

    In order to manufacture an eco-friendly stud, the sheared pattern is designed by the Taguchi method and expanded by the side rolls. The seven geometrical shape of sheared pattern are considered in the structural and thermal analyses to select the best functional one in terms of the durability and fire resistance of dry wall. For optimizing the size of the sheared pattern chosen, the L9 orthogonal array and smaller-the-better characteristics of the Taguchi method are used. As the roll gap causes forming defects when the upper-and-lower roll type is adopted for expanding the sheared pattern, the side roll type is introduced. The stress and strain distributions obtained by the FEM simulation of roll-forming processes are utilized for the design of expanding process. The expanding process by side rolls shortens the length of expanding process and minimizes the cost of dies. Furthermore, the stud manufactured by expanding the sheared pattern of the web is an eco-friend because of the scrapless roll-forming process. In addition, compared to the conventionally roll-formed stud, the material cost is lessened about 13.6% and the weight is lightened about 15.5%.

  17. Material-Process-Performance Relationships for Roll-to-Roll Coated PEM Electrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mauger, Scott; Neyerlin, K.C.; Stickel, Jonathan

    2017-04-26

    Roll-to-roll (R2R) coating is the most economical and highest throughput method for producing fuel cell electrodes. R2R coating encompasses many different methodologies to create uniform films on a moving web substrate. Here we explore two coating methods, gravure and slot die, to understand the impacts of each on film uniformity and performance.

  18. Ice-Release and Erosion Resistant Materials for Wind Turbines

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Brinn, Cameron; Cook, Alex; Pascual-Marquez, Fernando

    2017-11-01

    Icing conditions may cause wind turbine generators to partially lose productivity or to be completely shut down to avoid structural damage. At present, commercially available technologies to mitigate this problem consist of expensive, energy hungry heating elements, which costs roughly 70,000 euro per medium size turbine. Conventional passive ice protection coating systems heavily rely on delicate surface structures and expensive materials to create water repellent superhydrophobic / low surface energy surfaces, which have been proven to be ineffective against ice accumulation. The lack of performance among conventional ice protection materials stems from a flaw in the approach to the problem: failure to recognize that water in its liquid form (WATER) and water in its solid form (ICE) are two different things. Something that works for WATER does not automatically work for ICE. Another reason is that many superhydrophobic materials are often reliant upon often fragile micro-structured surfaces to achieve their intended effects. This paper discusses a fundamentally different approach to the creation of a robust, low cost, durable, and multifunctional materials for ice release and erosion resistance. This National Science Foundation sponsored ice-release coating technology holds promise for protecting wind turbine blades and towers, thus potentially increasing reliability for power generation under icing conditions. Because of the vulnerability of wind turbine blades to ice buildup and erosion damages, wind farm facilities stand to reap considerable benefits.

  19. Numerical simulation study on rolling-chemical milling process of aluminum-lithium alloy skin panel

    NASA Astrophysics Data System (ADS)

    Huang, Z. B.; Sun, Z. G.; Sun, X. F.; Li, X. Q.

    2017-09-01

    Single curvature parts such as aircraft fuselage skin panels are usually manufactured by rolling-chemical milling process, which is usually faced with the problem of geometric accuracy caused by springback. In most cases, the methods of manual adjustment and multiple roll bending are used to control or eliminate the springback. However, these methods can cause the increase of product cost and cycle, and lead to material performance degradation. Therefore, it is of significance to precisely control the springback of rolling-chemical milling process. In this paper, using the method of experiment and numerical simulation on rolling-chemical milling process, the simulation model for rolling-chemical milling process of 2060-T8 aluminum-lithium alloy skin was established and testified by the comparison between numerical simulation and experiment results for the validity. Then, based on the numerical simulation model, the relative technological parameters which influence on the curvature of the skin panel were analyzed. Finally, the prediction of springback and the compensation can be realized by controlling the process parameters.

  20. Constant-roll (quasi-)linear inflation

    NASA Astrophysics Data System (ADS)

    Karam, A.; Marzola, L.; Pappas, T.; Racioppi, A.; Tamvakis, K.

    2018-05-01

    In constant-roll inflation, the scalar field that drives the accelerated expansion of the Universe is rolling down its potential at a constant rate. Within this framework, we highlight the relations between the Hubble slow-roll parameters and the potential ones, studying in detail the case of a single-field Coleman-Weinberg model characterised by a non-minimal coupling of the inflaton to gravity. With respect to the exact constant-roll predictions, we find that assuming an approximate slow-roll behaviour yields a difference of Δ r = 0.001 in the tensor-to-scalar ratio prediction. Such a discrepancy is in principle testable by future satellite missions. As for the scalar spectral index ns, we find that the existing 2-σ bound constrains the value of the non-minimal coupling to ξphi ~ 0.29–0.31 in the model under consideration.

  1. Biomechanics of leukocyte rolling

    PubMed Central

    Sundd, Prithu; Pospieszalska, Maria K.; Cheung, Luthur Siu-Lun; Konstantopoulos, Konstantinos; Ley, Klaus

    2011-01-01

    Leukocyte rolling on endothelial cells and other P-selectin substrates is mediated by P-selectin binding to P-selectin glycoprotein ligand-1 expressed on the tips of leukocyte microvilli. Leukocyte rolling is a result of rapid, yet balanced formation and dissociation of selectin-ligand bonds in the presence of hydrodynamic shear forces. The hydrodynamic forces acting on the bonds may either increase (catch bonds) or decrease (slip-bonds) their lifetimes. The force-dependent ‘catch-slip’ bond kinetics are explained using the ‘two pathway model’ for bond dissociation. Both the ‘sliding-rebinding’ and the ‘allosteric’ mechanisms attribute ‘catch-slip’ bond behavior to the force-induced conformational changes in the lectin-EGF domain hinge of selectins. Below a threshold shear stress, selectins cannot mediate rolling. This ‘shear-threshold’ phenomenon is a consequence of shear-enhanced tethering and catch-bond enhanced rolling. Quantitative dynamic footprinting microscopy has revealed that leukocytes rolling at venular shear stresses (> 0.6 Pa) undergo cellular deformation (large footprint) and form long tethers. The hydrodynamic shear force and torque acting on the rolling cell are thought to be synergistically balanced by the forces acting on tethers and stressed microvilli, however, their relative contribution remains to be determined. Thus, improvement beyond the current understanding requires in silico models that can predict both cellular and microvillus deformation and experiments that allow measurement of forces acting on individual microvilli and tethers. PMID:21515934

  2. 75 FR 75455 - Certain Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil: Final Results of Full...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-03

    ...-Rolled Carbon-Quality Steel Products From Brazil: Final Results of Full Sunset Review of Countervailing... of the countervailing duty (CVD) order on certain hot-rolled flat-rolled carbon-quality steel products (hot-rolled steel) from Brazil, pursuant to section 751(c) of the Tariff Act of 1930, as amended...

  3. Temperature distribution of a water droplet moving on a heated super-hydrophobic surface under the icing condition

    NASA Astrophysics Data System (ADS)

    Yamazaki, Masafumi; Sumino, Yutaka; Morita, Katsuaki

    2017-11-01

    In the aviation industry, ice accretion on the airfoil has been a hazardous issue since it greatly declines the aerodynamic performance. Electric heaters and bleed air, which utilizes a part of gas emissions from engines, are used to prevent the icing. Nowadays, a new de-icing system combining electric heaters and super hydrophobic coatings have been developed to reduce the energy consumption. In the system, the heating temperature and the coating area need to be adjusted. Otherwise, the heater excessively consumes energy when it is set too high and when the coating area is not properly located, water droplets which are once dissolved possibly adhere again to the rear part of the airfoil as runback ice In order to deal with these problems, the physical phenomena of water droplets on the hydrophobic surface demand to be figured out. However, not many investigations focused on the behavior of droplets under the icing condition have been conducted. In this research, the temperature profiling of the rolling droplet on a heated super-hydrophobic surface is experimentally observed by the dual luminescent imaging.

  4. Finite-element model to predict roll-separation force and defects during rolling of U-10Mo alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soulami, Ayoub; Burkes, Douglas E.; Joshi, Vineet V.

    This study used a finite element code, LSDYNA, as a predictive tool to optimize the rolling process. Simulations of the hot rolling of U-10Mo coupons encapsulated in low-carbon steel were conducted following two different schedules. Model predictions of the roll-separation force and roll pack thicknesses at different stages of the rolling process were compared with experimental measurements. The study reported here discussed various attributes of the rolled coupons revealed by the model (e.g., waviness and thickness non-uniformity like dog boning). To investigate the influence of the cladding material on these rolling defects, other cases were simulated:  hot rolling with alternative can materials, namely, 304 stainless steel and Zircaloy-2, and bare-rolling.

  5. Hot rolling of thick uranium molybdenum alloys

    DOEpatents

    DeMint, Amy L.; Gooch, Jack G.

    2015-11-17

    Disclosed herein are processes for hot rolling billets of uranium that have been alloyed with about ten weight percent molybdenum to produce cold-rollable sheets that are about one hundred mils thick. In certain embodiments, the billets have a thickness of about 7/8 inch or greater. Disclosed processes typically involve a rolling schedule that includes a light rolling pass and at least one medium rolling pass. Processes may also include reheating the rolling stock and using one or more heavy rolling passes, and may include an annealing step.

  6. Research and Development Trend of Shape Control for Cold Rolling Strip

    NASA Astrophysics Data System (ADS)

    Wang, Dong-Cheng; Liu, Hong-Min; Liu, Jun

    2017-09-01

    Shape is an important quality index of cold rolling strip. Up to now, many problems in the shape control domain have not been solved satisfactorily, and a review on the research progress in the shape control domain can help to seek new breakthrough directions. In the past 10 years, researches and applications of shape control models, shape control means, shape detection technology, and shape control system have achieved significant progress. In the aspect of shape control models, the researches in the past improve the accuracy, speed and robustness of the models. The intelligentization of shape control models should be strengthened in the future. In the aspect of the shape control means, the researches in the past focus on the roll optimization, mill type selection, process optimization, local strip shape control, edge drop control, and so on. In the future, more attention should be paid to the coordination control of both strip shape and other quality indexes, and the refinement of control objective should be strengthened. In the aspects of shape detection technology and shape control system, some new types of shape detection meters and shape control systems are developed and have successfully industrial applications. In the future, the standardization of shape detection technology and shape control system should be promoted to solve the problem of compatibility. In general, the four expected development trends of shape control for cold rolling strip in the future are intelligentization, coordination, refinement, and standardization. The proposed research provides new breakthrough directions for improving shape quality.

  7. IceCube: CubeSat 883-GHz Radiometry for Future Ice Cloud Remote Sensing

    NASA Technical Reports Server (NTRS)

    Wu, Dongliang; Esper, Jaime; Ehsan, Negar; Johnson, Thomas; Mast, William; Piepmeier, Jeffery R.; Racette, Paul E.

    2015-01-01

    Ice clouds play a key role in the Earth's radiation budget, mostly through their strong regulation of infrared radiation exchange. Accurate observations of global cloud ice and its distribution have been a challenge from space, and require good instrument sensitivities to both cloud mass and microphysical properties. Despite great advances from recent spaceborne radar and passive sensors, uncertainty of current ice water path (IWP) measurements is still not better than a factor of 2. Submillimeter (submm) wave remote sensing offers great potential for improving cloud ice measurements, with simultaneous retrievals of cloud ice and its microphysical properties. The IceCube project is to enable this cloud ice remote sensing capability in future missions, by raising 874-GHz receiver technology TRL from 5 to 7 in a spaceflight demonstration on 3-U CubeSat in a low Earth orbit (LEO) environment. The NASAs Goddard Space Flight Center (GSFC) is partnering with Virginia Diodes Inc (VDI) on the 874-GHz receiver through its Vector Network Analyzer (VNA) extender module product line, to develop an instrument with precision of 0.2 K over 1-second integration and accuracy of 2.0 K or better. IceCube is scheduled to launch to and subsequent release from the International Space Station (ISS) in mid-2016 for nominal operation of 28 plus days. We will present the updated design of the payload and spacecraft systems, as well as the operation concept. We will also show the simulated 874-GHz radiances from the ISS orbits and cloud scattering signals as expected for the IceCube cloud radiometer.

  8. Global ice sheet/RSL simulations using the higher-order Ice Sheet System Model.

    NASA Astrophysics Data System (ADS)

    Larour, E. Y.; Ivins, E. R.; Adhikari, S.; Schlegel, N.; Seroussi, H. L.; Morlighem, M.

    2017-12-01

    Relative sea-level rise is driven by processes that are intimately linked to the evolution ofglacial areas and ice sheets in particular. So far, most Earth System models capable of projecting theevolution of RSL on decadal to centennial time scales have relied on offline interactions between RSL andice sheets. In particular, grounding line and calving front dynamics have not been modeled in a way that istightly coupled with Elasto-Static Adjustment (ESA) and/or Glacial-Isostatic Adjustment (GIA). Here, we presenta new simulation of the entire Earth System in which both Greenland and Antarctica ice sheets are tightly coupledto an RSL model that includes both ESA and GIA at resolutions and time scales compatible with processes suchas grounding line dynamics for Antarctica ice shelves and calving front dynamics for Greenland marine-terminatingglaciers. The simulations rely on the Ice Sheet System Model (ISSM) and show the impact of higher-orderice flow dynamics and coupling feedbacks between ice flow and RSL. We quantify the exact impact of ESA andGIA inclusion on grounding line evolution for large ice shelves such as the Ronne and Ross ice shelves, as well asthe Agasea Embayment ice streams, and demonstate how offline vs online RSL simulations diverge in the long run,and the consequences for predictions of sea-level rise.This work was performed at the California Institute of Technology's Jet Propulsion Laboratory undera contract with the National Aeronautics and Space Administration's Cryosphere Science Program.

  9. Advancing Technologies for Climate Observation

    NASA Technical Reports Server (NTRS)

    Wu, D.; Esper, J.; Ehsan, N.; Johnson, T.; Mast, W.; Piepmeier, J.; Racette, P.

    2014-01-01

    Climate research needs Accurate global cloud ice measurements Cloud ice properties are fundamental controlling variables of radiative transfer and precipitation Cost-effective, sensitive instruments for diurnal and wide-swath coverage Mature technology for space remote sensing IceCube objectivesDevelop and validate a flight-qualified 883 GHz receiver for future use in ice cloud radiometer missions Raise TRL (57) of 883 GHz receiver technology Reduce instrument cost and risk by developing path to space for COTS sub-mm-wave receiver systems Enable remote sensing of global cloud ice with advanced technologies and techniques

  10. Ice Shelf-Ocean Interactions Near Ice Rises and Ice Rumples

    NASA Astrophysics Data System (ADS)

    Lange, M. A.; Rückamp, M.; Kleiner, T.

    2013-12-01

    The stability of ice shelves depends on the existence of embayments and is largely influenced by ice rises and ice rumples, which act as 'pinning-points' for ice shelf movement. Of additional critical importance are interactions between ice shelves and the water masses underlying them in ice shelf cavities, particularly melting and refreezing processes. The present study aims to elucidate the role of ice rises and ice rumples in the context of climate change impacts on Antarctic ice shelves. However, due to their smaller spatial extent, ice rumples react more sensitively to climate change than ice rises. Different forcings are at work and need to be considered separately as well as synergistically. In order to address these issues, we have decided to deal with the following three issues explicitly: oceanographic-, cryospheric and general topics. In so doing, we paid particular attention to possible interrelationships and feedbacks in a coupled ice-shelf-ocean system. With regard to oceanographic issues, we have applied the ocean circulation model ROMBAX to ocean water masses adjacent to and underneath a number of idealized ice shelf configurations: wide and narrow as well as laterally restrained and unrestrained ice shelves. Simulations were performed with and without small ice rises located close to the calving front. For larger configurations, the impact of the ice rises on melt rates at the ice shelf base is negligible, while for smaller configurations net melting rates at the ice-shelf base differ by a factor of up to eight depending on whether ice rises are considered or not. We employed the thermo-coupled ice flow model TIM-FD3 to simulate the effects of several ice rises and one ice rumple on the dynamics of ice shelf flow. We considered the complete un-grounding of the ice shelf in order to investigate the effect of pinning points of different characteristics (interior or near calving front, small and medium sized) on the resulting flow and stress fields

  11. Smart skin technology development for measuring ice accretion, stall, and high AOA aircraft performance. Part 1: Capacitive ice detector development

    NASA Technical Reports Server (NTRS)

    Pruzan, Daniel A.; Khatkhate, Ateen A.; Gerardi, Joseph J.; Hickman, Gail A.

    1993-01-01

    A reliable way to detect and measure ice accretion during flight is required to reduce the hazards of icing currently threatening present day aircraft. Many of the sensors used for this purpose are invasive (probe) sensors which must be placed in areas of the airframe where ice does not naturally form. Due to the difference in capture efficiency of the exposed surface, difficulties result in correlating the ice accretion on the probe to what is happening on a number of vastly different airfoil sections. Most flush mounted sensors in use must be integrated into the aircraft surface by cutting or drilling the aircraft surface. An alternate type of ice detector which is based on a NASA patent is currently being investigated at Innovative Dynamics, Inc. (IDI). Results of the investigation into the performance of different capacitive type sensor designs, both rigid as well as elastic, are presented.

  12. [Tail Plane Icing

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Aviation Safety Program initiated by NASA in 1997 has put greater emphasis in safety related research activities. Ice-contaminated-tailplane stall (ICTS) has been identified by the NASA Lewis Icing Technology Branch as an important activity for aircraft safety related research. The ICTS phenomenon is characterized as a sudden, often uncontrollable aircraft nose- down pitching moment, which occurs due to increased angle-of-attack of the horizontal tailplane resulting in tailplane stall. Typically, this phenomenon occurs when lowering the flaps during final approach while operating in or recently departing from icing conditions. Ice formation on the tailplane leading edge can reduce tailplane angle-of-attack range and cause flow separation resulting in a significant reduction or complete loss of aircraft pitch control. In 1993, the Federal Aviation Authority (FAA) and NASA embarked upon a four-year research program to address the problem of tailplane stall and to quantify the effect of tailplane ice accretion on aircraft performance and handling characteristics. The goals of this program, which was completed in March 1998, were to collect aerodynamic data for an aircraft tail with and without ice contamination and to develop analytical methods for predicting the effects of tailplane ice contamination. Extensive dry air and icing tunnel tests which resulted in a database of the aerodynamic effects associated with tailplane ice contamination. Although the FAA/NASA tailplane icing program generated some answers regarding ice-contaminated-tailplane stall (ICTS) phenomena, NASA researchers have found many open questions that warrant further investigation into ICTS. In addition, several aircraft manufacturers have expressed interest in a second research program to expand the database to other tail configurations and to develop experimental and computational methodologies for evaluating the ICTS phenomenon. In 1998, the icing branch at NASA Lewis initiated a second

  13. Burnishing rolling process of the surface prepared in the turning process

    NASA Astrophysics Data System (ADS)

    Kulakowska, Agnieszka; Kukielka, Leon; Kaldunski, Pawel; Bohdal, Lukasz; Patyk, Radoslaw; Chodor, Jaroslaw; Kukielka, Krzysztof

    2018-05-01

    The aim of this article is to demonstrate the possibility of using burnishing rolling process as the technology of product development. The experimental researches were carried out, showing the ability to form the surface layer of the product with the desired properties. First, during turning rolling the surfaces of the samples were prepared. Then, the surfaces were burnished. The influence of turning process on the state of the surface layer parameters of C45 steel shafts are shown. Among the examined aspects the surface roughness, nano-roughness, material bearing, surface microstructure, metallographic structure were considered. Numerical simulation were conducted. Conclusions from the experiments and simulation were given.

  14. Validation of NASA Thermal Ice Protection Computer Codes Part 2 - LEWICE/Thermal

    DOT National Transportation Integrated Search

    1996-01-01

    The Icing Technology Branch at NASA Lewis has been involved in an effort to validate two thermal ice protection codes developed at the NASA Lewis Research Center: LEWICE/Thermal 1 (electrothermal de-icing and anti-icing), and ANTICE 2 (hot gas and el...

  15. Influence of ice thickness and surface properties on light transmission through Arctic sea ice

    PubMed Central

    Arndt, Stefanie; Nicolaus, Marcel; Perovich, Donald K.; Jakuba, Michael V.; Suman, Stefano; Elliott, Stephen; Whitcomb, Louis L.; McFarland, Christopher J.; Gerdes, Rüdiger; Boetius, Antje; German, Christopher R.

    2015-01-01

    Abstract The observed changes in physical properties of sea ice such as decreased thickness and increased melt pond cover severely impact the energy budget of Arctic sea ice. Increased light transmission leads to increased deposition of solar energy in the upper ocean and thus plays a crucial role for amount and timing of sea‐ice‐melt and under‐ice primary production. Recent developments in underwater technology provide new opportunities to study light transmission below the largely inaccessible underside of sea ice. We measured spectral under‐ice radiance and irradiance using the new Nereid Under‐Ice (NUI) underwater robotic vehicle, during a cruise of the R/V Polarstern to 83°N 6°W in the Arctic Ocean in July 2014. NUI is a next generation hybrid remotely operated vehicle (H‐ROV) designed for both remotely piloted and autonomous surveys underneath land‐fast and moving sea ice. Here we present results from one of the first comprehensive scientific dives of NUI employing its interdisciplinary sensor suite. We combine under‐ice optical measurements with three dimensional under‐ice topography (multibeam sonar) and aerial images of the surface conditions. We investigate the influence of spatially varying ice‐thickness and surface properties on the spatial variability of light transmittance during summer. Our results show that surface properties such as melt ponds dominate the spatial distribution of the under‐ice light field on small scales (<1000 m2), while sea ice‐thickness is the most important predictor for light transmission on larger scales. In addition, we propose the use of an algorithm to obtain histograms of light transmission from distributions of sea ice thickness and surface albedo. PMID:27660738

  16. Small-Molecule Organic Photovoltaic Modules Fabricated via Halogen-Free Solvent System with Roll-to-Roll Compatible Scalable Printing Method.

    PubMed

    Heo, Youn-Jung; Jung, Yen-Sook; Hwang, Kyeongil; Kim, Jueng-Eun; Yeo, Jun-Seok; Lee, Sehyun; Jeon, Ye-Jin; Lee, Donmin; Kim, Dong-Yu

    2017-11-15

    For the first time, the photovoltaic modules composed of small molecule were successfully fabricated by using roll-to-roll compatible printing techniques. In this study, blend films of small molecules, BTR and PC 71 BM were slot-die coated using a halogen-free solvent system. As a result, high efficiencies of 7.46% and 6.56% were achieved from time-consuming solvent vapor annealing (SVA) treatment and roll-to-roll compatible solvent additive approaches, respectively. After successful verification of our roll-to-roll compatible method on small-area devices, we further fabricated large-area photovoltaic modules with a total active area of 10 cm 2 , achieving a power conversion efficiency (PCE) of 4.83%. This demonstration of large-area photovoltaic modules through roll-to-roll compatible printing methods, even based on a halogen-free solvent, suggests the great potential for the industrial-scale production of organic solar cells (OSCs).

  17. Rolling Process Modeling Report. Finite-Element Model Validation and Parametric Study on various Rolling Process parameters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soulami, Ayoub; Lavender, Curt A.; Paxton, Dean M.

    2015-06-15

    Pacific Northwest National Laboratory (PNNL) has been investigating manufacturing processes for the uranium-10% molybdenum alloy plate-type fuel for high-performance research reactors in the United States. This work supports the U.S. Department of Energy National Nuclear Security Administration’s Office of Material Management and Minimization Reactor Conversion Program. This report documents modeling results of PNNL’s efforts to perform finite-element simulations to predict roll-separating forces for various rolling mill geometries for PNNL, Babcock & Wilcox Co., Y-12 National Security Complex, Los Alamos National Laboratory, and Idaho National Laboratory. The model developed and presented in a previous report has been subjected to further validationmore » study using new sets of experimental data generated from a rolling mill at PNNL. Simulation results of both hot rolling and cold rolling of uranium-10% molybdenum coupons have been compared with experimental results. The model was used to predict roll-separating forces at different temperatures and reductions for five rolling mills within the National Nuclear Security Administration Fuel Fabrication Capability project. This report also presents initial results of a finite-element model microstructure-based approach to study the surface roughness at the interface between zirconium and uranium-10% molybdenum.« less

  18. Evolving Technologies for In-Situ Studies of Mars Ice

    NASA Technical Reports Server (NTRS)

    Carsey, F. D.; Hecht, M. H.

    2003-01-01

    Icy sites on Mars continue to be of high scientific importance. These sites include the polar caps, the southern mid-latitude subsurface permafrost, and the seasonal frost. These sites have interest due to their roles in climate processes, past climates, surface and near-surface water, astrobiology, geomorphology, and other topics. As is the case for many planetary features, remote sensing, while of great value, cannot answer all questions; in-situ examination is essential, and the motivation for in-situ observations generally leads to the subsurface, which, fortunately, is accessible on Mars. It is clear in fact that a Mars polar cap subsurface mission is both scientifically compelling and practical. Recent data from orbiting platforms has provided a remarkable level of information about the Mars ice caps; we know, for example, the size, shape and annual cycle of the cap topography as well as we know that of Earth, and we have more information on stratification that we have of, for example, the ice of East Antarctica. To understand the roles that the Mars polar caps play, it is necessary to gather information on the ice cap surface, strata, composition and bed. In this talk the status of in-situ operations and observations will be summarized, and, since we have conveniently at hand another planet with polar caps, permafrost and ice, the role of testing and validation of experimental procedures on Earth will be addressed.

  19. Progress in cold roll bonding of metals

    PubMed Central

    Li, Long; Nagai, Kotobu; Yin, Fuxing

    2008-01-01

    Layered composite materials have become an increasingly interesting topic in industrial development. Cold roll bonding (CRB), as a solid phase method of bonding same or different metals by rolling at room temperature, has been widely used in manufacturing large layered composite sheets and foils. In this paper, we provide a brief overview of a technology using layered composite materials produced by CRB and discuss the suitability of this technology in the fabrication of layered composite materials. The effects of process parameters on bonding, mainly including process and surface preparation conditions, have been analyzed. Bonding between two sheets can be realized when deformation reduction reaches a threshold value. However, it is essential to remove surface contamination layers to produce a satisfactory bond in CRB. It has been suggested that the degreasing and then scratch brushing of surfaces create a strong bonding between the layers. Bonding mechanisms, in which the film theory is expressed as the major mechanism in CRB, as well as bonding theoretical models, have also been reviewed. It has also been showed that it is easy for bcc structure metals to bond compared with fcc and hcp structure metals. In addition, hardness on bonding same metals plays an important part in CRB. Applications of composites produced by CRB in industrial fields are briefly reviewed and possible developments of CRB in the future are also described. PMID:27877949

  20. 76 FR 22868 - Certain Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil: Final Results of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-25

    ...-Rolled Carbon-Quality Steel Products From Brazil: Final Results of Countervailing Duty Administrative... administrative review of the countervailing duty order on certain hot-rolled flat-rolled carbon- quality steel...-Quality Steel Products From Brazil: Preliminary Results of Countervailing Duty Administrative Review, 75...

  1. Metal rubber sensor technology to enable in-flight icing measurement

    NASA Astrophysics Data System (ADS)

    Berg, Michelle; Lalli, Jennifer; Claus, Richard; Kreeger, Richard E.

    2017-04-01

    This paper describes the development and testing of Metal Rubber sensors for the nondestructive, normal force detection of ice accretion on aerospace structures. The buildup of ice on aircraft engine components, wings and rotorblades is a problem for both civilian and military aircraft that must operate under all weather conditions. Ice adds mass to moving components, thus changing the equations of motion that control the operation of the system as well as increasing drag and torque requirements. Ice also alters the surface geometry of leading edges, altering the airflow transition from laminar to turbulent, generating turbulence and again increasing drag. Metal Rubber is a piezoresistive material that exhibits a change in electrical resistance in response to physical deformation. It is produced as a freestanding sheet that is assembled at the molecular level using alternating layers of conductive metal nanoparticles and polymers. As the volume percentage of the conductive nanoparticle clusters within the material is increased from zero, the onset of electrical conduction occurs abruptly at the percolation threshold. Electrical conduction occurs due to electron hopping between the clusters. If a length of the material is strained, the clusters move apart so the efficiency of electron hopping decreases and electrical resistance increases. The resulting change in resistance as a function of the change in strain in the material, at a specific volume percentage of conductive clusters, can be interpreted as the transduction response of the material. We describe how sensors fabricated from these materials can be used to measure ice buildup.

  2. A Roll, Fin, and Fin Controller Prediction Computer Program.

    DTIC Science & Technology

    1980-06-01

    IERATI *EQ. 03 WRITE16920301 ROLL 365 365 3R1TE(G. 26311 ROLL 366 no 505 ImU - 1,NNU ROLL 36? 50S WRITE(G.2011 3U(I’U),OAWPU(1PU,SIGLCfINU) ROLL 360...ROLL DAMPING WILL BE ONE**/$ ROLL 642 2016 FORMAT (/jIX,*LONGCRESTEO SVECTRA AND COMPONENTS WILL SE PRINTED. ROLL 44S 2’) ROLL 444 2019 FORMAT (1/19

  3. Assessment of flat rolling theories for the use in a model-based controller for high-precision rolling applications

    NASA Astrophysics Data System (ADS)

    Stockert, Sven; Wehr, Matthias; Lohmar, Johannes; Abel, Dirk; Hirt, Gerhard

    2017-10-01

    In the electrical and medical industries the trend towards further miniaturization of devices is accompanied by the demand for smaller manufacturing tolerances. Such industries use a plentitude of small and narrow cold rolled metal strips with high thickness accuracy. Conventional rolling mills can hardly achieve further improvement of these tolerances. However, a model-based controller in combination with an additional piezoelectric actuator for high dynamic roll adjustment is expected to enable the production of the required metal strips with a thickness tolerance of +/-1 µm. The model-based controller has to be based on a rolling theory which can describe the rolling process very accurately. Additionally, the required computing time has to be low in order to predict the rolling process in real-time. In this work, four rolling theories from literature with different levels of complexity are tested for their suitability for the predictive controller. Rolling theories of von Kármán, Siebel, Bland & Ford and Alexander are implemented in Matlab and afterwards transferred to the real-time computer used for the controller. The prediction accuracy of these theories is validated using rolling trials with different thickness reduction and a comparison to the calculated results. Furthermore, the required computing time on the real-time computer is measured. Adequate results according the prediction accuracy can be achieved with the rolling theories developed by Bland & Ford and Alexander. A comparison of the computing time of those two theories reveals that Alexander's theory exceeds the sample rate of 1 kHz of the real-time computer.

  4. Rolling Bearing Steels - A Technical and Historical Perspective

    NASA Technical Reports Server (NTRS)

    Zaretsky, Erwin V.

    2012-01-01

    Starting about 1920 it becomes easier to track the growth of bearing materials technology. Until 1955, with few exceptions, comparatively little progress was made in this area. AISI 52100 and some carburizing grades (AISI 4320, AISI 9310) were adequate for most applications. The catalyst to quantum advances in high-performance rolling-element bearing steels was the advent of the aircraft gas turbine engine. With improved bearing manufacturing and steel processing together with advanced lubrication technology, the potential improvements in bearing life can be as much as 80 times that attainable in the late 1950s or as much as 400 times that attainable in 1940. This paper summarizes the chemical, metallurgical and physical aspects of bearing steels and their effect on rolling bearing life and reliability. The single most important variable that has significantly increased bearing life and reliability is vacuum processing of bearing steel. Differences between through hardened, case carburized and corrosion resistant steels are discussed. The interrelation of alloy elements and carbides and their effect on bearing life are presented. An equation relating bearing life, steel hardness and temperature is given. Life factors for various steels are suggested and discussed. A relation between compressive residual stress and bearing life is presented. The effects of retained austenite and grain size are discussed.

  5. New perspectives on constant-roll inflation

    NASA Astrophysics Data System (ADS)

    Cicciarella, Francesco; Mabillard, Joel; Pieroni, Mauro

    2018-01-01

    We study constant-roll inflation using the β-function formalism. We show that the constant rate of the inflaton roll is translated into a first order differential equation for the β-function which can be solved easily. The solutions to this equation correspond to the usual constant-roll models. We then construct, by perturbing these exact solutions, more general classes of models that satisfy the constant-roll equation asymptotically. In the case of an asymptotic power law solution, these corrections naturally provide an end to the inflationary phase. Interestingly, while from a theoretical point of view (in particular in terms of the holographic interpretation) these models are intrinsically different from standard slow-roll inflation, they may have phenomenological predictions in good agreement with present cosmological data.

  6. Towards roll-to-roll fabrication of electronics, optics, and optoelectronics for smart and intelligent packaging

    NASA Astrophysics Data System (ADS)

    Kololuoma, Terho K.; Tuomikoski, Markus; Makela, Tapio; Heilmann, Jali; Haring, Tomi; Kallioinen, Jani; Hagberg, Juha; Kettunen, Ilkka; Kopola, Harri K.

    2004-06-01

    Embedding of optoelectrical, optical, and electrical functionalities into low-cost products like packages and printed matter can be used to increase their information content. These functionalities make also possible the realization of new type of entertaining, impressive or guiding effects on the product packages and printed matter. For these purposes, components like displays, photodetectors, light sources, solar cells, battery elements, diffractive optical elements, lightguides, electrical conductors, resistors, transistors, switching elements etc. and their integration to functional modules are required. Additionally, the price of the components for low-end products has to be in cent scale or preferably below that. Therefore, new, cost-effective, and volume scale capable manufacturing techniques are required. Recent developments of liquid-phase processable electrical and optical polymeric, inorganic, and hybrid materials - inks - have made it possible to fabricate functional electrical, optical and optoelectrical components by conventional roll-to-roll techniques such as gravure printing, embossing, digital printing, offset, and screen printing on flexible paper and plastic like substrates. In this paper, we show our current achievements in the field of roll-to-roll fabricated, optics, electronics and optoelectronics. With few examples, we also demonstrate the printing and hot-embossing capabilities of table scale printing machines and VTT Electronic's 'PICO' roll-to-roll pilot production facility.

  7. On-line measurement of diameter of hot-rolled steel tube

    NASA Astrophysics Data System (ADS)

    Zhu, Xueliang; Zhao, Huiying; Tian, Ailing; Li, Bin

    2015-02-01

    In order to design a online diameter measurement system for Hot-rolled seamless steel tube production line. On one hand, it can play a stimulate part in the domestic pipe measuring technique. On the other hand, it can also make our domestic hot rolled seamless steel tube enterprises gain a strong product competitiveness with low input. Through the analysis of various detection methods and techniques contrast, this paper choose a CCD camera-based online caliper system design. The system mainly includes the hardware measurement portion and the image processing section, combining with software control technology and image processing technology, which can complete online measurement of heat tube diameter. Taking into account the complexity of the actual job site situation, it can choose a relatively simple and reasonable layout. The image processing section mainly to solve the camera calibration and the application of a function in Matlab, to achieve the diameter size display directly through the algorithm to calculate the image. I build a simulation platform in the design last phase, successfully, collect images for processing, to prove the feasibility and rationality of the design and make error in less than 2%. The design successfully using photoelectric detection technology to solve real work problems

  8. Human locomotion on ice: the evolution of ice-skating energetics through history.

    PubMed

    Formenti, Federico; Minetti, Alberto E

    2007-05-01

    More than 3000 years ago, peoples living in the cold North European regions started developing tools such as ice skates that allowed them to travel on frozen lakes. We show here which technical and technological changes determined the main steps in the evolution of ice-skating performance over its long history. An in-depth historical research helped identify the skates displaying significantly different features from previous models and that could consequently determine a better performance in terms of speed and energy demand. Five pairs of ice skates were tested, from the bone-skates, dated about 1800 BC, to modern ones. This paper provides evidence for the fact that the metabolic cost of locomotion on ice decreased dramatically through history, the metabolic cost of modern ice-skating being only 25% of that associated with the use of bone-skates. Moreover, for the same metabolic power, nowadays skaters can achieve speeds four times higher than their ancestors could. In the range of speeds considered, the cost of travelling on ice was speed independent for each skate model, as for running. This latter finding, combined with the accepted relationship between time of exhaustion and the sustainable fraction of metabolic power, gives the opportunity to estimate the maximum skating speed according to the distance travelled. Ice skates were probably the first human powered locomotion tools to take the maximum advantage from the biomechanical properties of the muscular system: even when travelling at relatively high speeds, the skating movement pattern required muscles to shorten slowly so that they could also develop a considerable amount of force.

  9. Evaluation of Ice sheet evolution and coastline changes from 1960s in Amery Ice Shelf using multi-source remote sensing images

    NASA Astrophysics Data System (ADS)

    Qiao, G.; Ye, W.; Scaioni, M.; Liu, S.; Feng, T.; Liu, Y.; Tong, X.; Li, R.

    2013-12-01

    Global change is one of the major challenges that all the nations are commonly facing, and the Antarctica ice sheet changes have been playing a critical role in the global change research field during the past years. Long time-series of ice sheet observations in Antarctica would contribute to the quantitative evaluation and precise prediction of the effects on global change induced by the ice sheet, of which the remote sensing technology would make critical contributions. As the biggest ice shelf and one of the dominant drainage systems in East Antarctic, the Amery Ice Shelf has been making significant contributions to the mass balance of the Antarctic. Study of Amery Ice shelf changes would advance the understanding of Antarctic ice shelf evolution as well as the overall mass balance. At the same time, as one of the important indicators of Antarctica ice sheet characteristics, coastlines that can be detected from remote sensing imagery can help reveal the nature of the changes of ice sheet evolution. Most of the scientific research on Antarctica with satellite remote sensing dated from 1970s after LANDSAT satellite was brought into operation. It was the declassification of the cold war satellite reconnaissance photographs in 1995, known as Declassified Intelligence Satellite Photograph (DISP) that provided a direct overall view of the Antarctica ice-sheet's configuration in 1960s, greatly extending the time span of Antarctica surface observations. This paper will present the evaluation of ice-sheet evolution and coastline changes in Amery Ice Shelf from 1960s, by using multi-source remote sensing images including the DISP images and the modern optical satellite images. The DISP images scanned from negatives were first interior-oriented with the associated parameters, and then bundle block adjustment technology was employed based on the tie points and control points, to derive the mosaic image of the research region. Experimental results of coastlines generated

  10. A Vision for Ice Giant Exploration

    NASA Technical Reports Server (NTRS)

    Hofstadter, M.; Simon, A.; Atreya, S.; Banfield, D.; Fortney, J.; Hayes, A.; Hedman, M.; Hospodarsky, G.; Mandt, K.; Masters, A.; hide

    2017-01-01

    From Voyager to a Vision for 2050: NASA and ESA have just completed a study of candidate missionsto Uranus and Neptune, the so-called ice giant planets. It is a Pre-Decadal Survey Study, meant to inform the next Planetary Science Decadal Survey about opportunities for missions launching in the 2020's and early 2030's. There have been no space flight missions to the ice giants since the Voyager 2 flybys of Uranus in 1986 and Neptune in 1989. This paper presents some conclusions of that study (hereafter referred to as The Study), and how the results feed into a vision for where planetary science can be in 2050. Reaching that vision will require investments in technology andground-based science in the 2020's, flight during the 2030's along with continued technological development of both ground- and space-based capabilities, and data analysis and additional flights in the 2040's. We first discuss why exploring the ice giants is important. We then summarize the science objectives identified by The Study, and our vision of the science goals for 2050. We then review some of the technologies needed to make this vision a reality.

  11. Enhancing roll stability of heavy vehicle by LQR active anti-roll bar control using electronic servo-valve hydraulic actuators

    NASA Astrophysics Data System (ADS)

    Vu, Van Tan; Sename, Olivier; Dugard, Luc; Gaspar, Peter

    2017-09-01

    Rollover of heavy vehicle is an important road safety problem world-wide. Although rollovers are relatively rare events, they are usually deadly accidents when they occur. The roll stability loss is the main cause of rollover accidents in which heavy vehicles are involved. In order to improve the roll stability, most of modern heavy vehicles are equipped with passive anti-roll bars to reduce roll motion during cornering or riding on uneven roads. However these may be not sufficient to overcome critical situations. This paper introduces the active anti-roll bars made of four electronic servo-valve hydraulic actuators, which are modelled and integrated in a yaw-roll model of a single unit heavy vehicle. The control signal is the current entering the electronic servo-valve and the output is the force generated by the hydraulic actuator. The active control design is achieved solving a linear optimal control problem based on the linear quadratic regulator (LQR) approach. A comparison of several LQR controllers is provided to allow for tackling the considered multi-objective problems. Simulation results in frequency and time domains show that the use of two active anti-roll bars (front and rear axles) drastically improves the roll stability of the single unit heavy vehicle compared with the passive anti-roll bar.

  12. Modeling of Commercial Turbofan Engine With Ice Crystal Ingestion: Follow-On

    NASA Technical Reports Server (NTRS)

    Jorgenson, Philip C. E.; Veres, Joseph P.; Coennen, Ryan

    2014-01-01

    The occurrence of ice accretion within commercial high bypass aircraft turbine engines has been reported under certain atmospheric conditions. Engine anomalies have taken place at high altitudes that have been attributed to ice crystal ingestion, partially melting, and ice accretion on the compression system components. The result was degraded engine performance, and one or more of the following: loss of thrust control (roll back), compressor surge or stall, and flameout of the combustor. As ice crystals are ingested into the fan and low pressure compression system, the increase in air temperature causes a portion of the ice crystals to melt. It is hypothesized that this allows the ice-water mixture to cover the metal surfaces of the compressor stationary components which leads to ice accretion through evaporative cooling. Ice accretion causes a blockage which subsequently results in the deterioration in performance of the compressor and engine. The focus of this research is to apply an engine icing computational tool to simulate the flow through a turbofan engine and assess the risk of ice accretion. The tool is comprised of an engine system thermodynamic cycle code, a compressor flow analysis code, and an ice particle melt code that has the capability of determining the rate of sublimation, melting, and evaporation through the compressor flow path, without modeling the actual ice accretion. A commercial turbofan engine which has previously experienced icing events during operation in a high altitude ice crystal environment has been tested in the Propulsion Systems Laboratory (PSL) altitude test facility at NASA Glenn Research Center. The PSL has the capability to produce a continuous ice cloud which is ingested by the engine during operation over a range of altitude conditions. The PSL test results confirmed that there was ice accretion in the engine due to ice crystal ingestion, at the same simulated altitude operating conditions as experienced previously in

  13. Modeling of Commercial Turbofan Engine with Ice Crystal Ingestion; Follow-On

    NASA Technical Reports Server (NTRS)

    Jorgenson, Philip C. E.; Veres, Joseph P.; Coennen, Ryan

    2014-01-01

    The occurrence of ice accretion within commercial high bypass aircraft turbine engines has been reported under certain atmospheric conditions. Engine anomalies have taken place at high altitudes that have been attributed to ice crystal ingestion, partially melting, and ice accretion on the compression system components. The result was degraded engine performance, and one or more of the following: loss of thrust control (roll back), compressor surge or stall, and flameout of the combustor. As ice crystals are ingested into the fan and low pressure compression system, the increase in air temperature causes a portion of the ice crystals to melt. It is hypothesized that this allows the ice-water mixture to cover the metal surfaces of the compressor stationary components which leads to ice accretion through evaporative cooling. Ice accretion causes a blockage which subsequently results in the deterioration in performance of the compressor and engine. The focus of this research is to apply an engine icing computational tool to simulate the flow through a turbofan engine and assess the risk of ice accretion. The tool is comprised of an engine system thermodynamic cycle code, a compressor flow analysis code, and an ice particle melt code that has the capability of determining the rate of sublimation, melting, and evaporation through the compressor flow path, without modeling the actual ice accretion. A commercial turbofan engine which has previously experienced icing events during operation in a high altitude ice crystal environment has been tested in the Propulsion Systems Laboratory (PSL) altitude test facility at NASA Glenn Research Center. The PSL has the capability to produce a continuous ice cloud which is ingested by the engine during operation over a range of altitude conditions. The PSL test results confirmed that there was ice accretion in the engine due to ice crystal ingestion, at the same simulated altitude operating conditions as experienced previously in

  14. Increased compactibility of acetames after roll compaction.

    PubMed

    Kuntz, Theresia; Schubert, Martin A; Kleinebudde, Peter

    2011-01-01

    A common technique for manufacturing granules in a continuous way is the combination of roll compaction and subsequent milling. Roll compaction can considerably impact tableting performance of a material. The purpose of this study was to investigate the influence of roll compaction/dry granulation on the compaction behavior of acetames, a class of active pharmaceutical substances, which are mainly used for the treatment of central nervous diseases. Some representatives of acetames were roll compacted and then compressed into tablets. Compactibility of granules was compared with the compaction behavior of the directly compressed drug powders. In contrast to many other materials, the roll compaction step induced an increase in compactibility for all investigated acetames. Specific surface areas of the untreated and the roll compacted drugs were determined by nitrogen adsorption. The raise in compactibility observed was accompanied by an increase in specific surface area during roll compaction. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. Rolling-element bearings: A review of the state of the art

    NASA Technical Reports Server (NTRS)

    Anderson, W. J.; Zaretsky, E. V.

    1973-01-01

    Some of the research conducted which has brought rolling-element technology to its present state is discussed. Areas touched upon are material effects, processing variables, operating variables, design optimization, lubricant effects and lubrication methods. Finally, problem areas are discussed in relation to the present state-of-the-art and anticipated requirements.

  16. Adaptive wing static aeroelastic roll control

    NASA Astrophysics Data System (ADS)

    Ehlers, Steven M.; Weisshaar, Terrence A.

    1993-09-01

    Control of the static aeroelastic characteristics of a swept uniform wing in roll using an adaptive structure is examined. The wing structure is modeled as a uniform beam with bending and torsional deformation freedom. Aerodynamic loads are obtained from strip theory. The structure model includes coefficients representing torsional and bending actuation provided by embedded piezoelectric material layers. The wing is made adaptive by requiring the electric field applied to the piezoelectric material layers to be proportional to the wing root loads. The proportionality factor, or feedback gain, is used to control static aeroelastic rolling properties. Example wing configurations are used to illustrate the capabilities of the adaptive structure. The results show that rolling power, damping-in-roll and aileron effectiveness can be controlled by adjusting the feedback gain. And that dynamic pressure affects the gain required. Gain scheduling can be used to set and maintain rolling properties over a range of dynamic pressures. An adaptive wing provides a method for active aeroelastic tailoring of structural response to meet changing structural performance requirements during a roll maneuver.

  17. Systematics of constant roll inflation

    NASA Astrophysics Data System (ADS)

    Anguelova, Lilia; Suranyi, Peter; Wijewardhana, L. C. R.

    2018-02-01

    We study constant roll inflation systematically. This is a regime, in which the slow roll approximation can be violated. It has long been thought that this approximation is necessary for agreement with observations. However, recently it was understood that there can be inflationary models with a constant, and not necessarily small, rate of roll that are both stable and compatible with the observational constraint ns ≈ 1. We investigate systematically the condition for such a constant-roll regime. In the process, we find a whole new class of inflationary models, in addition to the known solutions. We show that the new models are stable under scalar perturbations. Finally, we find a part of their parameter space, in which they produce a nearly scale-invariant scalar power spectrum, as needed for observational viability.

  18. Rapid Prototyping of Slot Die Devices for Roll to Roll Production of EL Fibers

    PubMed Central

    Bellingham, Alyssa; Bromhead, Nicholas; Fontecchio, Adam

    2017-01-01

    There is a growing interest in fibers supporting optoelectrical properties for textile and wearable display applications. Solution-processed electroluminescent (EL) material systems can be continuously deposited onto fiber or yarn substrates in a roll-to-roll process, making it easy to scale manufacturing. It is important to have precise control over layer deposition to achieve uniform and reliable light emission from these EL fibers. Slot-die coating offers this control and increases the rate of EL fiber production. Here, we report a highly adaptable, cost-effective 3D printing model for developing slot dies used in automatic coating systems. The resulting slot-die coating system enables rapid, reliable production of alternating current powder-based EL (ACPEL) fibers and can be adapted for many material systems. The benefits of this system over dip-coating for roll-to-roll production of EL fibers are demonstrated in this work. PMID:28772954

  19. Rapid Prototyping of Slot Die Devices for Roll to Roll Production of EL Fibers.

    PubMed

    Bellingham, Alyssa; Bromhead, Nicholas; Fontecchio, Adam

    2017-05-29

    There is a growing interest in fibers supporting optoelectrical properties for textile and wearable display applications. Solution-processed electroluminescent (EL) material systems can be continuously deposited onto fiber or yarn substrates in a roll-to-roll process, making it easy to scale manufacturing. It is important to have precise control over layer deposition to achieve uniform and reliable light emission from these EL fibers. Slot-die coating offers this control and increases the rate of EL fiber production. Here, we report a highly adaptable, cost-effective 3D printing model for developing slot dies used in automatic coating systems. The resulting slot-die coating system enables rapid, reliable production of alternating current powder-based EL (ACPEL) fibers and can be adapted for many material systems. The benefits of this system over dip-coating for roll-to-roll production of EL fibers are demonstrated in this work.

  20. Constant-roll tachyon inflation and observational constraints

    NASA Astrophysics Data System (ADS)

    Gao, Qing; Gong, Yungui; Fei, Qin

    2018-05-01

    For the constant-roll tachyon inflation, we derive the analytical expressions for the scalar and tensor power spectra, the scalar and tensor spectral tilts and the tensor to scalar ratio to the first order of epsilon1 by using the method of Bessel function approximation. The derived ns-r results are compared with the observations, we find that only the constant-roll inflation with ηH being a constant is consistent with the observations and observations constrain the constant-roll inflation to be slow-roll inflation. The tachyon potential is also reconstructed for the constant-roll inflation which is consistent with the observations.

  1. 75 FR 32160 - Certain Hot-Rolled Flat-Rolled Carbon-Quality Steel Products from Brazil: Extension of Time Limit...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-07

    ... DEPARTMENT OF COMMERCE International Trade Administration [C-351-829] Certain Hot-Rolled Flat... Commerce (the Department) published the countervailing duty order on certain hot-rolled flat- rolled carbon-quality steel products from Brazil. See Agreement Suspending the Countervailing Duty Investigation on Hot...

  2. METHOD OF HOT ROLLING URANIUM METAL

    DOEpatents

    Kaufmann, A.R.

    1959-03-10

    A method is given for quickly and efficiently hot rolling uranium metal in the upper part of the alpha phase temperature region to obtain sound bars and sheets possessing a good surface finish. The uranium metal billet is heated to a temperature in the range of 1000 deg F to 1220 deg F by immersion iii a molten lead bath. The heated billet is then passed through the rolls. The temperature is restored to the desired range between successive passes through the rolls, and the rolls are turned down approximately 0.050 inch between successive passes.

  3. Multiscale crack initiator promoted super-low ice adhesion surfaces.

    PubMed

    He, Zhiwei; Xiao, Senbo; Gao, Huajian; He, Jianying; Zhang, Zhiliang

    2017-09-27

    Preventing icing on exposed surfaces is important for life and technology. While suppressing ice nucleation by surface structuring and local confinement is highly desirable and yet to be achieved, a realistic roadmap of icephobicity is to live with ice, but with lowest possible ice adhesion. According to fracture mechanics, the key to lower ice adhesion is to maximize crack driving forces at the ice-substrate interface. Herein, we present a novel integrated macro-crack initiator mechanism combining nano-crack and micro-crack initiators, and demonstrate a new approach to designing super-low ice adhesion surfaces by introducing sub-structures into smooth polydimethylsiloxane coatings. Our design promotes the initiation of macro-cracks and enables the reduction of ice adhesion by at least ∼50% regardless of the curing temperature, weight ratio and size of internal holes, reaching a lowest ice adhesion of 5.7 kPa. The multiscale crack initiator mechanisms provide an unprecedented and versatile strategy towards designing super-low ice adhesion surfaces.

  4. Ice swimming - 'Ice Mile' and '1 km Ice event'.

    PubMed

    Knechtle, Beat; Rosemann, Thomas; Rüst, Christoph A

    2015-01-01

    Ice swimming for 1 mile and 1 km is a new discipline in open-water swimming since 2009. This study examined female and male performances in swimming 1 mile ('Ice Mile') and 1 km ('1 km Ice event') in water of 5 °C or colder between 2009 and 2015 with the hypothesis that women would be faster than men. Between 2009 and 2015, 113 men and 38 women completed one 'Ice Mile' and 26 men and 13 completed one '1 km Ice event' in water colder than +5 °C following the rules of International Ice Swimming Association (IISA). Differences in performance between women and men were determined. Sex difference (%) was calculated using the equation ([time for women] - [time for men]/[time for men] × 100). For 'Ice Mile', a mixed-effects regression model with interaction analyses was used to investigate the influence of sex and environmental conditions on swimming speed. The association between water temperature and swimming speed was assessed using Pearson correlation analyses. For 'Ice Mile' and '1 km Ice event', the best men were faster than the best women. In 'Ice Mile', calendar year, number of attempts, water temperature and wind chill showed no association with swimming speed for both women and men. For both women and men, water temperature was not correlated to swimming speed in both 'Ice Mile' and '1 km Ice event'. In water colder than 5 °C, men were faster than women in 'Ice Mile' and '1 km Ice event'. Water temperature showed no correlation to swimming speed.

  5. Ice Bridge Antarctic Sea Ice

    NASA Image and Video Library

    2009-10-21

    Sea ice is seen out the window of NASA's DC-8 research aircraft as it flies 2,000 feet above the Bellingshausen Sea in West Antarctica on Wednesday, Oct., 21, 2009. This was the fourth science flight of NASA’s Operation Ice Bridge airborne Earth science mission to study Antarctic ice sheets, sea ice, and ice shelves. Photo Credit: (NASA/Jane Peterson)

  6. Analysis of fracture in sheet bending and roll forming

    NASA Astrophysics Data System (ADS)

    Deole, Aditya D.; Barnett, Matthew; Weiss, Matthias

    2018-05-01

    The bending limit or minimum bending radius of sheet metal is conventionally measured in a wiping (swing arm) or in a vee bend test and reported as the minimum radius of the tool over which the sheet can be bent without fracture. Frequently the material kinks while bending so that the actual inner bend radius of the sheet metal is smaller than the tool radius giving rise to inaccuracy in these methods. It has been shown in the previous studies that conventional bend test methods may under-estimate formability in bending dominated processes such as roll forming. A new test procedure is proposed here to improve understanding and measurement of fracture in bending and roll forming. In this study, conventional wiping test and vee bend test have been performed on martensitic steel to determine the minimum bend radius. In addition, the vee bend test is performed in an Erichsen sheet metal tester equipped with the GOM Aramis system to enable strain measurement on the outer surface during bending. The strain measurement before the onset of fracture is then used to determine the minimum bend radius. To compare this result with a technological process, a vee channel is roll formed and in-situ strain measurement carried out with the Vialux Autogrid system. The strain distribution at fracture in the roll forming process is compared with that predicted by the conventional bending tests and by the improved process. It is shown that for this forming operation and material, the improved procedure gives a more accurate prediction of fracture.

  7. Rotorcraft aviation icing research requirements: Research review and recommendations

    NASA Technical Reports Server (NTRS)

    Peterson, A. A.; Dadone, L.; Bevan, A.

    1981-01-01

    The status of rotorcraft icing evaluation techniques and ice protection technology was assessed. Recommendations are made for near and long term icing programs that describe the needs of industry. These recommended programs are based on a consensus of the major U.S. helicopter companies. Specific activities currently planned or underway by NASA, FAA and DOD are reviewed to determine relevance to the overall research requirements. New programs, taking advantage of current activities, are recommended to meet the long term needs for rotorcraft icing certification.

  8. Future of the Particle Replication in Nonwetting Templates (PRINT) Technology

    PubMed Central

    Xu, Jing; Wong, Dominica H. C.; Byrne, James D.; Chen, Kai; Bowerman, Charles

    2014-01-01

    Particle replication in nonwetting templates (PRINT) is a continuous, roll-to-roll, high-resolution molding technology which allows the design and synthesis of precisely defined micro- and nanoparticles. This technology adapts the lithographic techniques from the microelectronics industry and marries these with the roll-to-roll processes from the photographic film industry to enable researchers to have unprecedented control over particle size, shape, chemical composition, cargo, modulus, and surface properties. In addition, PRINT is a GMP-compliant (GMP = good manufacturing practice) platform amenable for particle fabrication on a large scale. Herein, we describe some of our most recent work involving the PRINT technology for application in the biomedical and material sciences. PMID:23670869

  9. Influence of 10 % Cold Rolling Reduction on Ageing Behaviour of Hot Rolled Al-Cu-Si-Mn-Mg Alloy

    NASA Astrophysics Data System (ADS)

    Ghosh, S. K.

    2014-10-01

    In the current study, the effect of 10 % cold rolling on the different ageing phenomena of Al-Cu-Si-Mn-Mg alloy was investigated. Both hot rolled and cold rolled alloys were subjected to both natural and artificial ageing processes. Hardness was measured to understand the change in the mechanical property of the alloy before and after rolling and also during ageing processes. From microscopy, it was evident that the cold rolling and subsequent ageing provided the alloy with a structure in which CuAl2 precipitates were uniformly distributed. The alloy exhibited the peak hardness value of 92 VHN after 2 days of natural ageing, whereas the cold deformed (10 %) alloy exhibited the higher peak hardness value of 139 VHN after 3 days of natural ageing. Peak hardness of the alloy reached 94 VHN, when hot rolled alloy was subjected to ageing at 250 °C for 1 h, whereas 10 % cold rolling followed by ageing (100 °C, 15 min) demonstrated accelerated and elevated hardening. The ageing behaviours thus obtained permit the alloy to provide a range of desirable combinations of strength and ductility for high strength weight saving applications.

  10. Direct laser interference patterning of metallic sleeves for roll-to-roll hot embossing

    NASA Astrophysics Data System (ADS)

    Lang, Valentin; Rank, Andreas; Lasagni, Andrés. F.

    2017-03-01

    Surfaces equipped with periodic patterns with feature sizes in the micrometer, submicrometer and nanometer range present outstanding surface properties. Many of these surfaces can be found on different plants and animals. However, there are few methods capable to produce such patterns in a one-step process on relevant technological materials. Direct laser interference patterning (DLIP) provides both high resolution as well as high throughput. Recently, fabrication rates up to 1 m2·min-1 could be achieved. However, resolution was limited to a few micrometers due to typical thermal effects that arise when nanosecond pulsed laser systems are used. Therefore, this study introduces an alternative to ns-DLIP for the fabrication of multi-scaled micrometer and submicrometer structures on nickel surfaces using picosecond pulses (10 ps at a wavelength of 1064 nm). Due to the nature of the interaction process of the metallic surfaces with the ultrashort laser pulses, it was not only possible to directly transfer the shape of the interference pattern intensity distribution to the material (with spatial periods ranging from 1.5 μm to 5.7 μm), but also to selectively obtain laser induce periodic surface structures with feature sizes in the submicrometer and nanometer range. Finally, the structured nickel sleeves are utilized in a roll-to-roll hot embossing unit for structuring of polymer foils. Processing speeds up to 25 m·min-1 are reported.

  11. Inflation with a constant rate of roll

    NASA Astrophysics Data System (ADS)

    Motohashi, Hayato; Starobinsky, Alexei A.; Yokoyama, Jun'ichi

    2015-09-01

    We consider an inflationary scenario where the rate of inflaton roll defined by ̈phi/H dot phi remains constant. The rate of roll is small for slow-roll inflation, while a generic rate of roll leads to the interesting case of 'constant-roll' inflation. We find a general exact solution for the inflaton potential required for such inflaton behaviour. In this model, due to non-slow evolution of background, the would-be decaying mode of linear scalar (curvature) perturbations may not be neglected. It can even grow for some values of the model parameter, while the other mode always remains constant. However, this always occurs for unstable solutions which are not attractors for the given potential. The most interesting particular cases of constant-roll inflation remaining viable with the most recent observational data are quadratic hilltop inflation (with cutoff) and natural inflation (with an additional negative cosmological constant). In these cases even-order slow-roll parameters approach non-negligible constants while the odd ones are asymptotically vanishing in the quasi-de Sitter regime.

  12. Ground roll attenuation by synchrosqueezed curvelet transform

    NASA Astrophysics Data System (ADS)

    Liu, Zhao; Chen, Yangkang; Ma, Jianwei

    2018-04-01

    Ground roll is a type of coherent noise in land seismic data that has low frequency, low velocity and high amplitude. It damages reflection events that contain important information about subsurface structures, hence the removal of ground roll is a crucial step in seismic data processing. A suitable transform is needed for removal of ground roll. Curvelet transform is an effective sparse transform that optimally represents seismic events. In addition, the curvelets can provide a multiscale and multidirectional decomposition of the input data in time-frequency and angular domain, which can help distinguish between ground roll and useful signals. In this paper, we apply synchrosqueezed curvelet transform (SSCT) for ground roll attenuation. The synchrosqueezing technique in SSCT is used to precisely reallocate the energy of local wave vectors in order to separate ground roll from the original data with higher resolution and higher fidelity. Examples of synthetic and field seismic data reveal that SSCT performs well in the suppression of aliased and non-aliased ground roll while preserving reflection waves, in comparison with high-pass filtering, wavelet and curvelet methods.

  13. Inflation with a constant rate of roll

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Motohashi, Hayato; Starobinsky, Alexei A.; Yokoyama, Jun'ichi, E-mail: motohashi@kicp.uchicago.edu, E-mail: alstar@landau.ac.ru, E-mail: yokoyama@resceu.s.u-tokyo.ac.jp

    2015-09-01

    We consider an inflationary scenario where the rate of inflaton roll defined by {sup ··}φ/H φ-dot remains constant. The rate of roll is small for slow-roll inflation, while a generic rate of roll leads to the interesting case of 'constant-roll' inflation. We find a general exact solution for the inflaton potential required for such inflaton behaviour. In this model, due to non-slow evolution of background, the would-be decaying mode of linear scalar (curvature) perturbations may not be neglected. It can even grow for some values of the model parameter, while the other mode always remains constant. However, this always occurs formore » unstable solutions which are not attractors for the given potential. The most interesting particular cases of constant-roll inflation remaining viable with the most recent observational data are quadratic hilltop inflation (with cutoff) and natural inflation (with an additional negative cosmological constant). In these cases even-order slow-roll parameters approach non-negligible constants while the odd ones are asymptotically vanishing in the quasi-de Sitter regime.« less

  14. Continuous roll-to-roll growth of graphene films by chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Hesjedal, Thorsten

    2011-03-01

    Few-layer graphene is obtained in atmospheric chemical vapor deposition on polycrystalline copper in a roll-to-roll process. Raman and x-ray photoelectron spectroscopy were employed to confirm the few-layer nature of the graphene film, to map the inhomogeneities, and to study and optimize the growth process. This continuous growth process can be easily scaled up and enables the low-cost fabrication of graphene films for industrial applications.

  15. Slow-roll approximation in loop quantum cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luc, Joanna; Mielczarek, Jakub, E-mail: joanna.luc@uj.edu.pl, E-mail: jakub.mielczarek@uj.edu.pl

    The slow-roll approximation is an analytical approach to study dynamical properties of the inflationary universe. In this article, systematic construction of the slow-roll expansion for effective loop quantum cosmology is presented. The analysis is performed up to the fourth order in both slow-roll parameters and the parameter controlling the strength of deviation from the classical case. The expansion is performed for three types of the slow-roll parameters: Hubble slow-roll parameters, Hubble flow parameters and potential slow-roll parameters. An accuracy of the approximation is verified by comparison with the numerical phase space trajectories for the case with a massive potential term.more » The results obtained in this article may be helpful in the search for the subtle quantum gravitational effects with use of the cosmological data.« less

  16. From ice-binding proteins to bio-inspired antifreeze materials.

    PubMed

    Voets, I K

    2017-07-19

    Ice-binding proteins (IBP) facilitate survival under extreme conditions in diverse life forms. IBPs in polar fishes block further growth of internalized environmental ice and inhibit ice recrystallization of accumulated internal crystals. Algae use IBPs to structure ice, while ice adhesion is critical for the Antarctic bacterium Marinomonas primoryensis. Successful translation of this natural cryoprotective ability into man-made materials holds great promise but is still in its infancy. This review covers recent advances in the field of ice-binding proteins and their synthetic analogues, highlighting fundamental insights into IBP functioning as a foundation for the knowledge-based development of cheap, bio-inspired mimics through scalable production routes. Recent advances in the utilisation of IBPs and their analogues to e.g. improve cryopreservation, ice-templating strategies, gas hydrate inhibition and other technologies are presented.

  17. Design of Low-Cost Vehicle Roll Angle Estimator Based on Kalman Filters and an Iot Architecture.

    PubMed

    Garcia Guzman, Javier; Prieto Gonzalez, Lisardo; Pajares Redondo, Jonatan; Sanz Sanchez, Susana; Boada, Beatriz L

    2018-06-03

    In recent years, there have been many advances in vehicle technologies based on the efficient use of real-time data provided by embedded sensors. Some of these technologies can help you avoid or reduce the severity of a crash such as the Roll Stability Control (RSC) systems for commercial vehicles. In RSC, several critical variables to consider such as sideslip or roll angle can only be directly measured using expensive equipment. These kind of devices would increase the price of commercial vehicles. Nevertheless, sideslip or roll angle or values can be estimated using MEMS sensors in combination with data fusion algorithms. The objectives stated for this research work consist of integrating roll angle estimators based on Linear and Unscented Kalman filters to evaluate the precision of the results obtained and determining the fulfillment of the hard real-time processing constraints to embed this kind of estimators in IoT architectures based on low-cost equipment able to be deployed in commercial vehicles. An experimental testbed composed of a van with two sets of low-cost kits was set up, the first one including a Raspberry Pi 3 Model B, and the other having an Intel Edison System on Chip. This experimental environment was tested under different conditions for comparison. The results obtained from low-cost experimental kits, based on IoT architectures and including estimators based on Kalman filters, provide accurate roll angle estimation. Also, these results show that the processing time to get the data and execute the estimations based on Kalman Filters fulfill hard real time constraints.

  18. Origins of Rolling Friction

    ERIC Educational Resources Information Center

    Cross, Rod

    2017-01-01

    When a hard object rolls on a soft surface, or vice versa, rolling friction arises from deformation of the soft object or the soft surface. The friction force can be described in terms of an offset in the normal reaction force or in terms of energy loss arising from the deformation. The origin of the friction force itself is not entirely clear. It…

  19. Towards roll-to-roll manufacturing of polymer photonic devices

    NASA Astrophysics Data System (ADS)

    Subbaraman, Harish; Lin, Xiaohui; Ling, Tao; Guo, L. Jay; Chen, Ray T.

    2014-03-01

    Traditionally, polymer photonic devices are fabricated using clean-room processes such as photolithography, e-beam lithography, reactive ion etching (RIE) and lift-off methods etc, which leads to long fabrication time, low throughput and high cost. We have utilized a novel process for fabricating polymer photonic devices using a combination of imprinting and ink jet printing methods, which provides high throughput on a variety of rigid and flexible substrates with low cost. We discuss the manufacturing challenges that need to be overcome in order to realize true implementation of roll-to-roll manufacturing of flexible polymer photonic systems. Several metrology and instrumentation challenges involved such as availability of particulate-free high quality substrate, development and implementation of high-speed in-line and off-line inspection and diagnostic tools with adaptive control for patterned and unpatterned material films, development of reliable hardware, etc need to be addressed and overcome in order to realize a successful manufacturing process. Due to extreme resolution requirements compared to print media, the burden of software and hardware tools on the throughput also needs to be carefully determined. Moreover, the effect of web wander and variations in web speed need to accurately be determined in the design of the system hardware and software. In this paper, we show the realization of solutions for few challenges, and utilizing these solutions for developing a high-rate R2R dual stage ink-jet printer that can provide alignment accuracy of <10μm at a web speed of 5m/min. The development of a roll-to-roll manufacturing system for polymer photonic systems opens limitless possibilities for the deployment of high performance components in a variety of applications including communication, sensing, medicine, agriculture, energy, lighting etc.

  20. LEDs are on a roll

    NASA Astrophysics Data System (ADS)

    Blom, Paul; van Mol, Ton

    2011-11-01

    Light-emitting diodes are more efficient than conventional lighting, but high production costs limit their uptake. Organic versions that can be produced using a cheap newspaper-style "roll-to-roll" printing process are likely to revolutionize our lighting and signage.

  1. Effects of rolling conditions on recrystallization microstructure and texture in magnetostrictive Fe-Ga-Al rolled sheets

    NASA Astrophysics Data System (ADS)

    Li, Jiheng; Liu, Yangyang; Li, Xiaojuan; Mu, Xing; Bao, Xiaoqian; Gao, Xuexu

    2018-07-01

    The effects of different rolling conditions on the microstructure and texture of primary and secondary recrystallization in magnetostrictive Fe82Ga9Al9+0.1at%NbC alloy sheets were investigated. After the primary recrystallization annealing at 850 °C for 5 min, the as-rolled sheets prepared by warm-cold rolling with an intermediate annealing, can be fully recrystallized, and obtain the homogeneous matrix in which the fine dispersed NbC precipitate particles are distributed. The primary recrystallization textures of sheets with different rolling conditions consist mostly of strong {1 0 0} textures, γ-fiber textures, {4 1 1}〈1 4 8〉 texture and weak Goss texture. In the primary recrystallized sheets prepared by warm-cold rolling with an intermediate annealing, the high energy grain boundaries and ∑9 boundaries have the highest proportion. After high temperature annealing, the secondary recrystallizations of Goss grains in these sheets are more complete, and the size of abnormal grown Goss grain is up to several centimeters, which results in the strongest Goss texture. Correspondingly, the largest magnetostriction of 183 ppm is observed. The sample prepared by warm-cold rolling with an intermediate annealing, has homogeneous primary matrix, special texture components and grain boundary distribution, all of which provide a better surrounding for the abnormal growth of Goss grains. This work indicates that the control of rolling conditions of Fe-Ga-Al alloy sheets is necessary to achieve the strong Goss texture and obtain a possible high magnetostriction if other appropriate conditions (stress, domain structure) are achieved.

  2. Rapid Access Ice Drill: A New Tool for Exploration of the Deep Antarctic Ice Sheets and Subglacial Geology

    NASA Astrophysics Data System (ADS)

    Goodge, J. W.; Severinghaus, J. P.

    2014-12-01

    The Rapid Access Ice Drill (RAID) will penetrate the Antarctic ice sheets in order to core through deep ice, the glacial bed, and into bedrock below. This new technology will provide a critical first look at the interface between major ice caps and their subglacial geology. Currently in construction, RAID is a mobile drilling system capable of making several long boreholes in a single field season in Antarctica. RAID is interdisciplinary and will allow access to polar paleoclimate records in ice >1 Ma, direct observation at the base of the ice sheets, and recovery of rock cores from the ice-covered East Antarctic craton. RAID uses a diamond rock-coring system as in mineral exploration. Threaded drill-pipe with hardened metal bits will cut through ice using reverse circulation of Estisol for pressure-compensation, maintenance of temperature, and removal of ice cuttings. Near the bottom of the ice sheet, a wireline bottom-hole assembly will enable diamond coring of ice, the glacial bed, and bedrock below. Once complete, boreholes will be kept open with fluid, capped, and made available for future down-hole measurement of thermal gradient, heat flow, ice chronology, and ice deformation. RAID will also sample for extremophile microorganisms. RAID is designed to penetrate up to 3,300 meters of ice and take sample cores in less than 200 hours. This rapid performance will allow completion of a borehole in about 10 days before moving to the next drilling site. RAID is unique because it can provide fast borehole access through thick ice; take short ice cores for paleoclimate study; sample the glacial bed to determine ice-flow conditions; take cores of subglacial bedrock for age dating and crustal history; and create boreholes for use as an observatory in the ice sheets. Together, the rapid drilling capability and mobility of the drilling system, along with ice-penetrating imaging methods, will provide a unique 3D picture of the interior Antarctic ice sheets.

  3. Ice Crystal Icing Research at NASA

    NASA Technical Reports Server (NTRS)

    Flegel, Ashlie B.

    2017-01-01

    Ice crystals found at high altitude near convective clouds are known to cause jet engine power-loss events. These events occur due to ice crystals entering a propulsion system's core flowpath and accreting ice resulting in events such as uncommanded loss of thrust (rollback), engine stall, surge, and damage due to ice shedding. As part of a community with a growing need to understand the underlying physics of ice crystal icing, NASA has been performing experimental efforts aimed at providing datasets that can be used to generate models to predict the ice accretion inside current and future engine designs. Fundamental icing physics studies on particle impacts, accretion on a single airfoil, and ice accretions observed during a rollback event inside a full-scale engine in the Propulsion Systems Laboratory are summarized. Low fidelity code development using the results from the engine tests which identify key parameters for ice accretion risk and the development of high fidelity codes are described. These activities have been conducted internal to NASA and through collaboration efforts with industry, academia, and other government agencies. The details of the research activities and progress made to date in addressing ice crystal icing research challenges are discussed.

  4. Ice Crystal Icing Research at NASA

    NASA Technical Reports Server (NTRS)

    Flegel, Ashlie B.

    2017-01-01

    Ice crystals found at high altitude near convective clouds are known to cause jet engine power-loss events. These events occur due to ice crystals entering a propulsion systems core flowpath and accreting ice resulting in events such as uncommanded loss of thrust (rollback), engine stall, surge, and damage due to ice shedding. As part of a community with a growing need to understand the underlying physics of ice crystal icing, NASA has been performing experimental efforts aimed at providing datasets that can be used to generate models to predict the ice accretion inside current and future engine designs. Fundamental icing physics studies on particle impacts, accretion on a single airfoil, and ice accretions observed during a rollback event inside a full-scale engine in the Propulsion Systems Laboratory are summarized. Low fidelity code development using the results from the engine tests which identify key parameters for ice accretion risk and the development of high fidelity codes are described. These activities have been conducted internal to NASA and through collaboration efforts with industry, academia, and other government agencies. The details of the research activities and progress made to date in addressing ice crystal icing research challenges are discussed.

  5. In-situ Roll-to-Roll Printing of Highly Efficient Organic Solar Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bao, Zhenan; Toney, Michael; Clancy, Paulette

    2016-05-30

    This project focuses on developing a roll-to-roll printing setup for organic solar cells with the capability to follow the film formation in situ with small and wide angle X-ray scattering, and to improve the performance of printed organic solar cells. We demonstrated the use of the printing setup to capture important aspects of existing industrial printing methods, which ensures that the solar cell performance achieved in our printing experiments would be largely retained in an industrial fabrication process. We employed both known and newly synthesized polymers as the donor and acceptor materials, and we studied the morphological changes in realmore » time during the printing process by X-ray scattering. Our experimental efforts are also accompanied by theoretical modeling of both the fluid dynamic aspects of the printing process and the nucleation and crystallization kinetics during the film formation. The combined insight into the printing process gained from the research provides a detailed understanding of the factors governing the printed solar cell’s performance. Finally using the knowledge we gained, we demonstrated large area ( > 10 cm2) printed organic solar cells with more than 5 percent power conversion efficiency, which is best achieved performance for roll-to-roll printed organic solar cells.« less

  6. Ice sheet margins and ice shelves

    NASA Technical Reports Server (NTRS)

    Thomas, R. H.

    1984-01-01

    The effect of climate warming on the size of ice sheet margins in polar regions is considered. Particular attention is given to the possibility of a rapid response to warming on the order of tens to hundreds of years. It is found that the early response of the polar regions to climate warming would be an increase in the area of summer melt on the ice sheets and ice shelves. For sufficiently large warming (5-10C) the delayed effects would include the breakup of the ice shelves by an increase in ice drainage rates, particularly from the ice sheets. On the basis of published data for periodic changes in the thickness and melting rates of the marine ice sheets and fjord glaciers in Greenland and Antarctica, it is shown that the rate of retreat (or advance) of an ice sheet is primarily determined by: bedrock topography; the basal conditions of the grounded ice sheet; and the ice shelf condition downstream of the grounding line. A program of satellite and ground measurements to monitor the state of ice sheet equilibrium is recommended.

  7. Design and analysis of roll cage

    NASA Astrophysics Data System (ADS)

    Angadi, Gurusangappa; Chetan, S.

    2018-04-01

    Wildlife fire fighting vehicles are used to extinguish fires in forests, in this process vehicles face falling objects like rocks, tree branches and other objects. Also due to uneven conditions of the terrain like cliff edges, uneven surfaces etc. makes the vehicle to roll over and these can cause injuries to both the driver and the operator. Roll over of a vehicle is a common incident which makes fatal injuries to the operator and also stands next to the crash accidents. In order to reduce the injury level and continuous roll over of the vehicle it is necessary to equip suitable roll cage according to standards of vehicle. In this present work roll cage for pump operator in wildfire fighting vehicle is designed and analysis is carried out in computer simulated environment when seating position of operator seated outside of the cabin. According to NFPA 1906 standards wildlife fire apparatus, Design and Test procedures that are carried out in Hyperworks maintaining SAE J1194.1983 standards. G load case, roof crush analysis and pendulum impact analysis tests are carried out on roll cage to ensure the saftey of design. These load cases are considerd to satisfy the situation faced in forest terrain. In these test procedures roll cage is analysed for stresses and deformation in various load cases. After recording results these are compared with standards mentioned in SAE J1194.1983.

  8. Rolling Maneuver Load Alleviation using active controls

    NASA Technical Reports Server (NTRS)

    Woods-Vedeler, Jessica A.; Pototzky, Anthony S.

    1992-01-01

    Rolling Maneuver Load Alleviation (RMLA) has been demonstrated on the Active Flexible Wing (AFW) wind tunnel model in the NASA Langley Transonic Dynamics Tunnel. The design objective was to develop a systematic approach for developing active control laws to alleviate wing incremental loads during roll maneuvers. Using linear load models for the AFW wind-tunnel model which were based on experimental measurements, two RMLA control laws were developed based on a single-degree-of-freedom roll model. The RMLA control laws utilized actuation of outboard control surface pairs to counteract incremental loads generated during rolling maneuvers and actuation of the trailing edge inboard control surface pairs to maintain roll performance. To evaluate the RMLA control laws, roll maneuvers were performed in the wind tunnel at dynamic pressures of 150, 200, and 250 psf and Mach numbers of 0.33, .38 and .44, respectively. Loads obtained during these maneuvers were compared to baseline maneuver loads. For both RMLA controllers, the incremental torsion moments were reduced by up to 60 percent at all dynamic pressures and performance times. Results for bending moment load reductions during roll maneuvers varied. In addition, in a multiple function test, RMLA and flutter suppression system control laws were operated simultaneously during roll maneuvers at dynamic pressures 11 percent above the open-loop flutter dynamic pressure.

  9. Hot Roll Bonding of Aluminum to Twin-Roll Cast (TRC) Magnesium and Its Subsequent Deformation Behavior

    NASA Astrophysics Data System (ADS)

    Saleh, H.; Schmidtchen, M.; Kawalla, R.

    2018-02-01

    In an experiment in which twin-roll cast AZ31 magnesium alloy and commercial purity aluminum (AA 1050) sheets were bonded by hot rolling as Al/Mg/Al laminate composites, it was found that increasing the preheating temperatures up to 400 °C enhances the bonding strength of composites. Further increases in the preheating temperatures accelerate the magnesium oxide growth and thus reduce the bonding strength. The influence of the reduction ratio on the bonding properties was also studied, whereby it was observed that increasing the rolling reduction led to an increase in the bonding strength. The experimental results show that the optimum bonding strength can be obtained at rolling temperatures of 375-400 °C with a 50-60% reduction in thickness. On the other hand, the subsequent deformation behavior of composite was assessed using plane strain compression and deep drawing tests. We demonstrate that the composites produced using the optimum roll bonding conditions exhibited sufficient bonding during subsequent deformation and did not reveal any debonding at the bonding interface.

  10. Development of a continuous roll-to-roll processing system for mass production of plastic optical film

    NASA Astrophysics Data System (ADS)

    Chang, Chih-Yuan; Tsai, Meng-Hsun

    2015-12-01

    This paper reports a highly effective method for the mass production of large-area plastic optical films with a microlens array pattern based on a continuous roll-to-roll film extrusion and roller embossing process. In this study, a thin steel mold with a micro-circular hole array pattern is fabricated by photolithography and a wet chemical etching process. The thin steel mold was then wrapped onto a metal cylinder to form an embossing roller mold. During the roll-to-roll process operation, a thermoplastic raw material (polycarbonate grains) was put into the barrel of the plastic extruder with a flat T-die. Then, the molten polymer film was extruded and immediately pressed against the surface of the embossing roller mold. Under the proper processing conditions, the molten polymer will just partially fill the micro-circular holes of the mold and due to surface tension form a convex lens surface. A continuous plastic optical film with a microlens array pattern was obtained. Experiments are carried out to investigate the effect of plastic microlens formation on the roll-to-roll process. Finally, the geometrical and optical properties of the fabricated plastic optical film were measured and proved satisfactory. This technique shows great potential for the mass production of large-area plastic optical films with a microlens array pattern.

  11. Future of the particle replication in nonwetting templates (PRINT) technology.

    PubMed

    Xu, Jing; Wong, Dominica H C; Byrne, James D; Chen, Kai; Bowerman, Charles; DeSimone, Joseph M

    2013-06-24

    Particle replication in nonwetting templates (PRINT) is a continuous, roll-to-roll, high-resolution molding technology which allows the design and synthesis of precisely defined micro- and nanoparticles. This technology adapts the lithographic techniques from the microelectronics industry and marries these with the roll-to-roll processes from the photographic film industry to enable researchers to have unprecedented control over particle size, shape, chemical composition, cargo, modulus, and surface properties. In addition, PRINT is a GMP-compliant (GMP=good manufacturing practice) platform amenable for particle fabrication on a large scale. Herein, we describe some of our most recent work involving the PRINT technology for application in the biomedical and material sciences. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. From ice-binding proteins to bio-inspired antifreeze materials

    PubMed Central

    Voets, I. K.

    2017-01-01

    Ice-binding proteins (IBP) facilitate survival under extreme conditions in diverse life forms. IBPs in polar fishes block further growth of internalized environmental ice and inhibit ice recrystallization of accumulated internal crystals. Algae use IBPs to structure ice, while ice adhesion is critical for the Antarctic bacterium Marinomonas primoryensis. Successful translation of this natural cryoprotective ability into man-made materials holds great promise but is still in its infancy. This review covers recent advances in the field of ice-binding proteins and their synthetic analogues, highlighting fundamental insights into IBP functioning as a foundation for the knowledge-based development of cheap, bio-inspired mimics through scalable production routes. Recent advances in the utilisation of IBPs and their analogues to e.g. improve cryopreservation, ice-templating strategies, gas hydrate inhibition and other technologies are presented. PMID:28657626

  13. Ice, Ice, Baby!

    NASA Astrophysics Data System (ADS)

    Hamilton, C.

    2008-12-01

    The Center for Remote Sensing of Ice Sheets (CReSIS) has developed an outreach program based on hands-on activities called "Ice, Ice, Baby". These lessons are designed to teach the science principles of displacement, forces of motion, density, and states of matter. These properties are easily taught through the interesting topics of glaciers, icebergs, and sea level rise in K-8 classrooms. The activities are fun, engaging, and simple enough to be used at science fairs and family science nights. Students who have participated in "Ice, Ice, Baby" have successfully taught these to adults and students at informal events. The lessons are based on education standards which are available on our website www.cresis.ku.edu. This presentation will provide information on the activities, survey results from teachers who have used the material, and other suggested material that can be used before and after the activities.

  14. Why Low Bounce Balls Exhibit High Rolling Resistance

    ERIC Educational Resources Information Center

    Cross, Rod

    2015-01-01

    A simple experiment is described to measure the coefficient of rolling friction for a low bounce ball rolling on a horizontal surface. As observed previously by others, the coefficient increased with rolling speed. The energy loss due to rolling friction can be explained in terms of the measured coefficient of restitution for the ball, meaning…

  15. An advanced dissymmetric rolling model for online regulation

    NASA Astrophysics Data System (ADS)

    Cao, Trong-Son

    2017-10-01

    Roll-bite model is employed to predict the rolling force, torque as well as to estimate the forward slip for preset or online regulation at industrial rolling mills. The rolling process is often dissymmetric in terms of work-rolls rotation speeds and diameters as well as the friction conditions at upper and lower contact surfaces between work-rolls and the strip. The roll-bite model thus must be able to account for these dissymmetries and in the same time has to be accurate and fast enough for online applications. In the present study, a new method, namely Adapted Discretization Slab Method (ADSM) is proposed to obtain a robust roll-bite model, which can take into account the aforementioned dissymmetries and has a very short response time, lower than one millisecond. This model is based on the slab method, with an adaptive discretization and a global Newton-Raphson procedure to improve the convergence speed. The model was validated by comparing with other dissymmetric models proposed in the literature, as well as Finite Element simulations and industrial pilot trials. Furthermore, back-calculation tool was also constructed for friction management for both offline and online applications. With very short CPU time, the ADSM-based model is thus attractive for all online applications, both for cold and hot rolling.

  16. Roll-to-Roll Gravure Printed Electrochemical Sensors for Wearable and Medical Devices.

    PubMed

    Bariya, Mallika; Shahpar, Ziba; Park, Hyejin; Sun, Junfeng; Jung, Younsu; Gao, Wei; Nyein, Hnin Yin Yin; Liaw, Tiffany Sun; Tai, Li-Chia; Ngo, Quynh P; Chao, Minghan; Zhao, Yingbo; Hettick, Mark; Cho, Gyoujin; Javey, Ali

    2018-06-25

    As recent developments in noninvasive biosensors spearhead the thrust toward personalized health and fitness monitoring, there is a need for high throughput, cost-effective fabrication of flexible sensing components. Toward this goal, we present roll-to-roll (R2R) gravure printed electrodes that are robust under a range of electrochemical sensing applications. We use inks and electrode morphologies designed for electrochemical and mechanical stability, achieving devices with uniform redox kinetics printed on 150 m flexible substrate rolls. We show that these electrodes can be functionalized into consistently high performing sensors for detecting ions, metabolites, heavy metals, and other small molecules in noninvasively accessed biofluids, including sensors for real-time, in situ perspiration monitoring during exercise. This development of robust and versatile R2R gravure printed electrodes represents a key translational step in enabling large-scale, low-cost fabrication of disposable wearable sensors for personalized health monitoring applications.

  17. Multi-stage FE simulation of hot ring rolling

    NASA Astrophysics Data System (ADS)

    Wang, C.; Geijselaers, H. J. M.; van den Boogaard, A. H.

    2013-05-01

    As a unique and important member of the metal forming family, ring rolling provides a cost effective process route to manufacture seamless rings. Applications of ring rolling cover a wide range of products in aerospace, automotive and civil engineering industries [1]. Above the recrystallization temperature of the material, hot ring rolling begins with the upsetting of the billet cut from raw stock. Next a punch pierces the hot upset billet to form a hole through the billet. This billet, referred to as preform, is then rolled by the ring rolling mill. For an accurate simulation of hot ring rolling, it is crucial to include the deformations, stresses and strains from the upsetting and piercing process as initial conditions for the rolling stage. In this work, multi-stage FE simulations of hot ring rolling process were performed by mapping the local deformation state of the workpiece from one step to the next one. The simulations of upsetting and piercing stages were carried out by 2D axisymmetric models using adaptive remeshing and element erosion. The workpiece for the ring rolling stage was subsequently obtained after performing a 2D to 3D mapping. The commercial FE package LS-DYNA was used for the study and user defined subroutines were implemented to complete the control algorithm. The simulation results were analyzed and also compared with those from the single-stage FE model of hot ring rolling.

  18. Ice stream activity scaled to ice sheet volume during Laurentide Ice Sheet deglaciation.

    PubMed

    Stokes, C R; Margold, M; Clark, C D; Tarasov, L

    2016-02-18

    The contribution of the Greenland and West Antarctic ice sheets to sea level has increased in recent decades, largely owing to the thinning and retreat of outlet glaciers and ice streams. This dynamic loss is a serious concern, with some modelling studies suggesting that the collapse of a major ice sheet could be imminent or potentially underway in West Antarctica, but others predicting a more limited response. A major problem is that observations used to initialize and calibrate models typically span only a few decades, and, at the ice-sheet scale, it is unclear how the entire drainage network of ice streams evolves over longer timescales. This represents one of the largest sources of uncertainty when predicting the contributions of ice sheets to sea-level rise. A key question is whether ice streams might increase and sustain rates of mass loss over centuries or millennia, beyond those expected for a given ocean-climate forcing. Here we reconstruct the activity of 117 ice streams that operated at various times during deglaciation of the Laurentide Ice Sheet (from about 22,000 to 7,000 years ago) and show that as they activated and deactivated in different locations, their overall number decreased, they occupied a progressively smaller percentage of the ice sheet perimeter and their total discharge decreased. The underlying geology and topography clearly influenced ice stream activity, but--at the ice-sheet scale--their drainage network adjusted and was linked to changes in ice sheet volume. It is unclear whether these findings can be directly translated to modern ice sheets. However, contrary to the view that sees ice streams as unstable entities that can accelerate ice-sheet deglaciation, we conclude that ice streams exerted progressively less influence on ice sheet mass balance during the retreat of the Laurentide Ice Sheet.

  19. Fluidic emergency roll control system. [for emergency aircraft control following failure of primary roll control system

    NASA Technical Reports Server (NTRS)

    Haefner, K. B.; Honda, T. S.

    1973-01-01

    A fluidic emergency roll control system for aircraft stabilization in the event of primary flight control failure was evaluated. The fluidic roll control units were designed to provide roll torque proportional to an electrical command as operated by two diametrically opposed thrust nozzles located in the wing tips. The control package consists of a solid propellant gas generator, two diametrically opposed vortex valve modulated thrust nozzles, and an electromagnetic torque motor. The procedures for the design, development, and performance testing of the system are described.

  20. Design of a platform technology for systemic delivery of siRNA to tumours using rolling circle transcription

    NASA Astrophysics Data System (ADS)

    Jang, Mihue; Kim, Jong Hwan; Nam, Hae Yun; Kwon, Ick Chan; Ahn, Hyung Jun

    2015-08-01

    For therapeutic applications of siRNA, there are technical challenges with respect to targeted and systemic delivery. We here report a new siRNA carrier, RNAtr NPs, in a way that multiple tandem copies of RNA hairpins as a result of rolling circle transcription (RCT) can be readily adapted in tumour-targeted and systemic siRNA delivery. RNAtr NPs provide a means of condensing large amounts of multimeric RNA transcripts into the compact nanoparticles, especially without the aid of polycationic agents, and thus reduce the risk of immunogenicity and cytotoxicity by avoiding the use of synthetic polycationic reagents. This strategy allows the design of a platform technology for systemic delivery of siRNA to tumour sites, because RCT reaction, which enzymatically generates RNA polymers in multiple copy numbers at low cost, can lead to directly accessible routes to targeted and systemic delivery. Therefore, RNAtr NPs suggest great potentials as the siRNA therapeutics for cancer treatment.

  1. Test and Evaluation Project No. 28: Anti-icing Technology, Field Evaluation Report

    DOT National Transportation Integrated Search

    1998-03-01

    The report provides a detailed glimpse at the state-of-the-art of U.S. anti-icing operations, and simultaneous road and weather conditions, prior to the 1996 publication of the anti-icing Manual of Practice. It will be useful to those who wish to exa...

  2. Roll Casting of Aluminum Alloy Clad Strip

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakamura, R.; Tsuge, H.; Haga, T.

    2011-01-17

    Casting of aluminum alloy three layers of clad strip was tried using the two sets of twin roll casters, and effects of the casting parameters on the cladding conditions were investigated. One twin roll caster was mounted on the other twin roll caster. Base strip was 8079 aluminum alloy and overlay strips were 6022 aluminum alloy. Effects of roll-load of upper and lower casters and melt temperature of the lower caster were investigated. When the roll-load of the upper and lower caster was large enough, the overlay strip could be solidified and be connected. The overlay strip could be connectedmore » when the melt of the overlay strip cast by the lower caster was low enough. Sound three layers of clad strip could be cast by proper conditions.« less

  3. Under-Ice Operations with AUVS in High Latitudes

    NASA Astrophysics Data System (ADS)

    Ferguson, J.; Kaminski, C. D.

    2012-12-01

    In 2010 and 2011, ISE Explorer Autonomous Underwater Vehicles (AUV), built for Natural Resources Canada (NRCan), were deployed to Canada's high Arctic. The mission was to undertake under-ice bathymetric surveys supporting Canada's submission under the United Nations Convention on the Law of the Sea (UNCLOS). During these deployments several under-ice records were broken and several new technologies were demonstrated. The NRCan AUV is a 5000 meter depth rated vehicle, with several innovative additions to make it suitable for arctic survey work. Most notable are a depth rated variable ballast system, a 1300 Hz long-range homing system, and under-ice charging and data transfer capabilities. The Explorer's range was extended to approximately 450 km by adding a hull section to accommodate extra batteries. The scientific payload onboard included a Seabird SBE49 Conductivity-Temperature-Depth (CTD) sensor, Knudsen singlebeam echosounder, and a Kongsberg Simrad EM2000 multibeam echosounder. In 2010, operations were conducted from an ice camp near Borden Island (78°14'N, 112°39'W) operating through an ice hole. Following several test missions, the AUV spent 10 days surveying under ice before being successfully recovered. In total, close to 1100 km of under-ice survey was undertaken at depths to 3160 meters. A further set of operations was carried out in August and September 2011 from the Canadian Icebreaker CCGS Louis St. Laurent operating with the American Icebreaker USCGS Healy. Here the operations were much further north to latitudes of 88°30' N and to depths of 3500 meters. In this paper, the 2010 ice camp and the 2011 icebreaker missions are described, with an outline of technology developments that were undertaken, the preparations that were necessary for the success of the missions and finally, the outcome of the missions themselves.

  4. Modeling, construction and experimental validation of actuated rolling dynamics of the cylindrical Transforming Roving-Rolling Explorer (TRREx)

    NASA Astrophysics Data System (ADS)

    Edwin, L.; Mazzoleni, A.; Gemmer, T.; Ferguson, S.

    2017-03-01

    Planetary surface exploration technology over the past few years has seen significant advancements on multiple fronts. Robotic exploration platforms are becoming more sophisticated and capable of embarking on more challenging missions. More unconventional designs, particularly transforming architectures that have multiple modes of locomotion, are being studied. This work explores the capabilities of one such novel transforming rover called the Transforming Roving-Rolling Explorer (TRREx). Biologically inspired by the armadillo and the golden-wheel spider, the TRREx has two modes of locomotion: it can traverse on six wheels like a conventional rover on benign terrain, but can transform into a sphere when necessary to negotiate steep rugged slopes. The ability to self-propel in the spherical configuration, even in the absence of a negative gradient, increases the TRREx's versatility and its concept value. This paper describes construction and testing of a prototype cylindrical TRREx that demonstrates that "actuated rolling" can be achieved, and also presents a dynamic model of this prototype version of the TRREx that can be used to investigate the feasibility and value of such self-propelled locomotion. Finally, we present results that validate our dynamic model by comparing results from computer simulations made using the dynamic model to experimental results acquired from test runs using the prototype.

  5. Rolling-element fatigue life with traction fluids and automatic transmission fluid in a high-speed rolling-contact rig

    NASA Technical Reports Server (NTRS)

    Parker, R. J.; Nahm, A. H.; Loewenthal, S. H.

    1982-01-01

    Rolling-element fatigue tests were run in standard and high-speed rolling-contact rigs at bar speeds from 5000 to 50,000 rpm to determine the effects of speed and lubricant film parameter on rolling-element fatigue life. AISI 52100 test bars were tested at a maximum Hertz stress of 4.83 GPa (700,000 psi) with three traction fluids and an automatic transmission fluid. Rolling-element fatigue life increased with speed, with the greatest increases occurring from 10,000 to 50,000 rpm. The life data tended to follow published life-versus-lubricant-film-parameter data up to a film parameter of approximately 3.

  6. Ice Bridge Antarctic Sea Ice

    NASA Image and Video Library

    2009-10-21

    An iceberg is seen out the window of NASA's DC-8 research aircraft as it flies 2,000 feet above the Amundsen Sea in West Antarctica on Wednesday, Oct., 21, 2009. This was the fourth science flight of NASA’s Operation Ice Bridge airborne Earth science mission to study Antarctic ice sheets, sea ice, and ice shelves. Photo Credit: (NASA/Jane Peterson)

  7. Sea Ice in McClure Strait

    NASA Image and Video Library

    2017-12-08

    NASA image acquired August 17, 2010 In mid-August 2010, the Northwest Passage was almost—but not quite—free of ice. The ice content in the northern route through the passage (through the Western Parry Channel) was very light, but ice remained in McClure (or M’Clure) Strait. The Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Terra satellite captured this natural-color image on August 17, 2010. Although most of McClure Strait looks perfectly ice-free, immediately west of Prince Patrick Island, a band of sea ice stretches southward across the strait (left edge of the image). The National Snow and Ice Data Center Sea Ice News and Analysis blog reported that even more ice remained in the southern route (through Amundsen’s Passage) of the Northwest Passage in mid-August 2010. Nevertheless, the ice content in the northern route was not only well below the 1968–2000 average, but also nearly a month ahead of the clearing observed in 2007, when Arctic sea ice set a record low. As of mid-August 2010, however, overall sea ice extent was higher than it had been at the same time of year in 2007. Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team Caption by Michon Scott. To learn more go to: earthobservatory.nasa.gov/NaturalHazards/view.php?id=45333 Instrument: Terra - MODIS NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe. Follow us on Twitter Join us on Facebook Click here to see more images from NASA Goddard’s Earth Observatory

  8. The theory and technique of yamuna body rolling.

    PubMed

    Suzuki, Satoshi

    2013-09-01

    [Purpose] This paper provides information about the theory and technique of Yamuna Body Rolling. In order to treat physical problems, using the specialized Yamuna Body Rolling balls, people can target superficial skin, fasciae, muscle fibers, tendons, ligaments, bones, internal organs, and the nervous system by themselves. The extraordinary effect of Yamuna Body Rolling is its multidimensional elongation of muscle fibers. In addition to the regular longitudinal elongation by the conventional stretch method, Yamuna Body Rolling enables the transversal and diagonal expansion of muscle fibers in order to move the body more dynamically. Hamstring, abdominal, and sideline routines are presented as examples for techniques of Yamuna Body Rolling. Yamuna Body Rolling can be applied to functional evaluation and therapeutic uses; therefore, it could provide many benefits in the treatment of different conditions in the medical field.

  9. Astrobiology of Antarctic ice Covered Lakes

    NASA Astrophysics Data System (ADS)

    Doran, P. T.; Fritsen, C. H.

    2005-12-01

    Antarctica contains a number of permanently ice-covered lakes which have often been used as analogs of purported lakes on Mars in the past. Antarctic subglacial lakes, such as Lake Vostok, have also been viewed as excellent analogs for an ice covered ocean on the Jovian moon Europa, and to a lesser extend on Mars. Lakes in the McMurdo Dry Valleys of East Antarctica have ice covers that range from 3 to 20 meters thick. Water salinities range from fresh to hypersaline. The thinner ice-covered lakes have a well-documented ecology that relies on the limited available nutrients and the small amount of light energy that penetrates the ice covers. The thickest ice-covered lake (Lake Vida in Victoria Valley) has a brine beneath 20 m of ice that is 7 times sea water and maintains a temperature below -10 degrees Celsius. This lake is vastly different from the thinner ice-covered lakes in that there is no communication with the atmosphere. The permanent ice cover is so thick, that summer melt waters can not access the sub-ice brine and so the ice grows from the top up, as well as from the bottom down. Brine trapped beneath the ice is believed to be ancient, stranded thousands of years ago when the ice grew thick enough to isolate it from the surface. We view Lake Vida as an excellent analog for the last aquatic ecosystem to have existed on Mars under a planetary cooling. If, as evidence is now increasingly supporting, standing bodies of water existed on Mars in the past, their fate under a cooling would be to go through a stage of permanent ice cover establishment, followed by a thickening of that ice cover until the final stage just prior to a cold extinction would be a Lake Vida-like lake. If dust storms or mass movements covered these ancient lakes, remnants may well be in existence in the subsurface today. A NASA Astrobiology Science and Technology for Exploring Planets (ASTEP) project will drill the Lake Vida ice cover and access the brine and sediments beneath in

  10. Controlled cooling technology for bar and rod mills -- Computer simulation and operational results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mauk, P.J.; Kruse, M.; Plociennik, U.

    The Controlled Cooling Technology (CCT) developed by SMS to simulate the rolling process and automatic control of the water cooling sections is presented. The Controlled Rolling and Cooling Technology (CRCT) model is a key part of the CCT system. It is used to simulate temperature management for the rolling stock on the computer before the actual rolling process takes place. This makes it possible to dispense with extensive rolling tests in the early stages of project planning and to greatly reduce the extent of such tests prior to the start of commercial production in a rolling mill. The CRCT modelmore » has been in use at Von Moos Stahl Ag for three years. It demonstrates that, by targeted improvement of the set-up values in both the technology and the plant, it is possible to improve microstructure quality and achieve better geometrical parameters in the rolled products. Also, the results gained with the CCT system in practical operation at the Kia Steel Bar Mill, Kunsan, Korea, are presented.« less

  11. Large Area 2D and 3D Colloidal Photonic Crystals Fabricated by a Roll-to-Roll Langmuir-Blodgett Method.

    PubMed

    Parchine, Mikhail; McGrath, Joe; Bardosova, Maria; Pemble, Martyn E

    2016-06-14

    We present our results on the fabrication of large area colloidal photonic crystals on flexible poly(ethylene terephthalate) (PET) film using a roll-to-roll Langmuir-Blodgett technique. Two-dimensional (2D) and three-dimensional (3D) colloidal photonic crystals from silica nanospheres (250 and 550 nm diameter) with a total area of up to 340 cm(2) have been fabricated in a continuous manner compatible with high volume manufacturing. In addition, the antireflective properties and structural integrity of the films have been enhanced via the use of a second roll-to-roll process, employing a slot-die coating of an optical adhesive over the photonic crystal films. Scanning electron microscopy images, atomic force microscopy images, and UV-vis optical transmission and reflection spectra of the fabricated photonic crystals are analyzed. This analysis confirms the high quality of the 2D and 3D photonic crystals fabricated by the roll-to-roll LB technique. Potential device applications of the large area 2D and 3D colloidal photonic crystals on flexible PET film are briefly reviewed.

  12. Analytical method for establishing indentation rolling resistance

    NASA Astrophysics Data System (ADS)

    Gładysiewicz, Lech; Konieczna, Martyna

    2018-01-01

    Belt conveyors are highly reliable machines able to work in special operating conditions. Harsh environment, long distance of transporting and great mass of transported martials are cause of high energy usage. That is why research in the field of belt conveyor transportation nowadays focuses on reducing the power consumption without lowering their efficiency. In this paper, previous methods for testing rolling resistance are described, and new method designed by authors was presented. New method of testing rolling resistance is quite simple and inexpensive. Moreover it allows to conduct the experimental tests of the impact of different parameters on the value of indentation rolling resistance such as core design, cover thickness, ambient temperature, idler travel frequency, or load value as well. Finally results of tests of relationship between rolling resistance and idler travel frequency and between rolling resistance and idler travel speed was presented.

  13. Steels For Rolling-Element Bearings

    NASA Technical Reports Server (NTRS)

    Zaretsky, Erwin V.

    1988-01-01

    Bearing lives increased by attention to details of processing and applications. NASA technical memorandum discusses selection of steels for long-life rolling-element bearings. After brief review of advances in manufacturing, report discusses effect of cleanliness of bearing material on fatigue in rolling element. Also discusses fracture toughnesses of through-hardened and case-hardened materials.

  14. Ice cream structure modification by ice-binding proteins.

    PubMed

    Kaleda, Aleksei; Tsanev, Robert; Klesment, Tiina; Vilu, Raivo; Laos, Katrin

    2018-04-25

    Ice-binding proteins (IBPs), also known as antifreeze proteins, were added to ice cream to investigate their effect on structure and texture. Ice recrystallization inhibition was assessed in the ice cream mixes using a novel accelerated microscope assay and the ice cream microstructure was studied using an ice crystal dispersion method. It was found that adding recombinantly produced fish type III IBPs at a concentration 3 mg·L -1 made ice cream hard and crystalline with improved shape preservation during melting. Ice creams made with IBPs (both from winter rye, and type III IBP) had aggregates of ice crystals that entrapped pockets of the ice cream mixture in a rigid network. Larger individual ice crystals and no entrapment in control ice creams was observed. Based on these results a model of ice crystals aggregates formation in the presence of IBPs was proposed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Rolling friction—models and experiment. An undergraduate student project

    NASA Astrophysics Data System (ADS)

    Vozdecký, L.; Bartoš, J.; Musilová, J.

    2014-09-01

    In this paper the rolling friction (rolling resistance) model is studied theoretically and experimentally in undergraduate level fundamental general physics courses. Rolling motions of a cylinder along horizontal or inclined planes are studied by simple experiments, measuring deformations of the underlay or of the rolling body. The rolling of a hard cylinder on a soft underlay as well as of a soft cylinder on a hard underlay is studied. The experimental data are treated by the open source software Tracker, appropriate for use at the undergraduate level of physics. Interpretation of results is based on elementary considerations comprehensible to university students—beginners. It appears that the commonly accepted model of rolling resistance based on the idea of a warp (little bulge) on the underlay in front of the rolling body does not correspond with experimental results even for the soft underlay and hard rolling body. The alternative model of the rolling resistance is suggested in agreement with experiment and the corresponding concept of the rolling resistance coefficient is presented. In addition to the obtained results we can conclude that the project can be used as a task for students in practical exercises of fundamental general physics undergraduate courses. Projects of similar type effectively contribute to the development of the physical thinking of students.

  16. An experimental study for determining human discomfort response to roll vibration

    NASA Technical Reports Server (NTRS)

    Leatherwood, J. D.; Dempsey, T. K.; Clevenson, S. A.

    1976-01-01

    An experimental study using a passenger ride quality apparatus (PRQA) was conducted to determine the subjective reactions of passengers to roll vibrations. The data obtained illustrate the effect upon human comfort of several roll-vibration parameters: namely, roll acceleration level, roll frequency, and seat location (i.e., distance from axis of rotation). Results of an analysis of variance indicated that seat location had no effect on discomfort ratings of roll vibrations. The effect of roll acceleration level was significant, and discomfort ratings increased markedly with increasing roll acceleration level at all roll frequencies investigated. Of particular interest, is the fact that the relationship between discomfort ratings and roll acceleration level was linear in nature. The effect of roll frequency also was significant as was the interaction between roll acceleration level and roll frequency.

  17. Phase transformation kinetics in rolled U-10 wt. % Mo foil: Effect of post-rolling heat treatment and prior γ-UMo grain size

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jana, Saumyadeep; Overman, Nicole; Varga, Tamas

    The effect of sub-eutectoid heat treatment on the phase transformation behavior in rolled U-10 wt.percent Mo (U10Mo) foils was systematically investigated. The as-cast 5 mm thick foils were initially homogenized at 900 degrees C for 48 hours and were hot rolled to 2 mm and later cold rolled down to 0.2 mm. Three starting microstructures were evaluated: (i) hot- + cold-rolled to 0.2 mm (as-rolled condition), (ii) hot- + cold-rolled to 0.2 mm + annealed at 700 deg. C for 1 hour, and (iii) hot- + cold-rolled to 0.2 mm + annealed at 1000 deg. C for 60 hours. U10Momore » rolled foils went through various degrees of decomposition when subjected to the sub-eutectoid heat-treatment step and formed a lamellar microstructure through a cellular reaction mostly along the previous γ-UMo grain boundaries.« less

  18. Overview of Mount Washington Icing Sensors Project

    NASA Technical Reports Server (NTRS)

    Ryerson, Charles C.; Politovich, Marcia K.; Rancourt, Kenneth L.; Koenig, George G.; Reinking, Roger F.; Miller, Dean R.

    2003-01-01

    NASA, the FAA, the Department of Defense, the National Center for Atmospheric Research and NOAA are developing techniques for retrieving cloud microphysical properties from a variety of remote sensing technologies. The intent is to predict aircraft icing conditions ahead of aircraft. The Mount Washington Icing Sensors Project MWISP), conducted in April, 1999 at Mt. Washington, NH, was organized to evaluate technologies for the prediction of icing conditions ahead of aircraft in a natural environment, and to characterize icing cloud and drizzle environments. April was selected for operations because the Summit is typically in cloud, generally has frequent freezing precipitation in spring, and the clouds have high liquid water contents. Remote sensing equipment, consisting of radars, radiometers and a lidar, was placed at the base of the mountain, and probes measuring cloud particles, and a radiometer, were operated from the Summit. NASA s Twin Otter research aircraft also conducted six missions over the site. Operations spanned the entire month of April, which was dominated by wrap-around moisture from a low pressure center stalled off the coast of Labrador providing persistent upslope clouds with relatively high liquid water contents and mixed phase conditions. Preliminary assessments indicate excellent results from the lidar, radar polarimetry, radiosondes and summit and aircraft measurements.

  19. Retrograde motion of a rolling disk

    NASA Astrophysics Data System (ADS)

    Borisov, A. V.; Kilin, A. A.; Karavaev, Yu L.

    2017-12-01

    This paper presents results of theoretical and experimental research explaining the retrograde final-stage rolling of a disk under certain relations between its mass and geometric parameters. Modifying the no-slip model of a rolling disk by including viscous rolling friction provides a qualitative explanation for the disk’s retrograde motion. At the same time, the simple experiments described in the paper completely reject the aerodynamical drag torque as a key reason for the retro-grade motion of a disk considered, thus disproving some recent hypotheses.

  20. Development of an aerostatic bearing system for roll-to-roll printed electronics

    NASA Astrophysics Data System (ADS)

    Chen, Shasha; Chen, Weihai; Liu, Jingmeng; Chen, Wenjie; Jin, Yan

    2018-06-01

    Roll-to-roll printed electronics is proved to be an effective way to fabricate electrical devices on various substrates. High precision overlay alignment plays a key role to create multi-layer electrical devices. Multiple rollers are adopted to support and transport the substrate web. In order to eliminate the negative effect of the machining error and assembling error of the roller, a whole roll-to-roll system including two aerostatic bearing devices with arrayed restrictors is proposed in this paper. Different to the conventional roller, the aerostatic bearing device can create a layer of air film between the web and the device to realize non-contact support and transport. Based on simplified Navier–Stokes equations, the theoretical model of the air film is established. Moreover, the pressure distribution of the whole flow field and single restrictor in different positions are modeled by conducting numerical simulation with computational fluid dynamics (CFD) software FLUENT. The load capacity curves and stiffness curves are generated to provide guidance for optimizing the structure of the device. A prototype of the aerostatic bearing system is set up and the experiment tests are carried out. For the proposed aerostatic bearing roller with a diameter of 100 mm and length of 200 mm, the experimental results show the aerostatic bearing method can achieve the position accuracy in a range of 1 μm in the vertical direction of the web, which is much better than that using existing methods.

  1. Roll-to-roll Slot-die Printed Polymer Solar Cell by Self-Assembly.

    PubMed

    Yang, Junyu; Lin, Yuanbao; Zheng, Wenhao; Liu, Alei; Cai, Wanzhu; Yu, Xiaomin; Zhang, Fengling; Liang, Quanbin; Wu, Hongbin; Qin, Donghuan; Hou, Lintao

    2018-06-12

    Extremely simplified one-step roll-to-roll slot-die printed flexible ITO-free polymer solar cells (PSCs) are demonstrated based on ternary blends of electron-donor polymer thieno [3,4-b]thiophene/benzodithiophene (PTB7), electron-acceptor fullerene [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM) and electron extracting polymer poly [(9,9-bis(3'-(N,N-dimethylamino)propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)] (PFN) at room temperature (RT) in ambient air. The flexible ITO-free PSC exhibits a comparable power conversion efficiency (PCE) with the device employing complicated two-step slot-die printing (5.29% vs 5.41%), which indicates that PFN molecules can migrate from the ternary nanocomposite towards Ag cathode via vertical self-assembly during the one-step slot-die printing process in air. To confirm the migration of PFN, the morphology and elemental analysis as well as charge transport of different active layers are investigated with in-situ transient film drying process, transmission electron microscopy, atomic force microscopy, contact angle and surface energy, X-ray photoelectron spectroscopy, scanning electron microscope, impedance spectroscopy, transient photovoltage and transient photocurrent as well as laser beam induced current. Moreover, the good air and mechanical stability of the flexible device with a decent PCE achieved in 1 cm2 PSCs at RT in air suggests the feasibility of energy-saving and time-saving one-step slot-die printing to large-scale roll-to-roll manufacture in the future.

  2. Video Analysis of Rolling Cylinders

    ERIC Educational Resources Information Center

    Phommarach, S.; Wattanakasiwich, P.; Johnston, I.

    2012-01-01

    In this work, we studied the rolling motion of solid and hollow cylinders down an inclined plane at different angles. The motions were captured on video at 300 frames s[superscript -1], and the videos were analyzed frame by frame using video analysis software. Data from the real motion were compared with the theory of rolling down an inclined…

  3. Experimental provocation of 'ice-cream headache' by ice cubes and ice water.

    PubMed

    Mages, Stephan; Hensel, Ole; Zierz, Antonia Maria; Kraya, Torsten; Zierz, Stephan

    2017-04-01

    Background There are various studies on experimentally provoked 'ice-cream headache' or 'headache attributed to ingestion or inhalation of a cold stimulus' (HICS) using different provocation protocols. The aim of this study was to compare two provocation protocols. Methods Ice cubes pressed to the palate and fast ingestion of ice water were used to provoke HICS and clinical features were compared. Results The ice-water stimulus provoked HICS significantly more often than the ice-cube stimulus (9/77 vs. 39/77). Ice-water-provoked HICS had a significantly shorter latency (median 15 s, range 4-97 s vs. median 68 s, range 27-96 s). There was no difference in pain localisation. Character after ice-cube stimulation was predominantly described as pressing and after ice-water stimulation as stabbing. A second HICS followed in 10/39 (26%) of the headaches provoked by ice water. Lacrimation occurred significantly more often in volunteers with than in those without HICS. Discussion HICS provoked by ice water was more frequent, had a shorter latency, different pain character and higher pain intensity than HICS provoked by ice cubes. The finding of two subsequent HICS attacks in the same volunteers supports the notion that two types of HICS exist. Lacrimation during HICS indicates involvement of the trigeminal-autonomic reflex.

  4. Analysis of rolling fracture of the conticasted and tandem rolled blanks of low alloyed aluminum

    NASA Astrophysics Data System (ADS)

    Li, Yong; Zeng, Lingping; Jiao Xie, Xian

    2018-01-01

    Optical microscopy, electron microscopy and energy spectrum were used to test the morphology of grains, as-cast microstructure and secondary phases in confiscated and tandem rolled planks of 8011 low alloying aluminum alloy. It can be concluded that the existence of inhomogeneous secondary FeSiAl phases lead to the fracture of planks during rolling.

  5. Whillans Ice Stream Subglacial Access Research Drilling (WISSARD): Integrative Study of Marine Ice Sheet Stability and Subglacial Life Habitats (Invited)

    NASA Astrophysics Data System (ADS)

    Tulaczyk, S. M.; Anandakrishnan, S.; Behar, A. E.; Christner, B. C.; Fisher, A. T.; Fricker, H. A.; Holland, D. M.; Jacobel, R. W.; Mikucki, J.; Mitchell, A. C.; Powell, R. D.; Priscu, J. C.; Scherer, R. P.; Severinghaus, J. P.

    2009-12-01

    The WISSARD project is a large, NSF-funded, interdisciplinary initiative focused on scientific drilling, exploration, and investigation of Antarctic subglacial aquatic environments. The project consists of three interrelated components: (1) LISSARD - Lake and Ice Stream Subglacial Access Research Drilling, (2) RAGES - Robotic Access to Grounding-zones for Exploration and Science, and (3) GBASE - GeomicroBiology of Antarctic Subglacial Environments). A number of previous studies in West Antarctica highlighted the importance of understanding ice sheet interactions with water, either at the basal boundary where ice streams come in contact with active subglacial hydrologic and geological systems or at the marine margin where the ice sheet is exposed to forcing from the global ocean and sedimentation. Recent biological investigations of Antarctic subglacial environments show that they provide a significant habitat for life and source of bacterial carbon in a setting that was previously thought to be inhospitable. Subglacial microbial ecosystems also enhance biogeochemical weathering, mobilizing elements from long term geological storage. The overarching scientific objective of WISSARD is to examine the subglacial hydrological system of West Antarctica in glaciological, geological, microbiological, geochemical, and oceanographic contexts. Direct sampling will yield seminal information on these systems and test the overarching hypothesis that active hydrological systems connect various subglacial environments and exert major control on ice sheet dynamics, subglacial sediment transfer, geochemistry, metabolic and phylogenetic diversity, and biogeochemical transformations and geological records of ice sheet history. Technological advances during WISSARD will provide the US-science community with a capability to access and study sub-ice sheet environments. Developing this technological infrastructure will benefit the broader science community and it will be available for

  6. The observational constraint on constant-roll inflation

    NASA Astrophysics Data System (ADS)

    Gao, Qing

    2018-07-01

    We discuss the constant-roll inflation with constant ɛ2 and constant \\bar η . By using the method of Bessel function approximation, the analytical expressions for the scalar and tensor power spectra, the scalar and tensor spectral tilts, and the tensor to scalar ratio are derived up to the first order of ɛ1. The model with constant ɛ2 is ruled out by the observations at the 3σ confidence level, and the model with constant \\bar η is consistent with the observations at the 1σ confidence level. The potential for the model with constant \\bar η is also obtained from the Hamilton-Jacobi equation. Although the observations constrain the constant-roll inflation to be the slow-roll inflation, the n s- r results from the constant-roll inflation are not the same as those from the slow-roll inflation even when \\bar η 0.01.

  7. Breakup of Pack Ice, Antarctic Ice Shelf

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Breakup of Pack Ice along the periphery of the Antarctic Ice Shelf (53.5S, 3.0E) produced this mosaic of ice floes off the Antarctic Ice Shelf. Strong offshore winds, probably associated with strong katabatic downdrafts from the interior of the continent, are seen peeling off the edges of the ice shelf into long filamets of sea ice, icebergs, bergy bits and growlers to flow northward into the South Atlantic Ocean. 53.5S, 3.0E

  8. Climate Ready Estuaries Rolling Easements Primer

    EPA Pesticide Factsheets

    Rolling easements enable wetlands and beaches to migrate inland and allow society to avoid the costs and hazards of protecting low lands from rising sea levels. This document provides a primer on more than a dozen rolling easement approaches.

  9. 76 FR 35400 - Continuation of Suspended Antidumping Duty Investigation on Certain Hot-Rolled Flat-Rolled Carbon...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-17

    ... Russian Federation (``Russia'') would likely lead to continuation or recurrence of dumping, and material... duty investigation on hot- rolled steel from Russia (``the Agreement''), pursuant to section 751(c) of... the suspended antidumping duty investigation on hot- rolled steel from Russia would likely lead to a...

  10. How rolling forecasting facilitates dynamic, agile planning.

    PubMed

    Miller, Debra; Allen, Michael; Schnittger, Stephanie; Hackman, Theresa

    2013-11-01

    Rolling forecasting may be used to replace or supplement the annual budget process. The rolling forecast typically builds on the organization's strategic financial plan, focusing on the first three years of plan projections and comparing the strategic financial plan assumptions with the organization's expected trajectory. Leaders can then identify and respond to gaps between the rolling forecast and the strategic financial plan on an ongoing basis.

  11. Rolling resistance forces in pneumatic tires

    DOT National Transportation Integrated Search

    1976-01-31

    An analysis is presented for the influence of test drum curvature on stress levels and resulting rolling resistance forces in pneumatic tires. The influence of test method on the measurement of rolling loss is also considered, and expressions are der...

  12. 9 CFR 381.159 - Poultry rolls.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... or the term “Binders Added” shall be included in the name of the product; e.g., “Turkey Roll-Gelatin... natural cookout juices is added, the product must be labeled to indicate that fact; e.g., “Turkey Roll...

  13. 9 CFR 381.159 - Poultry rolls.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... or the term “Binders Added” shall be included in the name of the product; e.g., “Turkey Roll-Gelatin... natural cookout juices is added, the product must be labeled to indicate that fact; e.g., “Turkey Roll...

  14. 9 CFR 381.159 - Poultry rolls.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... or the term “Binders Added” shall be included in the name of the product; e.g., “Turkey Roll-Gelatin... natural cookout juices is added, the product must be labeled to indicate that fact; e.g., “Turkey Roll...

  15. Innovative Ingredients and Emerging Technologies for Controlling Ice Recrystallization, Texture, and Structure Stability in Frozen Dairy Desserts: A Review.

    PubMed

    Soukoulis, Christos; Fisk, Ian

    2016-11-17

    Over the past decade, ice cream manufacturers have developed a strong understanding of the functionality of key ingredients and processing, developing effective explanations for the link between structure forming agents, stability mechanisms, and perceived quality. Increasing demand for products perceived as healthier/more natural with minimal processing has identified a number of new tools to improve quality and storage stability of frozen dairy desserts. Ingredients such as dietary fiber, polysaccharides, prebiotics, alternate sweeteners, fat sources rich in unsaturated fatty acids and ice strucsturing proteins (ISP) have been successfully applied as cryoprotective, texturizing, and structuring agents. Emerging minimal processing technologies including hydrostatic pressure processing, ultrasonic or high pressure assisted freezing, low temperature extrusion and enzymatically induced biopolymers crosslinking have been evaluated for their ability to improve colloidal stability, texture and sensory quality. It is therefore timely for a comprehensive review.

  16. Ice-shell purification of ice-binding proteins.

    PubMed

    Marshall, Craig J; Basu, Koli; Davies, Peter L

    2016-06-01

    Ice-affinity purification is a simple and efficient method of purifying to homogeneity both natural and recombinant ice-binding proteins. The purification involves the incorporation of ice-binding proteins into slowly-growing ice and the exclusion of other proteins and solutes. In previous approaches, the ice was grown around a hollow brass finger through which coolant was circulated. We describe here an easily-constructed apparatus that employs ice affinity purification that not only shortens the time for purification from 1-2 days to 1-2 h, but also enhances yield and purity. In this apparatus, the surface area for the separation was increased by extracting the ice-binding proteins into an ice-shell formed inside a rotating round-bottom flask partially submerged in a sub-zero bath. In principle, any ice-binding compound can be recovered from liquid solution, and the method is readily scalable. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Digital Pitch-And-Roll Monitor

    NASA Technical Reports Server (NTRS)

    Finley, Tom D.; Brown, Jeff; Campbell, Ryland

    1991-01-01

    Highly accurate inclinometer developed. Monitors both pitch and roll simultaneously and provides printed output on demand. Includes three mutually perpendicular accelerometers and signal-conditioning circuitry converting outputs of sensors to digital values of pitch and roll. In addition to wind-tunnel applications, system useful in any application involving steady-state, precise sensing of angles, such as calibration of robotic devices and positioners.

  18. Quantification of Ice Accretions for Icing Scaling Evaluations

    NASA Technical Reports Server (NTRS)

    Ruff, Gary A.; Anderson, David N.

    2003-01-01

    The comparison of ice accretion characteristics is an integral part of aircraft icing research. It is often necessary to compare an ice accretion obtained from a flight test or numerical simulation to one produced in an icing wind tunnel or for validation of an icing scaling method. Traditionally, this has been accomplished by overlaying two-dimensional tracings of ice accretion shapes. This paper addresses the basic question of how to compare ice accretions using more quantitative methods. For simplicity, geometric characteristics of the ice accretions are used for the comparison. One method evaluated is a direct comparison of the percent differences of the geometric measurements. The second method inputs these measurements into a fuzzy inference system to obtain a single measure of the goodness of the comparison. The procedures are demonstrated by comparing ice shapes obtained in the Icing Research Tunnel at NASA Glenn Research Center during recent icing scaling tests. The results demonstrate that this type of analysis is useful in quantifying the similarity of ice accretion shapes and that the procedures should be further developed by expanding the analysis to additional icing data sets.

  19. 21 CFR 136.180 - Whole wheat bread, rolls, and buns.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Whole wheat bread, rolls, and buns. 136.180... § 136.180 Whole wheat bread, rolls, and buns. (a) Each of the foods whole wheat bread, graham bread, entire wheat bread, whole wheat rolls, graham rolls, entire wheat rolls, whole wheat buns, graham buns...

  20. Computational Simulation of the Formation and Material Behavior of Ice

    NASA Technical Reports Server (NTRS)

    Tong, Michael T.; Singhal, Surendra N.; Chamis, Christos C.

    1994-01-01

    Computational methods are described for simulating the formation and the material behavior of ice in prevailing transient environments. The methodology developed at the NASA Lewis Research Center was adopted. A three dimensional finite-element heat transfer analyzer was used to predict the thickness of ice formed under prevailing environmental conditions. A multi-factor interaction model for simulating the material behavior of time-variant ice layers is presented. The model, used in conjunction with laminated composite mechanics, updates the material properties of an ice block as its thickness increases with time. A sample case of ice formation in a body of water was used to demonstrate the methodology. The results showed that the formation and the material behavior of ice can be computationally simulated using the available composites technology.

  1. Ice Accretions and Icing Effects for Modern Airfoils

    NASA Technical Reports Server (NTRS)

    Addy, Harold E., Jr.

    2000-01-01

    Icing tests were conducted to document ice shapes formed on three different two-dimensional airfoils and to study the effects of the accreted ice on aerodynamic performance. The models tested were representative of airfoil designs in current use for each of the commercial transport, business jet, and general aviation categories of aircraft. The models were subjected to a range of icing conditions in an icing wind tunnel. The conditions were selected primarily from the Federal Aviation Administration's Federal Aviation Regulations 25 Appendix C atmospheric icing conditions. A few large droplet icing conditions were included. To verify the aerodynamic performance measurements, molds were made of selected ice shapes formed in the icing tunnel. Castings of the ice were made from the molds and placed on a model in a dry, low-turbulence wind tunnel where precision aerodynamic performance measurements were made. Documentation of all the ice shapes and the aerodynamic performance measurements made during the icing tunnel tests is included in this report. Results from the dry, low-turbulence wind tunnel tests are also presented.

  2. Ecology of southern ocean pack ice.

    PubMed

    Brierley, Andrew S; Thomas, David N

    2002-01-01

    aggregating there. As a result, much of the Southern Ocean pelagic whaling was concentrated at the edge of the marginal ice zone. The extent and duration of sea ice fluctuate periodically under the influence of global climatic phenomena including the El Niño Southern Oscillation. Life cycles of some associated species may reflect this periodicity. With evidence for climatic warming in some regions of Antarctica, there is concern that ecosystem change may be induced by changes in sea-ice extent. The relative abundance of krill and salps appears to change interannually with sea-ice extent, and in warm years, when salps proliferate, krill are scarce and dependent predators suffer severely. Further research on the Southern Ocean sea-ice system is required, not only to further our basic understanding of the ecology, but also to provide ecosystem managers with the information necessary for the development of strategies in response to short- and medium-term environmental changes in Antarctica. Technological advances are delivering new sampling platforms such as autonomous underwater vehicles that are improving vastly our ability to sample the Antarctic under sea-ice environment. Data from such platforms will enhance greatly our understanding of the globally important Southern Ocean sea-ice ecosystem.

  3. Sunlight, Sea Ice, and the Ice Albedo Feedback in a Changing Arctic Sea Ice Cover

    DTIC Science & Technology

    2013-09-30

    Sea Ice , and the Ice Albedo Feedback in a...COVERED 00-00-2013 to 00-00-2013 4. TITLE AND SUBTITLE Sunlight, Sea Ice , and the Ice Albedo Feedback in a Changing Arctic Sea Ice Cover 5a...during a period when incident solar irradiance is large increasing solar heat input to the ice . Seasonal sea ice typically has a smaller albedo

  4. Research and Development of Heavy Gauge X80 Pipeline Plate Utilizing Optimized Rolling and Cooling Process

    NASA Astrophysics Data System (ADS)

    Li, Shaopo; Li, Jiading; Ding, Wenhua; Zhang, Hai

    This paper reports on the experience with the production of 27/33 mm X80 heavy wall thicknesses, large OD (48") in Shouqin Steel Co., Ltd. (SQS). Considering the technology capability of the plate mill in SQS, a optimized rolling and cooling process was developed to achieve stable heavy gauge X80 mechanical properties. The importance of the slab reheating process and rolling schedule will be discussed in the paper. In addition, the per pass reductions logic used during recrystallized rough rolling, and special emphasis on the reduction of the final roughing pass prior to the intermediate holding resulting in a fine uniform prior austenite microstructure will be discussed. The optimized cooling process application after finish rolling guarantees the steady control of the final bainitic microstructure with optimum M/A phase for heavy gauge X80 plates. The plates produced by this process achieved good flatness and excellent mechanical properties. SQS has produced 10000 tons 27mm X80 for the Middle Asia C Line Project and 1000 tons 33mm X80 for the 3rd West-to-East Natural Gas Transmission Pipeline Project in 2013-2014. The products utilizing optimized rolling and cooling process showed extremely excellent low temperature toughness.

  5. 25 CFR 75.3 - Announcement of revision of roll.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 1 2011-04-01 2011-04-01 false Announcement of revision of roll. 75.3 Section 75.3... ROLL OF THE EASTERN BAND OF CHEROKEE INDIANS, NORTH CAROLINA § 75.3 Announcement of revision of roll... perform the work necessary to revise the membership roll of the Band and such staff has been employed and...

  6. 25 CFR 75.3 - Announcement of revision of roll.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Announcement of revision of roll. 75.3 Section 75.3... ROLL OF THE EASTERN BAND OF CHEROKEE INDIANS, NORTH CAROLINA § 75.3 Announcement of revision of roll... perform the work necessary to revise the membership roll of the Band and such staff has been employed and...

  7. Advances in Understanding the Role of Aerosols on Ice Clouds from the Fifth International Ice Nucleation (FIN) Workshops

    NASA Astrophysics Data System (ADS)

    Cziczo, D. J.; Moehler, O.; DeMott, P. J.

    2015-12-01

    The relationship of ambient aerosol particles to the formation of ice-containing clouds is one of the largest uncertainties in understanding climate. This is due to several poorly understood processes including the microphysics of how particles nucleate ice, the number of effective heterogeneous ice nuclei and their atmospheric distribution, the role of anthropogenic activities in producing or changing the behavior of ice forming particles and the interplay between effective heterogeneous ice nuclei and homogeneous ice formation. Our team recently completed a three-part international workshop to improve our understanding of atmospheric ice formation. Termed the Fifth International Ice Nucleation (FIN) Workshops, our motivation was the limited number of measurements and a lack of understanding of how to compare data acquired by different groups. The first activity, termed FIN1, addressed the characterization of ice nucleating particle size, number and chemical composition. FIN2 addressed the determination of ice nucleating particle number density. Groups modeling ice nucleation joined FIN2 to provide insight on measurements critically needed to model atmospheric ice nucleation and to understand the performance of ice chambers. FIN1 and FIN2 took place at the Aerosol Interaction and Dynamics in the Atmosphere (AIDA) chamber at the Karlsruhe Institute of Technology. A particular emphasis of FIN1 and FIN2 was the use of 'blind' intercomparisons using a highly characterized, but unknown to the instrument operators, aerosol sample. The third activity, FIN3, took place at the Desert Research Institute's Storm Peak Laboratory (SPL). A high elevation site not subject to local emissions, SPL allowed for a comparison of ice chambers and subsequent analysis of the ice residuals under the challenging conditions of low particle loading, temperature and pressure found in the atmosphere. The presentation focuses on the improvement in understanding how mass spectra from different

  8. Unsteady Aerodynamic Modeling in Roll for the NASA Generic Transport Model

    NASA Technical Reports Server (NTRS)

    Murphy, Patrick C.; Klein, Vladislav; Frink, Neal T.

    2012-01-01

    Reducing the impact of loss-of-control conditions on commercial transport aircraft is a primary goal of the NASA Aviation Safety Program. One aspect in developing the supporting technologies is to improve the aerodynamic models that represent these adverse conditions. Aerodynamic models appropriate for loss of control conditions require a more general mathematical representation to predict nonlinear unsteady behaviors. In this paper, a more general mathematical model is proposed for the subscale NASA Generic Transport Model (GTM) that covers both low and high angles of attack. Particular attention is devoted to the stall region where full-scale transports have demonstrated a tendency for roll instability. The complete aerodynamic model was estimated from dynamic wind-tunnel data. Advanced computational methods are used to improve understanding and visualize the flow physics within the region where roll instability is a factor.

  9. Outreach/education interface for Cryosphere models using the Virtual Ice Sheet Laboratory

    NASA Astrophysics Data System (ADS)

    Larour, E. Y.; Halkides, D. J.; Romero, V.; Cheng, D. L.; Perez, G.

    2014-12-01

    In the past decade, great strides have been made in the development of models capable of projecting the future evolution of glaciers and the polar ice sheets in a changing climate. These models are now capable of replicating some of the trends apparent in satellite observations. However, because this field is just now maturing, very few efforts have been dedicated to adapting these capabilities to education. Technologies that have been used in outreach efforts in Atmospheric and Oceanic sciences still have not been extended to Cryospheric Science. We present a cutting-edge, technologically driven virtual laboratory, geared towards outreach and k-12 education, dedicated to the polar ice sheets on Antarctica and Greenland, and their role as major contributors to sea level rise in coming decades. VISL (Virtual Ice Sheet Laboratory) relies on state-of-the art Web GL rendering of polar ice sheets, Android/iPhone and web portability using Javascript, as well as C++ simulations (back-end) based on the Ice Sheet System Model, the NASA model for simulating the evolution of polar ice sheets. Using VISL, educators and students can have an immersive experience into the world of polar ice sheets, while at the same exercising the capabilities of a state-of-the-art climate model, all of it embedded into an education experience that follows the new STEM standards for education.This work was performed at the California Institute of Technology's Jet Propulsion Laboratory under a contract with the National Aeronautics and Space Administration's Cryosphere Science Program.

  10. Roll-to-roll continuous patterning and transfer of graphene via dispersive adhesion

    NASA Astrophysics Data System (ADS)

    Choi, Taejun; Kim, Sang Jin; Park, Subeom; Hwang, Taek Yong; Jeon, Youngro; Hong, Byung Hee

    2015-04-01

    We present a roll-to-roll, continuous patterning and transfer of graphene sheets capable of residue-free and fast patterning. The graphene sheet is supported with dispersive adhesion. Graphene is continuously patterned by the difference in adhesion forces with a pre-defined embossed roller. The patterned graphene sheet adheres to the polyethylene terephthalate (PET)/silicone with very low strength and can be easily transferred to various substrates without the aid of any heating mechanism. The width of the patterned film was 120 mm and a production rate of 15 m min-1 for patterning was achieved. Large-area uniformity was confirmed by observing the optical images on 4 inch Si wafer and Raman mapping spectra for 50 × 50 mm2.We present a roll-to-roll, continuous patterning and transfer of graphene sheets capable of residue-free and fast patterning. The graphene sheet is supported with dispersive adhesion. Graphene is continuously patterned by the difference in adhesion forces with a pre-defined embossed roller. The patterned graphene sheet adheres to the polyethylene terephthalate (PET)/silicone with very low strength and can be easily transferred to various substrates without the aid of any heating mechanism. The width of the patterned film was 120 mm and a production rate of 15 m min-1 for patterning was achieved. Large-area uniformity was confirmed by observing the optical images on 4 inch Si wafer and Raman mapping spectra for 50 × 50 mm2. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr06991a

  11. Near field ice detection using infrared based optical imaging technology

    NASA Astrophysics Data System (ADS)

    Abdel-Moati, Hazem; Morris, Jonathan; Zeng, Yousheng; Corie, Martin Wesley; Yanni, Victor Garas

    2018-02-01

    If not detected and characterized, icebergs can potentially pose a hazard to oil and gas exploration, development and production operations in arctic environments as well as commercial shipping channels. In general, very large bergs are tracked and predicted using models or satellite imagery. Small and medium bergs are detectable using conventional marine radar. As icebergs decay they shed bergy bits and growlers, which are much smaller and more difficult to detect. Their low profile above the water surface, in addition to occasional relatively high seas, makes them invisible to conventional marine radar. Visual inspection is the most common method used to detect bergy bits and growlers, but the effectiveness of visual inspections is reduced by operator fatigue and low light conditions. The potential hazard from bergy bits and growlers is further increased by short detection range (<1 km). As such, there is a need for robust and autonomous near-field detection of such smaller icebergs. This paper presents a review of iceberg detection technology and explores applications for infrared imagers in the field. Preliminary experiments are performed and recommendations are made for future work, including a proposed imager design which would be suited for near field ice detection.

  12. Making Ice Creep in the Classroom

    NASA Astrophysics Data System (ADS)

    Prior, David; Vaughan, Matthew; Banjan, Mathilde; Hamish Bowman, M.; Craw, Lisa; Tooley, Lauren; Wongpan, Pat

    2017-04-01

    Understanding the creep of ice has direct application to the role of ice sheet flow in sea level and climate change and to modelling of icy planets and satellites of the outer solar system. Additionally ice creep can be used as an analogue for the high temperature creep of rocks, most particularly quartzites. We adapted technologies developed for ice creep experiments in the research lab, to build some inexpensive ( EU200) rigs to conduct ice creep experiments in an undergraduate (200 and 300 level) class in rock deformation. The objective was to give the students an experience of laboratory rock deformation experiments so that they would understand better what controls the creep rate of ice and rocks. Students worked in eight groups of 5/6 students. Each group had one deformation rig and temperature control system. Each group conducted two experiments over a 2 week period. The results of all 16 experiments were then shared so that all students could analyse the mechanical data and generate a "flow law" for ice. Additionally thin sections were made of each deformed sample so that some microstructural analysis could be incorporated in the data analysis. Students were able to derive a flow law that showed the relationship of creep rate to both stress and temperature. The flow law matches with those from published research. The class did provide a realistic introduction to laboratory rock deformation experiments and helped students' understanding of what controls the creep of rocks.

  13. Comparisons of Cubed Ice, Crushed Ice, and Wetted Ice on Intramuscular and Surface Temperature Changes

    PubMed Central

    Dykstra, Joseph H; Hill, Holly M; Miller, Michael G; Cheatham, Christopher C; Michael, Timothy J; Baker, Robert J

    2009-01-01

    Context: Many researchers have investigated the effectiveness of different types of cold application, including cold whirlpools, ice packs, and chemical packs. However, few have investigated the effectiveness of different types of ice used in ice packs, even though ice is one of the most common forms of cold application. Objective: To evaluate and compare the cooling effectiveness of ice packs made with cubed, crushed, and wetted ice on intramuscular and skin surface temperatures. Design: Repeated-measures counterbalanced design. Setting: Human performance research laboratory. Patients or Other Participants: Twelve healthy participants (6 men, 6 women) with no history of musculoskeletal disease and no known preexisting inflammatory conditions or recent orthopaedic injuries to the lower extremities. Intervention(s): Ice packs made with cubed, crushed, or wetted ice were applied to a standardized area on the posterior aspect of the right gastrocnemius for 20 minutes. Each participant was given separate ice pack treatments, with at least 4 days between treatment sessions. Main Outcome Measure(s): Cutaneous and intramuscular (2 cm plus one-half skinfold measurement) temperatures of the right gastrocnemius were measured every 30 seconds during a 20-minute baseline period, a 20-minute treatment period, and a 120-minute recovery period. Results: Differences were observed among all treatments. Compared with the crushed-ice treatment, the cubed-ice and wetted-ice treatments produced lower surface and intramuscular temperatures. Wetted ice produced the greatest overall temperature change during treatment and recovery, and crushed ice produced the smallest change. Conclusions: As administered in our protocol, wetted ice was superior to cubed or crushed ice at reducing surface temperatures, whereas both cubed ice and wetted ice were superior to crushed ice at reducing intramuscular temperatures. PMID:19295957

  14. Laser processing of organic photovoltaic cells with a roll-to-roll manufacturing process

    NASA Astrophysics Data System (ADS)

    Petsch, Tino; Haenel, Jens; Clair, Maurice; Keiper, Bernd; Scholz, Christian

    2011-03-01

    Flexible large area organic photovoltaic (OPV) is currently one of the fastest developing areas of organic electronics. New light absorbing polymer blends combined with new transparent conductive materials provide higher power conversion efficiencies while new and improved production methods are developed to achieve higher throughput at reduced cost. A typical OPV is formed by TCO layers as the transparent front contact and polymers as active layer as well as interface layer between active layer and front contact. The several materials have to be patterned in order to allow for a row connection of the solar cell. 3D-Micromac used ultra-short pulsed lasers to evaluate the applicability of various wavelengths for the selective ablation of the indium tin oxide (ITO) layer and the selective ablation of the bulk hetero junction (BHJ) consisting of poly(3-hexylthiophene):phenyl-C61-butyric acid methyl ester (P3HT:PCBM) on top of a Poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) without damaging the ITO. These lasers in combination with high performance galvanometer scanning systems achieve superior scribing quality without damaging the substrate. With scribing speeds of 10 m/s and up it is possible to integrate this technology into a roll-to-roll manufacturing tool. The functionality of an OPV usually also requires an annealing step, especially when using a BHJ for the active layer consisting of P3HT:PCBM, to optimize the layers structure and therewith the efficiency of the solar cell (typically by thermal treatment, e.g. oven). The process of laser annealing was investigated using a short-pulsed laser with a wavelength close to the absorption maximum of the BHJ.

  15. 4th International Conference on Energy and Environment 2013 (ICEE 2013)

    NASA Astrophysics Data System (ADS)

    Chakrabarty, Chandan Kumar; Shamsuddin, Abd Halim Bin; Ahmad, Ibrahim Bin; Desa, Mohamed Nor Bin Mohamed; Din, Norashidah Bte Md; Bte Mohd, Lariyah; Hamid, Nasri A.; See, Ong Hang; Hafiz Nagi, Farrukh; Yong, Lee Choon; Pasupuleti, Jagadeesh; Mei, Goh Su; Abdullah, Fairuz Bin; Satgunam, Meenaloshini

    2013-06-01

    The 4th International Conference on Energy & Environment 2013 (ICEE2013) was organized by the Universiti Tenaga Nasional (UNITEN) to provide a platform for creating and sharing ideas among engineers, researchers, scientists, industrialists and students in sustainable green energy and technologies. The theme 'Shaping a Sustainable Future through Advancement in Green Energy Technology' is in line with the University's vision to be a leading global energy university that shapes a sustainable future. The general scopes of the conference are renewable energy, smart grid, green technology, energy policies and economics, sustainable green energy and environment, sustainable education, international cooperation and innovation and technology transfer. Five international keynote speakers delivered their speeches in specialized areas of green energy technology and sustainability. In addition, the conference highlights several special parallel sessions by notable invited presenters in their niche areas, which are: Hybrid Energy Power Quality & Distributed Energy Smart Grid Nuclear Power & Technologies Geohazard Management Greener Environment for Sustainability Advances in Computational Fluid Dynamics The research papers presented in ICEE2013 are included in this volume of IOP Conference Series: Earth and Environmental Science (EES). EES is abstracted and indexed in SCOPUS, GeoBase, GeoRef, Compendex, Inspec, Chemical Abstracts Service, NASA Astrophysics Data System, and International Nuclear Information System (INIS). With the comprehensive programme outline, the organizing committee hopes that the ICEE2013 was a notable intellectual sharing session for the research and academic community in Malaysia and regionally. The organizing committee expresses gratitude to the ICEE2013 delegates for their great support and contributions to the event.

  16. Movement patterns of limb coordination in infant rolling.

    PubMed

    Kobayashi, Yoshio; Watanabe, Hama; Taga, Gentaro

    2016-12-01

    Infants must perform dynamic whole-body movements to initiate rolling, a key motor skill. However, little is known regarding limb coordination and postural control in infant rolling. To address this lack of knowledge, we examined movement patterns and limb coordination during rolling in younger infants (aged 5-7 months) that had just begun to roll and in older infants (aged 8-10 months) with greater rolling experience. Due to anticipated difficulty in obtaining measurements over the second half of the rolling sequence, we limited our analysis to the first half. Ipsilateral and contralateral limbs were identified on the basis of rolling direction and were classified as either a stationary limb used for postural stability or a moving limb used for controlled movement. We classified the observed movement patterns by identifying the number of stationary limbs and the serial order of combinational limb movement patterns. Notably, older infants performed more movement patterns that involved a lower number of stationary limbs than younger infants. Despite the wide range of possible movement patterns, a small group of basic patterns dominated in both age groups. Our results suggest that the fundamental structure of limb coordination during rolling in the early acquisition stages remains unchanged until at least 8-10 months of age. However, compared to younger infants, older infants exhibited a greater ability to select an effective rotational movement by positioning themselves with fewer stationary limbs and performing faster limb movements.

  17. Experiment Research on Hot-Rolling Processing of Nonsmooth Pit Surface.

    PubMed

    Gu, Yun-Qing; Fan, Tian-Xing; Mou, Jie-Gang; Yu, Wei-Bo; Zhao, Gang; Wang, Evan

    2016-01-01

    In order to achieve the nonsmooth surface drag reduction structure on the inner polymer coating of oil and gas pipelines and improve the efficiency of pipeline transport, a structural model of the machining robot on the pipe inner coating is established. Based on machining robot, an experimental technique is applied to research embossing and coating problems of rolling-head, and then the molding process rules under different conditions of rolling temperatures speeds and depth are analyzed. Also, an orthogonal experiment analysis method is employed to analyze the different effects of hot-rolling process apparatus on the embossed pits morphology and quality of rolling. The results also reveal that elevating the rolling temperature or decreasing the rolling speed can also improve the pit structure replication rates of the polymer coating surface, and the rolling feed has little effect on replication rates. After the rolling-head separates from the polymer coating, phenomenon of rebounding and refluxing of the polymer coating occurs, which is the reason of inability of the process. A continuous hot-rolling method for processing is used in the robot and the hot-rolling process of the processing apparatus is put in a dynamics analysis.

  18. Experiment Research on Hot-Rolling Processing of Nonsmooth Pit Surface

    PubMed Central

    Gu, Yun-qing; Fan, Tian-xing; Mou, Jie-gang; Yu, Wei-bo; Zhao, Gang; Wang, Evan

    2016-01-01

    In order to achieve the nonsmooth surface drag reduction structure on the inner polymer coating of oil and gas pipelines and improve the efficiency of pipeline transport, a structural model of the machining robot on the pipe inner coating is established. Based on machining robot, an experimental technique is applied to research embossing and coating problems of rolling-head, and then the molding process rules under different conditions of rolling temperatures speeds and depth are analyzed. Also, an orthogonal experiment analysis method is employed to analyze the different effects of hot-rolling process apparatus on the embossed pits morphology and quality of rolling. The results also reveal that elevating the rolling temperature or decreasing the rolling speed can also improve the pit structure replication rates of the polymer coating surface, and the rolling feed has little effect on replication rates. After the rolling-head separates from the polymer coating, phenomenon of rebounding and refluxing of the polymer coating occurs, which is the reason of inability of the process. A continuous hot-rolling method for processing is used in the robot and the hot-rolling process of the processing apparatus is put in a dynamics analysis. PMID:27022235

  19. Experimental determination of heat transfer coefficients in roll bite and air cooling for computer simulations of 1100 MPa carbon steel rolling

    NASA Astrophysics Data System (ADS)

    Leinonen, Olli; Ilmola, Joonas; Seppälä, Oskari; Pohjonen, Aarne; Paavola, Jussi; Koskenniska, Sami; Larkiola, Jari

    2018-05-01

    In modeling of hot rolling pass schedules the heat transfer phenomena have to be known. Radiation to ambient, between rolls and a steel slab as well as heat transfer in contacts must be considered to achieve accurate temperature distribution and thereby accurate material behavior in simulations. Additional heat is generated by friction between the slab and the work roll and by plastic deformation. These phenomena must be taken into account when the effective heat transfer coefficient is determined from experimental data. In this paper we determine the effective heat transfer coefficient at the contact interface and emissivity factor of slab surface for 1100MPa strength carbon steel for hot rolling simulations. Experimental pilot rolling test were carried out and slab temperatures gathered right below the interface and at the mid thickness of the slab. Emissivity factor tests were carried out in the same manner but without rolling. Experimental data is utilized to derive contact heat transfer coefficient at the interface and emissivity factor of slab surface. Pilot rolling test is reproduced in FE-analysis to further refine the heat transfer coefficient and emissivity factor. Material mechanical properties at rolling temperatures were determined by Gleeble™ thermo-mechanical simulator and IDS thermodynamic-kinetic-empirical software.

  20. Mathematical-Artificial Neural Network Hybrid Model to Predict Roll Force during Hot Rolling of Steel

    NASA Astrophysics Data System (ADS)

    Rath, S.; Sengupta, P. P.; Singh, A. P.; Marik, A. K.; Talukdar, P.

    2013-07-01

    Accurate prediction of roll force during hot strip rolling is essential for model based operation of hot strip mills. Traditionally, mathematical models based on theory of plastic deformation have been used for prediction of roll force. In the last decade, data driven models like artificial neural network have been tried for prediction of roll force. Pure mathematical models have accuracy limitations whereas data driven models have difficulty in convergence when applied to industrial conditions. Hybrid models by integrating the traditional mathematical formulations and data driven methods are being developed in different parts of world. This paper discusses the methodology of development of an innovative hybrid mathematical-artificial neural network model. In mathematical model, the most important factor influencing accuracy is flow stress of steel. Coefficients of standard flow stress equation, calculated by parameter estimation technique, have been used in the model. The hybrid model has been trained and validated with input and output data collected from finishing stands of Hot Strip Mill, Bokaro Steel Plant, India. It has been found that the model accuracy has been improved with use of hybrid model, over the traditional mathematical model.

  1. FASTSIM2: a second-order accurate frictional rolling contact algorithm

    NASA Astrophysics Data System (ADS)

    Vollebregt, E. A. H.; Wilders, P.

    2011-01-01

    In this paper we consider the frictional (tangential) steady rolling contact problem. We confine ourselves to the simplified theory, instead of using full elastostatic theory, in order to be able to compute results fast, as needed for on-line application in vehicle system dynamics simulation packages. The FASTSIM algorithm is the leading technology in this field and is employed in all dominant railway vehicle system dynamics packages (VSD) in the world. The main contribution of this paper is a new version "FASTSIM2" of the FASTSIM algorithm, which is second-order accurate. This is relevant for VSD, because with the new algorithm 16 times less grid points are required for sufficiently accurate computations of the contact forces. The approach is based on new insights in the characteristics of the rolling contact problem when using the simplified theory, and on taking precise care of the contact conditions in the numerical integration scheme employed.

  2. Controlled ice nucleation using freeze-dried Pseudomonas syringae encapsulated in alginate beads.

    PubMed

    Weng, Lindong; Tessier, Shannon N; Swei, Anisa; Stott, Shannon L; Toner, Mehmet

    2017-04-01

    The control of ice nucleation is of fundamental significance in many process technologies related to food and pharmaceutical science and cryobiology. Mechanical perturbation, electromagnetic fields and ice-nucleating agents (INAs) have been known to induce ice nucleation in a controlled manner. But these ice-nucleating methods may suffer from cumbersome manual operations, safety concerns of external fields, and biocompatibility and recovery issues of INA particles, especially when used in living systems. Given the automatic ice-seeding nature of INAs, a promising solution to overcome some of the above limitations is to engineer a biocomposite that accommodates the INA particles but minimizes their interactions with biologics, as well as enabling the recovery of used particles. In this study, freeze-dried Pseudomonas syringae, a model ice-nucleating agent, was encapsulated into microliter-sized alginate beads. We evaluated the performance of the bacterial hydrogel beads to initiate ice nucleation in water and aqueous glycerol solution by investigating factors including the size and number of the beads and the local concentration of INA particles. In the aqueous sample of a fixed volume, the total mass of the INA particles (m) was found to be the governing parameter that is solely responsible for determining the ice nucleation performance of the bacterial hydrogel beads. The freezing temperature has a strong positive linear correlation with log 10 m. The findings in this study provide an effective, predictable approach to control ice nucleation, which can improve the outcome and standardization of many ice-assisted process technologies. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Flows in forward deformable roll coating gaps: Comparison between spring and plane-strain models of roll cover

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carvalho, M.S.; Scriven, L.E.

    1997-12-01

    In this report the flow between rigid and a deformable rotating rolls fully submerged in a liquid pool is studied. The deformation of compliant roll cover is described by two different models (1) independent, radially oriented springs that deform in response to the traction force applied at the extremity of each or one-dimensional model, and (2) a plane-strain deformation of an incompressible Mooney-Rivlin material or non-linear elastic model. Based on the flow rate predictions of both models, an empirical relation between the spring constant of the one dimensional model and the roll cover thickness and elastic modulus is proposed.

  4. High volume nanoscale roll-based imprinting using jet and flash imprint lithography

    NASA Astrophysics Data System (ADS)

    Ahn, Se Hyun; Miller, Mike; Yang, Shuqiang; Ganapathisubramanian, Maha; Menezes, Marlon; Singh, Vik; Choi, Jin; Xu, Frank; LaBrake, Dwayne; Resnick, Douglas J.; Sreenivasan, S. V.

    2013-09-01

    Extremely large-area roll-to-roll (R2R) manufacturing on flexible substrates is ubiquitous for applications such as paper and plastic processing. It combines the benefits of high speed and inexpensive substrates to deliver a commodity product at low cost. The challenge is to extend this approach to the realm of nanopatterning and realize similar benefits. In order to achieve low-cost nanopatterning, it is imperative to move toward high-speed imprinting, less complex tools, near zero waste of consumables, and low-cost substrates. We have developed a roll-based J-FIL process and applied it to a technology demonstrator tool, the LithoFlex 100, to fabricate large-area flexible bilayer wire-grid polarizers (WGPs) and high-performance WGPs on rigid glass substrates. Extinction ratios of better than 10,000 are obtained for the glass-based WGPs. Two simulation packages are also employed to understand the effects of pitch, aluminum thickness, and pattern defectivity on the optical performance of the WGP devices. It is determined that the WGPs can be influenced by both clear and opaque defects in the gratings; however, the defect densities are relaxed relative to the requirements of a high-density semiconductor device.

  5. Human Ocular Counter-Rolling and Roll Tilt Perception during Off-Vertical Axis Rotation after Spaceflight

    NASA Technical Reports Server (NTRS)

    Clement, Gilles; Denise, Pierre; Reschke, Millard; Wood, Scott J.

    2007-01-01

    Ocular counter-rolling (OCR) induced by whole body tilt in roll has been explored after spaceflight as an indicator of the adaptation of the otolith function to microgravity. It has been claimed that the overall pattern of OCR responses during static body tilt after spaceflight is indicative of a decreased role of the otolith function, but the results of these studies have not been consistent, mostly due to large variations in the OCR within and across individuals. By contrast with static head tilt, off-vertical axis rotation (OVAR) presents the advantage of generating a sinusoidal modulation of OCR, allowing averaged measurements over several cycles, thus improving measurement accuracy. Accordingly, OCR and the sense of roll tilt were evaluated in seven astronauts before and after spaceflight during OVAR at 45 /s in darkness at two angles of tilt (10 and 20 ). There was no significant difference in OCR during OVAR immediately after landing compared to preflight. However, the amplitude of the perceived roll tilt during OVAR was significantly larger immediately postflight, and then returned to control values in the following days. Since the OCR response is predominantly attributed to the shearing force exerted on the utricular macula, the absence of change in OCR postflight suggests that the peripheral otolith organs function normally after short-term spaceflight. However, the increased sense of roll tilt indicates an adaptation in the central processing of gravitational input, presumably related to a re-weigthing of the internal representation of gravitational vertical as a result of adaptation to microgravity.

  6. Thermo-chemical Ice Penetrator for Icy Moons

    NASA Astrophysics Data System (ADS)

    Arenberg, J. W.; Lee, G.; Harpole, G.; Zamel, J.; Sen, B.; Ross, F.; Retherford, K. D.

    2016-12-01

    The ability to place sensors or to take samples below the ice surface enables a wide variety of potential scientific investigations. Penetrating an ice cap can be accomplished via a mechanical drill, laser drill, kinetic impactor, or heated penetrator. This poster reports on the development of technology for the latter most option, namely a self-heated probe driven by an exothermic chemical reaction: a Thermo-chemical ice penetrator (TChIP). Our penetrator design employs a eutectic mix of alkali metals that produce an exothermic reaction upon contact with an icy surface. This reaction increases once the ice starts melting, so no external power is required. This technology is inspired by a classified Cold-War era program developed at Northrop Grumman for the US Navy. Terrestrial demonstration of this technology took place in the Arctic; however, this device cannot be considered high TRL for application at the icy moons of the solar system due to the environmental differences between Earth's Arctic and the icy moons. These differences demand a TChIP design specific to these cold, low mass, airless worlds. It is expected that this model of TChIP performance will be complex, incorporating all of the forces on the penetrator, gravity, the thermo-chemistry at the interface between penetrator and ice, and multi-phase heat and mass transport, and hydrodynamics. Our initial efforts are aimed at the development of a validated set of tools and simulations to predict the performance of the penetrator for both the environment found on these icy moons and for a terrestrial environment. The purpose of the inclusion of the terrestrial environment is to aid in model validation. Once developed and validated, our models will allow us to design penetrators for a specific scientific application on a specific body. This poster discusses the range of scientific investigations that are enabled by TChIP. We also introduce the development plan to advance TChIP to the point where it can be

  7. Wave-Ice and Air-Ice-Ocean Interaction During the Chukchi Sea Ice Edge Advance

    DTIC Science & Technology

    2014-09-30

    During cruise CU-B UAF UW Airborne expendable Ice Buoy (AXIB) Ahead, at and inside ice edge Surface meteorology T, SLP ~1 year CU-B UW...Balance (IMB) buoys Inside ice edge w/ >50cm thickness Ice mass balance T in snow-ice-ocean, T, SLP at surface ~1 year WHOI CRREL (SeaState DRI

  8. Waterway Ice Thickness Measurements

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The ship on the opposite page is a U. S. Steel Corporation tanker cruising through the ice-covered waters of the Great Lakes in the dead of winter. The ship's crew is able to navigate safely by plotting courses through open water or thin ice, a technique made possible by a multi-agency technology demonstration program in which NASA is a leading participant. Traditionally, the Great Lakes-St. Lawrence Seaway System is closed to shipping for more than three months of winter season because of ice blockage, particularly fluctuations in the thickness and location of ice cover due to storms, wind, currents and variable temperatures. Shippers have long sought a system of navigation that would allow year-round operation on the Lakes and produce enormous economic and fuel conservation benefits. Interrupted operations require that industrial firms stockpile materials to carry them through the impassable months, which is costly. Alternatively, they must haul cargos by more expensive overland transportation. Studies estimate the economic benefits of year-round Great Lakes shipping in the hundreds of millions of dollars annually and fuel consumption savings in the tens of millions of gallons. Under Project Icewarn, NASA, the U.S. Coast Guard and the National Oceanic Atmospheric Administration collaborated in development and demonstration of a system that permits safe year-round operations. It employs airborne radars, satellite communications relay and facsimile transmission to provide shippers and ships' masters up-to-date ice charts. Lewis Research Center contributed an accurate methods of measuring ice thickness by means of a special "short-pulse" type of radar. In a three-year demonstration program, Coast Guard aircraft equipped with Side-Looking Airborne Radar (SLAR) flew over the Great Lakes three or four times a week. The SLAR, which can penetrate clouds, provided large area readings of the type and distribution of ice cover. The information was supplemented by short

  9. Iced Aircraft Flight Data for Flight Simulator Validation

    NASA Technical Reports Server (NTRS)

    Ratvasky, Thomas P.; Blankenship, Kurt; Rieke, William; Brinker, David J.

    2003-01-01

    NASA is developing and validating technology to incorporate aircraft icing effects into a flight training device concept demonstrator. Flight simulation models of a DHC-6 Twin Otter were developed from wind tunnel data using a subscale, complete aircraft model with and without simulated ice, and from previously acquired flight data. The validation of the simulation models required additional aircraft response time histories of the airplane configured with simulated ice similar to the subscale model testing. Therefore, a flight test was conducted using the NASA Twin Otter Icing Research Aircraft. Over 500 maneuvers of various types were conducted in this flight test. The validation data consisted of aircraft state parameters, pilot inputs, propulsion, weight, center of gravity, and moments of inertia with the airplane configured with different amounts of simulated ice. Emphasis was made to acquire data at wing stall and tailplane stall since these events are of primary interest to model accurately in the flight training device. Analyses of several datasets are described regarding wing and tailplane stall. Key findings from these analyses are that the simulated wing ice shapes significantly reduced the C , max, while the simulated tail ice caused elevator control force anomalies and tailplane stall when flaps were deflected 30 deg or greater. This effectively reduced the safe operating margins between iced wing and iced tail stall as flap deflection and thrust were increased. This flight test demonstrated that the critical aspects to be modeled in the icing effects flight training device include: iced wing and tail stall speeds, flap and thrust effects, control forces, and control effectiveness.

  10. 33 CFR 159.107 - Rolling test.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Rolling test. 159.107 Section 159.107 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION MARINE SANITATION DEVICES Design, Construction, and Testing § 159.107 Rolling test. (a) The device, with...

  11. Remote Oil Spill Detection and Monitoring Beneath Sea Ice

    NASA Astrophysics Data System (ADS)

    Polak, Adam; Marshall, Stephen; Ren, Jinchang; Hwang, Byongjun (Phil); Hagan, Bernard; Stothard, David J. M.

    2016-08-01

    The spillage of oil in Polar Regions is particularly serious due to the threat to the environment and the difficulties in detecting and tracking the full extent of the oil seepage beneath the sea ice. Development of fast and reliable sensing techniques is highly desirable. In this paper hyperspectral imaging combined with signal processing and classification techniques are proposed as a potential tool to detect the presence of oil beneath the sea ice. A small sample, lab based experiment, serving as a proof of concept, resulted in the successful identification of oil presence beneath the thin ice layer as opposed to the other sample with ice only. The paper demonstrates the results of this experiment that granted a financial support to execute full feasibility study of this technology for oil spill detection beneath the sea ice.

  12. Semi-automated Digital Imaging and Processing System for Measuring Lake Ice Thickness

    NASA Astrophysics Data System (ADS)

    Singh, Preetpal

    Canada is home to thousands of freshwater lakes and rivers. Apart from being sources of infinite natural beauty, rivers and lakes are an important source of water, food and transportation. The northern hemisphere of Canada experiences extreme cold temperatures in the winter resulting in a freeze up of regional lakes and rivers. Frozen lakes and rivers tend to offer unique opportunities in terms of wildlife harvesting and winter transportation. Ice roads built on frozen rivers and lakes are vital supply lines for industrial operations in the remote north. Monitoring the ice freeze-up and break-up dates annually can help predict regional climatic changes. Lake ice impacts a variety of physical, ecological and economic processes. The construction and maintenance of a winter road can cost millions of dollars annually. A good understanding of ice mechanics is required to build and deem an ice road safe. A crucial factor in calculating load bearing capacity of ice sheets is the thickness of ice. Construction costs are mainly attributed to producing and maintaining a specific thickness and density of ice that can support different loads. Climate change is leading to warmer temperatures causing the ice to thin faster. At a certain point, a winter road may not be thick enough to support travel and transportation. There is considerable interest in monitoring winter road conditions given the high construction and maintenance costs involved. Remote sensing technologies such as Synthetic Aperture Radar have been successfully utilized to study the extent of ice covers and record freeze-up and break-up dates of ice on lakes and rivers across the north. Ice road builders often used Ultrasound equipment to measure ice thickness. However, an automated monitoring system, based on machine vision and image processing technology, which can measure ice thickness on lakes has not been thought of. Machine vision and image processing techniques have successfully been used in manufacturing

  13. Observing Arctic Sea Ice from Bow to Screen: Introducing Ice Watch, the Data Network of Near Real-Time and Historic Observations from the Arctic Shipborne Sea Ice Standardization Tool (ASSIST)

    NASA Astrophysics Data System (ADS)

    Orlich, A.; Hutchings, J. K.; Green, T. M.

    2013-12-01

    The Ice Watch Program is an open source forum to access in situ Arctic sea ice conditions. It provides the research community and additional stakeholders a convenient resource to monitor sea ice and its role in understanding the Arctic as a system by implementing a standardized observation protocol and hosting a multi-service data portal. International vessels use the Arctic Shipborne Sea Ice Standardization Tool (ASSIST) software to report near-real time sea ice conditions while underway. Essential observations of total ice concentration, distribution of multi-year ice and other ice types, as well as their respective stage of melt are reported. These current and historic sea ice conditions are visualized on interactive maps and in a variety of statistical analyses, and with all data sets available to download for further investigation. The summer of 2012 was the debut of the ASSIST software and the Ice Watch campaign, with research vessels from six nations reporting from a wide spatio-temporal scale spanning from the Beaufort Sea, across the North Pole and Arctic Basin, the coast of Greenland and into the Kara and Barents Seas during mid-season melt and into the first stages of freeze-up. The 2013 summer field season sustained the observation and data archiving record, with participation from some of the same cruises as well as other geographic and seasonal realms covered by new users. These results are presented to illustrate the evolution of the program, increased participation and critical statistics of ice regime change and record of melt and freeze processes revealed by the data. As an ongoing effort, Ice Watch/ASSIST aims to standardize observations of Arctic-specific sea ice features and conditions while utilizing nomenclature and coding based on the World Meteorological Organization (WMO) standards and the Antarctic Sea Ice and Processes & Climate (ASPeCt) protocol. Instigated by members of the CliC Sea Ice Working Group, the program has evolved with

  14. Tachyon constant-roll inflation

    NASA Astrophysics Data System (ADS)

    Mohammadi, A.; Saaidi, Kh.; Golanbari, T.

    2018-04-01

    The constant-roll inflation is studied where the inflaton is taken as a tachyon field. Based on this approach, the second slow-roll parameter is taken as a constant which leads to a differential equation for the Hubble parameter. Finding an exact solution for the Hubble parameter is difficult and leads us to a numerical solution for the Hubble parameter. On the other hand, since in this formalism the slow-roll parameter η is constant and could not be assumed to be necessarily small, the perturbation parameters should be reconsidered again which, in turn, results in new terms appearing in the amplitude of scalar perturbations and the scalar spectral index. Utilizing the numerical solution for the Hubble parameter, we estimate the perturbation parameter at the horizon exit time and compare it with observational data. The results show that, for specific values of the constant parameter η , we could have an almost scale-invariant amplitude of scalar perturbations. Finally, the attractor behavior for the solution of the model is presented, and we determine that the feature could be properly satisfied.

  15. Effect of intermediate annealing on the microstructure and mechanical property of ZK60 magnesium alloy produced by twin roll casting and hot rolling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Hongmei, E-mail: hmchen@just.edu.cn; Zang, Qianhao; Yu, Hui

    2015-08-15

    Twin roll cast (designated as TRC in short) ZK60 magnesium alloy strip with 3.5 mm thickness was used in this paper. The TRC ZK60 strip was multi-pass rolled at different temperatures, intermediate annealing heat treatment was performed when the thickness of the strip changed from 3.5 mm to 1 mm, and then continued to be rolled until the thickness reached to 0.5 mm. The effect of intermediate annealing during rolling process on microstructure, texture and room temperature mechanical properties of TRC ZK60 strip was studied by using OM, TEM, XRD and electronic universal testing machine. The introduction of intermediate annealingmore » can contribute to recrystallization in the ZK60 sheet which was greatly deformed, and help to reduce the stress concentration generated in the rolling process. Microstructure uniformity and mechanical properties of the ZK60 alloy sheet were also improved; in particular, the room temperature elongation was greatly improved. When the TRC ZK60 strip was rolled at 300 °C and 350 °C, the room temperature elongation of the rolled sheet with 0.5 mm thickness which was intermediate annealed during the rolling process was increased by 95% and 72% than that of no intermediate annealing, respectively. - Highlights: • Intermediate annealing was introduced during hot rolling process of twin roll cast ZK60 alloy. • Intermediate annealing can contribute to recrystallization and reduce the stress concentration in the deformed ZK60 sheet. • Microstructure uniformity and mechanical properties of the ZK60 sheet were improved, in particular, the room temperature elongation. • The elongation of the rolled ZK60 sheet after intermediate annealed was increased by 95% and 72% than that of no intermediate annealing.« less

  16. Phase transformation kinetics in rolled U-10 wt. % Mo foil: Effect of post-rolling heat treatment and prior γ-UMo grain size

    DOE PAGES

    Jana, Saumyadeep; Overman, Nicole; Varga, Tamas; ...

    2017-09-25

    Here, the effect of sub-eutectoid heat treatment on the phase transformation behavior in rolled U-10 wt.% Mo (U10Mo) foils was systematically investigated. The as-cast 5 mm thick foils were initially homogenized at 900 °C for 48 h and were hot rolled to 2 mm and later cold rolled down to 0.2 mm. Three starting microstructures were evaluated: (i) hot + cold-rolled to 0.2 mm (as-rolled condition), (ii) hot + cold-rolled to 0.2 mm + annealed at 700 °C for 1 h, and (iii) hot + cold-rolled to 0.2 mm + annealed at 1000 °C for 60 h. Annealing of as-rolledmore » materials at 700 °C resulted in small grain size (15 ± 9 μm average grain size), while annealing at 1000 °C led to very large grains (156 ± 118 μm average grain size) in rolled U10Mo foils. Later the samples were subjected to sub-eutectoid heat-treatment temperatures of 550 °C, 500 °C, and 400 °C for different durations of time starting from 1 h up to 100 h. U10Mo rolled foils went through various degrees of decomposition when subjected to the sub-eutectoid heat-treatment step and formed a lamellar microstructure through a cellular reaction mostly along the previous γ-UMo grain boundaries. The least amount of cellular reaction was observed in the large-grain microstructure at all temperatures. Conversely, a substantial amount of cellular reaction was observed in both the as-rolled and the small-grain microstructure. After 100 h of heat treatment at 500 °C, the volume fraction of the lamellar phase was found to be 4%, 22%, and 82% in large-grain, as-rolled, and small-grain samples, respectively.« less

  17. Phase transformation kinetics in rolled U-10 wt. % Mo foil: Effect of post-rolling heat treatment and prior γ-UMo grain size

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jana, Saumyadeep; Overman, Nicole; Varga, Tamas

    Here, the effect of sub-eutectoid heat treatment on the phase transformation behavior in rolled U-10 wt.% Mo (U10Mo) foils was systematically investigated. The as-cast 5 mm thick foils were initially homogenized at 900 °C for 48 h and were hot rolled to 2 mm and later cold rolled down to 0.2 mm. Three starting microstructures were evaluated: (i) hot + cold-rolled to 0.2 mm (as-rolled condition), (ii) hot + cold-rolled to 0.2 mm + annealed at 700 °C for 1 h, and (iii) hot + cold-rolled to 0.2 mm + annealed at 1000 °C for 60 h. Annealing of as-rolledmore » materials at 700 °C resulted in small grain size (15 ± 9 μm average grain size), while annealing at 1000 °C led to very large grains (156 ± 118 μm average grain size) in rolled U10Mo foils. Later the samples were subjected to sub-eutectoid heat-treatment temperatures of 550 °C, 500 °C, and 400 °C for different durations of time starting from 1 h up to 100 h. U10Mo rolled foils went through various degrees of decomposition when subjected to the sub-eutectoid heat-treatment step and formed a lamellar microstructure through a cellular reaction mostly along the previous γ-UMo grain boundaries. The least amount of cellular reaction was observed in the large-grain microstructure at all temperatures. Conversely, a substantial amount of cellular reaction was observed in both the as-rolled and the small-grain microstructure. After 100 h of heat treatment at 500 °C, the volume fraction of the lamellar phase was found to be 4%, 22%, and 82% in large-grain, as-rolled, and small-grain samples, respectively.« less

  18. Aircraft Icing Weather Data Reporting and Dissemination System

    NASA Technical Reports Server (NTRS)

    Bass, Ellen J.; Minsk, Brian; Lindholm, Tenny; Politovich, Marcia; Reehorst, Andrew (Technical Monitor)

    2002-01-01

    The long-term operational concept of this research is to develop an onboard aircraft system that assesses and reports atmospheric icing conditions automatically and in a timely manner in order to improve aviation safety and the efficiency of aircraft operations via improved real-time and forecast weather products. The idea is to use current measurement capabilities on aircraft equipped with icing sensors and in-flight data communication technologies as a reporting source. Without requiring expensive avionics upgrades, aircraft data must be processed and available for downlink. Ideally, the data from multiple aircraft can then be integrated (along with other real-time and modeled data) on the ground such that aviation-centered icing hazard metrics for volumes of airspace can be assessed. As the effect of icing on different aircraft types can vary, the information should be displayed in meaningful ways such that multiple types of users can understand the information. That is, information must be presented in a manner to allow users to understand the icing conditions with respect to individual concerns and aircraft capabilities. This research provides progress toward this operational concept by: identifying an aircraft platform capable of digitally capturing, processing, and downlinking icing data; identifying the required in situ icing data processing; investigating the requirements for routing the icing data for use by weather products; developing an icing case study in order to gain insight into major air carrier needs; developing and prototyping icing display concepts based on the National Center for Atmospheric Research's existing diagnostic and forecast experimental icing products; and conducting a usability study for the prototyped icing display concepts.

  19. Ice Front at Venable Ice Shelf

    NASA Image and Video Library

    2013-06-13

    This photo, taken onboard the Chilean Navy P3 aircraft, shows the ice front of Venable Ice Shelf, West Antarctica, in October 2008. It is an example of a small-size ice shelf that is a large melt water producer.

  20. Rocking and rolling: A can that appears to rock might actually roll

    NASA Astrophysics Data System (ADS)

    Srinivasan, Manoj; Ruina, Andy

    2008-12-01

    A beer bottle or soda can on a table, when slightly tipped and released, falls to an upright position and then rocks up to a somewhat opposite tilt. Superficially this rocking motion involves a collision when the flat circular base of the container slaps the table before rocking up to the opposite tilt. A keen eye notices that the after-slap rising tilt is not generally just diametrically opposite the initial tilt but is veered to one side or the other. Cushman and Duistermaat [Regular Chaotic Dyn. 11, 31 (2006)] recently noticed such veering when a flat disk with rolling boundary conditions is dropped nearly flat. Here, we generalize these rolling disk results to arbitrary axi-symmetric bodies and to frictionless sliding. More specifically, we study motions that almost but do not quite involve a face-down collision of the round container’s bottom with the tabletop. These motions involve a sudden rapid motion of the contact point around the circular base. Surprisingly, similar to the rolling disk, the net angle of motion of this contact point is nearly independent of initial conditions. This angle of turn depends simply on the geometry and mass distribution but not on the moment of inertia about the symmetry axis. We derive simple asymptotic formulas for this “angle of turn” of the contact point and check the result with numerics and with simple experiments. For tall containers (height much bigger than radius) the angle of turn is just over π and the sudden rolling motion superficially appears as a nearly symmetric collision leading to leaning on an almost diametrically opposite point on the bottom rim.

  1. Looking Into and Through the Ross Ice Shelf - ROSETTA-ICE

    NASA Astrophysics Data System (ADS)

    Bell, R. E.

    2015-12-01

    Our current understanding of the structure and stability of the Ross Ice Shelf is based on satellite studies of the ice surface and the 1970's RIGGS program. The study of the flowlines evident in the MODIS imagery combined with surface geophysics has revealed a complex history with ice streams Mercer, Whillans and Kamb changing velocity over the past 1000 years. Here, we present preliminary IcePod and IceBridge radar data acquired in December 2014 and November 2013 across the Ross Ice Shelf that show clearly, for the first time, the structure of the ice shelf and provide insights into ice-ocean interaction. The three major layers of the ice shelf are (1) the continental meteoric ice layer), ice formed on the grounded ice sheet that entered the ice shelf where ice streams and outlet glaciers crossed the grounding line (2) the locally accumulating meteoric ice layer, ice and snow that forms from snowfall on the floating ice shelf and (3) a basal marine ice layer. The locally accumulating meteoric ice layer contains well-defined internal layers that are generally parallel to the ice surface and thickens away from the grounding line and reaches a maximum thickness of 220m along the line crossing Roosevelt Island. The continental meteoric layer is located below a broad irregular internal reflector, and is characterized by irregular internal layers. These internal layers are often folded, likely a result of deformation as the ice flowed across the grounding line. The basal marine ice layer, up to 50m thick, is best resolved in locations where basal crevasses are present, and appears to thicken along the flow at rates of decimeters per year. Each individual flowband of the ice shelf contains layers that are distinct in their structure. For example, the thickness of the locally accumulated layer is a function of both the time since crossing the grounding line and the thickness of the incoming ice. Features in the meteoric ice, such as distinct folds, can be traced between

  2. Cross-directional interlocking of rolls in an air press of a papermaking machine

    DOEpatents

    Beck, David A.; Gorshe, Thomas

    2003-05-13

    An air press for pressing a paper web is composed of a plurality of rolls including at least a first roll and a second roll. The first roll and the second roll are positioned adjacent one another and form a first nip therebetween. Further, the first roll and the second roll each have a roll end, the roll end of the first roll adjoining the roll end of the second roll. A bevel plate is attached to the roll end of the first roll, the bevel plate having at least a first angled plate face. A seal ring is positioned adjacent the roll end of the second roll, the seal ring being juxtaposed to the bevel plate. The seal ring has at least a first angled ring face, and the first angled ring face mates with the first angled plate face.

  3. Extensive massive basal-ice structures in West Antarctica relate to ice-sheet anisotropy and ice-flow

    NASA Astrophysics Data System (ADS)

    Ross, N.; Bingham, R. G.; Corr, H. F. J.; Siegert, M. J.

    2016-12-01

    Complex structures identified within both the East Antarctic and Greenland ice sheets are thought to be generated by the action of basal water freezing to the ice-sheet base, evolving under ice flow. Here, we use ice-penetrating radar to image an extensive series of similarly complex basal ice facies in West Antarctica, revealing a thick (>500 m) tectonised unit in an area of cold-based and relatively slow-flowing ice. We show that major folding and overturning of the unit perpendicular to ice flow elevates deep, warm ice into the mid ice-sheet column. Fold axes align with present ice flow, and axis amplitudes increase down-ice, suggesting long-term consistency in the direction and convergence of flow. In the absence of basal water, and the draping of the tectonised unit over major subglacial mountain ranges, the formation of the unit must be solely through the deformation of meteoric ice. Internal layer radar reflectivity is consistently greater parallel to flow compared with the perpendicular direction, revealing ice-sheet crystal anisotropy is associated with the folding. By linking layers to the Byrd ice-core site, we show the basal ice dates to at least the last glacial cycle and may be as old as the last interglacial. Deformation of deep-ice in this sector of WAIS, and potentially elsewhere in Antarctica, may be caused by differential shearing at interglacial-glacial boundaries, in a process analogous to that proposed for interior Greenland. The scale and heterogeneity of the englacial structures, and their subsequent impact on ice sheet rheology, means that the nature of ice flow across the bulk of West Antarctica must be far more complex that is currently accounted for by any numerical ice sheet model.

  4. An Aerodynamic Simulation Process for Iced Lifting Surfaces and Associated Issues

    NASA Technical Reports Server (NTRS)

    Choo, Yung K.; Vickerman, Mary B.; Hackenberg, Anthony W.; Rigby, David L.

    2003-01-01

    This paper discusses technologies and software tools that are being implemented in a software toolkit currently under development at NASA Glenn Research Center. Its purpose is to help study the effects of icing on airfoil performance and assist with the aerodynamic simulation process which consists of characterization and modeling of ice geometry, application of block topology and grid generation, and flow simulation. Tools and technologies for each task have been carefully chosen based on their contribution to the overall process. For the geometry characterization and modeling, we have chosen an interactive rather than automatic process in order to handle numerous ice shapes. An Appendix presents features of a software toolkit developed to support the interactive process. Approaches taken for the generation of block topology and grids, and flow simulation, though not yet implemented in the software, are discussed with reasons for why particular methods are chosen. Some of the issues that need to be addressed and discussed by the icing community are also included.

  5. Transient thermal stresses of work roll by coupled thermoelasticity

    NASA Astrophysics Data System (ADS)

    Lai, W. B.; Chen, T. C.; Weng, C. I.

    1991-01-01

    A numerical method, based on a two-dimensional plane strain model, is developed to predict the transient responses (that include distributions of temperature, thermal deformation, and thermal stress) of work roll during strip rolling by coupled thermoelasticity. The method consists of discretizing the space domain of the problem by finite element method first, and then treating the time domain by implicit time integration techniques. In order to avoid the difficulty in analysis due to relative movement between work roll and its thermal boundary, the energy equation is formulated with respect to a fixed Eulerian reference frame. The effect of thermoelastic coupling term, that is generally disregarded in strip rolling, can be considered and assessed. The influences of some important process parameters, such as rotational speed of the roll and intensity of heat flux, on transient solutions are also included and discussed. Furthermore, since the stress history at any point of the roll in both transient and steady state could be accurately evaluated, it is available to perform the analysis of thermal fatigue for the roll by means of previous data.

  6. Strip casting with fluxing agent applied to casting roll

    DOEpatents

    Williams, R.S.; O`Malley, R.J.; Sussman, R.C.

    1997-07-29

    A strip caster for producing a continuous strip includes a tundish for containing a melt, a pair of horizontally disposed water cooled casting rolls and devices for electrostatically coating the outer peripheral chill surfaces of the casting rolls with a powder flux material. The casting rolls are juxtaposed relative to one another for forming a pouting basin for receiving the melt through a teeming tube thereby establishing a meniscus between the rolls for forming the strip. The melt is protected from the outside air by a non-oxidizing gas passed through a supply line to a sealing chamber. A preferred flux is boron oxide having a melting point of about 550 C. The flux coating enhances wetting of the steel melt to the casting roll and dissolves any metal oxide formed on the roll. 3 figs.

  7. Ice Roughness in Short Duration SLD Icing Events

    NASA Technical Reports Server (NTRS)

    McClain, Stephen T.; Reed, Dana; Vargas, Mario; Kreeger, Richard E.; Tsao, Jen-Ching

    2014-01-01

    Ice accretion codes depend on models of roughness parameters to account for the enhanced heat transfer during the ice accretion process. While mitigating supercooled large droplet (SLD or Appendix O) icing is a significant concern for manufacturers seeking future vehicle certification due to the pending regulation, historical ice roughness studies have been performed using Appendix C icing clouds which exhibit mean volumetric diameters (MVD) much smaller than SLD clouds. Further, the historical studies of roughness focused on extracting parametric representations of ice roughness using multiple images of roughness elements. In this study, the ice roughness developed on a 21-in. NACA 0012 at 0deg angle of attack exposed to short duration SLD icing events was measured in the Icing Research Tunnel at the NASA Glenn Research Center. The MVD's used in the study ranged from 100 micrometer to 200 micrometers, in a 67 m/s flow, with liquid water contents of either 0.6 gm/cubic meters or 0.75 gm/cubic meters. The ice surfaces were measured using a Romer Absolute Arm laser scanning system. The roughness associated with each surface point cloud was measured using the two-dimensional self-organizing map approach developed by McClain and Kreeger (2013) resulting in statistical descriptions of the ice roughness.

  8. 42 CFR 21.46 - Merit roll.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... candidates for appointment as officers shall assign a numerical rating to each candidate for appointment in... expired merit roll. If two candidates who were examined at the same time receive the same numerical rating... candidate whose name is being transferred from an expired to a new merit roll has the same numerical rating...

  9. 42 CFR 21.46 - Merit roll.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... candidates for appointment as officers shall assign a numerical rating to each candidate for appointment in... expired merit roll. If two candidates who were examined at the same time receive the same numerical rating... candidate whose name is being transferred from an expired to a new merit roll has the same numerical rating...

  10. 42 CFR 21.46 - Merit roll.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... candidates for appointment as officers shall assign a numerical rating to each candidate for appointment in... expired merit roll. If two candidates who were examined at the same time receive the same numerical rating... candidate whose name is being transferred from an expired to a new merit roll has the same numerical rating...

  11. 42 CFR 21.46 - Merit roll.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... candidates for appointment as officers shall assign a numerical rating to each candidate for appointment in... expired merit roll. If two candidates who were examined at the same time receive the same numerical rating... candidate whose name is being transferred from an expired to a new merit roll has the same numerical rating...

  12. 42 CFR 21.46 - Merit roll.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... candidates for appointment as officers shall assign a numerical rating to each candidate for appointment in... expired merit roll. If two candidates who were examined at the same time receive the same numerical rating... candidate whose name is being transferred from an expired to a new merit roll has the same numerical rating...

  13. METHOD OF ROLLING URANIUM

    DOEpatents

    Smith, C.S.

    1959-08-01

    A method is described for rolling uranium metal at relatively low temperatures and under non-oxidizing conditions. The method involves the steps of heating the uranium to 200 deg C in an oil bath, withdrawing the uranium and permitting the oil to drain so that only a thin protective coating remains and rolling the oil coated uranium at a temperature of 200 deg C to give about a 15% reduction in thickness at each pass. The operation may be repeated to accomplish about a 90% reduction without edge cracking, checking or any appreciable increase in brittleness.

  14. Experimental and Theoretical Study on Minimum Achievable Foil Thickness during Asymmetric Rolling

    PubMed Central

    Tang, Delin; Liu, Xianghua; Song, Meng; Yu, Hailiang

    2014-01-01

    Parts produced by microforming are becoming ever smaller. Similarly, the foils required in micro-machines are becoming ever thinner. The asymmetric rolling technique is capable of producing foils that are thinner than those produced by the conventional rolling technique. The difference between asymmetric rolling and conventional rolling is the ‘cross-shear’ zone. However, the influence of the cross-shear zone on the minimum achievable foil thickness during asymmetric rolling is still uncertain. In this paper, we report experiments designed to understand this critical influencing factor on the minimum achievable thickness in asymmetric rolling. Results showed that the minimum achievable thickness of rolled foils produced by asymmetric rolling with a rolling speed ratio of 1.3 can be reduced to about 30% of that possible by conventional rolling technique. Furthermore, the minimum achievable thickness during asymmetric rolling could be correlated to the cross-shear ratio, which, in turn, could be related to the rolling speed ratio. From the experimental results, a formula to calculate the minimum achievable thickness was established, considering the parameters cross-shear ratio, friction coefficient, work roll radius, etc. in asymmetric rolling. PMID:25203265

  15. Ice Island Calves off Petermann Glacier

    NASA Image and Video Library

    2017-12-08

    NASA image acquired August 11, 2010. After breaking off the Petermann Glacier on August 5, 2010, a massive ice island floated slowly down the fjord toward the Nares Strait. The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA’s Terra satellite captured this false-color image of the ice island on August 11, 2010. In this image, ice is light blue, water is nearly black, and clouds are nearly white. Although a bank of thin clouds hovers over the fjord, the southernmost margin of the ice island is still visible. Toward the north, the leading edge of the ice island retains the same shape it had days earlier, at the time of the initial calving. NASA Earth Observatory image created by Jesse Allen, using data provided courtesy of NASA/GSFC/METI/ERSDAC/JAROS, and U.S./Japan ASTER Science Team. Caption by Michon Scott. Instrument: Terra - ASTER To see more images from of the glacier go to: earthobservatory.nasa.gov/NaturalHazards/event.php?id=45116 NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe. Follow us on Twitter Join us on Facebook

  16. Wave-Ice and Air-Ice-Ocean Interaction During the Chukchi Sea Ice Edge Advance

    DTIC Science & Technology

    2015-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Wave -Ice and Air-Ice-Ocean Interaction During the...Chukchi Sea in the late summer have potentially changed the impact of fall storms by creating wave fields in the vicinity of the advancing ice edge. A...first) wave -ice interaction field experiment that adequately documents the relationship of a growing pancake ice cover with a time and space varying

  17. Signal and power roll ring testing update

    NASA Technical Reports Server (NTRS)

    Smith, Dennis W.

    1989-01-01

    The development of the roll ring as a long-life, low-torque alternative to the slip ring is discussed. A roll ring consists of one or more circular flexures captured by their own spring force in the annular space between two concentric conductors or contact rings. The advantages of roll rings over other types of electrical transfer devices are: extremely low drag torque, high transfer efficiencies in high-power configurations, extremely low wear debris generation, long life, and low weight for high-power applications.

  18. Ice-assisted transfer of carbon nanotube arrays.

    PubMed

    Wei, Haoming; Wei, Yang; Lin, Xiaoyang; Liu, Peng; Fan, Shoushan; Jiang, Kaili

    2015-03-11

    Decoupling the growth and the application of nanomaterials by transfer is an important issue in nanotechnology. Here, we developed an efficient transfer technique for carbon nanotube (CNT) arrays by using ice as a binder to temporarily bond the CNT array and the target substrate. Ice makes it an ultraclean transfer because the evaporation of ice ensures that no contaminants are introduced. The transferred superaligned carbon nanotube (SACNT) arrays not only keep their original appearance and initial alignment but also inherit their spinnability, which is the most desirable feature. The transfer-then-spin strategy can be employed to fabricate patterned CNT arrays, which can act as 3-dimensional electrodes in CNT thermoacoustic chips. Besides, the flip-chipped CNTs are promising field electron emitters. Furthermore, the ice-assisted transfer technique provides a cost-effective solution for mass production of SACNTs, giving CNT technologies a competitive edge, and this method may inspire new ways to transfer other nanomaterials.

  19. Ice Flow in the North East Greenland Ice Stream

    NASA Technical Reports Server (NTRS)

    Joughin, Ian; Kwok, Ron; Fahnestock, M.; MacAyeal, Doug

    1999-01-01

    Early observations with ERS-1 SAR image data revealed a large ice stream in North East Greenland (Fahnestock 1993). The ice stream has a number of the characteristics of the more closely studied ice streams in Antarctica, including its large size and gross geometry. The onset of rapid flow close to the ice divide and the evolution of its flow pattern, however, make this ice stream unique. These features can be seen in the balance velocities for the ice stream (Joughin 1997) and its outlets. The ice stream is identifiable for more than 700 km, making it much longer than any other flow feature in Greenland. Our research goals are to gain a greater understanding of the ice flow in the northeast Greenland ice stream and its outlet glaciers in order to assess their impact on the past, present, and future mass balance of the ice sheet. We will accomplish these goals using a combination of remotely sensed data and ice sheet models. We are using satellite radar interferometry data to produce a complete maps of velocity and topography over the entire ice stream. We are in the process of developing methods to use these data in conjunction with existing ice sheet models similar to those that have been used to improve understanding of the mechanics of flow in Antarctic ice streams.

  20. A coupled ice-ocean model of ice breakup and banding in the marginal ice zone

    NASA Technical Reports Server (NTRS)

    Smedstad, O. M.; Roed, L. P.

    1985-01-01

    A coupled ice-ocean numerical model for the marginal ice zone is considered. The model consists of a nonlinear sea ice model and a two-layer (reduced gravity) ocean model. The dependence of the upwelling response on wind stress direction is discussed. The results confirm earlier analytical work. It is shown that there exist directions for which there is no upwelling, while other directions give maximum upwelling in terms of the volume of uplifted water. The ice and ocean is coupled directly through the stress at the ice-ocean interface. An interesting consequence of the coupling is found in cases when the ice edge is almost stationary. In these cases the ice tends to break up a few tenths of kilometers inside of the ice edge.

  1. High Ice Water Content: DC-8 Aeronautics Campaign

    NASA Image and Video Library

    2015-09-10

    During the month of August, NASA’s DC-8 completed flights in Florida aimed at collecting data on high-altitude crystals for the High Ice Water Content (HIWC) mission. High ice water content can be found within large convective storms and can result in aircraft engines losing power or not functioning properly. Researchers will use the data to develop technology that can be used onboard commercial aircraft to avoid high ice water content conditions and provide a safer flight for passengers. This video gives an inside look at the HIWC mission, including research done in and around Hurricane Danny, as well as a look at the instruments being used onboard the research aircraft. Researchers and pilots onboard worked with satellite information from the ground to find regions of high ice water content within the convective systems.

  2. The clinical potential of Enhanced-ice-COLD-PCR.

    PubMed

    Tost, Jörg

    2016-01-01

    Enhanced-ice-COLD-PCR (E-ice-COLD-PCR) is a novel assay format that allows for the efficient enrichment and sensitive detection of all mutations in a region of interest using a chemically modified blocking oligonucleotide, which impedes the amplification of wild-type sequences. The assay is compatible with DNA extracted from tissue and cell-free circulating DNA. The main features of E-ice-COLD-PCR are the simplicity of the setup and the optimization of the assay, the use of standard laboratory equipment and the very short time to results (~4 h including DNA extraction, enrichment and sequence-based identification of mutations). E-ice-COLD-PCR is therefore a highly promising technology for a number of basic research as well as clinical applications including detection of clinically relevant mutated subclones and monitoring of treatment response or disease recurrence.

  3. Strip casting with fluxing agent applied to casting roll

    DOEpatents

    Williams, Robert S.; O'Malley, Ronald J.; Sussman, Richard C.

    1997-01-01

    A strip caster (10) for producing a continuous strip (24) includes a tundish (12) for containing a melt (14), a pair of horizontally disposed water cooled casting rolls (22) and devices (29) for electrostatically coating the outer peripheral chill surfaces (44) of the casting rolls with a powder flux material (56). The casting rolls are juxtaposed relative to one another for forming a pouting basin (18) for receiving the melt through a teeming tube (16) thereby establishing a meniscus (20) between the rolls for forming the strip. The melt is protected from the outside air by a non-oxidizing gas passed through a supply line (28) to a sealing chamber (26). A preferred flux is boron oxide having a melting point of about 550.degree. C. The flux coating enhances wetting of the steel melt to the casting roll and dissolves any metal oxide formed on the roll.

  4. Icing flight research: Aerodynamic effects of ice and ice shape documentation with stereo photography

    NASA Technical Reports Server (NTRS)

    Mikkelsen, K. L.; Mcknight, R. C.; Ranaudo, R. J.; Perkins, P. J., Jr.

    1985-01-01

    Aircraft icing flight research was performed in natural icing conditions. A data base consisting of icing cloud measurements, ice shapes, and aerodynamic measurements is being developed. During research icing encounters the icing cloud was continuously measured. After the encounter, the ice accretion shapes on the wing were documented with a stereo camera system. The increase in wing section drag was measured with a wake survey probe. The overall aircraft performance loss in terms of lift and drag coefficient changes was obtained by steady level speed/power measurements. Selective deicing of the airframe components was performed to determine their contributions to the total drag increase. Engine out capability in terms of power available was analyzed for the iced aircraft. It was shown that the stereo photography system can be used to document ice shapes in flight and that the wake survey probe can measure increases in wing section drag caused by ice. On one flight, the wing section drag coefficient (c sub d) increased approximately 120 percent over the uniced baseline at an aircraft angle of attack of 6 deg. On another flight, the aircraft darg coefficient (c sub d) increased by 75 percent over the uniced baseline at an aircraft lift coefficient (C sub d) of 0.5.

  5. Icing flight research - Aerodynamic effects of ice and ice shape documentation with stereo photography

    NASA Technical Reports Server (NTRS)

    Mikkelsen, K. L.; Mcknight, R. C.; Ranaudo, R. J.; Perkins, P. J., Jr.

    1985-01-01

    Aircraft icing flight research was performed in natural icing conditions. A data base consisting of icing cloud measurements, ice shapes, and aerodynamic measurements is being developed. During research icing encounters the icing cloud was continuously measured. After the encounter, the ice accretion shapes on the wing were documented with a stereo camera system. The increase in wing section drag was measured with a wake survey probe. The overall aircraft performance loss in terms of lift and drag coefficient changes were obtained by steady level speed/power measurements. Selective deicing of the airframe components was performed to determine their contributions to the total drag increase. Engine out capability in terms of power available was analyzed for the iced aircraft. It was shown that the stereo photography system can be used to document ice shapes in flight and that the wake survey probe can measure increases in wing section drag caused by ice. On one flight, the wing section drag coefficient (c sub d) increased approximately 120 percent over the uniced baseline at an aircraft angle of attack of 6 deg. On another flight, the aircraft drag coefficient (c sub d) increased by 75 percent over the uniced baseline at an aircraft lift coefficient (c sub d) of 0.5.

  6. Modification of the background flow by roll vortices

    NASA Technical Reports Server (NTRS)

    Shirer, Hampton N.; Haack, Tracy

    1990-01-01

    Use of observed wind profiles, such as those obtained from ascent or descent aircraft soundings, for the identification of the expected roll modes is hindered by the fact that these modes are able to modify the wind profiles. When such modified wind profiles are utilized to estimate the critical values of the dynamic and thermodynamic forcing rates, large errors in the preferred orientation angles and aspect ratios of the rolls may result. Nonlinear analysis of a 14 coefficient spectral model of roll circulations shows that the primary modification of the background wind is the addition of a linear component. When the linear profile having the correct amount of shear is subtracted from the observed cross-roll winds, then the pre-roll wind profile can be estimated. A preliminary test of this hypothesis is given for a case in which cloud streets were observed during FIRE.

  7. 75 FR 77828 - Certain Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil: Extension of Time Limit...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-14

    ... DEPARTMENT OF COMMERCE International Trade Administration [C-351-829] Certain Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil: Extension of Time Limit for Final Results of Countervailing Duty Administrative Review AGENCY: Import Administration, International Trade Administration, Department of Commerce DATES: Effective Date:...

  8. Adaptive attenuation of aliased ground roll using the shearlet transform

    NASA Astrophysics Data System (ADS)

    Hosseini, Seyed Abolfazl; Javaherian, Abdolrahim; Hassani, Hossien; Torabi, Siyavash; Sadri, Maryam

    2015-01-01

    Attenuation of ground roll is an essential step in seismic data processing. Spatial aliasing of the ground roll may cause the overlap of the ground roll with reflections in the f-k domain. The shearlet transform is a directional and multidimensional transform that separates the events with different dips and generates subimages in different scales and directions. In this study, the shearlet transform was used adaptively to attenuate aliased and non-aliased ground roll. After defining a filtering zone, an input shot record is divided into segments. Each segment overlaps adjacent segments. To apply the shearlet transform on each segment, the subimages containing aliased and non-aliased ground roll, the locations of these events on each subimage are selected adaptively. Based on these locations, mute is applied on the selected subimages. The filtered segments are merged together, using the Hanning function, after applying the inverse shearlet transform. This adaptive process of ground roll attenuation was tested on synthetic data, and field shot records from west of Iran. Analysis of the results using the f-k spectra revealed that the non-aliased and most of the aliased ground roll were attenuated using the proposed adaptive attenuation procedure. Also, we applied this method on shot records of a 2D land survey, and the data sets before and after ground roll attenuation were stacked and compared. The stacked section after ground roll attenuation contained less linear ground roll noise and more continuous reflections in comparison with the stacked section before the ground roll attenuation. The proposed method has some drawbacks such as more run time in comparison with traditional methods such as f-k filtering and reduced performance when the dip and frequency content of aliased ground roll are the same as those of the reflections.

  9. Ice recrystallization inhibition in ice cream as affected by ice structuring proteins from winter wheat grass.

    PubMed

    Regand, A; Goff, H D

    2006-01-01

    Ice recrystallization in quiescently frozen sucrose solutions that contained some of the ingredients commonly found in ice cream and in ice cream manufactured under commercial conditions, with or without ice structuring proteins (ISP) from cold-acclimated winter wheat grass extract (AWWE), was assessed by bright field microscopy. In sucrose solutions, critical differences in moisture content, viscosity, ionic strength, and other properties derived from the presence of other ingredients (skim milk powder, corn syrup solids, locust bean gum) caused a reduction in ice crystal growth. Significant ISP activity in retarding ice crystal growth was observed in all solutions (44% for the most complex mix) containing 0.13% total protein from AWWE. In heat-shocked ice cream, ice recrystallization rates were significantly reduced 40 and 46% with the addition of 0.0025 and 0.0037% total protein from AWWE. The ISP activity in ice cream was not hindered by its inclusion in mix prior to pasteurization. A synergistic effect between ISP and stabilizer was observed, as ISP activity was reduced in the absence of stabilizer in ice cream formulations. A remarkably smoother texture for ice creams containing ISP after heat-shock storage was evident by sensory evaluation. The efficiency of ISP from AWWE in controlling ice crystal growth in ice cream has been demonstrated.

  10. Atmosphere-Ice-Ocean-Ecosystem Processes in a Thinner Arctic Sea Ice Regime: The Norwegian Young Sea ICE (N-ICE2015) Expedition

    NASA Astrophysics Data System (ADS)

    Granskog, Mats A.; Fer, Ilker; Rinke, Annette; Steen, Harald

    2018-03-01

    Arctic sea ice has been in rapid decline the last decade and the Norwegian young sea ICE (N-ICE2015) expedition sought to investigate key processes in a thin Arctic sea ice regime, with emphasis on atmosphere-snow-ice-ocean dynamics and sea ice associated ecosystem. The main findings from a half-year long campaign are collected into this special section spanning the Journal of Geophysical Research: Atmospheres, Journal of Geophysical Research: Oceans, and Journal of Geophysical Research: Biogeosciences and provide a basis for a better understanding of processes in a thin sea ice regime in the high Arctic. All data from the campaign are made freely available to the research community.

  11. Long-Endurance, Ice-capable Autonomous Seagliders

    NASA Astrophysics Data System (ADS)

    Lee, C. M.; Gobat, J. I.; Shilling, G.; Curry, B.

    2012-12-01

    Autonomous Seagliders capable of extended (many months) operation in ice-covered waters have been developed and successfully employed as part of the US Arctic Observing Network. Seagliders operate routinely in lower-latitude oceans for periods of up to 9 months to provide persistent sampling in difficult, remote conditions, including strong boundary currents and harsh wintertime subpolar seas. The Arctic Observing Network calls for sustained occupation of key sections within the Arctic Ocean and across the critical gateways that link the Arctic to lower-latitude oceans, motivating the extension of glider technologies to permit operation in ice-covered waters. When operating in open water, gliders rely on GPS for navigation and Iridium satellite phones for data and command telemetry. Ice cover blocks access to the sea surface and thus prevents gliders from using these critical services. When operating under ice, ice-capable Seagliders instead navigate by trilateration from an array of RAFOS acoustic sound sources and employ advanced autonomy to make mission-critical decisions (previously the realm of the human pilot) and identify and exploit leads in the ice to allow intermittent communication through Iridium. Davis Strait, one of the two primary pathways through which Arctic waters exit into the subpolar North Atlantic, provided a convenient site for development of ice-capable Seagliders at a location where the resulting measurements could greatly augment the existing observing system. Initial testing of 780 Hz RAFOS sources in Davis Strait, substantiated by the performance of the operational array, indicates effective ranges of 100-150 km in ice-covered waters. Surface ducting and reflection off the ice bottom significantly degrade the range from the 500+ km expected in ice-free conditions. Comparisons between GPS and acoustically-derived positions collected during operations in ice-free conditions suggest 1-2 km uncertainty in the acoustically-derived positions

  12. Long-Endurance, Ice-capable Autonomous Seagliders

    NASA Astrophysics Data System (ADS)

    Lee, Craig; Gobat, Jason; Shilling, Geoff; Curry, Beth

    2013-04-01

    Autonomous Seagliders capable of extended (many months) operation in ice-covered waters have been developed and successfully employed as part of the US Arctic Observing Network. Seagliders operate routinely in lower-latitude oceans for periods of up to 9 months to provide persistent sampling in difficult, remote conditions, including strong boundary currents and harsh wintertime subpolar seas. The Arctic Observing Network calls for sustained occupation of key sections within the Arctic Ocean and across the critical gateways that link the Arctic to lower-latitude oceans, motivating the extension of glider technologies to permit operation in ice-covered waters. When operating in open water, gliders rely on GPS for navigation and Iridium satellite phones for data and command telemetry. Ice cover blocks access to the sea surface and thus prevents gliders from using these critical services. When operating under ice, ice-capable Seagliders instead navigate by trilateration from an array of RAFOS acoustic sound sources and employ advanced autonomy to make mission-critical decisions (previously the realm of the human pilot) and identify and exploit leads in the ice to allow intermittent communication through Iridium. Davis Strait, one of the two primary pathways through which Arctic waters exit into the subpolar North Atlantic, provided a convenient site for development of ice-capable Seagliders at a location where the resulting measurements could greatly augment the existing observing system. Initial testing of 780 Hz RAFOS sources in Davis Strait, substantiated by the performance of the operational array, indicates effective ranges of 100-150 km in ice-covered waters. Surface ducting and reflection off the ice bottom significantly degrade the range from the 500+ km expected in ice-free conditions. Comparisons between GPS and acoustically-derived positions collected during operations in ice-free conditions suggest 1-2 km uncertainty in the acoustically-derived positions

  13. HybridICE® filter: ice separation in freeze desalination of mine waste waters.

    PubMed

    Adeniyi, A; Maree, J P; Mbaya, R K K; Popoola, A P I; Mtombeni, T; Zvinowanda, C M

    2014-01-01

    Freeze desalination is an alternative method for the treatment of mine waste waters. HybridICE(®) technology is a freeze desalination process which generates ice slurry in surface scraper heat exchangers that use R404a as the primary refrigerant. Ice separation from the slurry takes place in the HybridICE filter, a cylindrical unit with a centrally mounted filter element. Principally, the filter module achieves separation of the ice through buoyancy force in a continuous process. The HybridICE filter is a new and economical means of separating ice from the slurry and requires no washing of ice with water. The performance of the filter at a flow-rate of 25 L/min was evaluated over time and with varied evaporating temperature of the refrigerant. Behaviours of the ice fraction and residence time were also investigated. The objective was to find ways to improve the performance of the filter. Results showed that filter performance can be improved by controlling the refrigerant evaporating temperature and eliminating overflow.

  14. Soot Aerosol Particles as Cloud Condensation Nuclei: from Ice Nucleation Activity to Ice Crystal Morphology

    NASA Astrophysics Data System (ADS)

    Pirim, Claire; Ikhenazene, Raouf; Ortega, Isamel Kenneth; Carpentier, Yvain; Focsa, Cristian; Chazallon, Bertrand; Ouf, François-Xavier

    2016-04-01

    Emissions of solid-state particles (soot) from engine exhausts due to incomplete fuel combustion is considered to influence ice and liquid water cloud droplet activation [1]. The activity of these aerosols would originate from their ability to be important centers of ice-particle nucleation, as they would promote ice formation above water homogeneous freezing point. Soot particles are reported to be generally worse ice nuclei than mineral dust because they activate nucleation at higher ice-supersaturations for deposition nucleation and at lower temperatures for immersion freezing than ratios usually expected for homogeneous nucleation [2]. In fact, there are still numerous opened questions as to whether and how soot's physico-chemical properties (structure, morphology and chemical composition) can influence their nucleation ability. Therefore, systematic investigations of soot aerosol nucleation activity via one specific nucleation mode, here deposition nucleation, combined with thorough structural and compositional analyzes are needed in order to establish any association between the particles' activity and their physico-chemical properties. In addition, since the morphology of the ice crystals can influence their radiative properties [3], we investigated their morphology as they grow over both soot and pristine substrates at different temperatures and humidity ratios. In the present work, Combustion Aerosol STandart soot samples were produced from propane using various experimental conditions. Their nucleation activity was studied in deposition mode (from water vapor), and monitored using a temperature-controlled reactor in which the sample's relative humidity is precisely measured with a cryo-hygrometer. Formation of water/ice onto the particles is followed both optically and spectroscopically, using a microscope coupled to a Raman spectrometer. Vibrational signatures of hydroxyls (O-H) emerge when the particle becomes hydrated and are used to characterize ice

  15. Rolling process for producing biaxially textured substrates

    DOEpatents

    Goyal, Amit

    2004-05-25

    A method of preparing a biaxially textured article includes the steps of: rolling a metal preform while applying shear force thereto to form as-rolled biaxially textured substrate having an a rotated cube texture wherein a (100) cube face thereof is parallel to a surface of said substrate, and wherein a [100] direction thereof is at an angle of at least 30.degree. relative to the rolling direction; and depositing onto the surface of the biaxially textured substrate at least one epitaxial layer of another material to form a biaxially textured article.

  16. The Effects of Forming Parameters on Conical Ring Rolling Process

    PubMed Central

    Meng, Wen; Zhao, Guoqun; Guan, Yanjin

    2014-01-01

    The plastic penetration condition and biting-in condition of a radial conical ring rolling process with a closed die structure on the top and bottom of driven roll, simplified as RCRRCDS, were established. The reasonable value range of mandrel feed rate in rolling process was deduced. A coupled thermomechanical 3D FE model of RCRRCDS process was established. The changing laws of equivalent plastic strain (PEEQ) and temperature distributions with rolling time were investigated. The effects of ring's outer radius growth rate and rolls sizes on the uniformities of PEEQ and temperature distributions, average rolling force, and average rolling moment were studied. The results indicate that the PEEQ at the inner layer and outer layer of rolled ring are larger than that at the middle layer of ring; the temperatures at the “obtuse angle zone” of ring's cross-section are higher than those at “acute angle zone”; the temperature at the central part of ring is higher than that at the middle part of ring's outer surfaces. As the ring's outer radius growth rate increases at its reasonable value ranges, the uniformities of PEEQ and temperature distributions increase. Finally, the optimal values of the ring's outer radius growth rate and rolls sizes were obtained. PMID:25202716

  17. GenIce: Hydrogen-Disordered Ice Generator.

    PubMed

    Matsumoto, Masakazu; Yagasaki, Takuma; Tanaka, Hideki

    2018-01-05

    GenIce is an efficient and user-friendly tool to generate hydrogen-disordered ice structures. It makes ice and clathrate hydrate structures in various file formats. More than 100 kinds of structures are preset. Users can install their own crystal structures, guest molecules, and file formats as plugins. The algorithm certifies that the generated structures are completely randomized hydrogen-disordered networks obeying the ice rule with zero net polarization. © 2017 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc. © 2017 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc.

  18. Rolling-Element Fatigue Testing and Data Analysis - A Tutorial

    NASA Technical Reports Server (NTRS)

    Vlcek, Brian L.; Zaretsky, Erwin V.

    2011-01-01

    In order to rank bearing materials, lubricants and other design variables using rolling-element bench type fatigue testing of bearing components and full-scale rolling-element bearing tests, the investigator needs to be cognizant of the variables that affect rolling-element fatigue life and be able to maintain and control them within an acceptable experimental tolerance. Once these variables are controlled, the number of tests and the test conditions must be specified to assure reasonable statistical certainty of the final results. There is a reasonable correlation between the results from elemental test rigs with those results obtained with full-scale bearings. Using the statistical methods of W. Weibull and L. Johnson, the minimum number of tests required can be determined. This paper brings together and discusses the technical aspects of rolling-element fatigue testing and data analysis as well as making recommendations to assure quality and reliable testing of rolling-element specimens and full-scale rolling-element bearings.

  19. Continuous and scalable fabrication of bioinspired dry adhesives via a roll-to-roll process with modulated ultraviolet-curable resin.

    PubMed

    Yi, Hoon; Hwang, Insol; Lee, Jeong Hyeon; Lee, Dael; Lim, Haneol; Tahk, Dongha; Sung, Minho; Bae, Won-Gyu; Choi, Se-Jin; Kwak, Moon Kyu; Jeong, Hoon Eui

    2014-08-27

    A simple yet scalable strategy for fabricating dry adhesives with mushroom-shaped micropillars is achieved by a combination of the roll-to-roll process and modulated UV-curable elastic poly(urethane acrylate) (e-PUA) resin. The e-PUA combines the major benefits of commercial PUA and poly(dimethylsiloxane) (PDMS). It not only can be cured within a few seconds like commercial PUA but also possesses good mechanical properties comparable to those of PDMS. A roll-type fabrication system equipped with a rollable mold and a UV exposure unit is also developed for the continuous process. By integrating the roll-to-roll process with the e-PUA, dry adhesives with spatulate tips in the form of a thin flexible film can be generated in a highly continuous and scalable manner. The fabricated dry adhesives with mushroom-shaped microstructures exhibit a strong pull-off strength of up to ∼38.7 N cm(-2) on the glass surface as well as high durability without any noticeable degradation. Furthermore, an automated substrate transportation system equipped with the dry adhesives can transport a 300 mm Si wafer over 10,000 repeating cycles with high accuracy.

  20. Observed platelet ice distributions in Antarctic sea ice: An index for ocean-ice shelf heat flux

    NASA Astrophysics Data System (ADS)

    Langhorne, P. J.; Hughes, K. G.; Gough, A. J.; Smith, I. J.; Williams, M. J. M.; Robinson, N. J.; Stevens, C. L.; Rack, W.; Price, D.; Leonard, G. H.; Mahoney, A. R.; Haas, C.; Haskell, T. G.

    2015-07-01

    Antarctic sea ice that has been affected by supercooled Ice Shelf Water (ISW) has a unique crystallographic structure and is called platelet ice. In this paper we synthesize platelet ice observations to construct a continent-wide map of the winter presence of ISW at the ocean surface. The observations demonstrate that, in some regions of coastal Antarctica, supercooled ISW drives a negative oceanic heat flux of -30 Wm-2 that persists for several months during winter, significantly affecting sea ice thickness. In other regions, particularly where the thinning of ice shelves is believed to be greatest, platelet ice is not observed. Our new data set includes the longest ice-ocean record for Antarctica, which dates back to 1902 near the McMurdo Ice Shelf. These historical data indicate that, over the past 100 years, any change in the volume of very cold surface outflow from this ice shelf is less than the uncertainties in the measurements.

  1. Rolling Uphill

    ERIC Educational Resources Information Center

    Cross, Rod

    2017-01-01

    In a recent letter to this journal, Mungan noted that translational energy can be converted into gravitational potential energy when an object is projected vertically, but rotational energy is not usually converted in this manner. As an exception, he gave an example where "a ball initially rolling without slipping will travel higher up a…

  2. SASS Applied to Optimum Work Roll Profile Selection in the Hot Rolling of Wide Steel

    NASA Astrophysics Data System (ADS)

    Nolle, Lars

    The quality of steel strip produced in a wide strip rolling mill depends heavily on the careful selection of initial ground work roll profiles for each of the mill stands in the finishing train. In the past, these profiles were determined by human experts, based on their knowledge and experience. In previous work, the profiles were successfully optimised using a self-organising migration algorithm (SOMA). In this research, SASS, a novel heuristic optimisation algorithm that has only one control parameter, has been used to find the optimum profiles for a simulated rolling mill. The resulting strip quality produced using the profiles found by SASS is compared with results from previous work and the quality produced using the original profile specifications. The best set of profiles found by SASS clearly outperformed the original set and performed equally well as SOMA without the need of finding a suitable set of control parameters.

  3. Improvement of the technique of calculating the energy-force parameters of pinch-pass mills for increasing the efficiency of producing cold-rolled strips

    NASA Astrophysics Data System (ADS)

    Garber, E. A.; Timofeeva, M. A.

    2016-11-01

    New propositions are introduced into the technique of energy-force calculation of pinch-pass mills in order to determine the energy-force and technological parameters of skin rolling of cold-rolled steel strips at the minimum errors. The application of these propositions decreases the errors of calculating the forces and torques in a working stand by a factor of 3-5 as compared to the calculation according to the well-known technique, saves the electric power in the existing mills, and demonstrates the possibility of decreasing the dimensions of working stands and the power of the rolling mill engine.

  4. The mass balance of the ice plain of Ice Stream B and Crary Ice Rise

    NASA Technical Reports Server (NTRS)

    Bindschadler, Robert

    1993-01-01

    The region in the mouth of Ice Stream B (the ice plain) and that in the vicinity of Crary Ice Rise are experiencing large and rapid changes. Based on velocity, ice thickness, and accumulation rate data, the patterns of net mass balance in these regions were calculated. Net mass balance, or the rate of ice thickness change, was calculated as the residual of all mass fluxes into and out of subregions (or boxes). Net mass balance provides a measure of the state of health of the ice sheet and clues to the current dynamics.

  5. 40 CFR 1066.225 - Roll runout and diameter verification procedure.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... section. (2) Measure roll diameter using a Pi Tape®. Orient the Pi Tape® to the marker line at the desired measurement location with the Pi Tape® hook pointed outward. Temporarily secure the Pi Tape® to the roll near the hook end with adhesive tape. Slowly turn the roll, wrapping the Pi Tape® around the roll surface...

  6. 40 CFR 1066.225 - Roll runout and diameter verification procedure.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) Measure roll diameter using a Pi Tape®. Orient the Pi Tape® to the marker line at the desired measurement location with the Pi Tape® hook pointed outward. Temporarily secure the Pi Tape® to the roll near the hook end with adhesive tape. Slowly turn the roll, wrapping the Pi Tape® around the roll surface. Ensure...

  7. 40 CFR 1066.225 - Roll runout and diameter verification procedure.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... section. (2) Measure roll diameter using a Pi Tape®. Orient the Pi Tape® to the marker line at the desired measurement location with the Pi Tape® hook pointed outward. Temporarily secure the Pi Tape® to the roll near the hook end with adhesive tape. Slowly turn the roll, wrapping the Pi Tape® around the roll surface...

  8. Operationally Monitoring Sea Ice at the Canadian Ice Service

    NASA Astrophysics Data System (ADS)

    de Abreu, R.; Flett, D.; Carrieres, T.; Falkingham, J.

    2004-05-01

    The Canadian Ice Service (CIS) of the Meteorological Service of Canada promotes safe and efficient maritime operations and protects Canada's environment by providing reliable and timely information about ice and iceberg conditions in Canadian waters. Daily and seasonal charts describing the extent, type and concentration of sea ice and icebergs are provided to support navigation and other activities (e.g. oil and gas) in coastal waters. The CIS relies on a suite of spaceborne visible, infrared and microwave sensors to operationally monitor ice conditions in Canadian coastal and inland waterways. These efforts are complemented by operational sea ice models that are customized and run at the CIS. The archive of these data represent a 35 year archive of ice conditions and have proven to be a valuable dataset for historical sea ice analysis. This presentation will describe the daily integration of remote sensing observations and modelled ice conditions used to produce ice and iceberg products. A review of the decadal evolution of this process will be presented, as well as a glimpse into the future of ice and iceberg monitoring. Examples of the utility of the CIS digital sea ice archive for climate studies will also be presented.

  9. Validation of NASA Thermal Ice Protection Computer Codes. Part 3; The Validation of Antice

    NASA Technical Reports Server (NTRS)

    Al-Khalil, Kamel M.; Horvath, Charles; Miller, Dean R.; Wright, William B.

    2001-01-01

    An experimental program was generated by the Icing Technology Branch at NASA Glenn Research Center to validate two ice protection simulation codes: (1) LEWICE/Thermal for transient electrothermal de-icing and anti-icing simulations, and (2) ANTICE for steady state hot gas and electrothermal anti-icing simulations. An electrothermal ice protection system was designed and constructed integral to a 36 inch chord NACA0012 airfoil. The model was fully instrumented with thermo-couples, RTD'S, and heat flux gages. Tests were conducted at several icing environmental conditions during a two week period at the NASA Glenn Icing Research Tunnel. Experimental results of running-wet and evaporative cases were compared to the ANTICE computer code predictions and are presented in this paper.

  10. An Imaging System capable of monitoring en-glacial and sub-glacial processes of glaciers, streaming ice and ice margins

    NASA Astrophysics Data System (ADS)

    Frearson, N.

    2012-12-01

    Columbia University in New York is developing a geophysical instrumentation package that is capable of monitoring dynamic en-glacial and sub-glacial processes. The instruments include a Riegl Scanning Laser for precise measurements of the ice surface elevation, Stereo photogrammetry from a high sensitivity (~20mK) Infra-Red camera and a high resolution Visible Imaging camera (2456 x 2058 pixels) to document fine scale ice temperature changes and surface features, near surface ice penetrating radar and an ice depth measuring radar that can be used to study interior and basal processes of ice shelves, glaciers, ice streams and ice-sheets. All instrument data sets will be time-tagged and geo-referenced using precision GPS satellite data. Aircraft orientation will be corrected using inertial measurement technology integrated into the pod. This instrumentation will be flown across some of the planets largest outlet glaciers in Antarctica and Greenland. However, a key aspect of the design is that at the conclusion of the program, the Pod, Deployment Arm, Data Acquisition and Power and Environmental Management system will become available for use by the science community at large to install their own instruments onto. It will also be possible to mount the Icepod onto other airframes. The sensor system will become part of a research facility operated for the science community, and data will be maintained at and made available through a Polar Data Center.

  11. Lattice Boltzmann computation of creeping fluid flow in roll-coating applications

    NASA Astrophysics Data System (ADS)

    Rajan, Isac; Kesana, Balashanker; Perumal, D. Arumuga

    2018-04-01

    Lattice Boltzmann Method (LBM) has advanced as a class of Computational Fluid Dynamics (CFD) methods used to solve complex fluid systems and heat transfer problems. It has ever-increasingly attracted the interest of researchers in computational physics to solve challenging problems of industrial and academic importance. In this current study, LBM is applied to simulate the creeping fluid flow phenomena commonly encountered in manufacturing technologies. In particular, we apply this novel method to simulate the fluid flow phenomena associated with the "meniscus roll coating" application. This prevalent industrial problem encountered in polymer processing and thin film coating applications is modelled as standard lid-driven cavity problem to which creeping flow analysis is applied. This incompressible viscous flow problem is studied in various speed ratios, the ratio of upper to lower lid speed in two different configurations of lid movement - parallel and anti-parallel wall motion. The flow exhibits interesting patterns which will help in design of roll coaters.

  12. Roll-Out and Turn-Off Display Software for Integrated Display System

    NASA Technical Reports Server (NTRS)

    Johnson, Edward J., Jr.; Hyer, Paul V.

    1999-01-01

    This report describes the software products, system architectures and operational procedures developed by Lockheed-Martin in support of the Roll-Out and Turn-Off (ROTO) sub-element of the Low Visibility Landing and Surface Operations (LVLASO) program at the NASA Langley Research Center. The ROTO portion of this program focuses on developing technologies that aid pilots in the task of managing the deceleration of an aircraft to a pre-selected exit taxiway. This report focuses on software that produces a system of redundant deceleration cues for a pilot during the landing roll-out, and presents these cues on a head up display (HUD). The software also produces symbology for aircraft operational phases involving cruise flight, approach, takeoff, and go-around. The algorithms and data sources used to compute the deceleration guidance and generate the displays are discussed. Examples of the display formats and symbology options are presented. Logic diagrams describing the design of the ROTO software module are also given.

  13. Sea Ice

    NASA Technical Reports Server (NTRS)

    Parkinson, Claire L.; Cavalieri, Donald J.

    2005-01-01

    Sea ice covers vast areas of the polar oceans, with ice extent in the Northern Hemisphere ranging from approximately 7 x 10(exp 6) sq km in September to approximately 15 x 10(exp 6) sq km in March and ice extent in the Southern Hemisphere ranging from approximately 3 x 10(exp 6) sq km in February to approximately 18 x 10(exp 6) sq km in September. These ice covers have major impacts on the atmosphere, oceans, and ecosystems of the polar regions, and so as changes occur in them there are potential widespread consequences. Satellite data reveal considerable interannual variability in both polar sea ice covers, and many studies suggest possible connections between the ice and various oscillations within the climate system, such as the Arctic Oscillation, North Atlantic Oscillation, and Antarctic Oscillation, or Southern Annular Mode. Nonetheless, statistically significant long-term trends are also apparent, including overall trends of decreased ice coverage in the Arctic and increased ice coverage in the Antarctic from late 1978 through the end of 2003, with the Antarctic ice increases following marked decreases in the Antarctic ice during the 1970s. For a detailed picture of the seasonally varying ice cover at the start of the 21st century, this chapter includes ice concentration maps for each month of 2001 for both the Arctic and the Antarctic, as well as an overview of what the satellite record has revealed about the two polar ice covers from the 1970s through 2003.

  14. Simulating Ice Dynamics in the Amundsen Sea Sector

    NASA Astrophysics Data System (ADS)

    Schwans, E.; Parizek, B. R.; Morlighem, M.; Alley, R. B.; Pollard, D.; Walker, R. T.; Lin, P.; St-Laurent, P.; LaBirt, T.; Seroussi, H. L.

    2017-12-01

    Thwaites and Pine Island Glaciers (TG; PIG) exhibit patterns of dynamic retreat forced from their floating margins, and could act as gateways for destabilization of deep marine basins in the West Antarctic Ice Sheet (WAIS). Poorly constrained basal conditions can cause model predictions to diverge. Thus, there is a need for efficient simulations that account for shearing within the ice column, and include adequate basal sliding and ice-shelf melting parameterizations. To this end, UCI/NASA JPL's Ice Sheet System Model (ISSM) with coupled SSA/higher-order physics is used in the Amundsen Sea Embayment (ASE) to examine threshold behavior of TG and PIG, highlighting areas particularly vulnerable to retreat from oceanic warming and ice-shelf removal. These moving-front experiments will aid in targeting critical areas for additional data collection in ASE as well as for weighting accuracy in further melt parameterization development. Furthermore, a sub-shelf melt parameterization, resulting from Regional Ocean Modeling System (ROMS; St-Laurent et al., 2015) and coupled ISSM-Massachusetts Institute of Technology general circulation model (MITgcm; Seroussi et al., 2017) output, is incorporated and initially tested in ISSM. Data-guided experiments include variable basal conditions and ice hardness, and are also forced with constant modern climate in ISSM, providing valuable insight into i) effects of different basal friction parameterizations on ice dynamics, illustrating the importance of constraining the variable bed character beneath TG and PIG; ii) the impact of including vertical shear in ice flow models of outlet glaciers, confirming its role in capturing complex feedbacks proximal to the grounding zone; and iii) ASE's sensitivity to sub-shelf melt and ice-front retreat, possible thresholds, and how these affect ice-flow evolution.

  15. Measurements of Ice Nuclei properties at the Jungfraujoch using the Portable Ice Nucleation Chamber (PINC)

    NASA Astrophysics Data System (ADS)

    Chou, Cédric

    2010-05-01

    undisturbed free troposphere, but is also influenced by the Planetary Boundary Layer (PBL) especially in summer. The probability of Saharan Dust Events (SDE) at the Jungfraujoch is usually high from March to July (Collaud Coen et al., 2004). Two campaigns have been performed during this period in order to investigate the influence of a SDE on the IN number concentration and properties: PINC II took place from February 23rd to March 16th, 2009 and PINC III from June 3rd to 17th, 2009. The operating conditions inside the chamber during both campaigns were -31°C with relative humidities with respect to ice and water of 127% and 91%, respectively. During the first campaign, no SDE were detected and the average number concentration of IN was <10 particles/liter. Two SDE of different intensity occurred during the second campaign on June 15th and 16th where significantly higher IN number concentrations have been observed. We found that the larger the particles are, the more efficient they are as IN especially during SDE. References: Collaud Coen M., Weingartner E., Schaub D., Hueglin C., Corrigan C., Henning S., Schwikowski M., and Baltensperger U. (2004). Saharan dust events at the Jungfraujoch: detection by wavelength dependence of the single scattering albedo and first climatology analysis. Atmos. Chem. Phys., 4, 2465-2480, 2004 Rogers, D. C. (1988), Development of a Continuous Flow Thermal Gradient Diffusion Chamber for Ice Nucleation Studies, Atmos. Res. 22:149-181. Stetzer, O., Baschek, B., Lueoend, F., Lohmann, U. (2008), The Zurich Ice Nucleation Chamber (ZINC)-A New Instrument to Investigate Atmospheric Ice Formation, Aerosol Science and Technology, 42:64-74, 2008

  16. First Principles Simulations of Ice Nucleation at Metal Surfaces

    NASA Astrophysics Data System (ADS)

    Michaelides, Angelos

    2005-03-01

    Ice nucleation at solid surfaces is of relevance to countless scientific and technological processes. In particular the nucleation of ice nano-crystals on metal surfaces is often a key first step in cloud formation and corrosion [1]. Yet unfortunately this remains one of the most poorly understood natural phenomena; severely lacking in atomic level understanding. Here, we discuss detailed density functional theory studies aimed at putting our understanding of ice nucleation at metals on a much firmer footing. Specifically the properties of H2O hexamers - the smallest `building blocks' of ice - adsorbed on a number of close-packed transition metal surfaces have been examined. We find that the competing influences of substrate reactivity and hexamer-substrate epitaxial mismatch conspire to yield a rich variety of (novel) hexameric ice structures, some of which have been observed by recent scanning tunnelling microscopy experiments [2]. [1] H.R. Pruppacher and J.D. Klett, Microphysics of Clouds and Precipitation, (Kluwer, Dordrecht, 2003). [2] K. Morgenstern, et al., (To be published).

  17. Particle Size Measurements From the First Fundamentals of Ice Crystal Icing Physics Test in the NASA Propulsion Systems Laboratory

    NASA Technical Reports Server (NTRS)

    King, Michael C.; Bachalo, William; Kurek, Andrzej

    2017-01-01

    This paper presents particle measurements by the Artium Technologies, Inc. Phase Doppler Interferometer and High Speed Imaging instruments from the first Fundamental Ice Crystal Icing Physics test conducted in the NASA Propulsion Systems Laboratory. The work focuses on humidity sweeps at a larger and a smaller median volumetric diameter. The particle size distribution, number density, and water content measured by the Phase Doppler Interferometer and High Speed Imaging instruments from the sweeps are presented and compared. The current capability for these two instruments to measure and discriminate ICI conditions is examined.

  18. Particle Size Measurements from the first Fundamentals of Ice Crystal Icing Physics Test in the NASA Propulsion Systems Laboratory

    NASA Technical Reports Server (NTRS)

    King, Michael C.; Bachalo, William; Kurek, Andrzej

    2017-01-01

    This presentation shows particle measurements by the Artium Technologies, Inc. Phase Doppler Interferometer and High Speed Imaging instruments from the first Fundamental Ice Crystal Icing Physics test conducted in the NASA Propulsion Systems Laboratory. The work focuses on humidity sweeps at a larger and a smaller median volumetric diameter. The particle size distribution, number density, and water content measured by the Phase Doppler Interferometer and High Speed Imaging instruments from the sweeps are presented and compared. The current capability for these two instruments to measure and discriminate ICI conditions is examined.

  19. Retrieving Ice Basal Motion Using the Hydrologically Coupled JPL/UCI Ice Sheet System Model (ISSM)

    NASA Astrophysics Data System (ADS)

    Khakbaz, B.; Morlighem, M.; Seroussi, H. L.; Larour, E. Y.

    2011-12-01

    The study of basal sliding in ice sheets requires coupling ice-flow models with subglacial water flow. In fact, subglacial hydrology models can be used to model basal water-pressure explicitly and to generate basal sliding velocities. This study addresses the addition of a thin-film-based subglacial hydrologic module to the Ice Sheet System Model (ISSM) developed by JPL in collaboration with the University of California Irvine (UCI). The subglacial hydrology model follows the study of J. Johnson (2002) who assumed a non-arborscent distributed drainage system in the form of a thin film beneath ice sheets. The differential equation that arises from conservation of mass in the water system is solved numerically with the finite element method in order to obtain the spatial distribution of basal water over the study domain. The resulting sheet water thickness is then used to model the basal water-pressure and subsequently the basal sliding velocity. In this study, an introduction and preliminary results of the subglacial water flow and basal sliding velocity will be presented for the Pine Island Glacier west Antarctica.This work was performed at the California Institute of Technology's Jet Propulsion Laboratory under a contract with the National Aeronautics and Space Administration's Modeling, Analysis and Prediction (MAP) Program.

  20. Drive Fan of the NACA's Icing Research Tunnel

    NASA Image and Video Library

    1956-10-21

    A researcher examines the drive fan inside the Icing Research Tunnel at the National Advisory Committee for Aeronautics (NACA) Flight Propulsion Research Laboratory in Cleveland, Ohio. The facility was built in the mid-1940s to simulate the atmospheric conditions that caused ice to build up on aircraft. Carrier Corporation refrigeration equipment reduced the internal air temperature to -45⁰ F, and a spray bar system injected water droplets into the air stream. The 24-foot diameter drive fan, seen in this photograph, created air flow velocities up to 400 miles per hour. The 1950s were prime years for the Icing Research Tunnel. NACA engineers had spent the 1940s trying to resolve the complexities of the spray bar system. The final system put into operation in 1950 included six horizontal spray bars with 80 nozzles that produced a 4- by 4-foot cloud in the test section. The icing tunnel was used for extensive testing of civilian and military aircraft components in the 1950s. The NACA also launched a major investigation of the various methods of heating leading edge surfaces. The hot-air anti-icing technology used on today’s commercial transports was largely developed in the facility during this period. Lewis researchers also made significant breakthroughs with icing on radomes and jet engines. Although the Icing Research Tunnel yielded major breakthroughs in the 1950s, the Lewis icing research program began tapering off as interest in the space program grew. The icing tunnel’s use declined in 1956 and 1957. The launch of Sputnik in October 1957 signaled the end of the facility’s operation. The icing staff was transferred to other research projects and the icing tunnel was temporarily mothballed.

  1. Chemical and physical characterization of fertile soil-derived ice residuals from the Fifth International Ice Nucleation workshop in November 2014 (FIN-1)

    NASA Astrophysics Data System (ADS)

    Hiranuma, Naruki; Möhler, Ottmar; Kulkarni, Gourihar; Laskin, Alexander; Zelenyuk, Alla

    2017-04-01

    The climate impact of ice-nucleating particles (INPs) derived from fertile soils on global scale has been recently accented by their diversity and efficient freezing ability. However, their representation in atmospheric models is limited in part due to our incomplete knowledge of fertile soil composition, abundance and associated sensitivity to heterogeneous ice nucleation. To fill given knowledge gap, we have investigated a unique/rich set of ice crystal residual samples derived from a variety of fertile soil samples obtained through our participation in the Fifth International Ice Nucleation workshop (FIN-1). FIN-1 was held at the Aerosol Interaction and Dynamics in the Atmosphere (AIDA) facility at Karlsruhe Institute of Technology (KIT), which is the world's foremost facility for studying ice clouds in a controlled setting, in November 2014 to comprehensively study the heterogeneous ice formation in the atmosphere with collaboration among 10 international groups that were funded through European consortium, NSF and USDOE agencies. Here, we will present the nanoscale surface morphology and elemental/molecular composition of ice crystal residuals as well as that of total aerosol samples from the FIN-1 activity to identify and classify any specific mineral and organic inclusions that may have promoted nucleation of ice. Comparing total aerosols to residuals will shed light on the composition and abundance of certain particle types in INPs. Acknowledgements: The valuable contributions of the INUIT (Ice Nuclei Research Unit) collaborators, the FIN organizers, their institutions and the FIN-1 Workshop science team are gratefully acknowledged.

  2. Validation and Interpretation of a new sea ice GlobIce dataset using buoys and the CICE sea ice model

    NASA Astrophysics Data System (ADS)

    Flocco, D.; Laxon, S. W.; Feltham, D. L.; Haas, C.

    2012-04-01

    The GlobIce project has provided high resolution sea ice product datasets over the Arctic derived from SAR data in the ESA archive. The products are validated sea ice motion, deformation and fluxes through straits. GlobIce sea ice velocities, deformation data and sea ice concentration have been validated using buoy data provided by the International Arctic Buoy Program (IABP). Over 95% of the GlobIce and buoy data analysed fell within 5 km of each other. The GlobIce Eulerian image pair product showed a high correlation with buoy data. The sea ice concentration product was compared to SSM/I data. An evaluation of the validity of the GlobICE data will be presented in this work. GlobICE sea ice velocity and deformation were compared with runs of the CICE sea ice model: in particular the mass fluxes through the straits were used to investigate the correlation between the winter behaviour of sea ice and the sea ice state in the following summer.

  3. Paleo ice-cap surfaces and extents

    NASA Astrophysics Data System (ADS)

    Gillespie, A.; Pieri, D.

    2008-12-01

    from fluvial valleys in their width/depth profiles: the channels maintain width but get shallower near their sources. Link junction angle distributions within superimposed drainage networks are broader and distinct from those of evolved fluvial networks, and their character and statistics can be used to identify the perimeters of large paleo ice caps. (This work was carried out in part at the Jet Propulsion Laboratory of the California Institute of Technology under contract to NASA.)

  4. Characterization of Ice Roughness From Simulated Icing Encounters

    NASA Technical Reports Server (NTRS)

    Anderson, David N.; Shin, Jaiwon

    1997-01-01

    Detailed measurements of the size of roughness elements on ice accreted on models in the NASA Lewis Icing Research Tunnel (IRT) were made in a previous study. Only limited data from that study have been published, but included were the roughness element height, diameter and spacing. In the present study, the height and spacing data were found to correlate with the element diameter, and the diameter was found to be a function primarily of the non-dimensional parameters freezing fraction and accumulation parameter. The width of the smooth zone which forms at the leading edge of the model was found to decrease with increasing accumulation parameter. Although preliminary, the success of these correlations suggests that it may be possible to develop simple relationships between ice roughness and icing conditions for use in ice-accretion-prediction codes. These codes now require an ice-roughness estimate to determine convective heat transfer. Studies using a 7.6-cm-diameter cylinder and a 53.3-cm-chord NACA 0012 airfoil were also performed in which a 1/2-min icing spray at an initial set of conditions was followed by a 9-1/2-min spray at a second set of conditions. The resulting ice shape was compared with that from a full 10-min spray at the second set of conditions. The initial ice accumulation appeared to have no effect on the final ice shape. From this result, it would appear the accreting ice is affected very little by the initial roughness or shape features.

  5. Submesoscale sea ice-ocean interactions in marginal ice zones

    NASA Astrophysics Data System (ADS)

    Thompson, A. F.; Manucharyan, G.

    2017-12-01

    Signatures of ocean eddies, fronts and filaments are commonly observed within the marginal ice zones (MIZ) from satellite images of sea ice concentration, in situ observations via ice-tethered profilers or under-ice gliders. Localized and intermittent sea ice heating and advection by ocean eddies are currently not accounted for in climate models and may contribute to their biases and errors in sea ice forecasts. Here, we explore mechanical sea ice interactions with underlying submesoscale ocean turbulence via a suite of numerical simulations. We demonstrate that the release of potential energy stored in meltwater fronts can lead to energetic submesoscale motions along MIZs with sizes O(10 km) and Rossby numbers O(1). In low-wind conditions, cyclonic eddies and filaments efficiently trap the sea ice and advect it over warmer surface ocean waters where it can effectively melt. The horizontal eddy diffusivity of sea ice mass and heat across the MIZ can reach O(200 m2 s-1). Submesoscale ocean variability also induces large vertical velocities (order of 10 m day-1) that can bring relatively warm subsurface waters into the mixed layer. The ocean-sea ice heat fluxes are localized over cyclonic eddies and filaments reaching about 100 W m-2. We speculate that these submesoscale-driven intermittent fluxes of heat and sea ice can potentially contribute to the seasonal evolution of MIZs. With continuing global warming and sea ice thickness reduction in the Arctic Ocean, as well as the large expanse of thin sea ice in the Southern Ocean, submesoscale sea ice-ocean processes are expected to play a significant role in the climate system.

  6. Photogrammetric Accuracy and Modeling of Rolling Shutter Cameras

    NASA Astrophysics Data System (ADS)

    Vautherin, Jonas; Rutishauser, Simon; Schneider-Zapp, Klaus; Choi, Hon Fai; Chovancova, Venera; Glass, Alexis; Strecha, Christoph

    2016-06-01

    Unmanned aerial vehicles (UAVs) are becoming increasingly popular in professional mapping for stockpile analysis, construction site monitoring, and many other applications. Due to their robustness and competitive pricing, consumer UAVs are used more and more for these applications, but they are usually equipped with rolling shutter cameras. This is a significant obstacle when it comes to extracting high accuracy measurements using available photogrammetry software packages. In this paper, we evaluate the impact of the rolling shutter cameras of typical consumer UAVs on the accuracy of a 3D reconstruction. Hereto, we use a beta-version of the Pix4Dmapper 2.1 software to compare traditional (non rolling shutter) camera models against a newly implemented rolling shutter model with respect to both the accuracy of geo-referenced validation points and to the quality of the motion estimation. Multiple datasets have been acquired using popular quadrocopters (DJI Phantom 2 Vision+, DJI Inspire 1 and 3DR Solo) following a grid flight plan. For comparison, we acquired a dataset using a professional mapping drone (senseFly eBee) equipped with a global shutter camera. The bundle block adjustment of each dataset shows a significant accuracy improvement on validation ground control points when applying the new rolling shutter camera model for flights at higher speed (8m=s). Competitive accuracies can be obtained by using the rolling shutter model, although global shutter cameras are still superior. Furthermore, we are able to show that the speed of the drone (and its direction) can be solely estimated from the rolling shutter effect of the camera.

  7. Ice Stars

    NASA Image and Video Library

    2017-12-08

    Ice Stars - August 4th, 2002 Description: Like distant galaxies amid clouds of interstellar dust, chunks of sea ice drift through graceful swirls of grease ice in the frigid waters of Foxe Basin near Baffin Island in the Canadian Arctic. Sea ice often begins as grease ice, a soupy slick of tiny ice crystals on the ocean's surface. As the temperature drops, grease ice thickens and coalesces into slabs of more solid ice. Credit: USGS/NASA/Landsat 7 To learn more about the Landsat satellite go to: landsat.gsfc.nasa.gov/ NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook

  8. Oscillations and Rolling for Duffing's Equation

    NASA Astrophysics Data System (ADS)

    Aref'eva, I. Ya.; Piskovskiy, E. V.; Volovich, I. V.

    2013-01-01

    The Duffing equation has been used to model nonlinear dynamics not only in mechanics and electronics but also in biology and in neurology for the brain process modeling. Van der Pol's method is often used in nonlinear dynamics to improve perturbation theory results when describing small oscillations. However, in some other problems of nonlinear dynamics particularly in case of Duffing-Higgs equation in field theory, for the Einsten-Friedmann equations in cosmology and for relaxation processes in neurology not only small oscillations regime is of interest but also the regime of slow rolling. In the present work a method for approximate solution to nonlinear dynamics equations in the rolling regime is developed. It is shown that in order to improve perturbation theory in the rolling regime it turns out to be effective to use an expansion in hyperbolic functions instead of trigonometric functions as it is done in van der Pol's method in case of small oscillations. In particular the Duffing equation in the rolling regime is investigated using solution expressed in terms of elliptic functions. Accuracy of obtained approximation is estimated. The Duffing equation with dissipation is also considered.

  9. 1. EXTERIOR VIEW OF BUILDING THAT HOUSES THE HOT ROLL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. EXTERIOR VIEW OF BUILDING THAT HOUSES THE HOT ROLL MILL, ALSO KNOWN AS THE NO. 31 HOT ROLL MILL; LOOKING SOUTHWEST - American Brass Company, Kenosha Works, Hot Roll Mill, Kenosha, Kenosha County, WI

  10. Evolution of Grain Interfaces in Annealed Duplex Stainless Steel after Parallel Cross Rolling and Direct Rolling

    PubMed Central

    Wang, Ming; Li, Haoqing; Tian, Yujing; Guo, Hong; Fang, Xiaoying; Guo, Yuebin

    2018-01-01

    Changes in various grain interfaces, including the grain boundary and phase boundary, are a strong indication of microstructural changes, particularly ultra-fined grains achieved by large strain deformation and subsequent annealing. After direct rolling and cross rolling with the same strain of ε = 2, the distributions of the interfaces in annealed UNS S32304 duplex stainless steel were investigated using electron backscatter diffraction (EBSD) in this study. The ferrite experienced continued recovery, and a high density of low-angle grain boundaries (LAGBs) was produced. The percentage and number of twin boundaries (TBs) and LAGBs varied within the austenite. TBs were frequently found within austenite, showing a deviation from the Kurdjumov-Sachs (K-S) orientation relationship (OR) with ferrite matrix. However, LAGBs usually occur in austenite, with the K-S OR in the ferrite matrix. LAGBs were prevalent in the precipitated austenite grains, and therefore a strong texture was introduced in the cross-rolled and annealed samples, in which the precipitated austenite readily maintained the K-S OR in the ferrite matrix. By contrast, more TBs and a less robust texture were found in the precipitated austenite in direct-rolled and annealed samples, deviating from the K-S OR. PMID:29772723

  11. Ice shelf fracture parameterization in an ice sheet model

    NASA Astrophysics Data System (ADS)

    Sun, Sainan; Cornford, Stephen L.; Moore, John C.; Gladstone, Rupert; Zhao, Liyun

    2017-11-01

    Floating ice shelves exert a stabilizing force onto the inland ice sheet. However, this buttressing effect is diminished by the fracture process, which on large scales effectively softens the ice, accelerating its flow, increasing calving, and potentially leading to ice shelf breakup. We add a continuum damage model (CDM) to the BISICLES ice sheet model, which is intended to model the localized opening of crevasses under stress, the transport of those crevasses through the ice sheet, and the coupling between crevasse depth and the ice flow field and to carry out idealized numerical experiments examining the broad impact on large-scale ice sheet and shelf dynamics. In each case we see a complex pattern of damage evolve over time, with an eventual loss of buttressing approximately equivalent to halving the thickness of the ice shelf. We find that it is possible to achieve a similar ice flow pattern using a simple rule of thumb: introducing an enhancement factor ˜ 10 everywhere in the model domain. However, spatially varying damage (or equivalently, enhancement factor) fields set at the start of prognostic calculations to match velocity observations, as is widely done in ice sheet simulations, ought to evolve in time, or grounding line retreat can be slowed by an order of magnitude.

  12. Microbiological quality of ice and ice machines used in food establishments.

    PubMed

    Hampikyan, Hamparsun; Bingol, Enver Baris; Cetin, Omer; Colak, Hilal

    2017-06-01

    The ice used in the food industry has to be safe and the water used in ice production should have the quality of drinking water. The consumption of contaminated ice directly or indirectly may be a vehicle for transmission of pathogenic bacteria to humans producing outbreaks of gastrointestinal diseases. The objective of this study was to monitor the microbiological quality of ice, the water used in producing ice and the hygienic conditions of ice making machines in various food enterprises. Escherichia coli was detected in seven (6.7%) ice and 23 (21.9%) ice chest samples whereas E. coli was negative in all examined water samples. Psychrophilic bacteria were detected in 83 (79.0%) of 105 ice chest and in 68 (64.7%) of 105 ice samples, whereas Enterococci were detected only in 13 (12.4%) ice samples. Coliforms were detected in 13 (12.4%) water, 71 (67.6%) ice chest and 54 (51.4%) ice samples. In order to improve the microbiological quality of ice, the maintenance, cleaning and disinfecting of ice machines should be carried out effectively and periodically. Also, high quality water should be used for ice production.

  13. Constraining ice sheet history in the Weddell Sea, West Antarctica, using ice fabric at Korff Ice Rise

    NASA Astrophysics Data System (ADS)

    Brisbourne, A.; Smith, A.; Kendall, J. M.; Baird, A. F.; Martin, C.; Kingslake, J.

    2017-12-01

    The grounding history of ice rises (grounded area of independent flow regime within a floating ice shelf) can be used to constrain large scale ice sheet history: ice fabric, resulting from the preferred orientation of ice crystals due to the stress regime, can be used to infer this grounding history. With the aim of measuring the present day ice fabric at Korff Ice Rise, West Antarctica, a multi-azimuth wide-angle seismic experiment was undertaken. Three wide-angle common-midpoint gathers were acquired centred on the apex of the ice rise, at azimuths of 60 degrees to one another, to measure variation in seismic properties with offset and azimuth. Both vertical and horizontal receivers were used to record P and S arrivals including converted phases. Measurements of the variation with offset and azimuth of seismic traveltimes, seismic attenuation and shear wave splitting have been used to quantify seismic anisotropy in the ice column. The observations cannot be reproduced using an isotropic ice column model. Anisotropic ray tracing has been used to test likely models of ice fabric by comparison with the data. A model with a weak girdle fabric overlying a strong cluster fabric provides the best fit to the observations. Fabric of this nature is consistent with Korff Ice Rise having been stable for the order of 10,000 years without any ungrounding or significant change in the ice flow configuration across the ice rise for this period. This observation has significant implications for the ice sheet history of the Weddell Sea sector.

  14. Submesoscale Sea Ice-Ocean Interactions in Marginal Ice Zones

    NASA Astrophysics Data System (ADS)

    Manucharyan, Georgy E.; Thompson, Andrew F.

    2017-12-01

    Signatures of ocean eddies, fronts, and filaments are commonly observed within marginal ice zones (MIZs) from satellite images of sea ice concentration, and in situ observations via ice-tethered profilers or underice gliders. However, localized and intermittent sea ice heating and advection by ocean eddies are currently not accounted for in climate models and may contribute to their biases and errors in sea ice forecasts. Here, we explore mechanical sea ice interactions with underlying submesoscale ocean turbulence. We demonstrate that the release of potential energy stored in meltwater fronts can lead to energetic submesoscale motions along MIZs with spatial scales O(10 km) and Rossby numbers O(1). In low-wind conditions, cyclonic eddies and filaments efficiently trap the sea ice and advect it over warmer surface ocean waters where it can effectively melt. The horizontal eddy diffusivity of sea ice mass and heat across the MIZ can reach O(200 m2 s-1). Submesoscale ocean variability also induces large vertical velocities (order 10 m d-1) that can bring relatively warm subsurface waters into the mixed layer. The ocean-sea ice heat fluxes are localized over cyclonic eddies and filaments reaching about 100 W m-2. We speculate that these submesoscale-driven intermittent fluxes of heat and sea ice can contribute to the seasonal evolution of MIZs. With the continuing global warming and sea ice thickness reduction in the Arctic Ocean, submesoscale sea ice-ocean processes are expected to become increasingly prominent.

  15. Examination of Icing Induced Loss of Control and Its Mitigations

    NASA Technical Reports Server (NTRS)

    Reehorst, Andrew L.; Addy, Harold E., Jr.; Colantonio, Renato O.

    2010-01-01

    Factors external to the aircraft are often a significant causal factor in loss of control (LOC) accidents. In today s aviation world, very few accidents stem from a single cause and typically have a number of causal factors that culminate in a LOC accident. Very often the "trigger" that initiates an accident sequence is an external environment factor. In a recent NASA statistical analysis of LOC accidents, aircraft icing was shown to be the most common external environmental LOC causal factor for scheduled operations. When investigating LOC accident or incidents aircraft icing causal factors can be categorized into groups of 1) in-flight encounter with super-cooled liquid water clouds, 2) take-off with ice contamination, or 3) in-flight encounter with high concentrations of ice crystals. As with other flight hazards, icing induced LOC accidents can be prevented through avoidance, detection, and recovery mitigations. For icing hazards, avoidance can take the form of avoiding flight into icing conditions or avoiding the hazard of icing by making the aircraft tolerant to icing conditions. Icing detection mitigations can take the form of detecting icing conditions or detecting early performance degradation caused by icing. Recovery from icing induced LOC requires flight crew or automated systems capable of accounting for reduced aircraft performance and degraded control authority during the recovery maneuvers. In this report we review the icing induced LOC accident mitigations defined in a recent LOC study and for each mitigation describe a research topic required to enable or strengthen the mitigation. Many of these research topics are already included in ongoing or planned NASA icing research activities or are being addressed by members of the icing research community. These research activities are described and the status of the ongoing or planned research to address the technology needs is discussed

  16. Bearing, gearing, and lubrication technology

    NASA Technical Reports Server (NTRS)

    Anderson, W. J.

    1978-01-01

    Results of selected NASA research programs on rolling-element and fluid-film bearings, gears, and elastohydrodynamic lubrication are reported. Advances in rolling-element bearing material technology, which have resulted in a significant improvement in fatigue life, and which make possible new applications for rolling bearings, are discussed. Research on whirl-resistant, fluid-film bearings, suitable for very high-speed applications, is discussed. An improved method for predicting gear pitting life is reported. An improved formula for calculating the thickness of elastohydrodynamic films (the existence of which help to define the operating regime of concentrated contact mechanisms such as bearings, gears, and cams) is described.

  17. Evolution of Titan's High-Pressure Ice layer

    NASA Astrophysics Data System (ADS)

    Sotin, C.; Kalousova, K.

    2016-12-01

    Constraints on the present interior structure of Titan come from the gravity science experiment onboard the Cassini spacecraft and from the interpretation of the Extremely Low Frequency (ELF) wave observed by the Huygens probe [1, 2]. From the surface to the center, Titan would be composed of 4 layers: an icy crust, a global salty ocean, a layer of high-pressure ice (HP ice) and a core made of hydrated silicates [2, 3, 4]. The presence of a large amount of 40Ar in Titan's atmosphere argues for a geologically recent exchange process between the silicate core, where 40Ar is produced by the decay of 40K, and the atmosphere. Argon must then be able to be transported from the silicate core to the surface. This study investigates how volatiles can be transported through the HP ice layer.Recent numerical simulations [5] have demonstrated that the dynamics of the HP ice layer is controlled by convection processes in a two-phase material (water and high-pressure ice). The silicate / HP ice interface is maintained at the melting temperature, which might allow for the incorporation of volatiles such as 40Ar into the convecting HP ice. Above the hot thermal boundary layer, the temperature of the convecting HP ice is below the melting temperature, except for the upwelling plumes when they approach the cold thermal boundary layer. The upper part of the HP ice layer is at the melting point and permeable for water transport, providing a path for the transfer of volatiles trapped in the ice towards the ocean.Scaling laws are inferred from the numerical simulations [5]. They are then used to model the evolution of the HP ice layer. Specifically, we look at the effect of (i) ice viscosity, (ii) heat flux at the silicate/HP ice interface, and (iii) presence of anti-freeze compounds in the ocean, on the thickness of the HP ice layer. In addition, our results provide insights on possible resurfacing processes that could explain the geologically young age of Titan's surface. This work

  18. Fixed automated spray technology.

    DOT National Transportation Integrated Search

    2011-04-19

    This research project evaluated the construction and performance of Boschungs Fixed Automated : Spray Technology (FAST) system. The FAST system automatically sprays de-icing material on : the bridge when icing conditions are about to occur. The FA...

  19. Wave effects on ocean-ice interaction in the marginal ice zone

    NASA Technical Reports Server (NTRS)

    Liu, Antony K.; Hakkinen, Sirpa; Peng, Chih Y.

    1993-01-01

    The effects of wave train on ice-ocean interaction in the marginal ice zone are studied through numerical modeling. A coupled two-dimensional ice-ocean model has been developed to include wave effects and wind stress for the predictions of ice edge dynamics. The sea ice model is coupled to the reduced-gravity ocean model through interfacial stresses. The main dynamic balance in the ice momentum is between water-ice stress, wind stress, and wave radiation stresses. By considering the exchange of momentum between waves and ice pack through radiation stress for decaying waves, a parametric study of the effects of wave stress and wind stress on ice edge dynamics has been performed. The numerical results show significant effects from wave action. The ice edge is sharper, and ice edge meanders form in the marginal ice zone owing to forcing by wave action and refraction of swell system after a couple of days. Upwelling at the ice edge and eddy formation can be enhanced by the nonlinear effects of wave action; wave action sharpens the ice edge and can produce ice meandering, which enhances local Ekman pumping and pycnocline anomalies. The resulting ice concentration, pycnocline changes, and flow velocity field are shown to be consistent with previous observations.

  20. Rolled-up inductor structure for a radiofrequency integrated circuit (RFIC)

    DOEpatents

    Li, Xiuling; Huang, Wen; Ferreira, Placid M.; Yu, Xin

    2015-12-29

    A rolled-up inductor structure for a radiofrequency integrated circuit (RFIC) comprises a multilayer sheet in a rolled configuration comprising multiple turns about a longitudinal axis. The multilayer sheet comprises a conductive pattern layer on a strain-relieved layer, and the conductive pattern layer comprises at least one conductive strip having a length extending in a rolling direction. The at least one conductive strip thereby wraps around the longitudinal axis in the rolled configuration. The conductive pattern layer may also comprise two conductive feed lines connected to the conductive strip for passage of electrical current therethrough. The conductive strip serves as an inductor cell of the rolled-up inductor structure.

  1. Autonomous Ice Mass Balance Buoys for Seasonal Sea Ice

    NASA Astrophysics Data System (ADS)

    Whitlock, J. D.; Planck, C.; Perovich, D. K.; Parno, J. T.; Elder, B. C.; Richter-Menge, J.; Polashenski, C. M.

    2017-12-01

    The ice mass-balance represents the integration of all surface and ocean heat fluxes and attributing the impact of these forcing fluxes on the ice cover can be accomplished by increasing temporal and spatial measurements. Mass balance information can be used to understand the ongoing changes in the Arctic sea ice cover and to improve predictions of future ice conditions. Thinner seasonal ice in the Arctic necessitates the deployment of Autonomous Ice Mass Balance buoys (IMB's) capable of long-term, in situ data collection in both ice and open ocean. Seasonal IMB's (SIMB's) are free floating IMB's that allow data collection in thick ice, thin ice, during times of transition, and even open water. The newest generation of SIMB aims to increase the number of reliable IMB's in the Arctic by leveraging inexpensive commercial-grade instrumentation when combined with specially developed monitoring hardware. Monitoring tasks are handled by a custom, expandable data logger that provides low-cost flexibility for integrating a large range of instrumentation. The SIMB features ultrasonic sensors for direct measurement of both snow depth and ice thickness and a digital temperature chain (DTC) for temperature measurements every 2cm through both snow and ice. Air temperature and pressure, along with GPS data complete the Arctic picture. Additionally, the new SIMB is more compact to maximize deployment opportunities from multiple types of platforms.

  2. Mathematical modeling of a process the rolling delivery

    NASA Astrophysics Data System (ADS)

    Stepanov, Mikhail A.; Korolev, Andrey A.

    2018-03-01

    An adduced analysis of the scientific researches in a domain of the rolling equipments, also research of properties the working material. A one of perspective direction of scientific research this is mathematical modeling. That is broadly used in many scientific disciplines and especially at the technical, applied sciences. With the aid of mathematical modeling it can be study of physical properties of the researching objects and systems. A research of the rolling delivery and transporting devices realized with the aid of a construction of mathematical model of appropriate process. To be described the basic principles and conditions of a construction of mathematical models of the real objects. For example to be consider a construction of mathematical model the rolling delivery device. For a construction that is model used system of the equations, which consist of: Lagrange’s equation of a motion, describing of the law conservation of energy of a mechanical system, and the Navier - Stokes equations, which characterize of the flow of a continuous non-compressed fluid. A construction of mathematical model the rolling deliver to let determined of a total energy of device, and therefore to got the dependence upon the power of drive to a gap between of rolls. A corroborate the hypothesis about laminar the flow of a material into the rolling gap of deliver.

  3. Calendering and Rolling of Viscoplastic Materials: Theory and Experiments

    NASA Astrophysics Data System (ADS)

    Mitsoulis, E.; Sofou, S.; Muliawan, E. B.; Hatzikiriakos, S. G.

    2007-04-01

    The calendering and rolling processes are used in a wide variety of industries for the production of rolled sheets or films of specific thickness and final appearance. The acquired final sheet thickness depends mainly on the rheological properties of the material. Materials which have been used in the present study are foodstuff (such as mozzarella cheese and flour-water dough) used in food processing. These materials are rheologically viscoplastic, obeying the Herschel-Bulkley model. The results give the final sheet thickness and the torque as a function of the roll speed. Theoretical analysis based on the Lubrication Approximation Theory (LAT) shows that LAT is a good predictive tool for calendering, where the sheet thickness is very small compared with the roll size. However, in rolling where this is not true, LAT does not hold, and a 2-D analysis is necessary.

  4. Spin Ice

    NASA Astrophysics Data System (ADS)

    Bramwell, Steven T.; Gingras, Michel J. P.; Holdsworth, Peter C. W.

    2013-03-01

    Pauling's model of hydrogen disorder in water ice represents the prototype of a frustrated system. Over the years it has spawned several analogous models, including Anderson's model antiferromagnet and the statistical "vertex" models. Spin Ice is a sixteen vertex model of "ferromagnetic frustration" that is approximated by real materials, most notably the rare earth pyrochlores Ho2Ti2O7, Dy2Ti2O7 and Ho2Sn2O7. These "spin ice materials" have the Pauling zero point entropy and in all respects represent almost ideal realisations of Pauling's model. They provide experimentalists with unprecedented access to a wide variety of novel magnetic states and phase transitions that are located in different regions of the field-temperature phase diagram. They afford theoreticians the opportunity to explore many new features of the magnetic interactions and statistical mechanics of frustrated systems. This chapter is a comprehensive review of the physics -- both experimental and theoretical -- of spin ice. It starts with a discussion of the historic problem of water ice and its relation to spin ice and other frustrated magnets. The properties of spin ice are then discussed in three sections that deal with the zero field spin ice state, the numerous field-induced states (including the recently identified "kagomé ice") and the magnetic dynamics. Some materials related to spin ice are briefly described and the chapter is concluded with a short summary of spin ice physics.

  5. Vapor deposition of water on graphitic surfaces: formation of amorphous ice, bilayer ice, ice I, and liquid water.

    PubMed

    Lupi, Laura; Kastelowitz, Noah; Molinero, Valeria

    2014-11-14

    Carbonaceous surfaces are a major source of atmospheric particles and could play an important role in the formation of ice. Here we investigate through molecular simulations the stability, metastability, and molecular pathways of deposition of amorphous ice, bilayer ice, and ice I from water vapor on graphitic and atomless Lennard-Jones surfaces as a function of temperature. We find that bilayer ice is the most stable ice polymorph for small cluster sizes, nevertheless it can grow metastable well above its region of thermodynamic stability. In agreement with experiments, the simulations predict that on increasing temperature the outcome of water deposition is amorphous ice, bilayer ice, ice I, and liquid water. The deposition nucleation of bilayer ice and ice I is preceded by the formation of small liquid clusters, which have two wetting states: bilayer pancake-like (wetting) at small cluster size and droplet-like (non-wetting) at larger cluster size. The wetting state of liquid clusters determines which ice polymorph is nucleated: bilayer ice nucleates from wetting bilayer liquid clusters and ice I from non-wetting liquid clusters. The maximum temperature for nucleation of bilayer ice on flat surfaces, T(B)(max) is given by the maximum temperature for which liquid water clusters reach the equilibrium melting line of bilayer ice as wetting bilayer clusters. Increasing water-surface attraction stabilizes the pancake-like wetting state of liquid clusters leading to larger T(B)(max) for the flat non-hydrogen bonding surfaces of this study. The findings of this study should be of relevance for the understanding of ice formation by deposition mode on carbonaceous atmospheric particles, including soot.

  6. Exploration Strategy for the Ice Dwarf Planets 2013-2022

    NASA Astrophysics Data System (ADS)

    Grundy, W. M.; McKinnon, W. B.

    2009-12-01

    The past decade saw the discovery of many ice dwarf planets, a new category distinct from terrestrial and giant planets. Future ice dwarf missions depend on increasing our knowledge of these objects as a class. Competing needs to broaden the sample and to explore individual objects in greater detail must be balanced so that neither is excluded. A balance also needs to be struck between development of enabling technologies and making use of those available today. We propose this strategy for dwarf planet investigation during 2013-2022: 1. NASA should encourage and support ground- and space-based observations along with associated theoretical and laboratory work to investigate the ice dwarfs as a population, to motivate missions to individual objects and to provide context for mission results. Access to a range of telescope capabilities is essential to complete the inventory of ice dwarfs, determine their gross characteristics, and monitor their seasonal behavior. NASA's best course of action is to ensure adequate community access to facilities such as HST, Keck, VLT, Herschel, etc., to work for access to and ensure moving target tracking capabilities in future projects such as JWST, ALMA, SIM, and future large aperture ground-based telescopes still on the drawing board, and to support improvements to the IRTF. Funding support is needed for observational, laboratory, and theoretical studies to ensure availability of researchers to undertake needed work and to inform mission development activities, independent of whether or not there is a new mission start for ice dwarfs. Additional increments are also needed for thorough analysis of New Horizons and Dawn data. 2. A New Frontiers class mission using existing, proven technology to an unexplored ice dwarf should be a candidate for NASA AOs during the next decade. The Haumea system could be a particularly compelling target, as it could significantly advance understanding of the diversity and the role of collisions in ice

  7. 40 CFR 467.20 - Applicability; description of the rolling with emulsions subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... rolling with emulsions subcategory. 467.20 Section 467.20 Protection of Environment ENVIRONMENTAL... Rolling With Emulsions Subcategory § 467.20 Applicability; description of the rolling with emulsions... the rolling with emulsions subcategory. ...

  8. 40 CFR 467.20 - Applicability; description of the rolling with emulsions subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... rolling with emulsions subcategory. 467.20 Section 467.20 Protection of Environment ENVIRONMENTAL... Rolling With Emulsions Subcategory § 467.20 Applicability; description of the rolling with emulsions... the rolling with emulsions subcategory. ...

  9. Probing Individual Ice Nucleation Events with Environmental Scanning Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Wang, Bingbing; China, Swarup; Knopf, Daniel; Gilles, Mary; Laskin, Alexander

    2016-04-01

    Heterogeneous ice nucleation is one of the processes of critical relevance to a range of topics in the fundamental and the applied science and technologies. Heterogeneous ice nucleation initiated by particles proceeds where microscopic properties of particle surfaces essentially control nucleation mechanisms. Ice nucleation in the atmosphere on particles governs the formation of ice and mixed phase clouds, which in turn influence the Earth's radiative budget and climate. Heterogeneous ice nucleation is still insufficiently understood and poses significant challenges in predictive understanding of climate change. We present a novel microscopy platform allowing observation of individual ice nucleation events at temperature range of 193-273 K and relative humidity relevant for ice formation in the atmospheric clouds. The approach utilizes a home built novel ice nucleation cell interfaced with Environmental Scanning Electron Microscope (IN-ESEM system). The IN-ESEM system is applied for direct observation of individual ice formation events, determining ice nucleation mechanisms, freezing temperatures, and relative humidity onsets. Reported microanalysis of the ice nucleating particles (INP) include elemental composition detected by the energy dispersed analysis of X-rays (EDX), and advanced speciation of the organic content in particles using scanning transmission x-ray microscopy with near edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS). The performance of the IN-ESEM system is validated through a set of experiments with kaolinite particles with known ice nucleation propensity. We demonstrate an application of the IN-ESEM system to identify and characterize individual INP within a complex mixture of ambient particles.

  10. Comparative study on the corrosion behavior of the cold rolled and hot rolled low-alloy steels containing copper and antimony in flue gas desulfurization environment

    NASA Astrophysics Data System (ADS)

    Park, S. A.; Kim, J. G.; He, Y. S.; Shin, K. S.; Yoon, J. B.

    2014-12-01

    The correlation between the corrosion and microstructual characteristics of cold rolled and hot rolled low-alloy steels containing copper and antimony was established. The corrosion behavior of the specimens used in flue gas desulfurization systems was examined by electrochemical and weight loss measurements in an aggressive solution of 16.9 vol % H2SO4 + 0.35 vol % HCl at 60°C, pH 0.3. It has been shown that the corrosion rate of hot rolled steel is lower than that of cold rolled steel. The corrosion rate of cold rolled steel was increased by grain refinement, inclusion formation, and preferred grain orientation.

  11. Distinct molecular and cellular contributions to stabilizing selectin-mediated rolling under flow

    PubMed Central

    Yago, Tadayuki; Leppänen, Anne; Qiu, Haiying; Marcus, Warren D.; Nollert, Matthias U.; Zhu, Cheng; Cummings, Richard D.; McEver, Rodger P.

    2002-01-01

    Leukocytes roll on selectins at nearly constant velocities over a wide range of wall shear stresses. Ligand-coupled microspheres roll faster on selectins and detach quickly as wall shear stress is increased. To examine whether the superior performance of leukocytes reflects molecular features of native ligands or cellular properties that favor selectin-mediated rolling, we coupled structurally defined selectin ligands to microspheres or K562 cells and compared their rolling on P-selectin. Microspheres bearing soluble P-selectin glycoprotein ligand (sPSGL)-1 or 2-glycosulfopeptide (GSP)-6, a GSP modeled after the NH2-terminal P-selectin–binding region of PSGL-1, rolled equivalently but unstably on P-selectin. K562 cells displaying randomly coupled 2-GSP-6 also rolled unstably. In contrast, K562 cells bearing randomly coupled sPSGL-1 or 2-GSP-6 targeted to a membrane-distal region of the presumed glycocalyx rolled more like leukocytes: rolling steps were more uniform and shear resistant, and rolling velocities tended to plateau as wall shear stress was increased. K562 cells treated with paraformaldehyde or methyl-β-cyclodextrin before ligand coupling were less deformable and rolled unstably like microspheres. Cells treated with cytochalasin D were more deformable, further resisted detachment, and rolled slowly despite increases in wall shear stress. Thus, stable, shear-resistant rolling requires cellular properties that optimize selectin–ligand interactions. PMID:12177042

  12. Oil spill response capabilities and technologies for ice-covered Arctic marine waters: A review of recent developments and established practices.

    PubMed

    Wilkinson, Jeremy; Beegle-Krause, C J; Evers, Karl-Ulrich; Hughes, Nick; Lewis, Alun; Reed, Mark; Wadhams, Peter

    2017-12-01

    Renewed political and commercial interest in the resources of the Arctic, the reduction in the extent and thickness of sea ice, and the recent failings that led to the Deepwater Horizon oil spill, have prompted industry and its regulatory agencies, governments, local communities and NGOs to look at all aspects of Arctic oil spill countermeasures with fresh eyes. This paper provides an overview of present oil spill response capabilities and technologies for ice-covered waters, as well as under potential future conditions driven by a changing climate. Though not an exhaustive review, we provide the key research results for oil spill response from knowledge accumulated over many decades, including significant review papers that have been prepared as well as results from recent laboratory tests, field programmes and modelling work. The three main areas covered by the review are as follows: oil weathering and modelling; oil detection and monitoring; and oil spill response techniques.

  13. Wave-Ice interaction in the Marginal Ice Zone: Toward a Wave-Ocean-Ice Coupled Modeling System

    DTIC Science & Technology

    2015-09-30

    MIZ using WW3 (3 frequency bins, ice retreat in August and ice advance in October); Blue (solid): Based on observations near Antarctica by Meylan...1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Wave- Ice interaction in the Marginal Ice Zone: Toward a...Wave-Ocean- Ice Coupled Modeling System W. E. Rogers Naval Research Laboratory, Code 7322 Stennis Space Center, MS 39529 phone: (228) 688-4727

  14. Mechanical sea-ice strength parameterized as a function of ice temperature

    NASA Astrophysics Data System (ADS)

    Hata, Yukie; Tremblay, Bruno

    2016-04-01

    Mechanical sea-ice strength is key for a better simulation of the timing of landlock ice onset and break-up in the Canadian Arctic Archipelago (CAA). We estimate the mechanical strength of sea ice in the CAA by analyzing the position record measured by the several buoys deployed in the CAA between 2008 and 2013, and wind data from the Canadian Meteorological Centre's Global Deterministic Prediction System (CMC_GDPS) REforecasts (CGRF). First, we calculate the total force acting on the ice using the wind data. Next, we estimate upper (lower) bounds on the sea-ice strength by identifying cases when the sea ice deforms (does not deform) under the action of a given total force. Results from this analysis show that the ice strength of landlock sea ice in the CAA is approximately 40 kN/m on the landfast ice onset (in ice growth season). Additionally, it becomes approximately 10 kN/m on the landfast ice break-up (in melting season). The ice strength decreases with ice temperature increase, which is in accord with results from Johnston [2006]. We also include this new parametrization of sea-ice strength as a function of ice temperature in a coupled slab ocean sea ice model. The results from the model with and without the new parametrization are compared with the buoy data from the International Arctic Buoy Program (IABP).

  15. Sensitivity of open-water ice growth and ice concentration evolution in a coupled atmosphere-ocean-sea ice model

    NASA Astrophysics Data System (ADS)

    Shi, Xiaoxu; Lohmann, Gerrit

    2017-09-01

    A coupled atmosphere-ocean-sea ice model is applied to investigate to what degree the area-thickness distribution of new ice formed in open water affects the ice and ocean properties. Two sensitivity experiments are performed which modify the horizontal-to-vertical aspect ratio of open-water ice growth. The resulting changes in the Arctic sea-ice concentration strongly affect the surface albedo, the ocean heat release to the atmosphere, and the sea-ice production. The changes are further amplified through a positive feedback mechanism among the Arctic sea ice, the Atlantic Meridional Overturning Circulation (AMOC), and the surface air temperature in the Arctic, as the Fram Strait sea ice import influences the freshwater budget in the North Atlantic Ocean. Anomalies in sea-ice transport lead to changes in sea surface properties of the North Atlantic and the strength of AMOC. For the Southern Ocean, the most pronounced change is a warming along the Antarctic Circumpolar Current (ACC), owing to the interhemispheric bipolar seasaw linked to AMOC weakening. Another insight of this study lies on the improvement of our climate model. The ocean component FESOM is a newly developed ocean-sea ice model with an unstructured mesh and multi-resolution. We find that the subpolar sea-ice boundary in the Northern Hemisphere can be improved by tuning the process of open-water ice growth, which strongly influences the sea ice concentration in the marginal ice zone, the North Atlantic circulation, salinity and Arctic sea ice volume. Since the distribution of new ice on open water relies on many uncertain parameters and the knowledge of the detailed processes is currently too crude, it is a challenge to implement the processes realistically into models. Based on our sensitivity experiments, we conclude a pronounced uncertainty related to open-water sea ice growth which could significantly affect the climate system sensitivity.

  16. Fluid management in roll-to-roll nanoimprint lithography

    NASA Astrophysics Data System (ADS)

    Jain, A.; Bonnecaze, R. T.

    2013-06-01

    The key process parameters of UV roll-to-roll nanoimprint lithography are identified from an analysis of the fluid, curing, and peeling dynamics. The process includes merging of droplets of imprint material, curing of the imprint material from a viscous liquid to elastic solid resist, and pattern replication and detachment of the resist from template. The time and distances on the web or rigid substrate over which these processes occur are determined as function of the physical properties of the uncured liquid, the cured solid, and the roller configuration. The upper convected Maxwell equation is used to model the viscoelastic liquid and to calculate the force on the substrate and the torque on the roller. The available exposure time is found to be the rate limiting parameter and it is O(√Rho /uo), where R is the radius of the roller, ho is minimum gap between the roller and web, and uo is the velocity of the web. The residual layer thickness of the resist should be larger than the gap between the roller and the substrate to ensure complete feature filling and optimal pattern replication. For lower residual layer thickness, the droplets may not merge to form a continuous film for pattern transfer.

  17. Greenland ice sheet retreat since the Little Ice Age

    NASA Astrophysics Data System (ADS)

    Beitch, Marci J.

    Late 20th century and 21st century satellite imagery of the perimeter of the Greenland Ice Sheet (GrIS) provide high resolution observations of the ice sheet margins. Examining changes in ice margin positions over time yield measurements of GrIS area change and rates of margin retreat. However, longer records of ice sheet margin change are needed to establish more accurate predictions of the ice sheet's future response to global conditions. In this study, the trimzone, the area of deglaciated terrain along the ice sheet edge that lacks mature vegetation cover, is used as a marker of the maximum extent of the ice from its most recent major advance during the Little Ice Age. We compile recently acquired Landsat ETM+ scenes covering the perimeter of the GrIS on which we map area loss on land-, lake-, and marine-terminating margins. We measure an area loss of 13,327 +/- 830 km2, which corresponds to 0.8% shrinkage of the ice sheet. This equates to an averaged horizontal retreat of 363 +/- 69 m across the entire GrIS margin. Mapping the areas exposed since the Little Ice Age maximum, circa 1900 C.E., yields a century-scale rate of change. On average the ice sheet lost an area of 120 +/- 16 km 2/yr, or retreated at a rate of 3.3 +/- 0.7 m/yr since the LIA maximum.

  18. A rolling phenotype in Crohn's disease.

    PubMed

    Irwin, James; Ferguson, Emma; Simms, Lisa A; Hanigan, Katherine; Carbonnel, Franck; Radford-Smith, Graham

    2017-01-01

    The Montreal classification of disease behaviour in Crohn's disease describes progression of disease towards a stricturing and penetrating phenotype. In the present paper, we propose an alternative representation of the long-term course of Crohn's disease complications, the rolling phenotype. As is commonly observed in clinical practice, this definition allows progression to a more severe phenotype (stricturing, penetrating) but also, regression to a less severe behaviour (inflammatory, or remission) over time. All patients diagnosed with Crohn's Disease between 01/01/1994 and 01/03/2008, managed at a single centre and observed for a minimum of 5 years, had development and resolution of all complications recorded. A rolling phenotype was defined at each time point based on all observed complications in the three years prior to the time point. Phenotype was defined as B1, B2, B3, or B23 (penetrating and stenotic). The progression over time of the rolling phenotype was compared to that of the cumulative Montreal phenotype. 305 patients were observed a median of 10.0 (Intraquartile range 7.3-13.7) years. Longitudinal progression of rolling phenotype demonstrated a consistent proportion of patients with B1 (70%), B2 (20%), B3 (5%) and B23 (5%) phenotypes. These proportions were observed regardless of initial phenotype. In contrast, the cumulative Montreal phenotype progressed towards a more severe phenotype with time (B1 (39%), B2 (26%), B3(35%) at 10 years). A rolling phenotype provides an alternative view of the longitudinal burden of intra-abdominal complications in Crohn's disease. From this viewpoint, 70% of patients have durable freedom from complication over time (>3 years).

  19. Wilkins Ice Shelf

    NASA Image and Video Library

    2009-04-20

    The Wilkins Ice Shelf, as seen by NASA Terra spacecraft, on the western side of the Antarctic Peninsula, experienced multiple disintegration events in 2008. By the beginning of 2009, a narrow ice bridge was all that remained to connect the ice shelf to ice fragments fringing nearby Charcot Island. That bridge gave way in early April 2009. Days after the ice bridge rupture, on April 12, 2009, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite acquired this image of the southern base of the ice bridge, where it connected with the remnant ice shelf. Although the ice bridge has played a role in stabilizing the ice fragments in the region, its rupture doesn't guarantee the ice will immediately move away. http://photojournal.jpl.nasa.gov/catalog/PIA11991

  20. A review of sea ice proxy information from polar ice cores

    NASA Astrophysics Data System (ADS)

    Abram, Nerilie J.; Wolff, Eric W.; Curran, Mark A. J.

    2013-11-01

    Sea ice plays an important role in Earth's climate system. The lack of direct indications of past sea ice coverage, however, means that there is limited knowledge of the sensitivity and rate at which sea ice dynamics are involved in amplifying climate changes. As such, there is a need to develop new proxy records for reconstructing past sea ice conditions. Here we review the advances that have been made in using chemical tracers preserved in ice cores to determine past changes in sea ice cover around Antarctica. Ice core records of sea salt concentration show promise for revealing patterns of sea ice extent particularly over glacial-interglacial time scales. In the coldest climates, however, the sea salt signal appears to lose sensitivity and further work is required to determine how this proxy can be developed into a quantitative sea ice indicator. Methane sulphonic acid (MSA) in near-coastal ice cores has been used to reconstruct quantified changes and interannual variability in sea ice extent over shorter time scales spanning the last ˜160 years, and has potential to be extended to produce records of Antarctic sea ice changes throughout the Holocene. However the MSA ice core proxy also requires careful site assessment and interpretation alongside other palaeoclimate indicators to ensure reconstructions are not biased by non-sea ice factors, and we summarise some recommended strategies for the further development of sea ice histories from ice core MSA. For both proxies the limited information about the production and transfer of chemical markers from the sea ice zone to the Antarctic ice sheets remains an issue that requires further multidisciplinary study. Despite some exploratory and statistical work, the application of either proxy as an indicator of sea ice change in the Arctic also remains largely unknown. As information about these new ice core proxies builds, so too does the potential to develop a more comprehensive understanding of past changes in sea

  1. Tropical Cyclone Boundary Layer Rolls in Synthetic Aperture Radar Imagery

    NASA Astrophysics Data System (ADS)

    Huang, Lanqing; Li, Xiaofeng; Liu, Bin; Zhang, Jun A.; Shen, Dongliang; Zhang, Zenghui; Yu, Wenxian

    2018-04-01

    Marine atmospheric boundary layer (MABL) roll plays an important role in the turbulent exchange of momentum, sensible heat, and moisture throughout MABL of tropical cyclone (TC). Hence, rolls are believed to be closely related to TC's development, intensification, and decay processes. Spaceborne synthetic aperture radar (SAR) provides a unique capability to image the sea surface imprints of quasi-linear streaks induced by the MABL rolls within a TC. In this study, sixteen SAR images, including three images acquired during three major hurricanes: Irma, Jose, and Maria in the 2017 Atlantic hurricane season, were utilized to systematically map the distribution and wavelength of MABL rolls under the wide range of TC intensities. The images were acquired by SAR onboard RADARSAT-1/2, ENVISAT, and SENTINEL-1 satellites. Our findings are in agreement with the previous one case study of Hurricane Katrina (2005), showing the roll wavelengths are between 600 and 1,600 m. We also find that there exist roll imprints in eyewall and rainbands, although the boundary layer heights are shallower there. Besides, the spatial distribution of roll wavelengths is asymmetrical. The roll wavelengths are found to be the shortest around the storm center, increase and then decrease with distance from storm center, reaching the peak values in the range of d∗-2d∗, where d∗ is defined as the physical location to TC centers normalized by the radius of maximum wind. These MABL roll characteristics cannot be derived using conventional aircraft and land-based Doppler radar observations.

  2. Concept, Simulation, and Instrumentation for Radiometric Inflight Icing Detection

    NASA Technical Reports Server (NTRS)

    Ryerson, Charles; Koenig, George G.; Reehorst, Andrew L.; Scott, Forrest R.

    2009-01-01

    The multi-agency Flight in Icing Remote Sensing Team (FIRST), a consortium of the National Aeronautics and Space Administration (NASA), the Federal Aviation Administration (FAA), the National Center for Atmospheric Research (NCAR), the National Oceanographic and Atmospheric Administration (NOAA), and the Army Corps of Engineers (USACE), has developed technologies for remotely detecting hazardous inflight icing conditions. The USACE Cold Regions Research and Engineering Laboratory (CRREL) assessed the potential of onboard passive microwave radiometers for remotely detecting icing conditions ahead of aircraft. The dual wavelength system differences the brightness temperature of Space and clouds, with greater differences potentially indicating closer and higher magnitude cloud liquid water content (LWC). The Air Force RADiative TRANsfer model (RADTRAN) was enhanced to assess the flight track sensing concept, and a 'flying' RADTRAN was developed to simulate a radiometer system flying through simulated clouds. Neural network techniques were developed to invert brightness temperatures and obtain integrated cloud liquid water. In addition, a dual wavelength Direct-Detection Polarimeter Radiometer (DDPR) system was built for detecting hazardous drizzle drops. This paper reviews technology development to date and addresses initial polarimeter performance.

  3. Effect of friction on rolling tire-pavement interaction

    DOT National Transportation Integrated Search

    2010-11-01

    In this research, a three-dimensional (3-D) tire-pavement interaction model is developed using FEM to analyze the tire-pavement contact stress distributions at various rolling conditions (free rolling, braking/accelerating, and cornering). In additio...

  4. Failure Diagnosis and Prognosis of Rolling - Element Bearings using Artificial Neural Networks: A Critical Overview

    NASA Astrophysics Data System (ADS)

    Rao, B. K. N.; Srinivasa Pai, P.; Nagabhushana, T. N.

    2012-05-01

    Rolling - Element Bearings are extensively used in almost all global industries. Any critical failures in these vitally important components would not only affect the overall systems performance but also its reliability, safety, availability and cost-effectiveness. Proactive strategies do exist to minimise impending failures in real time and at a minimum cost. Continuous innovative developments are taking place in the field of Artificial Neural Networks (ANNs) technology. Significant research and development are taking place in many universities, private and public organizations and a wealth of published literature is available highlighting the potential benefits of employing ANNs in intelligently monitoring, diagnosing, prognosing and managing rolling-element bearing failures. This paper attempts to critically review the recent trends in this topical area of interest.

  5. Effects of microalloying on hot-rolled and cold-rolled Q&P steels

    NASA Astrophysics Data System (ADS)

    Azevedo de Araujo, Ana Luiza

    Third generation advanced high strength steels (AHSS) have been a major focus in steel development over the last decade. The premise of these types of steel is based on the potential to obtain excellent combinations of strength and ductility with low-alloy compositions by forming mixed microstructures containing retained austenite (RA). The development of heat treatments able to achieve the desired structures and properties, such as quenching and partitioning (Q&P) steels, is driven by new requirements to increase vehicle fuel economy by reducing overall weight while maintaining safety and crashworthiness. Microalloying additions of niobium (Nb) and vanadium (V) in sheet products are known to provide strengthening via grain refinement and precipitation hardening and may influence RA volume fraction and transformation behavior. Additions of microalloying elements in Q&P steels have not been extensively studied to date, however. The objective of the present study was to begin to understand the potential roles of Nb and V in hot-rolled and cold-rolled Q&P steel. For that, a common Q&P steel composition was selected as a Base alloy with 0.2C-1.5Si-2.0Mn (wt. %). Two alloys with an addition of Nb (0.02 and 0.04 wt. %) and one with an addition of V (0.06 wt. %) to the Base alloy were investigated. Both hot-rolled and cold-rolled/annealed Q&P simulations were conducted. In the hot-rolled Q&P study, thermomechanical processing was simulated via hot torsion testing in a GleebleRTM 3500, and four coiling temperatures (CT) were chosen. Microstructural evaluation (including RA measurements via electron backscattered diffraction - EBSD) and hardness measurements were performed for all alloys and coiling conditions. The analysis showed that Nb additions led to overall refinement of the prior microstructure. Maximum RA fractions were measured at the 375 °C CT, and microalloying was associated with increased RA in this condition when compared to the Base alloy. A change in

  6. Roll seat belt induced injury of the duodenum.

    PubMed

    Bergqvist, D; Hedelin, H

    1976-05-01

    A case of duodenal rupture with a roll three-point seatbelt is described. It is apparently the seventh reported case of duodenal rupture in safety belt users. A female driver fell asleep, and her car went off the road, rolling forward in a ditch, slowing slightly, and then came to a sudden stop. The rupture was unusual: on the first part of duodenum, intraperitoneal, and longitudinal. The rupture mechanism is discussed, and the deficiencies of the roll seatbelt pointed out in accidents like the one described.

  7. Roll-Tilt Perception Using a Somatosensory Bar Task

    NASA Technical Reports Server (NTRS)

    Black, F. O.; Wade, S. W.; Arshi, A.

    1999-01-01

    Visual estimates of roll-tilt perception during static roll-tilt are confounded by an offset due to the ocular counterroll that simultaneously occurs. An alternative, non-visual ('somatosensory') measure of roll-tilt perception was developed which is not contaminated by this offset. The aims of this study were to determine: 1) inter-subject variability of somatosensory settings across test session in normal subjects and patients with unilateral or bilateral vestibular loss and 2) intra-subject variability of settings across test session in normal subjects.

  8. A Scalable Route to Nanoporous Large-Area Atomically Thin Graphene Membranes by Roll-to-Roll Chemical Vapor Deposition and Polymer Support Casting.

    PubMed

    Kidambi, Piran R; Mariappan, Dhanushkodi D; Dee, Nicholas T; Vyatskikh, Andrey; Zhang, Sui; Karnik, Rohit; Hart, A John

    2018-03-28

    Scalable, cost-effective synthesis and integration of graphene is imperative to realize large-area applications such as nanoporous atomically thin membranes (NATMs). Here, we report a scalable route to the production of NATMs via high-speed, continuous synthesis of large-area graphene by roll-to-roll chemical vapor deposition (CVD), combined with casting of a hierarchically porous polymer support. To begin, we designed and built a two zone roll-to-roll graphene CVD reactor, which sequentially exposes the moving foil substrate to annealing and growth atmospheres, with a sharp, isothermal transition between the zones. The configurational flexibility of the reactor design allows for a detailed evaluation of key parameters affecting graphene quality and trade-offs to be considered for high-rate roll-to-roll graphene manufacturing. With this system, we achieve synthesis of uniform high-quality monolayer graphene ( I D / I G < 0.065) at speeds ≥5 cm/min. NATMs fabricated from the optimized graphene, via polymer casting and postprocessing, show size-selective molecular transport with performance comparable to that of membranes made from conventionally synthesized graphene. Therefore, this work establishes the feasibility of a scalable manufacturing process of NATMs, for applications including protein desalting and small-molecule separations.

  9. SEMI-ROLLED LEAF1 Encodes a Putative Glycosylphosphatidylinositol-Anchored Protein and Modulates Rice Leaf Rolling by Regulating the Formation of Bulliform Cells1[W][OA

    PubMed Central

    Xiang, Jing-Jing; Zhang, Guang-Heng; Qian, Qian; Xue, Hong-Wei

    2012-01-01

    Leaf rolling is an important agronomic trait in rice (Oryza sativa) breeding and moderate leaf rolling maintains the erectness of leaves and minimizes shadowing between leaves, leading to improved photosynthetic efficiency and grain yields. Although a few rolled-leaf mutants have been identified and some genes controlling leaf rolling have been isolated, the molecular mechanisms of leaf rolling still need to be elucidated. Here we report the isolation and characterization of SEMI-ROLLED LEAF1 (SRL1), a gene involved in the regulation of leaf rolling. Mutants srl1-1 (point mutation) and srl1-2 (transferred DNA insertion) exhibit adaxially rolled leaves due to the increased numbers of bulliform cells at the adaxial cell layers, which could be rescued by complementary expression of SRL1. SRL1 is expressed in various tissues and is expressed at low levels in bulliform cells. SRL1 protein is located at the plasma membrane and predicted to be a putative glycosylphosphatidylinositol-anchored protein. Moreover, analysis of the gene expression profile of cells that will become epidermal cells in wild type but probably bulliform cells in srl1-1 by laser-captured microdissection revealed that the expression of genes encoding vacuolar H+-ATPase (subunits A, B, C, and D) and H+-pyrophosphatase, which are increased during the formation of bulliform cells, were up-regulated in srl1-1. These results provide the transcript profile of rice leaf cells that will become bulliform cells and demonstrate that SRL1 regulates leaf rolling through inhibiting the formation of bulliform cells by negatively regulating the expression of genes encoding vacuolar H+-ATPase subunits and H+-pyrophosphatase, which will help to understand the mechanism regulating leaf rolling. PMID:22715111

  10. Valuation of coefficient of rolling friction by the inclined plane method

    NASA Astrophysics Data System (ADS)

    Ciornei, F. C.; Alaci, S.; Ciogole, V. I.; Ciornei, M. C.

    2017-05-01

    A major objective of tribological researches is characterisation of rolling friction, due to various cases encountered in classical engineering applications, like gear transmissions and cam mechanisms or more recent examples met in bioengineering and biomedical devices. A characteristic of these examples consists in reduced dimensions of the contact zones, theoretically zero, the relative motion occurring between the contact points being either sliding or rolling. A characteristic parameter for the rolling motion is the coefficient of rolling friction. The paper proposes a method for estimation of coefficient of rolling friction by studying the motion of a body of revolution on an inclined plane. Assuming the hypothesis that moment of rolling friction is proportional to the normal reaction force, the law of motion for the body on the inclined plane is found under the premise of pure rolling. It is reached the conclusion that there is an uniformly accelerated motion, and thus for a known plane slope, it is sufficient to find the time during which the body runs a certain distance, starting from motionless situation. To obtain accurate results assumes finding precisely the time of motion. The coefficient of rolling friction was estimated for several slopes of the inclined plane and it is concluded that with increased slope, the values of coefficient of rolling friction increase, fact that suggest that the proportionality between the rolling torque and normal load is valid only for domains of limited variations of normal load.

  11. Ice recrystallization inhibition in ice cream by propylene glycol monostearate.

    PubMed

    Aleong, J M; Frochot, S; Goff, H D

    2008-11-01

    The effectiveness of propylene glycol monostearate (PGMS) to inhibit ice recrystallization was evaluated in ice cream and frozen sucrose solutions. PGMS (0.3%) dramatically reduced ice crystal sizes in ice cream and in sucrose solutions frozen in a scraped-surface freezer before and after heat shock, but had no effect in quiescently frozen solutions. PGMS showed limited emulsifier properties by promoting smaller fat globule size distributions and enhanced partial coalescence in the mix and ice cream, respectively, but at a much lower level compared to conventional ice cream emulsifier. Low temperature scanning electron microscopy revealed highly irregular crystal morphology in both ice cream and sucrose solutions frozen in a scraped-surface freezer. There was strong evidence to suggest that PGMS directly interacts with ice crystals and interferes with normal surface propagation. Shear during freezing may be required for its distribution around the ice and sufficient surface coverage.

  12. Research of thread rolling on difficult-to-cut material workpieces

    NASA Astrophysics Data System (ADS)

    Popov, A. Yu; Bugay, I. A.; Nazarov, P. V.; Evdokimova, O. P.; Popov, P. E.; Vasilyev, E. V.

    2018-01-01

    In medicine production Ti-6Al-4V Grade 5 alloys are used. One of the most important tasks is to increase the strength of the products and decrease in value. The possibility to roll special thread on Ti-6Al-4V Grade 5 alloy workpiece on 2-roller thread rolling machine has been studied. This is wrought alloy, treatment of which in cold condition causes difficulties due to low plasticity. To obtain Ti-6Al-4V Grade 5 alloy product with thread by rolling is rather difficult. This is due to large axial workpiece displacements resulting from large alloy resistance to cold plastic deformation. The provision of adequate kinematics requires experimental researches and the selection of modes - speed of rolling and pressure on the movable roller. The purpose of the work is to determine the optimal modes for rolling thread on titanium alloy workpiece. It has been stated that, after rolling, the product strength has increased up to 30%. As a result of the work, the unit has been made and recommendations to choose the optimal rolling process modes have been offered.

  13. Hot forging of roll-cast high aluminum content magnesium alloys

    NASA Astrophysics Data System (ADS)

    Kishi, Tomohiro; Watari, Hisaki; Suzuki, Mayumi; Haga, Toshio

    2017-10-01

    This paper reports on hot forging of high aluminum content magnesium alloy sheets manufactured using horizontal twin-roll casting. AZ111 and AZ131 were applied for twin-roll casting, and a hot-forging test was performed to manufacture high-strength magnesium alloy components economically. For twin-roll casting, the casting conditions of a thick sheet for hot forging were investigated. It was found that twin-roll casting of a 10mm-thick magnesium alloy sheet was possible at a roll speed of 2.5m/min. The grain size of the cast strip was 50 to 70µm. In the hot-forging test, blank material was obtained from as-cast strip. A servo press machine with a servo die cushion was used to investigate appropriate forging conditions (e.g., temperature, forging load, and back pressure) for twin-roll casts (TRCs) AZ111 and AZ131. It was determined that high aluminum content magnesium alloy sheets manufactured using twin-roll casting could be forged with a forging load of 150t and a back pressure of 3t at 420 to 430°C. Applying back pressure during hot forging effectively forged a pin-shaped product.

  14. Arctic ice islands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sackinger, W.M.; Jeffries, M.O.; Lu, M.C.

    1988-01-01

    The development of offshore oil and gas resources in the Arctic waters of Alaska requires offshore structures which successfully resist the lateral forces due to moving, drifting ice. Ice islands are floating, a tabular icebergs, up to 60 meters thick, of solid ice throughout their thickness. The ice islands are thus regarded as the strongest ice features in the Arctic; fixed offshore structures which can directly withstand the impact of ice islands are possible but in some locations may be so expensive as to make oilfield development uneconomic. The resolution of the ice island problem requires two research steps: (1)more » calculation of the probability of interaction between an ice island and an offshore structure in a given region; and (2) if the probability if sufficiently large, then the study of possible interactions between ice island and structure, to discover mitigative measures to deal with the moving ice island. The ice island research conducted during the 1983-1988 interval, which is summarized in this report, was concerned with the first step. Monte Carlo simulations of ice island generation and movement suggest that ice island lifetimes range from 0 to 70 years, and that 85% of the lifetimes are less then 35 years. The simulation shows a mean value of 18 ice islands present at any time in the Arctic Ocean, with a 90% probability of less than 30 ice islands. At this time, approximately 34 ice islands are known, from observations, to exist in the Arctic Ocean, not including the 10-meter thick class of ice islands. Return interval plots from the simulation show that coastal zones of the Beaufort and Chukchi Seas, already leased for oil development, have ice island recurrences of 10 to 100 years. This implies that the ice island hazard must be considered thoroughly, and appropriate safety measures adopted, when offshore oil production plans are formulated for the Alaskan Arctic offshore. 132 refs., 161 figs., 17 tabs.« less

  15. Finite-element modeling of soft tissue rolling indentation.

    PubMed

    Sangpradit, Kiattisak; Liu, Hongbin; Dasgupta, Prokar; Althoefer, Kaspar; Seneviratne, Lakmal D

    2011-12-01

    We describe a finite-element (FE) model for simulating wheel-rolling tissue deformations using a rolling FE model (RFEM). A wheeled probe performing rolling tissue indentation has proven to be a promising approach for compensating for the loss of haptic and tactile feedback experienced during robotic-assisted minimally invasive surgery (H. Liu, D. P. Noonan, B. J. Challacombe, P. Dasgupta, L. D. Seneviratne, and K. Althoefer, "Rolling mechanical imaging for tissue abnormality localization during minimally invasive surgery, " IEEE Trans. Biomed. Eng., vol. 57, no. 2, pp. 404-414, Feb. 2010; K. Sangpradit, H. Liu, L. Seneviratne, and K. Althoefer, "Tissue identification using inverse finite element analysis of rolling indentation," in Proc. IEEE Int. Conf. Robot. Autom. , Kobe, Japan, 2009, pp. 1250-1255; H. Liu, D. Noonan, K. Althoefer, and L. Seneviratne, "The rolling approach for soft tissue modeling and mechanical imaging during robot-assisted minimally invasive surgery," in Proc. IEEE Int. Conf. Robot. Autom., May 2008, pp. 845-850; H. Liu, P. Puangmali, D. Zbyszewski, O. Elhage, P. Dasgupta, J. S. Dai, L. Seneviratne, and K. Althoefer, "An indentation depth-force sensing wheeled probe for abnormality identification during minimally invasive surgery," Proc. Inst. Mech. Eng., H, vol. 224, no. 6, pp. 751-63, 2010; D. Noonan, H. Liu, Y. Zweiri, K. Althoefer, and L. Seneviratne, "A dual-function wheeled probe for tissue viscoelastic property identification during minimally invasive surgery," in Proc. IEEE Int. Conf. Robot. Autom. , 2008, pp. 2629-2634; H. Liu, J. Li, Q. I. Poon, L. D. Seneviratne, and K. Althoefer, "Miniaturized force indentation-depth sensor for tissue abnormality identification," IEEE Int. Conf. Robot. Autom., May 2010, pp. 3654-3659). A sound understanding of wheel-tissue rolling interaction dynamics will facilitate the evaluation of signals from rolling indentation. In this paper, we model the dynamic interactions between a wheeled probe and a

  16. Ring rolling process simulation for geometry optimization

    NASA Astrophysics Data System (ADS)

    Franchi, Rodolfo; Del Prete, Antonio; Donatiello, Iolanda; Calabrese, Maurizio

    2017-10-01

    Ring Rolling is a complex hot forming process where different rolls are involved in the production of seamless rings. Since each roll must be independently controlled, different speed laws must be set; usually, in the industrial environment, a milling curve is introduced to monitor the shape of the workpiece during the deformation in order to ensure the correct ring production. In the present paper a ring rolling process has been studied and optimized in order to obtain anular components to be used in aerospace applications. In particular, the influence of process input parameters (feed rate of the mandrel and angular speed of main roll) on geometrical features of the final ring has been evaluated. For this purpose, a three-dimensional finite element model for HRR (Hot Ring Rolling) has been implemented in SFTC DEFORM V11. The FEM model has been used to formulate a proper optimization problem. The optimization procedure has been implemented in the commercial software DS ISight in order to find the combination of process parameters which allows to minimize the percentage error of each obtained dimension with respect to its nominal value. The software allows to find the relationship between input and output parameters applying Response Surface Methodology (RSM), by using the exact values of output parameters in the control points of the design space explored through FEM simulation. Once this relationship is known, the values of the output parameters can be calculated for each combination of the input parameters. After the calculation of the response surfaces for the selected output parameters, an optimization procedure based on Genetic Algorithms has been applied. At the end, the error between each obtained dimension and its nominal value has been minimized. The constraints imposed were the maximum values of standard deviations of the dimensions obtained for the final ring.

  17. The role of compressional viscoelasticity in the lubrication of rolling contacts.

    NASA Technical Reports Server (NTRS)

    Harrison, G.; Trachman, E. G.

    1972-01-01

    A simple model for the time-dependent volume response of a liquid to an applied pressure step is used to calculate the variation with rolling speed of the traction coefficient in a rolling contact system. Good agreement with experimental results is obtained at rolling speeds above 50 in/sec. At lower rolling speeds a very rapid change in the effective viscosity of the lubricant is predicted. This behavior, in conjunction with shear rate effects, is shown to lead to large errors when experimental data are extrapolated to zero rolling speed.

  18. 78 FR 34550 - Airworthiness Directives; Rolls-Royce plc Turbojet Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-10

    ... Airworthiness Directives; Rolls-Royce plc Turbojet Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: We are adopting a new airworthiness directive (AD) for all Rolls-Royce plc..., contact Defence Aerospace Communications at Rolls-Royce plc, P.O. Box 3, Gypsy Patch Lane, Filton, Bristol...

  19. 15. VIEW OF ROLLING OPERATION. INGOTS AND BAR STOCK WERE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. VIEW OF ROLLING OPERATION. INGOTS AND BAR STOCK WERE ROLLED TO A SPECIFIED THICKNESS IN PREPARATION FOR FURTHER PROCESSING. (11/82) - Rocky Flats Plant, Uranium Rolling & Forming Operations, Southeast section of plant, southeast quadrant of intersection of Central Avenue & Eighth Street, Golden, Jefferson County, CO

  20. UAV Applications for Thermodynamic Profiling:Emphasis on Ice Fog Visibility

    NASA Astrophysics Data System (ADS)

    Gultepe, Ismail; Heymsfield, Andrew; Fernando, Joseph; hoch, sebastian; pardyjack, Eric; Boudala, faisal; Ware, Randolph

    2017-04-01

    Ice fog often occurs over the Arctic, in cold climates, and near mountainous regions about 30% of time when temperatures (T) drop to -10°C or below. Ice fog affects aviation operations, transportation, and local climate. Ice Nucleation (IN) and radiative cooling play an important role by controlling the intensity of ice fog conditions. Ice fog can also occur at T above -10°C, but close to 0°C it mainly occurs due to freezing of supercooled droplets that contain an IN. To better document ice fog conditions, observations from ice fog events of the Indirect and Semi-Direct Aerosol effects on Climate (ISDAC) project (Barrow, Alaska), Fog Remote Sensing And Modeling (FRAM) project (Yellowknife, Northwest Territories), and the Mountain Terrain Atmospheric Modeling and Observations (MATERHORN) project (Heber City, Utah), were analyzed. Difficulties in measuring small ice fog particles at low temperatures and low-level research aircraft flying restrictions prevent observations from aircraft within the atmospheric boundary layer. However, Unmanned Aerial Vehicles (UAVs) can be operated safely to measure IN number concentration, Relative Humidity with respect to ice (RHi), T, horizontal wind speed (Uh) and direction, visibility, and possibly even measuring ice crystal spectra below about 500 micron, to provide a method for future research of ice fog. In this study, thermodynamic profiling was conducted using a Radiometrics Microwave Radiometer (PMWR) and Vaisala CL51 ceilometer to describe vertical spatial and temporal development of ice fog conditions. Overall, ice fog characteristics and its thermodynamic environment will be presented using both ground-based and airborne platforms such as a UAV with new sensors. Some examples of measurements from the UAV and a DMT GCIP (Droplet Measurement Technologies Ground Cloud Imaging Probe), and challenges related to both ice fog measurements and visibility parameterization will also be presented.

  1. Ice sheet systems and sea level change.

    NASA Astrophysics Data System (ADS)

    Rignot, E. J.

    2015-12-01

    Modern views of ice sheets provided by satellites, airborne surveys, in situ data and paleoclimate records while transformative of glaciology have not fundamentally changed concerns about ice sheet stability and collapse that emerged in the 1970's. Motivated by the desire to learn more about ice sheets using new technologies, we stumbled on an unexplored field of science and witnessed surprising changes before realizing that most were coming too fast, soon and large. Ice sheets are integrant part of the Earth system; they interact vigorously with the atmosphere and the oceans, yet most of this interaction is not part of current global climate models. Since we have never witnessed the collapse of a marine ice sheet, observations and exploration remain critical sentinels. At present, these observations suggest that Antarctica and Greenland have been launched into a path of multi-meter sea level rise caused by rapid climate warming. While the current loss of ice sheet mass to the ocean remains a trickle, every mm of sea level change will take centuries of climate reversal to get back, several major marine-terminating sectors have been pushed out of equilibrium, and ice shelves are irremediably being lost. As glaciers retreat from their salty, warm, oceanic margins, they will melt away and retreat slower, but concerns remain about sea level change from vastly marine-based sectors: 2-m sea level equivalent in Greenland and 23-m in Antarctica. Significant changes affect 2/4 marine-based sectors in Greenland - Jakobshavn Isb. and the northeast stream - with Petermann Gl. not far behind. Major changes have affected the Amundsen Sea sector of West Antarctica since the 1980s. Smaller yet significant changes affect the marine-based Wilkes Land sector of East Antarctica, a reminder that not all marine-based ice is in West Antarctica. Major advances in reducing uncertainties in sea level projections will require massive, interdisciplinary efforts that are not currently in place

  2. Hot-rolling of reduced activation 8CrODS ferritic steel

    NASA Astrophysics Data System (ADS)

    Wu, Xiaochao; Ukai, Shigeharu; Leng, Bin; Oono, Naoko; Hayashi, Shigenari; Sakasegawa, Hideo; Tanigawa, Hiroyasu

    2013-11-01

    The 8CrODS ferritic steel is based on J1-lot developed for the advanced fusion blanket material to increase the coolant outlet temperature. A hot-rolling was conducted at the temperature above Ar3 of 716 °C, and its effect on the microstructure and tensile strength in 8CrODS ferritic steel was evaluated, comparing together with normalized and tempered specimen. It was confirmed that hot-rolling leads to slightly increased fraction of the ferrite and highly improved tensile strength. This ferrite was formed by transformation from the hot-rolled austenite during cooling due to fine austenite grains induced by hot-rolling. The coarsening of the transformed ferrite in hot-rolled specimen can be attributed to the crystalline rotation and coalescence of the similar oriented grains. The improved strength of hot-rolled specimen was ascribed to the high dislocation density and replacement of easily deformed martensite with the transformed coarse ferrite.

  3. Rolled-up transformer structure for a radiofrequency integrated circuit (RFIC)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xiuling; Huang, Wen

    A rolled-up transformer structure comprises a multilayer sheet having a rolled configuration comprising multiple turns about a longitudinal axis. The multilayer sheet comprises more than one conductive pattern layer on a strain-relieved layer, including a first conductive film and a second conductive film separated from the first conductive film in a thickness direction. The first conductive film comprises an even number of primary conductive strips, where each primary conductive strip has a length extending in the rolling direction, and the second conductive film comprises an even number of secondary conductive strips, where each secondary conductive strip has a length extendingmore » in the rolling direction. In the rolled configuration, turns of the primary conductive strips and turns of the secondary conductive strips wrap around the longitudinal axis. The primary conductive strips serve as a primary winding and the secondary conductive strips serve as a secondary winding of the rolled-up transformer structure.« less

  4. Rolled-up transformer structure for a radiofrequency integrated circuit (RFIC)

    DOEpatents

    Li, Xiuling; Huang, Wen

    2016-05-03

    A rolled-up transformer structure comprises a multilayer sheet having a rolled configuration comprising multiple turns about a longitudinal axis. The multilayer sheet comprises more than one conductive pattern layer on a strain-relieved layer, including a first conductive film and a second conductive film separated from the first conductive film in a thickness direction. The first conductive film comprises an even number of primary conductive strips, where each primary conductive strip has a length extending in the rolling direction, and the second conductive film comprises an even number of secondary conductive strips, where each secondary conductive strip has a length extending in the rolling direction. In the rolled configuration, turns of the primary conductive strips and turns of the secondary conductive strips wrap around the longitudinal axis. The primary conductive strips serve as a primary winding and the secondary conductive strips serve as a secondary winding of the rolled-up transformer structure.

  5. Computational Fluid Dynamics Modeling of Macrosegregation and Shrinkage in Large-Diameter Steel Roll Castings

    NASA Astrophysics Data System (ADS)

    Nastac, Laurentiu

    2011-12-01

    Minimizing macrosegregation and shrinkage in large cast steel mill rolls challenges the limits of commercial foundry technology. Processing improvements have been achieved by balancing the total heat input of casting with the rate of heat extraction from the surface of the roll in the mold. A submerged entry nozzle (SEN) technique that injects a dilute alloy addition through a nozzle into the partially solidified net-shaped roll ingot can mitigate both centerline segregation and midradius channel segregate conditions. The objective of this study is to optimize the melt chemistry, solidification, and SEN conditions to minimize centerline and midradius segregation, and then to improve the quality of the transition region between the outer shell and the diluted interior region. To accomplish this objective, a multiphase, multicomponent computational fluid dynamics (CFD) code was developed for studying the macrosegregation and shrinkage under various casting conditions for a 65-ton, 1.6-m-diameter steel roll. The developed CFD framework consists of solving for the volume fraction of phases (air and steel mixture), temperature, flow, and solute balance in multicomponent alloy systems. Thermal boundary conditions were determined by measuring the temperature in the mold at several radial depths and height locations. The thermophysical properties including viscosity of steel alloy used in the simulations are functions of temperature. The steel mixture in the species-transfer model consists of the following elements: Fe, Mn, Si, S, P, C, Cr, Mo, and V. Density and liquidus temperature of the steel mixture are locally affected by the segregation of these elements. The model predictions were validated against macrosegregation measured from pieces cut from the 65-ton roll. The effect of key processing parameters such as melt composition and superheat of both the shell and the dilute interior alloy are addressed. The influence of mold type and thickness on macrosegregation and

  6. Icing Cloud Calibration of the NASA Glenn Icing Research Tunnel

    NASA Technical Reports Server (NTRS)

    Ide, Robert F.; Oldenburg, John R.

    2001-01-01

    The icing research tunnel at the NASA Glenn Research Center underwent a major rehabilitation in 1999, necessitating recalibration of the icing clouds. This report describes the methods used in the recalibration, including the procedure used to establish a uniform icing cloud and the use of a standard icing blade technique for measurement of liquid water content. The instruments and methods used to perform the droplet size calibration are also described. The liquid water content/droplet size operating envelopes of the icing tunnel are shown for a range of airspeeds and compared to the FAA icing certification criteria. The capabilities of the IRT to produce large droplet icing clouds is also detailed.

  7. Optical scattering from rough-rolled aluminum surfaces.

    PubMed

    Rönnelid, M; Adsten, M; Lindström, T; Nostell, P; Wäckelgård, E

    2001-05-01

    Bidirectional, angular resolved scatterometry was used to evaluate the feasibility of using rolled aluminum as reflectors in solar thermal collectors and solar cells. Two types of rolled aluminum with different surface roughnesses were investigated. The results show that the smoother of the two samples [rms height, (0.20 ? 0.02) mum] can be used as a nonimaging, concentrating reflector with moderate reflection losses compared with those of optically smooth aluminum reflectors. The sample with the rougher surface [rms height, (0.6 ? 0.1) mum] is not suitable as a concentrating element but can be used as planar reflectors. The orientation of the rolling grooves is then of importance for minimizing reflection losses in the system.

  8. Towards development of an operational snow on sea ice product

    NASA Astrophysics Data System (ADS)

    Stroeve, J.; Liston, G. E.; Barrett, A. P.; Tschudi, M. A.; Stewart, S.

    2017-12-01

    Sea ice has been visibly changing over the past couple of decades; most notably the annual minimum extent which has shown a distinct downward, and recently accelerating, trend. September mean sea ice extent was over 7×106 km2 in the 1980's, but has averaged less than 5×106 km2 in the last decade. Should this loss continue, there will be wide-ranging impacts on marine ecosystems, coastal communities, prospects for resource extraction and marine activity, and weather conditions in the Arctic and beyond. While changes in the spatial extent of sea ice have been routinely monitored since the 1970s, less is known about how the thickness of the ice cover has changed. While estimates of ice thickness across the Arctic Ocean have become available over the past 20 years based on data from ERS-1/2, Envisat, ICESat, CryoSat-2 satellites and Operation IceBridge aircraft campaigns, the variety of these different measurement approaches, sensor technologies and spatial coverage present formidable challenges. Key among these is that measurement techniques do not measure ice thickness directly - retrievals also require snow depth and density. Towards that end, a sophisticated snow accumulation model is tested in a Lagrangian framework to map daily snow depths across the Arctic sea ice cover using atmospheric reanalysis data as input. Accuracy of the snow accumulation is assessed through comparison with Operation IceBridge data and ice mass balance buoys (IMBs). Impacts on ice thickness retrievals are further discussed.

  9. Geometry Modeling and Grid Generation for Computational Aerodynamic Simulations Around Iced Airfoils and Wings

    NASA Technical Reports Server (NTRS)

    Choo, Yung K.; Slater, John W.; Vickerman, Mary B.; VanZante, Judith F.; Wadel, Mary F. (Technical Monitor)

    2002-01-01

    Issues associated with analysis of 'icing effects' on airfoil and wing performances are discussed, along with accomplishments and efforts to overcome difficulties with ice. Because of infinite variations of ice shapes and their high degree of complexity, computational 'icing effects' studies using available software tools must address many difficulties in geometry acquisition and modeling, grid generation, and flow simulation. The value of each technology component needs to be weighed from the perspective of the entire analysis process, from geometry to flow simulation. Even though CFD codes are yet to be validated for flows over iced airfoils and wings, numerical simulation, when considered together with wind tunnel tests, can provide valuable insights into 'icing effects' and advance our understanding of the relationship between ice characteristics and their effects on performance degradation.

  10. Interaction of ice binding proteins with ice, water and ions.

    PubMed

    Oude Vrielink, Anneloes S; Aloi, Antonio; Olijve, Luuk L C; Voets, Ilja K

    2016-03-19

    Ice binding proteins (IBPs) are produced by various cold-adapted organisms to protect their body tissues against freeze damage. First discovered in Antarctic fish living in shallow waters, IBPs were later found in insects, microorganisms, and plants. Despite great structural diversity, all IBPs adhere to growing ice crystals, which is essential for their extensive repertoire of biological functions. Some IBPs maintain liquid inclusions within ice or inhibit recrystallization of ice, while other types suppress freezing by blocking further ice growth. In contrast, ice nucleating proteins stimulate ice nucleation just below 0 °C. Despite huge commercial interest and major scientific breakthroughs, the precise working mechanism of IBPs has not yet been unraveled. In this review, the authors outline the state-of-the-art in experimental and theoretical IBP research and discuss future scientific challenges. The interaction of IBPs with ice, water and ions is examined, focusing in particular on ice growth inhibition mechanisms.

  11. Sea ice roughness: the key for predicting Arctic summer ice albedo

    NASA Astrophysics Data System (ADS)

    Landy, J.; Ehn, J. K.; Tsamados, M.; Stroeve, J.; Barber, D. G.

    2017-12-01

    Although melt ponds on Arctic sea ice evolve in stages, ice with smoother surface topography typically allows the pond water to spread over a wider area, reducing the ice-albedo and accelerating further melt. Building on this theory, we simulated the distribution of meltwater on a range of statistically-derived topographies to develop a quantitative relationship between premelt sea ice surface roughness and summer ice albedo. Our method, previously applied to ICESat observations of the end-of-winter sea ice roughness, could account for 85% of the variance in AVHRR observations of the summer ice-albedo [Landy et al., 2015]. Consequently, an Arctic-wide reduction in sea ice roughness over the ICESat operational period (from 2003 to 2008) explained a drop in ice-albedo that resulted in a 16% increase in solar heat input to the sea ice cover. Here we will review this work and present new research linking pre-melt sea ice surface roughness observations from Cryosat-2 to summer sea ice albedo over the past six years, examining the potential of winter roughness as a significant new source of sea ice predictability. We will further evaluate the possibility for high-resolution (kilometre-scale) forecasts of summer sea ice albedo from waveform-level Cryosat-2 roughness data in the landfast sea ice zone of the Canadian Arctic. Landy, J. C., J. K. Ehn, and D. G. Barber (2015), Albedo feedback enhanced by smoother Arctic sea ice, Geophys. Res. Lett., 42, 10,714-10,720, doi:10.1002/2015GL066712.

  12. Mars Ice Age, Simulated

    NASA Technical Reports Server (NTRS)

    2003-01-01

    December 17, 2003

    This simulated view shows Mars as it might have appeared during the height of a possible ice age in geologically recent time.

    Of all Solar System planets, Mars has the climate most like that of Earth. Both are sensitive to small changes in orbit and tilt. During a period about 2.1 million to 400,000 years ago, increased tilt of Mars' rotational axis caused increased solar heating at the poles. A new study using observations from NASA's Mars Global Surveyor and Mars Odyssey orbiters concludes that this polar warming caused mobilization of water vapor and dust into the atmosphere, and buildup of a surface deposit of ice and dust down to about 30 degrees latitude in both hemispheres. That is the equivalent of the southern Unites States or Saudi Arabia on Earth. Mars has been in an interglacial period characterized by less axial tilt for about the last 300,000 years. The ice-rich surface deposit has been degrading in the latitude zone of 30 degrees to 60 degrees as water-ice returns to the poles.

    In this illustration prepared for the December 18, 2003, cover of the journal Nature, the simulated surface deposit is superposed on a topography map based on altitude measurements by Global Surveyor and images from NASA's Viking orbiters of the 1970s.

    Mars Global Surveyor and Mars Odyssey are managed by NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology, Pasadena, for the NASA Office of Space Science, Washington.

  13. Recalibrated Equations for Determining Effect of Oil Filtration on Rolling Bearing Life

    NASA Technical Reports Server (NTRS)

    Needelman, William M.; Zaretsky, Erwin V.

    2014-01-01

    In 1991, Needelman and Zaretsky presented a set of empirically derived equations for bearing fatigue life (adjustment) factors (LFs) as a function of oil filter ratings. These equations for life factors were incorporated into the reference book, "STLE Life Factors for Rolling Bearings." These equations were normalized (LF = 1) to a 10-micrometer filter rating at Beta(sub x) = 200 (normal cleanliness) as it was then defined. Over the past 20 years, these life factors based on oil filtration have been used in conjunction with ANSI/ABMA standards and bearing computer codes to predict rolling bearing life. Also, additional experimental studies have been made by other investigators into the relationship between rolling bearing life and the size, number, and type of particle contamination. During this time period filter ratings have also been revised and improved, and they now use particle counting calibrated to a new National Institute of Standards and Technology (NIST) reference material, NIST SRM 2806, 1997. This paper reviews the relevant bearing life studies and describes the new filter ratings. New filter ratings, Beta(sub x(c)) = 200 and Beta(sub x(c)) = 1000, are benchmarked to old filter ratings, Beta(sub x) = 200, and vice versa. Two separate sets of filter LF values were derived based on the new filter ratings for roller bearings and ball bearings, respectively. Filter LFs can be calculated for the new filter ratings.

  14. Roll splitting for field processing of biomass

    Treesearch

    Dennis T. Curtin; Donald L. Sirois; John A. Sturos

    1987-01-01

    The concept of roll splitting wood originated in 1967 when the Tennessee Valley Authority (TVA) forest products specialists developed a wood fibrator. The objective of that work was to produce raw materials for reconstituted board products. More recently, TVA focused on roll splitting as a field process to accelerate drying of small trees (3-15 cm diameter), much...

  15. Ice crystals classification using airborne measurements in mixing phase

    NASA Astrophysics Data System (ADS)

    Sorin Vajaiac, Nicolae; Boscornea, Andreea

    2017-04-01

    This paper presents a case study of ice crystals classification from airborne measurements in mixed-phase clouds. Ice crystal shadow is recorded with CIP (Cloud Imaging Probe) component of CAPS (Cloud, Aerosol, and Precipitation Spectrometer) system. The analyzed flight was performed in the south-western part of Romania (between Pietrosani, Ramnicu Valcea, Craiova and Targu Jiu), with a Beechcraft C90 GTX which was specially equipped with a CAPS system. The temperature, during the fly, reached the lowest value at -35 °C. These low temperatures allow the formation of ice crystals and influence their form. For the here presented ice crystals classification a special software, OASIS (Optical Array Shadow Imaging Software), developed by DMT (Droplet Measurement Technologies), was used. The obtained results, as expected are influenced by the atmospheric and microphysical parameters. The particles recorded where classified in four groups: edge, irregular, round and small.

  16. ICE911 Research: Preserving and Rebuilding Reflective Ice

    NASA Astrophysics Data System (ADS)

    Field, L. A.; Chetty, S.; Manzara, A.; Venkatesh, S.

    2014-12-01

    We have developed a localized surface albedo modification technique that shows promise as a method to increase reflective multi-year ice using floating materials, chosen so as to have low subsidiary environmental impact. It is now well-known that multi-year reflective ice has diminished rapidly in the Arctic over the past 3 decades and this plays a part in the continuing rapid decrease of summer-time ice. As summer-time bright ice disappears, the Arctic is losing its ability to reflect summer insolation, and this has widespread climatic effects, as well as a direct effect on sea level rise, as oceans heat and once-land-based ice melts into the sea. We have tested the albedo modification technique on a small scale over six Winter/Spring seasons at sites including California's Sierra Nevada Mountains, a Canadian lake, and a small man-made lake in Minnesota, using various materials and an evolving array of instrumentation. The materials can float and can be made to minimize effects on marine habitat and species. The instrumentation is designed to be deployed in harsh and remote locations. Localized snow and ice preservation, and reductions in water heating, have been quantified in small-scale testing. We have continued to refine our material and deployment approaches, and we have had laboratory confirmation by NASA. In the field, the materials were successfully deployed to shield underlying snow and ice from melting; applications of granular materials remained stable in the face of local wind and storms. We are evaluating the effects of snow and ice preservation for protection of infrastructure and habitat stabilization, and we are concurrently developing our techniques to aid in water conservation. Localized albedo modification options such as those being studied in this work may act to preserve ice, glaciers, permafrost and seasonal snow areas, and perhaps aid natural ice formation processes. If this method is deployed on a large enough scale, it could conceivably

  17. Fracture of Rolled Homogeneous Steel Armor (Nucleation Threshold Stress).

    DTIC Science & Technology

    1980-01-01

    AD-AO81 618 ARMY ARMAMENT RESEARCH AND DEVELOPMENT COMMAND ABERD--ETC F/B 19/4 FRACTURE OF ROLLED HOMOGENEOUS STEEL ARMOR (NUCLEATION THRESHOL--ETC(U...ARBRL-MR-02984A QQ FRACTURE OF ROLLED HOMOGENEOUS STEEL ARMOR (NUCLEATION THRESHOLD STRESS) Gerald L Moss Lynn SeamanLy~ S, ,.DTIC S ELECTED January...nucleation stress, Crack threshold stress, Fracture, Fracture stress, Spallation, Armor, Rolled homogeneous steel armor M~ AS$TRACr (Vita ssf -- ebb

  18. Ocean-ice interaction in the marginal ice zone

    NASA Technical Reports Server (NTRS)

    Liu, Antony K.; Peng, Chich Y.

    1994-01-01

    Ocean ice interaction processes in the Marginal Ice Zone (MIZ) by wind, waves, and mesoscale features, such as upwelling and eddies, are studied using ERS-1 Synthetic Aperture Radar (SAR) images and ocean ice interaction model. A sequence of SAR images of the Chukchi Sea MIZ with three days interval are studied for ice edge advance/retreat. Simultaneous current measurements from the northeast Chukchi Sea as well as the Barrow wind record are used to interpret the MIZ dynamics.

  19. Floating ice-algal aggregates below melting arctic sea ice.

    PubMed

    Assmy, Philipp; Ehn, Jens K; Fernández-Méndez, Mar; Hop, Haakon; Katlein, Christian; Sundfjord, Arild; Bluhm, Katrin; Daase, Malin; Engel, Anja; Fransson, Agneta; Granskog, Mats A; Hudson, Stephen R; Kristiansen, Svein; Nicolaus, Marcel; Peeken, Ilka; Renner, Angelika H H; Spreen, Gunnar; Tatarek, Agnieszka; Wiktor, Jozef

    2013-01-01

    During two consecutive cruises to the Eastern Central Arctic in late summer 2012, we observed floating algal aggregates in the melt-water layer below and between melting ice floes of first-year pack ice. The macroscopic (1-15 cm in diameter) aggregates had a mucous consistency and were dominated by typical ice-associated pennate diatoms embedded within the mucous matrix. Aggregates maintained buoyancy and accumulated just above a strong pycnocline that separated meltwater and seawater layers. We were able, for the first time, to obtain quantitative abundance and biomass estimates of these aggregates. Although their biomass and production on a square metre basis was small compared to ice-algal blooms, the floating ice-algal aggregates supported high levels of biological activity on the scale of the individual aggregate. In addition they constituted a food source for the ice-associated fauna as revealed by pigments indicative of zooplankton grazing, high abundance of naked ciliates, and ice amphipods associated with them. During the Arctic melt season, these floating aggregates likely play an important ecological role in an otherwise impoverished near-surface sea ice environment. Our findings provide important observations and measurements of a unique aggregate-based habitat during the 2012 record sea ice minimum year.

  20. Floating Ice-Algal Aggregates below Melting Arctic Sea Ice

    PubMed Central

    Assmy, Philipp; Ehn, Jens K.; Fernández-Méndez, Mar; Hop, Haakon; Katlein, Christian; Sundfjord, Arild; Bluhm, Katrin; Daase, Malin; Engel, Anja; Fransson, Agneta; Granskog, Mats A.; Hudson, Stephen R.; Kristiansen, Svein; Nicolaus, Marcel; Peeken, Ilka; Renner, Angelika H. H.; Spreen, Gunnar; Tatarek, Agnieszka; Wiktor, Jozef

    2013-01-01

    During two consecutive cruises to the Eastern Central Arctic in late summer 2012, we observed floating algal aggregates in the melt-water layer below and between melting ice floes of first-year pack ice. The macroscopic (1-15 cm in diameter) aggregates had a mucous consistency and were dominated by typical ice-associated pennate diatoms embedded within the mucous matrix. Aggregates maintained buoyancy and accumulated just above a strong pycnocline that separated meltwater and seawater layers. We were able, for the first time, to obtain quantitative abundance and biomass estimates of these aggregates. Although their biomass and production on a square metre basis was small compared to ice-algal blooms, the floating ice-algal aggregates supported high levels of biological activity on the scale of the individual aggregate. In addition they constituted a food source for the ice-associated fauna as revealed by pigments indicative of zooplankton grazing, high abundance of naked ciliates, and ice amphipods associated with them. During the Arctic melt season, these floating aggregates likely play an important ecological role in an otherwise impoverished near-surface sea ice environment. Our findings provide important observations and measurements of a unique aggregate-based habitat during the 2012 record sea ice minimum year. PMID:24204642

  1. Ross Ice Shelf, Antarctic Ice and Clouds

    NASA Technical Reports Server (NTRS)

    1991-01-01

    In this view of Antarctic ice and clouds, (56.5S, 152.0W), the Ross Ice Shelf of Antarctica is almost totally clear, showing stress cracks in the ice surface caused by wind and tidal drift. Clouds on the eastern edge of the picture are associated with an Antarctic cyclone. Winds stirred up these storms have been known to reach hurricane force.

  2. Analytical ice shape predictions for flight in natural icing conditions

    NASA Technical Reports Server (NTRS)

    Berkowitz, Brian M.; Riley, James T.

    1988-01-01

    LEWICE is an analytical ice prediction code that has been evaluated against icing tunnel data, but on a more limited basis against flight data. Ice shapes predicted by LEWICE is compared with experimental ice shapes accreted on the NASA Lewis Icing Research Aircraft. The flight data selected for comparison includes liquid water content recorded using a hot wire device and droplet distribution data from a laser spectrometer; the ice shape is recorded using stereo photography. The main findings are as follows: (1) An equivalent sand grain roughness correlation different from that used for LEWICE tunnel comparisons must be employed to obtain satisfactory results for flight; (2) Using this correlation and making no other changes in the code, the comparisons to ice shapes accreted in flight are in general as good as the comparisons to ice shapes accreted in the tunnel (as in the case of tunnel ice shapes, agreement is least reliable for large glaze ice shapes at high angles of attack); (3) In some cases comparisons can be somewhat improved by utilizing the code so as to take account of the variation of parameters such as liquid water content, which may vary significantly in flight.

  3. Effect of topological patterning on self-rolling of nanomembranes.

    PubMed

    Chen, Cheng; Song, Pengfei; Meng, Fanchao; Ou, Pengfei; Liu, Xinyu; Song, Jun

    2018-08-24

    The effects of topological patterning (i.e., grating and rectangular patterns) on the self-rolling behaviors of heteroepitaxial strained nanomembranes have been systematically studied. An analytical modeling framework, validated through finite-element simulations, has been formulated to predict the resultant curvature of the patterned nanomembrane as the pattern thickness and density vary. The effectiveness of the grating pattern in regulating the rolling direction of the nanomembrane has been demonstrated and quantitatively assessed. Further to the rolling of nanomembranes, a route to achieve predictive design of helical structures has been proposed and showcased. The present study provides new knowledge and mechanistic guidance towards predictive control and tuning of roll-up nanostructures via topological patterning.

  4. Large Ice Discharge From the Greenland Ice Sheet

    NASA Technical Reports Server (NTRS)

    Rignot, Eric

    1999-01-01

    The objectives of this work are to measure the ice discharge of the Greenland Ice Sheet close to the grounding line and/or calving front, and compare the results with mass accumulation and ablation in the interior to estimate the ice sheet mass balance.

  5. GoQBot: a caterpillar-inspired soft-bodied rolling robot.

    PubMed

    Lin, Huai-Ti; Leisk, Gary G; Trimmer, Barry

    2011-06-01

    Rolling locomotion using an external force such as gravity has evolved many times. However, some caterpillars can curl into a wheel and generate their own rolling momentum as part of an escape repertoire. This change in body conformation occurs well within 100 ms and generates a linear velocity over 0.2 m s(-1), making it one of the fastest self-propelled wheeling behaviors in nature. Inspired by this behavior, we construct a soft-bodied robot to explore the dynamics and control issues of ballistic rolling. This robot, called GoQBot, closely mimics caterpillar rolling. Analyzing the whole body kinematics and 2D ground reaction forces at the robot ground anchor reveals about 1G of acceleration and more than 200 rpm of angular velocity. As a novel rolling robot, GoQBot demonstrates how morphing can produce new modes of locomotion. Furthermore, mechanical coupling of the actuators improves body coordination without sensory feedback. Such coupling is intrinsic to soft-bodied animals because there are no joints to isolate muscle-generated movements. Finally, GoQBot provides an estimate of the mechanical power for caterpillar rolling that is comparable to that of a locust jump. How caterpillar musculature produces such power in such a short time is yet to be discovered.

  6. Polar Ice Caps: a Canary for the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Honsaker, W.; Lowell, T. V.; Sagredo, E.; Kelly, M. A.; Hall, B. L.

    2010-12-01

    Ice caps are glacier masses that are highly sensitive to climate change. Because of their hypsometry they can have a binary state. When relatively slight changes in the equilibrium line altitude (ELA) either intersect or rise above the land the ice can become established or disappear. Thus these upland ice masses have a fast response time. Here we consider a way to extract the ELA signal from independent ice caps adjacent to the Greenland Ice Sheet margin. It may be that these ice caps are sensitive trackers of climate change that also impact the ice sheet margin. One example is the Istorvet Ice Cap located in Liverpool Land, East Greenland (70.881°N, 22.156°W). The ice cap topography and the underlying bedrock surface dips to the north, with peak elevation of the current ice ranging in elevation from 1050 to 745 m.a.s.l. On the eastern side of the ice mass the outlet glaciers extending down to sea level. The western margin has several small lobes in topographic depressions, with the margin reaching down to 300 m.a.s.l. Topographic highs separate the ice cap into at least 5 main catchments, each having a pair of outlet lobes toward either side of the ice cap. Because of the regional bedrock slope each catchment has its own elevation range. Therefore, as the ELA changes it is possible for some catchments of the ice cap to experience positive mass balance while others have a negative balance. Based on weather observations we estimate the present day ELA to be ~1000 m.a.s.l, meaning mass balance is negative for the majority of the ice cap. By tracking glacier presence/absence in these different catchments, we can reconstruct small changes in the ELA. Another example is the High Ice Cap (informal name) in Milne Land (70.903°N, 25.626°W, 1080 m), East Greenland. Here at least 4 unconformities in ice layers found near the southern margin of the ice cap record changing intervals of accumulation and ablation. Therefore, this location may also be sensitive to slight

  7. Bearing selection in ball-rolling dung beetles: is it constant?

    PubMed

    Baird, Emily; Byrne, Marcus J; Scholtz, Clarke H; Warrant, Eric J; Dacke, Marie

    2010-11-01

    Ball rolling in dung beetles is thought to have evolved as a means to escape intense inter- and intra-specific competition at the dung pile. Accordingly, dung beetles typically roll along a straight-line path away from the pile, this being the most effective escape strategy for transporting dung to a suitable burial site. In this study, we investigate how individual diurnal dung beetles, Scarabaeus (Kheper) nigroaeneus, select the compass bearing of their straight-line rolls. In particular, we examine whether roll bearings are constant with respect to geographic cues, celestial cues, or other environmental cues (such as wind direction). Our results reveal that the roll bearings taken by individual beetles are not constant with respect to geographic or celestial references. Environmental cues appear to have some influence over bearing selection, although the relationship is not strong. Furthermore, the variance in roll bearing that we observe is not affected by the presence or absence of other beetles. Thus, rather than being constant for individual beetles, bearing selection varies each time a beetle makes a ball and rolls it away from the dung pile. This strategy allows beetles to make an efficient escape from the dung pile while minimizing the chance of encountering competition.

  8. 14. VIEW OF METAL ROLLING OPERATION. THE METALS ARE BEING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. VIEW OF METAL ROLLING OPERATION. THE METALS ARE BEING PREPARED TO BE ROLLED INTO SHEETS OF SPECIFIC THICKNESS. COMPONENT PARTS WERE FABRICATED FROM THE METAL SHEETS. (11/82) - Rocky Flats Plant, Uranium Rolling & Forming Operations, Southeast section of plant, southeast quadrant of intersection of Central Avenue & Eighth Street, Golden, Jefferson County, CO

  9. 77 FR 6668 - Airworthiness Directives; Rolls-Royce plc Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-09

    ... Airworthiness Directives; Rolls-Royce plc Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT... all Rolls-Royce plc RB211-Trent 500 series turbofan engines. This AD requires a one-time inspection of... RB211- Trent 560A2-61 turbofan engines that have not complied with Rolls- Royce plc Service Bulletin No...

  10. Broken ice

    NASA Image and Video Library

    2017-12-08

    An area of broken glacier ice seen from the IceBridge DC-8 on Oct. 22, 2012. Credit: NASA / George Hale NASA's Operation IceBridge is an airborne science mission to study Earth's polar ice. For more information about IceBridge, visit: www.nasa.gov/icebridge NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  11. Dynamic Effect of Rolling Massage on Blood Flow

    NASA Astrophysics Data System (ADS)

    Chen, Yan-Yan; Yi, Hou-Hui; Li, Hua-Bing; Fang, Hai-Ping

    2009-02-01

    The Chinese traditional medical massage has been used as a natural therapy to eliminate some diseases. Here, the effect of the rolling massage frequency to the blood flow in the blood vessels under the rolling massage manipulation is studied by the lattice Boltzmann simulation. The simulation results show that when the frequency is smaller than or comparable to the pulsatile frequency of the blood flow, the effect on the blood flux by the rolling massage is small. On the contrast, if the frequency is twice or more times of the pulsatile frequency of the blood flow, the blood flux is greatly enhanced and increases linearly with respect to the frequency. Similar behavior has also been observed on the shear stress on the blood vessel walls. The result is helpful for understanding that the rolling massage has the function of promoting the blood circulation and removing the blood stasis.

  12. Cryosphere Science Outreach using the Ice Sheet System Model and a Virtual Ice Sheet Laboratory

    NASA Astrophysics Data System (ADS)

    Cheng, D. L. C.; Halkides, D. J.; Larour, E. Y.

    2015-12-01

    Understanding the role of Cryosphere Science within the larger context of Sea Level Rise is both a technical and educational challenge that needs to be addressed if the public at large is to trulyunderstand the implications and consequences of Climate Change. Within this context, we propose a new approach in which scientific tools are used directly inside a mobile/website platform geared towards Education/Outreach. Here, we apply this approach by using the Ice Sheet System Model, a state of the art Cryosphere model developed at NASA, and integrated within a Virtual Ice Sheet Laboratory, with the goal is to outreach Cryospherescience to K-12 and College level students. The approach mixes laboratory experiments, interactive classes/lessons on a website, and a simplified interface to a full-fledged instance of ISSM to validate the classes/lessons. This novel approach leverages new insights from the Outreach/Educational community and the interest of new generations in web based technologies and simulation tools, all of it delivered in a seamlessly integrated web platform. This work was performed at the California Institute of Technology's Jet Propulsion Laboratory undera contract with the National Aeronautics and Space Administration's Cryosphere Science Program.

  13. An Examination of the Sea Ice Rheology for Seasonal Ice Zones Based on Ice Drift and Thickness Observations

    NASA Astrophysics Data System (ADS)

    Toyota, Takenobu; Kimura, Noriaki

    2018-02-01

    The validity of the sea ice rheological model formulated by Hibler (1979), which is widely used in present numerical sea ice models, is examined for the Sea of Okhotsk as an example of the seasonal ice zone (SIZ), based on satellite-derived sea ice velocity, concentration and thickness. Our focus was the formulation of the yield curve, the shape of which can be estimated from ice drift pattern based on the energy equation of deformation, while the strength of the ice cover that determines its magnitude was evaluated using ice concentration and thickness data. Ice drift was obtained with a grid spacing of 37.5 km from the AMSR-E 89 GHz brightness temperature using a maximum cross-correlation method. The ice thickness was obtained with a spatial resolution of 100 m from a regression of the PALSAR backscatter coefficients with ice thickness. To assess scale dependence, the ice drift data derived from a coastal radar covering a 70 km range in the southernmost Sea of Okhotsk were similarly analyzed. The results obtained were mostly consistent with Hibler's formulation that was based on the Arctic Ocean on both scales with no dependence on a time scale, and justify the treatment of sea ice as a plastic material, with an elliptical shaped yield curve to some extent. However, it also highlights the difficulty in parameterizing sub-grid scale ridging in the model because grid scale ice velocities reduce the deformation magnitude by half due to the large variation of the deformation field in the SIZ.

  14. Preliminary Evaluation of Altitude Scaling for Turbofan Engine Ice Crystal Icing

    NASA Technical Reports Server (NTRS)

    Tsao, Jen-Ching

    2017-01-01

    Preliminary evaluation of altitude scaling for turbofan engine ice crystal icing simulation was conducted during the 2015 LF11 engine icing test campaign in PSL.The results showed that a simplified approach for altitude scaling to simulate the key reference engine ice growth feature and associated icing effects to the engine is possible. But special considerations are needed to address the facility operation limitation for lower altitude engine icing simulation.

  15. Characterization of Ice Roughness Variations in Scaled Glaze Icing Conditions

    NASA Technical Reports Server (NTRS)

    McClain, Stephen T.; Vargas, Mario; Tsao, Jen-Ching

    2016-01-01

    Because of the significant influence of surface tension in governing the stability and breakdown of the liquid film in flooded stagnation regions of airfoils exposed to glaze icing conditions, the Weber number is expected to be a significant parameter governing the formation and evolution of ice roughness. To investigate the influence of the Weber number on roughness formation, 53.3-cm (21-in.) and 182.9-cm (72-in.) NACA 0012 airfoils were exposed to flow conditions with essentially the same Weber number and varying stagnation collection efficiency to illuminate similarities of the ice roughness created on the different airfoils. The airfoils were exposed to icing conditions in the Icing Research Tunnel (IRT) at the NASA Glenn Research Center. Following exposure to the icing event, the airfoils were then scanned using a ROMER Absolute Arm scanning system. The resulting point clouds were then analyzed using the self-organizing map approach of McClain and Kreeger (2013) to determine the spatial roughness variations along the surfaces of the iced airfoils. The roughness characteristics on each airfoil were then compared using the relative geometries of the airfoil. The results indicate that features of the ice shape and roughness such as glaze-ice plateau limits and maximum airfoil roughness were captured well by Weber number and collection efficiency scaling of glaze icing conditions. However, secondary ice roughness features relating the instability and waviness of the liquid film on the glaze-ice plateau surface are scaled based on physics that were not captured by the local collection efficiency variations.

  16. Dark ice dynamics of the south-west Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Tedstone, Andrew J.; Bamber, Jonathan L.; Cook, Joseph M.; Williamson, Christopher J.; Fettweis, Xavier; Hodson, Andrew J.; Tranter, Martyn

    2017-11-01

    Runoff from the Greenland Ice Sheet (GrIS) has increased in recent years due largely to changes in atmospheric circulation and atmospheric warming. Albedo reductions resulting from these changes have amplified surface melting. Some of the largest declines in GrIS albedo have occurred in the ablation zone of the south-west sector and are associated with the development of dark ice surfaces. Field observations at local scales reveal that a variety of light-absorbing impurities (LAIs) can be present on the surface, ranging from inorganic particulates to cryoconite materials and ice algae. Meanwhile, satellite observations show that the areal extent of dark ice has varied significantly between recent successive melt seasons. However, the processes that drive such large interannual variability in dark ice extent remain essentially unconstrained. At present we are therefore unable to project how the albedo of bare ice sectors of the GrIS will evolve in the future, causing uncertainty in the projected sea level contribution from the GrIS over the coming decades. Here we use MODIS satellite imagery to examine dark ice dynamics on the south-west GrIS each year from 2000 to 2016. We quantify dark ice in terms of its annual extent, duration, intensity and timing of first appearance. Not only does dark ice extent vary significantly between years but so too does its duration (from 0 to > 80 % of June-July-August, JJA), intensity and the timing of its first appearance. Comparison of dark ice dynamics with potential meteorological drivers from the regional climate model MAR reveals that the JJA sensible heat flux, the number of positive minimum-air-temperature days and the timing of bare ice appearance are significant interannual synoptic controls. We use these findings to identify the surface processes which are most likely to explain recent dark ice dynamics. We suggest that whilst the spatial distribution of dark ice is best explained by outcropping of particulates from

  17. IceCube

    Science.gov Websites

    Press and Public Interest IceCube Acronym Dictionary Articles about IceCube "Inside Story the End of the Earth" LBNL CRD Report Education/ Public Interest A New Window on the Universe Ice

  18. A coupled ice-ocean model of upwelling in the marginal ice zone

    NASA Technical Reports Server (NTRS)

    Roed, L. P.; Obrien, J. J.

    1983-01-01

    A dynamical coupled ice-ocean numerical model for the marginal ice zone (MIZ) is suggested and used to study upwelling dynamics in the MIZ. The nonlinear sea ice model has a variable ice concentration and includes internal ice stress. The model is forced by stresses on the air/ocean and air/ice surfaces. The main coupling between the ice and the ocean is in the form of an interfacial stress on the ice/ocean interface. The ocean model is a linear reduced gravity model. The wind stress exerted by the atmosphere on the ocean is proportional to the fraction of open water, while the interfacial stress ice/ocean is proportional to the concentration of ice. A new mechanism for ice edge upwelling is suggested based on a geostrophic equilibrium solution for the sea ice medium. The upwelling reported in previous models invoking a stationary ice cover is shown to be replaced by a weak downwelling due to the ice motion. Most of the upwelling dynamics can be understood by analysis of the divergence of the across ice edge upper ocean transport. On the basis of numerical model, an analytical model is suggested that reproduces most of the upwelling dynamics of the more complex numerical model.

  19. Mixed Phase Modeling in GlennICE with Application to Engine Icing

    NASA Technical Reports Server (NTRS)

    Wright, William B.; Jorgenson, Philip C. E.; Veres, Joseph P.

    2011-01-01

    A capability for modeling ice crystals and mixed phase icing has been added to GlennICE. Modifications have been made to the particle trajectory algorithm and energy balance to model this behavior. This capability has been added as part of a larger effort to model ice crystal ingestion in aircraft engines. Comparisons have been made to four mixed phase ice accretions performed in the Cox icing tunnel in order to calibrate an ice erosion model. A sample ice ingestion case was performed using the Energy Efficient Engine (E3) model in order to illustrate current capabilities. Engine performance characteristics were supplied using the Numerical Propulsion System Simulation (NPSS) model for this test case.

  20. Experimental analysis of two-layered dissimilar metals by roll bonding

    NASA Astrophysics Data System (ADS)

    Zhao, Guanghui; Li, Yugui; Li, Juan; Huang, Qingxue; Ma, Lifeng

    2018-02-01

    Rolling reduction and base layers thickness have important implications for rolling compounding. A two-layered 304 stainless steel/Q345R low alloyed steel was roll bonded. The roll bonding was performed at the three thickness reductions of 25%, 40% and 55% with base layers of various thicknesses (Q345R). The microstructures of the composite were investigated by the ultra-deep microscope (OM) and scanning electron microscope (SEM) and Transmission electron microscope (TEM). Simultaneously, the mechanical properties of the composite were experimentally measured and the tensile fracture surfaces were observed by SEM. The interfaces were successfully bonded without any cracking or voids, which indicated a good fabrication of the 304/Q345R composite. The rolling reduction rate and thinning increase of the substrate contributed to the bonding effects appearance of the roll bonded sheet. The Cr and Ni enriched diffusion layer was formed by the interface elements diffusion. The Cr and Ni diffusion led to the formation of ˜10 μm wide Cr and Ni layers on the carbon steel side.

  1. Sea ice ecosystems.

    PubMed

    Arrigo, Kevin R

    2014-01-01

    Polar sea ice is one of the largest ecosystems on Earth. The liquid brine fraction of the ice matrix is home to a diverse array of organisms, ranging from tiny archaea to larger fish and invertebrates. These organisms can tolerate high brine salinity and low temperature but do best when conditions are milder. Thriving ice algal communities, generally dominated by diatoms, live at the ice/water interface and in recently flooded surface and interior layers, especially during spring, when temperatures begin to rise. Although protists dominate the sea ice biomass, heterotrophic bacteria are also abundant. The sea ice ecosystem provides food for a host of animals, with crustaceans being the most conspicuous. Uneaten organic matter from the ice sinks through the water column and feeds benthic ecosystems. As sea ice extent declines, ice algae likely contribute a shrinking fraction of the total amount of organic matter produced in polar waters.

  2. Heavy Metal Presence in Two Different Types of Ice Cream: Artisanal Ice Cream (Italian Gelato) and Industrial Ice Cream.

    PubMed

    Conficoni, D; Alberghini, L; Bissacco, E; Ferioli, M; Giaccone, V

    2017-03-01

    Ice cream, a popular product worldwide, is usually a milk-based product with other types of ingredients (fruit, eggs, cocoa, dried fruit, additives, and others). Different materials are used to obtain the desired taste, texture, consistency, and appearance of the final product. This study surveyed ice cream products available in Italy for heavy metals (lead, cadmium, chromium, tin, and arsenic). The differences between artisanal and industrial ice cream were also investigated because of the importance in the Italian diet and the diffusion of this ready-to-eat food. Ice cream sampling was performed between October 2010 and February 2011 in the northeast of Italy. A total of 100 samples were randomly collected from different sources: 50 industrial samples produced by 19 different brands were collected in coffee bars and supermarkets; 50 artisanal ice cream samples were gathered at nine different artisanal ice cream shops. Ten wooden sticks of industrial ice cream were analyzed in parallel to the ice cream. All samples were negative for arsenic and mercury. None of the artisanal ice cream samples were positive for lead and tin; 18% of the industrial ice cream samples were positive. All positive lead samples were higher than the legal limit stated for milk (0.02 mg/kg). All industrial ice cream samples were negative for cadmium, but cadmium was present in 10% of the artisanal ice cream samples. Chromium was found in 26% of the artisanal and in 58% of the industrial ice cream samples. The heavy metals found in the wooden sticks were different from the corresponding ice cream, pointing out the lack of cross-contamination between the products. Considering the results and the amount of ice cream consumed during the year, contamination through ice cream is a low risk for the Italian population, even though there is need for further analysis.

  3. Recalculated Areas for Maximum Ice Extents of the Baltic Sea During Winters 1971-2008

    NASA Astrophysics Data System (ADS)

    Niskanen, T.; Vainio, J.; Eriksson, P.; Heiler, I.

    2009-04-01

    Publication of operational ice charts in Finland was started from the Baltic Sea in a year 1915. Until year 1993 all ice charts were hand drawn paper copies but in the year 1993 ice charting software IceMap was introduced. Since then all ice charts were produced digitally. Since the year 1996 IceMap has had an option that user can calculate areas of single ice area polygons in the chart. Using this option the area of the maximum ice extent can be easily solved fully automatically. Before this option was introduced (and in full operation) all maximum extent areas were calculated manually by a planimeter. During recent years it has become clear that some areas calculated before 1996 don't give the same result as IceMap. Differences can come from for example inaccuracy of old coastlines, map projections, the calibration of the planimeter or interpretation of old ice area symbols. Old ice charts since winter 1970-71 have now been scanned, rectified and re-drawn. New maximum ice extent areas for Baltic Sea have now been re-calculated. By these new technological tools it can be concluded that in some cases clear differences can be found.

  4. Effects of alignment on the roll-over shapes of prosthetic feet.

    PubMed

    Hansen, Andrew

    2008-12-01

    Recent work suggests that a prosthetic ankle-foot component's roll-over shape - the effective rocker it conforms to between initial contact and opposite initial contact (the 'roll-over' interval of walking) - is closely linked to its final alignment in the prosthesis (as determined by a skilled prosthetist using heuristic techniques). If true, this information may help to determine the appropriate alignment for a lower limb prosthesis before it is built, or a priori. Knowledge is needed for future models that will incorporate the roll-over shape including the relative effect of alignment on the roll-over shape's radius of curvature and arc length. The purpose of this study was to evaluate the hypotheses that: (i) Changes in prosthesis alignment alter the position and orientation of a foot's roll-over shape in prosthesis-based coordinates, and (ii) these changes occur without changing the radius of curvature or arc length of the roll-over shape. To examine the hypotheses, this study examined the effects of nine alignment settings on the roll-over shapes of two prosthetic feet. The idea that alignment changes move and rotate roll-over shapes of prosthetic feet in prosthesis coordinates is supported by this work, but the hypothesis that the radius of curvature and arc length do not change for different alignments is not strongly supported by the data. A revised approach is presented that explains some of the changes to the roll-over shape parameters due to changes in rotational alignment.

  5. A method to design blended rolled edges for compact range reflectors

    NASA Technical Reports Server (NTRS)

    Gupta, Inder J.; Burnside, Walter D.

    1989-01-01

    A method to design blended rolled edges for arbitrary rim shape compact range reflectors is presented. The reflectors may be center-fed or offset-fed. The method leads to rolled edges with minimal surface discontinuities. It is shown that the reflectors designed using the prescribed method can be defined analytically using simple expressions. A procedure to obtain optimum rolled edges parameter is also presented. The procedure leads to blended rolled edges that minimize the diffracted fields emanating from the junction between the paraboloid and the rolled edge surface while satisfying certain constraints regarding the reflector size and the minimum operating frequency of the system.

  6. A method to design blended rolled edges for compact range reflectors

    NASA Technical Reports Server (NTRS)

    Gupta, Inder J.; Ericksen, Kurt P.; Burnside, Walter D.

    1990-01-01

    A method to design blended rolled edges for arbitrary rim shape compact range reflectors is presented. The reflectors may be center-fed or offset-fed. The method leads to rolled edges with minimal surface discontinuities. It is shown that the reflectors designed using the prescribed method can be defined analytically using simple expressions. A procedure to obtain optimum rolled edges parameters is also presented. The procedure leads to blended rolled edges that minimize the diffracted fields emanating from the junction between the paraboloid and the rolled edge surface while satisfying certain constraints regarding the reflector size and the minimum operating frequency of the system.

  7. Recycling strategy of the end-of-life rolling stock in China

    NASA Astrophysics Data System (ADS)

    Guo, L.; Wang, X. W.; Lin, Y.; Shen, X. F.; Liu, Y. Q.

    2018-03-01

    China's high-speed railway industry is growing fast, the side effect is that plenty of rolling stock come to the end of life each year. However, there are not relevant standards nor regulations for the recycling of rolling stock in China, which causes pollution and a waste of resources. In this paper, the basic meaning and characteristics of the circular economy is reviewed and applied to the rolling stock industry. The recycling steps are elaborated in detail according to the characteristics of rolling stock. The result proves that circular economy has both the theoretical and practical meaning in the rolling stock recycling industry in China.

  8. The response of grounded ice to ocean temperature forcing in a coupled ice sheet-ice shelf-ocean cavity model

    NASA Astrophysics Data System (ADS)

    Goldberg, D. N.; Little, C. M.; Sergienko, O. V.; Gnanadesikan, A.

    2010-12-01

    Ice shelves provide a pathway for the heat content of the ocean to influence continental ice sheets. Changes in the rate or location of basal melting can alter their geometry and effect changes in stress conditions at the grounding line, leading to a grounded ice response. Recent observations of ice streams and ice shelves in the Amundsen Sea sector of West Antarctica have been consistent with this story. On the other hand, ice dynamics in the grounding zone control flux into the shelf and thus ice shelf geometry, which has a strong influence on the circulation in the cavity beneath the shelf. Thus the coupling between the two systems, ocean and ice sheet-ice shelf, can be quite strong. We examine the response of the ice sheet-ice shelf-ocean cavity system to changes in ocean temperature using a recently developed coupled model. The coupled model consists a 3-D ocean model (GFDL's Generalized Ocean Layered Dynamics model, or GOLD) to a two-dimensional ice sheet-ice shelf model (Goldberg et al, 2009), and allows for changing cavity geometry and a migrating grounding line. Steady states of the coupled system are found even under considerable forcing. The ice shelf morphology and basal melt rate patterns of the steady states exhibit detailed structure, and furthermore seem to be unique and robust. The relationship between temperature forcing and area-averaged melt rate is influenced by the response of ice shelf morphology to thermal forcing, and is found to be sublinear in the range of forcing considered. However, results suggest that area-averaged melt rate is not the best predictor of overall system response, as grounding line stability depends on local aspects of the basal melt field. Goldberg, D N, D M Holland and C G Schoof, 2009. Grounding line movement and ice shelf buttressing in marine ice sheets, Journal of Geophysical Research-Earth Surfaces, 114, F04026.

  9. Breakup of Pack Ice, Antarctic Ice Shelf

    NASA Image and Video Library

    1991-09-18

    STS048-152-007 (12-18 Sept 1991) --- The periphery of the Antarctic ice shelf and the Antarctic Peninsula were photographed by the STS 48 crew members. Strong offshore winds, probably associated with katabatic winds from the interior of the continent, are peeling off the edges of the ice shelf into ribbons of sea ice, icebergs, bergy bits and growlers into the cold waters of the circum-Antarctic southern ocean.

  10. Boreal pollen contain ice-nucleating as well as ice-binding ‘antifreeze’ polysaccharides

    NASA Astrophysics Data System (ADS)

    Dreischmeier, Katharina; Budke, Carsten; Wiehemeier, Lars; Kottke, Tilman; Koop, Thomas

    2017-02-01

    Ice nucleation and growth is an important and widespread environmental process. Accordingly, nature has developed means to either promote or inhibit ice crystal formation, for example ice-nucleating proteins in bacteria or ice-binding antifreeze proteins in polar fish. Recently, it was found that birch pollen release ice-nucleating macromolecules when suspended in water. Here we show that birch pollen washing water exhibits also ice-binding properties such as ice shaping and ice recrystallization inhibition, similar to antifreeze proteins. We present spectroscopic evidence that both the ice-nucleating as well as the ice-binding molecules are polysaccharides bearing carboxylate groups. The spectra suggest that both polysaccharides consist of very similar chemical moieties, but centrifugal filtration indicates differences in molecular size: ice nucleation occurs only in the supernatant of a 100 kDa filter, while ice shaping is strongly enhanced in the filtrate. This finding may suggest that the larger ice-nucleating polysaccharides consist of clusters of the smaller ice-binding polysaccharides, or that the latter are fragments of the ice-nucleating polysaccharides. Finally, similar polysaccharides released from pine and alder pollen also display both ice-nucleating as well as ice-binding ability, suggesting a common mechanism of interaction with ice among several boreal pollen with implications for atmospheric processes and antifreeze protection.

  11. Boreal pollen contain ice-nucleating as well as ice-binding ‘antifreeze’ polysaccharides

    PubMed Central

    Dreischmeier, Katharina; Budke, Carsten; Wiehemeier, Lars; Kottke, Tilman; Koop, Thomas

    2017-01-01

    Ice nucleation and growth is an important and widespread environmental process. Accordingly, nature has developed means to either promote or inhibit ice crystal formation, for example ice-nucleating proteins in bacteria or ice-binding antifreeze proteins in polar fish. Recently, it was found that birch pollen release ice-nucleating macromolecules when suspended in water. Here we show that birch pollen washing water exhibits also ice-binding properties such as ice shaping and ice recrystallization inhibition, similar to antifreeze proteins. We present spectroscopic evidence that both the ice-nucleating as well as the ice-binding molecules are polysaccharides bearing carboxylate groups. The spectra suggest that both polysaccharides consist of very similar chemical moieties, but centrifugal filtration indicates differences in molecular size: ice nucleation occurs only in the supernatant of a 100 kDa filter, while ice shaping is strongly enhanced in the filtrate. This finding may suggest that the larger ice-nucleating polysaccharides consist of clusters of the smaller ice-binding polysaccharides, or that the latter are fragments of the ice-nucleating polysaccharides. Finally, similar polysaccharides released from pine and alder pollen also display both ice-nucleating as well as ice-binding ability, suggesting a common mechanism of interaction with ice among several boreal pollen with implications for atmospheric processes and antifreeze protection. PMID:28157236

  12. The Six Track Scherzer Rolling Lift Bridge…Two double track spans ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    The Six Track Scherzer Rolling Lift Bridge…Two double track spans closed. One double-track span open. Photocopy of plate xvi in Scherzer Rolling Lift Bridge Company, Scherzer Rolling Lift Bridges. - New York, New Haven & Hartford Railroad, Fort Point Channel Rolling Lift Bridge, Spanning Fort Point Channel, Boston, Suffolk County, MA

  13. Ice formation on kaolinite: Insights from molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Sosso, Gabriele C.; Tribello, Gareth A.; Zen, Andrea; Pedevilla, Philipp; Michaelides, Angelos

    2016-12-01

    The formation of ice affects many aspects of our everyday life as well as important technologies such as cryotherapy and cryopreservation. Foreign substances almost always aid water freezing through heterogeneous ice nucleation, but the molecular details of this process remain largely unknown. In fact, insight into the microscopic mechanism of ice formation on different substrates is difficult to obtain even if state-of-the-art experimental techniques are used. At the same time, atomistic simulations of heterogeneous ice nucleation frequently face extraordinary challenges due to the complexity of the water-substrate interaction and the long time scales that characterize nucleation events. Here, we have investigated several aspects of molecular dynamics simulations of heterogeneous ice nucleation considering as a prototypical ice nucleating material the clay mineral kaolinite, which is of relevance in atmospheric science. We show via seeded molecular dynamics simulations that ice nucleation on the hydroxylated (001) face of kaolinite proceeds exclusively via the formation of the hexagonal ice polytype. The critical nucleus size is two times smaller than that obtained for homogeneous nucleation at the same supercooling. Previous findings suggested that the flexibility of the kaolinite surface can alter the time scale for ice nucleation within molecular dynamics simulations. However, we here demonstrate that equally flexible (or non flexible) kaolinite surfaces can lead to very different outcomes in terms of ice formation, according to whether or not the surface relaxation of the clay is taken into account. We show that very small structural changes upon relaxation dramatically alter the ability of kaolinite to provide a template for the formation of a hexagonal overlayer of water molecules at the water-kaolinite interface, and that this relaxation therefore determines the nucleation ability of this mineral.

  14. Large Scale Triboelectric Nanogenerator and Self-Powered Pressure Sensor Array Using Low Cost Roll-to-Roll UV Embossing

    PubMed Central

    Dhakar, Lokesh; Gudla, Sudeep; Shan, Xuechuan; Wang, Zhiping; Tay, Francis Eng Hock; Heng, Chun-Huat; Lee, Chengkuo

    2016-01-01

    Triboelectric nanogenerators (TENGs) have emerged as a potential solution for mechanical energy harvesting over conventional mechanisms such as piezoelectric and electromagnetic, due to easy fabrication, high efficiency and wider choice of materials. Traditional fabrication techniques used to realize TENGs involve plasma etching, soft lithography and nanoparticle deposition for higher performance. But lack of truly scalable fabrication processes still remains a critical challenge and bottleneck in the path of bringing TENGs to commercial production. In this paper, we demonstrate fabrication of large scale triboelectric nanogenerator (LS-TENG) using roll-to-roll ultraviolet embossing to pattern polyethylene terephthalate sheets. These LS-TENGs can be used to harvest energy from human motion and vehicle motion from embedded devices in floors and roads, respectively. LS-TENG generated a power density of 62.5 mW m−2. Using roll-to-roll processing technique, we also demonstrate a large scale triboelectric pressure sensor array with pressure detection sensitivity of 1.33 V kPa−1. The large scale pressure sensor array has applications in self-powered motion tracking, posture monitoring and electronic skin applications. This work demonstrates scalable fabrication of TENGs and self-powered pressure sensor arrays, which will lead to extremely low cost and bring them closer to commercial production. PMID:26905285

  15. Duality of Ross Ice Shelf systems: crustal boundary, ice sheet processes and ocean circulation from ROSETTA-Ice surveys

    NASA Astrophysics Data System (ADS)

    Tinto, K. J.; Siddoway, C. S.; Padman, L.; Fricker, H. A.; Das, I.; Porter, D. F.; Springer, S. R.; Siegfried, M. R.; Caratori Tontini, F.; Bell, R. E.

    2017-12-01

    Bathymetry beneath Antarctic ice shelves controls sub-ice-shelf ocean circulation and has a major influence on the stability and dynamics of the ice sheets. Beneath the Ross Ice Shelf, the sea-floor bathymetry is a product of both tectonics and glacial processes, and is influenced by the processes it controls. New aerogeophysical surveys have revealed a fundamental crustal boundary bisecting the Ross Ice Shelf and imparting a duality to the Ross Ice Shelf systems, encompassing bathymetry, ocean circulation and ice flow history. The ROSETTA-Ice surveys were designed to increase the resolution of Ross Ice Shelf mapping from the 55 km RIGGS survey of the 1970s to a 10 km survey grid, flown over three years from New York Air National Guard LC130s. Radar, LiDAR, gravity and magnetic instruments provide a top to bottom profile of the ice shelf and the underlying seafloor, with 20 km resolution achieved in the first two survey seasons (2015 and 2016). ALAMO ocean-profiling floats deployed in the 2016 season are measuring the temperature and salinity of water entering and exiting the sub-ice water cavity. A significant east-west contrast in the character of the magnetic and gravity fields reveals that the lithospheric boundary between East and West Antarctica exists not at the base of the Transantarctic Mountains (TAM), as previously thought, but 300 km further east. The newly-identified boundary spatially coincides with the southward extension of the Central High, a rib of shallow basement identified in the Ross Sea. The East Antarctic side is characterized by lower amplitude magnetic anomalies and denser TAM-type lithosphere compared to the West Antarctic side. The crustal structure imparts a fundamental duality on the overlying ice and ocean, with deeper bathymetry and thinner ice on the East Antarctic side creating a larger sub-ice cavity for ocean circulation. The West Antarctic side has a shallower seabed, more restricted ocean access and a more complex history of

  16. Ice Types in the Beaufort Sea, Alaska

    NASA Technical Reports Server (NTRS)

    2003-01-01

    the MISR cameras, whereas younger, smoother ice types are predominantly forward scattering. The MISR map at right was generated using a statistical classification routine (called ISODATA) and analyzed using ice charts from the National Ice Center. Five classes of sea ice were found based upon the classification of MISR angular data. These are described, based on interpretation of the SAR image, by the image key. Very smooth ice areas that are predominantly forward scattering are colored red. Frost flowers are largely smooth to the MISR visible band sensor and are mapped as forward scattering. Areas mapped as blue are predominantly backward scattering, and the other three classes have statistically distinct angular signatures and fall within the middle of the forward/backward scattering continuum. Some areas that may be first year or younger ice between the multi year ice floes are not discernible to SAR, illustrating how MISR potentially can make a unique contribution to sea ice mapping.

    The Multi-angle Imaging SpectroRadiometer observes the daylit Earth continuously and every 9 days views the entire globe between 82 degrees north and 82 degrees south latitude. This data product was generated from a portion of the imagery acquired during Terra orbit 6663. The MISR image has been cropped to include an area that is 200 kilometers wide, and utilizes data from blocks 30 to 33 within World Reference System-2 path 71.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory,Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

  17. Noncontact conductivity and dielectric measurement for high throughput roll-to-roll nanomanufacturing

    NASA Astrophysics Data System (ADS)

    Orloff, Nathan D.; Long, Christian J.; Obrzut, Jan; Maillaud, Laurent; Mirri, Francesca; Kole, Thomas P.; McMichael, Robert D.; Pasquali, Matteo; Stranick, Stephan J.; Alexander Liddle, J.

    2015-11-01

    Advances in roll-to-roll processing of graphene and carbon nanotubes have at last led to the continuous production of high-quality coatings and filaments, ushering in a wave of applications for flexible and wearable electronics, woven fabrics, and wires. These applications often require specific electrical properties, and hence precise control over material micro- and nanostructure. While such control can be achieved, in principle, by closed-loop processing methods, there are relatively few noncontact and nondestructive options for quantifying the electrical properties of materials on a moving web at the speed required in modern nanomanufacturing. Here, we demonstrate a noncontact microwave method for measuring the dielectric constant and conductivity (or geometry for samples of known dielectric properties) of materials in a millisecond. Such measurement times are compatible with current and future industrial needs, enabling real-time materials characterization and in-line control of processing variables without disrupting production.

  18. Noncontact conductivity and dielectric measurement for high throughput roll-to-roll nanomanufacturing

    PubMed Central

    Orloff, Nathan D.; Long, Christian J.; Obrzut, Jan; Maillaud, Laurent; Mirri, Francesca; Kole, Thomas P.; McMichael, Robert D.; Pasquali, Matteo; Stranick, Stephan J.; Alexander Liddle, J.

    2015-01-01

    Advances in roll-to-roll processing of graphene and carbon nanotubes have at last led to the continuous production of high-quality coatings and filaments, ushering in a wave of applications for flexible and wearable electronics, woven fabrics, and wires. These applications often require specific electrical properties, and hence precise control over material micro- and nanostructure. While such control can be achieved, in principle, by closed-loop processing methods, there are relatively few noncontact and nondestructive options for quantifying the electrical properties of materials on a moving web at the speed required in modern nanomanufacturing. Here, we demonstrate a noncontact microwave method for measuring the dielectric constant and conductivity (or geometry for samples of known dielectric properties) of materials in a millisecond. Such measurement times are compatible with current and future industrial needs, enabling real-time materials characterization and in-line control of processing variables without disrupting production. PMID:26592441

  19. Multiyear ice transport and small scale sea ice deformation near the Alaska coast measured by air-deployable Ice Trackers

    NASA Astrophysics Data System (ADS)

    Mahoney, A. R.; Kasper, J.; Winsor, P.

    2015-12-01

    Highly complex patterns of ice motion and deformation were captured by fifteen satellite-telemetered GPS buoys (known as Ice Trackers) deployed near Barrow, Alaska, in spring 2015. Two pentagonal clusters of buoys were deployed on pack ice by helicopter in the Beaufort Sea between 20 and 80 km offshore. During deployment, ice motion in the study region was effectively zero, but two days later the buoys captured a rapid transport event in which multiyear ice from the Beaufort Sea was flushed into the Chukchi Sea. During this event, westward ice motion began in the Chukchi Sea and propagated eastward. This created new openings in the ice and led to rapid elongation of the clusters as the westernmost buoys accelerated away from their neighbors to the east. The buoys tracked ice velocities of over 1.5 ms-1, with fastest motion occurring closest to the coast indicating strong current shear. Three days later, ice motion reversed and the two clusters became intermingled, rendering divergence calculations based on the area enclosed by clusters invalid. The data show no detectable difference in velocity between first year and multiyear ice floes, but Lagrangian timeseries of SAR imagery centered on each buoy show that first year ice underwent significant small-scale deformation during the event. The five remaining buoys were deployed by local residents on prominent ridges embedded in the landfast ice within 16 km of Barrow in order to track the fate of such features after they detached from the coast. Break-up of the landfast ice took place over a period of several days and, although the buoys each initially followed a similar eastward trajectory around Point Barrow into the Beaufort Sea, they rapidly dispersed over an area more than 50 km across. With rapid environmental and socio-economic change in the Arctic, understanding the complexity of nearshore ice motion is increasingly important for predict future changes in the ice and the tracking ice-related hazards

  20. Microfluidic Cold-Finger Device for the Investigation of Ice-Binding Proteins.

    PubMed

    Haleva, Lotem; Celik, Yeliz; Bar-Dolev, Maya; Pertaya-Braun, Natalya; Kaner, Avigail; Davies, Peter L; Braslavsky, Ido

    2016-09-20

    Ice-binding proteins (IBPs) bind to ice crystals and control their structure, enlargement, and melting, thereby helping their host organisms to avoid injuries associated with ice growth. IBPs are useful in applications where ice growth control is necessary, such as cryopreservation, food storage, and anti-icing. The study of an IBP's mechanism of action is limited by the technological difficulties of in situ observations of molecules at the dynamic interface between ice and water. We describe herein a new, to our knowledge, apparatus designed to generate a controlled temperature gradient in a microfluidic chip, called a microfluidic cold finger (MCF). This device allows growth of a stable ice crystal that can be easily manipulated with or without IBPs in solution. Using the MCF, we show that the fluorescence signal of IBPs conjugated to green fluorescent protein is reduced upon freezing and recovers at melting. This finding strengthens the evidence for irreversible binding of IBPs to their ligand, ice. We also used the MCF to demonstrate the basal-plane affinity of several IBPs, including a recently described IBP from Rhagium inquisitor. Use of the MCF device, along with a temperature-controlled setup, provides a relatively simple and robust technique that can be widely used for further analysis of materials at the ice/water interface. Copyright © 2016. Published by Elsevier Inc.