Sample records for ice shelf melting

  1. Ice-shelf melting around Antarctica

    NASA Astrophysics Data System (ADS)

    Rignot, E.; Jacobs, S.

    2008-12-01

    The traditional view on the mass balance of Antarctic ice shelves is that they loose mass principally from iceberg calving with bottom melting a much lower contributing factor. Because ice shelves are now known to play a fundamental role in ice sheet evolution, it is important to re-evaluate their wastage processes from a circumpolar perspective using a combination of remote sensing techniques. We present area average rates deduced from grounding line discharge, snow accumulation, firn depth correction and ice shelf topography. We find that ice shelf melting accounts for roughly half of ice-shelf ablation, with a total melt water production of 1027 Gt/yr. The attrition fraction due to in-situ melting varies from 9 to 90 percent around Antarctica. High melt producers include the Ronne, Ross, Getz, Totten, Amery, George VI, Pine Island, Abbot, Dotson/Crosson, Shackleton, Thwaites and Moscow University Ice Shelves. Low producers include the Larsen C, Princess Astrid and Ragnhild coast, Fimbul, Brunt and Filchner. Correlation between melt water production and grounding line discharge is low (R2 = 0.65). Correlation with thermal ocean forcing from the ocean are highest in the northern parts of West Antarctica where regressions yield R2 of 0.93-0.97. Melt rates in the Amundsen Sea exhibit a quadratic sensitivity to thermal ocean forcing. We conclude that ice shelf melting plays a dominant role in ice shelf mass balance, with a potential to change rapidly in response to altered ocean heat transport onto the Antarctic continental shelf.

  2. Ice-Shelf Melting Around Antarctica

    NASA Astrophysics Data System (ADS)

    Rignot, E.; Jacobs, S.; Mouginot, J.; Scheuchl, B.

    2013-07-01

    We compare the volume flux divergence of Antarctic ice shelves in 2007 and 2008 with 1979 to 2010 surface accumulation and 2003 to 2008 thinning to determine their rates of melting and mass balance. Basal melt of 1325 ± 235 gigatons per year (Gt/year) exceeds a calving flux of 1089 ± 139 Gt/year, making ice-shelf melting the largest ablation process in Antarctica. The giant cold-cavity Ross, Filchner, and Ronne ice shelves covering two-thirds of the total ice-shelf area account for only 15% of net melting. Half of the meltwater comes from 10 small, warm-cavity Southeast Pacific ice shelves occupying 8% of the area. A similar high melt/area ratio is found for six East Antarctic ice shelves, implying undocumented strong ocean thermal forcing on their deep grounding lines.

  3. Understanding Ice Shelf Basal Melting Using Convergent ICEPOD Data Sets: ROSETTA-Ice Study of Ross Ice Shelf

    NASA Astrophysics Data System (ADS)

    Bell, R. E.; Frearson, N.; Tinto, K. J.; Das, I.; Fricker, H. A.; Siddoway, C. S.; Padman, L.

    2017-12-01

    The future stability of the ice shelves surrounding Antarctica will be susceptible to increases in both surface and basal melt as the atmosphere and ocean warm. The ROSETTA-Ice program is targeted at using the ICEPOD airborne technology to produce new constraints on Ross Ice Shelf, the underlying ocean, bathymetry, and geologic setting, using radar sounding, gravimetry and laser altimetry. This convergent approach to studying the ice-shelf and basal processes enables us to develop an understanding of the fundamental controls on ice-shelf evolution. This work leverages the stratigraphy of the ice shelf, which is detected as individual reflectors by the shallow-ice radar and is often associated with surface scour, form close to the grounding line or pinning points on the ice shelf. Surface accumulation on the ice shelf buries these reflectors as the ice flows towards the calving front. This distinctive stratigraphy can be traced across the ice shelf for the major East Antarctic outlet glaciers and West Antarctic ice streams. Changes in the ice thickness below these reflectors are a result of strain and basal melting and freezing. Correcting the estimated thickness changes for strain using RIGGS strain measurements, we can develop decadal-resolution flowline distributions of basal melt. Close to East Antarctica elevated melt-rates (>1 m/yr) are found 60-100 km from the calving front. On the West Antarctic side high melt rates primarily develop within 10 km of the calving front. The East Antarctic side of Ross Ice Shelf is dominated by melt driven by saline water masses that develop in Ross Sea polynyas, while the melting on the West Antarctic side next to Hayes Bank is associated with modified Continental Deep Water transported along the continental shelf. The two sides of Ross Ice Shelf experience differing basal melt in part due to the duality in the underlying geologic structure: the East Antarctic side consists of relatively dense crust, with low amplitude

  4. Channelized Melting Drives Thinning Under a Rapidly Melting Antarctic Ice Shelf

    NASA Astrophysics Data System (ADS)

    Gourmelen, Noel; Goldberg, Dan N.; Snow, Kate; Henley, Sian F.; Bingham, Robert G.; Kimura, Satoshi; Hogg, Anna E.; Shepherd, Andrew; Mouginot, Jeremie; Lenaerts, Jan T. M.; Ligtenberg, Stefan R. M.; van de Berg, Willem Jan

    2017-10-01

    Ice shelves play a vital role in regulating loss of grounded ice and in supplying freshwater to coastal seas. However, melt variability within ice shelves is poorly constrained and may be instrumental in driving ice shelf imbalance and collapse. High-resolution altimetry measurements from 2010 to 2016 show that Dotson Ice Shelf (DIS), West Antarctica, thins in response to basal melting focused along a single 5 km-wide and 60 km-long channel extending from the ice shelf's grounding zone to its calving front. If focused thinning continues at present rates, the channel will melt through, and the ice shelf collapse, within 40-50 years, almost two centuries before collapse is projected from the average thinning rate. Our findings provide evidence of basal melt-driven sub-ice shelf channel formation and its potential for accelerating the weakening of ice shelves.

  5. How ice shelf morphology controls basal melting

    NASA Astrophysics Data System (ADS)

    Little, Christopher M.; Gnanadesikan, Anand; Oppenheimer, Michael

    2009-12-01

    The response of ice shelf basal melting to climate is a function of ocean temperature, circulation, and mixing in the open ocean and the coupling of this external forcing to the sub-ice shelf circulation. Because slope strongly influences the properties of buoyancy-driven flow near the ice shelf base, ice shelf morphology plays a critical role in linking external, subsurface heat sources to the ice. In this paper, the slope-driven dynamic control of local and area-integrated melting rates is examined under a wide range of ocean temperatures and ice shelf shapes, with an emphasis on smaller, steeper ice shelves. A 3-D numerical ocean model is used to simulate the circulation underneath five idealized ice shelves, forced with subsurface ocean temperatures ranging from -2.0°C to 1.5°C. In the sub-ice shelf mixed layer, three spatially distinct dynamic regimes are present. Entrainment of heat occurs predominately under deeper sections of the ice shelf; local and area-integrated melting rates are most sensitive to changes in slope in this "initiation" region. Some entrained heat is advected upslope and used to melt ice in the "maintenance" region; however, flow convergence in the "outflow" region limits heat loss in flatter portions of the ice shelf. Heat flux to the ice exhibits (1) a spatially nonuniform, superlinear dependence on slope and (2) a shape- and temperature-dependent, internally controlled efficiency. Because the efficiency of heat flux through the mixed layer decreases with increasing ocean temperature, numerical simulations diverge from a simple quadratic scaling law.

  6. Channelized melting drives thinning under Dotson ice shelf, Western Antarctic Ice Sheet

    NASA Astrophysics Data System (ADS)

    Gourmelen, N.; Goldberg, D.; Snow, K.; Henley, S. F.; Bingham, R. G.; Kimura, S.; Hogg, A.; Shepherd, A.; Mouginot, J.; Lenaerts, J.; Ligtenberg, S.; Van De Berg, W. J.

    2017-12-01

    The majority of meteoric ice that forms in West Antarctica leaves the ice sheet through floating ice shelves, many of which have been thinning substantially over the last 25 years. A significant proportion of ice-shelf thinning has been driven by submarine melting facilitated by increased access of relatively warm (>0.6oC) modified Circumpolar Deep Water to sub-shelf cavities. Ice shelves play a significant role in stabilising the ice sheet from runaway retreat and regulating its contribution to sea level change. Ice-shelf melting has also been implicated in sustaining high primary productivity in Antarctica's coastal seas. However, these processes vary regionally and are not fully understood. Under some ice shelves, concentrated melting leads to the formation of inverted channels. These channels guide buoyant melt-laden outflow, which can lead to localised melting of the sea ice cover. The channels may also potentially lead to heightened crevassing, which in turn affects ice-shelf stability. Meanwhile, numerical studies suggest that buttressing loss is sensitive to the location of ice removal within an ice-shelf. Thus it is important that we observe spatial patterns, as well as magnitudes, of ice-shelf thinning, in order to improve understanding of the ocean drivers of thinning and of their impacts on ice-shelf stability. Here we show from high-resolution altimetry measurements acquired between 2010 to 2016 that Dotson Ice Shelf, West Antarctica, thins in response to basal melting focussed along a single 5 km-wide and 60 km-long channel extending from the ice shelf's grounding zone to its calving front. The coupled effect of geostrophic circulation and ice-shelf topography leads to the observed concentration of basal melting. Analysis of previous datasets suggests that this process has been ongoing for at least the last 25 years. If focused thinning continues at present rates, the channel would melt through within 40-50 years, almost two centuries before it is

  7. Endmembers of Ice Shelf Melt

    NASA Astrophysics Data System (ADS)

    Boghosian, A.; Child, S. F.; Kingslake, J.; Tedesco, M.; Bell, R. E.; Alexandrov, O.; McMichael, S.

    2017-12-01

    Studies of surface melt on ice shelves have defined a spectrum of meltwater behavior. On one end the storage of meltwater in persistent surface ponds can trigger ice shelf collapse as in the 2002 event leading to the disintegration of the Larsen B Ice Shelf. On the other, meltwater export by rivers can stabilize an ice shelf as was recently shown on the Nansen Ice Shelf. We explore this dichotomy by quantifying the partitioning between stored and transported water on two glaciers adjacent to floating ice shelves, Nimrod (Antarctica) and Peterman (Greenland). We analyze optical satellite imagery (LANDSAT, WorldView), airborne imagery (Operation IceBridge, Trimetrogon Aerial Phototography), satellite radar (Sentinel-1), and digital elevation models (DEMs) to categorize surface meltwater fate and map the evolution of ice shelf hydrology and topographic features through time. On the floating Peterman Glacier tongue a sizable river exports water to the ocean. The surface hydrology of Nimrod Glacier, geometrically similar to Peterman but with ten times shallower surface slope, is dominated by storage in surface lakes. In contrast, the Nansen has the same surface slope as Nimrod but transports water through surface rivers. Slope alone is not the sole control on ice shelf hydrology. It is essential to track the storage and transport volumes for each of these systems. To estimate water storage and transport we analyze high resolution (40 cm - 2 m) modern and historical DEMs. We produce historical (1957 onwards) DEMs with structure-from-motion photogrammetry. The DEMs are used to constrain water storage potential estimates of observed basins and water routing/transport potential. We quantify the total volume of water stored seasonally and interannually. We use the normalize difference water index to map meltwater extent, and estimate lake water depth from optical data. We also consider the role of stored water in subsurface aquifers in recharging surface water after

  8. Massive subsurface ice formed by refreezing of ice-shelf melt ponds

    PubMed Central

    Hubbard, Bryn; Luckman, Adrian; Ashmore, David W.; Bevan, Suzanne; Kulessa, Bernd; Kuipers Munneke, Peter; Philippe, Morgane; Jansen, Daniela; Booth, Adam; Sevestre, Heidi; Tison, Jean-Louis; O'Leary, Martin; Rutt, Ian

    2016-01-01

    Surface melt ponds form intermittently on several Antarctic ice shelves. Although implicated in ice-shelf break up, the consequences of such ponding for ice formation and ice-shelf structure have not been evaluated. Here we report the discovery of a massive subsurface ice layer, at least 16 km across, several kilometres long and tens of metres deep, located in an area of intense melting and intermittent ponding on Larsen C Ice Shelf, Antarctica. We combine borehole optical televiewer logging and radar measurements with remote sensing and firn modelling to investigate the layer, found to be ∼10 °C warmer and ∼170 kg m−3 denser than anticipated in the absence of ponding and hitherto used in models of ice-shelf fracture and flow. Surface ponding and ice layers such as the one we report are likely to form on a wider range of Antarctic ice shelves in response to climatic warming in forthcoming decades. PMID:27283778

  9. Basal melt rates of Filchner Ice Shelf, Antarctica

    NASA Astrophysics Data System (ADS)

    Humbert, A.; Nicholls, K. W.; Corr, H. F. J.; Steinhage, D.; Stewart, C.; Zeising, O.

    2017-12-01

    Thinning of ice shelves around Antarctica has been found to be partly driven by an increase in basal melt as a result of warmer waters entering the sub-ice shelf cavity. In-situ observations of basal melt rate are, however, sparse. A new robust and efficient phase sensitive radio echo sounder (pRES) allows to measure change in ice thickness and vertical strain at high accuracy, so that the contribution of basal melt to the change in thickness can be estimated. As modeling studies suggest that the cavity beneath Filchner Ice Shelf, Antarctica, might be prone to intrusion of warm water pulses within this century, we wished to derive a baseline dataset and an understanding of its present day spatial variability. Here we present results from pRES measurements over two field seasons, 2015/16-16/17, comprising 86 datasets over the southern Filchner Ice Shelf, covering an area of about 6500km2. The maximum melt rate is only slightly more than 1m/a, but the spatial distribution exhibits a complex pattern. For the purpose of testing variability of basal melt rates on small spatial scales, we performed 26 measurements over distances of about 1km, and show that the melt rates do not vary by more than 0.25m/a.

  10. A Mathematical Model of Melt Lake Development on an Ice Shelf

    NASA Astrophysics Data System (ADS)

    Buzzard, S. C.; Feltham, D. L.; Flocco, D.

    2018-02-01

    The accumulation of surface meltwater on ice shelves can lead to the formation of melt lakes. Melt lakes have been implicated in ice shelf collapse; Antarctica's Larsen B Ice Shelf was observed to have a large amount of surface melt lakes present preceding its collapse in 2002. Such collapse can affect ocean circulation and temperature, cause habitat loss and contribute to sea level rise through the acceleration of tributary glaciers. We present a mathematical model of a surface melt lake on an idealized ice shelf. The model incorporates a calculation of the ice shelf surface energy balance, heat transfer through the firn, the production and percolation of meltwater into the firn, the formation of ice lenses, and the development and refreezing of surface melt lakes. The model is applied to the Larsen C Ice Shelf, where melt lakes have been observed. This region has warmed several times the global average over the last century and the Larsen C firn layer could become saturated with meltwater by the end of the century. When forced with weather station data, our model produces surface melting, meltwater accumulation, and melt lake development consistent with observations. We examine the sensitivity of lake formation to uncertain parameters and provide evidence of the importance of processes such as lateral meltwater transport. We conclude that melt lakes impact surface melt and firn density and warrant inclusion in dynamic-thermodynamic models of ice shelf evolution within climate models, of which our model could form the basis for the thermodynamic component.

  11. Modeling the basal melting and marine ice accretion of the Amery Ice Shelf

    NASA Astrophysics Data System (ADS)

    Galton-Fenzi, B. K.; Hunter, J. R.; Coleman, R.; Marsland, S. J.; Warner, R. C.

    2012-09-01

    The basal mass balance of the Amery Ice Shelf (AIS) in East Antarctica is investigated using a numerical ocean model. The main improvements of this model over previous studies are the inclusion of frazil formation and dynamics, tides and the use of the latest estimate of the sub-ice-shelf cavity geometry. The model produces a net basal melt rate of 45.6 Gt year-1 (0.74 m ice year-1) which is in good agreement with reviewed observations. The melting at the base of the ice shelf is primarily due to interaction with High Salinity Shelf Water created from the surface sea-ice formation in winter. The temperature difference between the coldest waters created in the open ocean and the in situ freezing point of ocean water in contact with the deepest part of the AIS drives a melt rate that can exceed 30 m of ice year-1. The inclusion of frazil dynamics is shown to be important for both melting and marine ice accretion (refreezing). Frazil initially forms in the supercooled water layer adjacent to the base of the ice shelf. The net accretion of marine ice is 5.3 Gt year-1, comprised of 3.7 Gt year-1 of frazil accretion and 1.6 Gt year-1 of direct basal refreezing.

  12. Impact of ice-shelf sediment content on the dynamics of plumes under melting ice shelves

    NASA Astrophysics Data System (ADS)

    Wells, A.

    2015-12-01

    When a floating ice shelf melts into an underlying warm salty ocean, the resulting fresh meltwater can rise in a buoyant Ice-Shelf-Water plume under the ice. In certain settings, ice flowing across the grounding line carries a basal layer of debris rich ice, entrained via basal freezing around till in the upstream ice sheet. Melting of this debris-laden ice from floating ice shelves provides a flux of dense sediment to the ocean, in addition to the release of fresh buoyant meltwater. This presentation considers the impact of the resulting suspended sediment on the dynamics of ice shelf water plumes, and identifies two key flow regimes depending on the sediment concentration frozen into the basal ice layer. For large sediment concentration, melting of the debris-laden ice shelf generates dense convectively unstable waters that drive convective overturning into the underlying ocean. For lower sediment concentration, the sediment initially remains suspended in a buoyant meltwater plume rising along the underside of the ice shelf, before slowly depositing into the underlying ocean. A theoretical plume model is used to evaluate the significance of the negatively buoyant sediment on circulation strength and the feedbacks on melting rate, along with the expected depositional patterns under the ice shelf.

  13. Ice shelf basal melt rates around Antarctica from simulations and observations

    NASA Astrophysics Data System (ADS)

    Schodlok, M. P.; Menemenlis, D.; Rignot, E. J.

    2016-02-01

    We introduce an explicit representation of Antarctic ice shelf cavities in the Estimating the Circulation and Climate of the Ocean, Phase II (ECCO2) ocean retrospective analysis; and compare resulting basal melt rates and patterns to independent estimates from satellite observations. Two simulations are carried out: the first is based on the original ECCO2 vertical discretization; the second has higher vertical resolution particularly at the depth range of ice shelf cavities. The original ECCO2 vertical discretization produces higher than observed melt rates and leads to a misrepresentation of Southern Ocean water mass properties and transports. In general, thicker levels at the base of the ice shelves lead to increased melting because of their larger heat capacity. This strengthens horizontal gradients and circulation within and outside the cavities and, in turn, warm water transports from the shelf break to the ice shelves. The simulation with more vertical levels produces basal melt rates (1735 ± 164 Gt/a) and patterns that are in better agreement with observations. Thinner levels in the sub-ice-shelf cavities improve the representation of a fresh/cold layer at the ice shelf base and of warm/salty water near the bottom, leading to a sharper pycnocline and reduced vertical mixing underneath the ice shelf. Improved water column properties lead to more accurate melt rates and patterns, especially for melt/freeze patterns under large cold-water ice shelves. At the 18 km grid spacing of the ECCO2 model configuration, the smaller, warm-water ice shelves cannot be properly represented, with higher than observed melt rates in both simulations.

  14. Sensitivity of an Antarctic Ice Sheet Model to Sub-Ice-Shelf Melting

    NASA Astrophysics Data System (ADS)

    Lipscomb, W. H.; Leguy, G.; Urban, N. M.; Berdahl, M.

    2017-12-01

    Theory and observations suggest that marine-based sectors of the Antarctic ice sheet could retreat rapidly under ocean warming and increased melting beneath ice shelves. Numerical models of marine ice sheets vary widely in sensitivity, depending on grid resolution and the parameterization of key processes (e.g., calving and hydrofracture). Here we study the sensitivity of the Antarctic ice sheet to ocean warming and sub-shelf melting in standalone simulations of the Community Ice Sheet Model (CISM). Melt rates either are prescribed based on observations and high-resolution ocean model output, or are derived from a plume model forced by idealized ocean temperature profiles. In CISM, we vary the model resolution (between 1 and 8 km), Stokes approximation (shallow-shelf, depth-integrated higher-order, or 3D higher-order) and calving scheme to create an ensemble of plausible responses to sub-shelf melting. This work supports a broader goal of building statistical and reduced models that can translate large-scale Earth-system model projections to changes in Antarctic ocean temperatures and ice sheet discharge, thus better quantifying uncertainty in Antarctic-sourced sea-level rise.

  15. Variability of Basal Melt Beneath the Pine Island Glacier Ice Shelf, West Antarctica

    NASA Technical Reports Server (NTRS)

    Bindschadler, Robert; Vaughan, David G.; Vornberger, Patricia

    2011-01-01

    Observations from satellite and airborne platforms are combined with model calculations to infer the nature and efficiency of basal melting of the Pine Island Glacier ice shelf, West Antarctica, by ocean waters. Satellite imagery shows surface features that suggest ice-shelf-wide changes to the ocean s influence on the ice shelf as the grounding line retreated. Longitudinal profiles of ice surface and bottom elevations are analyzed to reveal a spatially dependent pattern of basal melt with an annual melt flux of 40.5 Gt/a. One profile captures a persistent set of surface waves that correlates with quasi-annual variations of atmospheric forcing of Amundsen Sea circulation patterns, establishing a direct connection between atmospheric variability and sub-ice-shelf melting. Ice surface troughs are hydrostatically compensated by ice-bottom voids up to 150m deep. Voids form dynamically at the grounding line, triggered by enhanced melting when warmer-than-average water arrives. Subsequent enlargement of the voids is thermally inefficient (4% or less) compared with an overall melting efficiency beneath the ice shelf of 22%. Residual warm water is believed to cause three persistent polynyas at the ice-shelf front seen in Landsat imagery. Landsat thermal imagery confirms the occurrence of warm water at the same locations.

  16. Ocean stratification reduces melt rates at the grounding zone of the Ross Ice Shelf

    NASA Astrophysics Data System (ADS)

    Begeman, C. B.; Tulaczyk, S. M.; Marsh, O.; Mikucki, J.; Stanton, T. P.; Hodson, T. O.; Siegfried, M. R.; Powell, R. D.; Christianson, K. A.; King, M. A.

    2017-12-01

    Ocean-driven melting of ice shelves is often invoked as the primary mechanism for triggering ice loss from Antarctica. However, due to the difficulty in accessing the sub-ice-shelf ocean cavity, the relationship between ice-shelf melt rates and ocean conditions is poorly understood, particularly near the transition from grounded to floating ice, known as the grounding zone. Here we present the first borehole oceanographic observations from the grounding zone of Antarctica's largest ice shelf. Contrary to predictions that tidal currents near grounding zones should mix the water column, driving high ice-shelf melt rates, we find a stratified sub-ice-shelf water column. The vertical salinity gradient dominates stratification over a weakly unstable vertical temperature gradient; thus, stratification takes the form of a double-diffusive staircase. These conditions limit vertical heat fluxes and lead to low melt rates in the ice-shelf grounding zone. While modern grounding zone melt rates may presently be overestimated in models that assume efficient tidal mixing, the high sensitivity of double-diffusive staircases to ocean freshening and warming suggests future melt rates may be underestimated, biasing projections of global sea-level rise.

  17. Centuries of intense surface melt on Larsen C Ice Shelf

    NASA Astrophysics Data System (ADS)

    Bevan, Suzanne L.; Luckman, Adrian; Hubbard, Bryn; Kulessa, Bernd; Ashmore, David; Kuipers Munneke, Peter; O'Leary, Martin; Booth, Adam; Sevestre, Heidi; McGrath, Daniel

    2017-12-01

    Following a southward progression of ice-shelf disintegration along the Antarctic Peninsula (AP), Larsen C Ice Shelf (LCIS) has become the focus of ongoing investigation regarding its future stability. The ice shelf experiences surface melt and commonly features surface meltwater ponds. Here, we use a flow-line model and a firn density model (FDM) to date and interpret observations of melt-affected ice layers found within five 90 m boreholes distributed across the ice shelf. We find that units of ice within the boreholes, which have densities exceeding those expected under normal dry compaction metamorphism, correspond to two climatic warm periods within the last 300 years on the Antarctic Peninsula. The more recent warm period, from the 1960s onwards, has generated distinct sections of dense ice measured in two boreholes in Cabinet Inlet, which is close to the Antarctic Peninsula mountains - a region affected by föhn winds. Previous work has classified these layers as refrozen pond ice, requiring large quantities of mobile liquid water to form. Our flow-line model shows that, whilst preconditioning of the snow began in the late 1960s, it was probably not until the early 1990s that the modern period of ponding began. The earlier warm period occurred during the 18th century and resulted in two additional sections of anomalously dense ice deep within the boreholes. The first, at 61 m in one of our Cabinet Inlet boreholes, consists of ice characteristic of refrozen ponds and must have formed in an area currently featuring ponding. The second, at 69 m in a mid-shelf borehole, formed at the same time on the edge of the pond area. Further south, the boreholes sample ice that is of an equivalent age but which does not exhibit the same degree of melt influence. This west-east and north-south gradient in the past melt distribution resembles current spatial patterns of surface melt intensity.

  18. Strong sensitivity of Pine Island ice-shelf melting to climatic variability.

    PubMed

    Dutrieux, Pierre; De Rydt, Jan; Jenkins, Adrian; Holland, Paul R; Ha, Ho Kyung; Lee, Sang Hoon; Steig, Eric J; Ding, Qinghua; Abrahamsen, E Povl; Schröder, Michael

    2014-01-10

    Pine Island Glacier has thinned and accelerated over recent decades, significantly contributing to global sea-level rise. Increased oceanic melting of its ice shelf is thought to have triggered those changes. Observations and numerical modeling reveal large fluctuations in the ocean heat available in the adjacent bay and enhanced sensitivity of ice-shelf melting to water temperatures at intermediate depth, as a seabed ridge blocks the deepest and warmest waters from reaching the thickest ice. Oceanic melting decreased by 50% between January 2010 and 2012, with ocean conditions in 2012 partly attributable to atmospheric forcing associated with a strong La Niña event. Both atmospheric variability and local ice shelf and seabed geometry play fundamental roles in determining the response of the Antarctic Ice Sheet to climate.

  19. Effects of ice shelf basal melt variability on evolution of Thwaites Glacier

    NASA Astrophysics Data System (ADS)

    Hoffman, M. J.; Fyke, J. G.; Price, S. F.; Asay-Davis, X.; Perego, M.

    2017-12-01

    Theory, modeling, and observations indicate that marine ice sheets on a retrograde bed, including Thwaites Glacier, Antarctica, are only conditionally stable. Previous modeling studies have shown that rapid, unstable retreat can occur when steady ice-shelf basal melting causes the grounding line to retreat past restraining bedrock bumps. Here we explore the initiation and evolution of unstable retreat of Thwaites Glacier when the ice-shelf basal melt forcing includes temporal variability mimicking realistic climate variability. We use the three-dimensional, higher-order Model for Prediction Across Scales-Land Ice (MPASLI) model forced with an ice shelf basal melt parameterization derived from previous coupled ice sheet/ocean simulations. We add sinusoidal temporal variability to the melt parameterization that represents shoaling and deepening of Circumpolar Deep Water. We perform an ensemble of 250 year duration simulations with different values for the amplitude, period, and phase of the variability. Preliminary results suggest that, overall, variability leads to slower grounding line retreat and less mass loss than steady simulations. Short period (2 yr) variability leads to similar results as steady forcing, whereas decadal variability can result in up to one-third less mass loss. Differences in phase lead to a large range in mass loss/grounding line retreat, but it is always less than the steady forcing. The timing of ungrounding from each restraining bedrock bump, which is strongly affected by the melt variability, is the rate limiting factor, and variability-driven delays in ungrounding at each bump accumulate. Grounding line retreat in the regions between bedrock bumps is relatively unaffected by ice shelf melt variability. While the results are sensitive to the form of the melt parameterization and its variability, we conclude that decadal period ice shelf melt variability could potentially delay marine ice sheet instability by up to many decades. However

  20. The effect of basal channels on oceanic ice-shelf melting

    NASA Astrophysics Data System (ADS)

    Millgate, Thomas; Holland, Paul R.; Jenkins, Adrian; Johnson, Helen L.

    2013-12-01

    The presence of ice-shelf basal channels has been noted in a number of Antarctic and Greenland ice shelves, but their impact on basal melting is not fully understood. Here we use the Massachusetts Institute of Technology general circulation model to investigate the effect of ice-shelf basal channels on oceanic melt rate for an idealized ice shelf resembling the floating tongue of Petermann Glacier in Greenland. The introduction of basal channels prevents the formation of a single geostrophically balanced boundary current; instead the flow is diverted up the right-hand (Coriolis-favored) side of each channel, with a return flow in the opposite direction on the left-hand side. As the prescribed number of basal channels is increased the mean basal melt rate decreases, in agreement with previous studies. For a small number of relatively wide channels the subice flow is found to be a largely geostrophic horizontal circulation. The reduction in melt rate is then caused by an increase in the relative contribution of weakly melting channel crests and keels. For a larger number of relatively narrow channels, the subice flow changes to a vertical overturning circulation. This change in circulation results in a weaker sensitivity of melt rates to channel size. The transition between the two regimes is governed by the Rossby radius of deformation. Our results explain why basal channels play an important role in regulating basal melting, increasing the stability of ice shelves.

  1. Response of Antarctic ice shelf melt to SAM trend and possible feedbacks with the ice-dynamics

    NASA Astrophysics Data System (ADS)

    Donat-Magnin, Marion; Jourdain, Nicolas C.; Gallée, Hubert; Spence, Paul; Cornford, Stephen L.; Le Sommer, Julien; Durand, Gaël

    2017-04-01

    The observed positive trend in the Southern Annular Mode (SAM) may warm the Southern Ocean sub-surface through decreased Ekman downward pumping. Subsequent change in ice-shelves melt has been suggested to trigger glacier acceleration in West Antarctica. Here we use a regional ocean model configuration of the Amundsen Sea that includes interactive ice-shelf cavities. Our results show that the inclusion of ice-shelves changes the ocean response to the projected SAM trend, i.e. it typically inhibits a part of the SAM-induced subsurface warming. Heat budget analysis has been used to propose responsible mechanisms. Regarding Thwaites and Pine Island, sub ice-shelf melt increases above 400m by approximately 40% for Thwaites and 10% for Pine Island and decreases by up to 10% below in response to ocean temperature changes driven by the projected SAM trend. The melt sensitivity to poleward shifting winds is nonetheless small compared to the sensitivity to an ice-sheet instability, i.e. to a projected change in the shape of ice-shelf cavities. For instance, the sub ice-shelf melt are doubled near the grounding line of some glaciers in response to the largest grounding line retreat projected for 2100. Large increase in basal melt close to the grounding line could largely impact instability and glacier acceleration. Our work suggests the need for including ice shelves into ocean models, and to couple ocean models to ice-sheet models in climate projections.

  2. Multi-Decadal Averages of Basal Melt for Ross Ice Shelf, Antarctica Using Airborne Observations

    NASA Astrophysics Data System (ADS)

    Das, I.; Bell, R. E.; Tinto, K. J.; Frearson, N.; Kingslake, J.; Padman, L.; Siddoway, C. S.; Fricker, H. A.

    2017-12-01

    Changes in ice shelf mass balance are key to the long term stability of the Antarctic Ice Sheet. Although the most extensive ice shelf mass loss currently is occurring in the Amundsen Sea sector of West Antarctica, many other ice shelves experience changes in thickness on time scales from annual to ice age cycles. Here, we focus on the Ross Ice Shelf. An 18-year record (1994-2012) of satellite radar altimetry shows substantial variability in Ross Ice Shelf height on interannual time scales, complicating detection of potential long-term climate-change signals in the mass budget of this ice shelf. Variability of radar signal penetration into the ice-shelf surface snow and firn layers further complicates assessment of mass changes. We investigate Ross Ice Shelf mass balance using aerogeophysical data from the ROSETTA-Ice surveys using IcePod. We use two ice-penetrating radars; a 2 GHz unit that images fine-structure in the upper 400 m of the ice surface and a 360 MHz radar to identify the ice shelf base. We have identified internal layers that are continuous along flow from the grounding line to the ice shelf front. Based on layer continuity, we conclude that these layers must be the horizons between the continental ice of the outlet glaciers and snow accumulation once the ice is afloat. We use the Lagrangian change in thickness of these layers, after correcting for strain rates derived using modern day InSAR velocities, to estimate multidecadal averaged basal melt rates. This method provides a novel way to quantify basal melt, avoiding the confounding impacts of spatial and short-timescale variability in surface accumulation and firn densification processes. Our estimates show elevated basal melt rates (> -1m/yr) around Byrd and Mullock glaciers within 100 km from the ice shelf front. We also compare modern InSAR velocity derived strain rates with estimates from the comprehensive ground-based RIGGS observations during 1973-1978 to estimate the potential magnitude of

  3. The effects of sub-ice-shelf melting on dense shelf water formation and export in idealized simulations of Antarctic margins

    NASA Astrophysics Data System (ADS)

    Marques, Gustavo; Stern, Alon; Harrison, Matthew; Sergienko, Olga; Hallberg, Robert

    2017-04-01

    Dense shelf water (DSW) is formed in coastal polynyas around Antarctica as a result of intense cooling and brine rejection. A fraction of this water reaches ice shelves cavities and is modified due to interactions with sub-ice-shelf melt water. This modified water mass contributes to the formation of Antarctic Bottom Water, and consequently, influences the large-scale ocean circulation. Here, we investigate the role of sub-ice-shelf melting in the formation and export of DSW using idealized simulations with an isopycnal ocean model (MOM6) coupled with a sea ice model (SIS2) and a thermodynamic active ice shelf. A set of experiments is conducted with variable horizontal grid resolutions (0.5, 1.0 and 2.0 km), ice shelf geometries and atmospheric forcing. In all simulations DSW is spontaneously formed in coastal polynyas due to the combined effect of the imposed atmospheric forcing and the ocean state. Our results show that sub-ice-shelf melting can significantly change the rate of dense shelf water outflows, highlighting the importance of this process to correctly represent bottom water formation.

  4. Morphological evidence and direct estimates of rapid melting beneath Totten Glacier Ice Shelf, East Antarctica

    NASA Astrophysics Data System (ADS)

    Greenbaum, Jamin; Schroeder, Dustin; Grima, Cyril; Habbal, Feras; Dow, Christine; Roberts, Jason; Gwyther, David; van Ommen, Tas; Siegert, Martin; Blankenship, Donald

    2017-04-01

    Totten Glacier drains at least 3.5 meters of eustatic sea level potential from marine-based ice in the Aurora Subglacial Basin (ASB) in East Antarctica, more than the combined total of all glaciers in West Antarctica. Totten Glacier has been the most rapidly thinning glacier in East Antarctica since satellite altimetry time series began and the nature of the thinning suggests that it is driven by enhanced basal melting due to ocean processes. While grounded ice thinning rates have been steady, recent work has shown that Totten's floating ice shelf may not have the same thinning behavior; as a result, it is critical to observe ice shelf and cavity boundary conditions and basal processes to understand this apparent discrepancy. Warm Modified Circumpolar Deep Water (MCDW), which has been linked to glacier retreat in West Antarctica, has been observed in summer and winter on the nearby Sabrina Coast continental shelf and deep depressions in the seafloor provide access for MCDW to reach the ice shelf cavity. Given its northern latitude, numerical ice sheet modeling indicates that Totten Glacier may be prone to retreat caused by hydrofracture in a warming climate, so it is important to understand how intruding MCDW is affecting thinning of Totten Glacier's ice shelf. Here we use post-processed, focused airborne radar observations of the Totten Glacier Ice Shelf to delineate multi-km wide basal channels and flat basal terraces associated with high basal reflectivity and specularity (flatness) anomalies and correspondingly large ice surface depressions that indicate active basal melting. Using a simple temperature-attenuation model, and basal roughness corrections, we present basal melt rates associated with the radar reflection and specularity anomalies and compare them to those derived from numerical ocean circulation modeling and an ice flow divergence calculation. Sub-ice shelf ocean circulation modeling and under-ice robotic observations of Pine Island Glacier Ice

  5. Modelling and parameterizing the influence of tides on ice-shelf melt rates

    NASA Astrophysics Data System (ADS)

    Jourdain, N.; Molines, J. M.; Le Sommer, J.; Mathiot, P.; de Lavergne, C.; Gurvan, M.; Durand, G.

    2017-12-01

    Significant Antarctic ice sheet thinning is observed in several sectors of Antarctica, in particular in the Amundsen Sea sector, where warm circumpolar deep waters affect basal melting. The later has the potential to trigger marine ice sheet instabilities, with an associated potential for rapid sea level rise. It is therefore crucial to simulate and understand the processes associated with ice-shelf melt rates. In particular, the absence of tides representation in ocean models remains a caveat of numerous ocean hindcasts and climate projections. In the Amundsen Sea, tides are relatively weak and the melt-induced circulation is stronger than the tidal circulation. Using a regional 1/12° ocean model of the Amundsen Sea, we nonetheless find that tides can increase melt rates by up to 36% in some ice-shelf cavities. Among the processes that can possibly affect melt rates, the most important is an increased exchange at the ice/ocean interface resulting from the presence of strong tidal currents along the ice drafts. Approximately a third of this effect is compensated by a decrease in thermal forcing along the ice draft, which is related to an enhanced vertical mixing in the ocean interior in presence of tides. Parameterizing the effect of tides is an alternative to the representation of explicit tides in an ocean model, and has the advantage not to require any filtering of ocean model outputs. We therefore explore different ways to parameterize the effects of tides on ice shelf melt. First, we compare several methods to impose tidal velocities along the ice draft. We show that getting a realistic spatial distribution of tidal velocities in important, and can be deduced from the barotropic velocities of a tide model. Then, we explore several aspects of parameterized tidal mixing to reproduce the tide-induced decrease in thermal forcing along the ice drafts.

  6. Antarctic sub-shelf melt rates via PICO

    NASA Astrophysics Data System (ADS)

    Reese, Ronja; Albrecht, Torsten; Mengel, Matthias; Asay-Davis, Xylar; Winkelmann, Ricarda

    2018-06-01

    Ocean-induced melting below ice shelves is one of the dominant drivers for mass loss from the Antarctic Ice Sheet at present. An appropriate representation of sub-shelf melt rates is therefore essential for model simulations of marine-based ice sheet evolution. Continental-scale ice sheet models often rely on simple melt-parameterizations, in particular for long-term simulations, when fully coupled ice-ocean interaction becomes computationally too expensive. Such parameterizations can account for the influence of the local depth of the ice-shelf draft or its slope on melting. However, they do not capture the effect of ocean circulation underneath the ice shelf. Here we present the Potsdam Ice-shelf Cavity mOdel (PICO), which simulates the vertical overturning circulation in ice-shelf cavities and thus enables the computation of sub-shelf melt rates consistent with this circulation. PICO is based on an ocean box model that coarsely resolves ice shelf cavities and uses a boundary layer melt formulation. We implement it as a module of the Parallel Ice Sheet Model (PISM) and evaluate its performance under present-day conditions of the Southern Ocean. We identify a set of parameters that yield two-dimensional melt rate fields that qualitatively reproduce the typical pattern of comparably high melting near the grounding line and lower melting or refreezing towards the calving front. PICO captures the wide range of melt rates observed for Antarctic ice shelves, with an average of about 0.1 m a-1 for cold sub-shelf cavities, for example, underneath Ross or Ronne ice shelves, to 16 m a-1 for warm cavities such as in the Amundsen Sea region. This makes PICO a computationally feasible and more physical alternative to melt parameterizations purely based on ice draft geometry.

  7. Ice-Shelf Melt Response to Changing Winds and Glacier Dynamics in the Amundsen Sea Sector, Antarctica

    NASA Astrophysics Data System (ADS)

    Donat-Magnin, Marion; Jourdain, Nicolas C.; Spence, Paul; Le Sommer, Julien; Gallée, Hubert; Durand, Gaël.

    2017-12-01

    It has been suggested that the coastal Southern Ocean subsurface may warm over the 21st century in response to strengthening and poleward shifting winds, with potential adverse effects on West Antarctic glaciers. However, using a 1/12° ocean regional model that includes ice-shelf cavities, we find a more complex response to changing winds in the Amundsen Sea. Simulated offshore subsurface waters get colder under strengthened and poleward shifted winds representative of the SAM projected trend. The buoyancy-driven circulation induced by ice-shelf melt transports this cold offshore anomaly onto the continental shelf, leading to cooling and decreased melt below 450 m. In the vicinity of ice-shelf fronts, Ekman pumping contributes to raise the isotherms in response to changing winds. This effect overwhelms the horizontal transport of colder offshore waters at intermediate depths (between 200 and 450 m), and therefore increases melt rates in the upper part of the ice-shelf cavities, which reinforces the buoyancy-driven circulation and further contributes to raise the isotherms. Then, prescribing an extreme grounding line retreat projected for 2100, the total melt rates simulated underneath Thwaites and Pine Island are multiplied by 2.5. Such increase is explained by a larger ocean/ice interface exposed to CDW, which is then amplified by a stronger melt-induced circulation along the ice draft. Our main conclusions are that (1) outputs from ocean models that do not represent ice shelf cavities (e.g., CMIP5 models) should not be directly used to predict the thermal forcing of future ice shelf cavities; (2) coupled ocean/ice sheet models with a velocity-dependent melt formulation are needed for future projections of glaciers experiencing a significant grounding line retreat.

  8. Antarctic sub-shelf melt rates via SIMPEL

    NASA Astrophysics Data System (ADS)

    Reese, Ronja; Albrecht, Torsten; Winkelmann, Ricarda

    2017-04-01

    Ocean-induced melting below ice-shelves is currently suspected to be the dominant cause of mass loss from the Antarctic Ice Sheet (e.g. Depoorter et al. 2013). Although thinning of ice shelves does not directly contribute to sea-level rise, it may have a significant indirect impact through the potential of ice shelves to buttress their adjacent ice sheet. Hence, an appropriate representation of sub-shelf melt rates is essential for modelling the evolution of ice sheets with marine terminating outlet glaciers. Due to computational limits of fully-coupled ice and ocean models, sub-shelf melt rates are often parametrized in large-scale or long-term simulations (e.g. Matin et al. 2011, Pollard & DeConto 2012). These parametrizations usually depend on the depth of the ice shelf base or its local slope but do not include the physical processes in ice shelf cavities. Here, we present the Sub Ice shelf Melt Potsdam modEL (SIMPEL) which mimics the first-order large-scale circulation in ice shelf cavities based on an ocean box model (Olbers & Hellmer, 2010), implemented in the Parallel Ice Sheet Model (Bueler & Brown 2009, Winkelmann et al. 2011, www.pism-docs.org). In SIMPEL, ocean water is transported at depth towards the grounding line where sub-shelf melt rates are highest, and then rises along the shelf base towards the calving front where refreezing can occur. Melt rates are computed by a description of ice-ocean interaction commonly used in high-resolution models (McPhee 1992, Holland & Jenkins 1999). This enables the model to capture a wide-range of melt rates, comparable to the observed range for Antarctic ice shelves (Rignot et al. 2013).

  9. Eddy-resolving simulations of the Fimbul Ice Shelf cavity circulation: Basal melting and exchange with open ocean

    NASA Astrophysics Data System (ADS)

    Hattermann, T.; Smedsrud, L. H.; Nøst, O. A.; Lilly, J. M.; Galton-Fenzi, B. K.

    2014-10-01

    Melting at the base of floating ice shelves is a dominant term in the overall Antarctic mass budget. This study applies a high-resolution regional ice shelf/ocean model, constrained by observations, to (i) quantify present basal mass loss at the Fimbul Ice Shelf (FIS); and (ii) investigate the oceanic mechanisms that govern the heat supply to ice shelves in the Eastern Weddell Sea. The simulations confirm the low melt rates suggested by observations and show that melting is primarily determined by the depth of the coastal thermocline, regulating deep ocean heat fluxes towards the ice. Furthermore, the uneven distribution of ice shelf area at different depths modulates the melting response to oceanic forcing, causing the existence of two distinct states of melting at the FIS. In the simulated present-day state, only small amounts of Modified Warm Deep Water enter the continental shelf, and ocean temperatures beneath the ice are close to the surface freezing point. The basal mass loss in this so-called state of "shallow melting" is mainly controlled by the seasonal inflow of solar-heated surface water affecting large areas of shallow ice in the upper part of the cavity. This is in contrast to a state of "deep melting", in which the thermocline rises above the shelf break depth, establishing a continuous inflow of Warm Deep Water towards the deep ice. The transition between the two states is found to be determined by a complex response of the Antarctic Slope Front overturning circulation to varying climate forcings. A proper representation of these frontal dynamics in climate models will therefore be crucial when assessing the evolution of ice shelf basal melting along this sector of Antarctica.

  10. Marine ice sheet model performance depends on basal sliding physics and sub-shelf melting

    NASA Astrophysics Data System (ADS)

    Gladstone, Rupert Michael; Warner, Roland Charles; Galton-Fenzi, Benjamin Keith; Gagliardini, Olivier; Zwinger, Thomas; Greve, Ralf

    2017-01-01

    Computer models are necessary for understanding and predicting marine ice sheet behaviour. However, there is uncertainty over implementation of physical processes at the ice base, both for grounded and floating glacial ice. Here we implement several sliding relations in a marine ice sheet flow-line model accounting for all stress components and demonstrate that model resolution requirements are strongly dependent on both the choice of basal sliding relation and the spatial distribution of ice shelf basal melting.Sliding relations that reduce the magnitude of the step change in basal drag from grounded ice to floating ice (where basal drag is set to zero) show reduced dependence on resolution compared to a commonly used relation, in which basal drag is purely a power law function of basal ice velocity. Sliding relations in which basal drag goes smoothly to zero as the grounding line is approached from inland (due to a physically motivated incorporation of effective pressure at the bed) provide further reduction in resolution dependence.A similar issue is found with the imposition of basal melt under the floating part of the ice shelf: melt parameterisations that reduce the abruptness of change in basal melting from grounded ice (where basal melt is set to zero) to floating ice provide improved convergence with resolution compared to parameterisations in which high melt occurs adjacent to the grounding line.Thus physical processes, such as sub-glacial outflow (which could cause high melt near the grounding line), impact on capability to simulate marine ice sheets. If there exists an abrupt change across the grounding line in either basal drag or basal melting, then high resolution will be required to solve the problem. However, the plausible combination of a physical dependency of basal drag on effective pressure, and the possibility of low ice shelf basal melt rates next to the grounding line, may mean that some marine ice sheet systems can be reliably simulated at

  11. Ice Front at Venable Ice Shelf

    NASA Image and Video Library

    2013-06-13

    This photo, taken onboard the Chilean Navy P3 aircraft, shows the ice front of Venable Ice Shelf, West Antarctica, in October 2008. It is an example of a small-size ice shelf that is a large melt water producer.

  12. Evolution of Meltwater on the McMurdo Ice Shelf, Antarctica During Two Summer Melt Seasons

    NASA Astrophysics Data System (ADS)

    Macdonald, G. J.; Banwell, A. F.; Willis, I.; Mayer, D. P.; Hansen, E. K.; MacAyeal, D. R.

    2017-12-01

    Ice shelves surround > 50% of Antarctica's coast and their response to climate change is key to the ice sheet's future and global sea-level rise. Observations of the development and drainage of 2750 lakes prior to the collapse of the Larsen B Ice Shelf, combined with our understanding of ice-shelf flexure/fracture, suggest that surface meltwater plays a key role in ice-shelf stability, although the present state of knowledge remains limited. Here, we report results of an investigation into the seasonal evolution of meltwater on the McMurdo Ice Shelf (MIS) during the 2015/16 and 2016/17 austral summers using satellite remote sensing, complemented by ground survey. Although the MIS is relatively far south (78° S), it experiences relatively high ablation rates in the west due to adiabatically warmed winds, making it a useful example of how meltwater could evolve on more southerly ice shelves in a warming climate. We calculate the areas and depths of ponded surface meltwater on the ice shelf at different stages of the two melt seasons using a modified NDWI approach and water-depth algorithm applied to both Landsat 8 and Worldview imagery. Data from two automatic weather stations on the ice shelf are used to drive a positive degree-day model to compare our observations of surface water volumes with modelled meltwater production. Results suggest that the spatial and temporal variations in surface meltwater coverage on the ice shelf vary not only with climatic conditions but also in response to other important processes. First, a rift that widens and propagates between the two melt seasons intercepts meltwater streams, redirecting flow and facilitating ponding elsewhere. Second, some lakes from previous years remain frozen over and become pedestalled, causing streams to divert around their perimeter. Third, surface debris conditions also cause large-scale spatial variation in melt rates and the flow and storage of water.

  13. Ocean-Forced Ice-Shelf Thinning in a Synchronously Coupled Ice-Ocean Model

    NASA Astrophysics Data System (ADS)

    Jordan, James R.; Holland, Paul R.; Goldberg, Dan; Snow, Kate; Arthern, Robert; Campin, Jean-Michel; Heimbach, Patrick; Jenkins, Adrian

    2018-02-01

    The first fully synchronous, coupled ice shelf-ocean model with a fixed grounding line and imposed upstream ice velocity has been developed using the MITgcm (Massachusetts Institute of Technology general circulation model). Unlike previous, asynchronous, approaches to coupled modeling our approach is fully conservative of heat, salt, and mass. Synchronous coupling is achieved by continuously updating the ice-shelf thickness on the ocean time step. By simulating an idealized, warm-water ice shelf we show how raising the pycnocline leads to a reduction in both ice-shelf mass and back stress, and hence buttressing. Coupled runs show the formation of a western boundary channel in the ice-shelf base due to increased melting on the western boundary due to Coriolis enhanced flow. Eastern boundary ice thickening is also observed. This is not the case when using a simple depth-dependent parameterized melt, as the ice shelf has relatively thinner sides and a thicker central "bulge" for a given ice-shelf mass. Ice-shelf geometry arising from the parameterized melt rate tends to underestimate backstress (and therefore buttressing) for a given ice-shelf mass due to a thinner ice shelf at the boundaries when compared to coupled model simulations.

  14. Simulation of the Greenland Ice Sheet over two glacial-interglacial cycles: investigating a sub-ice-shelf melt parameterization and relative sea level forcing in an ice-sheet-ice-shelf model

    NASA Astrophysics Data System (ADS)

    Bradley, Sarah L.; Reerink, Thomas J.; van de Wal, Roderik S. W.; Helsen, Michiel M.

    2018-05-01

    Observational evidence, including offshore moraines and sediment cores, confirm that at the Last Glacial Maximum (LGM) the Greenland ice sheet (GrIS) expanded to a significantly larger spatial extent than seen at present, grounding into Baffin Bay and out onto the continental shelf break. Given this larger spatial extent and its close proximity to the neighbouring Laurentide Ice Sheet (LIS) and Innuitian Ice Sheet (IIS), it is likely these ice sheets will have had a strong non-local influence on the spatial and temporal behaviour of the GrIS. Most previous paleo ice-sheet modelling simulations recreated an ice sheet that either did not extend out onto the continental shelf or utilized a simplified marine ice parameterization which did not fully include the effect of ice shelves or neglected the sensitivity of the GrIS to this non-local bedrock signal from the surrounding ice sheets. In this paper, we investigated the evolution of the GrIS over the two most recent glacial-interglacial cycles (240 ka BP to the present day) using the ice-sheet-ice-shelf model IMAU-ICE. We investigated the solid earth influence of the LIS and IIS via an offline relative sea level (RSL) forcing generated by a glacial isostatic adjustment (GIA) model. The RSL forcing governed the spatial and temporal pattern of sub-ice-shelf melting via changes in the water depth below the ice shelves. In the ensemble of simulations, at the glacial maximums, the GrIS coalesced with the IIS to the north and expanded to the continental shelf break to the southwest but remained too restricted to the northeast. In terms of the global mean sea level contribution, at the Last Interglacial (LIG) and LGM the ice sheet added 1.46 and -2.59 m, respectively. This LGM contribution by the GrIS is considerably higher (˜ 1.26 m) than most previous studies whereas the contribution to the LIG highstand is lower (˜ 0.7 m). The spatial and temporal behaviour of the northern margin was highly variable in all simulations

  15. Detecting high spatial variability of ice shelf basal mass balance, Roi Baudouin Ice Shelf, Antarctica

    NASA Astrophysics Data System (ADS)

    Berger, Sophie; Drews, Reinhard; Helm, Veit; Sun, Sainan; Pattyn, Frank

    2017-11-01

    Ice shelves control the dynamic mass loss of ice sheets through buttressing and their integrity depends on the spatial variability of their basal mass balance (BMB), i.e. the difference between refreezing and melting. Here, we present an improved technique - based on satellite observations - to capture the small-scale variability in the BMB of ice shelves. As a case study, we apply the methodology to the Roi Baudouin Ice Shelf, Dronning Maud Land, East Antarctica, and derive its yearly averaged BMB at 10 m horizontal gridding. We use mass conservation in a Lagrangian framework based on high-resolution surface velocities, atmospheric-model surface mass balance and hydrostatic ice-thickness fields (derived from TanDEM-X surface elevation). Spatial derivatives are implemented using the total-variation differentiation, which preserves abrupt changes in flow velocities and their spatial gradients. Such changes may reflect a dynamic response to localized basal melting and should be included in the mass budget. Our BMB field exhibits much spatial detail and ranges from -14.7 to 8.6 m a-1 ice equivalent. Highest melt rates are found close to the grounding line where the pressure melting point is high, and the ice shelf slope is steep. The BMB field agrees well with on-site measurements from phase-sensitive radar, although independent radar profiling indicates unresolved spatial variations in firn density. We show that an elliptical surface depression (10 m deep and with an extent of 0.7 km × 1.3 km) lowers by 0.5 to 1.4 m a-1, which we tentatively attribute to a transient adaptation to hydrostatic equilibrium. We find evidence for elevated melting beneath ice shelf channels (with melting being concentrated on the channel's flanks). However, farther downstream from the grounding line, the majority of ice shelf channels advect passively (i.e. no melting nor refreezing) toward the ice shelf front. Although the absolute, satellite-based BMB values remain uncertain, we have

  16. Impact of surface melt and ponding on the stability of Larsen C Ice Shelf, Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    Kulessa, Bernd; Luckman, Adrian; Hubbard, Bryn; Bevan, Suzanne; O'Leary, Martin; Ashmore, David; Kuipers Munneke, Peter; Jansen, Daniela; Booth, Adam; Sevestre, Heidi; Holland, Paul; McGrath, Daniel; Brisbourne, Alex; Rutt, Ian

    2017-04-01

    Several ice shelves on the Antarctic Peninsula have disintegrated rapidly in recent decades, and surface meltwater is strongly implicated as a driver. The Larsen C Ice Shelf is the largest ice shelf on the peninsula and one of the largest in Antarctica, and is subject to pronounced surface melting and meltwater ponding, especially in the northern sectors and landward inlets. As part of the MIDAS project we have investigated the structure and physical properties of the firn and ice layers in the 2014/15 and 2015/16 austral summers, using a combination of radar and seismic geophysical surveys together with hot water drilling and borehole optical televiewing and temperature measurements. We found that Larsen C's firn column and ice temperatures are modified strongly by surface melting and ponding, including the presence of massive ice bodies in the Cabinet and Whirlwind inlets. Numerical modelling reveals that these modifications have been altering ice shelf deformation, flow and fracture significantly. The findings from our MIDAS project thus suggest that the response of Antarctic ice shelves to climatic warming is more complex than previously thought.

  17. Formation of melt channels on ice shelves

    NASA Astrophysics Data System (ADS)

    Sergienko, Olga

    2013-04-01

    Melt channels have been observed on ice shelves experiencing strong melting in both Greenland (Petermann Glacier) and Antarctica (Pine Island Glacier). Using a fully-couple ice-shelf/sub-ice-shelf-ocean flow model, it is demonstrated that these channels can form spontaneously in laterally confined ice shelves. These channels have transverse extent of a few kilometers and a vertical relief of about a few hundred meters. Meltrates and sea-water transport in the channels are significantly higher than in between the channels on the smooth flat ice bottom. In circumstances where an ice shelf has no-slip conditions at its lateral boundaries, the ice-shelf/sub-ice-shelf-cavity system exhibits equilibrium periodic states, where the same configurations repetitively appear with a periodicity of about 30-35 years. This peculiar dynamics of the system has strong implications on the interpretation of the remote and in-situ observations and inferences of the system parameters (e.g., melt rates) based on these observations. For instance, the persistent temporal changes in the ice-shelf thickness are caused by internal dynamics of the melt channels, and, in contrast to traditional interpretation, can be independent of the oceanic forcings.

  18. Modelling the influence of tides on ice-shelf melt rates in the Amundsen Sea, Antarctica.

    NASA Astrophysics Data System (ADS)

    Jourdain, Nicolas C.; Molines, Jean-Marc; Le Sommer, Julien; Mathiot, Pierre; Chanut, Jérome; Madec, Gurvan

    2017-04-01

    Variations in melt beneath ice- shelves may trigger ice-sheet instabilities, in particular in West Antarctica. Therefore, improving the understanding and modelling of ice-shelf basal melt rates has been a major focus over the last decades. In this presentation, we provide further insight into the role of tides on basal melt rates, and we assess several methods to account for tides in models that do not include an explicit representation of tides. First, we use an explicit representation of tides in a regional configuration of the NEMO-3.6 model deployed over the Amundsen Sea. We show that most of the tidal influence on ice-shelf melt is explained by four tidal constituents. Tides enhance melt by more than 30% in some cavities like Abbot, Cosgrove and Dotson, but by less than 10% in others like Thwaites and Pine Island. Over the entire Amundsen Sea sector, tides enhance melt by 92 Gt/yr, which is mostly induced by tidal velocities along ice drafts (+148 Gt/yr), partly compensated by tide-induced change in thermal forcing (-31 Gt/yr) and co-variations between tidal velocities and thermal forcing (-26 Gt/yr). In the second part of this presentation, we show that using uniform tidal velocities to account for tides effects in ocean models with no explicit tides produces large biases in melt rates. By contrast, prescribing non-uniform tidal velocities allows an accurate representation of the dynamical effects of tides on melt rates.

  19. Larsen Ice Shelf, Antarctica

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Warmer surface temperatures over just a few months in the Antarctic can splinter an ice shelf and prime it for a major collapse, NASA and university scientists report in the latest issue of the Journal of Glaciology. Using satellite images of tell-tale melt water on the ice surface and a sophisticated computer simulation of the motions and forces within an ice shelf, the scientists demonstrated that added pressure from surface water filling crevasses can crack the ice entirely through. The process can be expected to become more widespread if Antarctic summer temperatures increase. This true-color image from Landsat 7, acquired on February 21, 2000, shows pools of melt water on the surface of the Larsen Ice Shelf, and drifting icebergs that have split from the shelf. The upper image is an overview of the shelf's edge, while the lower image is displayed at full resolution of 30 meters (98 feet) per pixel. The labeled pond in the lower image measures roughly 1.6 by 1.6 km (1.0 x 1.0 miles). Full text of Press Release More Images and Animations Image courtesy Landsat 7 Science Team and NASA GSFC

  20. Foehn and temperature-based melt patterns over the Larsen C Ice Shelf as simulated by the MAR regional climate model

    NASA Astrophysics Data System (ADS)

    Datta, R.; Tedesco, M.; Agosta, C.; Fettweis, X.; Kuipers Munneke, P.; van den Broeke, M. R.

    2017-12-01

    Surface melting has been implicated in the collapse of Antarctic Peninsula ice shelves, most dramatically in the Larsen A (1995) and Larsen B (2002) ice shelves. In July of this year, a rift in the remaining Larsen C ice shelf broke away one of the largest icebergs ever recorded. Ice-shelf retreat is likely related to strong atmospheric warming in this area, by means of hydrofracturing and possibly by the warming atmosphere itself. According the hydrofracture mechanism, meltwater produced during anomalously warm summers infiltrates and deepens pre-existent crevasses, leading to the eventual break-up of the ice shelf. In addition to region-wide warming, melting in the East Antarctic Peninsula can be caused by frequent intrusions of westerly foehn winds. The remaining Larsen C ice shelf, as well as glaciers previously feeding to the former Larsen B ice shelf, are therefore vulnerable to both (a) the atmospheric circulation patterns that influence foehn wind frequency and intensity and (b) regional interannual temperature trends. We discuss spatial patterns of meltwater production in the northeast basin of the Antarctic Peninsula as modeled by the Modèle Atmosphérique Régionale (MAR) at a 10km resolution between 2001 and 2014. The timeseries associated with these patterns are used to identify interannual changes in the frequency of foehn-induced melt, and compare foehn-induced melting to melt associated with regional warming. Melt occurrence in MAR is evaluated against multiple satellite datasets and near-surface automatic weather station data from three sites. Finally, we discuss the seasonal depth to which meltwater percolates into the snowpack (as modeled by MAR) because of the potential influence of meltwater on both warming and densification of the ice shelf.

  1. Regional Changes in Icescape Impact Shelf Circulation and Basal Melting

    NASA Astrophysics Data System (ADS)

    Cougnon, E. A.; Galton-Fenzi, B. K.; Rintoul, S. R.; Legrésy, B.; Williams, G. D.; Fraser, A. D.; Hunter, J. R.

    2017-11-01

    Ice shelf basal melt is the dominant contribution to mass loss from Antarctic ice shelves. However, the sensitivity of basal melt to changes in icescape (grounded icebergs, ice shelves, and sea ice) and related ocean circulation is poorly understood. Here we simulate the impact of the major 2010 calving event of the Mertz Glacier Tongue (MGT), East Antarctica, and related redistribution of sea ice and icebergs on the basal melt rate of the local ice shelves. We find that the position of the grounded tabular iceberg B9B controls the water masses that reach the nearby ice shelf cavities. After the calving of the MGT and the removal of B9B, warmer water is present both within the MGT cavity and on the continental shelf driving a 57% increase of the deep MGT basal melting. Major changes in icescape influence the oceanic heat flux responsible for basal ice shelf melting.

  2. Dibble Ice Shelf

    NASA Image and Video Library

    2013-06-13

    This photo, aken onboard a National Science Foundation/NASA chartered Twin Otter aircraft, shows the ice front of Dibble Ice Shelf, East Antarctica, a significant melt water producer from the Wilkes Land region, East Antarctica.

  3. Ice Shelf-Ocean Interactions Near Ice Rises and Ice Rumples

    NASA Astrophysics Data System (ADS)

    Lange, M. A.; Rückamp, M.; Kleiner, T.

    2013-12-01

    The stability of ice shelves depends on the existence of embayments and is largely influenced by ice rises and ice rumples, which act as 'pinning-points' for ice shelf movement. Of additional critical importance are interactions between ice shelves and the water masses underlying them in ice shelf cavities, particularly melting and refreezing processes. The present study aims to elucidate the role of ice rises and ice rumples in the context of climate change impacts on Antarctic ice shelves. However, due to their smaller spatial extent, ice rumples react more sensitively to climate change than ice rises. Different forcings are at work and need to be considered separately as well as synergistically. In order to address these issues, we have decided to deal with the following three issues explicitly: oceanographic-, cryospheric and general topics. In so doing, we paid particular attention to possible interrelationships and feedbacks in a coupled ice-shelf-ocean system. With regard to oceanographic issues, we have applied the ocean circulation model ROMBAX to ocean water masses adjacent to and underneath a number of idealized ice shelf configurations: wide and narrow as well as laterally restrained and unrestrained ice shelves. Simulations were performed with and without small ice rises located close to the calving front. For larger configurations, the impact of the ice rises on melt rates at the ice shelf base is negligible, while for smaller configurations net melting rates at the ice-shelf base differ by a factor of up to eight depending on whether ice rises are considered or not. We employed the thermo-coupled ice flow model TIM-FD3 to simulate the effects of several ice rises and one ice rumple on the dynamics of ice shelf flow. We considered the complete un-grounding of the ice shelf in order to investigate the effect of pinning points of different characteristics (interior or near calving front, small and medium sized) on the resulting flow and stress fields

  4. Environmental controls on micro fracture processes in shelf ice

    NASA Astrophysics Data System (ADS)

    Sammonds, Peter

    2013-04-01

    The recent retreat and collapse of the ice shelves on the Antarctic Peninsula has been associated with regional atmospheric warming, oceanic warming, increased summer melt and shelf flexure. Although the cause of collapse is a matter of active discussion, the process is that of fracture of a creep-brittle material, close to its melting point. The environmental controls on how fracturing initiates, at a micro-scale, strongly determine the macroscopic disintegration of ice shelves. In particular the shelf temperature profile controls the plasticity of the ice shelf; the densification of shelf ice due to melting and re-freezing affects the crack tip stress intensity; the accretion of marine ice at the bottom of the shelf imposes a thermal/mechanical discontinuity; saline environments control crack tip stress corrosion; cyclic loading promotes sub-critical crack propagation. These strong environmental controls on shelf ice fracture means that assessing shelf stability is a non-deterministic problem. How these factors may be parameterized in ice shelf models, through the use of fracture mechanisms maps, is discussed. The findings are discussed in relation to the stability of Larsen C.

  5. Channelized bottom melting and stability of floating ice shelves

    NASA Astrophysics Data System (ADS)

    Rignot, E.; Steffen, K.

    2008-01-01

    The floating ice shelf in front of Petermann Glacier, in northwest Greenland, experiences massive bottom melting that removes 80% of its ice before calving into the Arctic Ocean. Detailed surveys of the ice shelf reveal the presence of 1-2 km wide, 200-400 m deep, sub-ice shelf channels, aligned with the flow direction and spaced by 5 km. We attribute their formation to the bottom melting of ice from warm ocean waters underneath. Drilling at the center of one of channel, only 8 m above sea level, confirms the presence of ice-shelf melt water in the channel. These deep incisions in ice-shelf thickness imply a vulnerability to mechanical break up and climate warming of ice shelves that has not been considered previously.

  6. Oceanographic Controls on the Variability of Ice-Shelf Basal Melting and Circulation of Glacial Meltwater in the Amundsen Sea Embayment, Antarctica

    NASA Astrophysics Data System (ADS)

    Kimura, Satoshi; Jenkins, Adrian; Regan, Heather; Holland, Paul R.; Assmann, Karen M.; Whitt, Daniel B.; Van Wessem, Melchoir; van de Berg, Willem Jan; Reijmer, Carleen H.; Dutrieux, Pierre

    2017-12-01

    Ice shelves in the Amundsen Sea Embayment have thinned, accelerating the seaward flow of ice sheets upstream over recent decades. This imbalance is caused by an increase in the ocean-driven melting of the ice shelves. Observations and models show that the ocean heat content reaching the ice shelves is sensitive to the depth of thermocline, which separates the cool, fresh surface waters from warm, salty waters. Yet the processes controlling the variability of thermocline depth remain poorly constrained. Here we quantify the oceanic conditions and ocean-driven melting of Cosgrove, Pine Island Glacier (PIG), Thwaites, Crosson, and Dotson ice shelves in the Amundsen Sea Embayment from 1991 to 2014 using a general circulation model. Ice-shelf melting is coupled to variability in the wind field and the sea-ice motions over the continental shelf break and associated onshore advection of warm waters in deep troughs. The layer of warm, salty waters at the calving front of PIG and Thwaites is thicker in austral spring (June-October) than in austral summer (December-March), whereas the seasonal cycle at the calving front of Dotson is reversed. Furthermore, the ocean-driven melting in PIG is enhanced by an asymmetric response to changes in ocean heat transport anomalies at the continental shelf break: melting responds more rapidly to increases in ocean heat transport than to decreases. This asymmetry is caused by the inland deepening of bathymetry and the glacial meltwater circulation around the ice shelf.

  7. The response of grounded ice to ocean temperature forcing in a coupled ice sheet-ice shelf-ocean cavity model

    NASA Astrophysics Data System (ADS)

    Goldberg, D. N.; Little, C. M.; Sergienko, O. V.; Gnanadesikan, A.

    2010-12-01

    Ice shelves provide a pathway for the heat content of the ocean to influence continental ice sheets. Changes in the rate or location of basal melting can alter their geometry and effect changes in stress conditions at the grounding line, leading to a grounded ice response. Recent observations of ice streams and ice shelves in the Amundsen Sea sector of West Antarctica have been consistent with this story. On the other hand, ice dynamics in the grounding zone control flux into the shelf and thus ice shelf geometry, which has a strong influence on the circulation in the cavity beneath the shelf. Thus the coupling between the two systems, ocean and ice sheet-ice shelf, can be quite strong. We examine the response of the ice sheet-ice shelf-ocean cavity system to changes in ocean temperature using a recently developed coupled model. The coupled model consists a 3-D ocean model (GFDL's Generalized Ocean Layered Dynamics model, or GOLD) to a two-dimensional ice sheet-ice shelf model (Goldberg et al, 2009), and allows for changing cavity geometry and a migrating grounding line. Steady states of the coupled system are found even under considerable forcing. The ice shelf morphology and basal melt rate patterns of the steady states exhibit detailed structure, and furthermore seem to be unique and robust. The relationship between temperature forcing and area-averaged melt rate is influenced by the response of ice shelf morphology to thermal forcing, and is found to be sublinear in the range of forcing considered. However, results suggest that area-averaged melt rate is not the best predictor of overall system response, as grounding line stability depends on local aspects of the basal melt field. Goldberg, D N, D M Holland and C G Schoof, 2009. Grounding line movement and ice shelf buttressing in marine ice sheets, Journal of Geophysical Research-Earth Surfaces, 114, F04026.

  8. Ocean mixing beneath Pine Island Glacier ice shelf, West Antarctica

    NASA Astrophysics Data System (ADS)

    Kimura, Satoshi; Jenkins, Adrian; Dutrieux, Pierre; Forryan, Alexander; Naveira Garabato, Alberto C.; Firing, Yvonne

    2016-12-01

    Ice shelves around Antarctica are vulnerable to an increase in ocean-driven melting, with the melt rate depending on ocean temperature and the strength of flow inside the ice-shelf cavities. We present measurements of velocity, temperature, salinity, turbulent kinetic energy dissipation rate, and thermal variance dissipation rate beneath Pine Island Glacier ice shelf, West Antarctica. These measurements were obtained by CTD, ADCP, and turbulence sensors mounted on an Autonomous Underwater Vehicle (AUV). The highest turbulent kinetic energy dissipation rate is found near the grounding line. The thermal variance dissipation rate increases closer to the ice-shelf base, with a maximum value found ˜0.5 m away from the ice. The measurements of turbulent kinetic energy dissipation rate near the ice are used to estimate basal melting of the ice shelf. The dissipation-rate-based melt rate estimates is sensitive to the stability correction parameter in the linear approximation of universal function of the Monin-Obukhov similarity theory for stratified boundary layers. We argue that our estimates of basal melting from dissipation rates are within a range of previous estimates of basal melting.

  9. Antarctic ice-sheet loss driven by basal melting of ice shelves.

    PubMed

    Pritchard, H D; Ligtenberg, S R M; Fricker, H A; Vaughan, D G; van den Broeke, M R; Padman, L

    2012-04-25

    Accurate prediction of global sea-level rise requires that we understand the cause of recent, widespread and intensifying glacier acceleration along Antarctic ice-sheet coastal margins. Atmospheric and oceanic forcing have the potential to reduce the thickness and extent of floating ice shelves, potentially limiting their ability to buttress the flow of grounded tributary glaciers. Indeed, recent ice-shelf collapse led to retreat and acceleration of several glaciers on the Antarctic Peninsula. But the extent and magnitude of ice-shelf thickness change, the underlying causes of such change, and its link to glacier flow rate are so poorly understood that its future impact on the ice sheets cannot yet be predicted. Here we use satellite laser altimetry and modelling of the surface firn layer to reveal the circum-Antarctic pattern of ice-shelf thinning through increased basal melt. We deduce that this increased melt is the primary control of Antarctic ice-sheet loss, through a reduction in buttressing of the adjacent ice sheet leading to accelerated glacier flow. The highest thinning rates occur where warm water at depth can access thick ice shelves via submarine troughs crossing the continental shelf. Wind forcing could explain the dominant patterns of both basal melting and the surface melting and collapse of Antarctic ice shelves, through ocean upwelling in the Amundsen and Bellingshausen seas, and atmospheric warming on the Antarctic Peninsula. This implies that climate forcing through changing winds influences Antarctic ice-sheet mass balance, and hence global sea level, on annual to decadal timescales.

  10. Ice shelf melt rates in Greenland and Antarctica using time-tagged digital imagery from World View and TanDEM-X

    NASA Astrophysics Data System (ADS)

    Charolais, A.; Rignot, E. J.; Milillo, P.; Scheuchl, B.; Mouginot, J.

    2017-12-01

    The floating extensions of glaciers, or ice shelves, melt vigorously in contact with ocean waters. Melt is non uniform, with the highest melt taking place in the deepest part of the cavity, where thermal forcing is the greatest because of 1) the pressure dependence of the freezing point of the seawater/ice mixture and 2) subglacial water injects fresh, buoyant, cold melt water to fuel stronger ice-ocean interactions. Melt also forms along preferential channels, which are not stationary, and create lines of weakness in the shelf. Ice shelf melt rates have been successfully measured from space over the entire Antarctic continent and on the ice shelves in Greenland using an Eulerian approach that combines ice thickness, ice velocity vectors, surface mass balance data, and measurements of ice thinning rates. The Eulerian approach is limited by the precision of the thickness gradients, typically of a few km, and requires significant spatial averaging to remove advection effects. A Lagrangian approach has been shown to be robust to advection effects and provides higher resolution details. We implemented a Lagrangian methodology for time-tagged World View DEMs by the Polar Geoscience Center (PGS) at the University of Minnesota and time-tagged TanDEM-X DEMs separated by one year. We derive melt rates on a 300-m grid with a precision of a few m/yr. Melt is strongest along grounding lines and along preferred channels. Channels are non-stationary because melt is not the same on opposite sides of the channels. Examining time series of data and comparing with the time-dependent grounding line positions inferred from satellite radar interferometry, we evaluate the magnitude of melt near the grounding line and even within the grounding zone. A non-zero melt rate in the grounding zone has vast implications for ice sheet modeling. This work is funded by a grant from NASA Cryosphere Program.

  11. GPS-derived estimates of surface mass balance and ocean-induced basal melt for Pine Island Glacier ice shelf, Antarctica

    NASA Astrophysics Data System (ADS)

    Shean, David E.; Christianson, Knut; Larson, Kristine M.; Ligtenberg, Stefan R. M.; Joughin, Ian R.; Smith, Ben E.; Stevens, C. Max; Bushuk, Mitchell; Holland, David M.

    2017-11-01

    In the last 2 decades, Pine Island Glacier (PIG) experienced marked speedup, thinning, and grounding-line retreat, likely due to marine ice-sheet instability and ice-shelf basal melt. To better understand these processes, we combined 2008-2010 and 2012-2014 GPS records with dynamic firn model output to constrain local surface and basal mass balance for PIG. We used GPS interferometric reflectometry to precisely measure absolute surface elevation (zsurf) and Lagrangian surface elevation change (Dzsurf/ Dt). Observed surface elevation relative to a firn layer tracer for the initial surface (zsurf - zsurf0') is consistent with model estimates of surface mass balance (SMB, primarily snow accumulation). A relatively abrupt ˜ 0.2-0.3 m surface elevation decrease, likely due to surface melt and increased compaction rates, is observed during a period of warm atmospheric temperatures from December 2012 to January 2013. Observed Dzsurf/ Dt trends (-1 to -4 m yr-1) for the PIG shelf sites are all highly linear. Corresponding basal melt rate estimates range from ˜ 10 to 40 m yr-1, in good agreement with those derived from ice-bottom acoustic ranging, phase-sensitive ice-penetrating radar, and high-resolution stereo digital elevation model (DEM) records. The GPS and DEM records document higher melt rates within and near features associated with longitudinal extension (i.e., transverse surface depressions, rifts). Basal melt rates for the 2012-2014 period show limited temporal variability despite large changes in ocean temperature recorded by moorings in Pine Island Bay. Our results demonstrate the value of long-term GPS records for ice-shelf mass balance studies, with implications for the sensitivity of ice-ocean interaction at PIG.

  12. Antarctic ice discharge due to warm water intrusion into shelf cavities

    NASA Astrophysics Data System (ADS)

    Winkelmann, R.; Reese, R.; Albrecht, T.; Mengel, M.; Asay-Davis, X.

    2017-12-01

    Ocean-induced melting below ice shelves is the dominant driver for mass loss from the Antarctic Ice Sheet at present. Observations show that many Antarctic ice shelves are thinning which reduces their buttressing potential and can lead to increased ice discharge from the glaciers upstream. Melt rates from Antarctic ice shelves are determined by the temperature and salinity of the ambient ocean. In many parts, ice shelves are shielded by clearly defined density fronts which keep relatively warm Northern water from entering the cavity underneath the ice shelves. Projections show that a redirection of coastal currents might allow these warmer waters to intrude into ice shelf cavities, for instance in the Weddell Sea, and thereby cause a strong increase in sub-shelf melt rates. Using the Potsdam Ice-shelf Cavity mOdel (PICO), we assess how such a change would influence the dynamic ice loss from Antarctica. PICO is implemented as part of the Parallel Ice Sheet Model (PISM) and mimics the vertical overturning circulation in ice-shelf cavities. The model is capable of capturing the wide range of melt rates currently observed for Antarctic ice shelves and reproduces the typical pattern of comparably high melting near the grounding line and lower melting or refreezing towards the calving front. Based on regional observations of ocean temperatures, we use PISM-PICO to estimate an upper limit for ice discharge resulting from the potential erosion of ocean fronts around Antarctica.

  13. Monitoring Antarctic ice sheet surface melting with TIMESAT algorithm

    NASA Astrophysics Data System (ADS)

    Ye, Y.; Cheng, X.; Li, X.; Liang, L.

    2011-12-01

    Antarctic ice sheet contributes significantly to the global heat budget by controlling the exchange of heat, moisture, and momentum at the surface-atmosphere interface, which directly influence the global atmospheric circulation and climate change. Ice sheet melting will cause snow humidity increase, which will accelerate the disintegration and movement of ice sheet. As a result, detecting Antarctic ice sheet melting is essential for global climate change research. In the past decades, various methods have been proposed for extracting snowmelt information from multi-channel satellite passive microwave data. Some methods are based on brightness temperature values or a composite index of them, and others are based on edge detection. TIMESAT (Time-series of Satellite sensor data) is an algorithm for extracting seasonality information from time-series of satellite sensor data. With TIMESAT long-time series brightness temperature (SSM/I 19H) is simulated by Double Logistic function. Snow is classified to wet and dry snow with generalized Gaussian model. The results were compared with those from a wavelet algorithm. On this basis, Antarctic automatic weather station data were used for ground verification. It shows that this algorithm is effective in ice sheet melting detection. The spatial distribution of melting areas(Fig.1) shows that, the majority of melting areas are located on the edge of Antarctic ice shelf region. It is affected by land cover type, surface elevation and geographic location (latitude). In addition, the Antarctic ice sheet melting varies with seasons. It is particularly acute in summer, peaking at December and January, staying low in March. In summary, from 1988 to 2008, Ross Ice Shelf and Ronnie Ice Shelf have the greatest interannual variability in amount of melting, which largely determines the overall interannual variability in Antarctica. Other regions, especially Larsen Ice Shelf and Wilkins Ice Shelf, which is in the Antarctic Peninsula

  14. Snow, Firn and Ice Heterogeneity within Larsen C Ice Shelf Revealed by Borehole Optical-televiewing

    NASA Astrophysics Data System (ADS)

    Hubbard, B. P.; Ashmore, D.; Luckman, A. J.; Kulessa, B.; Bevan, S. L.; Booth, A.; Kuipers Munneke, P.; O'Leary, M.; Sevestre, H.

    2016-12-01

    The north-western sector of Larsen C Ice Shelf (LCIS), Antarctica, hosts intermittent surface ponds resulting from intense melting, largely driven by warm föhn winds. The fate of such surface melt water is largely controlled by the shelf's firn structure, which also dictates shelf density (widely used to reconstruct ice shelf thickness from altimetric data) and preconditioning to hydrofracture. Here, we report a suite of five 90 m long optical-televiewer (OPTV) borehole logs from the northern and central regions of LCIS recorded in spring 2014 and 2015. For each OPTV log we reconstruct vertical variations in material density via an empirical OPTV log-ice core calibration, and apply a thresholding technique to estimate refrozen ice content within the firn column. These data are combined to define five material facies present within this sector of LCIS. The firn/ice column is anomalously dense at all five sites, having an overall mean depth-averaged density of 873 +/-32 kg m-3. In terms of spatial variability, our findings generally support previous estimates of firn air content fields and implied infiltration ice content. However, they also highlight finer-resolution complexity of ice shelf structure. For example, the most dense ice, with the lowest equivalent firn air content, is not located within the most westerly inlets, where firn-driven melting and ponding are most active, but some tens of km down-flow of these areas. We interpret this effect in terms of the inheritance nearer the grounding line of relatively low-density glacial ice (e.g., 52 m thick with a density of 852 +/-21 kg m-3 in northernmost Cabinet Inlet) advected from inland. This inherited ice forms one of five facies identified across the study region. These are, extending broadly downwards into the shelf, and with different representation at each site: local accumulation (F1); local accumulation hosting substantial infiltration ice, i.e. influenced by intense melt but insufficient to form

  15. Intercomparison of Antarctic ice-shelf, ocean, and sea-ice interactions simulated by MetROMS-iceshelf and FESOM 1.4

    NASA Astrophysics Data System (ADS)

    Naughten, Kaitlin A.; Meissner, Katrin J.; Galton-Fenzi, Benjamin K.; England, Matthew H.; Timmermann, Ralph; Hellmer, Hartmut H.; Hattermann, Tore; Debernard, Jens B.

    2018-04-01

    An increasing number of Southern Ocean models now include Antarctic ice-shelf cavities, and simulate thermodynamics at the ice-shelf/ocean interface. This adds another level of complexity to Southern Ocean simulations, as ice shelves interact directly with the ocean and indirectly with sea ice. Here, we present the first model intercomparison and evaluation of present-day ocean/sea-ice/ice-shelf interactions, as simulated by two models: a circumpolar Antarctic configuration of MetROMS (ROMS: Regional Ocean Modelling System coupled to CICE: Community Ice CodE) and the global model FESOM (Finite Element Sea-ice Ocean Model), where the latter is run at two different levels of horizontal resolution. From a circumpolar Antarctic perspective, we compare and evaluate simulated ice-shelf basal melting and sub-ice-shelf circulation, as well as sea-ice properties and Southern Ocean water mass characteristics as they influence the sub-ice-shelf processes. Despite their differing numerical methods, the two models produce broadly similar results and share similar biases in many cases. Both models reproduce many key features of observations but struggle to reproduce others, such as the high melt rates observed in the small warm-cavity ice shelves of the Amundsen and Bellingshausen seas. Several differences in model design show a particular influence on the simulations. For example, FESOM's greater topographic smoothing can alter the geometry of some ice-shelf cavities enough to affect their melt rates; this improves at higher resolution, since less smoothing is required. In the interior Southern Ocean, the vertical coordinate system affects the degree of water mass erosion due to spurious diapycnal mixing, with MetROMS' terrain-following coordinate leading to more erosion than FESOM's z coordinate. Finally, increased horizontal resolution in FESOM leads to higher basal melt rates for small ice shelves, through a combination of stronger circulation and small-scale intrusions of

  16. In-situ GPS records of surface mass balance, firn compaction rates, and ice-shelf basal melt rates for Pine Island Glacier, Antarctica

    NASA Astrophysics Data System (ADS)

    Shean, D. E.; Christianson, K.; Larson, K. M.; Ligtenberg, S.; Joughin, I. R.; Smith, B.; Stevens, C.

    2016-12-01

    In recent decades, Pine Island Glacier (PIG) has experienced marked retreat, speedup and thinning due to ice-shelf basal melt, internal ice-stream instability and feedbacks between these processes. In an effort to constrain recent ice-stream dynamics and evaluate potential causes of retreat, we analyzed 2008-2010 and 2012-2014 GPS records for PIG. We computed time series of horizontal velocity, strain rate, multipath-based antenna height, surface elevation, and Lagrangian elevation change (Dh/Dt). These data provide validation for complementary high-resolution WorldView stereo digital elevation model (DEM) records, with sampled DEM vertical error of 0.7 m. The GPS antenna height time series document a relative surface elevation increase of 0.7-1.0 m/yr, which is consistent with estimated surface mass balance (SMB) of 0.7-0.9 m.w.e./yr from RACMO2.3 and firn compaction rates from the IMAU-FDM dynamic firn model. An abrupt 0.2-0.3 m surface elevation decrease due to surface melt and/or greater near-surface firn compaction is observed during a period of warm atmospheric temperatures from December 2012 to January 2013. Observed surface Dh/Dt for all PIG shelf sites is highly linear with trends of -1 to -4 m/yr and <0.4 m residuals. Similar Dh/Dt estimates with reduced variability are obtained after removing expected downward GPS pole base velocity from observed GPS antenna Dh/Dt. Estimated Dh/Dt basal melt rates are 10 to 40 m/yr for the outer PIG shelf and 4 m/yr for the South shelf. These melt rates are similar to those derived from ice-bottom acoustic ranging, phase-sensitive ice-penetrating radar, and high-resolution stereo DEM records. The GPS/DEM records document higher melt rates within and near transverse surface depressions and rifts associated with longitudinal extension. Basal melt rates for the 2012-2014 period show limited temporal variability, despite significant change in ocean heat content. This suggests that sub-shelf melt rates are less sensitive to

  17. Near-surface elastic changes in the Ross Ice Shelf arising from transient storm and melt forcing observed with high-frequency ambient seismic noise

    NASA Astrophysics Data System (ADS)

    Chaput, J.; Aster, R. C.; Baker, M. G.; Gerstoft, P.; Bromirski, P. D.; Nyblade, A.; Stephen, R. A.; Wiens, D.

    2017-12-01

    Ice shelf collapse can herald subsequent grounded ice instability. However, robust understanding of external mechanisms capable of triggering rapid changes remains elusive. Improved understanding therefore requires improved remote and in-situ measurements of ice shelf properties. Using nearly three years of continuous data from a recently deployed 34-station broadband seismic array on the Ross Ice Shelf, we analyze persistent temporally varying, anisotropic near-surface resonant wave modes at frequencies above 1 Hz that are highly sensitive to small changes in elastic shelf properties to depths of tens of m. We further find that these modes exhibit both progressive (on the scale of months) and rapid (on the scale of hours) changes in frequency content. The largest and most rapid excursions are associated with forcing from local storms, and with a large regional ice shelf melt event in January 2016. We hypothesize that temporally variable behavior of the resonance features arises from wind slab formation during storms and/or to porosity changes, and to the formation of percolation-related refrozen layers and thinning in the case of surface melting. These resonance variations can be reproduced and inverted for structural changes using numerical wave propagation models, and thus present an opportunity for 4-D structural monitoring of shallow ice shelf elasticity and structure using long-duration seismic recordings.

  18. Submarine melt rates under Greenland's ice tongues

    NASA Astrophysics Data System (ADS)

    Wilson, Nat; Straneo, Fiametta; Heimbach, Patrick; Cenedese, Claudia

    2017-04-01

    The few remaining ice tongues (ice-shelf like extensions) of Greenland's glaciers are undergoing rapid changes with potential implications for the stability of the ice sheet. Submarine melting is recognized as a major contributor to mass loss, yet the magnitude and spatial distribution of melt are poorly known or understood. Here, we use high resolution satellite imagery to infer the magnitude and spatial variability of melt rates under Greenland's largest remaining ice tongues: Ryder Glacier, Petermann Glacier and Nioghalvfjerdsbræ (79 North Glacier). We find that submarine plus aerial melt approximately balance the ice flux from the grounded ice sheet for the first two while at Nioghalvfjerdsbræ the total melt flux exceeds the inflow of ice indicating thinning of the ice tongue. We also show that melt rates under the ice tongues vary considerably, exceeding 60 m yr-1 near the grounding zone and decaying rapidly downstream. Channels, likely originating from upstream subglacial channels, give rise to large melt variations across the ice tongues. Using derived melt rates, we test simplified melt parameterizations appropriate for ice sheet models and find the best agreement with those that incorporate ice tongue geometry in the form of depth and slope.

  19. Export of Ice-Cavity Water from Pine Island Ice Shelf, West Antarctica

    NASA Astrophysics Data System (ADS)

    Thurnherr, Andreas; Jacobs, Stanley; Dutrieux, Pierre

    2013-04-01

    Stability of the West Antarctic Ice Sheet is sensitive to changes in melting at the bottom of floating ice shelves that form the seaward extensions of Antarctic glaciers flowing into the ocean. Not least because observations in the cavities beneath ice shelves are difficult, heat fluxes and melt rates have been inferred from oceanographic measurements obtained near the ice edge (calving fronts). Here, we report on a set of hydrographic and velocity data collected in early 2009 near the calving front of the Amundsen Sea's fast-moving and (until recently) accelerating Pine Island Glacier and its associated ice shelf. CTD profiles collected along the southern half of the meridionally-trending ice front show clear evidence for export of ice-cavity water. That water was carried in the upper ocean along the ice front by a southward current that is possibly related to a striking clockwise gyre that dominated the (summertime) upper-ocean circulation in Pine Island Bay. Signatures of ice-cavity water appear unrelated to current direction along most of the ice front, suggesting that cross-frontal exchange is dominated by temporal variability. However, repeated hydrographic and velocity measurements in a small "ice cove" at the southern end of the calving front show a persistent strong (mean velocity peaking near 0.5 ms-1) outflow of ice-cavity water in the upper 500 m. While surface features (boils) suggested upwelling from deep below the ice shelf, vertical velocity measurements reveal 1) that the mean upwelling within the confines of the cove was too weak to feed the observed outflow, and 2) that large high-frequency internal waves dominated the vertical motion of water inside the cove. These observations indicate that water exchange between the Pine Island Ice Shelf cavity and the Amundsen sea is strongly asymmetric with weak broad inflow at depth and concentrated surface-intensified outflow of melt-laden deep water at the southern edge of the calving front. The lack of

  20. The effects of ocean circulation on ocean-ice interaction and potential feedbacks in an idealized shelf cavity

    NASA Astrophysics Data System (ADS)

    Bishop, S. P.; Thompson, A. F.; Schodlok, M.

    2016-02-01

    The West Antarctic ice sheet is melting at unprecedented rates, which will impact global sea level rise. The ocean may be playing the dominant role in this ice melt through the upwelling of warm and salty Circumpolar Deep Water (CDW) in regions such as Pine Island Glacier (PIG). There is evidence that the Antarctic Slope Front at the continental shelf constrains shoreward transport of CDW by mesoscale eddies. However, little is known about the ocean-ice interaction and potential feedbacks that take place once this water is advected into ice shelf cavities. In this talk we use MITgcm to simulate an idealized setup of the PIG ice shelf cavity, similar to the setup in De Rydt et al. 2014, to understand the effects of ocean circulation and potential feedbacks of ice-shelf melt on the ocean circulation. To do this we run the model in two different configurations with and without a wind-driven current at the northern edge of the ice shelf and annually updating the geometry of the ice shelf based on the parameterized ice-shelf melt. Eddy heat and potential vorticity fluxes are diagnosed and presented for each of the simulations and compared with control simulations where the ice-shelf cavity is not modified. Results show high ice shelf melt during the first year with maximum values in excess of 60 meters near the grounding line, but settle to tens of meters during the following years.

  1. Antarctic ice shelf potentially stabilized by export of meltwater in surface river.

    PubMed

    Bell, Robin E; Chu, Winnie; Kingslake, Jonathan; Das, Indrani; Tedesco, Marco; Tinto, Kirsty J; Zappa, Christopher J; Frezzotti, Massimo; Boghosian, Alexandra; Lee, Won Sang

    2017-04-19

    Meltwater stored in ponds and crevasses can weaken and fracture ice shelves, triggering their rapid disintegration. This ice-shelf collapse results in an increased flux of ice from adjacent glaciers and ice streams, thereby raising sea level globally. However, surface rivers forming on ice shelves could potentially export stored meltwater and prevent its destructive effects. Here we present evidence for persistent active drainage networks-interconnected streams, ponds and rivers-on the Nansen Ice Shelf in Antarctica that export a large fraction of the ice shelf's meltwater into the ocean. We find that active drainage has exported water off the ice surface through waterfalls and dolines for more than a century. The surface river terminates in a 130-metre-wide waterfall that can export the entire annual surface melt over the course of seven days. During warmer melt seasons, these drainage networks adapt to changing environmental conditions by remaining active for longer and exporting more water. Similar networks are present on the ice shelf in front of Petermann Glacier, Greenland, but other systems, such as on the Larsen C and Amery Ice Shelves, retain surface water at present. The underlying reasons for export versus retention remain unclear. Nonetheless our results suggest that, in a future warming climate, surface rivers could export melt off the large ice shelves surrounding Antarctica-contrary to present Antarctic ice-sheet models, which assume that meltwater is stored on the ice surface where it triggers ice-shelf disintegration.

  2. Antarctic Ice Shelf Potentially Stabilized by Export of Meltwater in Surface River

    NASA Technical Reports Server (NTRS)

    Bell, Robin E.; Chu, Winnie; Kingslake, Jonathan; Das, Indrani; Tedesco, Marco; Tinto, Kirsty J.; Zappa, Christopher J.; Frezzotti, Massimo; Boghosian, Alexandra; Lee, Won Sang

    2017-01-01

    Meltwater stored in ponds and crevasses can weaken and fracture ice shelves, triggering their rapid disintegration. This ice-shelf collapse results in an increased flux of ice from adjacent glaciers and ice streams, thereby raising sea level globally. However, surface rivers forming on ice shelves could potentially export stored meltwater and prevent its destructive effects. Here we present evidence for persistent active drainage networks-interconnected streams, ponds and rivers-on the Nansen Ice Shelf in Antarctica that export a large fraction of the ice shelf's meltwater into the ocean. We find that active drainage has exported water off the ice surface through waterfalls and dolines for more than a century. The surface river terminates in a 130-metre-wide waterfall that can export the entire annual surface melt over the course of seven days. During warmer melt seasons, these drainage networks adapt to changing environmental conditions by remaining active for longer and exporting more water. Similar networks are present on the ice shelf in front of Petermann Glacier, Greenland, but other systems, such as on the Larsen C and Amery Ice Shelves, retain surface water at present. The underlying reasons for export versus retention remain unclear. Nonetheless our results suggest that, in a future warming climate, surface rivers could export melt off the large ice shelves surrounding Antarctica-contrary to present Antarctic ice-sheet models, which assume that meltwater is stored on the ice surface where it triggers ice-shelf disintegration.

  3. The Tweeting Ice Shelf: geophysics and outreach

    NASA Astrophysics Data System (ADS)

    Van Liefferinge, Brice; Berger, Sophie; Drews, Reinhard; Pattyn, Frank

    2015-04-01

    Over the last decade the Antarctic and Greenland ice sheets have contributed about one third of the annual sea level rise (Hanna et al., 2013). However, it remains difficult to reconcile global mass balance estimates obtained from different satellite-based methods. A typical approach is to balance the mass input from atmospheric modelling with the outgoing mass flux at the ice-sheet boundary (Shepherd et al., 2012). The flux calculations at the boundary rely on satellite-derived surface velocities, which are currently only available as snapshots in time, and which need ground truth for validation. Here, we report on continuous, year-round measurements that aim at improving the input-output method in several aspects and carefully map the flow speed allowing for detecting seasonal variability. For this purpose, we set up in December 2014 three stand-alone single-frequency GPSes on the Roi Baudouin ice shelf (East Antarctica). The GPSes are installed across a surface depression (typical for large ice-shelf channels), where subglacial melting is expected. This setup allows us to investigate how these channels behave, i.e., if they become wider, whether or not they enhance the ice flow, and, in combination with an installed phase-sensitive radar, what amount of melting occurs below the channels in contact with the ocean. The GPS data are transmitted on a daily basis. Ice-shelf velocity is derived from the raw hourly location following the methods described in den Ouden et al. (2010), Dunse et al. (2012), and Ahlstrøm et al. (2013). However, a reference station has not been used for the correction. Basic processing involves outliers removal, smoothing, time-series analysis and comparison with tidal models. The project comes alongside an outreach event: on a weekly basis, the ice shelf 'tweets' its position, motion and relays other information with respect to the project. The GPS systems can be followed on Twitter via @TweetinIceShelf as well as the Tweeting Ice Shelf

  4. Variable Basal Melt Rates of Antarctic Peninsula Ice Shelves, 1994-2016

    NASA Astrophysics Data System (ADS)

    Adusumilli, Susheel; Fricker, Helen Amanda; Siegfried, Matthew R.; Padman, Laurie; Paolo, Fernando S.; Ligtenberg, Stefan R. M.

    2018-05-01

    We have constructed 23-year (1994-2016) time series of Antarctic Peninsula (AP) ice-shelf height change using data from four satellite radar altimeters (ERS-1, ERS-2, Envisat, and CryoSat-2). Combining these time series with output from atmospheric and firn models, we partitioned the total height-change signal into contributions from varying surface mass balance, firn state, ice dynamics, and basal mass balance. On the Bellingshausen coast of the AP, ice shelves lost 84 ± 34 Gt a-1 to basal melting, compared to contributions of 50 ± 7 Gt a-1 from surface mass balance and ice dynamics. Net basal melting on the Weddell coast was 51 ± 71 Gt a-1. Recent changes in ice-shelf height include increases over major AP ice shelves driven by changes in firn state. Basal melt rates near Bawden Ice Rise, a major pinning point of Larsen C Ice Shelf, showed large increases, potentially leading to substantial loss of buttressing if sustained.

  5. Ocean interactions with the base of Amery Ice Shelf, Antarctica

    NASA Technical Reports Server (NTRS)

    Hellmer, Hartmut H.; Jacobs, Stanley S.

    1992-01-01

    Using a two-dimensional ocean themohaline circulation model, we varied the cavity shape beneath Amery Ice Shelf in an attempt to reproduce the 150-m-thick marine ice layer observed at the 'G1' ice core site. Most simulations caused melting rates which decrease the ice thickness by as much as 400 m between grounding line and G1, but produce only minor accumulation at the ice core site and closer to the ice front. Changes in the sea floor and ice topographies revealed a high sensitivity of the basal mass balance to water column thickness near the grounding line, to submarine sills, and to discontinuities in ice thickness. Model results showed temperature/salinity gradients similar to observations from beneath other ice shelves where ice is melting into seawater. Modeled outflow characteristics at the ice front are in general agreement with oceanographic data from Prydz Bay. We concur with Morgan's inference that the G1 core may have been taken in a basal crevasse filled with marine ice. This ice is formed from water cooled by ocean/ice shelf interactions along the interior ice shelf base.

  6. Antarctic Ice Shelf Loss Comes From Underneath

    NASA Image and Video Library

    2017-12-08

    Calving front of an ice shelf in West Antarctica. The traditional view on ice shelves, the floating extensions of seaward glaciers, has been that they mostly lose ice by shedding icebergs. A new study by NASA and university researchers has found that warm ocean waters melting the ice sheets from underneath account for 55 percent of all ice shelf mass loss in Antarctica. This image was taken during the 2012 Antarctic campaign of NASA's Operation IceBridge, a mission that provided data for the new ice shelf study. Read more: www.nasa.gov/topics/earth/features/earth20130613.html Credit: NASA/GSFC/Jefferson Beck NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  7. Basal terraces on melting ice shelves

    NASA Astrophysics Data System (ADS)

    Dutrieux, Pierre; Stewart, Craig; Jenkins, Adrian; Nicholls, Keith W.; Corr, Hugh F. J.; Rignot, Eric; Steffen, Konrad

    2014-08-01

    Ocean waters melt the margins of Antarctic and Greenland glaciers, and individual glaciers' responses and the integrity of their ice shelves are expected to depend on the spatial distribution of melt. The bases of the ice shelves associated with Pine Island Glacier (West Antarctica) and Petermann Glacier (Greenland) have similar geometries, including kilometer-wide, hundreds-of-meter high channels oriented along and across the direction of ice flow. The channels are enhanced by, and constrain, oceanic melt. New meter-scale observations of basal topography reveal peculiar glaciated landscapes. Channel flanks are not smooth, but are instead stepped, with hundreds-of-meters-wide flat terraces separated by 5-50 m high walls. Melting is shown to be modulated by the geometry: constant across each terrace, changing from one terrace to the next, and greatly enhanced on the ~45° inclined walls. Melting is therefore fundamentally heterogeneous and likely associated with stratification in the ice-ocean boundary layer, challenging current models of ice shelf-ocean interactions.

  8. Basal Terraces on Melting Ice Shelves

    NASA Astrophysics Data System (ADS)

    Dutrieux, P.; Stewart, C.; Jenkins, A.; Nicholls, K. W.; Corr, H. F. J.; Rignot, E. J.; Steffen, K.

    2014-12-01

    Ocean waters melt the margins of Antarctic and Greenland glaciers and individualglaciers' responses and the integrity of their ice shelves are expected to depend on thespatial distribution of melt. The bases of the ice shelves associated with Pine IslandGlacier (West Antarctica) and Petermann Glacier (Greenland) have similar geometries,including kilometers-wide, hundreds-of-meter-high channels oriented along and acrossthe direction of ice flow. The channels are enhanced by, and constrain, oceanic melt.New, meter-scale observations of basal topography reveal peculiar glaciated landscapes.Channel flanks are not smooth, but are instead stepped, with hundreds-of-meters-wideflat terraces separated by 5-50 m-high walls. Melting is shown to be modulated by thegeometry: constant across each terrace, changing from one terrace to the next, and greatlyenhanced on the ~45°-inclined walls. Melting is therefore fundamentally heterogeneousand likely associated with stratification in the ice-ocean boundary layer, challengingcurrent models of ice shelf-ocean interactions.

  9. The transient response of ice-shelf melting to ocean change

    NASA Astrophysics Data System (ADS)

    Holland, P.

    2017-12-01

    Idealised modelling studies show that the melting of ice shelves varies as a quadratic function of ocean temperature. This means that warm-water ice shelves have higher melt rates and are also more sensitive to ocean warming. However, this result is the equilibrium response, derived from a set of ice—ocean simulations subjected to a fixed ocean forcing and run until steady. This study considers instead the transient response of melting, using unsteady simulations subjected to forcing conditions that are oscillated in time with a range of periods. The results show that when the ocean forcing is varied slowly, the melt rates follow the equililbrium response. However, for rapid ocean change melting deviates from the equilibrium response in interesting ways. The residence time of water in the sub-ice cavity offers a critical timescale. When the forcing varies slowly (period of oscillation >> residence time), the cavity is fully-flushed with forcing anomalies at all stages of the cycle and melting follows the equilibrium response. When the forcing varies rapidly (period ≤ residence time), multiple cold and warm anomalies coexist in the cavity, cancelling each other in the spatial mean and thus inducing a relatively steady melt rate. This implies that all ice shelves have a maximum frequency of ocean variability that can be manifested in melting. The results also show that ice shelves forced by warm water have high melt rates, high equilibrium sensitivity, and short residence times, hence a short timescale over which the equilibrium sensitivity is manifest. The most rapid melting adjustment is induced by warm anomalies that are also saline. Thus, ice shelves in the Amundsen and Bellingshausen seas, Antarctica, are highly sensitive to ocean change.

  10. Ice shelf structure and stability: Larsen C Ice Shelf, Antarctica

    NASA Astrophysics Data System (ADS)

    Hubbard, B. P.; Ashmore, D.; Bevan, S. L.; Booth, A. D.; Holland, P.; Jansen, D.; Kuipers Munneke, P.; Kulessa, B.; Luckman, A. J.; Sevestre, H.; O'Leary, M.

    2017-12-01

    We report on recent empirical investigations of the internal structure and stability (or otherwise) of Larsen C Ice Shelf (LCIS), Antarctica, focusing on research carried out for the MIDAS research project between 2014 and 2017. Borehole- and surface geophysics-based fieldwork carried out in austral springs 2014 and 2015 revealed that ephemeral surface ponds, preferentially located within the major inlets within the northern sector of the ice shelf, result in the formation of several tens of metres of (relatively dense) subsurface ice within what would otherwise have been a progressively densifying snow and firn column. Five boreholes were drilled throughout the sector and logged by optical televiewer, showing this refrozen ice to be extensive and of variable composition depending on its process of formation. Mapping the depth-distribution of the resulting ice types and associating each with a simple flow-line model of ice motion and accumulation indicates that this area of LCIS has experienced substantial melting for some centuries but that surface ponding has only occurred in recent decades, possibly restricted to the past 20 years. We also present near-surface temperature data that reveal surprising temporal patterns in foehn wind activity and intensity. Finally, we report on the geometrical extension and widening of a rift that was responsible for calving a 5,800 km^2 iceberg from the LCIS in July 2017. The nature of rift propagation through `suture' ice bands, widely considered to be composed of marine ice, is contrasted with that of its propagation through meteoric ice.

  11. Antarctic ice shelf potentially stabilized by export of meltwater in surface river

    NASA Astrophysics Data System (ADS)

    Bell, Robin E.; Chu, Winnie; Kingslake, Jonathan; Das, Indrani; Tedesco, Marco; Tinto, Kirsty J.; Zappa, Christopher J.; Frezzotti, Massimo; Boghosian, Alexandra; Lee, Won Sang

    2017-04-01

    Meltwater stored in ponds and crevasses can weaken and fracture ice shelves, triggering their rapid disintegration. This ice-shelf collapse results in an increased flux of ice from adjacent glaciers and ice streams, thereby raising sea level globally. However, surface rivers forming on ice shelves could potentially export stored meltwater and prevent its destructive effects. Here we present evidence for persistent active drainage networks—interconnected streams, ponds and rivers—on the Nansen Ice Shelf in Antarctica that export a large fraction of the ice shelf’s meltwater into the ocean. We find that active drainage has exported water off the ice surface through waterfalls and dolines for more than a century. The surface river terminates in a 130-metre-wide waterfall that can export the entire annual surface melt over the course of seven days. During warmer melt seasons, these drainage networks adapt to changing environmental conditions by remaining active for longer and exporting more water. Similar networks are present on the ice shelf in front of Petermann Glacier, Greenland, but other systems, such as on the Larsen C and Amery Ice Shelves, retain surface water at present. The underlying reasons for export versus retention remain unclear. Nonetheless our results suggest that, in a future warming climate, surface rivers could export melt off the large ice shelves surrounding Antarctica—contrary to present Antarctic ice-sheet models, which assume that meltwater is stored on the ice surface where it triggers ice-shelf disintegration.

  12. Outlet Glacier-Ice Shelf-Ocean Interactions: Is the Tail Wagging the Dog?

    NASA Astrophysics Data System (ADS)

    Parizek, B. R.; Walker, R. T.; Rinehart, S. K.

    2009-12-01

    While the massive interior regions of the Antarctic and Greenland Ice Sheets are presently ``resting quietly", the lower elevations of many outlet glaciers are experiencing dramatic adjustments due to changes in ice dynamics and/or surface mass balance. Oceanic and/or atmospheric forcing in these marginal regions often leads to mass deficits for entire outlet basins. Therefore, coupling the wagging tail of ice-ocean interactions with the vast ice-sheet reservoirs is imperative for accurate assessments of future sea-level rise. To study ice-ocean dynamic processes, we couple an ocean-plume model that simulates ice-shelf basal melting rates based on temperature and salinity profiles combined with plume dynamics associated with the geometry of the ice-shelf cavity (following Jenkins, 1991 and Holland and Jenkins, 1999) with a two-dimensional, isothermal model of outlet glacier-ice shelf flow (as used in Alley et al., 2007; Walker et al., 2008; Parizek et al., in review). Depending on the assigned temperature and salinity profiles, the ocean model can simulate both water-mass end-members: either cold High Salinity Shelf Water (HSSW) or relatively warm Circumpolar Deep Water (CDW), as well as between-member conditions. Notably, the coupled system exhibits sensitivity to the initial conditions. In particular, melting concentrated near the grounding line has the greatest effect in forcing grounding-line retreat. Retreat is further enhanced by a positive feedback between the ocean and ice, as the focused melt near the grounding line leads to an increase in the local slope of the basal ice, thereby enhancing buoyancy-driven plume flow and subsequent melt rates.

  13. Seismicity within a propagating ice shelf rift: the relationship between icequake locations and ice shelf structure

    USGS Publications Warehouse

    Heeszel, David S.; Fricker, Helen A.; Bassis, Jeremy N.; O'Neel, Shad; Walter, Fabian

    2014-01-01

    Iceberg calving is a dominant mass loss mechanism for Antarctic ice shelves, second only to basal melting. An important known process involved in calving is the initiation and propagation of through-penetrating fractures called rifts; however, the mechanisms controlling rift propagation remain poorly understood. To investigate the mechanics of ice-shelf rifting, we analyzed seismicity associated with a propagating rift tip on the Amery Ice Shelf, using data collected during the Austral summers of 2004-2007. We investigated seismicity associated with fracture propagation using a suite of passive seismological techniques including icequake locations, back projection, and moment tensor inversion. We confirm previous results that show that seismicity is characterized by periods of relative quiescence punctuated by swarms of intense seismicity of one to three hours. However, even during periods of quiescence, we find significant seismic deformation around the rift tip. Moment tensors, calculated for a subset of the largest icequakes (MW > -2.0) located near the rift tip, show steeply dipping fault planes, horizontal or shallowly plunging stress orientations, and often have a significant volumetric component. They also reveal that much of the observed seismicity is limited to the upper 50 m of the ice shelf. This suggests a complex system of deformation that involves the propagating rift, the region behind the rift tip, and a system of rift-transverse crevasses. Small-scale variations in the mechanical structure of the ice shelf, especially rift-transverse crevasses and accreted marine ice, play an important role in modulating the rate and location of seismicity associated with propagating ice shelf rifts.

  14. Observed vulnerability of Filchner-Ronne Ice Shelf to wind-driven inflow of warm deep water.

    PubMed

    Darelius, E; Fer, I; Nicholls, K W

    2016-08-02

    The average rate of melting at the base of the large Filchner-Ronne Ice Shelf in the southern Weddell Sea is currently low, but projected to increase dramatically within the next century. In a model study, melt rates increase as changing ice conditions cause a redirection of a coastal current, bringing warm water of open ocean origin through the Filchner Depression and into the Filchner Ice Shelf cavity. Here we present observations from near Filchner Ice Shelf and from the Filchner Depression, which show that pulses of warm water already arrive as far south as the ice front. This southward heat transport follows the eastern flank of the Filchner Depression and is found to be directly linked to the strength of a wind-driven coastal current. Our observations emphasize the potential sensitivity of Filchner-Ronne Ice Shelf melt rates to changes in wind forcing.

  15. Observed vulnerability of Filchner-Ronne Ice Shelf to wind-driven inflow of warm deep water

    PubMed Central

    Darelius, E.; Fer, I.; Nicholls, K. W.

    2016-01-01

    The average rate of melting at the base of the large Filchner-Ronne Ice Shelf in the southern Weddell Sea is currently low, but projected to increase dramatically within the next century. In a model study, melt rates increase as changing ice conditions cause a redirection of a coastal current, bringing warm water of open ocean origin through the Filchner Depression and into the Filchner Ice Shelf cavity. Here we present observations from near Filchner Ice Shelf and from the Filchner Depression, which show that pulses of warm water already arrive as far south as the ice front. This southward heat transport follows the eastern flank of the Filchner Depression and is found to be directly linked to the strength of a wind-driven coastal current. Our observations emphasize the potential sensitivity of Filchner-Ronne Ice Shelf melt rates to changes in wind forcing. PMID:27481659

  16. Investigating ice shelf mass loss processes from continuous satellite altimetry

    NASA Astrophysics Data System (ADS)

    Fricker, H. A.

    2017-12-01

    The Antarctic Ice Sheet continually gains mass through snowfall over its large area and, to remain approximately in equilibrium, it sheds most of this excess mass through two processes, basal melting and iceberg calving, that both occur in the floating ice shelves surrounding the continent. Small amounts of mass are also lost by surface melting, which occurs on many ice shelves every summer to varying degrees, and has been linked to ice-shelf collapse via hydrofracture on ice shelves that have been pre-weakened. Ice shelves provide mechanical support to `buttress' seaward flow of grounded ice, so that ice-shelf thinning and retreat result in enhanced ice discharge to the ocean. Ice shelves are susceptible to changes in forcing from both the atmosphere and the ocean, which both change on a broad range of timescales to modify mass gains and losses at the surface and base, and from internal instabilities of the ice sheet itself. Mass loss from iceberg calving is episodic, with typical intervals between calving events on the order of decades. Since ice shelves are so vast, the only viable way to monitor them is with satellites. Here, we discuss results from satellite radar and laser altimeter data from one NASA satellite (ICESat), and four ESA satellites (ERS-1, ERS-2, Envisat, CryoSat-2) to obtain estimates of ice-shelf surface height since the early 1990s. The continuous time series show accelerated losses in total Antarctic ice-shelf volume from 1994 to 2017, and allow us to investigate the processes causing ice-shelf mass change. For Larsen C, much of the variability comes from changing atmospheric conditions affecting firn state. In the Amundsen Sea, the rapid thinning is a combination of accelerated ocean-driven thinning and ice dynamics. This long-term thinning signal is, however, is strongly modulated by ENSO-driven interannual variability. However, observations of ocean variability around Antarctica are sparse, since these regions are often covered in sea ice

  17. Remote Characterization of Ice Shelf Surface and Basal Processes: Examples from East Antarctica

    NASA Astrophysics Data System (ADS)

    Greenbaum, J. S.; Blankenship, D. D.; Grima, C.; Schroeder, D. M.; Soderlund, K. M.; Young, D. A.; Kempf, S. D.; Siegert, M. J.; Roberts, J. L.; Warner, R. C.; van Ommen, T. D.

    2017-12-01

    The ability to remotely characterize surface and basal processes of ice shelves has important implications for conducting systematic, repeatable, and safe evaluations of their stability in the context of atmospheric and oceanic forcing. Additionally, techniques developed for terrestrial ice shelves can be adapted to orbital radar sounding datasets planned for forthcoming investigations of icy moons. This has been made possible through recent advances in radar signal processing that enable these data to be used to test hypotheses derived from conceptual and numerical models of ice shelf- and ice shell-ocean interactions. Here, we present several examples of radar sounding-derived characterizations of surface and basal processes underway on ice shelves in East Antarctica. These include percolation of near-surface meltwater in warm austral summers, brine infiltration along ice shelf calving fronts, basal melt rate and distribution, and basal freeze distribution. On Europa, near-surface brines and their migration may impact local geological variability, while basal processes likely control the distribution of melt and freeze. Terrestrially, we emphasize radar-sounding records of the Totten Glacier Ice Shelf which hosts each of these processes as well as the highest known density of basal melt channels of any terrestrial ice shelf. Further, with a maximum floating ice thickness of over 2.5 km, the pressure at Totten's basal interface may be similar to that at Europa's ice-ocean interface; therefore, evaluating surface and basal processes of Totten Glacier and other ice shelves could serve as analogs for understanding melting processes of Europa's ice shell.

  18. The Role of Basal Channels in Ice Shelf Calving.

    NASA Astrophysics Data System (ADS)

    Dow, C. F.; Lee, W. S.; Greenbaum, J. S.; Greene, C. A.; Blankenship, D. D.; Poinar, K.; Forrest, A.; Young, D. A.; Zappa, C. J.

    2017-12-01

    Increased rates of ice shelf break-up drives acceleration of grounded glacial ice into the ocean, resulting in sea-level rise. Ice shelves are vulnerable to thinning, which make them more susceptible to calving. Here, we examine basal channels under three ice shelves that locally thin the ice and drive formation of transverse ice shelf fractures. The basal channels also cause surface depressions due to hydrostatic buoyancy effects and can draw in surface water to form rivers. These rivers exacerbate thinning by surface melting and hydraulic loading, and can accelerate rifting when they flow into the transverse fractures. Our investigation focuses on Nansen Ice Shelf in the Ross Sea Embayment, East Antarctica. We use ice-sounding radar and single-beam laser altimeter data from two aerogeophysical campaigns conducted in 2011 and 2014, ice surface DEM reconstruction, and satellite imagery analysis, to examine the role of a substantial basal channel in the stability of this ice shelf. Nansen Ice Shelf calved two large icebergs totaling 214 km2 in area in April 2016. The transverse fracture that eventually rifted to form these icebergs initiated directly over the basal channel in 1987. In years when surface water formed on Nansen Ice Shelf, a river flowed into the transverse fracture. In November 2016, we identified a new fracture over the basal channel during in-situ data collection. We compare the Nansen Ice Shelf fractures with those at other vulnerable ice-shelf systems, including Petermann Glacier in Greenland and Totten Glacier in East Antarctica, to evaluate the role that basal channels may play in simultaneous basal and surface weakening and their consequent effect on ice-shelf rifting and stability.

  19. Surface and basal ice shelf mass balance processes of the Southern McMurdo Ice Shelf determined through radar statistical reconnaissance

    NASA Astrophysics Data System (ADS)

    Grima, C.; Koch, I.; Greenbaum, J. S.; Soderlund, K. M.; Blankenship, D. D.; Young, D. A.; Fitzsimons, S.

    2017-12-01

    The McMurdo ice shelves (northern and southern MIS), adjacent to the eponymous station and the Ross Ice Shelf, Antarctica, are known for large gradients in surface snow accumulation and snow/ice impurities. Marine ice accretion and melting are important contributors to MIS's mass balance. Due to erosive winds, the southern MIS (SMIS) shows a locally negative surface mass balance. Thus, marine ice once accreted at the ice shelf base crops out at the surface. However, the exact processes that exert primary control on SMIS mass balance have remained elusive. Radar statistical reconnaissance (RSR) is a recent technique that has been used to characterize the surface properties of the Earth's cryosphere, Mars, and Titan from the stochastic character of energy scattered by the surface. Here, we apply RSR to map the surface density and roughness of the SMIS and extend the technique to derive the basal reflectance and scattering coefficients of the ice-ocean interface. We use an airborne radar survey grid acquired over the SMIS in the 2014-2015 austral summer by the University of Texas Institute for Geophysics with the High Capability Radar Sounder (HiCARS2; 60-MHz center frequency and 15-MHz bandwidth). The RSR-derived snow density values and patterns agree with directly -measured ice shelf surface accumulation rates. We also compare the composition of SMIS ice surface samples to test the ability of RSR to discriminate ices with varying dielectric properties (e.g., marine versus meteoric ice) and hypothesize relationships between the RSR-derived basal reflectance/scattered coefficients and accretion or melting at the ice-ocean interface. This improved knowledge of air-ice and ice-ocean boundaries provides a new perspective on the processes governing SMIS surface and basal mass balance.

  20. Basal crevasses and suture zones in the Larsen C Ice Shelf, Antarctica: Implications for ice shelf stability in a warming climate

    NASA Astrophysics Data System (ADS)

    McGrath, Daniel J.

    Understanding ice shelf structure and processes is paramount to future predictions of sea level rise, as nearly 75% of the ice flux from the Antarctic Ice Sheet (AIS) passes through these gates. The breakup of an ice shelf removes the longitudinal back stress acting on the grounded inland ice and leads to flow acceleration, dynamic thinning and frontal retreat, processes that can be sustained for more than a decade. Increased ice discharge to the ocean contributes to global sea level rise. This dissertation investigates basal crevasses and suture zones, two key structural components of ice shelves, in order to understand how the structure of an ice shelf influences its stability in a warming climate. Ground penetrating radar, high-resolution satellite imagery and a variety of modeling approaches are utilized to assess these features on the Larsen C Ice Shelf but in a manner that considers their influence on ice shelf stability around the AIS. Basal crevasses are large-scale (~66% of ice thickness and ten's of kms in length) and abundant features that are significant structural weaknesses. The viscoplastic deformation of the ice shelf in response to the perturbed hydrostatic balance leads to the formation of both surface depressions and crevasses, hence weakening the ice shelf further. Basal crevasses increase the local ice-ocean interface by ~30%, thereby increasing basal roughness and altering ice-ocean interactions. Ice-shelf fractures frequently terminate where they encounter suture zones, regions of material heterogeneity that form at the lateral bounds of meteoric inflows to ice shelves. The termination of a 25 km-long rift in the Churchill Peninsula suture zone is investigated and found to contain ~60 m of accreted marine ice. Steady-state basal melting/freezing rates are determined for the ice shelf and applied to a flowline model to examine the along-flow evolution of ice shelf structure. The thickening surface wedge of locally accumulated meteoric ice

  1. Oceanic and atmospheric forcing of Larsen C Ice-Shelf thinning

    USGS Publications Warehouse

    Holland, P. R.; Brisbourne, A.; Corr, H. F. J.; Mcgrath, Daniel; Purdon, K.; Paden, J.; Fricker, H. A.; Paolo, F. S.; Fleming, A.H.

    2015-01-01

    The catastrophic collapses of Larsen A and B ice shelves on the eastern Antarctic Peninsula have caused their tributary glaciers to accelerate, contributing to sea-level rise and freshening the Antarctic Bottom Water formed nearby. The surface of Larsen C Ice Shelf (LCIS), the largest ice shelf on the peninsula, is lowering. This could be caused by unbalanced ocean melting (ice loss) or enhanced firn melting and compaction (englacial air loss). Using a novel method to analyse eight radar surveys, this study derives separate estimates of ice and air thickness changes during a 15-year period. The uncertainties are considerable, but the primary estimate is that the surveyed lowering (0.066 ± 0.017 m yr−1) is caused by both ice loss (0.28 ± 0.18 m yr−1) and firn-air loss (0.037 ± 0.026 m yr−1). The ice loss is much larger than the air loss, but both contribute approximately equally to the lowering because the ice is floating. The ice loss could be explained by high basal melting and/or ice divergence, and the air loss by low surface accumulation or high surface melting and/or compaction. The primary estimate therefore requires that at least two forcings caused the surveyed lowering. Mechanisms are discussed by which LCIS stability could be compromised in the future. The most rapid pathways to collapse are offered by the ungrounding of LCIS from Bawden Ice Rise or ice-front retreat past a "compressive arch" in strain rates. Recent evidence suggests that either mechanism could pose an imminent risk.

  2. Quantification of Changes for the Milne Ice Shelf, Nunavut, Canada, 1950 -- 2009

    NASA Astrophysics Data System (ADS)

    Mortimer, Colleen Adel

    This study presents a comprehensive overview of the current state of the Milne Ice Shelf and how it has changed over the last 59 years. The 205 +/-1 km2 ice shelf experienced a 28% (82 +/-0.8 km 2) reduction in area between 1950 -- 2009, and a 20% (2.5 +/-0.9km 3 water equivalent (w.e.)) reduction in volume between 1981 -- 2008/2009, suggesting a long-term state of negative mass balance. Comparison of mean annual specific mass balances (up to -0.34 m w.e. yr-1) with surface mass balance measurements for the nearby Ward Hunt Ice Shelf suggest that basal melt is a key contributor to total ice shelf thinning. The development and expansion of new and existing surface cracks, as well as ice-marginal and epishelf lake development, indicate significant ice shelf weakening. Over the next few decades it is likely that the Milne Ice Shelf will continue to deteriorate.

  3. Modelling present-day basal melt rates for Antarctic ice shelves using a parametrization of buoyant meltwater plumes

    NASA Astrophysics Data System (ADS)

    Lazeroms, Werner M. J.; Jenkins, Adrian; Hilmar Gudmundsson, G.; van de Wal, Roderik S. W.

    2018-01-01

    Basal melting below ice shelves is a major factor in mass loss from the Antarctic Ice Sheet, which can contribute significantly to possible future sea-level rise. Therefore, it is important to have an adequate description of the basal melt rates for use in ice-dynamical models. Most current ice models use rather simple parametrizations based on the local balance of heat between ice and ocean. In this work, however, we use a recently derived parametrization of the melt rates based on a buoyant meltwater plume travelling upward beneath an ice shelf. This plume parametrization combines a non-linear ocean temperature sensitivity with an inherent geometry dependence, which is mainly described by the grounding-line depth and the local slope of the ice-shelf base. For the first time, this type of parametrization is evaluated on a two-dimensional grid covering the entire Antarctic continent. In order to apply the essentially one-dimensional parametrization to realistic ice-shelf geometries, we present an algorithm that determines effective values for the grounding-line depth and basal slope in any point beneath an ice shelf. Furthermore, since detailed knowledge of temperatures and circulation patterns in the ice-shelf cavities is sparse or absent, we construct an effective ocean temperature field from observational data with the purpose of matching (area-averaged) melt rates from the model with observed present-day melt rates. Our results qualitatively replicate large-scale observed features in basal melt rates around Antarctica, not only in terms of average values, but also in terms of the spatial pattern, with high melt rates typically occurring near the grounding line. The plume parametrization and the effective temperature field presented here are therefore promising tools for future simulations of the Antarctic Ice Sheet requiring a more realistic oceanic forcing.

  4. Actively evolving subglacial conduits and eskers initiate ice shelf channels at an Antarctic grounding line.

    PubMed

    Drews, R; Pattyn, F; Hewitt, I J; Ng, F S L; Berger, S; Matsuoka, K; Helm, V; Bergeot, N; Favier, L; Neckel, N

    2017-05-09

    Ice-shelf channels are long curvilinear tracts of thin ice found on Antarctic ice shelves. Many of them originate near the grounding line, but their formation mechanisms remain poorly understood. Here we use ice-penetrating radar data from Roi Baudouin Ice Shelf, East Antarctica, to infer that the morphology of several ice-shelf channels is seeded upstream of the grounding line by large basal obstacles indenting the ice from below. We interpret each obstacle as an esker ridge formed from sediments deposited by subglacial water conduits, and calculate that the eskers' size grows towards the grounding line where deposition rates are maximum. Relict features on the shelf indicate that these linked systems of subglacial conduits and ice-shelf channels have been changing over the past few centuries. Because ice-shelf channels are loci where intense melting occurs to thin an ice shelf, these findings expose a novel link between subglacial drainage, sedimentation and ice-shelf stability.

  5. Actively evolving subglacial conduits and eskers initiate ice shelf channels at an Antarctic grounding line

    PubMed Central

    Drews, R.; Pattyn, F.; Hewitt, I. J.; Ng, F. S. L.; Berger, S.; Matsuoka, K.; Helm, V.; Bergeot, N.; Favier, L.; Neckel, N.

    2017-01-01

    Ice-shelf channels are long curvilinear tracts of thin ice found on Antarctic ice shelves. Many of them originate near the grounding line, but their formation mechanisms remain poorly understood. Here we use ice-penetrating radar data from Roi Baudouin Ice Shelf, East Antarctica, to infer that the morphology of several ice-shelf channels is seeded upstream of the grounding line by large basal obstacles indenting the ice from below. We interpret each obstacle as an esker ridge formed from sediments deposited by subglacial water conduits, and calculate that the eskers' size grows towards the grounding line where deposition rates are maximum. Relict features on the shelf indicate that these linked systems of subglacial conduits and ice-shelf channels have been changing over the past few centuries. Because ice-shelf channels are loci where intense melting occurs to thin an ice shelf, these findings expose a novel link between subglacial drainage, sedimentation and ice-shelf stability. PMID:28485400

  6. Firn structure of Larsen C Ice Shelf, Antarctic Peninsula, from in-situ geophysical surveys

    NASA Astrophysics Data System (ADS)

    Kulessa, B.; Brisbourne, A.; Kuipers Munneke, P.; Bevan, S. L.; Luckman, A. J.; Hubbard, B. P.; Ashmore, D.; Holland, P.; Jansen, D.; King, E. C.; O'Leary, M.; McGrath, D.

    2015-12-01

    Rising surface temperatures have been causing firn layers on Antarctic Peninsula ice shelves to compact, a process that is strongly implicated in ice shelf disintegration. Firn compaction is expected to warm the ice column and given sufficiently wet and compacted firn layers, to allow meltwater to penetrate into surface crevasses and thus enhance the potential for hydrofracture. On Larsen C Ice Shelf a compacting firn layer has previously been inferred from airborne radar and satellite data, with strongly reduced air contents in Larsen C's north and north-west. The hydrological processes governing firn compaction, and the detailed firn structures they produce, have so far remained uncertain however. Using integrated seismic refraction, MASW (Multi-Channel Analysis of Surface Waves), seismoelectric and ground-penetrating radar (GPR) data, we reveal vertical and horizontal changes in firn structure across Larsen C Ice Shelf. Particular attention is paid to the spatial prevalence of refrozen meltwaters within firn, such as the massive subsurface ice layer discovered recently by the NERC-funded MIDAS project in Cabinet Inlet in Larsen C's extreme northwest. Such ice layers or lenses are particularly dramatic manifestations of increased ice shelf densities and temperatures, and contrast sharply with the relatively uncompacted firn layers present in the ice shelf's southeast. We consider our observations in the context of a one-dimensional firn model for Larsen C Ice Shelf that includes melt percolation and refreezing, and discuss temporal changes in firn layer structures due to surface melt and ponding.

  7. Meteorological Drivers of West Antarctic Ice Sheet and Ice Shelf Surface Melt

    NASA Astrophysics Data System (ADS)

    Scott, R. C.; Nicolas, J. P.; Bromwich, D. H.; Norris, J. R.; Lubin, D.

    2017-12-01

    We identify synoptic patterns and surface energy balance components driving warming and surface melting on the West Antarctic Ice Sheet (WAIS) and ice shelves using reanalysis and satellite remote sensing data from 1973-present. We have developed a synoptic climatology of atmospheric circulation patterns during the summer melt season using k-means cluster and composite analysis of daily 700-mb geopotential height and near-surface air temperature and wind fields from the ECMWF ERA-Interim reanalysis. Surface melt occurrence is detected in satellite passive microwave brightness temperature observations (K-band, horizontal polarization) beginning with the NASA Nimbus-5 Electrically Scanning Microwave Radiometer (ESMR) and continuing with its more familiar descendants SMMR, SSM/I and SSMIS. To diagnose synoptic precursors and physical processes driving surface melt we combine the circulation climatology and multi-decadal records of cloud cover with surface radiative fluxes from the Extended AVHRR Polar Pathfinder (APP-x) project. We identify three distinct modes of regional summer West Antarctic warming since 1979 involving anomalous ridging over West Antarctica (WA) and the Amundsen Sea (AS). During the 1970s, ESMR data reveal four extensive melt events on the Ross Sea sector of the WAIS also linked to AS blocking. We therefore define an Amundsen Sea Blocking Index (ASBI). The ASBI and synoptic circulation pattern occurrence frequencies are correlated with the tropical Pacific (ENSO) and high latitude Southern Annular Mode (SAM) indices and the West Antarctic melt index. Surface melt in WA is favored by enhanced downwelling infrared and turbulent sensible heat fluxes associated with intrusions of warm, moist marine air. Consistent with recent findings from the Atmospheric Radiation Measurement (ARM) West Antarctic Radiation Experiment (AWARE), marine advection to the Ross sector is favored by El Niño conditions in the tropical Pacific and a negative SAM. We also find

  8. Wilkins Ice Shelf

    NASA Image and Video Library

    2009-04-20

    The Wilkins Ice Shelf, as seen by NASA Terra spacecraft, on the western side of the Antarctic Peninsula, experienced multiple disintegration events in 2008. By the beginning of 2009, a narrow ice bridge was all that remained to connect the ice shelf to ice fragments fringing nearby Charcot Island. That bridge gave way in early April 2009. Days after the ice bridge rupture, on April 12, 2009, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite acquired this image of the southern base of the ice bridge, where it connected with the remnant ice shelf. Although the ice bridge has played a role in stabilizing the ice fragments in the region, its rupture doesn't guarantee the ice will immediately move away. http://photojournal.jpl.nasa.gov/catalog/PIA11991

  9. Observations and modeling of ocean-induced melt beneath Petermann Glacier Ice Shelf in northwestern Greenland

    NASA Astrophysics Data System (ADS)

    Cai, Cilan; Rignot, Eric; Menemenlis, Dimitris; Nakayama, Yoshihiro

    2017-08-01

    We update observationally based estimates of subaqueous melt, Qm, beneath Petermann Glacier Ice Shelf (PGIS), Greenland, and model its sensitivity to oceanic thermal forcing, TF, and subglacial runoff, Qsg, using the Massachusetts Institute of Technology general circulation model (MITgcm), in a two-dimensional domain, with 20 m vertical and 40 m horizontal resolution at the grounding line. We adjust the drag coefficient to match the observationally based Qm. With the inclusion of Qsg, the maximum melt rate (Qmmax) is 2 times larger in summer and 1/3 larger annually than in winter. Qmmax increases above linear with TF and below linear with Qsg. We estimate that Qmmax increased by 24% (+8.1 m/yr) beneath PGIS from the 1990s to the 2000s from a 0.21°C warming in ocean temperature and a doubling in Qsg, hence contributing to its thinning. If the PGIS is removed, we estimate that the modeled melt rate near the grounding line will increase 13-16 times.

  10. Breakup of Pack Ice, Antarctic Ice Shelf

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Breakup of Pack Ice along the periphery of the Antarctic Ice Shelf (53.5S, 3.0E) produced this mosaic of ice floes off the Antarctic Ice Shelf. Strong offshore winds, probably associated with strong katabatic downdrafts from the interior of the continent, are seen peeling off the edges of the ice shelf into long filamets of sea ice, icebergs, bergy bits and growlers to flow northward into the South Atlantic Ocean. 53.5S, 3.0E

  11. Fun at Antarctic grounding lines: Ice-shelf channels and sediment transport

    NASA Astrophysics Data System (ADS)

    Drews, Reinhard; Mayer, Christoph; Eisen, Olaf; Helm, Veit; Ehlers, Todd A.; Pattyn, Frank; Berger, Sophie; Favier, Lionel; Hewitt, Ian H.; Ng, Felix; Fürst, Johannes J.; Gillet-Chaulet, Fabien; Bergeot, Nicolas; Matsuoka, Kenichi

    2017-04-01

    Meltwater beneath the polar ice sheets drains, in part, through subglacial conduits. Landforms created by such drainages are abundant in areas formerly covered by ice sheets during the last glacial maximum. However, observations of subglacial conduit dynamics under a contemporary ice sheet are lacking. We present results from ice-penetrating radar to infer the existence of subglacial conduits upstream of the grounding line of Roi Baudouin Ice Shelf, Antarctica. The conduits are aligned with ice-shelf channels, and underlain by esker ridges formed from sediment deposition due to reduced water outflow speed near the grounding line. In turn, the eskers modify local ice flow to initiate the bottom topography of the ice-shelf channels, and create small surface ridges extending onto the shelf. Relict features on the shelf are interpreted to indicate a history of these interactions and variability of past subglacial drainages. Because ice-shelf channels are loci where intense melting occurs to thin an ice shelf, these findings expose a novel link between subglacial drainage, sedimentation, and ice-shelf stability. To investigate the role of sediment transport beneath ice sheets further, we model the sheet-shelf system of the Ekstömisen catchment, Antarctica. A 3D finite element model (Elmer/ICE) is used to solve the transients full Stokes equation for isotropic, isothermal ice with a dynamic grounding line. We initialize the model with surface topography from the TanDEM-X satellites and by inverting simultaneously for ice viscosity and basal drag using present-day surface velocities. Results produce a flow field which is consitent with sattelite and on-site observations. Solving the age-depth relationship allows comparison with radar isochrones from airborne data, and gives information about the atmospheric/dynamic history of this sector. The flow field will eventually be used to identify potential sediment sources and sinks which we compare with more than 400 km of

  12. Breakup of the Larsen Ice Shelf, Antarctica

    NASA Technical Reports Server (NTRS)

    2002-01-01

    University of Colorado, and a team of collaborating investigators developed a theory of how the ice disintegrates. The theory is based on the presence of ponded melt water on the surface in late summer as the climate has warmed in the area. Meltwater acts to enhance fracturing of the shelf by filling smaller cracks. The weight of the meltwater forces the cracks through the thickness of the ice. The idea was suggested in model form by other researchers in the past (Weertman, 1973; Hughes, 1983); satellite images have provided substantial observational proof that it is in fact the main process responsible for the peninsula shelf disintegration. Christina Hulbe of Portland State University and Mark Fahnestock of University of Maryland collaborated with Scambos on the research. For more information see: Antarctic Ice Shelf Collapses Image courtesy Ted Scambos, National Snow and Ice Data Center, University of Colorado, Boulder, based on data from MODIS

  13. Meltwater produced by wind-albedo interaction stored in an East Antarctic ice shelf

    NASA Astrophysics Data System (ADS)

    Lenaerts, J. T. M.; Lhermitte, S.; Drews, R.; Ligtenberg, S. R. M.; Berger, S.; Helm, V.; Smeets, C. J. P. P.; Broeke, M. R. Van Den; van de Berg, W. J.; van Meijgaard, E.; Eijkelboom, M.; Eisen, O.; Pattyn, F.

    2017-01-01

    Surface melt and subsequent firn air depletion can ultimately lead to disintegration of Antarctic ice shelves causing grounded glaciers to accelerate and sea level to rise. In the Antarctic Peninsula, foehn winds enhance melting near the grounding line, which in the recent past has led to the disintegration of the most northerly ice shelves. Here, we provide observational and model evidence that this process also occurs over an East Antarctic ice shelf, where meltwater-induced firn air depletion is found in the grounding zone. Unlike the Antarctic Peninsula, where foehn events originate from episodic interaction of the circumpolar westerlies with the topography, in coastal East Antarctica high temperatures are caused by persistent katabatic winds originating from the ice sheet’s interior. Katabatic winds warm and mix the air as it flows downward and cause widespread snow erosion, explaining >3 K higher near-surface temperatures in summer and surface melt doubling in the grounding zone compared with its surroundings. Additionally, these winds expose blue ice and firn with lower surface albedo, further enhancing melt. The in situ observation of supraglacial flow and englacial storage of meltwater suggests that ice-shelf grounding zones in East Antarctica, like their Antarctic Peninsula counterparts, are vulnerable to hydrofracturing.

  14. Challenges for understanding Antarctic surface hydrology and ice-shelf stability

    NASA Astrophysics Data System (ADS)

    Kingslake, J.; Bell, R. E.; Banwell, A. F.; Boghosian, A.; Spergel, J.; Trusel, L. D.

    2017-12-01

    It is widely hypothesized that surface meltwater can contribute to ice mass loss in Antarctica through its impact on ice-shelf stability. Meltwater potentially expedites ice-shelf calving by flowing into and enlarging existing crevasses, and could even trigger ice-shelf disintegration via stresses generated by melt ponds. When ice shelves collapse, the adjacent grounded ice accelerates and thins, which contributes to sea-level rise. How these mechanisms mediate the interactions between the atmosphere, the ocean and the ice sheet is the subject of long-standing research efforts. The drainage of water across the surface of the Antarctic Ice Sheet and its ice shelves is beginning to be recognized as another important aspect of the system. Recent studies have revealed that surface meltwater drainage is more widespread than previously thought and that surface hydrological systems in Antarctica may expand and proliferate this century. Contrasting hypotheses regarding the impact of the proliferation of drainage systems on ice-shelf stability have emerged. Surface drainage could deliver meltwater to vulnerable area or export meltwater from ice shelves entirely. Which behavior dominates may have a large impact on the future response of the Antarctic Ice Sheet to atmospheric warming. We will discuss these recent discoveries and hypotheses, as well as new detailed studies of specific areas where hydrological systems are well developed, such as Amery and Nimrod Ice Shelves. We will highlight analogies that can be drawn with Greenlandic (near-)surface hydrology and, crucially, where hydrological systems on the two ice sheets are very different, leading to potentially important gaps in our understanding. Finally, we will look ahead to the key questions that we argue will need to be if we are to determine the role Antarctic surface hydrology could play in the future of the ice sheet. These include: Where does meltwater pond today and how will this change this century? What

  15. Seabed topography beneath Larsen C Ice Shelf from seismic soundings

    NASA Astrophysics Data System (ADS)

    Brisbourne, A. M.; Smith, A. M.; King, E. C.; Nicholls, K. W.; Holland, P. R.; Makinson, K.

    2013-08-01

    Seismic reflection soundings of ice thickness and seabed depth were acquired on the Larsen C Ice Shelf in order to test a sub-shelf bathymetry model derived from the inversion of IceBridge gravity data. A series of lines were collected, from the Churchill Peninsula in the north to the Joerg Peninsula in the south, and also towards the ice front. Sites were selected using the bathymetry model derived from the inversion of free-air gravity data to indicate key regions where sub-shelf oceanic circulation may be affected by ice draft and sub-shelf cavity thickness. The seismic velocity profile in the upper 100 m of firn and ice was derived from shallow refraction surveys at a number of locations. Measured temperatures within the ice column and at the ice base were used to define the velocity profile through the remainder of the ice column. Seismic velocities in the water column were derived from previous in situ measurements. Uncertainties in ice and water cavity thickness are in general <10 m. Compared with the seismic measurements, the root-mean-square error in the gravimetrically derived bathymetry at the seismic sites is 162 m. The seismic profiles prove the non-existence of several bathymetric features that are indicated in the gravity inversion model, significantly modifying the expected oceanic circulation beneath the ice shelf. Similar features have previously been shown to be highly significant in affecting basal melt rates predicted by ocean models. The discrepancies between the gravity inversion results and the seismic bathymetry are attributed to the assumption of uniform geology inherent in the gravity inversion process and also the sparsity of IceBridge flight lines. Results indicate that care must be taken when using bathymetry models derived by the inversion of free-air gravity anomalies. The bathymetry results presented here will be used to improve existing sub-shelf ocean circulation models.

  16. Tidal Modulation of Ice-shelf Flow: a Viscous Model of the Ross Ice Shelf

    NASA Technical Reports Server (NTRS)

    Brunt, Kelly M.; MacAyeal, Douglas R.

    2014-01-01

    Three stations near the calving front of the Ross Ice Shelf, Antarctica, recorded GPS data through a full spring-neap tidal cycle in November 2005. The data revealed a diurnal horizontal motion that varied both along and transverse to the long-term average velocity direction, similar to tidal signals observed in other ice shelves and ice streams. Based on its periodicity, it was hypothesized that the signal represents a flow response of the Ross Ice Shelf to the diurnal tides of the Ross Sea. To assess the influence of the tide on the ice-shelf motion, two hypotheses were developed. The first addressed the direct response of the ice shelf to tidal forcing, such as forces due to sea-surface slopes or forces due to sub-ice-shelf currents. The second involved the indirect response of ice-shelf flow to the tidal signals observed in the ice streams that source the ice shelf. A finite-element model, based on viscous creep flow, was developed to test these hypotheses, but succeeded only in falsifying both hypotheses, i.e. showing that direct tidal effects produce too small a response, and indirect tidal effects produce a response that is not smooth in time. This nullification suggests that a combination of viscous and elastic deformation is required to explain the observations.

  17. Accelerated ice shelf rifting and retreat at Pine Island Glacier, West Antarctica

    NASA Astrophysics Data System (ADS)

    Jeong, Seongsu; Howat, Ian M.; Bassis, Jeremy N.

    2016-11-01

    Pine Island Glacier has undergone several major iceberg calving events over the past decades. These typically occurred when a rift at the heavily fractured shear margin propagated across the width of the ice shelf. This type of calving is common on polar ice shelves, with no clear connection to ocean-ice dynamic forcing. In contrast, we report on the recent development of multiple rifts initiating from basal crevasses in the center of the ice shelf, resulted in calving further upglacier than previously observed. Coincident with rift formation was the sudden disintegration of the ice mélange that filled the northern shear margin, resulting in ice sheet detachment from this margin. Examination of ice velocity suggests that this internal rifting resulted from the combination of a change in ice shelf stress regime caused by disintegration of the mélange and intensified melting within basal crevasses, both of which may be linked to ocean forcing.

  18. Ice shelf thickness change from 2010 to 2017

    NASA Astrophysics Data System (ADS)

    Hogg, A.; Shepherd, A.; Gilbert, L.; Muir, A. S.

    2017-12-01

    Floating ice shelves fringe 74 % of Antarctica's coastline, providing a direct link between the ice sheet and the surrounding oceans. Over the last 25 years, ice shelves have retreated, thinned, and collapsed catastrophically. While change in the mass of floating ice shelves has only a modest steric impact on the rate of sea-level rise, their loss can affect the mass balance of the grounded ice-sheet by influencing the rate of ice flow inland, due to the buttressing effect. Here we use CryoSat-2 altimetry data to map the detailed pattern of ice shelf thickness change in Antarctica. We exploit the dense spatial sampling and repeat coverage provided by the CryoSat-2 synthetic aperture radar interferometric mode (SARIn) to investigate data acquired between 2010 to the present day. We find that ice shelf thinning rates can exhibit large fluctuations over short time periods, and that the improved spatial resolution of CryoSat-2 enables us to resolve the spatial pattern of thinning with ever greater detail in Antarctica. In the Amundsen Sea, ice shelves at the terminus of the Pine Island and Thwaites glaciers have thinned at rates in excess of 5 meters per year for more than two decades. We observe the highest rates of basal melting near to the ice sheet grounding line, reinforcing the importance of high resolution datasets. On the Antarctic Peninsula, in contrast to the 3.8 m per decade of thinning observed since 1992, we measure an increase in the surface elevation of the Larsen-C Ice-Shelf during the CryoSat-2 period.

  19. Glider observations of the Dotson Ice Shelf outflow

    NASA Astrophysics Data System (ADS)

    Miles, Travis; Lee, Sang Hoon; Wåhlin, Anna; Ha, Ho Kyung; Kim, Tae Wan; Assmann, Karen M.; Schofield, Oscar

    2016-01-01

    The Amundsen Sea is one of the most productive polynyas in the Antarctic per unit area and is undergoing rapid changes including a reduction in sea ice duration, thinning ice sheets, retreat of glaciers and the potential collapse of the Thwaites Glacier in Pine Island Bay. A growing body of research has indicated that these changes are altering the water mass properties and associated biogeochemistry within the polynya. Unfortunately difficulties in accessing the remote location have greatly limited the amount of in situ data that has been collected. In this study data from a Teledyne-Webb Slocum glider was used to supplement ship-based sampling along the Dotson Ice Shelf (DIS). This autonomous underwater vehicle revealed a detailed view of a meltwater laden outflow from below the western flank of the DIS. Circumpolar Deep Water intruding onto the shelf drives glacial melt and the supply of macronutrients that, along with ample light, supports the large phytoplankton blooms in the Amundsen Sea Polynya. Less well understood is the source of micronutrients, such as iron, necessary to support this bloom to the central polynya where chlorophyll concentrations are highest. This outflow region showed decreasing optical backscatter with proximity to the bed indicating that particulate matter was sourced from the overlying glacier rather than resuspended sediment. This result suggests that particulate iron, and potentially phytoplankton primary productivity, is intrinsically linked to the magnitude and duration of sub-glacial melt from Circumpolar Deep Water intrusions onto the shelf.

  20. Processes influencing formation of low-salinity high-biomass lenses near the edge of the Ross Ice Shelf

    NASA Astrophysics Data System (ADS)

    Li, Yizhen; McGillicuddy, Dennis J.; Dinniman, Michael S.; Klinck, John M.

    2017-02-01

    Both remotely sensed and in situ observations in austral summer of early 2012 in the Ross Sea suggest the presence of cold, low-salinity, and high-biomass eddies along the edge of the Ross Ice Shelf (RIS). Satellite measurements include sea surface temperature and ocean color, and shipboard data sets include hydrographic profiles, towed instrumentation, and underway acoustic Doppler current profilers. Idealized model simulations are utilized to examine the processes responsible for ice shelf eddy formation. 3-D model simulations produce similar cold and fresh eddies, although the simulated vertical lenses are quantitatively thinner than observed. Model sensitivity tests show that both basal melting underneath the ice shelf and irregularity of the ice shelf edge facilitate generation of cold and fresh eddies. 2-D model simulations further suggest that both basal melting and downwelling-favorable winds play crucial roles in forming a thick layer of low-salinity water observed along the edge of the RIS. These properties may have been entrained into the observed eddies, whereas that entrainment process was not captured in the specific eddy formation events studied in our 3-D model-which may explain the discrepancy between the simulated and observed eddies, at least in part. Additional sensitivity experiments imply that uncertainties associated with background stratification and wind stress may also explain why the model underestimates the thickness of the low-salinity lens in the eddy interiors. Our study highlights the importance of incorporating accurate wind forcing, basal melting, and ice shelf irregularity for simulating eddy formation near the RIS edge. The processes responsible for generating the high phytoplankton biomass inside these eddies remain to be elucidated. Appendix B. Details for the basal melting and mechanical forcing by the ice shelf edge.

  1. Amundsen Sea simulation with optimized ocean, sea ice, and thermodynamic ice shelf model parameters

    NASA Astrophysics Data System (ADS)

    Nakayama, Y.; Menemenlis, D.; Schodlok, M.; Heimbach, P.; Nguyen, A. T.; Rignot, E. J.

    2016-12-01

    Ice shelves and glaciers of the West Antarctic Ice Sheet are thinning and melting rapidly in the Amundsen Sea (AS). This is thought to be caused by warm Circumpolar Deep Water (CDW) that intrudes via submarine glacial troughs located at the continental shelf break. Recent studies, however, point out that the depth of thermocline, or thickness of Winter Water (WW, potential temperature below -1 °C located above CDW) is critical in determining the melt rate, especially for the Pine Island Glacier (PIG). For example, the basal melt rate of PIG, which decreased by 50% during summer 2012, has been attributed to thickening of WW. Despite the possible importance of WW thickness on ice shelf melting, previous modeling studies in this region have focused primarily on CDW intrusion and have evaluated numerical simulations based on bottom or deep CDW properties. As a result, none of these models have shown a good representation of WW for the AS. In this study, we adjust a small number of model parameters in a regional Amundsen and Bellingshausen Seas configuration of the Massachusetts Institute of Technology general circulation model (MITgcm) to better fit the available observations during the 2007-2010 period. We choose this time period because summer observations during these years show small interannual variability in the eastern AS. As a result of adjustments, our model shows significantly better match with observations than previous modeling studies, especially for WW. Since density of sea water depends largely on salinity at low temperature, this is crucial for assessing the impact of WW on PIG melt rate. In addition, we conduct several sensitivity studies, showing the impact of surface heat loss on the thickness and properties of WW. We also discuss some preliminary results pertaining to further optimization using the adjoint method. Our work is a first step toward improved representation of ice-shelf ocean interactions in the ECCO (Estimating the Circulation and

  2. Channelized ice melting in the ocean boundary layer beneath Pine Island Glacier, Antarctica.

    PubMed

    Stanton, T P; Shaw, W J; Truffer, M; Corr, H F J; Peters, L E; Riverman, K L; Bindschadler, R; Holland, D M; Anandakrishnan, S

    2013-09-13

    Ice shelves play a key role in the mass balance of the Antarctic ice sheets by buttressing their seaward-flowing outlet glaciers; however, they are exposed to the underlying ocean and may weaken if ocean thermal forcing increases. An expedition to the ice shelf of the remote Pine Island Glacier, a major outlet of the West Antarctic Ice Sheet that has rapidly thinned and accelerated in recent decades, has been completed. Observations from geophysical surveys and long-term oceanographic instruments deployed down bore holes into the ocean cavity reveal a buoyancy-driven boundary layer within a basal channel that melts the channel apex by 0.06 meter per day, with near-zero melt rates along the flanks of the channel. A complex pattern of such channels is visible throughout the Pine Island Glacier shelf.

  3. Evolution of ocean-induced ice melt beneath Zachariæ Isstrøm, Northeast Greenland combining observations and an ocean general circulation model from 1978 to present

    NASA Astrophysics Data System (ADS)

    Cai, C.; Rignot, E. J.; Menemenlis, D.; Millan, R.; Bjørk, A. A.; Khan, S. A.; Charolais, A.

    2017-12-01

    Zachariæ Isstrøm, a major ice stream in northeast Greenland, lost a large fraction of its ice shelf during the last decade. We study the evolution of subaqueous melting of its floating section from 1978 to present. The ice shelf melt rate depends on thermal forcing from warm, salty, subsurface ocean waters of Atlantic origin (AW), the mixing of AW with fresh, buoyant subglacial discharge at the calving margin, and the shape of the sub-ice-shelf cavity. Subglacial discharge doubled as a result of enhanced ice sheet runoff caused by warmer air temperatures. Ocean thermal forcing has increased due to enhanced advection of AW. Using an Eulerian method, MEaSUREs ice velocity, Operation IceBridge (OIB) ice thickness, and RACMO2.3 surface balance data, we evaluate the ice shelf melt rate in 1978, 1999 and 2010. The melt rate doubled from 1999 to 2010. Using a Lagrangian method with World View imagery, we map the melt rate in detail from 2011 to 2016. We compare the results with 2D simulations from the Massachusetts Institute of Technology general circulation model (MITgcm), at a high spatial resolution (20-m horizontal and 40-m vertical grid spacing), using OIB ice thickness and sub-ice-shelf cavity for years 1978, 1996, 2010 and 2011, combined with in-situ ocean temperature/salinity data from Ocean Melting Greenland (OMG) 2017. We find that winter melt rates are 2 3 times smaller than summer rates and melt rates increase by one order magnitude during the transition from ice shelf termination to near-vertical calving wall termination. As the last remaining bits of floating ice shelf disappear, ice-ocean interaction will therefore play an increasing role in driving the glacier retreat into its marine-based basin. This work was performed under a contract with NASA Cryosphere Program at UC Irvine and Caltech's Jet Propulsion Laboratory.

  4. Flexural-response of the McMurdo Ice Shelf to surface lake filling and drainage

    NASA Astrophysics Data System (ADS)

    Banwell, A. F.; MacAyeal, D. R.; Willis, I.; Macdonald, G. J.; Goodsell, B.

    2017-12-01

    Antarctic ice-shelf instability and break-up, as exhibited by the Larsen B ice shelf in 2002, remains one of the most difficult glaciological processes to observe directly. It is, however, vital to do so because ice-shelf breakup has the potential to influence the buttressing controls on inland ice discharge, and thus to affect sea level. Several mechanisms enabling Larsen B style breakup have previously been proposed, including the ability of surface lakes to introduce ice-shelf fractures when they fill and drain. During the austral summer of 2016/2017, we monitored the filling and draining of four surface lakes on the McMurdo Ice Shelf, Antarctica, and the effect of these processes on ice-shelf flexure. Water-depth data from pressure sensors reveal that two lakes filled to >2 m in depth and subsequently drained over multiple week timescales, which had a simultaneous effect on vertical ice deflection in the area. Differential GPS data from 12 receivers over three months show that vertical deflection varies as a function of distance from the maximum load change (i.e. at the lake centre). Using remote sensing techniques applied to both Landsat 8 and Worldview imagery, we also quantify the meltwater volume in these two lakes through the melt season, which, together with the vertical deflection data, are used to constrain key flexural parameter values in numerical models of ice-shelf flexure.

  5. Looking Into and Through the Ross Ice Shelf - ROSETTA-ICE

    NASA Astrophysics Data System (ADS)

    Bell, R. E.

    2015-12-01

    Our current understanding of the structure and stability of the Ross Ice Shelf is based on satellite studies of the ice surface and the 1970's RIGGS program. The study of the flowlines evident in the MODIS imagery combined with surface geophysics has revealed a complex history with ice streams Mercer, Whillans and Kamb changing velocity over the past 1000 years. Here, we present preliminary IcePod and IceBridge radar data acquired in December 2014 and November 2013 across the Ross Ice Shelf that show clearly, for the first time, the structure of the ice shelf and provide insights into ice-ocean interaction. The three major layers of the ice shelf are (1) the continental meteoric ice layer), ice formed on the grounded ice sheet that entered the ice shelf where ice streams and outlet glaciers crossed the grounding line (2) the locally accumulating meteoric ice layer, ice and snow that forms from snowfall on the floating ice shelf and (3) a basal marine ice layer. The locally accumulating meteoric ice layer contains well-defined internal layers that are generally parallel to the ice surface and thickens away from the grounding line and reaches a maximum thickness of 220m along the line crossing Roosevelt Island. The continental meteoric layer is located below a broad irregular internal reflector, and is characterized by irregular internal layers. These internal layers are often folded, likely a result of deformation as the ice flowed across the grounding line. The basal marine ice layer, up to 50m thick, is best resolved in locations where basal crevasses are present, and appears to thicken along the flow at rates of decimeters per year. Each individual flowband of the ice shelf contains layers that are distinct in their structure. For example, the thickness of the locally accumulated layer is a function of both the time since crossing the grounding line and the thickness of the incoming ice. Features in the meteoric ice, such as distinct folds, can be traced between

  6. A Simple Diagnostic Model of the Circulation Beneath an Ice Shelf

    NASA Astrophysics Data System (ADS)

    Jenkins, Adrian; Nøst, Ole Anders

    2017-04-01

    The ocean circulation beneath ice shelves supplies the heat required to melt ice and exports the resulting freshwater. It therefore plays a key role in determining the mass balance and geometry of the ice shelves and hence the restraint they impose on the outflow of grounded ice from the interior of the ice sheet. Despite this critical role in regulating the ice sheet's contribution to eustatic sea level, an understanding of some of the most basic features of the circulation is lacking. The conventional paradigm is one of a buoyancy-forced overturning circulation, with inflow of warm, salty water along the seabed and outflow of cooled and freshened waters along the ice base. However, most sub-ice-shelf cavities are broad relative to the internal Rossby radius, so a horizontal circulation accompanies the overturning. Primitive equation ocean models applied to idealised geometries produce cyclonic gyres of comparable magnitude, but in the absence of a theoretical understanding of what controls the gyre strength, those solutions can only be validated against each other. Furthermore, we have no understanding of how the gyre circulation should change given more complex geometries. To begin to address this gap in our theoretical understanding we present a simple, linear, steady-state model for the circulation beneath an ice shelf. Our approach in analogous to that of Stommel's classic analysis of the wind-driven gyres, but is complicated by the fact that his most basic assumption of homogeneity is inappropriate. The only forcing on the flow beneath an ice shelf arises because of the horizontal density gradients set up by melting. We thus arrive at a diagnostic model which gives us the depth-dependent horizontal circulation that results from an imposed geometry and density distribution. We describe the development of the model and present some preliminary solutions for the simplest cavity geometries.

  7. Seabed topography beneath Larsen C Ice Shelf from seismic soundings

    NASA Astrophysics Data System (ADS)

    Brisbourne, A. M.; Smith, A. M.; King, E. C.; Nicholls, K. W.; Holland, P. R.; Makinson, K.

    2014-01-01

    Seismic reflection soundings of ice thickness and seabed depth were acquired on the Larsen C Ice Shelf in order to test a sub-ice shelf bathymetry model derived from the inversion of IceBridge gravity data. A series of lines was collected, from the Churchill Peninsula in the north to the Joerg Peninsula in the south, and also towards the ice front. Sites were selected using the bathymetry model derived from the inversion of free-air gravity data to indicate key regions where sub-ice shelf oceanic circulation may be affected by ice draft and seabed depth. The seismic velocity profile in the upper 100 m of firn and ice was derived from shallow refraction surveys at a number of locations. Measured temperatures within the ice column and at the ice base were used to define the velocity profile through the remainder of the ice column. Seismic velocities in the water column were derived from previous in situ measurements. Uncertainties in ice and water cavity thickness are in general < 10 m. Compared with the seismic measurements, the root-mean-square error in the gravimetrically derived bathymetry at the seismic sites is 162 m. The seismic profiles prove the non-existence of several bathymetric features that are indicated in the gravity inversion model, significantly modifying the expected oceanic circulation beneath the ice shelf. Similar features have previously been shown to be highly significant in affecting basal melt rates predicted by ocean models. The discrepancies between the gravity inversion results and the seismic bathymetry are attributed to the assumption of uniform geology inherent in the gravity inversion process and also the sparsity of IceBridge flight lines. Results indicate that care must be taken when using bathymetry models derived by the inversion of free-air gravity anomalies. The bathymetry results presented here will be used to improve existing sub-ice shelf ocean circulation models.

  8. Vigorous lateral export of the meltwater outflow from beneath an Antarctic ice shelf.

    PubMed

    Garabato, Alberto C Naveira; Forryan, Alexander; Dutrieux, Pierre; Brannigan, Liam; Biddle, Louise C; Heywood, Karen J; Jenkins, Adrian; Firing, Yvonne L; Kimura, Satoshi

    2017-02-09

    The instability and accelerated melting of the Antarctic Ice Sheet are among the foremost elements of contemporary global climate change. The increased freshwater output from Antarctica is important in determining sea level rise, the fate of Antarctic sea ice and its effect on the Earth's albedo, ongoing changes in global deep-ocean ventilation, and the evolution of Southern Ocean ecosystems and carbon cycling. A key uncertainty in assessing and predicting the impacts of Antarctic Ice Sheet melting concerns the vertical distribution of the exported meltwater. This is usually represented by climate-scale models as a near-surface freshwater input to the ocean, yet measurements around Antarctica reveal the meltwater to be concentrated at deeper levels. Here we use observations of the turbulent properties of the meltwater outflows from beneath a rapidly melting Antarctic ice shelf to identify the mechanism responsible for the depth of the meltwater. We show that the initial ascent of the meltwater outflow from the ice shelf cavity triggers a centrifugal overturning instability that grows by extracting kinetic energy from the lateral shear of the background oceanic flow. The instability promotes vigorous lateral export, rapid dilution by turbulent mixing, and finally settling of meltwater at depth. We use an idealized ocean circulation model to show that this mechanism is relevant to a broad spectrum of Antarctic ice shelves. Our findings demonstrate that the mechanism producing meltwater at depth is a dynamically robust feature of Antarctic melting that should be incorporated into climate-scale models.

  9. DEM, tide and velocity over sulzberger ice shelf, West Antarctica

    USGS Publications Warehouse

    Baek, S.; Shum, C.K.; Lee, H.; Yi, Y.; Kwoun, Oh-Ig; Lu, Z.; Braun, Andreas

    2005-01-01

    Arctic and Antarctic ice sheets preserve more than 77% of the global fresh water and could raise global sea level by several meters if completely melted. Ocean tides near and under ice shelves shifts the grounding line position significantly and are one of current limitations to study glacier dynamics and mass balance. The Sulzberger ice shelf is an area of ice mass flux change in West Antarctica and has not yet been well studied. In this study, we use repeat-pass synthetic aperture radar (SAR) interferometry data from the ERS-1 and ERS-2 tandem missions for generation of a high-resolution (60-m) Digital Elevation Model (DEM) including tidal deformation detection and ice stream velocity of the Sulzberger Ice Shelf. Other satellite data such as laser altimeter measurements with fine foot-prints (70-m) from NASA's ICESat are used for validation and analyses. The resulting DEM has an accuracy of-0.57??5.88 m and is demonstrated to be useful for grounding line detection and ice mass balance studies. The deformation observed by InSAR is found to be primarily due to ocean tides and atmospheric pressure. The 2-D ice stream velocities computed agree qualitatively with previous methods on part of the Ice Shelf from passive microwave remote-sensing data (i.e., LANDSAT). ?? 2005 IEEE.

  10. The effect of changing wind forcing on Antarctic ice shelf melting in high-resolution, global sea ice-ocean simulations with the Accelerated Climate Model for Energy (ACME)

    NASA Astrophysics Data System (ADS)

    Asay-Davis, Xylar; Price, Stephen; Petersen, Mark; Wolfe, Jonathan

    2017-04-01

    The capability for simulating sub-ice shelf circulation and submarine melting and freezing has recently been added to the U.S. Department of Energy's Accelerated Climate Model for Energy (ACME). With this new capability, we use an eddy permitting ocean model to conduct two sets of simulations in the spirit of Spence et al. (GRL, 41, 2014), who demonstrate increased warm water upwelling along the Antarctic coast in response to poleward shifting and strengthening of Southern Ocean westerly winds. These characteristics, symptomatic of a positive Southern Annular Mode (SAM), are projected to continue into the 21st century under anthropogenic climate change (Fyfe et al., J. Clim., 20, 2007). In our first simulation, we force the climate model using the standard CORE interannual forcing dataset (Large and Yeager; Clim. Dyn., 33, 2009). In our second simulation, we force our climate model using an altered version of CORE interannual forcing, based on the latter half of the full time series, which we take as a proxy for a future climate state biased towards a positive SAM. We compare ocean model states and sub-ice shelf melt rates with observations, exploring sources of model biases as well as the effects of the two forcing scenarios.

  11. Larsen B Ice Shelf

    Atmospheric Science Data Center

    2013-04-16

    article title:  Unique Views of a Shattered Ice Shelf     View Larger Image ... views of the breakup of the northern section of the Larsen B ice shelf are shown in this image pair from the Multi-angle Imaging ...

  12. Interannual Variability in Amundsen Sea Ice-Shelf Height Change Linked to ENSO

    NASA Astrophysics Data System (ADS)

    Paolo, F. S.; Fricker, H. A.; Padman, L.

    2015-12-01

    Atmospheric and sea-ice conditions around Antarctica, particularly in the Amundsen and Bellingshausen seas, respond to climate dynamics in the tropical Pacific Ocean on interannual time scales including the El Nino-Southern Oscillation (ENSO). It has been hypothesized that the mass balance of the Antarctic Ice Sheet, including its floating ice shelves, also responds to this climate signal; however, this has not yet been unambiguously demonstrated. We apply multivariate singular spectrum analysis (MSSA) to our 18-year (1994-2012) time series of ice-shelf height in the Amundsen Sea (AS) region. This advanced spectral method distinguishes between regular deterministic behavior ("cycles") at sub-decadal time scale and irregular behavior ("noise") at shorter time scales. Although the long-term trends of AS ice-shelf height changes are much larger than the range of interannual variability, the short-term rate of change dh/dt can vary about the trend by more than 50%. The mode of interannual variability in the AS ice-shelf height is strongly correlated with the low-frequency mode of ENSO (periodicity of ~4.5 years) as represented by the Southern Oscillation Index. The ice-shelf height in the AS is expected to respond to changes in precipitation and inflows of warm subsurface Circumpolar Deep Water (CDW) into the ocean cavities under the ice shelves, altering basal melt rates. Since both of these processes affecting ice-shelf mass balance respond to changes in wind fields for different ENSO states, we expect some correlation between them. We will describe the spatial structure of AS ice-shelf height response to ENSO, and attempt to distinguish the precipitation signal from basal mass balance due to changing CDW inflows.

  13. The evolution of a coupled ice shelf-ocean system under different climate states

    NASA Astrophysics Data System (ADS)

    Grosfeld, Klaus; Sandhäger, Henner

    2004-07-01

    Based on a new approach for coupled applications of an ice shelf model and an ocean general circulation model, we investigate the evolution of an ice shelf-ocean system and its sensitivity to changed climatic boundary conditions. Combining established 3D models into a coupled model system enabled us to study the reaction and feedbacks of each component to changes at their interface, the ice shelf base. After calculating the dynamics for prescribed initial ice shelf and bathymetric geometries, the basal mass balance determines the system evolution. In order to explore possible developments for given boundary conditions, an idealized geometry has been chosen, reflecting basic features of the Filchner-Ronne Ice Shelf, Antarctica. The model system is found to be especially sensitive in regions where high ablation or accretion rates occur. Ice Shelf Water formation as well as the build up of a marine ice body, resulting from accretion of marine ice, is simulated, indicating strong interaction processes. To improve consistency between modeled and observed ice shelf behavior, we incorporate the typical cycle of steady ice front advance and sudden retreat due to tabular iceberg calving in our time-dependent simulations. Our basic hypothesis is that iceberg break off is associated with abrupt crack propagation along elongated anomalies of the inherent stress field of the ice body. This new concept yields glaciologically plausible results and represents an auspicious basis for the development of a thorough calving criterion. Experiments under different climatic conditions (ocean warming of 0.2 and 0.5 °C and doubled surface accumulation rates) show the coupled model system to be sensitive especially to ocean warming. Increased basal melt rates of 100% for the 0.5 °C ocean warming scenario and an asymmetric development of ice shelf thicknesses suggest a high vulnerability of ice shelf regions, which represent pivotal areas between the Antarctic Ice Sheet and the Southern

  14. An East Siberian ice shelf during the Late Pleistocene glaciations: Numerical reconstructions

    NASA Astrophysics Data System (ADS)

    Colleoni, Florence; Kirchner, Nina; Niessen, Frank; Quiquet, Aurélien; Liakka, Johan

    2016-09-01

    A recent data campaign in the East Siberian Sea has revealed evidence of grounded and floating ice dynamics in regions of up to 1000 m water depth, and which are attributed to glaciations older than the Last Glacial Maximum (21 kyrs BP). The main hypothesis based on this evidence is that a small ice cap developed over Beringia and expanded over the East Siberian continental margin during some of the Late Pleistocene glaciations. Other similar evidence of ice dynamics that have been previously collected on the shallow continental shelves of the Arctic Ocean have been attributed to the penultimate glaciation, i.e. Marine Isotopes Stage 6 (≈140 kyrs BP). We use an ice sheet model, forced by two previously simulated MIS 6 glacial maximum climates, to carry out a series of sensitivity experiments testing the impact of dynamics and mass-balance related parameters on the geometry of the East Siberian ice cap and ice shelf. Results show that the ice cap developing over Beringia connects to the Eurasian ice sheet in all simulations and that its volume ranges between 6 and 14 m SLE, depending on the climate forcing. This ice cap generates an ice shelf of dimensions comparable with or larger than the present-day Ross ice shelf in West Antarctica. Although the ice shelf extent strongly depends on the ice flux through the grounding line, it is particularly sensitive to the choice of the calving and basal melting parameters. Finally, inhibiting a merging of the Beringia ice cap with the Eurasian ice sheet affects the expansion of the ice shelf only in the simulations where the ice cap fluxes are not large enough to compensate for the fluxes coming from the Eurasian ice sheet.

  15. Ice-shelf collapse from subsurface warming as a trigger for Heinrich events

    PubMed Central

    Marcott, Shaun A.; Clark, Peter U.; Padman, Laurie; Klinkhammer, Gary P.; Springer, Scott R.; Liu, Zhengyu; Otto-Bliesner, Bette L.; Carlson, Anders E.; Ungerer, Andy; Padman, June; He, Feng; Cheng, Jun; Schmittner, Andreas

    2011-01-01

    Episodic iceberg-discharge events from the Hudson Strait Ice Stream (HSIS) of the Laurentide Ice Sheet, referred to as Heinrich events, are commonly attributed to internal ice-sheet instabilities, but their systematic occurrence at the culmination of a large reduction in the Atlantic meridional overturning circulation (AMOC) indicates a climate control. We report Mg/Ca data on benthic foraminifera from an intermediate-depth site in the northwest Atlantic and results from a climate-model simulation that reveal basin-wide subsurface warming at the same time as large reductions in the AMOC, with temperature increasing by approximately 2 °C over a 1–2 kyr interval prior to a Heinrich event. In simulations with an ocean model coupled to a thermodynamically active ice shelf, the increase in subsurface temperature increases basal melt rate under an ice shelf fronting the HSIS by a factor of approximately 6. By analogy with recent observations in Antarctica, the resulting ice-shelf loss and attendant HSIS acceleration would produce a Heinrich event. PMID:21808034

  16. Rheology of the Ronne Ice Shelf, Antarctica, Inferred from Satellite Radar Interferometry Data using an Inverse Control Method

    NASA Technical Reports Server (NTRS)

    Larour, E.; Rignot, E.; Joughin, I.; Aubry, D.

    2005-01-01

    The Antarctic Ice Sheet is surrounded by large floating ice shelves that spread under their own weight into the ocean. Ice shelf rigidity depends on ice temperature and fabrics, and is influenced by ice flow and the delicate balance between bottom and surface accumulation. Here, we use an inverse control method to infer the rigidity of the Ronne Ice Shelf that best matches observations of ice velocity from satellite radar interferometry. Ice rigidity, or flow law parameter B, is shown to vary between 300 and 900 kPa a(sup 1/3). Ice is softer along the side margins due to frictional heating, and harder along the outflow of large glaciers, which advect cold continental ice. Melting at the bottom surface of the ice shelf increases its rigidity, while freezing decreases it. Accurate numerical modelling of ice shelf flow must account for this spatial variability in mechanical characteristics.

  17. Aragonite undersaturation in the Arctic Ocean: effects of ocean acidification and sea ice melt.

    PubMed

    Yamamoto-Kawai, Michiyo; McLaughlin, Fiona A; Carmack, Eddy C; Nishino, Shigeto; Shimada, Koji

    2009-11-20

    The increase in anthropogenic carbon dioxide emissions and attendant increase in ocean acidification and sea ice melt act together to decrease the saturation state of calcium carbonate in the Canada Basin of the Arctic Ocean. In 2008, surface waters were undersaturated with respect to aragonite, a relatively soluble form of calcium carbonate found in plankton and invertebrates. Undersaturation was found to be a direct consequence of the recent extensive melting of sea ice in the Canada Basin. In addition, the retreat of the ice edge well past the shelf-break has produced conditions favorable to enhanced upwelling of subsurface, aragonite-undersaturated water onto the Arctic continental shelf. Undersaturation will affect both planktonic and benthic calcifying biota and therefore the composition of the Arctic ecosystem.

  18. Breakup of Pack Ice, Antarctic Ice Shelf

    NASA Image and Video Library

    1991-09-18

    STS048-152-007 (12-18 Sept 1991) --- The periphery of the Antarctic ice shelf and the Antarctic Peninsula were photographed by the STS 48 crew members. Strong offshore winds, probably associated with katabatic winds from the interior of the continent, are peeling off the edges of the ice shelf into ribbons of sea ice, icebergs, bergy bits and growlers into the cold waters of the circum-Antarctic southern ocean.

  19. Interplay of grounding-line dynamics and sub-shelf melting during retreat of the Bjørnøyrenna Ice Stream.

    PubMed

    Petrini, Michele; Colleoni, Florence; Kirchner, Nina; Hughes, Anna L C; Camerlenghi, Angelo; Rebesco, Michele; Lucchi, Renata G; Forte, Emanuele; Colucci, Renato R; Noormets, Riko

    2018-05-08

    The Barents Sea Ice Sheet was a marine-based ice sheet, i.e., it rested on the Barents Sea floor during the Last Glacial Maximum (21 ky BP). The Bjørnøyrenna Ice Stream was the largest ice stream draining the Barents Sea Ice Sheet and is regarded as an analogue for contemporary ice streams in West Antarctica. Here, the retreat of the Bjørnøyrenna Ice Stream is simulated by means of two numerical ice sheet models and results assessed against geological data. We investigate the sensitivity of the ice stream to changes in ocean temperature and the impact of grounding-line physics on ice stream retreat. Our results suggest that the role played by sub-shelf melting depends on how the grounding-line physics is represented in the models. When an analytic constraint on the ice flux across the grounding line is applied, the retreat of Bjørnøyrenna Ice Stream is primarily driven by internal ice dynamics rather than by oceanic forcing. This suggests that implementations of grounding-line physics need to be carefully assessed when evaluating and predicting the response of contemporary marine-based ice sheets and individual ice streams to ongoing and future ocean warming.

  20. NASA MISR Tracks Growth of Rift in the Larsen C Ice Shelf

    NASA Image and Video Library

    2017-04-11

    A rift in Antarctica's Larsen C ice shelf has grown to 110 miles (175 km) long, making it inevitable that an iceberg larger than Rhode Island will soon calve from the ice shelf. Larsen C is the fourth largest ice shelf in Antarctica, with an area of almost 20,000 square miles (50,000 square kilometers). The calving event will remove approximately 10 percent of the ice shelf's mass, according to the Project for Impact of Melt on Ice Shelf Dynamics and Stability (MIDAS), a UK-based team studying the ice shelf. Only 12 miles (20 km) of ice now separates the end of the rift from the ocean. The rift has grown at least 30 miles (50 km) in length since August, but appears to be slowing recently as Antarctica returns to polar winter. Project MIDAS reports that the calving event might destabilize the ice shelf, which could result in a collapse similar to what occurred to the Larsen B ice shelf in 2002. The Multi-angle Imaging SpectroRadiometer (MISR) instrument aboard NASA's Terra satellite captured views of Larsen C on August 22, 2016, when the rift was 80 miles (130 km) in length; December 8, 2016, when the rift was approximately 90 miles (145 km) long; and April 6, 2017. The MISR instrument has nine cameras, which view the Earth at different angles. The overview image, from December 8, shows the entire Antarctic Peninsula -- home to Larsen A, B, and C ice shelves -- in natural color (similar to how it would appear to the human eye) from MISR's vertical-viewing camera. Combining information from several MISR cameras pointed at different angles gives information about the texture of the ice. The accompanying GIF depicts the inset area shown on the larger image and displays data from all three dates in false color. These multiangular views -- composited from MISR's 46-degree backward-pointing camera, the nadir (vertical-viewing) camera, and the 46-degree forward-pointing camera -- represent variations in ice texture as changes in color, such that areas of rough ice appear

  1. Seasonal Outflow of Ice Shelf Water Across the Front of the Filchner Ice Shelf, Weddell Sea, Antarctica

    NASA Astrophysics Data System (ADS)

    Darelius, E.; Sallée, J. B.

    2018-04-01

    The ice shelf water (ISW) found in the Filchner Trough, located in the southern Weddell Sea, Antarctica, is climatically important; it descends into the deep Weddell Sea contributing to bottom water formation, and it blocks warm off-shelf waters from accessing the Filchner ice shelf cavity. Yet the circulation of ISW within the Filchner Trough and the processes determining its exchange across the ice shelf front are to a large degree unknown. Here mooring records from the ice shelf front are presented, the longest of which is 4 years long. They show that the coldest (Θ =- 2.3∘C) ISW, which originates from the Ronne Trough in the west, exits the cavity across the western part of the ice shelf front during late austral summer and early autumn. The supercooled ISW escaping the cavity flows northward with a velocity of about 0.03 m/s. During the rest of the year, there is no outflow at the western site: the current is directed eastward, parallel to the ice shelf front, and the temperatures at the mooring site are slightly higher (Θ =- 2.0∘C). The eastern records show a more persistent outflow of ISW.

  2. Summer Drivers of Atmospheric Variability Affecting Ice Shelf Thinning in the Amundsen Sea Embayment, West Antarctica

    NASA Astrophysics Data System (ADS)

    Deb, Pranab; Orr, Andrew; Bromwich, David H.; Nicolas, Julien P.; Turner, John; Hosking, J. Scott

    2018-05-01

    Satellite data and a 35-year hindcast of the Amundsen Sea Embayment summer climate using the Weather Research and Forecasting model are used to understand how regional and large-scale atmospheric variability affects thinning of ice shelves in this sector of West Antarctica by melting from above and below (linked to intrusions of warm water caused by anomalous westerlies over the continental shelf edge). El Niño episodes are associated with an increase in surface melt but do not have a statistically significant impact on westerly winds over the continental shelf edge. The location of the Amundsen Sea Low and the polarity of the Southern Annular Mode (SAM) have negligible impact on surface melting, although a positive SAM and eastward shift of the Amundsen Sea Low cause anomalous westerlies over the continental shelf edge. The projected future increase in El Niño episodes and positive SAM could therefore increase the risk of disintegration of West Antarctic ice shelves.

  3. Responses of Basal Melting of Antarctic Ice Shelves to the Climatic Forcing of the Last Glacial Maximum and CO2 Doubling

    NASA Astrophysics Data System (ADS)

    Abe-Ouchi, A.; Obase, T.

    2017-12-01

    Basal melting of the Antarctic ice shelves is an important factor in determining the stability of the Antarctic ice sheet. This study used the climatic outputs of an atmosphere?ocean general circulation model to force a circumpolar ocean model that resolves ice shelf cavity circulation to investigate the response of Antarctic ice shelf melting to different climatic conditions, i.e., to an increase (doubling) of CO2 and the Last Glacial Maximum conditions. We also conducted sensitivity experiments to investigate the role of surface atmospheric change, which strongly affects sea ice production, and the change of oceanic lateral boundary conditions. We found that the rate of change of basal melt due to climate warming is much greater (by an order of magnitude) than due to cooling. This is mainly because the intrusion of warm water onto the continental shelves, linked to sea ice production and climate change, is crucial in determining the basal melt rate of many ice shelves. Sensitivity experiments showed that changes of atmospheric heat flux and ocean temperature are both important for warm and cold climates. The offshore wind change together with atmospheric heat flux change strongly affected the production of sea ice and high-density water, preventing warmer water approaching the ice shelves under a colder climate. These results reflect the importance of both water mass formation in the Antarctic shelf seas and subsurface ocean temperature in understanding the long-term response to climate change of the melting of Antarctic ice shelves.

  4. Freshening by glacial meltwater enhances melting of ice shelves and reduces formation of Antarctic Bottom Water

    PubMed Central

    van Wijk, Esmee

    2018-01-01

    Strong heat loss and brine release during sea ice formation in coastal polynyas act to cool and salinify waters on the Antarctic continental shelf. Polynya activity thus both limits the ocean heat flux to the Antarctic Ice Sheet and promotes formation of Dense Shelf Water (DSW), the precursor to Antarctic Bottom Water. However, despite the presence of strong polynyas, DSW is not formed on the Sabrina Coast in East Antarctica and in the Amundsen Sea in West Antarctica. Using a simple ocean model driven by observed forcing, we show that freshwater input from basal melt of ice shelves partially offsets the salt flux by sea ice formation in polynyas found in both regions, preventing full-depth convection and formation of DSW. In the absence of deep convection, warm water that reaches the continental shelf in the bottom layer does not lose much heat to the atmosphere and is thus available to drive the rapid basal melt observed at the Totten Ice Shelf on the Sabrina Coast and at the Dotson and Getz ice shelves in the Amundsen Sea. Our results suggest that increased glacial meltwater input in a warming climate will both reduce Antarctic Bottom Water formation and trigger increased mass loss from the Antarctic Ice Sheet, with consequences for the global overturning circulation and sea level rise. PMID:29675467

  5. Freshening by glacial meltwater enhances melting of ice shelves and reduces formation of Antarctic Bottom Water.

    PubMed

    Silvano, Alessandro; Rintoul, Stephen Rich; Peña-Molino, Beatriz; Hobbs, William Richard; van Wijk, Esmee; Aoki, Shigeru; Tamura, Takeshi; Williams, Guy Darvall

    2018-04-01

    Strong heat loss and brine release during sea ice formation in coastal polynyas act to cool and salinify waters on the Antarctic continental shelf. Polynya activity thus both limits the ocean heat flux to the Antarctic Ice Sheet and promotes formation of Dense Shelf Water (DSW), the precursor to Antarctic Bottom Water. However, despite the presence of strong polynyas, DSW is not formed on the Sabrina Coast in East Antarctica and in the Amundsen Sea in West Antarctica. Using a simple ocean model driven by observed forcing, we show that freshwater input from basal melt of ice shelves partially offsets the salt flux by sea ice formation in polynyas found in both regions, preventing full-depth convection and formation of DSW. In the absence of deep convection, warm water that reaches the continental shelf in the bottom layer does not lose much heat to the atmosphere and is thus available to drive the rapid basal melt observed at the Totten Ice Shelf on the Sabrina Coast and at the Dotson and Getz ice shelves in the Amundsen Sea. Our results suggest that increased glacial meltwater input in a warming climate will both reduce Antarctic Bottom Water formation and trigger increased mass loss from the Antarctic Ice Sheet, with consequences for the global overturning circulation and sea level rise.

  6. The structure and effect of suture zones in the Larsen C Ice Shelf, Antarctica

    NASA Astrophysics Data System (ADS)

    McGrath, Daniel; Steffen, Konrad; Holland, Paul R.; Scambos, Ted; Rajaram, Harihar; Abdalati, Waleed; Rignot, Eric

    2014-03-01

    Ice shelf fractures frequently terminate where they encounter suture zones, regions of material heterogeneity that form between meteoric inflows in ice shelves. This heterogeneity can consist of marine ice, meteoric ice with modified rheological properties, or the presence of fractures. Here, we use radar observations on the Larsen C Ice Shelf, Antarctica, to investigate (i) the termination of a 25 km long rift in the Churchill Peninsula suture zone, which was found to contain 60 m of accreted marine ice, and (ii) the along-flow evolution of a suture zone originating at Cole Peninsula. We determine a steady state field of basal melting/freezing rates and apply it to a flowline model to delineate the along-flow evolution of layers within the ice shelf. The thickening surface wedge of locally accumulated meteoric ice, which likely has limited lateral variation in its mechanical properties, accounts for 60% of the total ice thickness near the calving front. Thus, we infer that the lower 40% of the ice column and the material heterogeneities present there are responsible for resisting fracture propagation and thereby delaying tabular calving events, as demonstrated in the >40 year time series leading up to the 2004/2005 calving event for Larsen C. This likely represents a highly sensitive aspect of ice shelf stability, as changes in the oceanic forcing may lead to the loss of this heterogeneity.

  7. The coupled response to slope-dependent basal melting

    NASA Astrophysics Data System (ADS)

    Little, C. M.; Goldberg, D. N.; Sergienko, O. V.; Gnanadesikan, A.

    2009-12-01

    Ice shelf basal melting is likely to be strongly controlled by basal slope. If ice shelves steepen in response to intensified melting, it suggests instability in the coupled ice-ocean system. The dynamic response of ice shelves governs what stable morphologies are possible, and thus the influence of melting on buttressing and grounding line migration. Simulations performed using a 3-D ocean model indicate that a simple form of slope-dependent melting is robust under more complex oceanographic conditions. Here we utilize this parameterization to investigate the shape and grounding line evolution of ice shelves, using a shallow-shelf approximation-based model that includes lateral drag. The distribution of melting substantially affects the shape and aspect ratio of unbuttressed ice shelves. Slope-dependent melting thins the ice shelf near the grounding line, reducing velocities throughout the shelf. Sharp ice thickness gradients evolve at high melting rates, yet grounding lines remain static. In foredeepened, buttressed ice shelves, changes in grounding line flux allow two additional options: stable or unstable retreat. Under some conditions, slope-dependent melting results in stable configurations even at high melt rates.

  8. Landcover Mapping of the McMurdo Ice Shelf Using Landsat and WorldView Image Data

    NASA Astrophysics Data System (ADS)

    Hansen, E. K.; Macdonald, G.; Mayer, D. P.; MacAyeal, D. R.

    2016-12-01

    Ice shelves bound approximately half of the Antarctic coast and act to buttress the glaciers that feed them. The collapse of the Larsen B Ice Shelf on the Antarctic Peninsula highlights the importance of processes at the surface for an ice shelf's stability. The McMurdo Ice Shelf is unique among Antarctic ice shelves in that it exists in a relatively warm climate zone and is thus more vulnerable to climate change than colder ice shelves at similar latitudes. However, little is known quantitatively about the surface cover types across the ice shelf, impeding the study of its hydrology and of the origins of its features. In particular, no work has been done linking field observations of supraglacial channels to shelf-wide surface hydrology. We will present the first satellite-derived multiscale landcover map of the McMurdo Ice Shelf based on Landsat 8 and WorldView-2 image data. Landcover types are extracted using supervised classification methods referenced to field observations. Landsat 8 provides coverage of the entire ice shelf ( 5,000 km2) at 30 m/pixel, sufficient to distinguish glacial ice, debris cover, and large supraglacial lakes. WorldView data cover a smaller area— 300 km2 at 2 m/pixel—and thus allow detailed mapping of features that are not spatially resolved by Landsat, such as supraglacial channels and small fractures across the ice shelf's surface. We take advantage of the higher resolution of WorldView-2 data to calculate the area of mid-summer surface water in channels and melt ponds within a detailed study area and use this as the basis for a spectral mixture model in order to estimate the total surface water area across the ice shelf. We intend to use the maps to guide strategic planning of future field research into the seasonal surface hydrology and climate stability of the McMurdo Ice Shelf.

  9. Using aerogravity and seismic data to model the bathymetry and upper crustal structure beneath the Pine Island Glacier ice shelf, West Antarctica

    NASA Astrophysics Data System (ADS)

    Muto, A.; Peters, L. E.; Anandakrishnan, S.; Alley, R. B.; Riverman, K. L.

    2013-12-01

    Recent estimates indicate that ice shelves along the Amundsen Sea coast in West Antarctica are losing substantial mass through sub-ice-shelf melting and contributing to the accelerating mass loss of the grounded ice buttressed by them. For Pine Island Glacier (PIG), relatively warm Circumpolar Deep Water has been identified as the key driver of the sub-ice-shelf melting although poor constraints on PIG sub-ice shelf have restricted thorough understanding of these ice-ocean interactions. Aerogravity data from NASA's Operation IceBridge (OIB) have been useful in identifying large-scale (on the order of ten kilometers) features but the results have relatively large uncertainties due to the inherent non-uniqueness of the gravity inversion. Seismic methods offer the most direct means of providing water thickness and upper crustal geological constraints, but availability of such data sets over the PIG ice shelf has been limited due to logistical constraints. Here we present a comparative analysis of the bathymetry and upper crustal structure beneath the ice shelf of PIG through joint inversion of OIB aerogravity data and in situ active-source seismic measurements collected in the 2012-13 austral summer. Preliminary results indicate improved resolution of the ocean cavity, particularly in the interior and sides of the PIG ice shelf, and sedimentary drape across the region. Seismically derived variations in ice and ocean water densities are also applied to the gravity inversion to produce a more robust model of PIG sub-ice shelf structure, as opposed to commonly used single ice and water densities across the entire study region. Misfits between the seismically-constrained gravity inversion and that estimated previously from aerogravity alone provide insights on the sensitivity of gravity measurements to model perturbations and highlight the limitations of employing gravity data to model ice shelf environments when no other sub-ice constraints are available.

  10. Fracture propagation and stability of ice shelves governed by ice shelf heterogeneity

    NASA Astrophysics Data System (ADS)

    Borstad, Chris; McGrath, Daniel; Pope, Allen

    2017-05-01

    Tabular iceberg calving and ice shelf retreat occurs after full-thickness fractures, known as rifts, propagate across an ice shelf. A quickly evolving rift signals a threat to the stability of Larsen C, the Antarctic Peninsula's largest ice shelf. Here we reveal the influence of ice shelf heterogeneity on the growth of this rift, with implications that challenge existing notions of ice shelf stability. Most of the rift extension has occurred in bursts after overcoming the resistance of suture zones that bind together neighboring glacier inflows. We model the stresses in the ice shelf to determine potential rift trajectories. Calving perturbations to ice flow will likely reach the grounding line. The stability of Larsen C may hinge on a single suture zone that stabilizes numerous upstream rifts. Elevated fracture toughness of suture zones may be the most important property that allows ice shelves to modulate Antarctica's contribution to sea level rise.

  11. Comparison of Ice-shelf Creep Flow Simulations with Ice-front Motion of Filchner-Ronne Ice Shelf, Antarctica, Detected by SAR Interferometry

    NASA Technical Reports Server (NTRS)

    Hulbe, C. L.; Rignot, E.; MacAyeal, D. R.

    1998-01-01

    Comparison between numerical model ice-shelf flow simulations and synthetic aperture radar (SAR) interferograms is used to study the dynamics at the Hemmen Ice Rise (HIR) and Lassiter Coast (LC) corners of the iceberg-calving front of the Filchner-Ronne Ice Shelf (FRIS).

  12. Ice shelf structure derived from dispersion curve analysis of ambient seismic noise, Ross Ice Shelf, Antarctica

    NASA Astrophysics Data System (ADS)

    Diez, A.; Bromirski, P. D.; Gerstoft, P.; Stephen, R. A.; Anthony, R. E.; Aster, R. C.; Cai, C.; Nyblade, A.; Wiens, D. A.

    2016-05-01

    An L-configured, three-component short period seismic array was deployed on the Ross Ice Shelf, Antarctica during November 2014. Polarization analysis of ambient noise data from these stations shows linearly polarized waves for frequency bands between 0.2 and 2 Hz. A spectral peak at about 1.6 Hz is interpreted as the resonance frequency of the water column and is used to estimate the water layer thickness below the ice shelf. The frequency band from 4 to 18 Hz is dominated by Rayleigh and Love waves propagating from the north that, based on daily temporal variations, we conclude were generated by field camp activity. Frequency-slowness plots were calculated using beamforming. Resulting Love and Rayleigh wave dispersion curves were inverted for the shear wave velocity profile within the firn and ice to ˜150 m depth. The derived density profile allows estimation of the pore close-off depth and the firn-air content thickness. Separate inversions of Rayleigh and Love wave dispersion curves give different shear wave velocity profiles within the firn. We attribute this difference to an effective anisotropy due to fine layering. The layered structure of firn, ice, water and the seafloor results in a characteristic dispersion curve below 7 Hz. Forward modelling the observed Rayleigh wave dispersion curves using representative firn, ice, water and sediment structures indicates that Rayleigh waves are observed when wavelengths are long enough to span the distance from the ice shelf surface to the seafloor. The forward modelling shows that analysis of seismic data from an ice shelf provides the possibility of resolving ice shelf thickness, water column thickness and the physical properties of the ice shelf and underlying seafloor using passive-source seismic data.

  13. Coupled ice sheet-ocean modelling to investigate ocean driven melting of marine ice sheets in Antarctica

    NASA Astrophysics Data System (ADS)

    Jong, Lenneke; Gladstone, Rupert; Galton-Fenzi, Ben

    2017-04-01

    Ocean induced melting below the ice shelves of marine ice sheets is a major source of uncertainty for predictions of ice mass loss and Antarctica's resultant contribution to future sea level rise. The floating ice shelves provide a buttressing force against the flow of ice across the grounding line into the ocean. Thinning of these ice shelves due to an increase in melting reduces this force and can lead to an increase in the discharge of grounded ice. Fully coupled modelling of ice sheet-ocean interactions is key to improving understanding the influence of the Southern ocean on the evolution of the Antarctic ice sheet, and to predicting its future behaviour under changing climate conditions. Coupling of ocean and ice sheet models is needed to provide more realistic melt rates at the base of ice shelves and hence make better predictions of the behaviour of the grounding line and the shape of the ice-shelf cavity as the ice sheet evolves. The Framework for Ice Sheet - Ocean Coupling (FISOC) has been developed to provide a flexible platform for performing coupled ice sheet - ocean modelling experiments. We present preliminary results using FISOC to couple the Regional Ocean Modelling System (ROMS) with Elmer/Ice in idealised experiments Marine Ice Sheet-Ocean Model Intercomparison Project (MISOMIP). These experiments use an idealised geometry motivated by that of Pine Island glacier and the adjacent Amundsen Sea in West Antarctica, a region which has shown shown signs of thinning ice and grounding line retreat.

  14. Ice shelf structure from dispersion curve analysis of passive-source seismic data, Ross Ice Shelf, Antarctica

    NASA Astrophysics Data System (ADS)

    Diez, A.; Bromirski, P. D.; Gerstoft, P.; Stephen, R. A.; Anthony, R. E.; Aster, R. C.; Cai, C.; Nyblade, A.; Wiens, D.

    2015-12-01

    An L-shaped array of three-component short period seismic stations was deployed at the Ross Ice Shelf, Antarctica approximately 100 km south of the ice edge, near 180° longitude, from November 18 through 28, 2014. Polarization analysis of data from these stations clearly shows propagating waves from below the ice shelf for frequencies below 2 Hz. Energy above 2 Hz is dominated by Rayleigh and Love waves propagating from the north. Frequency-slowness plots were calculated using beamforming. Resulting Love and Rayleigh wave dispersion curves were inverted for the shear wave velocity profile, from which we derive a density profile. The derived shear wave velocity profiles differ within the firn for the inversions using Rayleigh and Love wave dispersion curves. This difference is attributed to an effective anisotropy due to fine layering. The layered structure of firn, ice, water, and ocean floor results in a characteristic dispersion curve pattern below 7 Hz. We investigate the observed structures in more detail by forward modeling of Rayleigh wave dispersion curves for representative firn, ice, water, sediment structures. Rayleigh waves are observed when wavelengths are long enough to span the distance from the ice shelf surface to the seafloor. Our results show that the analysis of high frequency Rayleigh waves on an ice shelf has the ability to resolve ice shelf thickness, water column thickness, and the physical properties of the underlying ocean floor using passive-source seismic data.

  15. Basal channels on ice shelves

    NASA Astrophysics Data System (ADS)

    Sergienko, O. V.

    2013-09-01

    Recent surveys of floating ice shelves associated with Pine Island Glacier (Antarctica) and Petermann Glacier (Greenland) indicate that there are channels incised upward into their bottoms that may serve as the conduits of meltwater outflow from the sub-ice-shelf cavity. The formation of the channels, their evolution over time, and their impact on ice-shelf flow are investigated using a fully-coupled ice-shelf/sub-ice-shelf ocean model. The model simulations suggest that channels may form spontaneously in response to meltwater plume flow initiated at the grounding line if there are relatively high melt rates and if there is transverse to ice-flow variability in ice-shelf thickness. Typical channels formed in the simulations have a width of about 1-3 km and a vertical relief of about 100-200 m. Melt rates and sea-water transport in the channels are significantly higher than on the smooth flat ice bottom between the channels. The melt channels develop through melting, deformation, and advection with ice-shelf flow. Simulations suggest that both steady state and cyclic state solutions are possible depending on conditions along the lateral ice-shelf boundaries. This peculiar dynamics of the system has strong implications on the interpretation of observations. The richness of channel morphology and evolution seen in this study suggests that further observations and theoretical analysis are imperative for understanding ice-shelf behavior in warm oceanic conditions.

  16. Field Investigation of Surface-Lake Processes on Ice Shelves: Results of the 2015/16 Field Campaign on McMurdo Ice Shelf, Antarctica

    NASA Astrophysics Data System (ADS)

    MacAyeal, Doug; Banwell, Alison; Willis, Ian; Macdonald, Grant

    2016-04-01

    Ice-shelf instability and breakup of the style exhibited by Larsen B Ice Shelf in 2002 remains the most difficult glaciological process of consequence to observe in detail. It is, however, vital to do so because ice-shelf breakup has the potential to influence the buttressing controls on inland ice discharge, and thus to affect sea level. Several mechanisms enabling Larsen B style breakup have been proposed, including the ability of surface lakes to introduce ice-shelf fractures when they fill and drain, thereby changing the surface loads the ice-shelf must adjust to. Our model suggest that these fractures resulted in a chain-reaction style drainage of >2750 surface lakes on the Larsen B in the days prior to its demise. To validate this and other models, we began a field project on the McMurdo Ice Shelf (MIS) during the 2015/16 austral summer. Advantages of the MIS study site are: there is considerable surface melting during 3-6 weeks of the summer season, the ice is sufficiently thin (< 30 m in places) to allow observable viscoelastic responses to relatively small loads, and it is close to a center of logistical support (McMurdo Station). Here we show initial results from the field campaign, including GPS and water-depth observations of a lake that has filled and drained over multiple week timescales in previous austral summers. We also report on the analysis of high-resolution WorldView satellite imagery from several summers that reveals the complexity of surface meltwater movement in channels and subsurface void spaces. Initial reconnaissance of the largest surface-lake features reveal that they have a central circular depression surrounded by an uplifted ring, which supports one of the central tenets of our ice-shelf flexure theory. A second field season is anticipated for the 2016/17 austral summer.

  17. Ice-shelf Dynamics Near the Front of Filchner-Ronne Ice Shelf, Antarctica, Revealed by SAR Interferometry

    NASA Technical Reports Server (NTRS)

    Rignot, E.; MacAyeal, D. R.

    1998-01-01

    Fifteen synthetic-aperture radar (SAR) images of the Ronne Ice Shelf, Antarctica, obtained by the European Space Agency (ESA)'s Earth Remote Sensing satellites (ERS) 1 & 2 are used to study ice-shelf dynamics near two ends of the iceberg-calving front.

  18. Numerical model of ice melange expansion during abrupt ice-shelf collapse

    NASA Astrophysics Data System (ADS)

    Guttenberg, N.; Abbot, D. S.; Amundson, J. M.; Burton, J. C.; Cathles, L. M.; Macayeal, D. R.; Zhang, W.

    2010-12-01

    Satellite imagery of the February 2008 Wilkins Ice-Shelf Collapse event reveals that a large percentage of the involved ice shelf was converted to capsized icebergs and broken fragments of icebergs over a relatively short period of time, possibly less than 24 hours. The extreme violence and short time scale of the event, and the considerable reduction of gravitational potential energy between upright and capsized icebergs, suggests that iceberg capsize might be an important driving mechanism controlling both the rate and spatial extent of ice shelf collapse. To investigate this suggestion, we have constructed an idealized, 2-dimensional model of a disintegrating ice shelf composed of a large number (N~100 to >1000) of initially well-packed icebergs of rectangular cross section. The model geometry consists of a longitudinal cross section of the idealized ice shelf from grounding line (or the upstream extent of ice-shelf fragmentation) to seaward ice front, and includes the region beyond the initial ice front to cover the open, ice-free water into which the collapsing ice shelf expands. The seawater in which the icebergs float is treated as a hydrostatic fluid in the computation of iceberg orientation (e.g., the evaluation of buoyancy forces and torques), thereby eliminating the complexities of free-surface waves, but net horizontal drift of the icebergs is resisted by a linear drag law designed to energy dissipation by viscous forces and surface-gravity-wave radiation. Icebergs interact via both elastic and inelastic contacts (typically a corner of one iceberg will scrape along the face of its neighbor). Ice-shelf collapse in the model is embodied by the mass capsize of a large proportion of the initially packed icebergs and the consequent advancement of the ice front (leading edge). Model simulations are conducted to examine (a) the threshold of stability (e.g., what density of initially capsizable icebergs is needed to allow a small perturbation to the system

  19. Ice shelf fracture parameterization in an ice sheet model

    NASA Astrophysics Data System (ADS)

    Sun, Sainan; Cornford, Stephen L.; Moore, John C.; Gladstone, Rupert; Zhao, Liyun

    2017-11-01

    Floating ice shelves exert a stabilizing force onto the inland ice sheet. However, this buttressing effect is diminished by the fracture process, which on large scales effectively softens the ice, accelerating its flow, increasing calving, and potentially leading to ice shelf breakup. We add a continuum damage model (CDM) to the BISICLES ice sheet model, which is intended to model the localized opening of crevasses under stress, the transport of those crevasses through the ice sheet, and the coupling between crevasse depth and the ice flow field and to carry out idealized numerical experiments examining the broad impact on large-scale ice sheet and shelf dynamics. In each case we see a complex pattern of damage evolve over time, with an eventual loss of buttressing approximately equivalent to halving the thickness of the ice shelf. We find that it is possible to achieve a similar ice flow pattern using a simple rule of thumb: introducing an enhancement factor ˜ 10 everywhere in the model domain. However, spatially varying damage (or equivalently, enhancement factor) fields set at the start of prognostic calculations to match velocity observations, as is widely done in ice sheet simulations, ought to evolve in time, or grounding line retreat can be slowed by an order of magnitude.

  20. Ice Shelves and Landfast Ice on the Antarctic Perimeter: Revised Scope of Work

    NASA Technical Reports Server (NTRS)

    Scambos, Ted

    2002-01-01

    Ice shelves respond quickly and profoundly to a warming climate. Within a decade after mean summertime temperature reaches approx. O C and persistent melt pending is observed, a rapid retreat and disintegration occurs. This link was documented for ice shelves in the Antarctic Peninsula region (the Larsen 'A', 'B' and Wilkins Ice shelves) by the results of a previous grant under ADRO-1. Modeling of ice flow and the effects of meltwater indicated that melt pending accelerates shelf breakup by increasing fracture penetration. SAR data supplemented an AVHRR- and SSM/I-based image analysis of extent and surface characteristic changes. This funded grant is a revised, scaled-down version of an earlier proposal under the ADRO-2 NRA. The overall objective remains the same: we propose to build on the previous study by examining other ice shelves of the Antarctic and incorporate an examination of the climate-related characteristics of landfast ice. The study now considers just a few shelf and fast ice areas for study, and is funded for two years. The study regions are the northeastern Ross Ice Shelf, the Larsen 'B' and 'C' shelves, fast ice and floating shelf ice in the Pine Island Glacier area, and fast ice along the Wilkes Land coast. Further, rather than investigating a host of shelf and fast ice processes, we will home in on developing a series of characteristics associated with climate change over shelf and fast ice areas. Melt pending and break-up are the end stages of a response to a warming climate that may begin with increased melt event frequency (which changes both albedo and emissivity temporarily), changing firn backscatter (due to percolation features), and possibly increased rifting of the shelf surface. Fast ice may show some of these same processes on a seasonal timescale, providing insight into shelf evolution.

  1. Marine ice regulates the future stability of a large Antarctic ice shelf

    PubMed Central

    Kulessa, Bernd; Jansen, Daniela; Luckman, Adrian J.; King, Edward C.; Sammonds, Peter R.

    2014-01-01

    The collapses of the Larsen A and B ice shelves on the Antarctic Peninsula in 1995 and 2002 confirm the impact of southward-propagating climate warming in this region. Recent mass and dynamic changes of Larsen B’s southern neighbour Larsen C, the fourth largest ice shelf in Antarctica, may herald a similar instability. Here, using a validated ice-shelf model run in diagnostic mode, constrained by satellite and in situ geophysical data, we identify the nature of this potential instability. We demonstrate that the present-day spatial distribution and orientation of the principal stresses within Larsen C ice shelf are akin to those within pre-collapse Larsen B. When Larsen B’s stabilizing frontal portion was lost in 1995, the unstable remaining shelf accelerated, crumbled and ultimately collapsed. We hypothesize that Larsen C ice shelf may suffer a similar fate if it were not stabilized by warm and mechanically soft marine ice, entrained within narrow suture zones. PMID:24751641

  2. Satellite-derived submarine melt rates and mass balance (2011-2015) for Greenland's largest remaining ice tongues

    NASA Astrophysics Data System (ADS)

    Wilson, Nat; Straneo, Fiammetta; Heimbach, Patrick

    2017-12-01

    Ice-shelf-like floating extensions at the termini of Greenland glaciers are undergoing rapid changes with potential implications for the stability of upstream glaciers and the ice sheet as a whole. While submarine melting is recognized as a major contributor to mass loss, the spatial distribution of submarine melting and its contribution to the total mass balance of these floating extensions is incompletely known and understood. Here, we use high-resolution WorldView satellite imagery collected between 2011 and 2015 to infer the magnitude and spatial variability of melt rates under Greenland's largest remaining ice tongues - Nioghalvfjerdsbræ (79 North Glacier, 79N), Ryder Glacier (RG), and Petermann Glacier (PG). Submarine melt rates under the ice tongues vary considerably, exceeding 50 m a-1 near the grounding zone and decaying rapidly downstream. Channels, likely originating from upstream subglacial channels, give rise to large melt variations across the ice tongues. We compare the total melt rates to the influx of ice to the ice tongue to assess their contribution to the current mass balance. At Petermann Glacier and Ryder Glacier, we find that the combined submarine and aerial melt approximately balances the ice flux from the grounded ice sheet. At Nioghalvfjerdsbræ the total melt flux (14.2 ± 0.96 km3 a-1 w.e., water equivalent) exceeds the inflow of ice (10.2 ± 0.59 km3 a-1 w.e.), indicating present thinning of the ice tongue.

  3. Efficient Flowline Simulations of Ice Shelf-Ocean Interactions: Sensitivity Studies with a Fully Coupled Model

    NASA Technical Reports Server (NTRS)

    Walker, Ryan Thomas; Holland, David; Parizek, Byron R.; Alley, Richard B.; Nowicki, Sophie M. J.; Jenkins, Adrian

    2013-01-01

    Thermodynamic flowline and plume models for the ice shelf-ocean system simplify the ice and ocean dynamics sufficiently to allow extensive exploration of parameters affecting ice-sheet stability while including key physical processes. Comparison between geophysically and laboratory-based treatments of ice-ocean interface thermodynamics shows reasonable agreement between calculated melt rates, except where steep basal slopes and relatively high ocean temperatures are present. Results are especially sensitive to the poorly known drag coefficient, highlighting the need for additional field experiments to constrain its value. These experiments also suggest that if the ice-ocean interface near the grounding line is steeper than some threshold, further steepening of the slope may drive higher entrainment that limits buoyancy, slowing the plume and reducing melting; if confirmed, this will provide a stabilizing feedback on ice sheets under some circumstances.

  4. Amery Ice Shelf's 'Loose Tooth' Gets Looser

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Amery Ice Shelf is an important dynamic system responsible for draining about 16% of the grounded East Antarctic ice sheet through only 2% of its coastline. Most of the mass input to the system occurs from the Lambert and several other glaciers. Mass loss from the system occurs through basal melting and iceberg calving. These images from the Multi-angle Imaging SpectroRadiometer (MISR) portray the ice shelf front on October 6, 2001 (top) and September 29, 2002 (bottom), and illustrate changes that took place over the year elapsed between the two views.

    Two longitudinal rifts, oriented roughly parallel to the direction of ice flow and measuring about 25 and 15 kilometers in length, are apparent near the seaward edge of the ice shelf. Between them, a transverse fracture extends eastward from the base of the western rift. This rift system is colloquially named the Amery 'loose tooth.' Over the course of the one-year interval between these two MISR images, the ice front has advanced approximately 1.6 - 1.7 kilometers, and the transverse fracture and a three-way fissure at the juncture of the rifts have widened. When the transverse fracture eventually reaches the eastern rift, a large iceberg (25 kilometers x 25 kilometers) will be released.

    These false-color multi-angle composites combine red-band data from MISR's 60o forward, nadir, and 60o aftward viewing cameras, displayed as red, green and blue, respectively. Different colors represent angular reflectance variations. Since generally smooth surfaces predominantly forward-scatter sunlight, these appear in shades of blue. Rough surfaces tend to backward-scatter sunlight, and these appear in shades of red or orange. Low clouds appear bright purple, since they exhibit both forward and backward-scattering. Using this technique, textural variations among ice types are revealed, and clouds can be easily distinguished from ice. Illumination conditions on the two dates are nearly identical.

    Understanding the

  5. Validation of the Antarctic Snow Accumulation and Ice Discharge Basal Stress Boundary in the South Eastern Region of the Ross Ice Shelf, Antarctica

    NASA Astrophysics Data System (ADS)

    Nelson, C. B.; King, K.

    2015-12-01

    The largest ice shelf in Antarctic, Ross Ice Shelf, was investigated over the years of (1970-2015). Near the basal stress boundary between the ice shelf and the West Antarctic ice sheet, ice velocity ranges from a few meters per year to several hundred meters per year in ice streams. Most of the drainage from West Antarctica into the Ross Ice Shelf flows down two major ice streams, each of which discharges more than 20 km3 of ice each year. Along with velocity changes, the warmest water below parts of the Ross Ice Shelf resides in the lowest portion of the water column because of its high salinity. Vertical mixing caused by tidal stirring can thus induce ablation by lifting the warm water into contact with the ice shelf. This process can cause melting over a period of time and eventually cause breakup of ice shelf. With changes occurring over many years a validation is needed for the Antarctic Snow Accumulation and Ice Discharge (ASAID) basal stress boundary created in 2003. After the 2002 Larsen B Ice Shelf disintegration, nearby glaciers in the Antarctic Peninsula accelerated up to eight times their original speed over the next 18 months. Similar losses of ice tongues in Greenland have caused speed-ups of two to three times the flow rates in just one year. Rapid changes occurring in regions surrounding Antarctica are causing concern in the polar science community to research changes occurring in coastal zones over time. During the research, the team completed study on the Ross Ice Shelf located on the south western coast of the Antarctic. The study included a validation of the ABSB vs. the natural basal stress boundary (NBSB) along the Ross Ice Shelf. The ASAID BSB was created in 2003 by a team of researchers headed by National Aeronautics and Space Administration Goddard Space Flight Center (NASA GSFC), with an aim of studying coastal deviations as it pertains to the mass balance of the entire continent. The point data file was aimed at creating a replica of the

  6. Ross Ice Shelf, Antarctic Ice and Clouds

    NASA Technical Reports Server (NTRS)

    1991-01-01

    In this view of Antarctic ice and clouds, (56.5S, 152.0W), the Ross Ice Shelf of Antarctica is almost totally clear, showing stress cracks in the ice surface caused by wind and tidal drift. Clouds on the eastern edge of the picture are associated with an Antarctic cyclone. Winds stirred up these storms have been known to reach hurricane force.

  7. Direct evidence of warm water access to the Totten Glacier sub-ice shelf cavity

    NASA Astrophysics Data System (ADS)

    Orsi, A. H.; Rintoul, S. R.; Silvano, A.; van Wijk, E.; Pena-Molino, B.; Rosenberg, M. A.

    2015-12-01

    The Totten Glacier holds enough ice to raise global sea level by 3.5 m, is thinning according to (some) satellite data, and is grounded well below sea level on a retrograde bed and hence is potentially unstable. Basal melt driven by ocean heat flux has been linked to ice shelf thinning elsewhere in Antarctica, but no oceanographic measurements had been made near the Totten. In January 2015 the RSV Aurora Australis was the first ship to reach the Totten calving front. Observations from ship-board CTD, moorings and profiling floats provide direct confirmation that warm water reaches the ice shelf cavity. Warm water is present near the sea floor at every station deeper than 300 m depth, with maximum temperatures at mid-shelf >0.5°C. Mooring data confirm that the warm water is present year-round. A deep (>1100 m) channel at the calving front allows warm water (-0.4°C, >2°C above the local freezing point) to access the ice shelf cavity. The contrast between the oceanographic conditions near the Totten and near the Mertz Glacier is stark, although they are separated by only 30 degrees of longitude. East Antarctic ice shelves have often been assumed to behave in a similar manner and to be invulnerable to ocean change; these measurements suggest these assumptions need to be reconsidered.

  8. Ice-shelf Dynamics Near the Front of Filchner-Ronne Ice Shelf, Antarctica, Revealed by SAR Interferometry: Model/Interferogram Comparison

    NASA Technical Reports Server (NTRS)

    MacAyeal, D. R.; Rignot, E.; Hulbe, C. L.

    1998-01-01

    We compare Earth Remote Sensing (ERS) satellite synthetic-aperture radar (SAR) interferograms with artificial interferograms constructed using output of a finite-element ice-shelf flow model to study the dynamics of Filchner-Ronne Ice Shelf (FRIS) near Hemmen Ice Rise (HIR) where the iceberg-calving front itersects Berkener Island (BI).

  9. Turbulent heat exchange between water and ice at an evolving ice-water interface

    NASA Astrophysics Data System (ADS)

    Ramudu, E.; Hirsh, B.; Olson, P.; Gnanadesikan, A.

    2016-02-01

    Experimental results are presented on the time evolution of ice subject to a turbulent shear flow in a layer of water of uniform depth. Our study is motivated by observations in the ocean cavity beneath Antarctic ice shelves, where shoaling of Circumpolar Deep Water into the cavity has been implicated in the accelerated melting of the ice shelf base. Measurements of inflow and outflow at the ice shelf front have shown that not all of the heat entering the cavity is delivered to the ice shelf, suggesting that turbulent transfer to the ice represents an important bottleneck. Given that a range of turbulent transfer coefficients has been used in models it is important to better constrain this parameter. We measure as a function of time in our experiments the thickness of the ice, temperatures in the ice and water, and fluid velocity in the shear flow, starting from an initial condition in which the water is at rest and the ice has grown by conduction above a cold plate. The strength of the applied turbulent shear flow is represented in terms of a Reynolds number Re, which is varied over the range 3.5 × 103 ≤ Re ≤ 1.9 × 104. Transient partial melting of the ice occurs at the lower end of this range of Re and complete transient melting of the ice occurs at the higher end of the range. Following these melting transients, the ice reforms at a rate that is independent of Re. We fit to our experimental measurements of ice thickness and temperature a one-dimensional model for the evolution of the ice thickness in which the turbulent heat transfer is parameterized in terms of the friction velocity of the shear flow. Comparison with the Pine Island Glacier Ice Shelf yields qualitative agreement between the transient ice melting rates predicted by our model and the shelf melting rate inferred from the field observations.

  10. Ocean Wave-to-Ice Energy Transfer Determined from Seafloor Pressure and Ice Shelf Seismic Observations

    NASA Astrophysics Data System (ADS)

    Chen, Z.; Bromirski, P. D.; Gerstoft, P.; Stephen, R. A.; Wiens, D.; Aster, R. C.; Nyblade, A.

    2017-12-01

    Ice shelves play an important role in buttressing land ice from reaching the sea, thus restraining the rate of sea level rise. Long-period gravity wave impacts excite vibrations in ice shelves that may trigger tabular iceberg calving and/or ice shelf collapse events. Three kinds of seismic plate waves were continuously observed by broadband seismic arrays on the Ross Ice Shelf (RIS) and on the Pine Island Glacier (PIG) ice shelf: (1) flexural-gravity waves, (2) flexural waves, and (3) extensional Lamb waves, suggesting that all West Antarctic ice shelves are subjected to similar gravity wave excitation. Ocean gravity wave heights were estimated from pressure perturbations recorded by an ocean bottom differential pressure gauge at the RIS front, water depth 741 m, about 8 km north of an on-ice seismic station that is 2 km from the shelf front. Combining the plate wave spectrum, the frequency-dependent energy transmission and reflection at the ice-water interface were determined. In addition, Young's modulus and Poisson's ratio of the RIS are estimated from the plate wave motions, and compared with the widely used values. Quantifying these ice shelf parameters from observations will improve modeling of ice shelf response to ocean forcing, and ice shelf evolution.

  11. Calving fluxes and basal melt rates of Antarctic ice shelves.

    PubMed

    Depoorter, M A; Bamber, J L; Griggs, J A; Lenaerts, J T M; Ligtenberg, S R M; van den Broeke, M R; Moholdt, G

    2013-10-03

    Iceberg calving has been assumed to be the dominant cause of mass loss for the Antarctic ice sheet, with previous estimates of the calving flux exceeding 2,000 gigatonnes per year. More recently, the importance of melting by the ocean has been demonstrated close to the grounding line and near the calving front. So far, however, no study has reliably quantified the calving flux and the basal mass balance (the balance between accretion and ablation at the ice-shelf base) for the whole of Antarctica. The distribution of fresh water in the Southern Ocean and its partitioning between the liquid and solid phases is therefore poorly constrained. Here we estimate the mass balance components for all ice shelves in Antarctica, using satellite measurements of calving flux and grounding-line flux, modelled ice-shelf snow accumulation rates and a regional scaling that accounts for unsurveyed areas. We obtain a total calving flux of 1,321 ± 144 gigatonnes per year and a total basal mass balance of -1,454 ± 174 gigatonnes per year. This means that about half of the ice-sheet surface mass gain is lost through oceanic erosion before reaching the ice front, and the calving flux is about 34 per cent less than previous estimates derived from iceberg tracking. In addition, the fraction of mass loss due to basal processes varies from about 10 to 90 per cent between ice shelves. We find a significant positive correlation between basal mass loss and surface elevation change for ice shelves experiencing surface lowering and enhanced discharge. We suggest that basal mass loss is a valuable metric for predicting future ice-shelf vulnerability to oceanic forcing.

  12. Iceberg B-15, Ross Ice Shelf, Antarctica

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Iceberg B-15 broke from the Ross Ice Shelf in Antarctica in late March. Among the largest ever observed, the new iceberg is approximately 170 miles long x 25 miles wide. Its 4,250 square-mile area is nearly as large as the state of Connecticut. The iceberg was formed from glacial ice moving off the Antarctic continent and calved along pre-existing cracks in the Ross Ice Shelf near Roosevelt Island. The calving of the iceberg essentially moves the northern boundary of the ice shelf about 25 miles to the south, a loss that would normally take the ice shelf as long as 50-100 years to replace. This infrared image was acquired by the DMSP (Defense Meteorological Satellite Program) F-13 satellite on April 13, 2000. For more images see Antarctic Meteorological Research Center Image courtesy of the University of Wisconsin - Madison, Space Science and Engineering Center, Antarctic Meteorological Research Center

  13. Teleseismic Earthquake Signals Observed on an Ice Shelf

    NASA Astrophysics Data System (ADS)

    Baker, M. G.; Aster, R. C.; Anthony, R. E.; Wiens, D.; Nyblade, A.; Bromirski, P. D.; Stephen, R. A.; Gerstoft, P.

    2015-12-01

    The West Antarctic Rift System (WARS) is one of Earth's largest continental extension zones. Study of the WARS is complicated by the presence of the West Antarctic Ice Sheet, the Ross Ice Shelf, and the Ross Sea. Recent deployments of broadband seismographs in the POLENET project have allowed passive seismic techniques, such as receiver function analysis and surface wave dispersion, to be widely utilized to infer crustal and mantle velocity structure across much of the WARS and West Antarctica. However, a large sector of the WARS lies beneath the Ross Ice Shelf. In late 2014, 34 broadband seismographs were deployed atop the ice shelf to jointly study deep Earth structure and the dynamics of the ice shelf. Ice shelf conditions present strong challenges to broadband teleseismic imaging: 1) The presence of complicating signals in the microseism through long-period bands due to the influence of ocean gravity waves; 2) The strong velocity contrasts at the ice-water and water-sediment interfaces on either side of the water layer give rise to large amplitude reverberations; 3) The water layer screens S-waves or P-to-S phases originating from below the water layer. We present an initial analysis of the first teleseismic earthquake arrivals collected on the ice shelf at the end of the 2014 field season from a limited subset of these stations.

  14. Conditions for a steady ice sheet ice shelf junction

    NASA Astrophysics Data System (ADS)

    Nowicki, S. M. J.; Wingham, D. J.

    2008-01-01

    This paper investigates the conditions under which a marine ice sheet may adopt a steady profile. The ice is treated as a linear viscous fluid caused to flow from a rigid base to and over water, treated as a denser but inviscid fluid. The solutions in the region around the point of flotation, or 'transition' zone, are calculated numerically. In-flow and out-flow conditions appropriate to ice sheet and ice shelf flow are applied at the ends of the transition zone and the rigid base is specified; the flow and steady free surfaces are determined as part of the solutions. The basal stress upstream, and the basal deflection downstream, of the flotation point are examined to determine which of these steady solutions satisfy 'contact' conditions that would prevent (i) the steady downstream basal deflection contacting the downstream base, and (ii) the upstream ice commencing to float in the event it was melted at the base. In the case that the upstream bed is allowed to slide, we find only one mass flux that satisfies the contact conditions. When no sliding is allowed at the bed, however, we find a range of mass fluxes satisfy the contact conditions. The effect of 'backpressure' on the solutions is investigated, and is found to have no affect on the qualitative behaviour of the junctions. To the extent that the numerical, linearly viscous treatment may be applied to the case of ice flowing out over the ocean, we conclude that when sliding is present, Weertman's 'instability' hypothesis holds.

  15. Modeling the Spreading of Glacial Melt Water from the Amundsen and Bellingshausen Seas

    NASA Astrophysics Data System (ADS)

    Nakayama, Y.; Timmermann, R.; Rodehacke, C. B.; Schröder, M.; Hellmer, H. H.

    2014-12-01

    The ice shelves and glaciers of the West Antarctic Ice Sheet (WAIS) are rapidly thinning, especially in the Amundsen Sea (AS) and Bellingshausen Sea (BS). The high basal melting of these small ice shelves is caused by relatively warm Circumpolar Deep Water (CDW) that, based on observations, mainly intrudes via two submarine glacial troughs located at the eastern and central AS continental shelf break. When CDW reaches the grounding line of the fringing glaciers, it melts the glaciers and forms buoyant melt water plumes. As the glacial melt becomes part of the AS shelf circulation, it may cause a freshening of the shelf water locally as well as remotely in the Ross Sea (RS). To test whether the observed freshening of the RS is a consequence of the enhanced basal melting of AS ice shelves, we use Finite-Element Sea-ice/ice-shelf/Ocean Model (FESOM) with a horizontal resolution of 2-10 km on the AS and BS continental shelves. The model is forced with 6-hourly atmospheric data from the National Centers for Environmental Prediction Climate Forecast System Reanalysis (NCEP-CFSR) for the period 1979-1988. The model results show bottom temperatures in the AS and BS close to observations, and basal melt rates of AS and BS ice shelves consistent with other observation-based estimates. Using several independent virtual passive tracers to identify pathways of the glacial melt, we find that the melt water from the ice shelves in the AS flows towards the Ross Ice Shelf front. After 10 years of simulation, about half of the melt water in the Ross Sea originates from the Getz Ice Shelf. Further, we investigate the sensitivity of the melt water transport into the RS associated with the strength of the basal melt water flux. When this flux is increased by 30%, the transport of glacial melt into the RS more than doubles, supporting the idea that the basal melting of AS and BS ice shelves is one of the main reasons for the freshening of the RS continental shelf.

  16. Calving and rifting on McMurdo Ice Shelf, Antarctica

    NASA Astrophysics Data System (ADS)

    Banwell, Alison; Willis, Ian; MacAyeal, Douglas; Goodsell, Becky; Macdonald, Grant; Mayer, David; Powell, Anthony

    2017-04-01

    On March 2, 2016, a series of small en échelon tabular icebergs calved from the seaward front of the McMurdo Ice Shelf, and a previously inactive ice-shelf rift suddenly widened and propagated by 3km, 25% of its previous length, setting the stage for future calving of an approximately 8 km2 segment of the ice shelf. Immediately prior to these events, perhaps within 24 hours, all remaining land-fast sea ice buttressing the ice shelf broke up and drifted away. The events were witnessed by time-lapse cameras at nearby Scott Base giving a unique opportunity to document the timing of the events and conditions leading up to them. In addition, the events can be put into context using nearby seismic and automatic weather station data, satellite imagery, and ground observation made 8 months later. Although the observations cannot be used definitively to identify the exact trigger of calving and rifting, the seismic records reveal superimposed sets of long-period (>10 s) sea swell, propagating into McMurdo Sound from distant storm sources in the Pacific Ocean, at the time of, and immediately prior to, the break-up of sea ice and associated ice shelf calving and rifting. This conspicuous presence suggests that sea swell should be studied further as a proximal cause of ice-shelf calving and rifting; if proven, it suggests that ice-shelf stability is tele-connected with far-field storm conditions at lower latitudes, adding a global dimension to the physics of potential ice-shelf breakup.

  17. Sensitivity of Totten Glacier Ice Shelf extent and grounding line to oceanic forcing

    NASA Astrophysics Data System (ADS)

    Pelle, T.; Morlighem, M.; Choi, Y.

    2017-12-01

    Totten Glacier is a major outlet glacier of the East Antarctic Ice Sheet and has been shown to be vulnerable to ocean-induced melt in both its past and present states. The intrusion of warm, circumpolar deep water beneath the Totten Glacier Ice Shelf (TGIS) has been observed to accelerate ice shelf thinning and promote iceberg calving, a primary mechanism of mass discharge from Totten. As such, accurately simulating TGIS's ice front dynamics is crucial to the predictive capabilities of ice sheet models in this region. Here, we study the TGIS using the Ice Sheet System Model (ISSM) and test the applicability of three calving laws: Crevasse Formation calving, Eigen calving, and Tensile Stress calving. We simulate the evolution of Totten Glacier through 2100 under enhanced oceanic forcing in order to investigate both future changes in ice front dynamics and possible thresholds of instability. In addition, we artificially retreat Totten's ice front position and allow the model to proceed dynamically in order to analyze the response of the glacier to calving events. Our analyses show that Tensile Stress calving most accurately reproduces Totten Glacier's observed ice front position. Furthermore, unstable grounding line retreat is projected when Totten is simulated under stronger oceanic thermal forcing scenarios and when the calving front is significantly retreated.

  18. Rapid glass sponge expansion after climate-induced Antarctic ice shelf collapse.

    PubMed

    Fillinger, Laura; Janussen, Dorte; Lundälv, Tomas; Richter, Claudio

    2013-07-22

    Over 30% of the Antarctic continental shelf is permanently covered by floating ice shelves, providing aphotic conditions for a depauperate fauna sustained by laterally advected food. In much of the remaining Antarctic shallows (<300 m depth), seasonal sea-ice melting allows a patchy primary production supporting rich megabenthic communities dominated by glass sponges (Porifera, Hexactinellida). The catastrophic collapse of ice shelves due to rapid regional warming along the Antarctic Peninsula in recent decades has exposed over 23,000 km(2) of seafloor to local primary production. The response of the benthos to this unprecedented flux of food is, however, still unknown. In 2007, 12 years after disintegration of the Larsen A ice shelf, a first biological survey interpreted the presence of hexactinellids as remnants of a former under-ice fauna with deep-sea characteristics. Four years later, we revisited the original transect, finding 2- and 3-fold increases in glass sponge biomass and abundance, respectively, after only two favorable growth periods. Our findings, along with other long-term studies, suggest that Antarctic hexactinellids, locked in arrested growth for decades, may undergo boom-and-bust cycles, allowing them to quickly colonize new habitats. The cues triggering growth and reproduction in Antarctic glass sponges remain enigmatic. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Tidal influences on a future evolution of the Filchner-Ronne Ice Shelf cavity in the Weddell Sea, Antarctica

    NASA Astrophysics Data System (ADS)

    Mueller, Rachael D.; Hattermann, Tore; Howard, Susan L.; Padman, Laurie

    2018-02-01

    Recent modeling studies of ocean circulation in the southern Weddell Sea, Antarctica, project an increase over this century of ocean heat into the cavity beneath Filchner-Ronne Ice Shelf (FRIS). This increase in ocean heat would lead to more basal melting and a modification of the FRIS ice draft. The corresponding change in cavity shape will affect advective pathways and the spatial distribution of tidal currents, which play important roles in basal melting under FRIS. These feedbacks between heat flux, basal melting, and tides will affect the evolution of FRIS under the influence of a changing climate. We explore these feedbacks with a three-dimensional ocean model of the southern Weddell Sea that is forced by thermodynamic exchange beneath the ice shelf and tides along the open boundaries. Our results show regionally dependent feedbacks that, in some areas, substantially modify the melt rates near the grounding lines of buttressed ice streams that flow into FRIS. These feedbacks are introduced by variations in meltwater production as well as the circulation of this meltwater within the FRIS cavity; they are influenced locally by sensitivity of tidal currents to water column thickness (wct) and non-locally by changes in circulation pathways that transport an integrated history of mixing and meltwater entrainment along flow paths. Our results highlight the importance of including explicit tidal forcing in models of future mass loss from FRIS and from the adjacent grounded ice sheet as individual ice-stream grounding zones experience different responses to warming of the ocean inflow.

  20. Impacts of the Larsen-C Ice Shelf calving event

    NASA Astrophysics Data System (ADS)

    Hogg, Anna E.; Gudmundsson, G. Hilmar

    2017-08-01

    A giant iceberg has calved off the Larsen-C Ice Shelf, the largest remaining ice shelf on the Antarctic Peninsula, reducing its total area by ~10%. Whilst calving events are a natural phenomenon and thus not necessarily indicative of changing environmental conditions, such events can impact ice-shelf stability.

  1. Anomalously-dense firn in an ice-shelf channel revealed by wide-angle radar

    NASA Astrophysics Data System (ADS)

    Drews, R.; Brown, J.; Matsuoka, K.; Witrant, E.; Philippe, M.; Hubbard, B.; Pattyn, F.

    2015-10-01

    The thickness of ice shelves, a basic parameter for mass balance estimates, is typically inferred using hydrostatic equilibrium for which knowledge of the depth-averaged density is essential. The densification from snow to ice depends on a number of local factors (e.g. temperature and surface mass balance) causing spatial and temporal variations in density-depth profiles. However, direct measurements of firn density are sparse, requiring substantial logistical effort. Here, we infer density from radio-wave propagation speed using ground-based wide-angle radar datasets (10 MHz) collected at five sites on Roi Baudouin Ice Shelf (RBIS), Dronning Maud Land, Antarctica. Using a novel algorithm including traveltime inversion and raytracing with a prescribed shape of the depth-density relationship, we show that the depth to internal reflectors, the local ice thickness and depth-averaged densities can reliably be reconstructed. For the particular case of an ice-shelf channel, where ice thickness and surface slope change substantially over a few kilometers, the radar data suggests that firn inside the channel is about 5 % denser than outside the channel. Although this density difference is at the detection limit of the radar, it is consistent with a similar density anomaly reconstructed from optical televiewing, which reveals 10 % denser firn inside compared to outside the channel. The denser firn in the ice-shelf channel should be accounted for when using the hydrostatic ice thickness for determining basal melt rates. The radar method presented here is robust and can easily be adapted to different radar frequencies and data-acquisition geometries.

  2. Ross Ice Shelf

    Atmospheric Science Data Center

    2013-04-16

    ... Larger Image According to researchers funded by the National Science Foundation, several penguin colonies near the Ross Ice Shelf, ... Hut Point Peninsula. For a press release from the National Science Foundation containing additional details and MISR imagery ...

  3. New surface-based observations of the environment beneath Pine Island Glacier ice shelf

    NASA Astrophysics Data System (ADS)

    Bindschadler, Robert; Truffer, Martin; Stanton, Tim; Peters, Leo; Shortt, Mike; Pomraning, Dale; Stockel, Jim; Shaw, Bill; Steinarson, Einar; Anandakrishnan, Sridhar; Wilson, Kiya; Holland, David; Bushuk, Mitch; Behar, Alberto; Cocaud, Cedric; Stam, Christina

    2013-04-01

    Extensive surface, sub-shelf cavity and seabed observations of the Pine Island Glacier (PIG) ice shelf environment were collected by a surface field team during the 2012-13 austral summer. Three sites aligned along a central, flow-aligned surface valley were occupied for about one week each during which two hot-water holes were drilled at each site. In one hole, a mast-mounted set of oceanographic sensors recorded water temperature, current and salinity in the few meters immediately below the ice-shelf bottom. In the other hole, a similarly instrumented profiler was deployed to make quasi-daily vertical transects of the sub-shelf cavity by rising and sinking along a cable suspended in the cavity. These instruments are already returning data that provide direct rates of heat and momentum transfer in the boundary layer, basal melt rates and the temporal variation of water movements on daily and longer time scales. Shallow cores of the sea bed and a photographic record of the drill holes, ocean cavity and sea bed were also collected at two of the drill sites. The geophysics program was spatially much broader and consisted of phase-sensitive radars to measure basal melt rates and active seismic instrumentation to explore the character of the sea bed. Continuous profiling between the drill sites established the previously discovered ("Autosub") sea bed ridge is asymmetric with a steeper downstream face. Spot measurements upstream of the drill sites were reached by helicopter and refined the shape of the ocean cavity where extensive melt rates were measured. The field work is concluding as this abstract is being submitted, so most results are not yet available, but will be included in the presentation as first results emerge.

  4. Oceans Melting Greenland (OMG): 2017 Observations and the First Look at Yearly Ocean/Ice Changes

    NASA Astrophysics Data System (ADS)

    Willis, J. K.; Rignot, E. J.; Fenty, I. G.; Khazendar, A.; Moller, D.; Tinto, K. J.; Morison, J.; Schodlok, M.; Thompson, A. F.; Fukumori, I.; Holland, D.; Forsberg, R.; Jakobsson, M.; Dinardo, S. J.

    2017-12-01

    Oceans Melting Greenland (OMG) is an airborne NASA Mission to investigate the role of the oceans in ice loss around the margins of the Greenland Ice Sheet. A five-year campaign, OMG will directly measure ocean warming and glacier retreat around all of Greenland. By relating these two, we will explore one of the most pressing open questions about how climate change drives sea level rise: How quickly are the warming oceans melting the Greenland Ice Sheet from the edges? This year, OMG collected its second set of both elevation maps of marine terminating glaciers and ocean temperature and salinity profiles around all of Greenland. This give us our first look at year-to-year changes in both ice volume at the margins, as well as the volume and extent of warm, salty Atlantic water present on the continental shelf. In addition, we will compare recent data in east Greenland waters with historical ocean observations that suggest a long-term warming trend there. Finally, we will briefly review the multi-beam sonar and airborne gravity campaigns—both of which were completed last year—and the dramatic improvement they had on bathymetry maps over the continental shelf around Greenland.

  5. The internal structure of the Brunt Ice Shelf, Antarctica from ice-penetrating radar

    NASA Astrophysics Data System (ADS)

    King, Edward; De Rydt, Jan; Gudmundsson, Hilmar

    2016-04-01

    The Brunt Ice Shelf is a small feature on the Coats Land Coast of the Weddell Sea, Antarctica. It is unusual among Antarctic ice shelves because the ice crossing the grounding line from the ice sheet retains no structural integrity, so the ice shelf comprises icebergs of continental ice cemented together by sea ice, with the whole blanketed by in-situ snowfall. The size and distribution of the icebergs is governed by the thickness profile along the grounding line. Where bedrock troughs discharge thick ice to the ice shelf, the icebergs are large and remain close together with little intervening sea ice. Where bedrock ridges mean the ice crossing the grounding line is thin, the icebergs are small and widely-scattered with large areas of sea ice between them. To better understand the internal structure of the Brunt Ice Shelf and how this might affect the flow dynamics we conducted ice-penetrating radar surveys during December 2015 and January 2016. Three different ground-based radar systems were used, operating at centre frequencies of 400, 50 and 10 MHz respectively. The 400 MHz system gave detailed firn structure and accumulation profiles as well as time-lapse profiles of the active propagation of a crevasse. The 50 MHz system provided intermediate-level detail of iceberg distribution and thickness as well as information on the degree of salt water infiltration into the accumulating snow pack. The 10 MHz system used a high-power transmitter in an attempt to measure ice thickness beneath salt-impregnated ice. In this poster we will present example data from each of the three radar systems which will demonstrate the variability of the internal structure of the ice shelf. We will also present preliminary correlations between the internal structure and the surface topography from satellite data.

  6. Observed platelet ice distributions in Antarctic sea ice: An index for ocean-ice shelf heat flux

    NASA Astrophysics Data System (ADS)

    Langhorne, P. J.; Hughes, K. G.; Gough, A. J.; Smith, I. J.; Williams, M. J. M.; Robinson, N. J.; Stevens, C. L.; Rack, W.; Price, D.; Leonard, G. H.; Mahoney, A. R.; Haas, C.; Haskell, T. G.

    2015-07-01

    Antarctic sea ice that has been affected by supercooled Ice Shelf Water (ISW) has a unique crystallographic structure and is called platelet ice. In this paper we synthesize platelet ice observations to construct a continent-wide map of the winter presence of ISW at the ocean surface. The observations demonstrate that, in some regions of coastal Antarctica, supercooled ISW drives a negative oceanic heat flux of -30 Wm-2 that persists for several months during winter, significantly affecting sea ice thickness. In other regions, particularly where the thinning of ice shelves is believed to be greatest, platelet ice is not observed. Our new data set includes the longest ice-ocean record for Antarctica, which dates back to 1902 near the McMurdo Ice Shelf. These historical data indicate that, over the past 100 years, any change in the volume of very cold surface outflow from this ice shelf is less than the uncertainties in the measurements.

  7. Victoria Land, Ross Sea, and Ross Ice Shelf, Antarctica

    NASA Technical Reports Server (NTRS)

    2002-01-01

    On December 19, 2001, MODIS acquired data that produced this image of Antarctica's Victoria Land, Ross Ice Shelf, and the Ross Sea. The coastline that runs up and down along the left side of the image denotes where Victoria Land (left) meets the Ross Ice Shelf (right). The Ross Ice Shelf is the world's largest floating body of ice, approximately the same size as France. Credit: Jacques Descloitres, MODIS Land Rapid Response Team, NASA/GSFC

  8. Bathymetric and oceanic controls on Abbot Ice Shelf thickness and stability

    NASA Astrophysics Data System (ADS)

    Cochran, J. R.; Jacobs, S. S.; Tinto, K. J.; Bell, R. E.

    2014-05-01

    Ice shelves play key roles in stabilizing Antarctica's ice sheets, maintaining its high albedo and returning freshwater to the Southern Ocean. Improved data sets of ice shelf draft and underlying bathymetry are important for assessing ocean-ice interactions and modeling ice response to climate change. The long, narrow Abbot Ice Shelf south of Thurston Island produces a large volume of meltwater, but is close to being in overall mass balance. Here we invert NASA Operation IceBridge (OIB) airborne gravity data over the Abbot region to obtain sub-ice bathymetry, and combine OIB elevation and ice thickness measurements to estimate ice draft. A series of asymmetric fault-bounded basins formed during rifting of Zealandia from Antarctica underlie the Abbot Ice Shelf west of 94° W and the Cosgrove Ice Shelf to the south. Sub-ice water column depths along OIB flight lines are sufficiently deep to allow warm deep and thermocline waters observed near the western Abbot ice front to circulate through much of the ice shelf cavity. An average ice shelf draft of ~200 m, 15% less than the Bedmap2 compilation, coincides with the summer transition between the ocean surface mixed layer and upper thermocline. Thick ice streams feeding the Abbot cross relatively stable grounding lines and are rapidly thinned by the warmest inflow. While the ice shelf is presently in equilibrium, the overall correspondence between draft distribution and thermocline depth indicates sensitivity to changes in characteristics of the ocean surface and deep waters.

  9. Core drilling through the ross ice shelf (antarctica) confirmed Basal freezing.

    PubMed

    Zotikov, I A; Zagorodnov, V S; Raikovsky, J V

    1980-03-28

    New techniques that have been used to obtain a continuous ice core through the whole 416-meter thickness of the Ross Ice Shelf at Camp J-9 have demonstrated that the bottom 6 meters of the ice shelf consists of sea ice. The rate of basal freezing that is forming this ice is estimated by different methods to be 2 centimeters of ice per year. The sea ice is composed of large vertical crystals, which form the waffle-like lower boundary of the shelf. A distinct alignment of the crystals throughout the sea ice layer suggests the presence of persistent long-term currents beneath the ice shelf.

  10. Under-ice melt ponds in the Arctic

    NASA Astrophysics Data System (ADS)

    Smith, Naomi; Flocco, Daniela; Feltham, Daniel

    2017-04-01

    In the summer months, melt water from the surface of the Arctic sea ice can percolate down through the ice and flow out of its base. This water is relatively warm and fresh compared to the ocean water beneath it, and so it floats between the ice and the oceanic mixed layer, forming pools of melt water called under-ice melt ponds. Double diffusion can lead to the formation of a sheet of ice, which is called a false bottom, at the interface between the fresh water and the ocean. These false bottoms isolate under-ice melt ponds from the ocean below, trapping the fresh water against the sea ice. These ponds and false bottoms have been estimated to cover between 5 and 40% of the base of the sea ice. [Notz et al. Journal of Geophysical Research 2003] We have developed a one-dimensional thermodynamic model of sea ice underlain by an under-ice melt pond and false bottom. Not only has this allowed us to simulate the evolution of under-ice melt ponds over time, identifying an alternative outcome than previously observed in the field, but sensitivity studies have helped us to estimate the impact that these pools of fresh water have on the mass-balance sea ice. We have also found evidence of a possible positive feedback cycle whereby increasingly less ice growth is seen due to the presence of under-ice melt ponds as the Arctic warms. Since the rate of basal ablation is affected by these phenomena, their presence alters the salt and freshwater fluxes from the sea ice into the ocean. We have coupled our under-ice melt pond model to a simple model of the oceanic mixed layer to determine how this affects mixed layer properties such as temperature, salinity, and depth. In turn, this changes the oceanic forcing reaching the sea ice.

  11. Edge of Ice Shelf

    NASA Image and Video Library

    2017-12-08

    Edge of an ice shelf in Adelaide Island, off the Antarctic Peninsula. Credit: NASA / Maria-Jose Vinas NASA's Operation IceBridge is an airborne science mission to study Earth's polar ice. For more information about IceBridge, visit: www.nasa.gov/icebridge NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  12. Design of the MISMIP+, ISOMIP+, and MISOMIP ice-sheet, ocean, and coupled ice sheet-ocean intercomparison projects

    NASA Astrophysics Data System (ADS)

    Asay-Davis, Xylar; Cornford, Stephen; Martin, Daniel; Gudmundsson, Hilmar; Holland, David; Holland, Denise

    2015-04-01

    The MISMIP and MISMIP3D marine ice sheet model intercomparison exercises have become popular benchmarks, and several modeling groups have used them to show how their models compare to both analytical results and other models. Similarly, the ISOMIP (Ice Shelf-Ocean Model Intercomparison Project) experiments have acted as a proving ground for ocean models with sub-ice-shelf cavities.As coupled ice sheet-ocean models become available, an updated set of benchmark experiments is needed. To this end, we propose sequel experiments, MISMIP+ and ISOMIP+, with an end goal of coupling the two in a third intercomparison exercise, MISOMIP (the Marine Ice Sheet-Ocean Model Intercomparison Project). Like MISMIP3D, the MISMIP+ experiments take place in an idealized, three-dimensional setting and compare full 3D (Stokes) and reduced, hydrostatic models. Unlike the earlier exercises, the primary focus will be the response of models to sub-shelf melting. The chosen configuration features an ice shelf that experiences substantial lateral shear and buttresses the upstream ice, and so is well suited to melting experiments. Differences between the steady states of each model are minor compared to the response to melt-rate perturbations, reflecting typical real-world applications where parameters are chosen so that the initial states of all models tend to match observations. The three ISOMIP+ experiments have been designed to to make use of the same bedrock topography as MISMIP+ and using ice-shelf geometries from MISMIP+ results produced by the BISICLES ice-sheet model. The first two experiments use static ice-shelf geometries to simulate the evolution of ocean dynamics and resulting melt rates to a quasi-steady state when far-field forcing changes in either from cold to warm or from warm to cold states. The third experiment prescribes 200 years of dynamic ice-shelf geometry (with both retreating and advancing ice) based on a BISICLES simulation along with similar flips between warm and

  13. Subaqueous melting in Zachariae Isstrom, Northeast Greenland combining observations and an ocean general circulation model

    NASA Astrophysics Data System (ADS)

    Cai, C.; Rignot, E. J.; Menemenlis, D.; Nakayama, Y.

    2016-12-01

    Zachariae Isstrom, a major ice stream in northeast Greenland, has lost its entire ice shelf in the past decade. Here, we study the evolution of subaqueous melting of its floating section during the transition. Observations show that the rate of ice shelf melting has doubled during 1999-2010 and is twice higher than that maintaining the ice shelf in a steady state. The ice shelf melt rate depends on the thermal forcing from warm, saline, subsurface ocean water of Atlantic origin (AW), and on the mixing of AW with fresh buoyant subglacial discharge. Subglacial discharge has increased as result of enhanced ice sheet runoff driven by warmer air temperature; ocean thermal forcing has increased due to enhanced advection of AW. Here, we employ the Massachusetts Institute of Technology general circulation model (MITgcm) at a high spatial resolution to simulate the melting process in 3-D. The model is constrained by ice thickness from mass conservation, oceanic bathymetry inverted from gravity data by NASA Operation IceBridge and NASA Ocean Melting Greenland missions, in-situ ocean temperature/salinity data, ocean tide height and current from the Arctic Ocean Tidal Inverse Model (AOTIM-5) and reconstructed seasonal subglacial discharge from the Regional Atmospheric Climate Model (RACMO2). We compare the results in winter (small runoff but not negligible) with summer (maximum runoff) at two different stages with (prior to 2012) and without the ice shelf (after 2012) to subaqueous melt rates deduced from remote sensing observations. We show that ice melting by the ocean has increased by one order of magnitude as a result of the transition from ice shelf terminating to near-vertical calving front terminating. We also find that subglacial discharge has a significant impact on ice shelf melt rates in Greenland. We conclude on the impact of ocean warming and air temperature warming on the melting regime of the ice margin of Zachariae Isstrom, Greenland. This work was performed

  14. Duality of Ross Ice Shelf systems: crustal boundary, ice sheet processes and ocean circulation from ROSETTA-Ice surveys

    NASA Astrophysics Data System (ADS)

    Tinto, K. J.; Siddoway, C. S.; Padman, L.; Fricker, H. A.; Das, I.; Porter, D. F.; Springer, S. R.; Siegfried, M. R.; Caratori Tontini, F.; Bell, R. E.

    2017-12-01

    Bathymetry beneath Antarctic ice shelves controls sub-ice-shelf ocean circulation and has a major influence on the stability and dynamics of the ice sheets. Beneath the Ross Ice Shelf, the sea-floor bathymetry is a product of both tectonics and glacial processes, and is influenced by the processes it controls. New aerogeophysical surveys have revealed a fundamental crustal boundary bisecting the Ross Ice Shelf and imparting a duality to the Ross Ice Shelf systems, encompassing bathymetry, ocean circulation and ice flow history. The ROSETTA-Ice surveys were designed to increase the resolution of Ross Ice Shelf mapping from the 55 km RIGGS survey of the 1970s to a 10 km survey grid, flown over three years from New York Air National Guard LC130s. Radar, LiDAR, gravity and magnetic instruments provide a top to bottom profile of the ice shelf and the underlying seafloor, with 20 km resolution achieved in the first two survey seasons (2015 and 2016). ALAMO ocean-profiling floats deployed in the 2016 season are measuring the temperature and salinity of water entering and exiting the sub-ice water cavity. A significant east-west contrast in the character of the magnetic and gravity fields reveals that the lithospheric boundary between East and West Antarctica exists not at the base of the Transantarctic Mountains (TAM), as previously thought, but 300 km further east. The newly-identified boundary spatially coincides with the southward extension of the Central High, a rib of shallow basement identified in the Ross Sea. The East Antarctic side is characterized by lower amplitude magnetic anomalies and denser TAM-type lithosphere compared to the West Antarctic side. The crustal structure imparts a fundamental duality on the overlying ice and ocean, with deeper bathymetry and thinner ice on the East Antarctic side creating a larger sub-ice cavity for ocean circulation. The West Antarctic side has a shallower seabed, more restricted ocean access and a more complex history of

  15. Basal melt beneath whillans ice stream and ice streams A and C

    NASA Technical Reports Server (NTRS)

    Joughin, I.; Teluezyk, S.; Engelhardt, H.

    2002-01-01

    We have used a recently derived map of the velocity of Whillans Ice Stream and Ice Streams A and C to help estimate basal melt. Temperature was modeled with a simple vertical advection-diffusion equation, 'tuned' to match temperature profiles. We find that most of the melt occurs beneath the tributaries where larger basal shear stresses and thicker ice favors greater melt (e.g., 10-20 mm/yr). The occurrence of basal freezing is predicted beneath much of the ice plains of Ice Stream C and Whillans Ice Stream. Modelled melt rates for when Ice Stream C was active suggest there was just enough melt water generated in its tributaries to balance basal freezing on its ice plain. Net basal melt for Whillans Ice Stream is positive due to smaller basal temperature gradients. Modelled temperatures on Whillans Ice Stream, however, were constrained by a single temperature profile at UpB. Basal temperature gradients for Whillans B1 and Ice Stream A may have conditions more similar to those beneath Ice Streams C and D, in which case, there may not be sufficient melt to sustain motion. This would be consistent with the steady deceleration of Whillans stream over the last few decades.

  16. Airborne thickness and freeboard measurements over the McMurdo Ice Shelf, Antarctica, and implications for ice density

    NASA Astrophysics Data System (ADS)

    Rack, Wolfgang; Haas, Christian; Langhorne, Pat J.

    2013-11-01

    We present airborne measurements to investigate the thickness of the western McMurdo Ice Shelf in the western Ross Sea, Antarctica. Because of basal accretion of marine ice and brine intrusions conventional radar systems are limited in detecting the ice thickness in this area. In November 2009, we used a helicopter-borne laser and electromagnetic induction sounder (EM bird) to measure several thickness and freeboard profiles across the ice shelf. The maximum electromagnetically detectable ice thickness was about 55 m. Assuming hydrostatic equilibrium, the simultaneous measurement of ice freeboard and thickness was used to derive bulk ice densities ranging from 800 to 975 kg m-3. Densities higher than those of pure ice can be largely explained by the abundance of sediments accumulated at the surface and present within the ice shelf, and are likely to a smaller extent related to the overestimation of ice thickness by the electromagnetic induction measurement related to the presence of a subice platelet layer. The equivalent thickness of debris at a density of 2800 kg m-3 is found to be up to about 2 m thick. A subice platelet layer below the ice shelf, similar to what is observed in front of the ice shelf below the sea ice, is likely to exist in areas of highest thickness. The thickness and density distribution reflects a picture of areas of basal freezing and supercooled Ice Shelf Water emerging from below the central ice shelf cavity into McMurdo Sound.

  17. Chilean Tsunami Rocks the Ross Ice Shelf

    NASA Astrophysics Data System (ADS)

    Bromirski, P. D.; Gerstoft, P.; Chen, Z.; Stephen, R. A.; Diez, A.; Arcas, D.; Wiens, D.; Aster, R. C.; Nyblade, A.

    2016-12-01

    The response of the Ross Ice Shelf (RIS) to the September 16, 2015 9.3 Mb Chilean earthquake tsunami (> 75 s period) and infragravity (IG) waves (50 - 300 s period) were recorded by a broadband seismic array deployed on the RIS from November 2014 to November 2015. The array included two linear transects, one approximately orthogonal to the shelf front extending 430 km southward toward the grounding zone, and an east-west transect spanning the RIS roughly parallel to the front about 100 km south of the ice edge (https://scripps.ucsd.edu/centers/iceshelfvibes/). Signals generated by both the tsunami and IG waves were recorded at all stations on floating ice, with little ocean wave-induced energy reaching stations on grounded ice. Cross-correlation and dispersion curve analyses indicate that tsunami and IG wave-generated signals propagate across the RIS at gravity wave speeds (about 70 m/s), consistent with coupled water-ice flexural-gravity waves propagating through the ice shelf from the north. Gravity wave excitation at periods > 100 s is continuously observed during the austral winter, providing mechanical excitation of the RIS throughout the year. Horizontal displacements are typically about 3 times larger than vertical displacements, producing extensional motions that could facilitate expansion of existing fractures. The vertical and horizontal spectra in the IG band attenuate exponentially with distance from the front. Tsunami model data are used to assess variability of excitation of the RIS by long period gravity waves. Substantial variability across the RIS roughly parallel to the front is observed, likely resulting from a combination of gravity wave amplitude variability along the front, signal attenuation, incident angle of the wave forcing at the front that depends on wave generation location as well as bathymetry under and north of the shelf, and water layer and ice shelf thickness and properties.

  18. SPH non-Newtonian Model for Ice Sheet and Ice Shelf Dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tartakovsky, Alexandre M.; Pan, Wenxiao; Monaghan, Joseph J.

    2012-07-07

    We propose a new three-dimensional smoothed particle hydrodynamics (SPH) non-Newtonian model to study coupled ice sheet and ice shelf dynamics. Most existing ice sheet numerical models use a grid-based Eulerian approach, and are usually restricted to shallow ice sheet and ice shelf approximations of the momentum conservation equation. SPH, a fully Lagrangian particle method, solves the full momentum conservation equation. SPH method also allows modeling of free-surface flows, large material deformation, and material fragmentation without employing complex front-tracking schemes, and does not require re-meshing. As a result, SPH codes are highly scalable. Numerical accuracy of the proposed SPH model ismore » first verified by simulating a plane shear flow with a free surface and the propagation of a blob of ice along a horizontal surface. Next, the SPH model is used to investigate the grounding line dynamics of ice sheet/shelf. The steady position of the grounding line, obtained from our SPH simulations, is in good agreement with laboratory observations for a wide range of bedrock slopes, ice-to-fluid density ratios, and flux. We examine the effect of non-Newtonian behavior of ice on the grounding line dynamics. The non-Newtonian constitutive model is based on Glen's law for a creeping flow of a polycrystalline ice. Finally, we investigate the effect of a bedrock geometry on a steady-state position of the grounding line.« less

  19. Sea ice and oceanic processes on the Ross Sea continental shelf

    NASA Astrophysics Data System (ADS)

    Jacobs, S. S.; Comiso, J. C.

    1989-12-01

    We have investigated the spatial and temporal variability of Antarctic sea ice concentrations on the Ross Sea continental shelf, in relation to oceanic and atmospheric forcing. Sea ice data were derived from Nimbus 7 scanning multichannel microwave radiometer (SMMR) brightness temperatures from 1979-1986. Ice cover over the shelf was persistently lower than above the adjacent deep ocean, averaging 86% during winter with little month-to-month or interannual variability. The large spring Ross Sea polynya on the western shelf results in a longer period of summer insolation, greater surface layer heat storage, and later ice formation in that region the following autumn. Newly identified Pennell and Ross Passage polynyas near the continental shelf break appear to be maintained in part by divergence above a submarine bank and by upwelling of warmer water near the slope front. Warmer subsurface water enters the shelf region year-round and will retard ice growth and enhance heat flux to the atmosphere when entrained in the strong winter vertical circulation. Temperatures at 125-m depth on a mooring near the Ross Ice Shelf during July 1984 averaged 0.15°C above freezing, sufficient to support a vertical heat flux above 100 W/m2. Monthly average subsurface ocean temperatures along the Ross Ice Shelf lag the air temperature cycle and begin to rise several weeks before spring ice breakout. The coarse SMMR resolution and dynamic ice shelf coastlines can compromise the use of microwave sea ice data near continental boundaries.

  20. Ice-Shelf Flexure and Tidal Forcing of Bindschadler Ice Stream, West Antarctica

    NASA Technical Reports Server (NTRS)

    Walker, Ryan T.; Parizek, Bryron R.; Alley, Richard B.; Brunt, Kelly M.; Anandakrishnan, Sridhar

    2014-01-01

    Viscoelastic models of ice-shelf flexure and ice-stream velocity perturbations are combined into a single efficient flowline model to study tidal forcing of grounded ice. The magnitude and timing of icestream response to tidally driven changes in hydrostatic pressure and/or basal drag are found to depend significantly on bed rheology, with only a perfectly plastic bed allowing instantaneous velocity response at the grounding line. The model can reasonably reproduce GPS observations near the grounding zone of Bindschadler Ice Stream (formerly Ice Stream D) on semidiurnal time scales; however, other forcings such as tidally driven ice-shelf slope transverse to the flowline and flexurally driven till deformation must also be considered if diurnal motion is to be matched

  1. Glider observations of the Dotson Ice Shelf outflow and its connection to the Amundsen Sea Polynya

    NASA Astrophysics Data System (ADS)

    Miles, T. N.; Schofield, O.; Lee, S. H.; Yager, P. L.; Ha, H. K.

    2016-02-01

    The Amundsen Sea is one of the most productive polynyas in the Antarctic per unit area and is undergoing rapid changes including a reduction in sea ice duration, thinning ice sheets, retreat of glaciers and the potential collapse of the Thwaites Glacier in Pine Island Bay. A growing body of research has indicated that these changes are altering the water mass properties and associated biogeochemistry within the polynya. Unfortunately difficulties in accessing the remote location have greatly limited the amount of in situ data that has been collected. In this study data from a Teledyne-Web Slocum glider was used to supplement ship-based sampling along the Dotson Ice Shelf (DIS). This autonomous underwater vehicle revealed a detailed view of a meltwater laden outflow from below the western flank of the DIS. Circumpolar Deep Water intruding onto the shelf drives glacial melt and the supply of macronutrients that, along with ample light, supports the large phytoplankton blooms in the Amundsen Sea Polynya. Less well understood is the source of micronutrients, such as iron, necessary to support this bloom to the central polynya where chlorophyll concentrations are highest. This outflow region showed decreasing optical backscatter with proximity to the bed indicating that particulate matter was sourced from the overlying glacier rather than resuspended sediment. This result suggests that particulate iron, and potentially phytoplankton primary productivity, is intrinsically linked to the magnitude and duration of sub-glacial melt from Circumpolar Deep Water intrusions onto the shelf.

  2. Glacier Acceleration and Thinning after Ice Shelf Collapse in the Larsen B Embayment, Antarctica

    NASA Technical Reports Server (NTRS)

    Scambos, T. A.; Bohlander, J. A.; Shuman, C. A.; Skvarca, P.

    2004-01-01

    Ice velocities derived from five Landsat 7 images acquired between January 2000 and February 2003 show a two- to six-fold increase in centerline speed of four glaciers flowing into the now-collapsed section of the Larsen B Ice Shelf. Satellite laser altimetry from ICEsat indicates the surface of Hektoria Glacier lowered by up to 38 +/- 6 m a six-month period beginning one year after the break-up in March 2002. Smaller elevation losses are observed for Crane and Jorum glaciers over a later 5-month period. Two glaciers south of the collapse area, Flask and Leppard, show little change in speed or elevation. Seasonal variations in speed preceding the large post-collapse velocity increases suggest that both summer melt percolation and changes in the stress field due to shelf removal play a major role in glacier dynamics.

  3. Geometric controls of the flexural gravity waves on the Ross Ice Shelf

    NASA Astrophysics Data System (ADS)

    Sergienko, O. V.

    2017-12-01

    Long-period ocean waves, formed locally or at distant sources, can reach sub-ice-shelf cavities and excite coupled motion in the cavity and the ice shelf - flexural gravity waves. Three-dimensional numerical simulations of the flexural gravity waves on the Ross Ice Shelf show that propagation of these waves is strongly controlled by the geometry of the system - the cavity shape, its water-column thickness and the ice-shelf thickness. The results of numerical simulations demonstrate that propagation of the waves is spatially organized in beams, whose orientation is determined by the direction of the of the open ocean waves incident on the ice-shelf front. As a result, depending on the beams orientation, parts of the Ross Ice Shelf experience significantly larger flexural stresses compared to other parts where the flexural gravity beams do not propagate. Very long-period waves can propagate farther away from the ice-shelf front exciting flexural stresses in the vicinity of the grounding line.

  4. Melting beneath Greenland outlet glaciers and ice streams

    NASA Astrophysics Data System (ADS)

    Alexander, David; Perrette, Mahé; Beckmann, Johanna

    2015-04-01

    Basal melting of fast-flowing Greenland outlet glaciers and ice streams due to frictional heating at the ice-bed interface contributes significantly to total glacier mass balance and subglacial meltwater flux, yet modelling this basal melt process in Greenland has received minimal research attention. A one-dimensional dynamic ice-flow model is calibrated to the present day longitudinal profiles of 10 major Greenland outlet glaciers and ice streams (including the Jakobshavn Isbrae, Petermann Glacier and Helheim Glacier) and is validated against published ice flow and surface elevation measurements. Along each longitudinal profile, basal melt is calculated as a function of ice flow velocity and basal shear stress. The basal shear stress is dependent on the effective pressure (difference between ice overburden pressure and water pressure), basal roughness and a sliding parametrization. Model output indicates that where outlet glaciers and ice streams terminate into the ocean with either a small floating ice tongue or no floating tongue whatsoever, the proportion of basal melt to total melt (surface, basal and submarine melt) is 5-10% (e.g. Jakobshavn Isbrae; Daugaard-Jensen Glacier). This proportion is, however, negligible where larger ice tongues lose mass mostly by submarine melt (~1%; e.g. Nioghalvfjerdsfjorden Glacier). Modelled basal melt is highest immediately upvalley of the grounding line, with contributions typically up to 20-40% of the total melt for slippery beds and up to 30-70% for resistant beds. Additionally, modelled grounding line and calving front migration inland for all outlet glaciers and ice streams of hundreds of metres to several kilometres occurs. Including basal melt due to frictional heating in outlet glacier and ice stream models is important for more accurately modelling mass balance and subglacial meltwater flux, and therefore, more accurately modelling outlet glacier and ice stream dynamics and responses to future climate change.

  5. Investigation of land ice-ocean interaction with a fully coupled ice-ocean model: 2. Sensitivity to external forcings

    NASA Astrophysics Data System (ADS)

    Goldberg, D. N.; Little, C. M.; Sergienko, O. V.; Gnanadesikan, A.; Hallberg, R.; Oppenheimer, M.

    2012-06-01

    A coupled ice stream-ice shelf-ocean cavity model is used to assess the sensitivity of the coupled system to far-field ocean temperatures, varying from 0.0 to 1.8°C, as well as sensitivity to the parameters controlling grounded ice flow. A response to warming is seen in grounding line retreat and grounded ice loss that cannot be inferred from the response of integrated melt rates alone. This is due to concentrated thinning at the ice shelf lateral margin, and to processes that contribute to this thinning. Parameters controlling the flow of grounded ice have a strong influence on the response to sub-ice shelf melting, but this influence is not seen until several years after an initial perturbation in temperatures. The simulated melt rates are on the order of that observed for Pine Island Glacier in the 1990s. However, retreat rates are much slower, possibly due to unrepresented bedrock features.

  6. Seismic Excitation of the Ross Ice Shelf by Whillans Ice Stream Stick-Slip Events

    NASA Astrophysics Data System (ADS)

    Wiens, D.; Pratt, M. J.; Aster, R. C.; Nyblade, A.; Bromirski, P. D.; Stephen, R. A.; Gerstoft, P.; Diez, A.; Cai, C.; Anthony, R. E.; Shore, P.

    2015-12-01

    Rapid variations in the flow rate of upstream glaciers and ice streams may cause significant deformation of ice shelves. The Whillans Ice Stream (WIS) represents an extreme example of rapid variations in velocity, with motions near the grounding line consisting almost entirely of once or twice-daily stick-slip events with a displacement of up to 0.7 m (Winberry et al, 2014). Here we report observations of compressional waves from the WIS slip events propagating hundreds of kilometers across the Ross Ice Shelf (RIS) detected by broadband seismographs deployed on the ice shelf. The WIS slip events consist of rapid basal slip concentrated at three high friction regions (often termed sticky-spots or asperities) within a period of about 25 minutes (Pratt et al, 2014). Compressional displacement pulses from the second and third sticky spots are detected across the entire RIS up to about 600 km away from the source. The largest pulse results from the third sticky spot, located along the northwestern grounding line of the WIS. Propagation velocities across the ice shelf are significantly slower than the P wave velocity in ice, as the long period displacement pulse is also sensitive to velocities of the water and sediments beneath the ice shelf. Particle motions are, to the limit of resolution, entirely within the horizontal plane and roughly radial with respect to the WIS sticky-spots, but show significant complexity, presumably due to differences in ice velocity, thickness, and the thickness of water and sediment beneath. Study of this phenomenon should lead to greater understanding of how the ice shelf responds to sudden forcing around the periphery.

  7. STS-48 ESC Earth observation of ice pack, Antarctic Ice Shelf

    NASA Technical Reports Server (NTRS)

    1991-01-01

    STS-48 Earth observation taken aboard Discovery, Orbiter Vehicle (OV) 103, is of the breakup of pack ice along the periphery of the Antarctic Ice Shelf. Strong offshore winds, probably associated with katabatic downdrafts from the interior of the continent, are seen peeling off the edges of the ice shelf into long filaments of sea ice, icebergs, bergy bits, and growlers to flow northward into the South Atlantic Ocean. These photos are used to study ocean wind, tide and current patterns. Similar views photographed during previous missions, when analyzed with these recent views may yield information about regional ice drift and breakup of ice packs. The image was captured using an electronic still camera (ESC), was stored on a removable hard disk or small optical disk, and was converted to a format suitable for downlink transmission. The ESC documentation was part of Development Test Objective (DTO) 648, Electronic Still Photography.

  8. Cloud screening and melt water detection over melting sea ice using AATSR/SLSTR

    NASA Astrophysics Data System (ADS)

    Istomina, Larysa; Heygster, Georg

    2014-05-01

    With the onset of melt in the Arctic Ocean, the fraction of melt water on sea ice, the melt pond fraction, increases. The consequences are: the reduced albedo of sea ice, increased transmittance of sea ice and affected heat balance of the system with more heat passing through the ice into the ocean, which facilitates further melting. The onset of melt, duration of melt season and melt pond fraction are good indicators of the climate state of the Arctic and its change. In the absence of reliable sea ice thickness retrievals in summer, melt pond fraction retrieval from satellite is in demand as input for GCM as an indicator of melt state of the sea ice. The retrieval of melt pond fraction with a moderate resolution radiometer as AATSR is, however, a non-trivial task due to a variety of subpixel surface types with very different optical properties, which give non-unique combinations if mixed. In this work this has been solved by employing additional information on the surface and air temperature of the pixel. In the current work, a concept of melt pond detection on sea ice is presented. The basis of the retrieval is the sensitivity of AATSR reflectance channels 550nm and 860nm to the amount of melt water on sea ice. The retrieval features extensive usage of a database of in situ surface albedo spectra. A tree of decisions is employed to select the feasible family of in situ spectra for the retrieval, depending on the melt stage of the surface. Reanalysis air temperature at the surface and brightness temperature measured by the satellite sensor are analyzed in order to evaluate the melting status of the surface. Case studies for FYI and MYI show plausible retrieved melt pond fractions, characteristic for both of the ice types. The developed retrieval can be used to process the historical AATSR (2002-2012) dataset, as well as for the SLSTR sensor onboard the future Sentinel-3 mission (scheduled for launch in 2015), to keep the continuity and obtain longer time sequence

  9. Investigation of land ice-ocean interaction with a fully coupled ice-ocean model: 1. Model description and behavior

    NASA Astrophysics Data System (ADS)

    Goldberg, D. N.; Little, C. M.; Sergienko, O. V.; Gnanadesikan, A.; Hallberg, R.; Oppenheimer, M.

    2012-06-01

    Antarctic ice shelves interact closely with the ocean cavities beneath them, with ice shelf geometry influencing ocean cavity circulation, and heat from the ocean driving changes in the ice shelves, as well as the grounded ice streams that feed them. We present a new coupled model of an ice stream-ice shelf-ocean system that is used to study this interaction. The model is capable of representing a moving grounding line and dynamically responding ocean circulation within the ice shelf cavity. Idealized experiments designed to investigate the response of the coupled system to instantaneous increases in ocean temperature show ice-ocean system responses on multiple timescales. Melt rates and ice shelf basal slopes near the grounding line adjust in 1-2 years, and downstream advection of the resulting ice shelf thinning takes place on decadal timescales. Retreat of the grounding line and adjustment of grounded ice takes place on a much longer timescale, and the system takes several centuries to reach a new steady state. During this slow retreat, and in the absence of either an upward-or downward-sloping bed or long-term trends in ocean heat content, the ice shelf and melt rates maintain a characteristic pattern relative to the grounding line.

  10. Subaqueous melting in Zachariae Isstrom, Northeast Greenland combining observations and an ocean general circulation model

    NASA Astrophysics Data System (ADS)

    Cai, C.; Rignot, E. J.; Menemenlis, D.

    2015-12-01

    Zachariae Isstrom, a major ice stream in northeast Greenland, has lost its entire ice shelf in the past decade. Here, we study the evolution of subaqueous melting of its floating section during the transition. Observations show that the rate of ice shelf melting has doubled during 1999-2010 and is twice higher than that maintaining the ice shelf in a state of mass equilibrium. The ice shelf melt rate depends on the thermal forcing from warm, salty, subsurface ocean water of Atlantic origin (AW), and - in contrast with Antarctic ice shelves - on the mixing of AW with fresh buoyant subglacial discharge. Subglacial discharge has increased as result of enhanced ice sheet runoff driven by warmer air temperature; ocean thermal forcing has increased due enhanced advection of AW. Here, we employ the Massassuchetts Institute of Technology general circulation model (MITgcm) at a high spatial resolution (1 m horizontal and 1 m vertical spacing near the grounding line) to simulate the melting process in 3-D. The model is constrained by ice thickness from mass conservation, oceanic bathymetry from NASA Operation IceBridge gravity data, in-situ ocean temperature/salinity data, ocean tide height and current from the Arctic Ocean Tidal Inverse Model (AOTIM-5) and subglacial discharge from output products of the Regional Atmospheric Climate Model (RACMO). We compare the results in winter (no runoff) with summer (maximum runoff) at two different stages with (prior to 2012) and without the ice shelf (after 2012) to subaqueous melt rates deduced from remote sensing observations. We show that ice melting by the ocean has increased by one order of magnitude as a result of the transition from ice shelf terminating to near-vertical calving front terminating. We also find that subglacial discharge has a significant impact on the ice shelf melt rates in Greenland. We conclude on the impact of ocean warming and air temperature warming on the melting regime of the ice margin of Zachariae

  11. Mapping Ross Ice Shelf with ROSETTA-Ice airborne laser altimetry

    NASA Astrophysics Data System (ADS)

    Becker, M. K.; Fricker, H. A.; Padman, L.; Bell, R. E.; Siegfried, M. R.; Dieck, C. C. M.

    2017-12-01

    The Ross Ocean and ice Shelf Environment and Tectonic setting Through Aerogeophysical surveys and modeling (ROSETTA-Ice) project combines airborne glaciological, geological, and oceanographic observations to enhance our understanding of the history and dynamics of the large ( 500,000 square km) Ross Ice Shelf (RIS). Here, we focus on the Light Detection And Ranging (LiDAR) data collected in 2015 and 2016. This data set represents a significant advance in resolution: Whereas the last attempt to systematically map RIS (the surface-based RIGGS program in the 1970s) was at 55 km grid spacing, the ROSETTA-Ice grid has 10-20 km line spacing and much higher along-track resolution. We discuss two different strategies for processing the raw LiDAR data: one that requires proprietary software (Riegl's RiPROCESS package), and one that employs open-source programs and libraries. With the processed elevation data, we are able to resolve fine-scale ice-shelf features such as the "rampart-moat" ice-front morphology, which has previously been observed on and modeled for icebergs. This feature is also visible in the ROSETTA-Ice shallow-ice radar data; comparing the laser data with radargrams provides insight into the processes leading to their formation. Near-surface firn state and total firn air content can also be investigated through combined analysis of laser altimetry and radar data. By performing similar analyses with data from the radar altimeter aboard CryoSat-2, we demonstrate the utility of the ROSETTA-Ice LiDAR data set in satellite validation efforts. The incorporation of the LiDAR data from the third and final field season (December 2017) will allow us to construct a DEM and an ice thickness map of RIS for the austral summers of 2015-2017. These products will be used to validate and extend observations of height changes from satellite radar and laser altimetry, as well as to update regional models of ocean circulation and ice dynamics.

  12. Ocean Observations Below Petermann Gletscher Ice Shelf, Greenland From a Cabled Observatory

    NASA Astrophysics Data System (ADS)

    Muenchow, A.; Nicholls, K. W.; Padman, L.; Washam, P.

    2016-12-01

    Petermann Gletscher in North Greenland features the second largest floating ice shelf by area in the northern hemisphere. In August of 2015 we drilled three holes through the ice shelf and deployed ocean sensors between 5 and 700 m below the glacier-ocean interface. The sensors are controlled by data loggers at the surface that also support a weather station and GPS. All data are transmitted near real-time via a satellite communication link that allowed data downloads and software uploads until February 2016. The system provided gap-free hourly data through the polar night with air temperatures dropping below -48 °C. Mean glacier speeds in winter (Nov.-Feb) were 1180±18 m/year; these values are 12±5% larger than previously reported winter speeds at this location. Hourly ocean observations revealed large bi-monthly pulses within 30 m of the glacier-ocean interface and amplitudes that exceed 1 °C in temperature and 1 psu in salinity. We posit that episodic discharge of glacial meltwater, modulated by the spring-neap tidal cycle thickens the boundary layer under the ice shelf at the location of our measurements. All data are posted at http://ows.udel.edu . A site visit is planned for August 2016 to fix communication failures, retrieve locally stored data, add sensors, and evaluate sustainability of this first cabled observatory on a floating and rapidly melting Greenland glacier.

  13. Sea ice breakup and marine melt of a retreating tidewater outlet glacier in northeast Greenland (81°N).

    PubMed

    Bendtsen, Jørgen; Mortensen, John; Lennert, Kunuk; K Ehn, Jens; Boone, Wieter; Galindo, Virginie; Hu, Yu-Bin; Dmitrenko, Igor A; Kirillov, Sergei A; Kjeldsen, Kristian K; Kristoffersen, Yngve; G Barber, David; Rysgaard, Søren

    2017-07-10

    Rising temperatures in the Arctic cause accelerated mass loss from the Greenland Ice Sheet and reduced sea ice cover. Tidewater outlet glaciers represent direct connections between glaciers and the ocean where melt rates at the ice-ocean interface are influenced by ocean temperature and circulation. However, few measurements exist near outlet glaciers from the northern coast towards the Arctic Ocean that has remained nearly permanently ice covered. Here we present hydrographic measurements along the terminus of a major retreating tidewater outlet glacier from Flade Isblink Ice Cap. We show that the region is characterized by a relatively large change of the seasonal freshwater content, corresponding to ~2 m of freshwater, and that solar heating during the short open water period results in surface layer temperatures above 1 °C. Observations of temperature and salinity supported that the outlet glacier is a floating ice shelf with near-glacial subsurface temperatures at the freezing point. Melting from the surface layer significantly influenced the ice foot morphology of the glacier terminus. Hence, melting of the tidewater outlet glacier was found to be critically dependent on the retreat of sea ice adjacent to the terminus and the duration of open water.

  14. Floating ice-algal aggregates below melting arctic sea ice.

    PubMed

    Assmy, Philipp; Ehn, Jens K; Fernández-Méndez, Mar; Hop, Haakon; Katlein, Christian; Sundfjord, Arild; Bluhm, Katrin; Daase, Malin; Engel, Anja; Fransson, Agneta; Granskog, Mats A; Hudson, Stephen R; Kristiansen, Svein; Nicolaus, Marcel; Peeken, Ilka; Renner, Angelika H H; Spreen, Gunnar; Tatarek, Agnieszka; Wiktor, Jozef

    2013-01-01

    During two consecutive cruises to the Eastern Central Arctic in late summer 2012, we observed floating algal aggregates in the melt-water layer below and between melting ice floes of first-year pack ice. The macroscopic (1-15 cm in diameter) aggregates had a mucous consistency and were dominated by typical ice-associated pennate diatoms embedded within the mucous matrix. Aggregates maintained buoyancy and accumulated just above a strong pycnocline that separated meltwater and seawater layers. We were able, for the first time, to obtain quantitative abundance and biomass estimates of these aggregates. Although their biomass and production on a square metre basis was small compared to ice-algal blooms, the floating ice-algal aggregates supported high levels of biological activity on the scale of the individual aggregate. In addition they constituted a food source for the ice-associated fauna as revealed by pigments indicative of zooplankton grazing, high abundance of naked ciliates, and ice amphipods associated with them. During the Arctic melt season, these floating aggregates likely play an important ecological role in an otherwise impoverished near-surface sea ice environment. Our findings provide important observations and measurements of a unique aggregate-based habitat during the 2012 record sea ice minimum year.

  15. Floating Ice-Algal Aggregates below Melting Arctic Sea Ice

    PubMed Central

    Assmy, Philipp; Ehn, Jens K.; Fernández-Méndez, Mar; Hop, Haakon; Katlein, Christian; Sundfjord, Arild; Bluhm, Katrin; Daase, Malin; Engel, Anja; Fransson, Agneta; Granskog, Mats A.; Hudson, Stephen R.; Kristiansen, Svein; Nicolaus, Marcel; Peeken, Ilka; Renner, Angelika H. H.; Spreen, Gunnar; Tatarek, Agnieszka; Wiktor, Jozef

    2013-01-01

    During two consecutive cruises to the Eastern Central Arctic in late summer 2012, we observed floating algal aggregates in the melt-water layer below and between melting ice floes of first-year pack ice. The macroscopic (1-15 cm in diameter) aggregates had a mucous consistency and were dominated by typical ice-associated pennate diatoms embedded within the mucous matrix. Aggregates maintained buoyancy and accumulated just above a strong pycnocline that separated meltwater and seawater layers. We were able, for the first time, to obtain quantitative abundance and biomass estimates of these aggregates. Although their biomass and production on a square metre basis was small compared to ice-algal blooms, the floating ice-algal aggregates supported high levels of biological activity on the scale of the individual aggregate. In addition they constituted a food source for the ice-associated fauna as revealed by pigments indicative of zooplankton grazing, high abundance of naked ciliates, and ice amphipods associated with them. During the Arctic melt season, these floating aggregates likely play an important ecological role in an otherwise impoverished near-surface sea ice environment. Our findings provide important observations and measurements of a unique aggregate-based habitat during the 2012 record sea ice minimum year. PMID:24204642

  16. The far reach of ice-shelf thinning in Antarctica

    NASA Astrophysics Data System (ADS)

    Reese, R.; Gudmundsson, G. H.; Levermann, A.; Winkelmann, R.

    2018-01-01

    Floating ice shelves, which fringe most of Antarctica's coastline, regulate ice flow into the Southern Ocean1-3. Their thinning4-7 or disintegration8,9 can cause upstream acceleration of grounded ice and raise global sea levels. So far the effect has not been quantified in a comprehensive and spatially explicit manner. Here, using a finite-element model, we diagnose the immediate, continent-wide flux response to different spatial patterns of ice-shelf mass loss. We show that highly localized ice-shelf thinning can reach across the entire shelf and accelerate ice flow in regions far from the initial perturbation. As an example, this `tele-buttressing' enhances outflow from Bindschadler Ice Stream in response to thinning near Ross Island more than 900 km away. We further find that the integrated flux response across all grounding lines is highly dependent on the location of imposed changes: the strongest response is caused not only near ice streams and ice rises, but also by thinning, for instance, well-within the Filchner-Ronne and Ross Ice Shelves. The most critical regions in all major ice shelves are often located in regions easily accessible to the intrusion of warm ocean waters10-12, stressing Antarctica's vulnerability to changes in its surrounding ocean.

  17. Ice Shelves and Landfast Ice on the Antarctic Perimeter: Revised Scope of Work

    NASA Technical Reports Server (NTRS)

    Abdalati, Waleed (Technical Monitor); Scambos, Ted

    2004-01-01

    Ice shelves respond quickly and profoundly to a warming climate. Within a decade after mean summertime temperature reaches approximately 0 deg C and persistent melt ponding is observed, a rapid retreat and disintegration begins. This link was documented for ice shelves in the Antarctic Peninsula region (the Larsen 'A', B', and Wilkins Ice shelves) in the results of a previous grant under ADRO-1. Modeling of shelf ice flow and the effects of meltwater indicated that melt ponding accelerates shelf breakup by increasing fracturing. The ADRO-2 funding (topic of this report) supported further inquiry into the evolution of ice shelves under warming conditions, and the post-breakup effects on their feeder glaciers. Also, this grant considered fast ice and sea ice characteristics, to the extent that they provide information regarding shelf stability. A major component of this work was in the form of NSIDC image data support and in situ sea ice research on the Aurora Australis 'ARISE' cruise of September 9 2003 through October 28 2003.

  18. Multiscale Models of Melting Arctic Sea Ice

    DTIC Science & Technology

    2013-09-30

    September 29, 2013 LONG-TERM GOALS Sea ice reflectance or albedo , a key parameter in climate modeling, is primarily determined by melt pond...and ice floe configurations. Ice - albedo feedback has played a major role in the recent declines of the summer Arctic sea ice pack. However...understanding the evolution of melt ponds and sea ice albedo remains a significant challenge to improving climate models. Our research is focused on

  19. Polynya dynamics and associated atmospheric forcing at the Ronne Ice Shelf

    NASA Astrophysics Data System (ADS)

    Ebner, Lars; Heinemann, Günther

    2014-05-01

    The Ronne Ice Shelf is known as one of the most active regions of polynya developments around the Antarctic continent. Low temperatures are prevailing throughout the whole year, particularly in winter. It is generally recognized that polynya formations are primarily forced by offshore winds and secondarily by ocean currents. Many authors have addressed this issue previously at the Ross Ice Shelf and Adélie Coast and connected polynya dynamics to strong katabatic surge events. Such investigations of atmospheric dynamics and simultaneous polynya occurrence are still severely underrepresented for the southwestern part of the Weddell Sea and especially for the Ronne Ice Shelf. Due to the very flat terrain gradients of the ice shelf katabatic winds are of minor importance in that area. Other atmospheric processes must therefore play a crucial role for polynya developments at the Ronne Ice Shelf. High-resolution simulations have been carried out for the Weddell Sea region using the non-hydrostatic NWP model COSMO from the German Meteorological Service (DWD). For the austral autumn and winter (March to August) 2008 daily forecast simulations were conducted with the consideration of daily sea-ice coverage deduced from the passive microwave system AMSR-E. These simulations are used to analyze the synoptic and mesoscale atmospheric dynamics of the Weddell Sea region and find linkages to polynya occurrence at the Ronne Ice Shelf. For that reason, the relation between the surface wind speed, the synoptic pressure gradient in the free atmosphere and polynya area is investigated. Seven significant polynya events are identified for the simulation period, three in the autumn and four in the winter season. It can be shown that in almost all cases synoptic cyclones are the primary polynya forcing systems. In most cases the timely interaction of several passing cyclones in the northern and central Weddell Sea leads to maintenance of a strong synoptic pressure gradient above the

  20. Chacterization of Teleseismic Earthquakes Observed on an Ice Shelf

    NASA Astrophysics Data System (ADS)

    Baker, M. G.; Aster, R. C.; Anthony, R. E.; Wiens, D.; Nyblade, A.; Bromirski, P. D.; Stephen, R. A.; Gerstoft, P.

    2016-12-01

    Broadband seismographs deployed atop large tabular icebergs and ice shelves record a rich superposition of atmospheric, oceanic, and solid earth signals. We characterize these signals, including body and surface wave arrivals from approximately 200 global earthquakes, using a 34-station broadband array spanning the Ross Ice Shelf, Antarctica. Teleseismic earthquake arrivals are essential for constructing models of crustal and upper mantle structure, and observations on the ice shelf are key to resolving the structure of the underlying West Antarctic Rift System. To test the plausibility of passive imaging in this unique environment, we examine seasonal and spatial dependence of signal-to-noise ratios of body wave arrivals and the impact of ice shelf dynamics on surface wave dispersion. We also note unusual phase mechanics arising from the floating platform geometry.

  1. Ice-Shelf Tidal Flexure and Subglacial Pressure Variations

    NASA Technical Reports Server (NTRS)

    Walker, Ryan T.; Parizek, Byron R.; Alley, Richard B.; Anandakrishnan, Sridhar; Riverman, Kiya L.; Christianson, Knut

    2013-01-01

    We develop a model of an ice shelf-ice stream system as a viscoelastic beam partially supported by an elastic foundation. When bed rock near the grounding line acts as a fulcrum, leverage from the ice shelf dropping at low tide can cause significant (approx 1 cm) uplift in the first few kilometers of grounded ice.This uplift and the corresponding depression at high tide lead to basal pressure variations of sufficient magnitude to influence subglacial hydrology.Tidal flexure may thus affect basal lubrication, sediment flow, and till strength, all of which are significant factors in ice-stream dynamics and grounding-line stability. Under certain circumstances, our results suggest the possibility of seawater being drawn into the subglacial water system. The presence of sea water beneath grounded ice would significantly change the radar reflectivity of the grounding zone and complicate the interpretation of grounded versus floating ice based on ice-penetrating radar observations.

  2. Pressure melting and ice skating

    NASA Astrophysics Data System (ADS)

    Colbeck, S. C.

    1995-10-01

    Pressure melting cannot be responsible for the low friction of ice. The pressure needed to reach the melting temperature is above the compressive failure stress and, if it did occur, high squeeze losses would result in very thin films. Pure liquid water cannot coexist with ice much below -20 °C at any pressure and friction does not increase suddenly in that range. If frictional heating and pressure melting contribute equally, the length of the wetted contact could not exceed 15 μm at a speed of 5 m/s, which seems much too short. If pressure melting is the dominant process, the water films are less than 0.08 μm thick because of the high pressures.

  3. Evidence for an ice shelf covering the central Arctic Ocean during the penultimate glaciation

    USGS Publications Warehouse

    Jakobsson, Martin; Nilsson, Johan; Anderson, Leif G.; Backman, Jan; Bjork, Goran; Cronin, Thomas M.; Kirchner, Nina; Koshurnikov, Andrey; Mayer, Larry; Noormets, Riko; O'Regan, Matthew; Stranne, Christian; Ananiev, Roman; Macho, Natalia Barrientos; Cherniykh, Dennis; Coxall, Helen; Eriksson, Bjorn; Floden, Tom; Gemery, Laura; Gustafsson, Orjan; Jerram, Kevin; Johansson, Carina; Khortov, Alexey; Mohammad, Rezwan; Semiletov, Igor

    2016-01-01

    The hypothesis of a km-thick ice shelf covering the entire Arctic Ocean during peak glacial conditions was proposed nearly half a century ago. Floating ice shelves preserve few direct traces after their disappearance, making reconstructions difficult. Seafloor imprints of ice shelves should, however, exist where ice grounded along their flow paths. Here we present new evidence of ice-shelf groundings on bathymetric highs in the central Arctic Ocean, resurrecting the concept of an ice shelf extending over the entire central Arctic Ocean during at least one previous ice age. New and previously mapped glacial landforms together reveal flow of a spatially coherent, in some regions >1-km thick, central Arctic Ocean ice shelf dated to marine isotope stage 6 (~140 ka). Bathymetric highs were likely critical in the ice-shelf development by acting as pinning points where stabilizing ice rises formed, thereby providing sufficient back stress to allow ice shelf thickening.

  4. Evidence for an ice shelf covering the central Arctic Ocean during the penultimate glaciation

    PubMed Central

    Jakobsson, Martin; Nilsson, Johan; Anderson, Leif; Backman, Jan; Björk, Göran; Cronin, Thomas M.; Kirchner, Nina; Koshurnikov, Andrey; Mayer, Larry; Noormets, Riko; O'Regan, Matthew; Stranne, Christian; Ananiev, Roman; Barrientos Macho, Natalia; Cherniykh, Denis; Coxall, Helen; Eriksson, Björn; Flodén, Tom; Gemery, Laura; Gustafsson, Örjan; Jerram, Kevin; Johansson, Carina; Khortov, Alexey; Mohammad, Rezwan; Semiletov, Igor

    2016-01-01

    The hypothesis of a km-thick ice shelf covering the entire Arctic Ocean during peak glacial conditions was proposed nearly half a century ago. Floating ice shelves preserve few direct traces after their disappearance, making reconstructions difficult. Seafloor imprints of ice shelves should, however, exist where ice grounded along their flow paths. Here we present new evidence of ice-shelf groundings on bathymetric highs in the central Arctic Ocean, resurrecting the concept of an ice shelf extending over the entire central Arctic Ocean during at least one previous ice age. New and previously mapped glacial landforms together reveal flow of a spatially coherent, in some regions >1-km thick, central Arctic Ocean ice shelf dated to marine isotope stage 6 (∼140 ka). Bathymetric highs were likely critical in the ice-shelf development by acting as pinning points where stabilizing ice rises formed, thereby providing sufficient back stress to allow ice shelf thickening. PMID:26778247

  5. Neoglacial Antarctic sea-ice expansion driven by mid-Holocene retreat of the Ross Ice Shelf.

    NASA Astrophysics Data System (ADS)

    Bendle, J. A.; Newton, K.; Mckay, R. M.; Crosta, X.; Etourneau, J.; Anya, A. B.; Seki, O.; Golledge, N. R.; Bertler, N. A. N.; Willmott, V.; Schouten, S.; Riesselman, C. R.; Masse, G.; Dunbar, R. B.

    2017-12-01

    Recent decades have seen expanding Antarctic sea-ice coverage, coeval with thinning West Antarctic Ice Sheet (WAIS) ice shelves and the rapid freshening of surface and bottom waters along the Antarctic margin. The mid-Holocene Neoglacial transition represents the last comparable baseline shift in sea-ice behaviour. The drivers and feedbacks involved in both the recent and Holocene events are poorly understood and characterised by large proxy-model mismatches. We present new records of compound specific fatty acid isotope analyses (δ2H-FA), highly-branched isoprenoid alkenes (HBIs) TEX86L temperatures, grain-size, mass accumulations rates (MARs) and image analyses from a 171m Holocene sediment sequence from Site U1357 (IODP leg 318). In combination with published records we reconstruct Holocene changes in glacial meltwater, sedimentary inputs and sea-ice. The early Holocene (11 to 10 ka) is characterised by large fluctuations in inputs of deglacial meltwater and sediments and seismic evidence of downlapping material from the south, suggesting a dominating influence from glacial retreat of the local outlet glaciers. From 10 to 8 ka there is decreasing meltwater inputs, an onlapping drift and advection of material from the east. After ca. 8 ka positively correlated δ2H-FA and MARs infer that pulses of glacial melt correlate to stronger easterly currents, driving erosion of material from upstream banks and that the Ross Ice Shelf (RIS) becomes a major influence. A large mid-Holocene meltwater pulse (preceded by warming TEX86L temperatures) is evident between ca. 6 to 4.5 ka, culminating in a rapid and permanent increase in sea-ice from 4.5 ka. This is coeval with cosmogenic nuclide evidence for a rapid thinning of the Antarctic ice sheet during the mid-Holocene (Hein et al., 2016). We suggest this represents a final major pulse of deglaciation from the Ross Ice Shelf, which initiates the Neoglacial, driving cool surface waters along the coast and greater sea-ice

  6. Ross Ice Shelf airstream driven by polar vortex cyclone

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2012-07-01

    The powerful air and ocean currents that flow in and above the Southern Ocean, circling in the Southern Hemisphere's high latitudes, form a barrier to mixing between Antarctica and the rest of the planet. Particularly during the austral winter, strong westerly winds isolate the Antarctic continent from heat, energy, and mass exchange, bolstering the scale of the annual polar ozone depletion and driving the continent's record-breaking low temperatures. Pushing through this wall of high winds, the Ross Ice Shelf airstream (RAS) is responsible for a sizable amount of mass and energy exchange from the Antarctic inland areas to lower latitudes. Sitting due south of New Zealand, the roughly 470,000-square-kilometer Ross Ice Shelf is the continent's largest ice shelf and a hub of activity for Antarctic research. A highly variable lower atmospheric air current, RAS draws air from the inland Antarctic Plateau over the Ross Ice Shelf and past the Ross Sea. Drawing on modeled wind patterns for 2001-2005, Seefeldt and Cassano identify the primary drivers of RAS.

  7. Rapid drawdown of Antarctica's Wordie Ice Shelf glaciers in response to ENSO/Southern Annular Mode-driven warming in the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Walker, C. C.; Gardner, A. S.

    2017-10-01

    Here we investigate the largest acceleration in ice flow across all of Antarctica between ∼2008 InSAR and 2014 Landsat velocity mappings. This occurred in glaciers that used to feed into the Wordie Ice Shelf on the west Antarctic Peninsula, which rapidly disintegrated in ∼1989. Between 2008 and 2014, these glaciers experienced at least a threefold increase in surface elevation drawdown relative to the 2002-2008 time period. After ∼20 yrs of relative stability, it is unlikely that the ice shelf collapse played a role in the large response. Instead, we find that the rapid acceleration and surface drawdown is linked to enhanced melting at the ice-ocean boundary, attributable to changes in winds driven by global atmospheric circulation patterns, namely the El Niño-Southern Oscillation (ENSO) and Southern Annular Mode (SAM), linking changes in grounded ice to atmospheric-driven ocean warming.

  8. Cumulates, Dykes and Pressure Solution in the Ice-Salt Mantle of Europa: Geological Consequences of Pressure Dependent Liquid Compositions and Volume Changes During Ice-Salt Melting Reactions.

    NASA Astrophysics Data System (ADS)

    Day, S.; Asphaug, E.; Bruesch, L.

    2002-12-01

    Water-salt analogue experiments used to investigate cumulate processes in silicate magmas, along with observations of sea ice and ice shelf behaviour, indicate that crystal-melt separation in water-salt systems is a rapid and efficient process even on scales of millimetres and minutes. Squeezing-out of residual melts by matrix compaction is also predicted to be rapid on geological timescales. We predict that the ice-salt mantle of Europa is likely to be strongly stratified, with a layered structure predictable from density and phase relationships between ice polymorphs, aqueous saline solutions and crystalline salts such as hydrated magnesium sulphates (determined experimentally by, inter alia, Hogenboom et al). A surface layer of water ice flotation cumulate will be separated from denser salt cumulates by a cotectic horizon. This cotectic horizon will be both the site of subsequent lowest-temperature melting and a level of neutral buoyancy for the saline melts produced. Initial melting will be in a narrow depth range owing to increasing melting temperature with decreasing pressure: the phase relations argue against direct melt-though to the surface unless vesiculation occurs. Overpressuring of dense melts due to volume expansion on cotectic melting is predicted to lead to lateral dyke emplacement and extension above the dyke tips. Once the liquid leaves the cotectic, melting of water ice will involve negative volume change. Impact-generated melts will drain downwards through the fractured zones beneath crater floors. A feature in the complex crater Mannan'an, with elliptical ring fractures around a conical depression with a central pit, bears a close resemblance to Icelandic glacier collapse cauldrons produced by subglacial eruptions. Other structures resembling Icelandic cauldrons occur along Europan banded structures, while resurgence of ice rubble within collapse structures may produce certain types of chaos region. More general contraction of the ice mantle

  9. Results from a lab study of melting sea ice

    NASA Astrophysics Data System (ADS)

    Wiese, M.; Griewank, P.; Notz, D.

    2012-04-01

    Sea-ice melting is a complex process which is not fully understood yet. In order to study sea-ice melt in detail we perform lab experiments in an approximately 2x0.7x1.2 m large tank in a cold room. We grow sea ice with different salinities at least 10 cm thick. Then we let the ice melt at different air temperatures and oceanic heat fluxes. During the melt period, we measure the evolution of ice thickness, internal temperature, salinity and surface temperature. We will present results from roughly five months of experiments. Topics will include the influence of bulk salinity on melt rates and the surface temperature. The effects of flushing on the salinity evolution and detailed thermal profiles will also be included. To investigate these processes we focus on the energy budget and the salinity evolution. These topics are linked since the thermodynamic properties of sea ice (heat capacity, heat conductivity and latent heat of fusion) are very sensitive to salinity variations. For example the heat capacity of sea ice increases greatly as the temperature approaches the melting point. This increase results in non-linear temperature profiles and enhances heat conduction into the ice. The salinity evolution during the growth phase has been investigated and measured in multiple studies over the last decades. In contrast there are no detailed lab measurements of melting ice available to quantify the effects of flushing melt water and ponding. This is partially due to the fact that the heterogeneity of melting sea ice makes it much more difficult to measure representative values.

  10. Flexural-gravity Wave Attenuation in a Thick Ice Shelf

    NASA Astrophysics Data System (ADS)

    Stephen, R. A.; Bromirski, P. D.; Gerstoft, P.; Chen, Z.; Wiens, D.; Aster, R. C.; Nyblade, A.

    2016-12-01

    A thirty-four station broadband seismic array was deployed on the Ross Ice Shelf, Antarctica from November 2014 to November 2017. Analyses indicate that phase speeds of infra-gravity wave and tsunami excitation in the 0.003 to 0.02 Hz band are 70 m/s, corresponding to the low frequency limit of flexural-gravity waves. Median spectral amplitudes in this band decay exponentially with distance from the shelf edge in a manner consistent with intrinsic attenuation. Seismic Q is typically 7-9, with an RMS amplitude decay of 0.04-0.05dB/km and an e-folding distance of 175-220 km. Amplitudes do not appear to drop crossing crevasse fields. Vertical and horizontal acceleration levels at stations on the floating ice shelf are 50 dB higher than those on grounded ice. Horizontal accelerations are about 15 dB higher than vertical accelerations. Median spectral levels at 0.003 Hz are within 6 dB for stations from 2 to 430 km from the shelf edge. In contrast, the levels drop by 90 dB at 0.02 Hz. Ocean gravity wave excitation has been proposed as a mechanism that can weaken ice shelves and potentially trigger disintegration events. These measurements indicate that the propensity for shelf weakening and disintegration decays exponentially with distance from the ice front for gravity waves in the 0.003 to 0.02Hz band.

  11. Numerical modelling and data assimilation of the Larsen B ice shelf, Antarctic Peninsula.

    PubMed

    Vieli, Andreas; Payne, Antony J; Du, Zhijun; Shepherd, Andrew

    2006-07-15

    In this study, the flow and rheology of pre-collapse Larsen B ice shelf are investigated by using a combination of flow modelling and data assimilation. Observed shelf velocities from satellite interferometry are used to constrain an ice shelf model by using a data assimilation technique based on the control method. In particular, the ice rheology field and the velocities at the inland shelf boundary are simultaneously optimized to get a modelled flow and stress field that is consistent with the observed flow. The application to the Larsen B ice shelf shows that a strong weakening of the ice in the shear zones, mostly along the margins, is necessary to fit the observed shelf flow. This pattern of bands with weak ice is a very robust feature of the inversion, whereas the ice rheology within the main shelf body is found to be not well constrained. This suggests that these weak zones play a major role in the control of the flow of the Larsen B ice shelf and may be the key to understanding the observed pre-collapse thinning and acceleration of Larsen B. Regarding the sensitivity of the stress field to rheology, the consistency of the model with the observed flow seems crucial for any further analysis such as the application of fracture mechanics or perturbation model experiments.

  12. Improving Our Understanding of Antarctic Sea Ice with NASA's Operation IceBridge and the Upcoming ICESat-2 Mission

    NASA Technical Reports Server (NTRS)

    Petty, Alek A.; Markus, Thorsten; Kurtz, Nathan T.

    2017-01-01

    Antarctic sea ice is a crucial component of the global climate system. Rapid sea ice production regimes around Antarctica feed the lower branch of the Southern Ocean overturning circulation through intense brine rejection and the formation of Antarctic Bottom Water (e.g., Orsi et al. 1999; Jacobs 2004), while the northward transport and subsequent melt of Antarctic sea ice drives the upper branch of the overturning circulation through freshwater input (Abernathy et al. 2016). Wind-driven trends in Antarctic sea ice (Holland Kwok 2012) have likely increased the transport of freshwater away from the Antarctic coastline, significantly altering the salinity distribution of the Southern Ocean (Haumann et al. 2016). Conversely, weaker sea ice production and the lack of shelf water formation over the Amundsen and Bellingshausen shelf seas promote intrusion of warm Circumpolar Deep Water onto the continental shelf and the ocean-driven melting of several ice shelves fringing the West Antarctic Ice Sheet (e.g., Jacobs et al. 2011; Pritchard et al. 2012; Dutrieux et al. 2014). Sea ice conditions around Antarctica are also increasingly considered an important factor impacting local atmospheric conditions and the surface melting of Antarctic ice shelves (e.g., Scambos et al. 2017). Sea ice formation around Antarctica is responsive to the strong regional variability in atmospheric forcing present around Antarctica, driving this bimodal variability in the behavior and properties of the underlying shelf seas (e.g., Petty et al. 2012; Petty et al. 2014).

  13. Patterns of variability in steady- and non steady-state Ross Ice Shelf flow

    NASA Astrophysics Data System (ADS)

    Campbell, A. J.; Hulbe, C. L.; Scambos, T. A.; Klinger, M. J.; Lee, C. K.

    2016-12-01

    Ice shelves are gateways through which climate change can be transmitted from the ocean or atmosphere to a grounded ice sheet. It is thus important to separate patterns of ice shelf change driven internally (from the ice sheet) and patterns driven externally (by the ocean or atmosphere) so that modern observations can be viewed in an appropriate context. Here, we focus on the Ross Ice Shelf (RIS), a major component of the West Antarctic Ice Sheet system and a feature known to experience variable ice flux from tributary ice streams and glaciers, for example, ice stream stagnation and glacier surges. We perturb a model of the Ross Ice Shelf with periodic influx variations, ice rise and ice plain grounding events, and iceberg calving in order to generate transients in the ice shelf flow and thickness. Characteristic patterns associated with those perturbations are identified using empirical orthogonal functions (EOFs). The leading EOFs reveal shelf-wide pattern of response to local perturbations that can be interpreted in terms of coupled mass and momentum balance. For example, speed changes on Byrd Glacier cause both thinning and thickening in a broad region that extends to Roosevelt Island. We calculate decay times at various locations for various perturbations and find that mutli-decadal to century time scales are typical. Unique identification of responses to particular forcings may thus be difficlult to achieve and flow divergence cannot be assumed to be constant when interpreting observed changes in ice thickness. In reality, perturbations to the ice shelf do not occur individually, rather the ice shelf contains a history of boundary perturbations. To explore the degree individual perturbations are seperable from their ensemble, EOFs from individual events are combined in pairs and compared against experiments with the same periodic perturbations pairs. Residuals between these EOFs reveal the degree interaction between between disctinct perturbations.

  14. Antarctic ice shelf thickness from CryoSat-2 radar altimetry

    NASA Astrophysics Data System (ADS)

    Chuter, Stephen; Bamber, Jonathan

    2016-04-01

    The Antarctic ice shelves provide buttressing to the inland grounded ice sheet, and therefore play a controlling role in regulating ice dynamics and mass imbalance. Accurate knowledge of ice shelf thickness is essential for input-output method mass balance calculations, sub-ice shelf ocean models and buttressing parameterisations in ice sheet models. Ice shelf thickness has previously been inferred from satellite altimetry elevation measurements using the assumption of hydrostatic equilibrium, as direct measurements of ice thickness do not provide the spatial coverage necessary for these applications. The sensor limitations of previous radar altimeters have led to poor data coverage and a lack of accuracy, particularly the grounding zone where a break in slope exists. We present a new ice shelf thickness dataset using four years (2011-2014) of CryoSat-2 elevation measurements, with its SARIn dual antennae mode of operation alleviating the issues affecting previous sensors. These improvements and the dense across track spacing of the satellite has resulted in ˜92% coverage of the ice shelves, with substantial improvements, for example, of over 50% across the Venable and Totten Ice Shelves in comparison to the previous dataset. Significant improvements in coverage and accuracy are also seen south of 81.5° for the Ross and Filchner-Ronne Ice Shelves. Validation of the surface elevation measurements, used to derive ice thickness, against NASA ICESat laser altimetry data shows a mean bias of less than 1 m (equivalent to less than 9 m in ice thickness) and a fourfold decrease in standard deviation in comparison to the previous continental dataset. Importantly, the most substantial improvements are found in the grounding zone. Validation of the derived thickness data has been carried out using multiple Radio Echo Sounding (RES) campaigns across the continent. Over the Amery ice shelf, where extensive RES measurements exist, the mean difference between the datasets is 3

  15. Physical basis for a thick ice shelf in the Arctic Basin during the penultimate glacial maximum

    NASA Astrophysics Data System (ADS)

    Gasson, E.; DeConto, R.; Pollard, D.; Clark, C.

    2017-12-01

    A thick ice shelf covering the Arctic Ocean during glacial stages was discussed in a number of publications in the 1970s. Although this hypothesis has received intermittent attention, the emergence of new geophysical evidence for ice grounding in water depths of up to 1 km in the central Arctic Basin has renewed interest into the physical plausibility and significance of an Arctic ice shelf. Various ice shelf configurations have been proposed, from an ice shelf restricted to the Amerasian Basin (the `minimum model') to a complete ice shelf cover in the Arctic. Attempts to simulate an Arctic ice shelf have been limited. Here we use a hybrid ice sheet / shelf model that has been widely applied to the Antarctic ice sheet to explore the potential for thick ice shelves forming in the Arctic Basin. We use a climate forcing appropriate for MIS6, the penultimate glacial maximum. We perform a number of experiments testing different ice sheet / shelf configurations and compare the model results with ice grounding locations and inferred flow directions. Finally, we comment on the potential significance of an Arctic ice shelf to the global glacial climate system.

  16. The anomalously high melting temperature of bilayer ice.

    PubMed

    Kastelowitz, Noah; Johnston, Jessica C; Molinero, Valeria

    2010-03-28

    Confinement of water usually depresses its melting temperature. Here we use molecular dynamics simulations to determine the liquid-crystal equilibrium temperature for water confined between parallel hydrophobic or mildly hydrophilic plates as a function of the distance between the surfaces. We find that bilayer ice, an ice polymorph in which the local environment of each water molecule strongly departs from the most stable tetrahedral structure, has the highest melting temperature (T(m)) of the series of l-layer ices. The melting temperature of bilayer ice is not only unusually high compared to the other confined ices, but also above the melting point of bulk hexagonal ice. Recent force microscopy experiments of water confined between graphite and a tungsten tip reveal the formation of ice at room temperature [K. B. Jinesh and J. W. M. Frenken, Phys. Rev. Lett. 101, 036101 (2008)]. Our results suggest that bilayer ice, for which we compute a T(m) as high as 310 K in hydrophobic confinement, is the crystal formed in those experiments.

  17. Insights into Spatial Sensitivities of Ice Mass Response to Environmental Change from the SeaRISE Ice Sheet Modeling Project I: Antarctica

    NASA Technical Reports Server (NTRS)

    Nowicki, Sophie; Bindschadler, Robert A.; Abe-Ouchi, Ayako; Aschwanden, Andy; Bueler, Ed; Choi, Hyengu; Fastook, Jim; Granzow, Glen; Greve, Ralf; Gutowski, Gail; hide

    2013-01-01

    Atmospheric, oceanic, and subglacial forcing scenarios from the Sea-level Response to Ice Sheet Evolution (SeaRISE) project are applied to six three-dimensional thermomechanical ice-sheet models to assess Antarctic ice sheet sensitivity over a 500 year timescale and to inform future modeling and field studies. Results indicate (i) growth with warming, except within low-latitude basins (where inland thickening is outpaced by marginal thinning); (ii) mass loss with enhanced sliding (with basins dominated by high driving stresses affected more than basins with low-surface-slope streaming ice); and (iii) mass loss with enhanced ice shelf melting (with changes in West Antarctica dominating the signal due to its marine setting and extensive ice shelves; cf. minimal impact in the Terre Adelie, George V, Oates, and Victoria Land region of East Antarctica). Ice loss due to dynamic changes associated with enhanced sliding and/or sub-shelf melting exceeds the gain due to increased precipitation. Furthermore, differences in results between and within basins as well as the controlling impact of sub-shelf melting on ice dynamics highlight the need for improved understanding of basal conditions, grounding-zone processes, ocean-ice interactions, and the numerical representation of all three.

  18. Impact of sea-ice melt on dimethyl sulfide (sulfoniopropionate) inventories in surface waters of Marguerite Bay, West Antarctic Peninsula.

    PubMed

    Stefels, Jacqueline; van Leeuwe, Maria A; Jones, Elizabeth M; Meredith, Michael P; Venables, Hugh J; Webb, Alison L; Henley, Sian F

    2018-06-28

    The Southern Ocean is a hotspot of the climate-relevant organic sulfur compound dimethyl sulfide (DMS). Spatial and temporal variability in DMS concentration is higher than in any other oceanic region, especially in the marginal ice zone. During a one-week expedition across the continental shelf of the West Antarctic Peninsula (WAP), from the shelf break into Marguerite Bay, in January 2015, spatial heterogeneity of DMS and its precursor dimethyl sulfoniopropionate (DMSP) was studied and linked with environmental conditions, including sea-ice melt events. Concentrations of sulfur compounds, particulate organic carbon (POC) and chlorophyll a in the surface waters varied by a factor of 5-6 over the entire transect. DMS and DMSP concentrations were an order of magnitude higher than currently inferred in climatologies for the WAP region. Particulate DMSP concentrations were correlated most strongly with POC and the abundance of haptophyte algae within the phytoplankton community, which, in turn, was linked with sea-ice melt. The strong sea-ice signal in the distribution of DMS(P) implies that DMS(P) production is likely to decrease with ongoing reductions in sea-ice cover along the WAP. This has implications for feedback processes on the region's climate system.This article is part of the theme issue 'The marine system of the West Antarctic Peninsula: status and strategy for progress in a region of rapid change'. © 2018 The Author(s).

  19. NASA Science Flights Target Melting Arctic Sea Ice

    NASA Image and Video Library

    2017-12-08

    This summer, with sea ice across the Arctic Ocean shrinking to below-average levels, a NASA airborne survey of polar ice just completed its first flights. Its target: aquamarine pools of melt water on the ice surface that may be accelerating the overall sea ice retreat. NASA’s Operation IceBridge completed the first research flight of its new 2016 Arctic summer campaign on July 13. The science flights, which continue through July 25, are collecting data on sea ice in a year following a record-warm winter in the Arctic. Read more: go.nasa.gov/29T6mxc Caption: A large pool of melt water over sea ice, as seen from an Operation IceBridge flight over the Beaufort Sea on July 14, 2016. During this summer campaign, IceBridge will map the extent, frequency and depth of melt ponds like these to help scientists forecast the Arctic sea ice yearly minimum extent in September. Credit: NASA/Operation IceBridge

  20. Sea ice and oceanic processes on the Ross Sea continental shelf

    NASA Technical Reports Server (NTRS)

    Jacobs, S. S.; Comiso, J. C.

    1989-01-01

    The spatial and temporal variability of Antarctic sea ice concentrations on the Ross Sea continental shelf have been investigated in relation to oceanic and atmospheric forcing. Sea ice data were derived from Nimbus 7 scanning multichannel microwave radiometer (SMMR) brightness temperatures from 1979-1986. Ice cover over the shelf was persistently lower than above the adjacent deep ocean, averaging 86 percent during winter with little month-to-month of interannual variability. The large spring Ross Sea polynya on the western shelf results in a longer period of summer insolation, greater surface layer heat storage, and later ice formation in that region the following autumn.

  1. Under-ice melt ponds and the oceanic mixed layer

    NASA Astrophysics Data System (ADS)

    Flocco, D.; Smith, N.; Feltham, D. L.

    2017-12-01

    Under-ice melt ponds are pools of freshwater beneath the Arctic sea ice that form when melt from the surface of the sea ice percolates down through the porous sea ice. Through double diffusion, a sheet of ice can form at the interface between the ocean and the under-ice melt pond, completely isolating the pond from the mixed layer below and forming a false bottom to the sea ice. As such, they insulate the sea ice from the ocean below. It has been estimated that these ponds could cover between 5 and 40 % of the base of the Arctic sea ice, and so could have a notable impact on the mass balance of the sea ice. We have developed a one-dimensional model to calculate the thickness and thermodynamic properties of a slab of sea ice, an under-ice melt pond, and a false bottom, as these layers evolve. Through carrying out sensitivity studies, we have identified a number of interesting ways that under-ice melt ponds affect the ice above them and the rate of basal ablation. We found that they result in thicker sea ice above them, due to their insulation of the ice, and have found a possible positive feedback cycle in which less ice will be gained due to under-ice melt ponds as the Arctic becomes warmer. More recently, we have coupled this model to a simple Kraus-Turner type model of the oceanic mixed layer to investigate how these ponds affect the ocean water beneath them. Through altering basal ablation rates and ice thickness, they change the fresh water and salt fluxes into the mixed layer, as well as incoming radiation. Multi-year simulations have, in particular, shown how these effects work on longer time-scales.

  2. Investigating role of ice-ocean interaction on glacier dynamic: Results from numerical modeling applied to Petermann Glacier

    NASA Astrophysics Data System (ADS)

    Nick, F. M.; van der Veen, C. J.; Vieli, A.; Pattyn, F.; Hubbard, A.; Box, J. E.

    2010-12-01

    Calving of icebergs and bottom melting from ice shelves accounts for roughly half the ice transferred from the Greenland Ice Sheet into the surrounding ocean, and virtually all of the ice loss from the Antarctic Ice Sheet. Petermann Glacier (north Greenland) with its ~17 km wide and ~ 60 km long floating ice-shelf is experiencing high rates of bottom melting. The recent partial disintegration of its shelf (in August 2010) presents a natural experiment to investigate the dynamic response of the ice sheet to its shelf retreat. We apply a numerical ice flow model using a physically-based calving criterion based on crevasse depth to investigate the contribution of processes such as shelf disintegration, bottom melting, sea ice or sikkusak disintegration and surface run off to the mass balance of Petermann Glacier and assess its stability. Our modeling study provides insights into the role of ice-ocean interaction, and on response of Petermann Glacier to its recent massive ice loss.

  3. Gradual slowdown and thickening of Fimbulisen ice shelf, East Antarctica, over the past decade

    NASA Astrophysics Data System (ADS)

    van Oostveen, Jelte; Moholdt, Geir; Kääb, Andreas; Matsuoka, Kenichi

    2017-04-01

    Fimbulisen is a fast-flowing (up to 780±10 ma-1) ice shelf in the Dronning Maud Land region of East Antarctica. Fed by one of the few major outlet glaciers along that coast, Jutulstraumen, the ice shelf has the potential to affect the stability of a considerable part of the inland ice sheet. Here we present evidence of a slowdown and thickening of Fimbulisen over the last decade. We derive ice shelf velocities using synthetic aperture radar (SAR) data from Envisat in 2008 and Radarsat-2 in 2015. We find that the speeds of Fimbulisen have decreased by 10±2 ma-1 over the last 7 years, which is confirmed with repeated GPS stake readings from 2010-2011. The slow-down of Fimbulisen coincides with a gradual ice shelf thickening that we infer from ICESat (2003-2009) and CryoSat-2 (2010-2016) altimetry. Available surface mass balance data from Fimbulisen show no clear trends over the past decades, suggesting that ice dynamics is the main explanation for the observed thickening. Considering that Fimbulisen is in a long-term phase of advance after its main tongue calved off in 1967, it is plausible that the slowdown is cyclic and related to the longitudinal expansion of the ice shelf. In support of this theory we have found several uncharted ice rumples and stationary icebergs near the eastern front of the ice shelf, indicating the presence of shallow bathymetry that might affect the ice shelf dynamics considerably in the event of ice shelf grounding or ungrounding.

  4. Simulating Ice Dynamics in the Amundsen Sea Sector

    NASA Astrophysics Data System (ADS)

    Schwans, E.; Parizek, B. R.; Morlighem, M.; Alley, R. B.; Pollard, D.; Walker, R. T.; Lin, P.; St-Laurent, P.; LaBirt, T.; Seroussi, H. L.

    2017-12-01

    Thwaites and Pine Island Glaciers (TG; PIG) exhibit patterns of dynamic retreat forced from their floating margins, and could act as gateways for destabilization of deep marine basins in the West Antarctic Ice Sheet (WAIS). Poorly constrained basal conditions can cause model predictions to diverge. Thus, there is a need for efficient simulations that account for shearing within the ice column, and include adequate basal sliding and ice-shelf melting parameterizations. To this end, UCI/NASA JPL's Ice Sheet System Model (ISSM) with coupled SSA/higher-order physics is used in the Amundsen Sea Embayment (ASE) to examine threshold behavior of TG and PIG, highlighting areas particularly vulnerable to retreat from oceanic warming and ice-shelf removal. These moving-front experiments will aid in targeting critical areas for additional data collection in ASE as well as for weighting accuracy in further melt parameterization development. Furthermore, a sub-shelf melt parameterization, resulting from Regional Ocean Modeling System (ROMS; St-Laurent et al., 2015) and coupled ISSM-Massachusetts Institute of Technology general circulation model (MITgcm; Seroussi et al., 2017) output, is incorporated and initially tested in ISSM. Data-guided experiments include variable basal conditions and ice hardness, and are also forced with constant modern climate in ISSM, providing valuable insight into i) effects of different basal friction parameterizations on ice dynamics, illustrating the importance of constraining the variable bed character beneath TG and PIG; ii) the impact of including vertical shear in ice flow models of outlet glaciers, confirming its role in capturing complex feedbacks proximal to the grounding zone; and iii) ASE's sensitivity to sub-shelf melt and ice-front retreat, possible thresholds, and how these affect ice-flow evolution.

  5. Long-term observing system for the oceanic regime of Filchner-Ronne Ice Shelf, Antarctica

    NASA Astrophysics Data System (ADS)

    Østerhus, Svein; Schröder, Michael; Hellmer, Hartmunt; Darelius, Elin; Nicholls, Keith; Makinson, Keith

    2014-05-01

    Long term observations of the flow of dense waters from their area of formation to the abyss of the World Ocean, and the return flow of warm waters, are central to climate research. For the Weddell Sea an important component of such a system entails monitoring the formation of High Salinity Shelf Water (HSSW) on the continental shelf north of Ronne Ice Front, the transformation to Ice Shelf Water (ISW) beneath the floating Filchner-Ronne ice shelf, and the flux of ISW overflowing the shelf break to the deep Weddell Sea. Equally important is the return flow of warm water toward the Filchner-Ronne Ice Shelf system. AWI, BAS and UNI/UIB operate a number of monitoring stations in the southern Weddell Sea. The systems build upon techniques and methods developed over several decades and have a proven record of high data return. Here we present plans for extending, integrating and operating the existing long term observatories to increase our knowledge of the natural variability of the ocean-ice shelf system, and to allow early identification of possible changes of regional or global importance. The S2 observatory at the Filchner sill was established in 1977 and continues to deliver the longest existing marine time series from Antarctica. As a key site for monitoring the ISW overflow S2 is a part of the global net of monitoring sites under CLIVAR Southern Ocean Observing System (SOOS) and OceanSITES. The existing S2 observatory consists of a sub-surface mooring carrying sensors for current velocity, temperature, salinity and dissolved oxygen measurements. Observations at the Filchner sill also show a seasonal inflow of relatively warm water that is able to reach Filchner Ice Front. New model results indicate that this flow of water might increase in the future and we have deployed a number of instrumented moorings in the Filchner Depression to estimate the heat flux towards the ice shelf. In 1999 we established Site 5 on Ronne Ice Shelf using a hot-water drill to access

  6. The refreezing of melt ponds on Arctic sea ice

    NASA Astrophysics Data System (ADS)

    Flocco, Daniela; Feltham, Daniel L.; Bailey, Eleanor; Schroeder, David

    2015-02-01

    The presence of melt ponds on the surface of Arctic sea ice significantly reduces its albedo, inducing a positive feedback leading to sea ice thinning. While the role of melt ponds in enhancing the summer melt of sea ice is well known, their impact on suppressing winter freezing of sea ice has, hitherto, received less attention. Melt ponds freeze by forming an ice lid at the upper surface, which insulates them from the atmosphere and traps pond water between the underlying sea ice and the ice lid. The pond water is a store of latent heat, which is released during refreezing. Until a pond freezes completely, there can be minimal ice growth at the base of the underlying sea ice. In this work, we present a model of the refreezing of a melt pond that includes the heat and salt balances in the ice lid, trapped pond, and underlying sea ice. The model uses a two-stream radiation model to account for radiative scattering at phase boundaries. Simulations and related sensitivity studies suggest that trapped pond water may survive for over a month. We focus on the role that pond salinity has on delaying the refreezing process and retarding basal sea ice growth. We estimate that for a typical sea ice pond coverage in autumn, excluding the impact of trapped ponds in models overestimates ice growth by up to 265 million km3, an overestimate of 26%.

  7. Results from ISOMIP+ and MISOMIP1, two interrelated marine ice sheet and ocean model intercomparison projects

    NASA Astrophysics Data System (ADS)

    Asay-Davis, X.; Galton-Fenzi, B.; Gwyther, D.; Jourdain, N.; Martin, D. F.; Nakayama, Y.; Seroussi, H. L.

    2016-12-01

    MISMIP+ (the third Marine Ice Sheet MIP), ISOMIP+ (the second Ice Shelf-Ocean MIP) and MISOMIP1 (the first Marine Ice Sheet-Ocean MIP) prescribe a set of idealized experiments for marine ice-sheet models, ocean models with ice-shelf cavities, and coupled ice sheet-ocean models, respectively. Here, we present results from ISOMIP+ and MISOMIP1 experiments using several ocean-only and coupled ice sheet-ocean models. Among the ocean models, we show that differences in model behavior are significant enough that similar results can only be achieved by tuning model parameters (the heat- and salt-transfer coefficients across the sub-ice-shelf boundary layer) for each model. This tuning is constrained by a desired mean melt rate in quasi-steady state under specified forcing conditions, akin to tuning the models to match observed melt rates. We compare the evolution of ocean temperature transects, melt rate, friction velocity and thermal driving between ocean models for the five ISOMIP+ experiments (Ocean0-4), which have prescribed ice-shelf topography. We find that melt patterns differ between models based on the relative importance of overturning strength and vertical mixing of temperature even when the models have been tuned to achieve similar melt rates near the grounding line. For the two MISOMIP1 experiments (IceOcean1 without dynamic calving and IceOcean2 with a simple calving parameterization), we compare temperature transects, melt rate, ice-shelf topography and grounded area across models and for several model configurations. Consistent with preliminary results from MISMIP+, we find that for a given coupled model, the use of a Coulomb-limited basal friction parameterization below grounded ice and the application of dynamic calving both significantly increase the rate of grounding-line retreat, whereas the rate of retreat appears to be less sensitive to the ice stress approximation (shallow-shelf approximation, higher-order, etc.). We show that models with similar

  8. Breaking Ice 2: A rift system on the Ross Ice Shelf as an analog for tidal tectonics on icy moons

    NASA Astrophysics Data System (ADS)

    Brunt, K. M.; Hurford, T., Jr.; Schmerr, N. C.; Sauber, J. M.; MacAyeal, D. R.

    2016-12-01

    Ice shelves are the floating regions of the polar ice sheets. Outside of the influence of the narrow region of their grounding zone, they are fully hydrostatic and strongly influenced by the ocean tides. Recent observational and modeling studies have assessed the effect of tides on ice shelves, including: the tidal influence on the ice-shelf surface height, which changes by as much as 6 to 7 m on the southern extreme of the Ronne-Filchner Ice Shelf; the tidal modulation of the ice-shelf horizontal flow velocities, which changes the mean ice-flow rate by as much as two fold on the Ross Ice Shelf; and the tidal contribution to fracture and rift propagation, which eventually leads to iceberg calving. Here, we present the analysis of 16 days of continuous GPS data from a rift system near the front of the Ross Ice Shelf. While the GPS sites were installed for a different scientific investigation, and not optimized to assess tidal rifting mechanics, they provide a first-order sense of the tidal evolution of the rift system. These analyses can be used as a terrestrial analog for tidal activity on icy satellites, such as Europa and Enceladus, moons of Jupiter and Saturn, respectively. Using remote sensing and modeling of the Ross Ice Shelf rift system, we can investigate the geological processes observed on icy satellites and advance modeling efforts of their tidal-tectonic evolution.

  9. Regional variability in sea ice melt in a changing Arctic

    PubMed Central

    Perovich, Donald K.; Richter-Menge, Jacqueline A.

    2015-01-01

    In recent years, the Arctic sea ice cover has undergone a precipitous decline in summer extent. The sea ice mass balance integrates heat and provides insight on atmospheric and oceanic forcing. The amount of surface melt and bottom melt that occurs during the summer melt season was measured at 41 sites over the time period 1957 to 2014. There are large regional and temporal variations in both surface and bottom melting. Combined surface and bottom melt ranged from 16 to 294 cm, with a mean of 101 cm. The mean ice equivalent surface melt was 48 cm and the mean bottom melt was 53 cm. On average, surface melting decreases moving northward from the Beaufort Sea towards the North Pole; however interannual differences in atmospheric forcing can overwhelm the influence of latitude. Substantial increases in bottom melting are a major contributor to ice losses in the Beaufort Sea, due to decreases in ice concentration. In the central Arctic, surface and bottom melting demonstrate interannual variability, but show no strong temporal trends from 2000 to 2014. This suggests that under current conditions, summer melting in the central Arctic is not large enough to completely remove the sea ice cover. PMID:26032323

  10. Regional variability in sea ice melt in a changing Arctic.

    PubMed

    Perovich, Donald K; Richter-Menge, Jacqueline A

    2015-07-13

    In recent years, the Arctic sea ice cover has undergone a precipitous decline in summer extent. The sea ice mass balance integrates heat and provides insight on atmospheric and oceanic forcing. The amount of surface melt and bottom melt that occurs during the summer melt season was measured at 41 sites over the time period 1957 to 2014. There are large regional and temporal variations in both surface and bottom melting. Combined surface and bottom melt ranged from 16 to 294 cm, with a mean of 101 cm. The mean ice equivalent surface melt was 48 cm and the mean bottom melt was 53 cm. On average, surface melting decreases moving northward from the Beaufort Sea towards the North Pole; however interannual differences in atmospheric forcing can overwhelm the influence of latitude. Substantial increases in bottom melting are a major contributor to ice losses in the Beaufort Sea, due to decreases in ice concentration. In the central Arctic, surface and bottom melting demonstrate interannual variability, but show no strong temporal trends from 2000 to 2014. This suggests that under current conditions, summer melting in the central Arctic is not large enough to completely remove the sea ice cover. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  11. Mounting evidence for intense ocean interaction with the Pine Island Glacier Ice Shelf

    NASA Astrophysics Data System (ADS)

    Bindschadler, R.; Holland, D.; Vaughan, D.; Vornberger, P.

    2008-12-01

    The spatial signature of thinning and acceleration of the Pine Island Glacier has led to the inference that these changes originate at the seaward end of the glacier, possibly within or under the ice shelf (Payne et al., 2004; Shepherd et al., 2004). We present new analyses resulting from both new and archived satellite imagery of the ice shelf that supports this inference and provides new insights into strong seasonal and intra- annual characters of ocean-ice shelf interaction. Strong longitudinal variations in both thickness and surface elevation measured by British Antarctic Survey airborne radars (Vaughan et al., 2006) have wavelengths that correspond roughly to the annual motion of the ice shelf. These could be caused by seasonal variations in flow speed, but such variations of flow speed have never been reported and are not seen in the most recent continuous GPS observations of the ice shelf. We suggest that these strong variations in ice thickness, as large as 200 meters in an average thickness of 600 meters, are caused by seasonal variations in the properties of the water circulating underneath the ice shelf. One likely explanation is that the dominant water mass reaching the deepest parts of the ice shelf alternates between cold High Salinity Shelf Water in the winter and warm Circumpolar Deep Water in the summer. Evidence for recent strengthening of the sub- shelf circulation is the sudden occurrence of three persistent polynyas immediately adjacent to the ice front. These are located in precisely the locations expected from modeled sub-shelf circulation (Payne et al., 2007). This mode was never observed in any satellite imagery prior to the 1999-2000 austral summer (data of 7 summers since 1973 were available), but has occurred in 7 of the 9 summers since and persists throughout the summer. Payne, A.J., A. Vieli, A.P. Shepherd, D.J. Wingham and E. Rignot, 2004. Recent dramatic thinning of largest West Antarctic ice stream triggered by oceans, Geophysical

  12. Sediment features at the grounding zone and beneath Ekström Ice Shelf, East Antarctica, imaged using on-ice vibroseis.

    NASA Astrophysics Data System (ADS)

    Smith, Emma C.; Eisen, Olaf; Hofstede, Coen; Lambrecht, Astrid; Mayer, Christoph

    2017-04-01

    The grounding zone, where an ice sheet becomes a floating ice shelf, is known to be a key threshold region for ice flow and stability. A better understanding of ice dynamics and sediment transport across such zones will improve knowledge about contemporary and palaeo ice flow, as well as past ice extent. Here we present a set of seismic reflection profiles crossing the grounding zone and continuing to the shelf edge of Ekström Ice Shelf, East Antarctica. Using an on-ice vibroseis source combined with a snowstreamer we have imaged a range of sub-glacial and sub-shelf sedimentary and geomorphological features; from layered sediment deposits to elongated flow features. The acoustic properties of the features as well as their morphology allow us to draw conclusions as to their material properties and origin. These results will eventually be integrated with numerical models of ice dynamics to quantify past and present interactions between ice and the solid Earth in East Antarctica; leading to a better understanding of future contributions of this region to sea-level rise.

  13. Growing Crack in Antarctica Larsen C Ice Shelf Spotted by NASA MISR

    NASA Image and Video Library

    2016-08-31

    Project MIDAS, a United Kingdom-based group that studies the Larsen Ice Shelf in Antarctica, reported Aug. 18, 2016, that a large crack in the Larsen C shelf has grown by another 13 miles (22 kilometers) in the past six months. The crack is now more than 80 miles (130 kilometers) long. Larsen C is the fourth largest ice shelf in Antarctica, with an area of about 19,300 square miles (50,000 square kilometers), greater than the size of Maryland. Computer modeling by Project MIDAS predicts that the crack will continue to grow and eventually cause between nine and twelve percent of the ice shelf to collapse, resulting in the loss of 2,300 square miles (6,000 square kilometers) of ice -- more than the area of Delaware. This follows the collapse of the Larsen B shelf in 2002 and the Larsen A shelf in 1995, which removed about 1,255 square miles (3,250 square kilometers) and 580 square miles (1,500 square kilometers) of ice, respectively. The Multiangle Imaging SpectroRadiometer (MISR) instrument aboard NASA's Terra satellite flew over Larsen C on Aug. 22, 2016. The MISR instrument views Earth with nine cameras pointed at different angles, which provides information about the texture of the surface. On the left is a natural-color image of the shelf from MISR's vertical-viewing camera. Antarctica is slowly emerging from its polar night, and the low light gives the scene a bluish tint. The Larsen C shelf is on the left, while thinner sea ice is present on the right. A variety of cracks are visible in the Larsen C shelf, all appearing roughly the same. The image is about 130 by 135 miles (210 by 220 kilometers) in size. On the right is a composite image made by combining data from MISR's 46-degree backward-pointing camera (plotted as blue), the vertical-pointing camera (plotted as green), and the 46-degree forward-pointing camera (plotted as red). This has the effect of highlighting surface roughness; smooth surfaces appear as blue-purple, while rough surfaces appear as

  14. Does Arctic sea ice reduction foster shelf-basin exchange?

    PubMed

    Ivanov, Vladimir; Watanabe, Eiji

    2013-12-01

    The recent shift in Arctic ice conditions from prevailing multi-year ice to first-year ice will presumably intensify fall-winter sea ice freezing and the associated salt flux to the underlying water column. Here, we conduct a dual modeling study whose results suggest that the predicted catastrophic consequences for the global thermohaline circulation (THC), as a result of the disappearance of Arctic sea ice, may not necessarily occur. In a warmer climate, the substantial fraction of dense water feeding the Greenland-Scotland overflow may form on Arctic shelves and cascade to the deep basin, thus replenishing dense water, which currently forms through open ocean convection in the sub-Arctic seas. We have used a simplified model for estimating how increased ice production influences shelf-basin exchange associated with dense water cascading. We have carried out case studies in two regions of the Arctic Ocean where cascading was observed in the past. The baseline range of buoyancy-forcing derived from the columnar ice formation was calculated as part of a 30-year experiment of the pan-Arctic coupled ice-ocean general circulation model (GCM). The GCM results indicate that mechanical sea ice divergence associated with lateral advection accounts for a significant part of the interannual variations in sea ice thermal production in the coastal polynya regions. This forcing was then rectified by taking into account sub-grid processes and used in a regional model with analytically prescribed bottom topography and vertical stratification in order to examine specific cascading conditions in the Pacific and Atlantic sectors of the Arctic Ocean. Our results demonstrate that the consequences of enhanced ice formation depend on geographical location and shelf-basin bathymetry. In the Pacific sector, strong density stratification in slope waters impedes noticeable deepening of shelf-origin water, even for the strongest forcing applied. In the Atlantic sector, a 1.5x increase of

  15. Boundary condition of grounding lines prior to collapse, Larsen-B Ice Shelf, Antarctica.

    PubMed

    Rebesco, M; Domack, E; Zgur, F; Lavoie, C; Leventer, A; Brachfeld, S; Willmott, V; Halverson, G; Truffer, M; Scambos, T; Smith, J; Pettit, E

    2014-09-12

    Grounding zones, where ice sheets transition between resting on bedrock to full floatation, help regulate ice flow. Exposure of the sea floor by the 2002 Larsen-B Ice Shelf collapse allowed detailed morphologic mapping and sampling of the embayment sea floor. Marine geophysical data collected in 2006 reveal a large, arcuate, complex grounding zone sediment system at the front of Crane Fjord. Radiocarbon-constrained chronologies from marine sediment cores indicate loss of ice contact with the bed at this site about 12,000 years ago. Previous studies and morphologic mapping of the fjord suggest that the Crane Glacier grounding zone was well within the fjord before 2002 and did not retreat further until after the ice shelf collapse. This implies that the 2002 Larsen-B Ice Shelf collapse likely was a response to surface warming rather than to grounding zone instability, strengthening the idea that surface processes controlled the disintegration of the Larsen Ice Shelf. Copyright © 2014, American Association for the Advancement of Science.

  16. Examination Of A Strong Downslope Warming Wind Event Over The Larsen Ice Shelf In Antarctica Through Modeling And Aircraft Observations

    NASA Astrophysics Data System (ADS)

    Grosvenor, D. P.; Choularton, T. W.; Gallagher, M. W.; Lachlan-Cope, T. A.; King, J. C.

    2009-12-01

    The high mountains of the Antarctic Peninsula (AP) provide a climatic barrier between the west and east. The east side is generally blocked from the warmer oceanic air of the west and is consequently usually under the influence of colder continental air. On occasion, however, air from the west can cross the barrier in the form of strong winds travelling down the eastern slopes, which are also very warm and dry due to adiabatic descent. They penetrate onto the Larsen ice shelves where they lead to above zero surface temperatures and are therefore likely to encourage surface melting. Crevasse propagation due to the weight of accumulated meltwater is currently thought to have been the major factor in causing the near total disintegration of the Larsen B ice shelf in 2002. In January 2006 the British Antarctic Survey performed an aircraft flight over the Larsen C ice shelf on the east side of the AP, which sampled a strong downslope wind event. Surface flux measurements over the ice shelf suggest that the sensible heat provided by the warm jets would be likely to be negated by latent heat losses from ice ablation. The main cause of any ice melting was likely to be due to shortwave radiation input. However, the warming from the jets is still likely to be important by acting as an on/off control for melting by keeping air temperatures above zero. In addition, the dryness of the winds is likely to prevent cloud cover and thus maximize exposure of the ice shelf to solar energy input. This case study has been modeled using the WRF mesoscale model. The model reproduces the strong downslope winds seen by the aircraft with good comparisons of wind speed and temperature profiles through the wind jets. Further comparisons to surface station data have allowed progress towards achieving the best set up of the model for this case. The modeling agrees with the results of the aircraft study in suggesting that solar radiation input is likely to provide the largest amount of energy for

  17. Evidence against a late Wisconsinan ice shelf in the Gulf of Maine

    USGS Publications Warehouse

    Oldale, R.N.; Williams, R.S.; Colman, Steven M.

    1990-01-01

    Proposals for the formation of a late Wisconsinan ice shelf in the Gulf of Maine during the retreat of the Laurentide Ice Sheet are considered to be inappropriate. An Antarctic-type ice shelf does not fit the field data that indicate temperate glacial, terrestrial, and marine climates for the region between 18 ka and 12 ka. A temperate ice shelf has no modern analogues and may be physically impossible. The preponderance of stratified drift in the Gulf of Maine region supports temperate climates during late Wisconsinan time. It also indicates that glacial meltwater, rather than ice in either an ice sheet or ice shelf, was the primary transport mechanism of glacial sediment and the source for the glaciomarine mud. For these reasons we have proposed glacial analogues for the deglaciation of the Gulf of Maine that consist of temperate or subpolar marine-based glaciers, characterized by depositional environments dominated by meltwater discharge directly to the sea or the sea by way of subaerial meltwater streams. These analogues include Alaskan fjord glaciers, glaciers on the Alaskan continental shelf that discharged meltwater directly into the sea in the not too distant past, and Austfonna (Nordaustandet, Svalbard, Norway) that is presently discharging meltwater in the sea along a grounded ice wall. This last example is the best modern-day analogue for the depositional environment for most of the glaciomarine mud in the Gulf of Maine and deglaciation of the Gulf. 

  18. Ice Thickness, Melting Rates and Styles of Activity in Ice-Volcano Interaction

    NASA Astrophysics Data System (ADS)

    Gudmundsson, M. T.

    2005-12-01

    In most cases when eruptions occur within glaciers they lead to rapid ice melting, jokulhlaups and/or lahars. Many parameters influence the style of activity and its impact on the environment. These include ice thickness (size of glacier), bedrock geometry, magma flow rate and magma composition. The eruptions that have been observed can roughly be divided into: (1) eruptions under several hundred meters thick ice on a relatively flat bedrock, (2) eruptions on flat or sloping bed through relatively thin ice, and (3) volcanism where effects are limitied to confinement of lava flows or melting of ice by pyroclastic flows or surges. This last category (ice-contact volcanism) need not cause much ice melting. Many of the deposits formed by Pleistocene volcanism in Iceland, British Columbia and Antarctica belong to the first category. An important difference between this type of activity and submarine activity (where pressure is hydrostatic) is that pressure at vents may in many cases be much lower than glaciostatic due to partial support of ice cover over vents by the surrounding glacier. Reduced pressure favours explosive activity. Thus the effusive/explosive transition may occur several hundred metres underneath the ice surface. Explosive fragmentation of magma leads to much higher rates of heat transfer than does effusive eruption of pillow lavas, and hence much higher melting rates. This effect of reduced pressure at vents will be less pronounced in a large ice sheet than in a smaller glacier or ice cap, since the hydraulic gradient that drives water away from an eruption site will be lower in the large glacier. This may have implications for form and type of eruption deposits and their relationship with ice thickness and glacier size.

  19. Sulzberger Ice Shelf Tidal Signal Reconstruction Using InSAR

    NASA Astrophysics Data System (ADS)

    Baek, S.; Shum, C.; Yi, Y.; Kwoun, O.; Lu, Z.; Braun, A.

    2005-12-01

    Synthetic Aperture Radar Interferometry (InSAR) and Differential InSAR (DInSAR) have been demonstrated as useful techniques to detect surface deformation over ice sheet and ice shelves over Antarctica. In this study, we use multiple-pass InSAR from the ERS-1 and ERS-2 data to detect ocean tidal deformation with an attempt towards modeling of tides underneath an ice shelf. High resolution Digital Elevation Model (DEM) from repeat-pass interferometry and ICESat profiles as ground control points is used for topographic correction over the study region in Sulzberger Ice Shelf, West Antarctica. Tidal differences measured by InSAR are obtained by the phase difference between a point on the grounded ice and a point on ice shelf. Comparison with global or regional tide models (including NAO, TPXO, GOT, and CATS) of a selected point shows that the tidal amplitude is consistent with the values predicted from tide models to within 4 cm RMS. Even though the lack of data hinders the effort to readily develop a tide model using longer term data (time series span over years), we suggest a method to reconstruction selected tidal constituents using both vertical deformation from InSAR and the knowledge on aliased tidal frequencies from ERS satellites. Finally, we report the comparison results of tidal deformation observed by InSAR and ICESat altimetry.

  20. Ground-penetrating radar evidence of refrozen meltwater in the firn column of Larsen C Ice Shelf

    NASA Astrophysics Data System (ADS)

    Hubbard, B. P.; Booth, A. D.; Sevestre, H.; Kulessa, B.; Bevan, S. L.; Luckman, A. J.; Kuipers Munneke, P.; Buzzard, S. C.; Ashmore, D. W.; O'Leary, M.

    2017-12-01

    Firn densification, which has been strongly implicated in ice shelf collapse, can occur rapidly by the percolation and refreezing of surface meltwater. This process reduces the permeability of the firn column, potentially establishing a positive feedback between densification and the occurrence of surface meltwater ponds, and may ultimately facilitate fracturing associated with shelf collapse. Meltwater ponds on Larsen C's Cabinet (CI) and Whirlwind (WI) inlets form where foehn winds reach and influence the shelf surface. While associated zones of refrozen meltwater are strongly evidenced in borehole optical televiewing (OPTV) and seismic refraction data, the sparsity of these observations limits insight into the dimensions of these zones. Here, we present highlights from an 800-km archive of ground-penetrating radar (GPR) profiles acquired by the MIDAS project on CI and WI during November-December 2015. In the upstream reaches of CI and WI, stratified firn layers are abruptly truncated by zones of diminished GPR reflectivity. These initiate 5 m beneath the surface and extend to a depth of 30 m. Volumes appear to exceed 6 km3 (CI) and 1 km3 (WI); these are underestimates, established only where there is GPR control. The horizontal distribution of these zones correlates with the pattern of reduced backscatter in SAR images, supporting their association with meltwater ponds. GPR reflectivity models, derived from OPTV density trends, suggest reduced GPR wavespeeds (as do GPR velocity analyses) and dielectric contrasts consistent with homogenised and densified firn. A firn density model supports the ability of meltwater ponds to form periodically in Cabinet Inlet and subsequently homogenise the density of the firn column. Our observations suggest that ice shelves affected by surface melt and ponding can contain spatially extensive bodies of ice that are warmer and denser than assumed so far, with significant implications for ice shelf flow and fracturing.

  1. Future sea-level rise from tidewater and ice-shelf tributary glaciers of the Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    Schannwell, C.; Barrand, N. E.; Radic, V.

    2016-12-01

    Iceberg calving and increased ice discharge from ice-shelf tributary glaciers contribute significant amounts to global sea-level rise (SLR) from the Antarctic Peninsula (AP). Owing to ongoing ice dynamical changes (collapse of buttressing ice shelves), these contributions have accelerated in recent years. As the AP is one of the fastest warming regions on Earth, further ice dynamical adjustment (increased ice discharge) is expected over the next two centuries. Here the first regional SLR projection of the AP from both iceberg calving and increased ice discharge from ice-shelf tributary glaciers in response to ice-shelf collapse is presented. The British Antarctic Survey Antarctic Peninsula Ice Sheet Model (BAS-APISM), previously shown to be suitable for the unique topographic setting from the AP, is forced by temperature output from 13 global climate models (GCMs) from the Coupled Model Intercomparison Project Phase 5 (CMIP5). In response to the high greenhouse gas emission scenario (Representative Concentration Pathway (RCP)8.5), simulations project contribution to SLR of 28±16 to 32±16 mm by 2300, partitioned approximately equally between contributions from tidewater glaciers and ice-shelf tributary glaciers. In the RCP4.5 scenario, sea-level rise projections to 2300 are dominated by tidewater glaciers ( ˜8-18 mm). In this cooler scenario, 2.4±1 mm is added to global sea levels from ice-shelf tributary drainage basins as fewer ice-shelves are projected to collapse. Sea-level projections from ice-shelf tributary glaciers are dominated by drainage basins feeding George VI Ice Shelf, accounting for ˜70% of simulated SLR. Combined total ice dynamical SLR projections to 2300 from the AP vary between 11±2 and 32±16 mm sea-level equivalent (SLE), depending on the emission scenario used. These simulations suggest that omission of tidewater glaciers could lead to a substantial underestimation of the ice-sheet's contribution to regional SLR. Iceberg calving and

  2. Late Spring Nitrate Distributions Beneath the Ice-Covered Northeastern Chukchi Shelf

    NASA Astrophysics Data System (ADS)

    Arrigo, Kevin R.; Mills, Matthew M.; van Dijken, Gert L.; Lowry, Kate E.; Pickart, Robert S.; Schlitzer, Reiner

    2017-09-01

    Measurements of late springtime nutrient concentrations in Arctic waters are relatively rare due to the extensive sea ice cover that makes sampling difficult. During the SUBICE (Study of Under-ice Blooms In the Chukchi Ecosystem) cruise in May-June 2014, an extensive survey of hydrography and prebloom concentrations of inorganic macronutrients, oxygen, particulate organic carbon and nitrogen, and chlorophyll a was conducted in the northeastern Chukchi Sea. Cold (<-1.5°C) winter water was prevalent throughout the study area, and the water column was weakly stratified. Nitrate (NO3-) concentration averaged 12.6 ± 1.92 μM in surface waters and 14.0 ± 1.91 μM near the bottom and was significantly correlated with salinity. The highest NO3- concentrations were associated with winter water within the Central Channel flow path. NO3- concentrations were much reduced near the northern shelf break within the upper halocline waters of the Canada Basin and along the eastern side of the shelf near the Alaskan coast. Net community production (NCP), estimated as the difference in depth-integrated NO3- content between spring (this study) and summer (historical), varied from 28 to 38 g C m-2 a-1. This is much lower than previous NCP estimates that used NO3- concentrations from the southeastern Bering Sea as a baseline. These results demonstrate the importance of using profiles of NO3- measured as close to the beginning of the spring bloom as possible when estimating local NCP. They also show that once the snow melts in spring, increased light transmission through the sea ice to the waters below the ice could fuel large phytoplankton blooms over a much wider area than previously known.

  3. Sea-level response to melting of Antarctic ice shelves on multi-centennial timescales with the fast Elementary Thermomechanical Ice Sheet model (f.ETISh v1.0)

    NASA Astrophysics Data System (ADS)

    Pattyn, Frank

    2017-08-01

    The magnitude of the Antarctic ice sheet's contribution to global sea-level rise is dominated by the potential of its marine sectors to become unstable and collapse as a response to ocean (and atmospheric) forcing. This paper presents Antarctic sea-level response to sudden atmospheric and oceanic forcings on multi-centennial timescales with the newly developed fast Elementary Thermomechanical Ice Sheet (f.ETISh) model. The f.ETISh model is a vertically integrated hybrid ice sheet-ice shelf model with vertically integrated thermomechanical coupling, making the model two-dimensional. Its marine boundary is represented by two different flux conditions, coherent with power-law basal sliding and Coulomb basal friction. The model has been compared to existing benchmarks. Modelled Antarctic ice sheet response to forcing is dominated by sub-ice shelf melt and the sensitivity is highly dependent on basal conditions at the grounding line. Coulomb friction in the grounding-line transition zone leads to significantly higher mass loss in both West and East Antarctica on centennial timescales, leading to 1.5 m sea-level rise after 500 years for a limited melt scenario of 10 m a-1 under freely floating ice shelves, up to 6 m for a 50 m a-1 scenario. The higher sensitivity is attributed to higher ice fluxes at the grounding line due to vanishing effective pressure. Removing the ice shelves altogether results in a disintegration of the West Antarctic ice sheet and (partially) marine basins in East Antarctica. After 500 years, this leads to a 5 m and a 16 m sea-level rise for the power-law basal sliding and Coulomb friction conditions at the grounding line, respectively. The latter value agrees with simulations by DeConto and Pollard (2016) over a similar period (but with different forcing and including processes of hydrofracturing and cliff failure). The chosen parametrizations make model results largely independent of spatial resolution so that f.ETISh can potentially be

  4. Pressure-Induced Melting of Confined Ice.

    PubMed

    Sotthewes, Kai; Bampoulis, Pantelis; Zandvliet, Harold J W; Lohse, Detlef; Poelsema, Bene

    2017-12-26

    The classic regelation experiment of Thomson in the 1850s deals with cutting an ice cube, followed by refreezing. The cutting was attributed to pressure-induced melting but has been challenged continuously, and only lately consensus emerged by understanding that compression shortens the O:H nonbond and lengthens the H-O bond simultaneously. This H-O elongation leads to energy loss and lowers the melting point. The hot debate survived well over 150 years, mainly due to a poorly defined heat exchange with the environment in the experiment. In our current experiment, we achieved thermal isolation from the environment and studied the fully reversible ice-liquid water transition for water confined between graphene and muscovite mica. We observe a transition from two-dimensional (2D) ice into a quasi-liquid phase by applying a pressure exerted by an atomic force microscopy tip. At room temperature, the critical pressure amounts to about 6 GPa. The transition is completely reversible: refreezing occurs when the applied pressure is lifted. The critical pressure to melt the 2D ice decreases with temperature, and we measured the phase coexistence line between 293 and 333 K. From a Clausius-Clapeyron analysis, we determine the latent heat of fusion of two-dimensional ice at 0.15 eV/molecule, being twice as large as that of bulk ice.

  5. Ice core evidence for extensive melting of the greenland ice sheet in the last interglacial.

    PubMed

    Koerner, R M

    1989-05-26

    Evidence from ice at the bottom of ice cores from the Canadian Arctic Islands and Camp Century and Dye-3 in Greenland suggests that the Greenland ice sheet melted extensively or completely during the last interglacial period more than 100 ka (thousand years ago), in contrast to earlier interpretations. The presence of dirt particles in the basal ice has previously been thought to indicate that the base of the ice sheets had melted and that the evidence for the time of original growth of these ice masses had been destroyed. However, the particles most likely blew onto the ice when the dimensions of the ice caps and ice sheets were much smaller. Ice texture, gas content, and other evidence also suggest that the basal ice at each drill site is superimposed ice, a type of ice typical of the early growth stages of an ice cap or ice sheet. If the present-day ice masses began their growth during the last interglacial, the ice sheet from the earlier (Illinoian) glacial period must have competely or largely melted during the early part of the same interglacial period. If such melting did occur, the 6-meter higher-than-present sea level during the Sangamon cannot be attributed to disintegration of the West Antarctic ice sheet, as has been suggested.

  6. Changes in flow of Crosson and Dotson ice shelves, West Antarctica, in response to elevated melt

    NASA Astrophysics Data System (ADS)

    Lilien, David A.; Joughin, Ian; Smith, Benjamin; Shean, David E.

    2018-04-01

    Crosson and Dotson ice shelves are two of the most rapidly changing outlets in West Antarctica, displaying both significant thinning and grounding-line retreat in recent decades. We used remotely sensed measurements of velocity and ice geometry to investigate the processes controlling their changes in speed and grounding-line position over the past 20 years. We combined these observations with inverse modeling of the viscosity of the ice shelves to understand how weakening of the shelves affected this speedup. These ice shelves have lost mass continuously since the 1990s, and we find that this loss results from increasing melt beneath both shelves and the increasing speed of Crosson. High melt rates persisted over the period covered by our observations (1996-2014), with the highest rates beneath areas that ungrounded during this time. Grounding-line flux exceeded basin-wide accumulation by about a factor of 2 throughout the study period, consistent with earlier studies, resulting in significant loss of grounded as well as floating ice. The near doubling of Crosson's speed in some areas during this time is likely the result of weakening of its margins and retreat of its grounding line. This speedup contrasts with Dotson, which has maintained its speed despite increasingly high melt rates near its grounding line, likely a result of the sustained competency of the shelf. Our results indicate that changes to melt rates began before 1996 and suggest that observed increases in melt in the 2000s compounded an ongoing retreat of this system. Advection of a channel along Dotson, as well as the grounding-line position of Kohler Glacier, suggests that Dotson experienced a change in flow around the 1970s, which may be the initial cause of its continuing retreat.

  7. Future sea-level rise from tidewater and ice-shelf tributary glaciers of the Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    Schannwell, Clemens; Barrand, Nicholas E.; Radić, Valentina

    2016-11-01

    Iceberg calving and increased ice discharge from ice-shelf tributary glaciers contribute significant amounts to global sea-level rise (SLR) from the Antarctic Peninsula (AP). Owing to ongoing ice dynamical changes (collapse of buttressing ice shelves), these contributions have accelerated in recent years. As the AP is one of the fastest warming regions on Earth, further ice dynamical adjustment (increased ice discharge) is expected over the next two centuries. In this paper, the first regional SLR projection of the AP from both iceberg calving and increased ice discharge from ice-shelf tributary glaciers in response to ice-shelf collapse is presented. An ice-sheet model forced by temperature output from 13 global climate models (GCMs), in response to the high greenhouse gas emission scenario (RCP8.5), projects AP contribution to SLR of 28 ± 16 to 32 ± 16 mm by 2300, partitioned approximately equally between contributions from tidewater glaciers and ice-shelf tributary glaciers. In the RCP4.5 scenario, sea-level rise projections to 2300 are dominated by tidewater glaciers (∼8-18 mm). In this cooler scenario, 2.4 ± 1 mm is added to global sea levels from ice-shelf tributary drainage basins as fewer ice-shelves are projected to collapse. Sea-level projections from ice-shelf tributary glaciers are dominated by drainage basins feeding George VI Ice Shelf, accounting for ∼70% of simulated SLR. Combined total ice dynamical SLR projections to 2300 from the AP vary between 11 ± 2 and 32 ± 16 mm sea-level equivalent (SLE), depending on the emission scenario used. These simulations suggest that omission of tidewater glaciers could lead to a substantial underestimation of the ice-sheet's contribution to regional SLR.

  8. Arctic continental shelf morphology related to sea-ice zonation, Beaufort Sea, Alaska

    USGS Publications Warehouse

    Reimnitz, E.; Toimil, L.; Barnes, P.

    1978-01-01

    Landsat-1 and NOAA satellite imagery for the winter 1972-1973, and a variety of ice and sea-floor data were used to study sea-ice zonation and dynamics and their relation to bottom morphology and geology on the Beaufort Sea continental shelf of arctic Alaska. In early winter the location of the boundary between undeformed fast ice and westward-drifting pack ice of the Pacific Gyre is controlled by major coastal promontories. Pronounced linear pressure- and shear-ridges, as well as hummock fields, form along this boundary and are stabilized by grounding, generally between the 10- and 20-m isobaths. Slippage along this boundary occurs intermittently at or seaward of the grounded ridges, forming new grounded ridges in a widening zone, the stamukhi zone, which by late winter extends out to the 40-m isobath. Between intermittent events along the stamukhi zone, pack-ice drift and slippage is continuous along the shelf edge, at average rates of 3-10 km/day. Whether slippage occurs along the stamukhi zone or along the shelf edge, it is restricted to a zone several hundred meters wide, and ice seaward of the slip face moves at uniform rates without discernible drag effects. A causal relationship is seen between the spatial distribution of major ice-ridge systems and offshore shoals downdrift of major coastal promontories. The shoals appear to have migrated shoreward under the influence of ice up to 400 m in the last 25 years. The sea floor seaward of these shoals within the stamukhi zone shows high ice-gouge density, large incision depths, and a high degree of disruption of internal sedimentary structures. The concentration of large ice ridges and our sea floor data in the stamukhi zone indicate that much of the available marine energy is expended here, while the inner shelf and coast, where the relatively undeformed fast ice grows, are sheltered. There is evidence that anomalies in the overall arctic shelf profile are related to sea-ice zonation, ice dynamics, and bottom

  9. Melting dynamics of ice in the mesoscopic regime

    PubMed Central

    Citroni, Margherita; Fanetti, Samuele; Falsini, Naomi; Foggi, Paolo; Bini, Roberto

    2017-01-01

    How does a crystal melt? How long does it take for melt nuclei to grow? The melting mechanisms have been addressed by several theoretical and experimental works, covering a subnanosecond time window with sample sizes of tens of nanometers and thus suitable to determine the onset of the process but unable to unveil the following dynamics. On the other hand, macroscopic observations of phase transitions, with millisecond or longer time resolution, account for processes occurring at surfaces and time limited by thermal contact with the environment. Here, we fill the gap between these two extremes, investigating the melting of ice in the entire mesoscopic regime. A bulk ice Ih or ice VI sample is homogeneously heated by a picosecond infrared pulse, which delivers all of the energy necessary for complete melting. The evolution of melt/ice interfaces thereafter is monitored by Mie scattering with nanosecond resolution, for all of the time needed for the sample to reequilibrate. The growth of the liquid domains, over distances of micrometers, takes hundreds of nanoseconds, a time orders of magnitude larger than expected from simple H-bond dynamics. PMID:28536197

  10. connecting the dots between Greenland ice sheet surface melting and ice flow dynamics (Invited)

    NASA Astrophysics Data System (ADS)

    Box, J. E.; Colgan, W. T.; Fettweis, X.; Phillips, T. P.; Stober, M.

    2013-12-01

    This presentation is of a 'unified theory' in glaciology that first identifies surface albedo as a key factor explaining total ice sheet mass balance and then surveys a mechanistic self-reinforcing interaction between melt water and ice flow dynamics. The theory is applied in a near-real time total Greenland mass balance retrieval based on surface albedo, a powerful integrator of the competing effects of accumulation and ablation. New snowfall reduces sunlight absorption and increases meltwater retention. Melting amplifies absorbed sunlight through thermal metamorphism and bare ice expansion in space and time. By ';following the melt'; we reveal mechanisms linking existing science into a unified theory. Increasing meltwater softens the ice sheet in three ways: 1.) sensible heating given the water temperature exceeds that of the ice sheet interior; 2.) Some infiltrating water refreezes, transferring latent heat to the ice; 3.) Friction from water turbulence heats the ice. It has been shown that for a point on the ice sheet, basal lubrication increases ice flow speed to a time when an efficient sub-glacial drainage network develops that reduces this effect. Yet, with an increasing melt duration the point where the ice sheet glides on a wet bed increases inland to a larger area. This effect draws down the ice surface elevation, contributing to the ';elevation feedback'. In a perpetual warming scenario, the elevation feedback ultimately leads to ice sheet loss reversible only through much slower ice sheet growth in an ice age environment. As the inland ice sheet accelerates, the horizontal extension pulls cracks and crevasses open, trapping more sunlight, amplifying the effect of melt accelerated ice. As the bare ice area increases, the direct sun-exposed crevassed and infiltration area increases further allowing the ice warming process to occur more broadly. Considering hydrofracture [a.k.a. hydrofracking]; surface meltwater fills cracks, attacking the ice integrity

  11. Ice stream reorganization and glacial retreat on the northwest Greenland shelf

    NASA Astrophysics Data System (ADS)

    Newton, A. M. W.; Knutz, P. C.; Huuse, M.; Gannon, P.; Brocklehurst, S. H.; Clausen, O. R.; Gong, Y.

    2017-08-01

    Understanding conditions at the grounding-line of marine-based ice sheets is essential for understanding ice sheet evolution. Offshore northwest Greenland, knowledge of the Last Glacial Maximum (LGM) ice sheet extent in Melville Bugt was previously based on sparse geological evidence. This study uses multibeam bathymetry, combined with 2-D and 3-D seismic reflection data, to present a detailed landform record from Melville Bugt. Seabed landforms include mega-scale glacial lineations, grounding-zone wedges, iceberg scours, and a lateral shear margin moraine, formed during the last glacial cycle. The geomorphology indicates that the LGM ice sheet reached the shelf edge before undergoing flow reorganization. After retreat of 80 km across the outer shelf, the margin stabilized in a mid-shelf position, possibly during the Younger Dryas (12.9-11.7 ka). The ice sheet then decoupled from the seafloor and retreated to a coast-proximal position. This landform record provides an important constraint on deglaciation history offshore northwest Greenland.

  12. On thin ice/in hot water: Rapid drawdown of Wordie Ice Shelf glaciers in the decades after collapse in response to a changing ocean

    NASA Astrophysics Data System (ADS)

    Walker, C. C.; Gardner, A. S.

    2016-12-01

    Over the past 50 years, several Antarctic Peninsula ice shelves have retreated or collapsed completely. One such collapse was the Wordie Ice Shelf (WIS), located in Marguerite Bay, which began to disintegrate around 1989. We use several observational datasets to show that the glaciers that used to maintain WIS have experienced a surprising acceleration in flow ( 500m/yr) that began 2008, nearly 20 years after the onset of WIS collapse. During the same period, airborne altimetry from NASA Operation IceBridge shows the glaciers experienced a drawdown at their calving fronts between 4 and 9 m/yr, a near-doubling in rate of elevation change from the 1990's and early-2000's. The time lag between WIS collapse and rapid glacier drawdown suggests that these recent changes are unrelated to loss of buttressing. We identify possible links to changes in ocean conditions using in-situ Palmer Station Long-Term Ecological Research (PAL LTER) ocean CTD-gridded observations (Martinson et al., 2008) taken along the continental shelf on the west Antarctic Peninsula (WAP) since 1993. We use ECCO2 simulations and atmospheric reanalysis data to characterize changes in atmospheric forcing. We also measure changes in ice shelf area using historic archives and Landsat imagery for 50 glacier systems along the WAP from 1945 to present. Surface structural changes in the WIS system, e.g., melt ponds, sea/fast ice presence, and crevasse density/orientation, are also examined. We conclude that recent changes in WIS tributaries likely resulted from a significant increase in upwelling of warm, salty Upper Circumpolar Deep Water (UCDW) due to enhanced wind forcing following coincident global atmospheric oscillation events, namely a positive Southern Annular Mode and a moderate La Nina event. This enabled enhanced incursions of UCDW into Marguerite Bay between 2008-2014, in part due to the deep Marguerite Trough that connects the bay to the continental shelf break, along which the southern boundary

  13. Modeling South Pacific Ice-Ocean Interactions in the Global Climate System

    NASA Technical Reports Server (NTRS)

    Holland, David M.; Jenkins, Adrian; Jacobs, Stanley S.

    2001-01-01

    The objective of this project has been to improve the modeling of interactions between large Antarctic ice shelves and adjacent regions of the Southern Ocean. Our larger goal is to gain a better understanding of the extent to which the ocean controls ice shelf attrition, thereby influencing the size and dynamics of the Antarctic Ice Sheet. Melting and freezing under ice shelves also impacts seawater properties, regional upwelling and sinking and the larger-scale ocean circulation. Modifying an isopycnal coordinate general circulation model for use in sub-ice shelf cavities, we found that the abrupt change in water column thickness at an ice shelf front does not form a strong barrier to buoyancy-driven circulation across the front. Outflow along the ice shelf base, driven by melting of the thickest ice, is balanced by deep inflow. Substantial effort was focused on the Filchner-Ronne cavity, where other models have been applied and time-series records are available from instruments suspended beneath the ice. A model comparison indicated that observed changes in the production of High Salinity Shelf Water could have a major impact on circulation within the cavity. This water propagates into the cavity with an asymmetric seasonal signal that has similar phasing and shape in the model and observations, and can be related to winter production at the sea surface. Even remote parts of the sub-ice shelf cavity are impacted by external forcing on sub-annual time scales. This shows that cavity circulations and products, and therefore cavity shape, will respond to interannual variability in sea ice production and longer-term climate change. The isopycnal model gives generally lower net melt rates than have been obtained from other models and oceanographic data, perhaps due to its boundary layer formulation, or the lack of tidal forcing. Work continues on a manuscript describing the Ross cavity results.

  14. The evolving instability of the remnant Larsen B Ice Shelf and its tributary glaciers

    NASA Astrophysics Data System (ADS)

    Khazendar, Ala; Borstad, Christopher P.; Scheuchl, Bernd; Rignot, Eric; Seroussi, Helene

    2015-06-01

    Following the 2002 disintegration of the northern and central parts of the Larsen B Ice Shelf, the tributary glaciers of the southern surviving part initially appeared relatively unchanged and hence assumed to be buttressed sufficiently by the remnant ice shelf. Here, we modify this perception with observations from IceBridge altimetry and InSAR-inferred ice flow speeds. Our analyses show that the surfaces of Leppard and Flask glaciers directly upstream from their grounding lines lowered by 15 to 20 m in the period 2002-2011. The thinning appears to be dynamic as the flow of both glaciers and the remnant ice shelf accelerated in the same period. Flask Glacier started accelerating even before the 2002 disintegration, increasing its flow speed by ∼55% between 1997 and 2012. Starbuck Glacier meanwhile did not change much. We hypothesize that the different evolutions of the three glaciers are related to their dissimilar bed topographies and degrees of grounding. We apply numerical modeling and data assimilation that show these changes to be accompanied by a reduction in the buttressing afforded by the remnant ice shelf, a weakening of the shear zones between its flow units and an increase in its fracture. The fast flowing northwestern part of the remnant ice shelf exhibits increasing fragmentation, while the stagnant southeastern part seems to be prone to the formation of large rifts, some of which we show have delimited successive calving events. A large rift only 12 km downstream from the grounding line is currently traversing the stagnant part of the ice shelf, defining the likely front of the next large calving event. We propose that the flow acceleration, ice front retreat and enhanced fracture of the remnant Larsen B Ice Shelf presage its approaching demise.

  15. The extreme melt across the Greenland ice sheet in 2012

    NASA Astrophysics Data System (ADS)

    Nghiem, S. V.; Hall, D. K.; Mote, T. L.; Tedesco, M.; Albert, M. R.; Keegan, K.; Shuman, C. A.; DiGirolamo, N. E.; Neumann, G.

    2012-10-01

    The discovery of the 2012 extreme melt event across almost the entire surface of the Greenland ice sheet is presented. Data from three different satellite sensors - including the Oceansat-2 scatterometer, the Moderate-resolution Imaging Spectroradiometer, and the Special Sensor Microwave Imager/Sounder - are combined to obtain composite melt maps, representing the most complete melt conditions detectable across the ice sheet. Satellite observations reveal that melt occurred at or near the surface of the Greenland ice sheet across 98.6% of its entire extent on 12 July 2012, including the usually cold polar areas at high altitudes like Summit in the dry snow facies of the ice sheet. This melt event coincided with an anomalous ridge of warm air that became stagnant over Greenland. As seen in melt occurrences from multiple ice core records at Summit reported in the published literature, such a melt event is rare with the last significant one occurring in 1889 and the next previous one around seven centuries earlier in the Medieval Warm Period. Given its rarity, the 2012 extreme melt across Greenland provides an exceptional opportunity for new studies in broad interdisciplinary geophysical research.

  16. Adaptation of an unstructured-mesh, finite-element ocean model to the simulation of ocean circulation beneath ice shelves

    NASA Astrophysics Data System (ADS)

    Kimura, Satoshi; Candy, Adam S.; Holland, Paul R.; Piggott, Matthew D.; Jenkins, Adrian

    2013-07-01

    Several different classes of ocean model are capable of representing floating glacial ice shelves. We describe the incorporation of ice shelves into Fluidity-ICOM, a nonhydrostatic finite-element ocean model with the capacity to utilize meshes that are unstructured and adaptive in three dimensions. This geometric flexibility offers several advantages over previous approaches. The model represents melting and freezing on all ice-shelf surfaces including vertical faces, treats the ice shelf topography as continuous rather than stepped, and does not require any smoothing of the ice topography or any of the additional parameterisations of the ocean mixed layer used in isopycnal or z-coordinate models. The model can also represent a water column that decreases to zero thickness at the 'grounding line', where the floating ice shelf is joined to its tributary ice streams. The model is applied to idealised ice-shelf geometries in order to demonstrate these capabilities. In these simple experiments, arbitrarily coarsening the mesh outside the ice-shelf cavity has little effect on the ice-shelf melt rate, while the mesh resolution within the cavity is found to be highly influential. Smoothing the vertical ice front results in faster flow along the smoothed ice front, allowing greater exchange with the ocean than in simulations with a realistic ice front. A vanishing water-column thickness at the grounding line has little effect in the simulations studied. We also investigate the response of ice shelf basal melting to variations in deep water temperature in the presence of salt stratification.

  17. Pressure-Induced Melting of Confined Ice

    PubMed Central

    2017-01-01

    The classic regelation experiment of Thomson in the 1850s deals with cutting an ice cube, followed by refreezing. The cutting was attributed to pressure-induced melting but has been challenged continuously, and only lately consensus emerged by understanding that compression shortens the O:H nonbond and lengthens the H–O bond simultaneously. This H–O elongation leads to energy loss and lowers the melting point. The hot debate survived well over 150 years, mainly due to a poorly defined heat exchange with the environment in the experiment. In our current experiment, we achieved thermal isolation from the environment and studied the fully reversible ice–liquid water transition for water confined between graphene and muscovite mica. We observe a transition from two-dimensional (2D) ice into a quasi-liquid phase by applying a pressure exerted by an atomic force microscopy tip. At room temperature, the critical pressure amounts to about 6 GPa. The transition is completely reversible: refreezing occurs when the applied pressure is lifted. The critical pressure to melt the 2D ice decreases with temperature, and we measured the phase coexistence line between 293 and 333 K. From a Clausius–Clapeyron analysis, we determine the latent heat of fusion of two-dimensional ice at 0.15 eV/molecule, being twice as large as that of bulk ice. PMID:29112376

  18. Geoengineering Marine Ice Sheets

    NASA Astrophysics Data System (ADS)

    Wolovick, M.

    2017-12-01

    Mass loss from Greenland and Antarctica is highly sensitive to the presence of warm ocean water that drives melting at the grounding line. Rapid melting near the grounding line causes ice shelf thinning, loss of buttressing, flow acceleration, grounding line retreat, and ultimately mass loss and sea-level rise. If the grounding line enters a section of overdeepened bed the ice sheet may even enter a runaway collapse via the marine ice sheet instability. The warm water that triggers this process resides offshore at depth and accesses the grounding line through deep troughs in the continental shelf. In Greenland, warm water transport is further constricted through narrow fjords. Here, I propose blocking warm water transport through these choke points with an artificial sill. Using a simple width- and depth-averaged model of ice stream flow coupled to a buoyant-plume model of ocean melting, I find that grounding line retreat and sea level rise can be delayed or reversed for hundreds of years if warm water is prevented from accessing the grounding line at depth. Blocking of warm water from the sub-ice cavity causes ice shelf thickening, increased buttressing, and grounding line readvance. The increase in buttressing is greatly magnified if the thickened ice shelf regrounds on a bathymetric high or on the artificial sill itself. In some experiments for Thwaites Glacier the grounding line is able to recover from a severely retreated state over 100 km behind its present-day position. Such a dramatic recovery demonstrates that it is possible, at least in principle, to stop and reverse an ongoing marine ice sheet collapse. If the ice shelf regrounds on the artificial sill itself, erosion of the sill beneath the grounded ice could reduce the effectiveness of the intervention. However, experiments including sill erosion suggest that even a very weak sill (1 kPa) could delay a collapse for centuries. The scale of the artificial sills in Greenlandic fjords is comparable to

  19. Melting ice

    NASA Astrophysics Data System (ADS)

    Benedetto, Elmo

    2018-01-01

    In this brief frontline, we want to describe the well-known fact that, when freshwater ice melts, the freshwater liquid level does not change. In the Italian Ministerial programs, fluid statics is introduced in the three years of middle school (students of 11-13 years) and during the first two years of high school (14-15 years). The Italian textbooks do not clearly explain why the abovementioned phenomenon occurs. The explanations are qualitative and they may lead to misinterpretation. I have noted that the students are very curious about this phenomenon. They sought a demonstration from books and from the web; and when they do not find it they asked me. Moreover, they have allowed me to observe that there are contradictory statements about the melting of icebergs. Some authors claim that they would not raise the sea-level, others say the opposite. Honestly speaking, I had never thought about this phenomenon and in classroom I tried to give them proof, expressing my opinion about the melting of icebergs.

  20. Ice cream structural elements that affect melting rate and hardness.

    PubMed

    Muse, M R; Hartel, R W

    2004-01-01

    Statistical models were developed to reveal which structural elements of ice cream affect melting rate and hardness. Ice creams were frozen in a batch freezer with three types of sweetener, three levels of the emulsifier polysorbate 80, and two different draw temperatures to produce ice creams with a range of microstructures. Ice cream mixes were analyzed for viscosity, and finished ice creams were analyzed for air cell and ice crystal size, overrun, and fat destabilization. The ice phase volume of each ice cream were calculated based on the freezing point of the mix. Melting rate and hardness of each hardened ice cream was measured and correlated with the structural attributes by using analysis of variance and multiple linear regression. Fat destabilization, ice crystal size, and the consistency coefficient of the mix were found to affect the melting rate of ice cream, whereas hardness was influenced by ice phase volume, ice crystal size, overrun, fat destabilization, and the rheological properties of the mix.

  1. Recent rift formation and impact on the structural integrity of the Brunt Ice Shelf, East Antarctica

    NASA Astrophysics Data System (ADS)

    De Rydt, Jan; Hilmar Gudmundsson, G.; Nagler, Thomas; Wuite, Jan; King, Edward C.

    2018-02-01

    We report on the recent reactivation of a large rift in the Brunt Ice Shelf, East Antarctica, in December 2012 and the formation of a 50 km long new rift in October 2016. Observations from a suite of ground-based and remote sensing instruments between January 2000 and July 2017 were used to track progress of both rifts in unprecedented detail. Results reveal a steady accelerating trend in their width, in combination with alternating episodes of fast ( > 600 m day-1) and slow propagation of the rift tip, controlled by the heterogeneous structure of the ice shelf. A numerical ice flow model and a simple propagation algorithm based on the stress distribution in the ice shelf were successfully used to hindcast the observed trajectories and to simulate future rift progression under different assumptions. Results show a high likelihood of ice loss at the McDonald Ice Rumples, the only pinning point of the ice shelf. The nascent iceberg calving and associated reduction in pinning of the Brunt Ice Shelf may provide a uniquely monitored natural experiment of ice shelf variability and provoke a deeper understanding of similar processes elsewhere in Antarctica.

  2. RTopo-2: A global high-resolution dataset of ice sheet topography, ice shelf cavity geometry and ocean bathymetry

    NASA Astrophysics Data System (ADS)

    Timmermann, Ralph; Schaffer, Janin

    2016-04-01

    The RTopo-1 data set of Antarctic ice sheet/shelf geometry and global ocean bathymetry has proven useful not only for modelling studies of ice-ocean interaction in the southern hemisphere. Following the spirit of this data set, we introduce a new product (RTopo-2) that contains consistent maps of global ocean bathymetry, upper and lower ice surface topographies for Greenland and Antarctica, and global surface height on a spherical grid with now 30 arc seconds resolution. We used the General Bathymetric Chart of the Oceans (GEBCO_2014) as the backbone and added the International Bathymetric Chart of the Arctic Ocean version 3 (IBCAOv3) and the International Bathymetric Chart of the Southern Ocean (IBCSO) version 1. To achieve a good representation of the fjord and shelf bathymetry around the Greenland continent, we corrected data from earlier gridded products in the areas of Petermann Glacier, Hagen Bræ and Helheim Glacier assuming that sub-ice and fjord bathymetries roughly follow plausible Last Glacial Maximum ice flow patterns. For the continental shelf off northeast Greenland and the floating ice tongue of Nioghalvfjerdsfjorden Glacier at about 79°N, we incorporated a high-resolution digital bathymetry model including all available multibeam survey data for the region. Radar data for ice surface and ice base topographies of the floating ice tongues of Nioghalvfjerdsfjorden Glacier and Zachariæ Isstrøm have been obtained from the data centers of Technical University of Denmark (DTU), Operation Icebridge (NASA/NSF) and Alfred Wegener Institute (AWI). For the Antarctic ice sheet/ice shelves, RTopo-2 largely relies on the Bedmap-2 product but applies corrections for the geometry of Getz, Abbot and Fimbul ice shelf cavities. The data set is available in full and in regional subsets in NetCDF format from the PANGAEA database.

  3. Local ice melting by an antifreeze protein.

    PubMed

    Calvaresi, Matteo; Höfinger, Siegfried; Zerbetto, Francesco

    2012-07-09

    Antifreeze proteins, AFP, impede freezing of bodily fluids and damaging of cellular tissues by low temperatures. Adsorption-inhibition mechanisms have been developed to explain their functioning. Using in silico Molecular Dynamics, we show that type I AFP can also induce melting of the local ice surface. Simulations of antifreeze-positive and antifreeze-negative mutants show a clear correlation between melting induction and antifreeze activity. The presence of local melting adds a function to type I AFPs that is unique to these proteins. It may also explain some apparently conflicting experimental results where binding to ice appears both quasipermanent and reversible.

  4. Ice sheet margins and ice shelves

    NASA Technical Reports Server (NTRS)

    Thomas, R. H.

    1984-01-01

    The effect of climate warming on the size of ice sheet margins in polar regions is considered. Particular attention is given to the possibility of a rapid response to warming on the order of tens to hundreds of years. It is found that the early response of the polar regions to climate warming would be an increase in the area of summer melt on the ice sheets and ice shelves. For sufficiently large warming (5-10C) the delayed effects would include the breakup of the ice shelves by an increase in ice drainage rates, particularly from the ice sheets. On the basis of published data for periodic changes in the thickness and melting rates of the marine ice sheets and fjord glaciers in Greenland and Antarctica, it is shown that the rate of retreat (or advance) of an ice sheet is primarily determined by: bedrock topography; the basal conditions of the grounded ice sheet; and the ice shelf condition downstream of the grounding line. A program of satellite and ground measurements to monitor the state of ice sheet equilibrium is recommended.

  5. Water freezing and ice melting

    DOE PAGES

    Malolepsza, Edyta; Keyes, Tom

    2015-10-12

    The generalized replica exchange method (gREM) is designed to sample states with coexisting phases and thereby to describe strong first order phase transitions. The isobaric MD version of the gREM is presented and applied to freezing of liquid water, and melting of hexagonal and cubic ice. It is confirmed that coexisting states are well sampled. The statistical temperature as a function of enthalpy, T S(H), is obtained. Hysteresis between freezing and melting is observed and discussed. The entropic analysis of phase transitions is applied and equilibrium transition temperatures, latent heats, and surface tensions are obtained for hexagonal ice↔liquid and cubicmore » ice↔liquid, with excellent agreement with published values. A new method is given to assign water molecules among various symmetry types. As a result, pathways for water freezing, ultimately leading to hexagonal ice, are found to contain intermediate layered structures built from hexagonal and cubic ice.« less

  6. Compression experiments on artificial, alpine and marine ice: implications for ice-shelf/continental interactions

    NASA Astrophysics Data System (ADS)

    Dierckx, Marie; Goossens, Thomas; Samyn, Denis; Tison, Jean-Louis

    2010-05-01

    Antarctic ice shelves are important components of continental ice dynamics, in that they control grounded ice flow towards the ocean. As such, Antarctic ice shelves are a key parameter to the stability of the Antarctic ice sheet in the context of global change. Marine ice, formed by sea water accretion beneath some ice shelves, displays distinct physical (grain textures, bubble content, ...) and chemical (salinity, isotopic composition, ...) characteristics as compared to glacier ice and sea ice. The aim is to refine Glen's flow relation (generally used for ice behaviour in deformation) under various parameters (temperature, salinity, debris, grain size ...) to improve deformation laws used in dynamic ice shelf models, which would then give more accurate and / or realistic predictions on ice shelf stability. To better understand the mechanical properties of natural ice, deformation experiments were performed on ice samples in laboratory, using a pneumatic compression device. To do so, we developed a custom built compression rig operated by pneumatic drives. It has been designed for performing uniaxial compression tests at constant load and under unconfined conditions. The operating pressure ranges from about 0.5 to 10 Bars. This allows modifying the experimental conditions to match the conditions found at the grounding zone (in the 1 Bar range). To maintain the ice at low temperature, the samples are immersed in a Silicone oil bath connected to an external refrigeration system. During the experiments, the vertical displacement of the piston and the applied force is measured by sensors which are connected to a digital acquisition system. We started our experiments with artificial ice and went on with continental ice samples from glaciers in the Alps. The first results allowed us to acquire realistic mechanical data for natural ice. Ice viscosity was calculated for different types of artificial ice, using Glen's flow law, and showed the importance of impurities

  7. The effect of under-ice melt ponds on their surroundings in the Arctic

    NASA Astrophysics Data System (ADS)

    Feltham, D. L.; Smith, N.; Flocco, D.

    2016-12-01

    In the summer months, melt water from the surface of the Arctic sea ice can percolate down through the ice and flow out of its base. This water is relatively warm and fresh compared to the ocean water beneath it, and so it floats between the ice and the oceanic mixed layer, forming pools of melt water called under-ice melt ponds. Sheets of ice, known as false bottoms, can subsequently form via double diffusion processes at the under-ice melt pond interface with the ocean, trapping the pond against the ice and completely isolating it from the ocean below. This has an insulating effect on the parent sea ice above the trapped pond, altering its rate of basal ablation. A one-dimensional, thermodynamic model of Arctic sea ice has been adapted to study the evolution of under-ice melt ponds and false bottoms over time. Comparing simulations of sea ice evolution with and without an under-ice melt pond provides a measure of how an under-ice melt pond affects the mass balance of the sea ice above it. Sensitivity studies testing the response of the model to a range of uncertain parameters have been performed, revealing some interesting implications of under-ice ponds during their life cycle. By changing the rate of basal ablation of the parent sea ice, and so the flux of fresh water and salt into the ocean, under-ice melt ponds affect the properties of the mixed layer beneath the sea ice. Our model of under-ice melt pond refreezing has been coupled to a simple oceanic mixed layer model to determine the effect on mixed layer depth, salinity and temperature.

  8. Greenland Ice Sheet Surface Temperature, Melt, and Mass Loss: 2000-2006

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Williams, Richard S., Jr.; Luthcke, Scott B.; DiGirolamo, Nocolo

    2007-01-01

    Extensive melt on the Greenland Ice Sheet has been documented by a variety of ground and satellite measurements in recent years. If the well-documented warming continues in the Arctic, melting of the Greenland Ice Sheet will likely accelerate, contributing to sea-level rise. Modeling studies indicate that an annual or summer temperature rise of 1 C on the ice sheet will increase melt by 20-50% therefore, surface temperature is one of the most important ice-sheet parameters to study for analysis of changes in the mass balance of the ice-sheet. The Greenland Ice Sheet contains enough water to produce a rise in eustatic sea level of up to 7.0 m if the ice were to melt completely. However, even small changes (centimeters) in sea level would cause important economic and societal consequences in the world's major coastal cities thus it is extremely important to monitor changes in the ice-sheet surface temperature and to ultimately quantify these changes in terms of amount of sea-level rise. We have compiled a high-resolution, daily time series of surface temperature of the Greenland Ice Sheet, using the I-km resolution, clear-sky land-surface temperature (LST) standard product from the Moderate-Resolution Imaging Spectroradiometer (MODIS), from 2000 - 2006. We also use Gravity Recovery and Climate Experiment (GRACE) data, averaged over 10-day periods, to measure change in mass of the ice sheet as it melt and snow accumulates. Surface temperature can be used to determine frequency of surface melt, timing of the start and the end of the melt season, and duration of melt. In conjunction with GRACE data, it can also be used to analyze timing of ice-sheet mass loss and gain.

  9. Evaluation of Ice sheet evolution and coastline changes from 1960s in Amery Ice Shelf using multi-source remote sensing images

    NASA Astrophysics Data System (ADS)

    Qiao, G.; Ye, W.; Scaioni, M.; Liu, S.; Feng, T.; Liu, Y.; Tong, X.; Li, R.

    2013-12-01

    Global change is one of the major challenges that all the nations are commonly facing, and the Antarctica ice sheet changes have been playing a critical role in the global change research field during the past years. Long time-series of ice sheet observations in Antarctica would contribute to the quantitative evaluation and precise prediction of the effects on global change induced by the ice sheet, of which the remote sensing technology would make critical contributions. As the biggest ice shelf and one of the dominant drainage systems in East Antarctic, the Amery Ice Shelf has been making significant contributions to the mass balance of the Antarctic. Study of Amery Ice shelf changes would advance the understanding of Antarctic ice shelf evolution as well as the overall mass balance. At the same time, as one of the important indicators of Antarctica ice sheet characteristics, coastlines that can be detected from remote sensing imagery can help reveal the nature of the changes of ice sheet evolution. Most of the scientific research on Antarctica with satellite remote sensing dated from 1970s after LANDSAT satellite was brought into operation. It was the declassification of the cold war satellite reconnaissance photographs in 1995, known as Declassified Intelligence Satellite Photograph (DISP) that provided a direct overall view of the Antarctica ice-sheet's configuration in 1960s, greatly extending the time span of Antarctica surface observations. This paper will present the evaluation of ice-sheet evolution and coastline changes in Amery Ice Shelf from 1960s, by using multi-source remote sensing images including the DISP images and the modern optical satellite images. The DISP images scanned from negatives were first interior-oriented with the associated parameters, and then bundle block adjustment technology was employed based on the tie points and control points, to derive the mosaic image of the research region. Experimental results of coastlines generated

  10. Warming Seas and Melting Ice Sheets

    NASA Image and Video Library

    2017-12-08

    Sea level rise is a natural consequence of the warming of our planet. We know this from basic physics. When water heats up, it expands. So when the ocean warms, sea level rises. When ice is exposed to heat, it melts. And when ice on land melts and water runs into the ocean, sea level rises. For thousands of years, sea level has remained relatively stable and human communities have settled along the planet’s coastlines. But now Earth’s seas are rising. Globally, sea level has risen about eight inches since the beginning of the 20th century and more than two inches in the last 20 years alone. All signs suggest that this rise is accelerating. Read more: go.nasa.gov/1heZn29 Caption: An iceberg floats in Disko Bay, near Ilulissat, Greenland, on July 24, 2015. The massive Greenland ice sheet is shedding about 300 gigatons of ice a year into the ocean, making it the single largest source of sea level rise from melting ice. Credits: NASA/Saskia Madlener NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  11. Rotation of melting ice disks due to melt fluid flow.

    PubMed

    Dorbolo, S; Adami, N; Dubois, C; Caps, H; Vandewalle, N; Darbois-Texier, B

    2016-03-01

    We report experiments concerning the melting of ice disks (85 mm in diameter and 14 mm in height) at the surface of a thermalized water bath. During the melting, the ice disks undergo translational and rotational motions. In particular, the disks rotate. The rotation speed has been found to increase with the bath temperature. We investigated the flow under the bottom face of the ice disks by a particle image velocimetry technique. We find that the flow goes downwards and also rotates horizontally, so that a vertical vortex is generated under the ice disk. The proposed mechanism is the following. In the vicinity of the bottom face of the disk, the water eventually reaches the temperature of 4 °C for which the water density is maximum. The 4 °C water sinks and generates a downwards plume. The observed vertical vorticity results from the flow in the plume. Finally, by viscous entrainment, the horizontal rotation of the flow induces the solid rotation of the ice block. This mechanism seems generic: any vertical flow that generates a vortex will induce the rotation of a floating object.

  12. Analogue modelling of the influence of ice shelf collapse on the flow of ice sheets grounded below sea-level

    NASA Astrophysics Data System (ADS)

    Corti, Giacomo; Zeoli, Antonio

    2016-04-01

    The sudden breakup of ice shelves is expected to result in significant acceleration of inland glaciers, a process related to the removal of the buttressing effect exerted by the ice shelf on the tributary glaciers. This effect has been tested in previous analogue models, which however applied to ice sheets grounded above sea level (e.g., East Antarctic Ice Sheet; Antarctic Peninsula and the Larsen Ice Shelf). In this work we expand these previous results by performing small-scale laboratory models that analyse the influence of ice shelf collapse on the flow of ice streams draining an ice sheet grounded below sea level (e.g., the West Antarctic Ice Sheet). The analogue models, with dimensions (width, length, thickness) of 120x70x1.5cm were performed at the Tectonic Modelling Laboratory of CNR-IGG of Florence, Italy, by using Polydimethilsyloxane (PDMS) as analogue for the flowing ice. This transparent, Newtonian silicone has been shown to well approximate the rheology of natural ice. The silicone was allowed to flow into a water reservoir simulating natural conditions in which ice streams flow into the sea, terminating in extensive ice shelves which act as a buttress for their glaciers and slow their flow. The geometric scaling ratio was 10(-5), such that 1cm in the models simulated 1km in nature; velocity of PDMS (a few mm per hour) simulated natural velocities of 100-1000 m/year. Instability of glacier flow was induced by manually removing a basal silicone platform (floating on water) exerting backstresses to the flowing analogue glacier: the simple set-up adopted in the experiments isolates the effect of the removal of the buttressing effect that the floating platform exerts on the flowing glaciers, thus offering insights into the influence of this parameter on the flow perturbations resulting from a collapse event. The experimental results showed a significant increase in glacier velocity close to its outlet following ice shelf breakup, a process similar to what

  13. Chronicling ice shelf history in the sediments left behind

    NASA Astrophysics Data System (ADS)

    Rosenheim, B. E.; Subt, C.; Shevenell, A.; Guitard, M.; Vadman, K. J.; DeCesare, M.; Wellner, J. S.; Bart, P. J.; Lee, J. I.; Domack, E. W.; Yoo, K. C.; Hayes, J. M.

    2017-12-01

    Collapsing and retreating ice shelves leave unmistakable sediment sequences on the Antarctic margin. These sequences tell unequivocal stories of collapse or retreat through a typical progression of sub-ice shelf diamicton (marking the past positions of grounding lines), sequentially overlain by a granulated facies from beneath the ice shelf, ice rafted debris from the calving line, and finally open marine sediment. The timelines to these stories, however, are troublesome. Difficulties in chronicling these stories recorded in sediment have betrayed their importance to our understanding of a warming world in many cases. The difficulties involve the concerted lack of preservation/production of calcium carbonate tests from the water column above and admixture of relict organic material from older sources of carbon. Here, we summarize our advances in the last decade of overcoming difficulties associated with the paucity of carbonate and creating chronologies of ice shelf retreat into the deglacial history of Antarctica by exploiting the range of thermochemical stability in organic matter (Ramped PyrOx) from these sediment sequences. We describe our success in comparing Ramped PyrOx 14C dates with foraminiferal dates, the relationship between sediment facies and radiocarbon age spectrum, and our ability to push limits of dating sediments deposited underneath ice shelves. With attention to the caveats of recent dating developments, we summarize expectations that geologist should have when coring the Antarctic margins to discern deglacial history. Perhaps most important among these expectations is the ability to design coring expeditions without regard to our ability to date calcium carbonate microfossils within the cores, in essence removing suspense of knowing whether cores taken from crucial paleo ice channels and other bathymetric features will ultimately yield a robust chronology for its sedimentary sequence.

  14. Frazil-ice growth rate and dynamics in mixed layers and sub-ice-shelf plumes

    NASA Astrophysics Data System (ADS)

    Rees Jones, David W.; Wells, Andrew J.

    2018-01-01

    The growth of frazil or granular ice is an important mode of ice formation in the cryosphere. Recent advances have improved our understanding of the microphysical processes that control the rate of ice-crystal growth when water is cooled beneath its freezing temperature. These advances suggest that crystals grow much faster than previously thought. In this paper, we consider models of a population of ice crystals with different sizes to provide insight into the treatment of frazil ice in large-scale models. We consider the role of crystal growth alongside the other physical processes that determine the dynamics of frazil ice. We apply our model to a simple mixed layer (such as at the surface of the ocean) and to a buoyant plume under a floating ice shelf. We provide numerical calculations and scaling arguments to predict the occurrence of frazil-ice explosions, which we show are controlled by crystal growth, nucleation, and gravitational removal. Faster crystal growth, higher secondary nucleation, and slower gravitational removal make frazil-ice explosions more likely. We identify steady-state crystal size distributions, which are largely insensitive to crystal growth rate but are affected by the relative importance of secondary nucleation to gravitational removal. Finally, we show that the fate of plumes underneath ice shelves is dramatically affected by frazil-ice dynamics. Differences in the parameterization of crystal growth and nucleation give rise to radically different predictions of basal accretion and plume dynamics, and can even impact whether a plume reaches the end of the ice shelf or intrudes at depth.

  15. Optical properties of melting first-year Arctic sea ice

    NASA Astrophysics Data System (ADS)

    Light, Bonnie; Perovich, Donald K.; Webster, Melinda A.; Polashenski, Christopher; Dadic, Ruzica

    2015-11-01

    The albedo and transmittance of melting, first-year Arctic sea ice were measured during two cruises of the Impacts of Climate on the Eco-Systems and Chemistry of the Arctic Pacific Environment (ICESCAPE) project during the summers of 2010 and 2011. Spectral measurements were made for both bare and ponded ice types at a total of 19 ice stations in the Chukchi and Beaufort Seas. These data, along with irradiance profiles taken within boreholes, laboratory measurements of the optical properties of core samples, ice physical property observations, and radiative transfer model simulations are employed to describe representative optical properties for melting first-year Arctic sea ice. Ponded ice was found to transmit roughly 4.4 times more total energy into the ocean, relative to nearby bare ice. The ubiquitous surface-scattering layer and drained layer present on bare, melting sea ice are responsible for its relatively high albedo and relatively low transmittance. Light transmittance through ponded ice depends on the physical thickness of the ice and the magnitude of the scattering coefficient in the ice interior. Bare ice reflects nearly three-quarters of the incident sunlight, enhancing its resiliency to absorption by solar insolation. In contrast, ponded ice absorbs or transmits to the ocean more than three-quarters of the incident sunlight. Characterization of the heat balance of a summertime ice cover is largely dictated by its pond coverage, and light transmittance through ponded ice shows strong contrast between first-year and multiyear Arctic ice covers.

  16. The kinematic response of Petermann Glacier, Greenland to ice shelf perturbation

    NASA Astrophysics Data System (ADS)

    Hubbard, A.; Box, J. E.; Bates, R.; Nick, F.; Luckman, A. J.; van de Wal, R.; Doyle, S. H.

    2010-12-01

    The acceleration and dynamic thinning of interior zones of the polar ice sheets due to outlet/ice shelf retreat has been identified as a factor hastening their demise and contribution to global sea-level rise. The detachment of a 275 square km area of the Petermann Glacier ice shelf in August, 2010 presents a natural experiment to investigate the timing, mechanisms and efficacy of upstream dynamic feedbacks resulting from a singular but potentially significant frontal perturbation. In 2009, a permanent geodetic/differential GPS strain network logging every 10 seconds was deployed along a 200 km longitudinal profile from the ice front across the grounding line extending into the interior of Petermann Glacier to characterize the system’s state before, during and after any such event. We present an overview of the geophysical measurements conducted and analyze the kinematics of the shelf detachment in relation to local environmental forcing. Finally, we discuss the postulated instantaneous and ongoing evolution in force-balance and concomitant dynamic response resulting from the perturbation along with its implications for Petermann's ongoing stability. Petermann Glacier GNSS base & telemetric GPS facility: community AA & rehab meet point. On ice geodetic-GPS station flat out & reading 0 Volts

  17. Modeling of submarine melting in Petermann Fjord, Northwestern Greenland using an ocean general circulation model

    NASA Astrophysics Data System (ADS)

    Cai, C.; Rignot, E. J.; Xu, Y.; An, L.

    2013-12-01

    Basal melting of the floating tongue of Petermann Glacier, in northwestern Greenland is by far the largest process of mass ablation. Melting of the floating tongue is controlled by the buoyancy of the melt water plume, the pressure-dependence of the melting point of sea ice, and the mixing of warm subsurface water with fresh buoyant subglacial discharge. In prior simulations of this melting process, the role of subglacial discharge has been neglected because in similar configurations (floating ice shelves) in the Antarctic, surface runoff is negligible; this is however not true in Greenland. Here, we use the Mass Institute of Technology general circulation model (MITgcm) at a high spatial resolution (10 m x 10 m) to simulate the melting process of the ice shelf in 2-D. the model is constrained by ice shelf bathymetry and ice thickness from NASA Operation IceBridge, ocean temperature/salinity data from Johnson et al. (2011), and subglacial discharge estimated from output products of the Regional Atmospheric Climate Model (RACMO). We compare the results obtained in winter (no runoff) with summer, and the sensitivity of the results to thermal forcing from the ocean, and to the magnitude of subglacial runoff. We conclude on the impact of the ocean and surface melting on the melting regime of the floating ice tongue of Petermann. This work is performed under a contract with NASA Cryosphere Program.

  18. Towards a Universal Calving Law: Modeling Ice Shelves Using Damage Mechanics

    NASA Astrophysics Data System (ADS)

    Whitcomb, M.; Bassis, J. N.; Price, S. F.; Lipscomb, W. H.

    2017-12-01

    Modeling iceberg calving from ice shelves and ice tongues is a particularly difficult problem in glaciology because of the wide range of observed calving rates. Ice shelves naturally calve large tabular icebergs at infrequent intervals, but may instead calve smaller bergs regularly or disintegrate due to hydrofracturing in warmer conditions. Any complete theory of iceberg calving in ice shelves must be able to generate realistic calving rate values depending on the magnitudes of the external forcings. Here we show that a simple damage evolution law, which represents crevasse distributions as a continuum field, produces reasonable estimates of ice shelf calving rates when added to the Community Ice Sheet Model (CISM). Our damage formulation is based on a linear stability analysis and depends upon the bulk stress and strain rate in the ice shelf, as well as the surface and basal melt rates. The basal melt parameter in our model enhances crevasse growth near the ice shelf terminus, leading to an increased iceberg production rate. This implies that increasing ocean temperatures underneath ice shelves will drive ice shelf retreat, as has been observed in the Amundsen and Bellingshausen Seas. We show that our model predicts broadly correct calving rates for ice tongues ranging in length from 10 km (Erebus) to over 100 km (Drygalski), by matching the computed steady state lengths to observations. In addition, we apply the model to idealized Antarctic ice shelves and show that we can also predict realistic ice shelf extents. Our damage mechanics model provides a promising, computationally efficient way to compute calving fluxes and links ice shelf stability to climate forcing.

  19. Turbulent heat exchange between water and ice at an evolving ice-water interface

    NASA Astrophysics Data System (ADS)

    Ramudu, Eshwan; Hirsh, Benjamin Henry; Olson, Peter; Gnanadesikan, Anand

    2016-07-01

    We conduct laboratory experiments on the time evolution of an ice layer cooled from below and subjected to a turbulent shear flow of warm water from above. Our study is motivated by observations of warm water intrusion into the ocean cavity under Antarctic ice shelves, accelerating the melting of their basal surfaces. The strength of the applied turbulent shear flow in our experiments is represented in terms of its Reynolds number $\\textit{Re}$, which is varied over the range $2.0\\times10^3 \\le \\textit{Re} \\le 1.0\\times10^4$. Depending on the water temperature, partial transient melting of the ice occurs at the lower end of this range of $\\textit{Re}$ and complete transient melting of the ice occurs at the higher end. Following these episodes of transient melting, the ice reforms at a rate that is independent of $\\textit{Re}$. We fit our experimental measurements of ice thickness and temperature to a one-dimensional model for the evolution of the ice thickness in which the turbulent heat transfer is parameterized in terms of the friction velocity of the shear flow. The melting mechanism we investigate in our experiments can easily account for the basal melting rate of Pine Island Glacier ice shelf inferred from observations.

  20. Simulating Ice Shelf Response to Potential Triggers of Collapse Using the Material Point Method

    NASA Astrophysics Data System (ADS)

    Huth, A.; Smith, B. E.

    2017-12-01

    Weakening or collapse of an ice shelf can reduce the buttressing effect of the shelf on its upstream tributaries, resulting in sea level rise as the flux of grounded ice into the ocean increases. Here we aim to improve sea level rise projections by developing a prognostic 2D plan-view model that simulates the response of an ice sheet/ice shelf system to potential triggers of ice shelf weakening or collapse, such as calving events, thinning, and meltwater ponding. We present initial results for Larsen C. Changes in local ice shelf stresses can affect flow throughout the entire domain, so we place emphasis on calibrating our model to high-resolution data and precisely evolving fracture-weakening and ice geometry throughout the simulations. We primarily derive our initial ice geometry from CryoSat-2 data, and initialize the model by conducting a dual inversion for the ice viscosity parameter and basal friction coefficient that minimizes mismatch between modeled velocities and velocities derived from Landsat data. During simulations, we implement damage mechanics to represent fracture-weakening, and track ice thickness evolution, grounding line position, and ice front position. Since these processes are poorly represented by the Finite Element Method (FEM) due to mesh resolution issues and numerical diffusion, we instead implement the Material Point Method (MPM) for our simulations. In MPM, the ice domain is discretized into a finite set of Lagrangian material points that carry all variables and are tracked throughout the simulation. Each time step, information from the material points is projected to a Eulerian grid where the momentum balance equation (shallow shelf approximation) is solved similarly to FEM, but essentially treating the material points as integration points. The grid solution is then used to determine the new positions of the material points and update variables such as thickness and damage in a diffusion-free Lagrangian frame. The grid does not store

  1. Retrieval of sea ice thickness during Arctic summer using melt pond color

    NASA Astrophysics Data System (ADS)

    Istomina, L.; Nicolaus, M.; Heygster, G.

    2016-12-01

    The thickness of sea ice is an important climatic variable. Together with the ice concentration, it defines the total sea ice volume, is linked within the climatic feedback mechanisms and affects the Arctic energy balance greatly. During Arctic summer, the sea ice cover changes rapidly, which includes the presence of melt ponds, as well as reduction of ice albedo and ice thickness. Currently available remote sensing retrievals of sea ice thickness utilize data from altimeter, microwave, thermal infrared sensors and their combinations. All of these methods are compromised in summer in the presence of melt. This only leaves in situ and airborne sea ice thickness data available in summer. At the same time, data of greater coverage is needed for assimilation in global circulation models and correct estimation of ice mass balance.This study presents a new approach to estimate sea ice thickness in summer in the presence of melt ponds. Analysis of field data obtained during the RV "Polarstern" cruise ARK27/3 (August - October 2012) has shown a clear connection of ice thickness under melt ponds to their measured spectral albedo and to melt pond color in the hue-saturation-luminance color space from field photographs. An empirical function is derived from the HSL values and applied to aerial imagery obtained during various airborne campaigns. Comparison to in situ ice thickness shows a good correspondence to the ice thickness value retrieved in the melt ponds. A similar retrieval is developed for satellite spectral bands using the connection of the measured pond spectral albedo to the ice thickness within the melt ponds. Correction of the retrieved ice thickness in ponds to derive total thickness of sea ice is discussed. Case studies and application to very high resolution optical data are presented, as well as a concept to transfer the method to satellite data of lower spatial resolution where melt ponds become subpixel features.

  2. Observations of brine plumes below melting Arctic sea ice

    NASA Astrophysics Data System (ADS)

    Peterson, Algot K.

    2018-02-01

    In sea ice, interconnected pockets and channels of brine are surrounded by fresh ice. Over time, brine is lost by gravity drainage and flushing. The timing of salt release and its interaction with the underlying water can impact subsequent sea ice melt. Turbulence measurements 1 m below melting sea ice north of Svalbard reveal anticorrelated heat and salt fluxes. From the observations, 131 salty plumes descending from the warm sea ice are identified, confirming previous observations from a Svalbard fjord. The plumes are likely triggered by oceanic heat through bottom melt. Calculated over a composite plume, oceanic heat and salt fluxes during the plumes account for 6 and 9 % of the total fluxes, respectively, while only lasting in total 0.5 % of the time. The observed salt flux accumulates to 7.6 kg m-2, indicating nearly full desalination of the ice. Bulk salinity reduction between two nearby ice cores agrees with accumulated salt fluxes to within a factor of 2. The increasing fraction of younger, more saline ice in the Arctic suggests an increase in desalination processes with the transition to the new Arctic.

  3. Arctic Sea Ice Basal Melt Onset Variability and Associated Ocean Surface Heating

    NASA Astrophysics Data System (ADS)

    Merrick, R. A.; Hutchings, J. K.

    2015-12-01

    The interannual and regional variability in Arctic sea ice melt has previously been characterized only in terms of surface melting. A focus on the variability in the onset of basal melt is additionally required to understand Arctic melt patterns. Monitoring basal melt provides a glimpse into the importance of ocean heating to sea ice melt. This warming is predominantly through seawater exposure due to lead opening and the associated solar warming at the ocean's surface. We present the temporal variability in basal melt onset observed by ice mass balance buoys throughout the Arctic Ocean since 2003, providing a different perspective than the satellite microwave data used to measure the onset of surface melt. We found that melt onset varies greatly, even for buoys deployed within 100km of each other. Therefore large volumes of data are necessary to accurately estimate the variability of basal melt onset. Once the variability of basal melt onset has been identified, we can investigate how this range has been changing as a response to atmospheric and oceanic warming, changes in ice morphology as well as the intensification of the ice albedo feedback.

  4. Characteristics and processing of seismic data collected on thick, floating ice: Results from the Ross Ice Shelf, Antarctica

    USGS Publications Warehouse

    Beaudoin, Bruce C.; ten Brink, Uri S.; Stern, Tim A.

    1992-01-01

    Coincident reflection and refraction data, collected in the austral summer of 1988/89 by Stanford University and the Geophysical Division of the Department of Scientific and Industrial Research, New Zealand, imaged the crust beneath the Ross Ice Shelf, Antarctica. The Ross Ice Shelf is a unique acquisition environment for seismic reflection profiling because of its thick, floating ice cover. The ice shelf velocity structure is multilayered with a high velocity‐gradient firn layer constituting the upper 50 to 100 m. This near surface firn layer influences the data character by amplifying and frequency modulating the incoming wavefield. In addition, the ice‐water column introduces pervasive, high energy seafloor, intra‐ice, and intra‐water multiples that have moveout velocities similar to the expected subseafloor primary velocities. Successful removal of these high energy multiples relies on predictive deconvolution, inverse velocity stack filtering, and frequency filtering. Removal of the multiples reveals a faulted, sedimentary wedge which is truncated at or near the seafloor. Beneath this wedge the reflection character is diffractive to a two‐way traveltime of ∼7.2 s. At this time, a prominent reflection is evident on the southeast end of the reflection profile. This reflection is interpreted as Moho indicating that the crust is ∼21-km thick beneath the profile. These results provide seismic evidence that the extensional features observed in the Ross Sea region of the Ross Embayment extend beneath the Ross Ice Shelf.

  5. Ice-dammed lateral lake and epishelf lake insights into Holocene dynamics of Marguerite Trough Ice Stream and George VI Ice Shelf, Alexander Island, Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    Davies, Bethan J.; Hambrey, Michael J.; Glasser, Neil F.; Holt, Tom; Rodés, Angél; Smellie, John L.; Carrivick, Jonathan L.; Blockley, Simon P. E.

    2017-12-01

    We present new data regarding the past dynamics of Marguerite Trough Ice Stream, George VI Ice Shelf and valley glaciers from Ablation Point Massif on Alexander Island, Antarctic Peninsula. This ice-free oasis preserves a geological record of ice stream lateral moraines, ice-dammed lakes, ice-shelf moraines and valley glacier moraines, which we dated using cosmogenic nuclide ages. We provide one of the first detailed sediment-landform assemblage descriptions of epishelf lake shorelines. Marguerite Trough Ice Stream imprinted lateral moraines against eastern Alexander Island at 120 m at Ablation Point Massif. During deglaciation, lateral lakes formed in the Ablation and Moutonnée valleys, dammed against the ice stream in George VI Sound. Exposure ages from boulders on these shorelines yielded ages of 13.9 to 9.7 ka. Following recession of the ice stream, George VI Ice Shelf formed in George VI Sound. An epishelf lake formed at 15-20 m asl in Ablation and Moutonnée valleys, dated from 9.4 to 4.6 ka, suggesting that the lake was stable and persistent for some 5000 years. Lake-level lowering occurred after this, with the lake level at 12 m at 3.1 ± 0.4 ka and at 5 m asl today. A readvance of the valley glaciers on Alexander Island at 4.4 ± 0.7 ka is recorded by valley glacier moraines overlying epishelf lake sediments. We speculate that the glacier readvance, which occurred during a period of warmth, may have been caused by a dynamic response of the glaciers to a lowering in surface elevation of George VI Ice Shelf.

  6. Unravelling InSAR observed Antarctic ice-shelf flexure using 2-D elastic and viscoelastic modelling

    NASA Astrophysics Data System (ADS)

    Wild, Christian T.; Marsh, Oliver J.; Rack, Wolfgang

    2018-04-01

    Ice-shelf grounding zones link the Antarctic ice-sheets to the ocean. Differential interferometric synthetic aperture radar (DInSAR) is commonly used to monitor grounding-line locations, but also contains information on grounding-zone ice thickness, ice properties and tidal conditions beneath the ice shelf. Here, we combine in-situ data with numerical modelling of ice-shelf flexure to investigate 2-D controls on the tidal bending pattern on the Southern McMurdo Ice Shelf. We validate our results with 9 double-differential TerraSAR-X interferograms. It is necessary to make adjustments to the tidal forcing to directly compare observations with model output and we find that when these adjustments are small (< 1.5 cm) a viscoelastic model matches better, while an elastic model is more robust overall. Within landward embayments, where lateral stresses from surrounding protrusions damp the flexural response, a 2-D model captures behaviour that is missed in simple 1-D models. We conclude that improvements in current tide models are required to allow for the full exploitation of DInSAR in grounding-zone glaciology.

  7. Fives decades of strong temporal variability in the flow of the Brunt Ice Shelf, Antarctica

    NASA Astrophysics Data System (ADS)

    De Rydt, Jan; Gudmundsson, Hilmar; Nagler, Thomas

    2017-04-01

    The Brunt Ice Shelf, East Antarctica, is a complex conglomerate of meteoric and marine ice, weakly connected to the much larger and faster-flowing Stancomb Wills Glacier Tongue to the east, and pinned down to the seabed in a small area around the McDonalds Ice Rumples in the north. The ice shelf is home to the UK research station Halley, from which changes to the ice shelf have been monitored closely since the 1960s. A unique 50-year record of the flow speed and an intense surveying programme over the past 10 years, have revealed a strong temporal variability in the flow. In particular, the speed of the ice shelf has increased by 10% each year over the past few years. In order to understand these rapid changes, we use a state-of-the-art flow model in combination with a range of satellite, ground-based and airborne radar data, to accurately simulate the historical flow and recent changes. In particular, we model the effects of a recently formed rift that is propagating at a speed of up to 600m/day and threatens to dislodge the ice shelf from its pinning point at the McDonalds Ice Rumples. We also report on the recent reactivation of a large chasm which has prompted the relocation of the station during the 2016/17 austral summer.

  8. A preliminary study on isotopic evolution of ice by a melting experiment

    NASA Astrophysics Data System (ADS)

    Ham, J. Y.; Lee, J.; Lee, W. S.; Han, Y.; Hur, S. D.

    2016-12-01

    Evidences of melted snow at surface were found on some ice cores. Melted layers may generate a significant error when paleo-temperature was retrieved from ice cores using stable water isotopes. To resolve this problem, it is necessary to understand the isotopic changes of ice and its meltwater that is made during the ice and snow melting. Isotopic fractionations between liquid water and snow have been discussed by Taylor et al. (2002) and Lee et al. (2009). The goal of this work is to understand isotopic evolution of ice and its meltwater. Melting experiments in a cold room were designed and conducted with heat source (infrared lamp) to mimic solar radiation. Melting rates were calculated in terms of specific discharge (g/min). To control melting rates, distances between ice surface and heat source were adjusted in various conditions (1 cm, 10 cm and 20 cm). The experiments were conducted by three different melting rates, 1.6 g/min, 3.5 g/min and 5.8 g/min. We used cubic ice that has 3 cm in width, length and height in dimension with 1.5 kg or 2 kg of ice used totally. The total time spent melting the whole ice was 592, 783, and 1180 minutes, respectively. Cold room temperature was range of -1 to 1°C, which removes an effect of air temperature. Meltwater samples were collected and isotopic compositions of oxygen and hydrogen were determined by a cavity ring down spectrometer (Picarro L-1120) installed at the Korea Polar Research Institute. We also analyzed bulk water and bulk ice to make the ice used in the experiments (-8.20 ‰ and -58.73 ‰ for oxygen and hydrogen isotopes, respectively). The isotopic compositions of meltwater increased linearly or to a second degree polynomial. The isotopic variations were larger in the lower melting rates, compared to the higher melting rates (0.65 of lower melting rates vs. 0.35 higher melting rates for oxygen isotope). The slope of linear regression between oxygen and hydrogen ranged 6.2, 7.3 and 6.2, which is less than

  9. Forced convective melting at an evolving ice-water interface

    NASA Astrophysics Data System (ADS)

    Ramudu, Eshwan; Hirsh, Benjamin; Olson, Peter; Gnanadesikan, Anand

    2015-11-01

    The intrusion of warm Circumpolar Deep Water into the ocean cavity between the base of ice shelves and the sea bed in Antarctica causes melting at the ice shelves' basal surface, producing a turbulent melt plume. We conduct a series of laboratory experiments to investigate how the presence of forced convection (turbulent mixing) changes the delivery of heat to the ice-water interface. We also develop a theoretical model for the heat balance of the system that can be used to predict the change in ice thickness with time. In cases of turbulent mixing, the heat balance includes a term for turbulent heat transfer that depends on the friction velocity and an empirical coefficient. We obtain a new value for this coefficient by comparing the modeled ice thickness against measurements from a set of nine experiments covering one order of magnitude of Reynolds numbers. Our results are consistent with the altimetry-inferred melting rate under Antarctic ice shelves and can be used in climate models to predict their disintegration. This work was supported by NSF grant EAR-110371.

  10. Reflective properties of melt ponds on sea ice

    NASA Astrophysics Data System (ADS)

    Malinka, Aleksey; Zege, Eleonora; Istomina, Larysa; Heygster, Georg; Spreen, Gunnar; Perovich, Donald; Polashenski, Chris

    2018-06-01

    Melt ponds occupy a large part of the Arctic sea ice in summer and strongly affect the radiative budget of the atmosphere-ice-ocean system. In this study, the melt pond reflectance is considered in the framework of radiative transfer theory. The melt pond is modeled as a plane-parallel layer of pure water upon a layer of sea ice (the pond bottom). We consider pond reflection as comprising Fresnel reflection by the water surface and multiple reflections between the pond surface and its bottom, which is assumed to be Lambertian. In order to give a description of how to find the pond bottom albedo, we investigate the inherent optical properties of sea ice. Using the Wentzel-Kramers-Brillouin approximation approach to light scattering by non-spherical particles (brine inclusions) and Mie solution for spherical particles (air bubbles), we conclude that the transport scattering coefficient in sea ice is a spectrally independent value. Then, within the two-stream approximation of the radiative transfer theory, we show that the under-pond ice spectral albedo is determined by two independent scalar values: the transport scattering coefficient and ice layer thickness. Given the pond depth and bottom albedo values, the bidirectional reflectance factor (BRF) and albedo of a pond can be calculated with analytical formulas. Thus, the main reflective properties of the melt pond, including their spectral dependence, are determined by only three independent parameters: pond depth z, ice layer thickness H, and transport scattering coefficient of ice σt.The effects of the incident conditions and the atmosphere state are examined. It is clearly shown that atmospheric correction is necessary even for in situ measurements. The atmospheric correction procedure has been used in the model verification. The optical model developed is verified with data from in situ measurements made during three field campaigns performed on landfast and pack ice in the Arctic. The measured pond albedo

  11. Estimation of Melt Ponds over Arctic Sea Ice using MODIS Surface Reflectance Data

    NASA Astrophysics Data System (ADS)

    Ding, Y.; Cheng, X.; Liu, J.

    2017-12-01

    Melt ponds over Arctic sea ice is one of the main factors affecting variability of surface albedo, increasing absorption of solar radiation and further melting of snow and ice. In recent years, a large number of melt ponds have been observed during the melt season in Arctic. Moreover, some studies have suggested that late spring to mid summer melt ponds information promises to improve the prediction skill of seasonal Arctic sea ice minimum. In the study, we extract the melt pond fraction over Arctic sea ice since 2000 using three bands MODIS weekly surface reflectance data by considering the difference of spectral reflectance in ponds, ice and open water. The preliminary comparison shows our derived Arctic-wide melt ponds are in good agreement with that derived by the University of Hamburg, especially at the pond distribution. We analyze seasonal evolution, interannual variability and trend of the melt ponds, as well as the changes of onset and re-freezing. The melt pond fraction shows an asymmetrical growth and decay pattern. The observed melt ponds fraction is almost within 25% in early May and increases rapidly in June and July with a high fraction of more than 40% in the east of Greenland and Beaufort Sea. A significant increasing trend in the melt pond fraction is observed for the period of 2000-2017. The relationship between melt pond fraction and sea ice extent will be also discussed. Key Words: melt ponds, sea ice, Arctic

  12. An unusual early Holocene diatom event north of the Getz Ice Shelf (Amundsen Sea): Implications for West Antarctic Ice Sheet development

    NASA Astrophysics Data System (ADS)

    Esper, O.; Gersonde, R.; Hillenbrand, C.; Kuhn, G.; Smith, J.

    2011-12-01

    Modern global change affects not only the polar north but also, and to increasing extent, the southern high latitudes, especially the Antarctic regions covered by the West Antarctic Ice Sheet (WAIS). Consequently, knowledge of the mechanisms controlling past WAIS dynamics and WAIS behaviour at the last deglaciation is critical to predict its development in a future warming world. Geological and palaeobiological information from major drainage areas of the WAIS, like the Amundsen Sea Embayment, shed light on the history of the WAIS glaciers. Sediment records obtained from a deep inner shelf basin north of Getz Ice Shelf document a deglacial warming in three phases. Above a glacial diamicton and a sediment package barren of microfossils that document sediment deposition by grounded ice and below an ice shelf or perennial sea ice cover (possibly fast ice), respectively, a sediment section with diatom assemblages dominated by sea ice taxa indicates ice shelf retreat and seasonal ice-free conditions. This conclusion is supported by diatom-based summer temperature reconstructions. The early retreat was followed by a phase, when exceptional diatom ooze was deposited around 12,500 cal. years B.P. [1]. Microscopical inspection of this ooze revealed excellent preservation of diatom frustules of the species Corethron pennatum together with vegetative Chaetoceros, thus an assemblage usually not preserved in the sedimentary record. Sediments succeeding this section contain diatom assemblages indicating rather constant Holocene cold water conditions with seasonal sea ice. The deposition of the diatom ooze can be related to changes in hydrographic conditions including strong advection of nutrients. However, sediment focussing in the partly steep inner shelf basins cannot be excluded as a factor enhancing the thickness of the ooze deposits. It is not only the presence of the diatom ooze but also the exceptional preservation and the species composition of the diatom assemblage

  13. Monte Carlo Study of Melting of a Model Bulk Ice.

    NASA Astrophysics Data System (ADS)

    Han, Kyu-Kwang

    The methods of NVT (constant number, volume and temperature) and NPT (constant number, pressure and temperature) Monte Carlo computer simulations are used to examine the melting of a periodic hexagonal ice (ice Ih) sample with a unit cell of 192 (rigid) water molecules interacting via the revised central force potentials of Stillinger and Rahman (RSL2). In NVT Monte Carlo simulation of P-T plot for a constant density (0.904g/cm^3) is used to locate onset of the liquid-solid coexistence region (where the slope of the pressure changes sign) and estimate the (constant density) melting point. The slope reversal is a natural consequence of the constant density condition for substances which expand upon freezing and it is pointed out that this analysis is extremely useful for substances such as water. In this study, a sign reversal of the pressure slope is observed near 280 K, indicating that the RSL2 potentials reproduce the freezing expansion expected for water and support a bulk ice Ih system which melts <280 K. The internal energy, specific heat, and two dimensional structure factors for the constant density H_2O system are also examined at a range of temperatures between 100 and 370 K and support the P-T analysis for location of the melting point. This P-T analysis might likewise be useful for determining a (constant density) freezing point, or, with multiple simulations at appropriate densities, the triple point. For NPT Monte Carlo simulations preliminary results are presented. In this study the density, enthalpy, specific heat, and structure factor dependences on temperature are monitored during a sequential heating of the system from 100 to 370 K at a constant pressure (1 atm.). A jump in density upon melting is observed and indicates that the RSL2 potentials reproduce the melting contraction of ice. From the dependences of monitored physical properties on temperature an upper bound on the melting temperature is estimated. In this study we made the first

  14. Processes controlling surface, bottom and lateral melt of Arctic sea ice in a state of the art sea ice model.

    PubMed

    Tsamados, Michel; Feltham, Daniel; Petty, Alek; Schroeder, David; Flocco, Daniela

    2015-10-13

    We present a modelling study of processes controlling the summer melt of the Arctic sea ice cover. We perform a sensitivity study and focus our interest on the thermodynamics at the ice-atmosphere and ice-ocean interfaces. We use the Los Alamos community sea ice model CICE, and additionally implement and test three new parametrization schemes: (i) a prognostic mixed layer; (ii) a three equation boundary condition for the salt and heat flux at the ice-ocean interface; and (iii) a new lateral melt parametrization. Recent additions to the CICE model are also tested, including explicit melt ponds, a form drag parametrization and a halodynamic brine drainage scheme. The various sea ice parametrizations tested in this sensitivity study introduce a wide spread in the simulated sea ice characteristics. For each simulation, the total melt is decomposed into its surface, bottom and lateral melt components to assess the processes driving melt and how this varies regionally and temporally. Because this study quantifies the relative importance of several processes in driving the summer melt of sea ice, this work can serve as a guide for future research priorities. © 2015 The Author(s).

  15. The Beauty and Complexity of the Brunt Ice Shelf from MOA and ICESat

    NASA Technical Reports Server (NTRS)

    Humbert, Angelika; Shuman, Christopher A.

    2005-01-01

    Beginning in February 2003, NASA's Ice, Cloud, and land Elevation Satellite (ICESat) has determined surface elevations from approx. 86degN to 86degS latitude. To date, altimetry data have been acquired in a series of observation periods in repeated track patterns using all three Geoscience Laser Altimeter System (GLAS) lasers. This paper will focus on ice shelf elevation data that were obtained in 2003 across the Brunt Ice Shelf and the Stancomb-Wills Ice Tongue. Integrating the altimetry with the recently available MODIS Mosaic of Antarctica (MOA), quantifies the relative accuracy and precision of the resulting ice shelf elevations. Furthermore, the elevation data was processed onto an elevation grid, by regional interpolation across the area s complex glacial features only. Ice thickness estimation from the altimetry of the floating ice is discussed. ICESat operates at 40Hz and its elevation data is obtained every 172m along track. These elevations have a relative accuracy of about 14cm based on the standard deviation of low-slope crossover differences and a precision of close to 2cm for the Laser 2a, Release 21, GLA12 data used here.

  16. Coastal-change and glaciological map of the Amery Ice Shelf area, Antarctica: 1961–2004

    USGS Publications Warehouse

    Foley, Kevin M.; Ferrigno, Jane G.; Swithinbank, Charles; Williams, Richard S.; Orndorff, Audrey L.

    2013-01-01

    Reduction in the area and volume of Earth’s two polar ice sheets is intricately linked to changes in global climate and to the resulting rise in sea level. Measurement of changes in area and mass balance of the Antarctic ice sheet was given a very high priority in recommendations by the Polar Research Board of the National Research Council. On the basis of these recommendations, the U.S. Geological Survey used its archive of satellite images to document changes in the cryospheric coastline of Antarctica and analyze the glaciological features of the coastal regions. Amery Ice Shelf, lying between 67.5° and 75° East longitude and 68.5° and 73.2° South latitude, is the largest ice shelf in East Antarctica. The latest measurements of the area of the ice shelf range between 62,620 and 71,260 square kilometers. The ice shelf is fed primarily by Lambert, Mellor, and Fisher Glaciers; its thickness ranges from 3,000 meters in the center of the grounding line to less than 300 meters at the ice front. Lambert Glacier is considered to be the largest glacier in the world, and its drainage basin is more than 1 million square kilometers in area. It is possible to see some coastal change on the outlet glaciers along the coast, but most of the noticeable change occurs on the Amery Ice Shelf front.

  17. Twenty-three years of height changes on Antarctic Peninsula ice shelves

    NASA Astrophysics Data System (ADS)

    Adusumilli, S.; Siegfried, M. R.; Paolo, F. S.; Fricker, H. A.; Padman, L.

    2017-12-01

    Over the past few decades, several ice shelves in the Antarctic Peninsula (AP), the northernmost region of Antarctica, have collapsed or undergone significant retreat. While the disintegration of these ice shelves appears to be linked primarily to hydrofracture initiated by widespread surface melting, it has also been proposed that some of these ice shelves could have weakened prior to collapse due to increased basal melt rates induced by thermal ocean forcing. To determine the long-term evolution of ice shelves in this region, we compiled data from four radar altimeters (ERS-1, ERS-2, Envisat, and CryoSat-2) spanning twenty-three years (1994-2017). Over Larsen C, the largest AP ice shelf, a surface lowering of around 1 m between 1992 and 2009 has been partially offset by a height increase of around 0.75 m between 2009 and 2017. We use four independent, repeat airborne laser altimetry surveys from NASA's Operation IceBridge to confirm the recent height increase, and a firn densification model (IMAU-FDM) forced by a regional atmospheric model (RACMO), to show that the recent height increase is primarily due to density changes in the firn column. In contrast, George VI Ice Shelf in the Bellingshausen Sea remains in a state of continuous thinning through excess basal melting attributed to higher fluxes of ocean heat under the ice shelf. Changes such as these, which can occur on seasonal to decadal timescales, can potentially impact the dynamics of the grounded ice sheet behind the floating ice shelves, consequently affecting sea-level rise. Therefore, it is vital to continue the long-term, uninterrupted monitoring of ice shelves through the modern satellite and airborne altimetry missions, and lengthen our existing time series to investigate the climate drivers causing changes in the ice shelves from above (accumulation and density changes) and below (basal melting).

  18. Changes in ice dynamics and mass balance of the Antarctic ice sheet.

    PubMed

    Rignot, Eric

    2006-07-15

    The concept that the Antarctic ice sheet changes with eternal slowness has been challenged by recent observations from satellites. Pronounced regional warming in the Antarctic Peninsula triggered ice shelf collapse, which led to a 10-fold increase in glacier flow and rapid ice sheet retreat. This chain of events illustrated the vulnerability of ice shelves to climate warming and their buffering role on the mass balance of Antarctica. In West Antarctica, the Pine Island Bay sector is draining far more ice into the ocean than is stored upstream from snow accumulation. This sector could raise sea level by 1m and trigger widespread retreat of ice in West Antarctica. Pine Island Glacier accelerated 38% since 1975, and most of the speed up took place over the last decade. Its neighbour Thwaites Glacier is widening up and may double its width when its weakened eastern ice shelf breaks up. Widespread acceleration in this sector may be caused by glacier ungrounding from ice shelf melting by an ocean that has recently warmed by 0.3 degrees C. In contrast, glaciers buffered from oceanic change by large ice shelves have only small contributions to sea level. In East Antarctica, many glaciers are close to a state of mass balance, but sectors grounded well below sea level, such as Cook Ice Shelf, Ninnis/Mertz, Frost and Totten glaciers, are thinning and losing mass. Hence, East Antarctica is not immune to changes.

  19. How will melting of ice affect volcanic hazards in the twenty-first century?

    PubMed

    Tuffen, Hugh

    2010-05-28

    Glaciers and ice sheets on many active volcanoes are rapidly receding. There is compelling evidence that melting of ice during the last deglaciation triggered a dramatic acceleration in volcanic activity. Will melting of ice this century, which is associated with climate change, similarly affect volcanic activity and associated hazards? This paper provides a critical overview of the evidence that current melting of ice will increase the frequency or size of hazardous volcanic eruptions. Many aspects of the link between ice recession and accelerated volcanic activity remain poorly understood. Key questions include how rapidly volcanic systems react to melting of ice, whether volcanoes are sensitive to small changes in ice thickness and how recession of ice affects the generation, storage and eruption of magma at stratovolcanoes. A greater frequency of collapse events at glaciated stratovolcanoes can be expected in the near future, and there is strong potential for positive feedbacks between melting of ice and enhanced volcanism. Nonetheless, much further research is required to remove current uncertainties about the implications of climate change for volcanic hazards in the twenty-first century.

  20. QuikScat Captures an Early Melt

    NASA Image and Video Library

    2003-01-13

    The SeaWinds instrument on NASA Quick Scatterometer QuikScat spacecraft captured these near-real-time backscatter images of melting on the Larsen C ice shelf in Antarctica Weddell Sea between October 27 left and October 29 right.

  1. How much can Greenland melt? An upper bound on mass loss from the Greenland Ice Sheet through surface melting

    NASA Astrophysics Data System (ADS)

    Liu, X.; Bassis, J. N.

    2015-12-01

    With observations showing accelerated mass loss from the Greenland Ice Sheet due to surface melt, the Greenland Ice Sheet is becoming one of the most significant contributors to sea level rise. The contribution of the Greenland Ice Sheet o sea level rise is likely to accelerate in the coming decade and centuries as atmospheric temperatures continue to rise, potentially triggering ever larger surface melt rates. However, at present considerable uncertainty remains in projecting the contribution to sea level of the Greenland Ice Sheet both due to uncertainty in atmospheric forcing and the ice sheet response to climate forcing. Here we seek an upper bound on the contribution of surface melt from the Greenland to sea level rise in the coming century using a surface energy balance model coupled to an englacial model. We use IPCC Representative Concentration Pathways (RCP8.5, RCP6, RCP4.5, RCP2.6) climate scenarios from an ensemble of global climate models in our simulations to project the maximum rate of ice volume loss and related sea-level rise associated with surface melting. To estimate the upper bound, we assume the Greenland Ice Sheet is perpetually covered in thick clouds, which maximize longwave radiation to the ice sheet. We further assume that deposition of black carbon darkens the ice substantially turning it nearly black, substantially reducing its albedo. Although assuming that all melt water not stored in the snow/firn is instantaneously transported off the ice sheet increases mass loss in the short term, refreezing of retained water warms the ice and may lead to more melt in the long term. Hence we examine both assumptions and use the scenario that leads to the most surface melt by 2100. Preliminary models results suggest that under the most aggressive climate forcing, surface melt from the Greenland Ice Sheet contributes ~1 m to sea level by the year 2100. This is a significant contribution and ignores dynamic effects. We also examined a lower bound

  2. The effect of salt on the melting of ice: A molecular dynamics simulation study.

    PubMed

    Kim, Jun Soo; Yethiraj, Arun

    2008-09-28

    The effect of added salt (NaCl) on the melting of ice is studied using molecular dynamics simulations. The equilibrium freezing point depression observed in the simulations is in good agreement with experimental data. The kinetic aspects of melting are investigated in terms of the exchange of water molecules between ice and the liquid phase. The ice/liquid equilibrium is a highly dynamic process with frequent exchange of water molecules between ice and the liquid phase. The balance is disturbed when ice melts and the melting proceeds in two stages; the inhibition of the association of water molecules to the ice surface at short times, followed by the increased dissociation of water molecules from the ice surface at longer times. We also find that Cl(-) ions penetrate more deeply into the interfacial region than Na(+) ions during melting. This study provides an understanding of the kinetic aspects of melting that could be useful in other processes such as the inhibition of ice growth by antifreeze proteins.

  3. Sub-ice-shelf sediments record history of twentieth-century retreat of Pine Island Glacier [Sub-ice shelf sediments record 20 th century retreat history of Pine Island Glacier

    DOE PAGES

    Smith, J. A.; Andersen, T. J.; Shortt, M.; ...

    2016-11-23

    The West Antarctic Ice Sheet is one of the largest potential sources of rising sea levels. Over the past 40 years, glaciers flowing into the Amundsen Sea sector of the ice sheet have thinned at an accelerating rate, and several numerical models suggest that unstable and irreversible retreat of the grounding line—which marks the boundary between grounded ice and floating ice shelf—is underway. Understanding this recent retreat requires a detailed knowledge of grounding-line history, but the locations of the grounding line before the advent of satellite monitoring in the 1990s are poorly dated. In particular, a history of grounding-line retreatmore » is required to understand the relative roles of contemporaneous ocean-forced change and of ongoing glacier response to an earlier perturbation in driving ice-sheet loss. Here we show that the present thinning and retreat of Pine Island Glacier in West Antarctica is part of a climatically forced trend that was triggered in the 1940s. Our conclusions arise from analysis of sediment cores recovered beneath the floating Pine Island Glacier ice shelf, and constrain the date at which the grounding line retreated from a prominent seafloor ridge. We find that incursion of marine water beyond the crest of this ridge, forming an ocean cavity beneath the ice shelf, occurred in 1945 (±12 years); final ungrounding of the ice shelf from the ridge occurred in 1970 (±4 years). The initial opening of this ocean cavity followed a period of strong warming of West Antarctica, associated with El Niño activity. Furthermore our results suggest that, even when climate forcing weakened, ice-sheet retreat continued.« less

  4. Sub-ice-shelf sediments record history of twentieth-century retreat of Pine Island Glacier [Sub-ice shelf sediments record 20 th century retreat history of Pine Island Glacier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, J. A.; Andersen, T. J.; Shortt, M.

    The West Antarctic Ice Sheet is one of the largest potential sources of rising sea levels. Over the past 40 years, glaciers flowing into the Amundsen Sea sector of the ice sheet have thinned at an accelerating rate, and several numerical models suggest that unstable and irreversible retreat of the grounding line—which marks the boundary between grounded ice and floating ice shelf—is underway. Understanding this recent retreat requires a detailed knowledge of grounding-line history, but the locations of the grounding line before the advent of satellite monitoring in the 1990s are poorly dated. In particular, a history of grounding-line retreatmore » is required to understand the relative roles of contemporaneous ocean-forced change and of ongoing glacier response to an earlier perturbation in driving ice-sheet loss. Here we show that the present thinning and retreat of Pine Island Glacier in West Antarctica is part of a climatically forced trend that was triggered in the 1940s. Our conclusions arise from analysis of sediment cores recovered beneath the floating Pine Island Glacier ice shelf, and constrain the date at which the grounding line retreated from a prominent seafloor ridge. We find that incursion of marine water beyond the crest of this ridge, forming an ocean cavity beneath the ice shelf, occurred in 1945 (±12 years); final ungrounding of the ice shelf from the ridge occurred in 1970 (±4 years). The initial opening of this ocean cavity followed a period of strong warming of West Antarctica, associated with El Niño activity. Furthermore our results suggest that, even when climate forcing weakened, ice-sheet retreat continued.« less

  5. Ice Shelf Microbial Ecosystems in the High Arctic and Implications for Life on Snowball Earth

    NASA Astrophysics Data System (ADS)

    Vincent, W. F.; Gibson, J. A. E.; Pienitz, R.; Villeneuve, V.; Broady, P. A.; Hamilton, P. B.; Howard-Williams, C.

    The Ward Hunt Ice Shelf (83°N, 74°W) is the largest remaining section of thick (>10m) landfast sea ice along the northern coastline of Ellesmere Island, Canada. Extensive meltwater lakes and streams occur on the surface of the ice and are colonized by photosynthetic microbial mat communities. This High Arctic cryo-ecosystem is similar in several of its physical, biological and geochemical features to the McMurdo Ice Shelf in Antarctica. The ice-mats in both polar regions are dominated by filamentous cyanobacteria but also contain diatoms, chlorophytes, flagellates, ciliates, nematodes, tardigrades and rotifers. The luxuriant Ward Hunt consortia also contain high concentrations (107-108cm-2) of viruses and heterotrophic bacteria. During periods of extensive ice cover, such as glaciations during the Proterozoic, cryotolerant mats of the type now found in these polar ice shelf ecosystems would have provided refugia for the survival, growth and evolution of a variety of organisms, including multicellular eukaryotes.

  6. The melt pond fraction and spectral sea ice albedo retrieval from MERIS data: validation and trends of sea ice albedo and melt pond fraction in the Arctic for years 2002-2011

    NASA Astrophysics Data System (ADS)

    Istomina, L.; Heygster, G.; Huntemann, M.; Schwarz, P.; Birnbaum, G.; Scharien, R.; Polashenski, C.; Perovich, D.; Zege, E.; Malinka, A.; Prikhach, A.; Katsev, I.

    2014-10-01

    The presence of melt ponds on the Arctic sea ice strongly affects the energy balance of the Arctic Ocean in summer. It affects albedo as well as transmittance through the sea ice, which has consequences on the heat balance and mass balance of sea ice. An algorithm to retrieve melt pond fraction and sea ice albedo (Zege et al., 2014) from the MEdium Resolution Imaging Spectrometer (MERIS) data is validated against aerial, ship borne and in situ campaign data. The result show the best correlation for landfast and multiyear ice of high ice concentrations (albedo: R = 0.92, RMS = 0.068, melt pond fraction: R = 0.6, RMS = 0.065). The correlation for lower ice concentrations, subpixel ice floes, blue ice and wet ice is lower due to complicated surface conditions and ice drift. Combining all aerial observations gives a mean albedo RMS equal to 0.089 and a mean melt pond fraction RMS equal to 0.22. The in situ melt pond fraction correlation is R = 0.72 with an RMS = 0.14. Ship cruise data might be affected by documentation of varying accuracy within the ASPeCT protocol, which is the reason for discrepancy between the satellite value and observed value: mean R = 0.21, mean RMS = 0.16. An additional dynamic spatial cloud filter for MERIS over snow and ice has been developed to assist with the validation on swath data. The case studies and trend analysis for the whole MERIS period (2002-2011) show pronounced and reasonable spatial features of melt pond fractions and sea ice albedo. The most prominent feature is the melt onset shifting towards spring (starting already in weeks 3 and 4 of June) within the multiyear ice area, north to the Queen Elizabeth Islands and North Greenland.

  7. Design, fabrication, and evaluation of a partially melted ice particle cloud facility

    NASA Astrophysics Data System (ADS)

    Soltis, Jared T.

    High altitude ice crystal clouds created by highly convective storm cells are dangerous to jet transport aircraft because the crystals are ingested into the compressor section, partially melt, accrete, and cause roll back or flame out. Current facilities to test engine particle icing are not ideal for fundamental mixed-phase ice accretion experiments or do not generate frozen droplet clouds under representative conditions. The goal of this research was to develop a novel facility capable of testing fundamental partially melted ice particle icing physics and to collect ice accretion data related to mixed-phase ice accretion. The Penn State Icing Tunnel (PSIT) has been designed and fabricated to conduct partially melted ice particle cloud accretion. The PSIT generated a cloud with air assisted atomizing nozzles. The water droplets cool from the 60psi pressure drop as the water exited the nozzle and fully glaciate while flowing in the -11.0°C tunnel air flow. The glaciated cloud flowed through a duct in the center of the tunnel where hot air was introduced. The temperature of the duct was regulated from 3.3°C to 24°C which melted particle the frozen particle from 0% to 90%. The partially melted particle cloud impinged on a temperature controlled flat plate. Ice accretion data was taken for a range of duct temperature from 3.3°C to 24°C and plate temperature from -4.5°C to 7.0°C. The particle median volumetric diameter was 23mum, the total water content was 4.5 g/m 3, the specific humidity was 1.12g/kg, and the wet bulb temperature ranged from 1.0°C to 7.0°C depending on the duct temperature. The boundaries between ice particle bounce off, ice accretion, and water run off were determined. When the particle were totally frozen and the plate surface was below freezing, the ice particle bounced off as expected. Ice accretion was seen for all percent melts tested, but the plate temperature boundary between water runoff and ice accretion increased from 0°C at 8

  8. Modeling of cryoseismicity observed at the Fimbulisen Ice Shelf, East Antarctica

    NASA Astrophysics Data System (ADS)

    Hainzl, S.; Pirli, M.; Dahm, T.; Schweitzer, J.; Köhler, A.

    2017-12-01

    A source region of repetitive cryoseismic activity has been identified at the Fimbulisen ice shelf, in Dronning Maud Land, East Antarctica. The specific area is located at the outlet of the Jutulstraumen glacier, near the Kupol Moskovskij ice rise. A unique event catalog extending over 13 years, from 2003 to 2016 has been built based on waveform cross-correlation detectors and Hidden Markov Model classifiers. Phases of low seismicity rates are alternating with intense activity intervals that exhibit a strong tidal modulation. We performed a detailed analysis and modeling of the more than 2000 events recorded between July and October 2013. The observations are characterized by a number of very clear signals: (i) the event rate follows both the neap-spring and the semi-diurnal ocean-tide cycle; (ii) recurrences have a characteristic time of approximately 8 minutes; (iii) magnitudes vary systematically both on short and long time scales; and (iv) the events migrate within short-time clusters. We use these observations to constrain the dynamic processes at work at this particular region of the Fimbulisen ice shelf. Our model assumes a local grounding of the ice shelf, where stick-slip motion occurs. We show that the observations can be reproduced considering the modulation of the Coulomb-Failure stress by ocean tides.

  9. Duration of the Arctic sea ice melt season: Regional and interannual variability, 1979-2001

    USGS Publications Warehouse

    Belchansky, G.I.; Douglas, David C.; Platonov, Nikita G.

    2004-01-01

    Melt onset dates, freeze onset dates, and melt season duration were estimated over Arctic sea ice, 1979–2001, using passive microwave satellite imagery and surface air temperature data. Sea ice melt duration for the entire Northern Hemisphere varied from a 104-day minimum in 1983 and 1996 to a 124-day maximum in 1989. Ranges in melt duration were highest in peripheral seas, numbering 32, 42, 44, and 51 days in the Laptev, Barents-Kara, East Siberian, and Chukchi Seas, respectively. In the Arctic Ocean, average melt duration varied from a 75-day minimum in 1987 to a 103-day maximum in 1989. On average, melt onset in annual ice began 10.6 days earlier than perennial ice, and freeze onset in perennial ice commenced 18.4 days earlier than annual ice. Average annual melt dates, freeze dates, and melt durations in annual ice were significantly correlated with seasonal strength of the Arctic Oscillation (AO). Following high-index AO winters (January–March), spring melt tended to be earlier and autumn freeze later, leading to longer melt season durations. The largest increases in melt duration were observed in the eastern Siberian Arctic, coincident with cyclonic low pressure and ice motion anomalies associated with high-index AO phases. Following a positive AO shift in 1989, mean annual melt duration increased 2–3 weeks in the northern East Siberian and Chukchi Seas. Decreasing correlations between consecutive-year maps of melt onset in annual ice during 1979–2001 indicated increasing spatial variability and unpredictability in melt distributions from one year to the next. Despite recent declines in the winter AO index, recent melt distributions did not show evidence of reestablishing spatial patterns similar to those observed during the 1979–88 low-index AO period. Recent freeze distributions have become increasingly similar to those observed during 1979–88, suggesting a recurrent spatial pattern of freeze chronology under low-index AO conditions.

  10. Variability of Surface Temperature and Melt on the Greenland Ice Sheet, 2000-2011

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Comiso, Josefino, C.; Shuman, Christopher A.; Koenig, Lora S.; DiGirolamo, Nicolo E.

    2012-01-01

    Enhanced melting along with surface-temperature increases measured using infrared satellite data, have been documented for the Greenland Ice Sheet. Recently we developed a climate-quality data record of ice-surface temperature (IST) of the Greenland Ice Sheet using the Moderate-Resolution Imaging Spectroradiometer (MODIS) 1ST product -- http://modis-snow-ice.gsfc.nasa.gov. Using daily and mean monthly MODIS 1ST maps from the data record we show maximum extent of melt for the ice sheet and its six major drainage basins for a 12-year period extending from March of 2000 through December of 2011. The duration of the melt season on the ice sheet varies in different drainage basins with some basins melting progressively earlier over the study period. Some (but not all) of the basins also show a progressively-longer duration of melt. The short time of the study period (approximately 12 years) precludes an evaluation of statistically-significant trends. However the dataset provides valuable information on natural variability of IST, and on the ability of the MODIS instrument to capture changes in IST and melt conditions indifferent drainage basins of the ice sheet.

  11. Chemotrophic Ecosystem Beneath the Larsen Ice Shelf, Antarctica

    NASA Astrophysics Data System (ADS)

    Leventer, A.; Domack, E.; Ishman, S.; Sylva, S.; Willmott, V.; Huber, B.; Padman, L.

    2005-12-01

    The first living chemotrophic ecosystem in the Southern Ocean was discovered in a region of the seafloor previously occupied by the Larsen-B Ice Shelf. A towed video survey documents an ecosystem characterized by a bottom-draping white mat that appears similar to mats of Begiattoa, hydrogen sulfide oxidizing bacteria, and bivalves, 20-30 cm large, similar to vesicomyid clams commonly found at cold seeps. The carbon source is unknown; three potential sources are hypothesized. First, thermogenically-produced methane may occur as the marine shales of this region are similar to hydrocarbon-bearing rocks to the north in Patagonia. The site occurs in an 850 m deep glacially eroded trough located along the contact between Mesozoic-Tertiary crystalline basement and Cretaceous-Tertiary marine rocks; decreased overburden could have induced upward fluid flow. Also possible is the dissociation of methane hydrates, a process that might have occurred as a result of warming oceanic bottom waters. This possibility will be discussed in light of the distribution of early diagenetic ikaite in the region. Third, the possibility of a biogenic methane source will be discussed. A microstratigraphic model for the features observed at the vent sites will be presented; the system is comprised of mud mounds with central vents and surrounding mud flow channels. A series of still image mosaics record the dynamic behavior of the system, which appears to demonstrate episodic venting. These images show the spatial relationship between more and less active sites, as reflected in the superposition of several episodes of mud flow activity and the formation of mud channels. In addition, detailed microscale features of the bathymetry of the site will be presented, placing the community within the context of glacial geomorphologic features. The Larsen-B Ice Shelf persisted through the entire Holocene, limiting carbon influx from a photosynthetic source. Tidal modeling of both pre and post breakup

  12. Sub-ice-shelf sediments record history of twentieth-century retreat of Pine Island Glacier.

    PubMed

    Smith, J A; Andersen, T J; Shortt, M; Gaffney, A M; Truffer, M; Stanton, T P; Bindschadler, R; Dutrieux, P; Jenkins, A; Hillenbrand, C-D; Ehrmann, W; Corr, H F J; Farley, N; Crowhurst, S; Vaughan, D G

    2017-01-05

    The West Antarctic Ice Sheet is one of the largest potential sources of rising sea levels. Over the past 40 years, glaciers flowing into the Amundsen Sea sector of the ice sheet have thinned at an accelerating rate, and several numerical models suggest that unstable and irreversible retreat of the grounding line-which marks the boundary between grounded ice and floating ice shelf-is underway. Understanding this recent retreat requires a detailed knowledge of grounding-line history, but the locations of the grounding line before the advent of satellite monitoring in the 1990s are poorly dated. In particular, a history of grounding-line retreat is required to understand the relative roles of contemporaneous ocean-forced change and of ongoing glacier response to an earlier perturbation in driving ice-sheet loss. Here we show that the present thinning and retreat of Pine Island Glacier in West Antarctica is part of a climatically forced trend that was triggered in the 1940s. Our conclusions arise from analysis of sediment cores recovered beneath the floating Pine Island Glacier ice shelf, and constrain the date at which the grounding line retreated from a prominent seafloor ridge. We find that incursion of marine water beyond the crest of this ridge, forming an ocean cavity beneath the ice shelf, occurred in 1945 (±12 years); final ungrounding of the ice shelf from the ridge occurred in 1970 (±4 years). The initial opening of this ocean cavity followed a period of strong warming of West Antarctica, associated with El Niño activity. Thus our results suggest that, even when climate forcing weakened, ice-sheet retreat continued.

  13. McMurdo Ice Shelf Sounding and Radar Statistical Reconnaissance at 60-MHz: Brine Infiltration Extent and Surface Properties

    NASA Astrophysics Data System (ADS)

    Grima, C.; Rosales, A.; Blankenship, D. D.; Young, D. A.

    2014-12-01

    McMurdo Ice Shelf, Antarctica, is characterized by two particular geophysical processes. (1) Marine ice accretion supplies most of the ice shelf material rather than meteoric ice from glacier outflow and snow-falls. (2) A brine layer infiltrates the ice shelf laterally up to 20-km inward. The infiltration mainly initiates at the ice-front from sea water percolation when the firn/snow transition is below sea-level. A better characterization of the McMurdo ice shelf could constrain our knowledges of these mechanisms and assess the stability of the region that hosts numerous human activities from the close McMurdo station (USA) and Scott base (New-Zealand). McMurdo ice shelf is also an analog for the Jovian icy moon Europa where brine pockets are supposed to reside in the ice crust and accretion to occur at the 10-30-km deep ice-ocean interface.The University of Texas Institute for Geophysics (UTIG) acquired two radar survey grids over the McMurdo Ice Shelf during southern summers 2011-2012 and 2012-2013 with the High Capability Radar Sounder (HiCARS) on-board a Basler DC-3 aircraft. HiCARS transmits a chirped signal at 60-MHz central frequency and 15-MHz bandwidth. The corresponding vertical resolution in ice is 5-10 m. An important design goal of the radar was to maintain sufficient dynamic range to correctly measure echo intensities.Here we present the brine infiltration extent and bathymetry derived from its dielectric horizon well distinguishable on the HiCARS radargram. We complement the ice-shelf characterization by classifying its surface thanks to the novel Radar Statistical Reconnaissance (RSR) methodology. The RSR observable is the statistical distribution of the surface echo amplitudes from successive areas defined along-track. The distributions are best-fitted with a theoretical stochastic envelop parameterized with the signal reflectance and scattering. Once those two components are deduced from the fit, they are used in a backscattering model to invert

  14. The Larsen Ice Shelf in Antarctica viewed from NASA's DC-8 aircraft during the AirSAR 2004 campaign

    NASA Image and Video Library

    2004-03-16

    The Larsen Ice Shelf in Antarctica viewed from NASA's DC-8 aircraft during the AirSAR 2004 campaign. AirSAR 2004 is a three-week expedition in Central and South America by an international team of scientists that is using an all-weather imaging tool, called the Airborne Synthetic Aperture Radar (AirSAR), located onboard NASA's DC-8 airborne laboratory. Scientists from many parts of the world are combining ground research with NASA's AirSAR technology to improve and expand on the quality of research they are able to conduct. These photos are from the DC-8 aircraft while flying an AirSAR mission over Antarctica. The Antarctic Peninsula is more similar to Alaska and Patagonia than to the rest of the Antarctic continent. It is drained by fast glaciers, receives abundant precipitation, and melts significantly in the summer months. In recent decades, the Peninsula has experienced significant atmospheric warming (about 2 degrees C since 1950), which has triggered a vast and spectacular retreat of its floating ice shelves, glacier reduction, a decrease in permanent snow cover and a lengthening of the melt season. As a result, the contribution to sea level from this region could be rapid and substantial. With an area of 120,000 km, or ten times the Patagonia ice fields, the Peninsula could contribute as much as 0.4mm/yr sea level rise, which would be the largest single contribution to sea level from anywhere in the world. This region is being studied by NASA using a DC-8 equipped with the Airborne Synthetic Aperture Radar developed by scientists from NASA’s Jet Propulsion Laboratory. AirSAR will provide a baseline model and unprecedented mapping of the region. This data will make it possible to determine whether the warming trend is slowing, continuing or accelerating. AirSAR will also provide reliable information on ice shelf thickness to measure the contribution of the glaciers to sea level.

  15. The Larsen Ice Shelf in Antarctica viewed from NASA's DC-8 aircraft during the AirSAR 2004 campaign

    NASA Image and Video Library

    2004-03-13

    The Larsen Ice Shelf in Antarctica viewed from NASA's DC-8 aircraft during the AirSAR 2004 campaign. AirSAR 2004 is a three-week expedition in Central and South America by an international team of scientists that is using an all-weather imaging tool, called the Airborne Synthetic Aperture Radar (AirSAR), located onboard NASA's DC-8 airborne laboratory. Scientists from many parts of the world are combining ground research with NASA's AirSAR technology to improve and expand on the quality of research they are able to conduct. These photos are from the DC-8 aircraft while flying an AirSAR mission over Antarctica. The Antarctic Peninsula is more similar to Alaska and Patagonia than to the rest of the Antarctic continent. It is drained by fast glaciers, receives abundant precipitation, and melts significantly in the summer months. In recent decades, the Peninsula has experienced significant atmospheric warming (about 2 degrees C since 1950), which has triggered a vast and spectacular retreat of its floating ice shelves, glacier reduction, a decrease in permanent snow cover and a lengthening of the melt season. As a result, the contribution to sea level from this region could be rapid and substantial. With an area of 120,000 km, or ten times the Patagonia ice fields, the Peninsula could contribute as much as 0.4mm/yr sea level rise, which would be the largest single contribution to sea level from anywhere in the world. This region is being studied by NASA using a DC-8 equipped with the Airborne Synthetic Aperture Radar developed by scientists from NASA’s Jet Propulsion Laboratory. AirSAR will provide a baseline model and unprecedented mapping of the region. This data will make it possible to determine whether the warming trend is slowing, continuing or accelerating. AirSAR will also provide reliable information on ice shelf thickness to measure the contribution of the glaciers to sea level.

  16. The Larsen Ice Shelf in Antarctica viewed from NASA's DC-8 aircraft during the AirSAR 2004 campaign

    NASA Image and Video Library

    2004-03-16

    The Larsen Ice Shelf in Antarctica viewed from NASA's DC-8 aircraft during the AirSAR 2004 campaign. AirSAR 2004 is a three-week expedition in Central and South America by an international team of scientists that is using an all-weather imaging tool, called the Airborne Synthetic Aperture Radar (AirSAR), located onboard NASA's DC-8 airborne laboratory. Scientists from many parts of the world are combining ground research with NASA's AirSAR technology to improve and expand on the quality of research they are able to conduct. These photos are from the DC-8 aircraft while flying an AirSAR mission over Antarctica. The Antarctic Peninsula is more similar to Alaska and Patagonia than to the rest of the Antarctic continent. It is drained by fast glaciers, receives abundant precipitation, and melts significantly in the summer months. In recent decades, the Peninsula has experienced significant atmospheric warming (about 2 degrees C since 1950), which has triggered a vast and spectacular retreat of its floating ice shelves, glacier reduction, a decrease in permanent snow cover and a lengthening of the melt season. As a result, the contribution to sea level from this region could be rapid and substantial. With an area of 120,000 km, or ten times the Patagonia ice fields, the Peninsula could contribute as much as 0.4mm/yr sea level rise, which would be the largest single contribution to sea level from anywhere in the world. This region is being studied by NASA using a DC-8 equipped with an Airborne Synthetic Aperture Radar (AirSAR) developed by scientists from NASA’s Jet Propulsion Laboratory. AirSAR will provide a baseline model and unprecedented mapping of the region. This data will make it possible to determine whether the warming trend is slowing, continuing or accelerating. AirSAR will also provide reliable information on ice shelf thickness to measure the contribution of the glaciers to sea level.

  17. Simple rules govern the patterns of Arctic sea ice melt ponds

    NASA Astrophysics Data System (ADS)

    Popovic, P.; Cael, B. B.; Abbot, D. S.; Silber, M.

    2017-12-01

    Climate change, amplified in the far north, has led to a rapid sea ice decline in recent years. Melt ponds that form on the surface of Arctic sea ice in the summer significantly lower the ice albedo, thereby accelerating ice melt. Pond geometry controls the details of this crucial feedback. However, currently it is unclear how to model this intricate geometry. Here we show that an extremely simple model of voids surrounding randomly sized and placed overlapping circles reproduces the essential features of pond patterns. The model has only two parameters, circle scale and the fraction of the surface covered by voids, and we choose them by comparing the model to pond images. Using these parameters the void model robustly reproduces all of the examined pond features such as the ponds' area-perimeter relationship and the area-abundance relationship over nearly 7 orders of magnitude. By analyzing airborne photographs of sea ice, we also find that the typical pond scale is surprisingly constant across different years, regions, and ice types. These results demonstrate that the geometric and abundance patterns of Arctic melt ponds can be simply described, and can guide future models of Arctic melt ponds to improve predictions of how sea ice will respond to Arctic warming.

  18. Climate Variability, Melt-Flow Acceleration, and Ice Quakes at the Western Slope of the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Steffen, K.; Zwally, J. H.; Rial, J. A.; Behar, A.; Huff, R.

    2006-12-01

    The Greenland ice sheet experienced surface melt increase over the past 15 years with record melt years in 1987, 1991, 1998, 2002 and 2005. For the western part of the ice sheet the melt area increased by 30 percent (1979-2005). Monthly mean air temperatures increased in spring and fall by 0.23 deg. C per year since 1990, extending the length of melt and total ablation. Winter air temperatures increased by as much as 0.5 deg. C per year during the past 15 years. The equilibrium line altitude ranged between 400 and 1530 m above sea level at 70 deg. north along the western slope of the ice sheet for the past 15 years, equaling a horizontal distance of 100 km. The ELA has been below the Swiss Camp (1100 m elevation) in the nineties, and since 1997 moved above the Swiss Camp height. An increase in ELA leads to an increase in melt water run-off which has been verified by regional model studies (high-resolution re-analysis). Interannual variability of snow accumulation varies from 0.3 to 2.0 m, whereas snow and ice ablation ranges from 0 to 1.5 m water equivalent at Swiss Camp during 1990-2005. A GPS network (10 stations) monitors ice velocity, acceleration, and surface height change at high temporal resolution throughout the year. The network covers a range of 500 and 1500 m above sea level, close to the Ilulissat Icefjord World Heritage region. The ice sheet continued to accelerate during the height of the melt season with short-term velocity increases up to 100 percent, and vertical uplift rates of 0.5 m. There seems to be a good correlation between the change in ice velocity and total surface melt, suggesting that melt water penetrates to great depth through moulins and cracks, lubricating the bottom of the ice sheet. A new bore-hole video movie will be shown from a 110 m deep moulin close to Swiss Camp. A PASSCAL array of 10 portable, 3-component seismic stations deployed around Swiss Camp from May to August 2006 detected numerous microearthquakes within the ice

  19. Melt-induced speed-up of Greenland ice sheet offset by efficient subglacial drainage.

    PubMed

    Sundal, Aud Venke; Shepherd, Andrew; Nienow, Peter; Hanna, Edward; Palmer, Steven; Huybrechts, Philippe

    2011-01-27

    Fluctuations in surface melting are known to affect the speed of glaciers and ice sheets, but their impact on the Greenland ice sheet in a warming climate remains uncertain. Although some studies suggest that greater melting produces greater ice-sheet acceleration, others have identified a long-term decrease in Greenland's flow despite increased melting. Here we use satellite observations of ice motion recorded in a land-terminating sector of southwest Greenland to investigate the manner in which ice flow develops during years of markedly different melting. Although peak rates of ice speed-up are positively correlated with the degree of melting, mean summer flow rates are not, because glacier slowdown occurs, on average, when a critical run-off threshold of about 1.4 centimetres a day is exceeded. In contrast to the first half of summer, when flow is similar in all years, speed-up during the latter half is 62 ± 16 per cent less in warmer years. Consequently, in warmer years, the period of fast ice flow is three times shorter and, overall, summer ice flow is slower. This behaviour is at odds with that expected from basal lubrication alone. Instead, it mirrors that of mountain glaciers, where melt-induced acceleration of flow ceases during years of high melting once subglacial drainage becomes efficient. A model of ice-sheet flow that captures switching between cavity and channel drainage modes is consistent with the run-off threshold, fast-flow periods, and later-summer speeds we have observed. Simulations of the Greenland ice-sheet flow under climate warming scenarios should account for the dynamic evolution of subglacial drainage; a simple model of basal lubrication alone misses key aspects of the ice sheet's response to climate warming.

  20. Modeling of subaqueous melting in Petermann Fjord, Northwestern Greenland using an ocean general circulation model

    NASA Astrophysics Data System (ADS)

    Cai, C.; Rignot, E. J.; Xu, Y.; An, L.; Tinto, K. J.; van den Broeke, M. R.

    2014-12-01

    Basal melting of the floating tongue of Petermann Glacier, in northwestern Greenland is by far the largest process of mass ablation. Melting of the floating tongue is controlled by the buoyancy of the melt water plume, the pressure-dependence of the melting point of sea ice, and the mixing of warm subsurface water with fresh buoyant subglacial discharge. In prior simulations of this melting process, the role of subglacial discharge has been neglected because in similar configurations (floating ice shelves) in the Antarctic, surface runoff is negligible; this is however not true in Greenland. Here, we use the Mass Institute of Technology general circulation model (MITgcm) at a high spatial resolution (10 m x 10 m) to simulate the melting process of the ice shelf in 2-D. The model is constrained by ice shelf bathymetry and ice thickness (refined model in the immediate vicinity of the grounding line) from NASA Operation IceBridge (2011), ocean temperature/salinity data from Johnson et al. (2011), ocean tide height and current from the Arctic Ocean Tidal Inverse Model (AOTIM-5) by Padman and Erofeeva (2004) and subglacial discharge at the grounding line calculated by the hydrostatic potential of the ice from estimated products of the Regional Atmospheric Climate Model (RACMO) of Royal Netherlands Meteorological Institute (KNMI). We compare the results obtained in winter (no runoff) with summer, and the sensitivity of the results to thermal forcing from the ocean, and to the variation of tide height and current, and to the magnitude of subglacial runoff. We conclude on the impact of the ocean and surface melting on the melting regime of the floating ice tongue of Petermann. The basal melt rate increases ~20% with summer surface runoff. This work is performed under a contract with NASA Cryosphere Program.

  1. Level-Ice Melt Ponds in the Los Alamos Sea Ice Model, CICE

    DTIC Science & Technology

    2012-12-06

    terms obtained using the Bitz and Lips- comb (1999) thermodynamic model. The thickness distribution ( Thorndike et al., 1975) employs 5 ice thickness...D.L., 2004. A model of melt pond evolution on sea ice. J. Geophys. Res. 109, C12007. http://dx.doi.org/10.1029/2004JC002361. Thorndike , A.S., Rothrock

  2. The Effects of Conductivity on High-Resolution Impulse Radar Sounding, Ross Ice Shelf, Antarctica,

    DTIC Science & Technology

    1982-12-01

    OFSTNDRS96- - . -t - . J’-t -. -t-t ---- . f- t..- -.f ~ *~~ "EPORDT82-42 US Army CorpsREPORT 82of Engineers Cold Regions Research &Engineering...bottom of the Ross Ice Shelf at Site J-9, 2) detecting the preferred horizontal c-axis azi- muthal’direction of the sea ice crystals, using the...which drilling revealed to be 416 m below the snow surface. The radar system was used to profile the McMurdo Ice Shelf both from the snow surface and

  3. Greenland ice sheet surface temperature, melt and mass loss: 2000-06

    USGS Publications Warehouse

    Hall, D.K.; Williams, R.S.; Luthcke, S.B.; DiGirolamo, N.E.

    2008-01-01

    A daily time series of 'clear-sky' surface temperature has been compiled of the Greenland ice sheet (GIS) using 1 km resolution moderate-resolution imaging spectroradiometer (MODIS) land-surface temperature (LST) maps from 2000 to 2006. We also used mass-concentration data from the Gravity Recovery and Climate Experiment (GRACE) to study mass change in relationship to surface melt from 2003 to 2006. The mean LST of the GIS increased during the study period by ???0.27??Ca-1. The increase was especially notable in the northern half of the ice sheet during the winter months. Melt-season length and timing were also studied in each of the six major drainage basins. Rapid (<15 days) and sustained mass loss below 2000 m elevation was triggered in 2004 and 2005 as recorded by GRACE when surface melt begins. Initiation of large-scale surface melt was followed rapidly by mass loss. This indicates that surface meltwater is flowing rapidly to the base of the ice sheet, causing acceleration of outlet glaciers, thus highlighting the metastability of parts of the GIS and the vulnerability of the ice sheet to air-temperature increases. If air temperatures continue to rise over Greenland, increased surface melt will play a large role in ice-sheet mass loss.

  4. An Explanation for the Arctic Sea Ice Melt Pond Fractal Transition

    NASA Astrophysics Data System (ADS)

    Popovic, P.; Abbot, D. S.

    2016-12-01

    As Arctic sea ice melts during the summer, pools of melt water form on its surface. This decreases the ice's albedo, which signifcantly impacts its subsequent evolution. Understanding this process is essential for buiding accurate sea ice models in GCMs and using them to forecast future changes in sea ice. A feature of melt ponds that helps determine their impact on ice albedo is that they often form complex geometric shapes. One characteristic of their shape, the fractal dimension of the pond boundaries, D, has been shown to transition between the two fundamental limits of D = 1 and D = 2 at some critical pond size. Here, we provide an explanation for this behavior. First, using aerial photographs taken during the SHEBA mission, we show how this fractal transition curve changes with time, and show that there is a qualitative difference in the pond shape as ice transitions from impermeable to permeable. While ice is impermeable, the maximum fractal dimension is less than 2, whereas after it becomes permeable, the maximum fractal dimension becomes very close to 2. We then show how the fractal dimension of the boundary of a collection of overlapping circles placed randomly on a plane also transitions from D = 1 to D = 2 at a size equal to the average size of a single circle. We, therefore, conclude that this transition is a simple geometric consequence of regular shapes connecting. The one physical parameter that can be extracted from the fractal transition curve is the length scale at which transition occurs. Previously, this length scale has been associated with the typical size of snow dunes created on the ice surface during winter. We provide an alternative explanation by noting that the flexural wavelength of the ice poses a fundamental limit on the size of melt ponds on permeable ice. If this is true, melt ponds could be used as a proxy for ice thickness. Finally, we provide some remarks on how to observationally distinguish between the two ideas for what

  5. Circulation and fjord-shelf exchange during the ice-covered period in Young Sound-Tyrolerfjord, Northeast Greenland (74°N)

    NASA Astrophysics Data System (ADS)

    Boone, W.; Rysgaard, S.; Kirillov, S.; Dmitrenko, I.; Bendtsen, J.; Mortensen, J.; Meire, L.; Petrusevich, V.; Barber, D. G.

    2017-07-01

    Fjords around Greenland connect the Greenland Ice Sheet to the ocean and their hydrography and circulation are determined by the interplay between atmospheric forcing, runoff, topography, fjord-shelf exchange, tides, waves, and seasonal growth and melt of sea ice. Limited knowledge exists on circulation in high-Arctic fjords, particularly those not impacted by tidewater glaciers, and especially during winter, when they are covered with sea-ice and freshwater input is low. Here, we present and analyze seasonal observations of circulation, hydrography and cross-sill exchange of the Young Sound-Tyrolerfjord system (74°N) in Northeast Greenland. Distinct seasonal circulation phases are identified and related to polynya activity, meltwater and inflow of coastal water masses. Renewal of basin water in the fjord is a relatively slow process that modifies the fjord water masses on a seasonal timescale. By the end of winter, there is two-layer circulation, with outflow in the upper 45 m and inflow extending down to approximately 150 m. Tidal analysis showed that tidal currents above the sill were almost barotropic and dominated by the M2 tidal constituent (0.26 m s-1), and that residual currents (∼0.02 m s-1) were relatively small during the ice-covered period. Tidal pumping, a tidally driven fjord-shelf exchange mechanism, drives a salt flux that is estimated to range between 145 kg s-1 and 603 kg s-1. Extrapolation of these values over the ice-covered period indicates that tidal pumping is likely a major source of dense water and driver of fjord circulation during the ice-covered period.

  6. Warm Rivers Play Role in Arctic Sea Ice Melt

    NASA Image and Video Library

    2014-03-05

    Beaufort Sea surface temperatures where Canada Mackenzie River discharges into the Arctic Ocean, measured by NASA MODIS instrument; warm river waters had broken through a shoreline sea ice barrier to enhance sea ice melt.

  7. Freezing, melting and structure of ice in a hydrophilic nanopore.

    PubMed

    Moore, Emily B; de la Llave, Ezequiel; Welke, Kai; Scherlis, Damian A; Molinero, Valeria

    2010-04-28

    The nucleation, growth, structure and melting of ice in 3 nm diameter hydrophilic nanopores are studied through molecular dynamics simulations with the mW water model. The melting temperature of water in the pore was T(m)(pore) = 223 K, 51 K lower than the melting point of bulk water in the model and in excellent agreement with experimental determinations for 3 nm silica pores. Liquid and ice coexist in equilibrium at the melting point and down to temperatures as low as 180 K. Liquid water is located at the interface of the pore wall, increasing from one monolayer at the freezing temperature, T(f)(pore) = 195 K, to two monolayers a few degrees below T(m)(pore). Crystallization of ice in the pore occurs through homogeneous nucleation. At the freezing temperature, the critical nucleus contains approximately 75 to 100 molecules, with a radius of gyration similar to the radius of the pore. The critical nuclei contain features of both cubic and hexagonal ice, although stacking of hexagonal and cubic layers is not defined until the nuclei reach approximately 150 molecules. The structure of the confined ice is rich in stacking faults, in agreement with the interpretation of X-ray and neutron diffraction experiments. Though the presence of cubic layers is twice as prevalent as hexagonal ones, the crystals should not be considered defective Ic as sequences with more than three adjacent cubic (or hexagonal) layers are extremely rare in the confined ice.

  8. The role of ice shelves in the Holocene evolution of the Antarctic ice sheet

    NASA Astrophysics Data System (ADS)

    Bernales, Jorge; Rogozhina, Irina; Thomas, Maik

    2014-05-01

    steady-state and transient climate scenarios. Journal of Climate, 10(5), 901-918. [2] Sato, T., and Greve, R. (2012). Sensitivity experiments for the Antarctic ice sheet with varied sub-ice-shelf melting rates. Annals of Glaciology, 53(60), 221-228. [3] Dahl-Jensen, D., Mosegaard, K., Gundestrup, N., Clow, G. D., Johnsen, S. J., Hansen, A. W., and Balling, N. (1998). Past temperatures directly from the Greenland ice sheet. Science, 282(5387), 268-271. [4] Naish, T., Powell, R., Levy, R., Wilson, G., Scherer, R., Talarico, F., ... and Schmitt, D. (2009). Obliquity-paced Pliocene West Antarctic ice sheet oscillations. Nature, 458(7236), 322-328.

  9. Continued rapid glacier recession following the 1995 collapse of the Prince Gustav Ice Shelf on the Antarctic Peninsula (Invited)

    NASA Astrophysics Data System (ADS)

    Glasser, N. F.; Scambos, T. A.

    2009-12-01

    We use optical satellite imagery (ASTER and Landsat) to document changes in the Prince Gustav Ice Shelf (PGIS) and its tributary glaciers before and after its 1995 collapse. Interpretation of a pre-collapse Landsat 4-5 TM image acquired in February 1988 shows that the ice shelf was fed primarily by Sjogren Glacier from the Antarctic Peninsula and by Rhoss Glacier from James Ross Island (JRI). In 1988, the PGIS contained numerous structural discontinuities (rifts and crevasses), which collectively indicate that ice-shelf break-up had commenced at least seven years before collapse. Meltwater ponds and streams were also common across its surface. After the ice shelf collapsed, Rhoss Glacier became a tidewater glacier and has since experienced rapid and continued recession. Between January 2001 and December 2006 (six to eleven years after the collapse of the PGIS), the front of Rhoss Glacier receded a total of 13.6 km. We conclude that where tributary glaciers become tidewater glaciers they react to ice-shelf removal by rapid and continued recession and that the response time of glaciers on the Antarctic Peninsula to ice-shelf removal is measured on annual to decadal timescales. This rapid recession, coupled with previously documented tributary glacier thinning and acceleration, indicates that Antarctic Peninsula glaciers are extremely sensitive to ice-shelf collapse.

  10. Stochastic dynamics of melt ponds and sea ice-albedo climate feedback

    NASA Astrophysics Data System (ADS)

    Sudakov, Ivan

    Evolution of melt ponds on the Arctic sea surface is a complicated stochastic process. We suggest a low-order model with ice-albedo feedback which describes stochastic dynamics of melt ponds geometrical characteristics. The model is a stochastic dynamical system model of energy balance in the climate system. We describe the equilibria in this model. We conclude the transition in fractal dimension of melt ponds affects the shape of the sea ice albedo curve.

  11. Enhanced wintertime greenhouse effect reinforcing Arctic amplification and initial sea-ice melting.

    PubMed

    Cao, Yunfeng; Liang, Shunlin; Chen, Xiaona; He, Tao; Wang, Dongdong; Cheng, Xiao

    2017-08-16

    The speeds of both Arctic surface warming and sea-ice shrinking have accelerated over recent decades. However, the causes of this unprecedented phenomenon remain unclear and are subjects of considerable debate. In this study, we report strong observational evidence, for the first time from long-term (1984-2014) spatially complete satellite records, that increased cloudiness and atmospheric water vapor in winter and spring have caused an extraordinary downward longwave radiative flux to the ice surface, which may then amplify the Arctic wintertime ice-surface warming. In addition, we also provide observed evidence that it is quite likely the enhancement of the wintertime greenhouse effect caused by water vapor and cloudiness has advanced the time of onset of ice melting in mid-May through inhibiting sea-ice refreezing in the winter and accelerating the pre-melting process in the spring, and in turn triggered the positive sea-ice albedo feedback process and accelerated the sea ice melting in the summer.

  12. New Equations for the Sublimation Pressure and Melting Pressure of H2O Ice Ih

    NASA Astrophysics Data System (ADS)

    Wagner, Wolfgang; Riethmann, Thomas; Feistel, Rainer; Harvey, Allan H.

    2011-12-01

    New reference equations, adopted by the International Association for the Properties of Water and Steam (IAPWS), are presented for the sublimation pressure and melting pressure of ice Ih as a function of temperature. These equations are based on input values derived from the phase-equilibrium condition between the IAPWS-95 scientific standard for thermodynamic properties of fluid H2O and the equation of state of H2O ice Ih adopted by IAPWS in 2006, making them thermodynamically consistent with the bulk-phase properties. Compared to the previous IAPWS formulations, which were empirical fits to experimental data, the new equations have significantly less uncertainty. The sublimation-pressure equation covers the temperature range from 50 K to the vapor-liquid-solid triple point at 273.16 K. The ice Ih melting-pressure equation describes the entire melting curve from 273.16 K to the ice Ih-ice III-liquid triple point at 251.165 K. For completeness, we also give the IAPWS melting-pressure equation for ice III, which is slightly adjusted to agree with the ice Ih melting-pressure equation at the corresponding triple point, and the unchanged IAPWS melting-pressure equations for ice V, ice VI, and ice VII.

  13. Recent dynamic changes on Fleming Glacier after the disintegration of Wordie Ice Shelf, Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    Friedl, Peter; Seehaus, Thorsten C.; Wendt, Anja; Braun, Matthias H.; Höppner, Kathrin

    2018-04-01

    The Antarctic Peninsula is one of the world's regions most affected by climate change. Several ice shelves have retreated, thinned or completely disintegrated during recent decades, leading to acceleration and increased calving of their tributary glaciers. Wordie Ice Shelf, located in Marguerite Bay at the south-western side of the Antarctic Peninsula, completely disintegrated in a series of events between the 1960s and the late 1990s. We investigate the long-term dynamics (1994-2016) of Fleming Glacier after the disintegration of Wordie Ice Shelf by analysing various multi-sensor remote sensing data sets. We present a dense time series of synthetic aperture radar (SAR) surface velocities that reveals a rapid acceleration of Fleming Glacier in 2008 and a phase of further gradual acceleration and upstream propagation of high velocities in 2010-2011.The timing in acceleration correlates with strong upwelling events of warm circumpolar deep water (CDW) into Wordie Bay, most likely leading to increased submarine melt. This, together with continuous dynamic thinning and a deep subglacial trough with a retrograde bed slope close to the terminus probably, has induced unpinning of the glacier tongue in 2008 and gradual grounding line retreat between 2010 and 2011. Our data suggest that the glacier's grounding line had retreated by ˜ 6-9 km between 1996 and 2011, which caused ˜ 56 km2 of the glacier tongue to go afloat. The resulting reduction in buttressing explains a median speedup of ˜ 1.3 m d-1 ( ˜ 27 %) between 2008 and 2011, which we observed along a centre line extending between the grounding line in 1996 and ˜ 16 km upstream. Current median ice thinning rates (2011-2014) along profiles in areas below 1000 m altitude range between ˜ 2.6 to 3.2 m a-1 and are ˜ 70 % higher than between 2004 and 2008. Our study shows that Fleming Glacier is far away from approaching a new equilibrium and that the glacier dynamics are not primarily controlled by the loss of the

  14. Mass Balance of the Northern Antarctic Peninsula and its Ongoing Response to Ice Shelf Loss

    NASA Astrophysics Data System (ADS)

    Scambos, T. A.; Berthier, E.; Haran, T. M.; Shuman, C. A.; Cook, A. J.; Bohlander, J. A.

    2012-12-01

    An assessment of the most rapidly changing areas of the Antarctic Peninsula (north of 66°S) shows that ice mass loss for the region is dominated by areas affected by eastern-Peninsula ice shelf losses in the past 20 years. Little if any of the mass loss is compensated by increased snowfall in the northwestern or far northern areas. We combined satellite stereo-image DEM differencing and ICESat-derived along-track elevation changes to measure ice mass loss for the Antarctic Peninsula north of 66°S between 2001-2010, focusing on the ICESat-1 period of operation (2003-2009). This mapping includes all ice drainages affected by recent ice shelf loss in the northeastern Peninsula (Prince Gustav, Larsen Inlet, Larsen A, and Larsen B) as well as James Ross Island, Vega Island, Anvers Island, Brabant Island and the adjacent west-flowing glaciers. Polaris Glacier (feeding the Larsen Inlet, which collapsed in 1986) is an exception, and may have stabilized. Our method uses ASTER and SPOT-5 stereo-image DEMs to determine dh/dt for elevations below 800 m; at higher elevations ICESat along-track elevation differencing is used. To adjust along-track path offsets between its 2003-2009 campaigns, we use a recent DEM of the Peninsula to establish and correct for cross-track slope (Cook et al., 2012, doi:10.5194/essdd-5-365-2012; http://nsidc.org/data/nsidc-0516.html) . We reduce the effect of possible seasonal variations in elevation by using only integer-year repeats of the ICESat tracks for comparison. Mass losses are dominated by the major glaciers that had flowed into the Prince Gustav (Boydell, Sjorgren, Röhss), Larsen A (Edgeworth, Bombardier, Dinsmoor, Drygalski), and Larsen B (Hektoria, Jorum, and Crane) embayments. The pattern of mass loss emphasizes the significant and multi-decadal response to ice shelf loss. Areas with shelf losses occurring 30 to 100s of years ago seem to be relatively stable or losing mass only slowly (western glaciers, northernmost areas). The

  15. Ross Ice Shelf, Antarctica: Bathymetry, Structural Geology and Ocean Circulation from New IcePod Airborne Geophysical Data

    NASA Astrophysics Data System (ADS)

    Siddoway, C. S.; Tinto, K. J.; Bell, R. E.; Padman, L.; Fricker, H. A.; Springer, S. R.

    2016-12-01

    Rock exposures in the Ford Ranges, Marie Byrd Land (MBL), on the eastern margin of the Ross Embayment, contain direct evidence of the geological processes that led to formation of West Antarctica's continental lithosphere. Processes include wide regional extension, volcanism, and thermal reequilibration, with creation of crustal structures that are prone to reactivation today. Marie Byrd Land is tectonically active, as is evident from Late Pleistocene to Holocene eruptive centers, englacial volcanic tephra as young as 2200 years, a site of magma propagation inferred from POLEnet seismic records, and the occurrence of a 2012 earthquake cluster of magnitude M4.4 to M5.5 north of Edward VII Peninsula. However, the lithosphere underlying the Ross Ice Shelf (RIS) is poorly known due to the thick cover of shelf ice floating on the ocean, difficult to penetrate by satellite remote sensing or other methods. Airborne geophysical data for the Ford Ranges and the Ross Ice Shelf (RIS) suggest that the rock formations and structures that underlie MBL continue beneath the RIS. Notable features known in outcrop and detected/inferred from potential fields data are Pleistocene or younger mafic volcanic centers and Cretaceous core complexes, both likely associated with wrench faults. The Ford Ranges legacy dataset that now provides a fundamental basis for sub-RIS geological interpretation is a product of research in coastal MBL led by B.P. Luyendyk from 1989 - 2006. To improve our knowledge of lithospheric evolution, identify active faults and prospective zones of volcanism/heat flow, and to determine the sub-RIS bathymetry, the RIS sector is being explored via new Icepod aerogeophysics acquisition during the ROSETTA-Ice project (Ross Ocean and ice Shelf Environment, and Tectonic setting Through Aerogeophysical surveys and modeling), now underway over this vast under-explored sector of the Ross Embayment. ROSETTA-Ice collects and employs new gravity data with magnetics to delineate

  16. Century-scale simulations of the response of the West Antarctic Ice Sheet to a warming climate

    DOE PAGES

    Cornford, S. L.; Martin, D. F.; Payne, A. J.; ...

    2015-03-23

    We use the BISICLES adaptive mesh ice sheet model to carry out one, two, and three century simulations of the fast-flowing ice streams of the West Antarctic Ice Sheet. Each of the simulations begins with a geometry and velocity close to present day observations, and evolves according to variation in meteoric ice accumulation, ice shelf melting, and mesh resolution. Future changes in accumulation and melt rates range from no change, through anomalies computed by atmosphere and ocean models driven by the E1 and A1B emissions scenarios, to spatially uniform melt rates anomalies that remove most of the ice shelves overmore » a few centuries. We find that variation in the resulting ice dynamics is dominated by the choice of initial conditions, ice shelf melt rate and mesh resolution, although ice accumulation affects the net change in volume above flotation to a similar degree. Given sufficient melt rates, we compute grounding line retreat over hundreds of kilometers in every major ice stream, but the ocean models do not predict such melt rates outside of the Amundsen Sea Embayment until after 2100. Sensitivity to mesh resolution is spurious, and we find that sub-kilometer resolution is needed along most regions of the grounding line to avoid systematic under-estimates of the retreat rate, although resolution requirements are more stringent in some regions – for example the Amundsen Sea Embayment – than others – such as the Möller and Institute ice streams.« less

  17. Simple Rules Govern the Patterns of Arctic Sea Ice Melt Ponds.

    PubMed

    Popović, Predrag; Cael, B B; Silber, Mary; Abbot, Dorian S

    2018-04-06

    Climate change, amplified in the far north, has led to rapid sea ice decline in recent years. In the summer, melt ponds form on the surface of Arctic sea ice, significantly lowering the ice reflectivity (albedo) and thereby accelerating ice melt. Pond geometry controls the details of this crucial feedback; however, a reliable model of pond geometry does not currently exist. Here we show that a simple model of voids surrounding randomly sized and placed overlapping circles reproduces the essential features of pond patterns. The only two model parameters, characteristic circle radius and coverage fraction, are chosen by comparing, between the model and the aerial photographs of the ponds, two correlation functions which determine the typical pond size and their connectedness. Using these parameters, the void model robustly reproduces the ponds' area-perimeter and area-abundance relationships over more than 6 orders of magnitude. By analyzing the correlation functions of ponds on several dates, we also find that the pond scale and the connectedness are surprisingly constant across different years and ice types. Moreover, we find that ponds resemble percolation clusters near the percolation threshold. These results demonstrate that the geometry and abundance of Arctic melt ponds can be simply described, which can be exploited in future models of Arctic melt ponds that would improve predictions of the response of sea ice to Arctic warming.

  18. Simple Rules Govern the Patterns of Arctic Sea Ice Melt Ponds

    NASA Astrophysics Data System (ADS)

    Popović, Predrag; Cael, B. B.; Silber, Mary; Abbot, Dorian S.

    2018-04-01

    Climate change, amplified in the far north, has led to rapid sea ice decline in recent years. In the summer, melt ponds form on the surface of Arctic sea ice, significantly lowering the ice reflectivity (albedo) and thereby accelerating ice melt. Pond geometry controls the details of this crucial feedback; however, a reliable model of pond geometry does not currently exist. Here we show that a simple model of voids surrounding randomly sized and placed overlapping circles reproduces the essential features of pond patterns. The only two model parameters, characteristic circle radius and coverage fraction, are chosen by comparing, between the model and the aerial photographs of the ponds, two correlation functions which determine the typical pond size and their connectedness. Using these parameters, the void model robustly reproduces the ponds' area-perimeter and area-abundance relationships over more than 6 orders of magnitude. By analyzing the correlation functions of ponds on several dates, we also find that the pond scale and the connectedness are surprisingly constant across different years and ice types. Moreover, we find that ponds resemble percolation clusters near the percolation threshold. These results demonstrate that the geometry and abundance of Arctic melt ponds can be simply described, which can be exploited in future models of Arctic melt ponds that would improve predictions of the response of sea ice to Arctic warming.

  19. Mapping the grounding zone of Ross Ice Shelf using ICESat laser altimetry

    USGS Publications Warehouse

    Brunt, Kelly M.; Fricker, Helen A.; Padman, Laurie; Scambos, Ted A.; O'Neel, Shad

    2010-01-01

    We use laser altimetry from the Ice, Cloud, and land Elevation Satellite (ICESat) to map the grounding zone (GZ) of the Ross Ice Shelf, Antarctica, at 491 locations where ICESat tracks cross the grounding line (GL). Ice flexure in the GZ occurs as the ice shelf responds to short-term sea-level changes due primarily to tides. ICESat repeat-track analysis can be used to detect this region of flexure since each repeated pass is acquired at a different tidal phase; the technique provides estimates for both the landward limit of flexure and the point where the ice becomes hydrostatically balanced. We find that the ICESat-derived landward limits of tidal flexure are, in many places, offset by several km (and up to ∼60 km) from the GL mapped previously using other satellite methods. We discuss the reasons why different mapping methods lead to different GL estimates, including: instrument limitations; variability in the surface topographic structure of the GZ; and the presence of ice plains. We conclude that reliable and accurate mapping of the GL is most likely to be achieved when based on synthesis of several satellite datasets

  20. Stable isotope geochemistry of pore waters from the New Jersey shelf - No evidence for Pleistocene melt water

    NASA Astrophysics Data System (ADS)

    van Geldern, Robert; Hayashi, Takeshi; Böttcher, Michael E.; Mottl, Michael J.; Barth, Johannes A. C.; Stadler, Susanne

    2013-04-01

    Scientific drillings in the 1970s revealed the presence of a large fresh water lens below the New Jersey Shelf. The origin and age of this fresh water body is still under debate. Groundwater flow models suggest that the water mainly originates from glacial melt water that entered the ground below large continental ice sheets during the last glacial maximum (LGM), whereas other studies suggest an age up to late Miocene. In this study, interstitial water was sampled during the Integrated Ocean Drilling Program (IODP) expedition 313 "New Jersey Shallow Shelf" (Mountain et al., 2010) and analyzed for water chemistry and stable isotope ratios (van Geldern et al, 2013). The pore fluid stable isotope values define a mixing line with end members that have oxygen and hydrogen isotope values of -7.0‰ and -41‰ for fresh water, and -0.8‰ and -6‰ for saltwater, respectively. The analyses revealed the following sources of fluids beneath the shelf: (1) modern rainwater, (2) modern seawater, and (3) a brine that ascends from deep sediments. The stable isotope composition of the water samples indicates modern meteoric recharge from New Jersey onshore aquifers as the fresh-water end member. This contradicts earlier views on the formation of the New Jersey fresh water lens, as it does not support the ice-age-origin theory. The salt-water end member is identical to modern New Jersey shelf seawater. Lower core parts of the drilling sites are characterized by mixing with a brine that originates from evaporites in the deep underground and that ascends via faults into the overlying sediments. The geochemical data from this study may provide the basis for an approach to construct a transect across the New Jersey shallow shelf since they fill a missing link in the shelf's geochemical profile. They also lay foundations for future research on hardly explored near-shore freshwater resources. References Mountain, G. and the Expedition 313 Scientists, 2010, Proceedings of the Integrated

  1. Simulations of Antarctic ice shelves and the Southern Ocean in the POP2x ocean model coupled with the BISICLES ice-sheet model

    NASA Astrophysics Data System (ADS)

    Asay-Davis, Xylar; Martin, Daniel; Price, Stephen; Maltrud, Mathew

    2014-05-01

    We present initial results from Antarctic, ice-ocean coupled simulations using large-scale ocean circulation and ice-sheet evolution models. This presentation focuses on the ocean model, POP2x, which is a modified version of POP, a fully eddying, global-scale ocean model (Smith and Gent, 2002). POP2x allows for circulation beneath ice shelf cavities using the method of partial top cells (Losch, 2008). Boundary layer physics, which control fresh water and salt exchange at the ice-ocean interface, are implemented following Holland and Jenkins (1999), Jenkins (2001), and Jenkins et al. (2010). Standalone POP2x output compares well with standard ice-ocean test cases (e.g., ISOMIP; Losch, 2008) and other continental-scale simulations and melt-rate observations (Kimura et al., 2013; Rignot et al., 2013) and with results from other idealized ice-ocean coupling test cases (e.g., Goldberg et al., 2012). A companion presentation, 'Fully resolved whole-continent Antarctica simulations using the BISICLES AMR ice sheet model coupled with the POP2x Ocean Model', concentrates more on the ice-sheet model, BISICLES (Cornford et al., 2012), which includes a 1st-order accurate momentum balance (L1L2) and uses block structured, adaptive-mesh refinement to more accurately model regions of dynamic complexity, such as ice streams, outlet glaciers, and grounding lines. For idealized test cases focused on marine-ice sheet dynamics, BISICLES output compares very favorably relative to simulations based on the full, nonlinear Stokes momentum balance (MISMIP-3d; Pattyn et al., 2013). Here, we present large-scale (Southern Ocean) simulations using POP2x at 0.1 degree resolution with fixed ice shelf geometries, which are used to obtain and validate modeled submarine melt rates against observations. These melt rates are, in turn, used to force evolution of the BISICLES model. An offline-coupling scheme, which we compare with the ice-ocean coupling work of Goldberg et al. (2012), is then used to

  2. Modern shelf ice, equatorial Aeolis Quadrangle, Mars

    NASA Technical Reports Server (NTRS)

    Brakenridge, G. R.

    1993-01-01

    As part of a detailed study of the geological and geomorphological evolution of Aeolis Quadrangle, I have encountered evidence suggesting that near surface ice exists at low latitudes and was formed by partial or complete freezing of an inland sea. The area of interest is centered at approximately -2 deg, 196 deg. As seen in a suite of Viking Orbiter frames obtained at a range of approximately 600 km, the plains surface at this location is very lightly cratered or uncratered, and it is thus of late Amazonian age. Extant topographic data indicate that the Amazonian plains at this location occupy a trough whose surface lies at least 1000 m below the Mars datum. A reasonable hypothesis is that quite recent surface water releases, perhaps associated with final evolution of large 'outflow chasms' to the south, but possibly from other source areas, filled this trough, that ice floes formed almost immediately, and that either grounded ice or an ice-covered sea still persists. A reasonable hypothesis is that quite recent surface water releases, perhaps associated with final evolution of large 'outflow chasms' to the south, but possibly from other source areas, filled this trough, that ice floes formed almost immediately, and that either grounded ice or an ice-covered sea still persists. In either case, the thin (a few meters at most) high albedo, low thermal inertia cover of aeolian materials was instrumental in allowing ice preservation, and at least the lower portions of this dust cover may be cemented by water ice. Detailed mapping using Viking stereopairs and quantitative comparisons to terrestrial shelf ice geometries are underway.

  3. A simple model for the evolution of melt pond coverage on permeable Arctic sea ice

    NASA Astrophysics Data System (ADS)

    Popović, Predrag; Abbot, Dorian

    2017-05-01

    As the melt season progresses, sea ice in the Arctic often becomes permeable enough to allow for nearly complete drainage of meltwater that has collected on the ice surface. Melt ponds that remain after drainage are hydraulically connected to the ocean and correspond to regions of sea ice whose surface is below sea level. We present a simple model for the evolution of melt pond coverage on such permeable sea ice floes in which we allow for spatially varying ice melt rates and assume the whole floe is in hydrostatic balance. The model is represented by two simple ordinary differential equations, where the rate of change of pond coverage depends on the pond coverage. All the physical parameters of the system are summarized by four strengths that control the relative importance of the terms in the equations. The model both fits observations and allows us to understand the behavior of melt ponds in a way that is often not possible with more complex models. Examples of insights we can gain from the model are that (1) the pond growth rate is more sensitive to changes in bare sea ice albedo than changes in pond albedo, (2) ponds grow slower on smoother ice, and (3) ponds respond strongest to freeboard sinking on first-year ice and sidewall melting on multiyear ice. We also show that under a global warming scenario, pond coverage would increase, decreasing the overall ice albedo and leading to ice thinning that is likely comparable to thinning due to direct forcing. Since melt pond coverage is one of the key parameters controlling the albedo of sea ice, understanding the mechanisms that control the distribution of pond coverage will help improve large-scale model parameterizations and sea ice forecasts in a warming climate.

  4. Arctic Ice Melting: National Security Implications

    DTIC Science & Technology

    2011-02-01

    be a curse rather than a good, and under no conditions can it either lead into freedom or constitute a proof for its existence. - Hannah ... Arendt 39 How will the domestic or foreign economic policies of the United States be affected by Arctic ice melting? Increased access to the

  5. Winter in Antarctica: dark, cold, windy, and .... wet?? Measurements and modeling of extensive wintertime surface melt

    NASA Astrophysics Data System (ADS)

    Kuipers Munneke, P.; Luckman, A. J.; Bevan, S. L.; Gilbert, E.; Smeets, P.; van den Broeke, M. R.; Wang, W.; Zender, C. S.; Ashmore, D. W.; Hubbard, B. P.; Orr, A.; King, J.

    2017-12-01

    We know that increased surface melt, driven by atmospheric warming, contributed to the collapse of ice shelves as observed in the Antarctic Peninsula. This has induced grounded-ice acceleration and increased ice discharge. You may associate this surface melt with the austral summer season, with plenty of solar radiation driving the melt. In contrast, winter in Antarctica evokes images of darkness, snow, and cold. However, we will make you rethink this picture by presenting observations of frequent snow surface melt in winter, from a weather station located in a previously unsurveyed area of the Larsen C Ice Shelf. Peak intensities of this wintertime melt even exceed summertime values, and thermal satellite images show that large ponds of meltwater are formed at the surface in the pitch-dark Antarctic winter. Obviously, we wanted to find out what could drive these strong melt events if it's not the sun. It turns out that these multi-day melt events occur when warm and dry föhn winds descend from the Antarctic Peninsula mountains. Simulations with a high-resolution weather model confirm that these winds generate turbulent fluxes of sensible heat, leading to melt fluxes in excess of 200 W m-2. In 2015 and 2016, about 23% of the annual melt was produced in winter. We use satellite radar to show that winter melt occurs on many more places in the Antarctic Peninsula. It happens every year, although in some years the melting is much more widespread than in others. We think that wintertime melt matters as its refreezing warms the snow and increases snow density. In this way, winter melt preconditions the ice shelf for more extensive surface drainage, potentially leading to meltwater-driven instability.

  6. Glacier and Ice Shelves Studies Using Satellite SAR Interferometry

    NASA Technical Reports Server (NTRS)

    Rignot, Eric

    1999-01-01

    Satellite radar interferometry is a powerful technique to measure the surface velocity and topography of glacier ice. On ice shelves, a quadruple difference technique separates tidal motion from the steady creep flow deformation of ice. The results provide a wealth of information about glacier grounding lines , mass fluxes, stability, elastic properties of ice, and tidal regime. The grounding line, which is where the glacier detaches from its bed and becomes afloat, is detected with a precision of a few tens of meters. Combining this information with satellite radar altimetry makes it possible to measure glacier discharge into the ocean and state of mass balance with greater precision than ever before, and in turn provide a significant revision of past estimates of mass balance of the Greenland and Antarctic Ice Sheets. Analysis of creep rates on floating ice permits an estimation of basal melting at the ice shelf underside. The results reveal that the action of ocean water in sub-ice-shelf cavities has been largely underestimated by oceanographic models and is the dominant mode of mass release to the ocean from an ice shelf. Precise mapping of grounding line positions also permits the detection of grounding line migration, which is a fine indicator of glacier change, independent of our knowledge of snow accumulation and ice melting. This technique has been successfully used to detect the rapid retreat of Pine Island Glacier, the largest ice stream in West Antarctica. Finally, tidal motion of ice shelves measured interferometrically provides a modern, synoptic view of the physical processes which govern the formation of tabular icebergs in the Antarctic.

  7. The Potsdam Parallel Ice Sheet Model (PISM-PIK) - Part 2: Dynamic equilibrium simulation of the Antarctic ice sheet

    NASA Astrophysics Data System (ADS)

    Martin, M. A.; Winkelmann, R.; Haseloff, M.; Albrecht, T.; Bueler, E.; Khroulev, C.; Levermann, A.

    2011-09-01

    We present a dynamic equilibrium simulation of the ice sheet-shelf system on Antarctica with the Potsdam Parallel Ice Sheet Model (PISM-PIK). The simulation is initialized with present-day conditions for bed topography and ice thickness and then run to steady state with constant present-day surface mass balance. Surface temperature and sub-shelf basal melt distribution are parameterized. Grounding lines and calving fronts are free to evolve, and their modeled equilibrium state is compared to observational data. A physically-motivated calving law based on horizontal spreading rates allows for realistic calving fronts for various types of shelves. Steady-state dynamics including surface velocity and ice flux are analyzed for whole Antarctica and the Ronne-Filchner and Ross ice shelf areas in particular. The results show that the different flow regimes in sheet and shelves, and the transition zone between them, are captured reasonably well, supporting the approach of superposition of SIA and SSA for the representation of fast motion of grounded ice. This approach also leads to a natural emergence of sliding-dominated flow in stream-like features in this new 3-D marine ice sheet model.

  8. Turbulent properties under sloping Ice-wall in polar water

    NASA Astrophysics Data System (ADS)

    Mondal, Mainak; Gayen, Bishakhdatta; Griffiths, Ross W.; Kerr, Ross C.

    2017-11-01

    Ice-shelves around West Antarctic basins are the most vulnerable to melting in the presence of warmer continental shelf water. A large extent of slope exists under these ice-shelves, where turbulent transport of salt and heat into the ice wall drives a convective melt-water plume against it. Large scale ice-ocean models neglect the effect of convection which can lead to a wrong estimation of melt rate. We perform direct numerical simulations under sloping ice-shelves with realistic ambient conditions. We estimated the melt rates, boundary layer thicknesses and entrainment coefficients as a function of slope angle. The numerical results are further supported by theoretical predictions. Over the range of slope angles, different mechanisms are active for sustaining turbulence. For near vertical case, buoyancy production is the primary source of turbulent kinetic energy whereas for shallower angles turbulence is produced by velocity shear in the meltwater plume. Australian Research Council.

  9. Impacts of sea ice retreat, thinning, and melt-pond proliferation on the summer phytoplankton bloom in the Chukchi Sea, Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Palmer, Molly A.; Saenz, Benjamin T.; Arrigo, Kevin R.

    2014-07-01

    In 2011, a massive phytoplankton bloom was observed in the Chukchi Sea under first-year sea ice (FYI), an environment in which primary productivity (PP) has historically been low. In this paper, we use a 1-D biological model of the Chukchi shelf ecosystem, in conjunction with in situ chemical and physiological data, to better understand the conditions that facilitated the development of such an unprecedented bloom. In addition, to assess the effects of changing Arctic environmental conditions on net PP (NPP), we perform model runs with varying sea ice and snow thickness, timing of melt, melt ponds, and biological parameters. Results from model runs with conditions similar to 2011 indicate that first-year ice (FYI) with at least 10% melt pond coverage transmits sufficient light to support the growth of shade-adapted Arctic phytoplankton. Increasing pond fraction by 20% enhanced peak under-ice NPP by 26% and produced rates more comparable to those measured during the 2011 bloom, but there was no effect of further increasing pond fraction. One of the important consequences of large under-ice blooms is that they consume a substantial fraction of surface nutrients such that NPP is greatly diminished in the marginal ice zone (MIZ) following ice retreat, where NPP has historically been the highest. In contrast, in model runs with <10% ponds, no under-ice bloom formed, and although peak MIZ NPP increased by 18-30%, this did not result in higher total annual NPP. This suggests that under-ice blooms contribute importantly to total annual NPP. Indeed, in all runs exhibiting under-ice blooms, total annual NPP was higher than in runs with the majority of NPP based in open water. Consistent with this, in model runs where ice melted one month earlier, peak under-ice NPP decreased 30%, and annual NPP was lower as well. The only exception was the case with no sea ice in the region: a weak bloom in early May was followed by low but sustained NPP throughout the entire growth season

  10. Contrasts in Arctic shelf sea-ice regimes and some implications: Beaufort Sea versus Laptev Sea

    USGS Publications Warehouse

    Reimnitz, E.; Dethleff, D.; Nurnberg, D.

    1994-01-01

    The winter ice-regime of the 500 km) from the mainland than in the Beaufort Sea. As a result, the annual freeze-up does not incorporate old, deep-draft ice, and with a lack of compression, such deep-draft ice is not generated in situ, as on the Beaufort Sea shelf. The Laptev Sea has as much as 1000 km of fetch at the end of summer, when freezing storms move in and large (6 m) waves can form. Also, for the first three winter months, the polynya lies inshore at a water depth of only 10 m. Turbulence and freezing are excellent conditions for sediment entrainment by frazil and anchor ice, when compared to conditions in the short-fetched Beaufort Sea. We expect entrainment to occur yearly. Different from the intensely ice-gouged Beaufort Sea shelf, hydraulic bedforms probably dominate in the Laptev Sea. Corresponding with the large volume of ice produced, more dense water is generated in the Laptev Sea, possibly accompanied by downslope sediment transport. Thermohaline convection at the midshelf polynya, together with the reduced rate of bottom disruption by ice keels, may enhance benthic productivity and permit establishment of open-shelf benthic communities which in the Beaufort Sea can thrive only in the protection of barrier islands. Indirect evidence for high benthic productivity is found in the presence of walrus, who also require year-round open water. By contrast, lack of a suitable environment restricts walrus from the Beaufort Sea, although over 700 km farther to the south. We could speculate on other consequences of the different ice regimes in the Beaufort and Laptev Seas, but these few examples serve to point out the dangers of exptrapolating from knowledge gained in the North American Arctic to other shallow Arctic shelf settings. ?? 1994.

  11. IceBridge Provides Novel Evidence for Thick Units of Basal Freeze-on Ice Along Petermann Glacier, Greenland

    NASA Astrophysics Data System (ADS)

    Bell, R. E.; Tinto, K. J.; Wolovick, M.; Block, A. E.; Frearson, N.; Das, I.; Abdi, A.; Creyts, T. T.; Cochran, J. R.; Csatho, B. M.; Babonis, G. S.

    2011-12-01

    The Petermann Glacier, one of the major outlet glaciers in Greenland, drains six percent of the Greenland ice from a basin largely below sea level. Petermann Glacier and its large ice shelf may be susceptible to increased change as the waters along the Greenland margin warm. The 2010 and 2011 Operation IceBridge mission, acquired a comprehensive aerogeophysical data set over the Petermann Glacier that provides insights into the ice sheet structure. This analysis employs most of the data streams acquired by the Icebridge platform including ice-penetrating radar, laser altimetry, gravity and magnetics. An orthogonal 10 km grid extends from 60 km upstream of the grounding line to 240 km inland. The ice velocities in the region range from <50m/yr to >200m/yr. On the interior lines the internal layers are pulled down over 2-3 km wide regions. Up to 400m of ice from the base of the ice sheet appears to be absent in these regions. We interpret these pulled down regions as basal melt. These melt regions are mainly located along the upstream side of a 80 km wide east-west trending topographic ridge that separates the interior ice from the Petermann Fjord. The IceBridge magnetic data indicates that this broad flat ridge is the boundary between the Franklinian Basins and the Ellsmerian Foldbelt to the north. Downstream of these pull-down layers we have identified 4 distinct packages of ice that thicken downstream and are characterized by a strong upper reflector. These packages develop at the base of the ice sheet and reach thicknesses of 500-700m over distances of 10-20 km. These basal packages can be traced for 30-100 km following the direction of flow, and may be present close to the grounding line. These basal reflectors deflect the overlying internal layers upward indicating the addition of ice to the base of the ice sheet. The IceBridge gravity data indicates that these features are probably not off-nadir topography since these would show up as around 30mGal anomalies

  12. Biomarker-based reconstruction of late Holocene sea-ice variability: East versus West Greenland continental shelf.

    NASA Astrophysics Data System (ADS)

    Kolling, H. M.; Stein, R. H.; Fahl, K.

    2016-12-01

    Sea is a critical component of the climate system and its role is not yet fully understood e.g. the recent rapid decrease in sea ice is not clearly reflected in climate models. This illustrates the need for high-resolution proxy-based sea-ice reconstructions going beyond the time scale of direct measurements in order to understand the processes controlling present and past natural variability of sea ice on short time scales. Here we present the first comparison of two high-resolution biomarker records from the East and West Greenland Shelf for the late Holocene. Both areas are highly sensitive to sea-ice changes as they are influenced by the East Greenland Current, the main exporter of Arctic freshwater and sea ice. On the East Greenland Shelf, we do not find any clear evidence for a long-term increase of sea ice during the late Holocene Neoglacial. This sea-ice record seems to be more sensitive to short-term climate events, such as the Roman Warm Period, the Dark Ages, the Medieval Warm Period and the Little Ice Age. In contrary, the West Greenland Shelf record shows a strong and gradual increase in sea ice concentration and a reduction in marine productivity markers starting near 1.6 ka. In general, the increase in sea ice seems to follow the decreasing solar insolation trend. Short-term events are not as clearly pronounced as on the East Greenland Shelf. A comparison to recently published foraminiferal records from the same cores (Perner et al., 2011, 2015) illuminates the differences of biomarker and micropaleontoligical proxies. It seems that the general trend is reflected in both proxies but the signal of small-scale events is preserved rather differently, pointing towards different environmental requirements of the species behind both proxies. References: Perner, K., et al., 2011. Quat. Sci. Revs. 30, 2815-2826 Perner, K., et al., 2015. Quat. Sci. Revs. 129, 296-307

  13. Antifreeze protein-induced superheating of ice inside Antarctic notothenioid fishes inhibits melting during summer warming

    PubMed Central

    Cziko, Paul A.; DeVries, Arthur L.; Evans, Clive W.; Cheng, Chi-Hing Christina

    2014-01-01

    Antifreeze proteins (AFPs) of polar marine teleost fishes are widely recognized as an evolutionary innovation of vast adaptive value in that, by adsorbing to and inhibiting the growth of internalized environmental ice crystals, they prevent death by inoculative freezing. Paradoxically, systemic accumulation of AFP-stabilized ice could also be lethal. Whether or how fishes eliminate internal ice is unknown. To investigate if ice inside high-latitude Antarctic notothenioid fishes could melt seasonally, we measured its melting point and obtained a decadal temperature record from a shallow benthic fish habitat in McMurdo Sound, Antarctica. We found that AFP-stabilized ice resists melting at temperatures above the expected equilibrium freezing/melting point (eqFMP), both in vitro and in vivo. Superheated ice was directly observed in notothenioid serum samples and in solutions of purified AFPs, and ice was found to persist inside live fishes at temperatures more than 1 °C above their eqFMP for at least 24 h, and at a lower temperature for at least several days. Field experiments confirmed that superheated ice occurs naturally inside wild fishes. Over the long-term record (1999–2012), seawater temperature surpassed the fish eqFMP in most summers, but never exceeded the highest temperature at which ice persisted inside experimental fishes. Thus, because of the effects of AFP-induced melting inhibition, summer warming may not reliably eliminate internal ice. Our results expose a potentially antagonistic pleiotropic effect of AFPs: beneficial freezing avoidance is accompanied by melting inhibition that may contribute to lifelong accumulation of detrimental internal ice crystals. PMID:25246548

  14. Antifreeze protein-induced superheating of ice inside Antarctic notothenioid fishes inhibits melting during summer warming.

    PubMed

    Cziko, Paul A; DeVries, Arthur L; Evans, Clive W; Cheng, Chi-Hing Christina

    2014-10-07

    Antifreeze proteins (AFPs) of polar marine teleost fishes are widely recognized as an evolutionary innovation of vast adaptive value in that, by adsorbing to and inhibiting the growth of internalized environmental ice crystals, they prevent death by inoculative freezing. Paradoxically, systemic accumulation of AFP-stabilized ice could also be lethal. Whether or how fishes eliminate internal ice is unknown. To investigate if ice inside high-latitude Antarctic notothenioid fishes could melt seasonally, we measured its melting point and obtained a decadal temperature record from a shallow benthic fish habitat in McMurdo Sound, Antarctica. We found that AFP-stabilized ice resists melting at temperatures above the expected equilibrium freezing/melting point (eqFMP), both in vitro and in vivo. Superheated ice was directly observed in notothenioid serum samples and in solutions of purified AFPs, and ice was found to persist inside live fishes at temperatures more than 1 °C above their eqFMP for at least 24 h, and at a lower temperature for at least several days. Field experiments confirmed that superheated ice occurs naturally inside wild fishes. Over the long-term record (1999-2012), seawater temperature surpassed the fish eqFMP in most summers, but never exceeded the highest temperature at which ice persisted inside experimental fishes. Thus, because of the effects of AFP-induced melting inhibition, summer warming may not reliably eliminate internal ice. Our results expose a potentially antagonistic pleiotropic effect of AFPs: beneficial freezing avoidance is accompanied by melting inhibition that may contribute to lifelong accumulation of detrimental internal ice crystals.

  15. Radar Interferometry Studies of the Mass Balance of Polar Ice Sheets

    NASA Technical Reports Server (NTRS)

    Rignot, Eric (Editor)

    1999-01-01

    The objectives of this work are to determine the current state of mass balance of the Greenland and Antarctic Ice Sheets. Our approach combines different techniques, which include satellite synthetic-aperture radar interferometry (InSAR), radar and laser altimetry, radar ice sounding, and finite-element modeling. In Greenland, we found that 3.5 times more ice flows out of the northern part of the Greenland Ice Sheet than previously accounted for. The discrepancy between current and past estimates is explained by extensive basal melting of the glacier floating sections in the proximity of the grounding line where the glacier detaches from its bed and becomes afloat in the ocean. The inferred basal melt rates are very large, which means that the glaciers are very sensitive to changes in ocean conditions. Currently, it appears that the northern Greenland glaciers discharge more ice than is being accumulated in the deep interior, and hence are thinning. Studies of temporal changes in grounding line position using InSAR confirm the state of retreat of northern glaciers and suggest that thinning is concentrated at the lower elevations. Ongoing work along the coast of East Greenland reveals an even larger mass deficit for eastern Greenland glaciers, with thinning affecting the deep interior of the ice sheet. In Antarctica, we found that glaciers flowing into a large ice shelf system, such as the Ronne Ice Shelf in the Weddell Sea, exhibit an ice discharge in remarkable agreement with mass accumulation in the interior, and the glacier grounding line positions do not migrate with time. Glaciers flowing rapidly into the Amudsen Sea, unrestrained by a major ice shelf, are in contrast discharging more ice than required to maintain a state of mass balance and are thinning quite rapidly near the coast. The grounding line of Pine Island glacier (see diagram) retreated 5 km in 4 years, which corresponds to a glacier thinning rate of 3.5 m/yr. Mass imbalance is even more negative

  16. Using Melting Ice to Teach Radiometric Dating.

    ERIC Educational Resources Information Center

    Wise, Donald Underkofler

    1990-01-01

    Presented is an activity in which a mystery setting is used to motivate students to construct their own decay curves of melting ice used as an analogy to radioactive decay. Procedures, materials, apparatus, discussion topics, presentation, and thermodynamics are discussed. (CW)

  17. Grounding Zone and Tidal Response of the Amery Ice Shelf, East Antarctica

    NASA Technical Reports Server (NTRS)

    Fricker, Helen A.; Sandwell, David; Coleman, Richard; Minster, Bernard

    2005-01-01

    This report summarizes the main findings of the research project. Unfortunately, it turned out that there was not a great deal of SAR data over the Amery Ice Shelf that we were able to work with on the project; nevertheless, we did make considerable progress on this project, with both the existing SAR data and new field measurements that were collected under this grant. In total we had constructed two SAR interferograms (SSIs), and four SSIs. The latter were combined them to construct two differential SAR interferograms (DSIs;). DSIs are useful because the contribution to the SAR phase from horizontal ice motion is eliminated, since the time difference between the first and second pass within both image pairs used to make the DSI is the same for each pair. The SSIs and DSIs have revealed several interesting glaciological features, and have added to our knowledge of the Amery Ice Shelf (AIS).

  18. Enhanced ice sheet melting driven by volcanic eruptions during the last deglaciation.

    PubMed

    Muschitiello, Francesco; Pausata, Francesco S R; Lea, James M; Mair, Douglas W F; Wohlfarth, Barbara

    2017-10-24

    Volcanic eruptions can impact the mass balance of ice sheets through changes in climate and the radiative properties of the ice. Yet, empirical evidence highlighting the sensitivity of ancient ice sheets to volcanism is scarce. Here we present an exceptionally well-dated annual glacial varve chronology recording the melting history of the Fennoscandian Ice Sheet at the end of the last deglaciation (∼13,200-12,000 years ago). Our data indicate that abrupt ice melting events coincide with volcanogenic aerosol emissions recorded in Greenland ice cores. We suggest that enhanced ice sheet runoff is primarily associated with albedo effects due to deposition of ash sourced from high-latitude volcanic eruptions. Climate and snowpack mass-balance simulations show evidence for enhanced ice sheet runoff under volcanically forced conditions despite atmospheric cooling. The sensitivity of past ice sheets to volcanic ashfall highlights the need for an accurate coupling between atmosphere and ice sheet components in climate models.

  19. Tidal Impacts on Oceanographic and Sea-ice Processes in the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Padman, L.; Muench, R. D.; Howard, S.; Mueller, R.

    2008-12-01

    We review recent field and modeling results that demonstrate the importance of tides in establishing the oceanographic and sea-ice conditions in the boundary regions of the Southern Ocean. The tidal component dominates the total oceanic kinetic energy throughout much of the circum-Antarctic seas. This domination is especially pronounced over the continental slope and shelf including the sub-ice-shelf cavities. Tides provide most of the energy that forces diapycnal mixing under ice shelves and thereby contributes to basal melting. The resulting Ice Shelf Water is a significant component of the Antarctic Bottom Water (AABW) filling much of the deep global ocean. Tides exert significant divergent forcing on sea ice along glacial ice fronts and coastal regions, contributing to creation and maintenance of the coastal polynyas where much of the High Salinity Shelf Water component of AABW is formed. Additional tidally forced ice divergence along the shelf break and upper slope significantly impacts area-averaged ice growth and upper-ocean salinity. Tidally forced cross- slope advection, and mixing by the benthic stress associated with tidal currents along the shelf break and upper slope, strongly influence the paths, volume fluxes and hydrographic properties of benthic outflows of dense water leaving the continental shelf. These outflows provide primary source waters for the AABW. These results confirm that general ocean circulation and coupled ocean/ice/atmosphere climate models must incorporate the impacts of tides.

  20. Rapid changes in surface water carbonate chemistry during Antarctic sea ice melt

    NASA Astrophysics Data System (ADS)

    Jones, Elizabeth M.; Bakker, Dorothee C. E.; Venables, Hugh J.; Whitehouse, Michael J.; Korb, Rebecca E.; Watson, Andrew J.

    2010-11-01

    ABSTRACT The effect of sea ice melt on the carbonate chemistry of surface waters in the Weddell-Scotia Confluence, Southern Ocean, was investigated during January 2008. Contrasting concentrations of dissolved inorganic carbon (DIC), total alkalinity (TA) and the fugacity of carbon dioxide (fCO2) were observed in and around the receding sea ice edge. The precipitation of carbonate minerals such as ikaite (CaCO3.6H2O) in sea ice brine has the net effect of decreasing DIC and TA and increasing the fCO2 in the brine. Deficits in DIC up to 12 +/- 3 μmol kg-1 in the marginal ice zone (MIZ) were consistent with the release of DIC-poor brines to surface waters during sea ice melt. Biological utilization of carbon was the dominant processes and accounted for 41 +/- 1 μmol kg-1 of the summer DIC deficit. The data suggest that the combined effects of biological carbon uptake and the precipitation of carbonates created substantial undersaturation in fCO2 of 95 μatm in the MIZ during summer sea ice melt. Further work is required to improve the understanding of ikaite chemistry in Antarctic sea ice and its importance for the sea ice carbon pump.

  1. Percolation blockage: A process that enables melt pond formation on first year Arctic sea ice

    NASA Astrophysics Data System (ADS)

    Polashenski, Chris; Golden, Kenneth M.; Perovich, Donald K.; Skyllingstad, Eric; Arnsten, Alexandra; Stwertka, Carolyn; Wright, Nicholas

    2017-01-01

    Melt pond formation atop Arctic sea ice is a primary control of shortwave energy balance in the Arctic Ocean. During late spring and summer, the ponds determine sea ice albedo and how much solar radiation is transmitted into the upper ocean through the sea ice. The initial formation of ponds requires that melt water be retained above sea level on the ice surface. Both theory and observations, however, show that first year sea ice is so highly porous prior to the formation of melt ponds that multiday retention of water above hydraulic equilibrium should not be possible. Here we present results of percolation experiments that identify and directly demonstrate a mechanism allowing melt pond formation. The infiltration of fresh water into the pore structure of sea ice is responsible for blocking percolation pathways with ice, sealing the ice against water percolation, and allowing water to pool above sea level. We demonstrate that this mechanism is dependent on fresh water availability, known to be predominantly from snowmelt, and ice temperature at melt onset. We argue that the blockage process has the potential to exert significant control over interannual variability in ice albedo. Finally, we suggest that incorporating the mechanism into models would enhance their physical realism. Full treatment would be complex. We provide a simple temperature threshold-based scheme that may be used to incorporate percolation blockage behavior into existing model frameworks.

  2. Update on the Greenland Ice Sheet Melt Extent: 1979-1999

    NASA Technical Reports Server (NTRS)

    Abdalati, Waleed; Steffen, Konrad

    2000-01-01

    Analysis of melt extent on the Greenland ice sheet is updated to span the time period 1979-1999 is examined along with its spatial and temporal variability using passive microwave satellite data. In order to acquire the full record, the issue of continuity between previous passive microwave sensors (SMMR, SSM/I F-8, and SSM/I F-11), and the most recent SSM/I F-13 sensor is addressed. The F-13 Cross-polarized gradient ratio (XPGR) melt-classification threshold is determined to be -0.0154. Results show that for the 21-year record, an increasing melt trend of nearly 1 %/yr is observed, and this trend is driven by conditions on in the western portion of the ice sheet, rather than the east, where melt appears to have decreased slightly. Moreover, the eruption of Mt. Pinatubo in 1991 is likely to have had some impact the melt, but not as much as previously suspected. The 1992 melt anomaly is 1.7 standard deviations from the mean. Finally, the relationship between coastal temperatures and melt extent suggest an increase in surface runoff contribution to sea level of 0.31 mm/yr for a 1 C temperature rise.

  3. The color of melt ponds on Arctic sea ice

    NASA Astrophysics Data System (ADS)

    Lu, Peng; Leppäranta, Matti; Cheng, Bin; Li, Zhijun; Istomina, Larysa; Heygster, Georg

    2018-04-01

    Pond color, which creates the visual appearance of melt ponds on Arctic sea ice in summer, is quantitatively investigated using a two-stream radiative transfer model for ponded sea ice. The upwelling irradiance from the pond surface is determined and then its spectrum is transformed into RGB (red, green, blue) color space using a colorimetric method. The dependence of pond color on various factors such as water and ice properties and incident solar radiation is investigated. The results reveal that increasing underlying ice thickness Hi enhances both the green and blue intensities of pond color, whereas the red intensity is mostly sensitive to Hi for thin ice (Hi < 1.5 m) and to pond depth Hp for thick ice (Hi > 1.5 m), similar to the behavior of melt-pond albedo. The distribution of the incident solar spectrum F0 with wavelength affects the pond color rather than its intensity. The pond color changes from dark blue to brighter blue with increasing scattering in ice, and the influence of absorption in ice on pond color is limited. The pond color reproduced by the model agrees with field observations for Arctic sea ice in summer, which supports the validity of this study. More importantly, the pond color has been confirmed to contain information about meltwater and underlying ice, and therefore it can be used as an index to retrieve Hi and Hp. Retrievals of Hi for thin ice (Hi < 1 m) agree better with field measurements than retrievals for thick ice, but those of Hp are not good. The analysis of pond color is a new potential method to obtain thin ice thickness in summer, although more validation data and improvements to the radiative transfer model will be needed in future.

  4. Downslope föhn winds over the Antarctic Peninsula and their effect on the Larsen Ice Shelves

    NASA Astrophysics Data System (ADS)

    Grosvenor, D. P.; King, J. C.; Choularton, T. W.; Lachlan-Cope, T.

    2014-03-01

    Mesoscale model simulations are presented of a westerly föhn event over the Antarctic Peninsula mountain ridge and onto the Larsen C Ice Shelf, just south of the recently collapsed Larsen B Ice Shelf. Aircraft observations showed the presence of föhn jets descending near to the ice shelf surface with maximum wind speeds at 250-350 m in height. Surface flux measurements suggested that melting was occurring. Simulated profiles of wind speed, temperature and wind direction were very similar to the observations. However, the good match only occurred at a model time corresponding to ˜9 h before the aircraft observations were made since the model föhn jets died down after this. Through comparison to an Automatic Weather Station (AWS) on the ice shelf surface (east side of the ridge) this was attributed to problems with the time evolution of the large scale meteorology of the analysis used to nudge the upper levels of the model. Timing issues aside, the otherwise good comparison between the model and observations gave confidence that the model flow structure was similar to that in reality. Details of the model jet structure are explored and discussed and are found to have ramifications for the placement of AWS stations on the ice shelf in order to detect föhn flow. Cross sections of the flow are also examined and were found to compare well to the aircraft measurements. Gravity wave breaking above the mountain crest likely created a situation similar to hydraulic flow and allowed föhn flow and ice shelf surface warming to occur despite strong upwind blocking, which in previous studies of this region has generally not been considered. The surface energy budget of the model during the melting periods showed that the net downwelling shortwave surface flux was the largest contributor to the melting energy, indicating that the cloud clearing effect of föhn events is likely to be the most important factor for increased melting relative to non-föhn days. The results also

  5. Warm Rivers Play Role in Arctic Sea Ice Melt Animation

    NASA Image and Video Library

    2014-03-05

    This frame from a NASA MODIS animation depicts warming sea surface temperatures in the Arctic Beaufort Sea after warm waters from Canada Mackenzie River broke through a shoreline sea ice barrier in summer 2012, enhancing the melting of sea ice.

  6. Object-based Image Classification of Arctic Sea Ice and Melt Ponds through Aerial Photos

    NASA Astrophysics Data System (ADS)

    Miao, X.; Xie, H.; Li, Z.; Lei, R.

    2013-12-01

    The last six years have marked the lowest Arctic summer sea ice extents in the modern era, with a new record summer minimum (3.4 million km2) set on 13 September 2012. It has been predicted that the Arctic could be free of summer ice within the next 25-30. The loss of Arctic summer ice could have serious consequences, such as higher water temperature due to the positive feedback of albedo, more powerful and frequent storms, rising sea levels, diminished habitats for polar animals, and more pollution due to fossil fuel exploitation and/ or increased traffic through the Northwest/ Northeast Passage. In these processes, melt ponds play an important role in Earth's radiation balance since they strongly absorb solar radiation rather than reflecting it as snow and ice do. Therefore, it is necessary to develop the ability of predicting the sea ice/ melt pond extents and space-time evolution, which is pivotal to prepare for the variation and uncertainty of the future environment, political, economic, and military needs. A lot of efforts have been put into Arctic sea ice modeling to simulate sea ice processes. However, these sea ice models were initiated and developed based on limited field surveys, aircraft or satellite image data. Therefore, it is necessary to collect high resolution sea ice aerial photo in a systematic way to tune up, validate, and improve models. Currently there are many sea ice aerial photos available, such as Chinese Arctic Exploration (CHINARE 2008, 2010, 2012), SHEBA 1998 and HOTRAX 2005. However, manually delineating of sea ice and melt pond from these images is time-consuming and labor-intensive. In this study, we use the object-based remote sensing classification scheme to extract sea ice and melt ponds efficiently from 1,727 aerial photos taken during the CHINARE 2010. The algorithm includes three major steps as follows. (1) Image segmentation groups the neighboring pixels into objects according to the similarity of spectral and texture

  7. Ice Stream Slowdown Will Drive Long-Term Thinning of the Ross Ice Shelf, With or Without Ocean Warming

    NASA Astrophysics Data System (ADS)

    Campbell, Adam J.; Hulbe, Christina L.; Lee, Choon-Ki

    2018-01-01

    As time series observations of Antarctic change proliferate, it is imperative that mathematical frameworks through which they are understood keep pace. Here we present a new method of interpreting remotely sensed change using spatial statistics and apply it to the specific case of thickness change on the Ross Ice Shelf. First, a numerical model of ice shelf flow is used together with empirical orthogonal function analysis to generate characteristic patterns of response to specific forcings. Because they are continuous and scalable in space and time, the patterns allow short duration observations to be placed in a longer time series context. Second, focusing only on changes that are statistically significant, the synthetic response surfaces are used to extract magnitude and timing of past events from the observational data. Slowdown of Kamb and Whillans Ice Streams is clearly detectable in remotely sensed thickness change. Moreover, those past events will continue to drive thinning into the future.

  8. When ice meets water: Sub-aqueous melt and its relevance in various settings

    NASA Astrophysics Data System (ADS)

    Truffer, M.; Motyka, R. J.

    2014-12-01

    The largest glacier changes are primarily observed in settings where ice flows into a proglacial water body. However, the responses to this interaction are not uniform. Rapidly retreating glaciers can occur in close vicinity to advancing ones. Calving styles and glacier morphologies vary greatly as well. Temperate lake-calving glaciers frequently exhibit floating tongues; but this is rarely observed on temperate tidewater glaciers. Calving styles range from mostly sub-aerial calving to full-thickness calving to slow detachment of large ice bergs. In addition to the more obvious mechanical calving, glaciers lose mass at their termini through sub-aqueous melting. Melt rates of submerged ice have been shown to vary over several orders of magnitudes, and can range up to several meters per day. This large range is a consequence of different proglacial water temperatures, and of different modes of water transport. Water convection in proglacial water bodies can be driven by winds and tides, but subglacial water discharge is commonly the strongest and most variable driver. Here we attempt to relate the variability of forcings and melt rates to the various morphologies and calving styles of different water-terminating glaciers. The highest melt rates are observed at low-latitude tidewater glaciers, where ocean water can be warm (7 - 10 deg C) and subglacial discharge high. In such settings, sub-aqueous melt can reach the same magnitude as ice flux delivered to the terminus and it can control ice terminus position. Polar tidewater glaciers, such as those in Greenland, often exhibit floating tongues. Although melt rates are likely much lower, they can have a large effect under a floating tongue because of the much larger exposure of ice to water. Changes in melt rates can therefore affect the stability of such floating tongues. Low melt rates occur at some ice shelves at high latitudes, where the temperature and freshwater forcings are small. This situation can also occur at

  9. Rapid bottom melting widespread near Antarctic ice sheet grounding lines

    NASA Technical Reports Server (NTRS)

    Rignot, E.; Jacobs, S.

    2002-01-01

    As continental ice from Antartica reaches the grounding line and begins to float, its underside melts into the ocean. Results obtained with satellite radar interferometry reveal that bottom melt rates experienced by large outlet glaciers near their grounding lines are far higher than generally assumed.

  10. Climate change and forest fires synergistically drive widespread melt events of the Greenland Ice Sheet.

    PubMed

    Keegan, Kaitlin M; Albert, Mary R; McConnell, Joseph R; Baker, Ian

    2014-06-03

    In July 2012, over 97% of the Greenland Ice Sheet experienced surface melt, the first widespread melt during the era of satellite remote sensing. Analysis of six Greenland shallow firn cores from the dry snow region confirms that the most recent prior widespread melt occurred in 1889. A firn core from the center of the ice sheet demonstrated that exceptionally warm temperatures combined with black carbon sediments from Northern Hemisphere forest fires reduced albedo below a critical threshold in the dry snow region, and caused the melting events in both 1889 and 2012. We use these data to project the frequency of widespread melt into the year 2100. Since Arctic temperatures and the frequency of forest fires are both expected to rise with climate change, our results suggest that widespread melt events on the Greenland Ice Sheet may begin to occur almost annually by the end of century. These events are likely to alter the surface mass balance of the ice sheet, leaving the surface susceptible to further melting.

  11. Hemispheric atmospheric variations and oceanographic impacts associated with katabatic surges across the Ross Ice Shelf, Antarctica

    NASA Astrophysics Data System (ADS)

    Bromwich, David H.; Carrasco, Jorge F.; Liu, Zhong; Tzeng, Ren-Yow

    1993-07-01

    Numerical simulations and surface-based observations show that katabatic winds persistently converge toward and blow across the Siple Coast part of West Antarctica onto the Ross Ice Shelf. About 14% of the time during winter (April to August 1988), thermal infrared satellite images reveal the horizontal propagation of this negatively buoyant katabatic airstream for about 1000 km across the ice shelf to its northwestern edge, a trajectory that nearly parallels the Transantarctic Mountains. This takes place when the pressure field supports such airflow, and is caused by synoptic scale cyclones that decay near and/or over Marie Byrd Land. The northwestward propagation of the katabatic winds is accompanied by other changes in the hemispheric long wave pattern. An upper level ridge develops over Wilkes Land, resulting in an enhancement of the split jet in the Pacific Ocean. Then, more frequent and/or intensified synoptic scale cyclones are steered toward Marie Byrd Land where they become nearly stationary to the northeast of the climatological location. The resulting isobaric configuration accelerates the katabatic winds crossing Siple Coast and supports their horizontal propagation across the Ross Ice Shelf. An immediate impact of this katabatic airflow, that crosses from the ice shelf to the Ross Sea, is expansion of the persistent polynya that is present just to the east of Ross Island. This polynya is a conspicuous feature on passive microwave images of Antarctic sea ice and plays a central role in the salt budget of water masses over the Ross Sea continental shelf. The impact of this katabatic airflow upon mesoscale cyclogenesis over the South Pacific Ocean is also discussed.

  12. A laboratory scale model of abrupt ice-shelf disintegration

    NASA Astrophysics Data System (ADS)

    Macayeal, D. R.; Boghosian, A.; Styron, D. D.; Burton, J. C.; Amundson, J. M.; Cathles, L. M.; Abbot, D. S.

    2010-12-01

    An important mode of Earth’s disappearing cryosphere is the abrupt disintegration of ice shelves along the Peninsula of Antarctica. This disintegration process may be triggered by climate change, however the work needed to produce the spectacular, explosive results witnessed with the Larsen B and Wilkins ice-shelf events of the last decade comes from the large potential energy release associated with iceberg capsize and fragmentation. To gain further insight into the underlying exchanges of energy involved in massed iceberg movements, we have constructed a laboratory-scale model designed to explore the physical and hydrodynamic interactions between icebergs in a confined channel of water. The experimental apparatus consists of a 2-meter water tank that is 30 cm wide. Within the tank, we introduce fresh water and approximately 20-100 rectangular plastic ‘icebergs’ having the appropriate density contrast with water to mimic ice. The blocks are initially deployed in a tight pack, with all blocks arranged in a manner to represent the initial state of an integrated ice shelf or ice tongue. The system is allowed to evolve through time under the driving forces associated with iceberg hydrodynamics. Digitized videography is used to quantify how the system of plastic icebergs evolves between states of quiescence to states of mobilization. Initial experiments show that, after a single ‘agitator’ iceberg begins to capsize, an ‘avalanche’ of capsizing icebergs ensues which drives horizontal expansion of the massed icebergs across the water surface, and which stimulates other icebergs to capsize. A surprise initially evident in the experiments is the fact that the kinetic energy of the expanding mass of icebergs is only a small fraction of the net potential energy released by the rearrangement of mass via capsize. Approximately 85 - 90 % of the energy released by the system goes into water motion modes, including a pervasive, easily observed seich mode of the tank

  13. Role of ice-ocean interaction on glacier instability: Results from numerical modelling applied to Petermann Glacier

    NASA Astrophysics Data System (ADS)

    Nick, Faezeh M.; Hubbard, Alun; van der Veen, Kees; Vieli, Andreas

    2010-05-01

    Calving of icebergs and bottom melting from ice shelves accounts for roughly half the ice transferred from the Greenland Ice Sheet into the surrounding ocean, and virtually all of the ice loss from the Antarctic Ice Sheet. Petermann Glacier (north Greenland) with its 16 km wide and 80 km long floating tongue, experiences massive bottom melting. We apply a numerical ice flow model using a physically-based calving criterion based on crevasse depth to investigate the contribution of processes such as bottom melting, sea ice or sikkusak disintegration, surface run off and iceberg calving to the mass balance and instability of Petermann Glacier and its ice shelf. Our modelling study provides insights into the role of ice-ocean interaction, and on how to incorporate calving in ice sheet models, improving our ability to predict future ice sheet change.

  14. Fragmentation and melting of the seasonal sea ice cover

    NASA Astrophysics Data System (ADS)

    Feltham, D. L.; Bateson, A.; Schroeder, D.; Ridley, J. K.; Aksenov, Y.

    2017-12-01

    Recent years have seen a rapid reduction in the summer extent of Arctic sea ice. This trend has implications for navigation, oil exploration, wildlife, and local communities. Furthermore the Arctic sea ice cover impacts the exchange of heat and momentum between the ocean and atmosphere with significant teleconnections across the climate system, particularly mid to low latitudes in the Northern Hemisphere. The treatment of melting and break-up processes of the seasonal sea ice cover within climate models is currently limited. In particular floes are assumed to have a uniform size which does not evolve with time. Observations suggest however that floe sizes can be modelled as truncated power law distributions, with different exponents for smaller and larger floes. This study aims to examine factors controlling the floe size distribution in the seasonal and marginal ice zone. This includes lateral melting, wave induced break-up of floes, and the feedback between floe size and the mixed ocean layer. These results are then used to quantify the proximate mechanisms of seasonal sea ice reduction in a sea ice—ocean mixed layer model. Observations are used to assess and calibrate the model. The impacts of introducing these processes to the model will be discussed and the preliminary results of sensitivity and feedback studies will also be presented.

  15. Widespread Refreezing of Both Surface and Basal Melt Water Beneath the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Bell, R. E.; Tinto, K. J.; Das, I.; Wolovick, M.; Chu, W.; Creyts, T. T.; Frearson, N.

    2013-12-01

    The isotopically and chemically distinct, bubble-free ice observed along the Greenland Ice Sheet margin both in the Russell Glacier and north of Jacobshavn must have formed when water froze from subglacial networks. Where this refreezing occurs and what impact it has on ice sheet processes remain unclear. We use airborne radar data to demonstrate that freeze-on to the ice sheet base and associated deformation produce large ice units up to 700 m thick throughout northern Greenland. Along the ice sheet margin, in the ablation zone, surface meltwater, delivered via moulins, refreezes to the ice sheet base over rugged topography. In the interior, water melted from the ice sheet base is refrozen and surrounded by folded ice. A significant fraction of the ice sheet is modified by basal freeze-on and associated deformation. For the Eqip and Petermann catchments, representing the ice sheet margin and interior respectively, extensive airborne radar datasets show that 10%-13% of the base of the ice sheet and up to a third of the catchment width is modified by basal freeze-on. The interior units develop over relatively subdued topography with modest water flux from basal melt where conductive cooling likely dominates. Steps in the bed topography associated with subglacial valley networks may foster glaciohydraulic supercooling. The ablation zone units develop where both surface melt and crevassing are widespread and large volumes of surface meltwater will reach the base of the ice sheet. The relatively steep topography at the upslope edge of the ablation zone units combined with the larger water flux suggests that supercooling plays a greater role in their formation. The ice qualities of the ablation zone units should reflect the relatively fresh surface melt whereas the chemistry of the interior units should reflect solute-rich basal melt. Changes in basal conditions such as the presence of till patches may contribute to the formation of the large basal units near the

  16. Oceanographic Influences on Ice Shelves and Drainage in the Amundsen Sea

    NASA Astrophysics Data System (ADS)

    Minzoni, R. T.; Anderson, J. B.; Majewski, W.; Yokoyama, Y.; Fernandez, R.; Jakobsson, M.

    2016-12-01

    Marine sediment cores collected during the IB OdenSouthern Ocean 2009-2010 cruise are used to reconstruct the Holocene history of the Cosgrove Ice Shelf, which today occupies Ferrero Bay, a large embayment of eastern Pine Island Bay. Detailed sedimentology, geochemistry, and micropaleontology of cores, in conjunction with subbottom profiles, reveal an unexpected history of recession. Presence of planktic foraminifera at the base of Kasten Core-15 suggests an episode of enhanced circulation beneath a large ice shelf that covered the Amundsen Sea during the Early Holocene, and relatively warm water incursion has been interpreted as a potential culprit for major recession and ice mass loss by 10.7 cal kyr BP from radiocarbon dating. Fine sediment deposition and low productivity throughout the Mid Holocene indicate long-lived stability of the Cosgrove Ice Shelf in Ferrero Bay, despite regional warming evident from ice core data and ice shelf loss in the Antarctic Peninsula. High productivity and diatom abundance signify opening of Ferrero Bay and recession of the Cosgrove Ice Shelf to its present day configuration by 2.0 cal kyr BP. This coincides with deglaciation of an island near Canisteo Peninsula according to published cosmogenic exposure ages. Presence of benthic foraminifera imply that warm deep water influx beneath the extended Cosgrove Ice Shelf was a mechanism for under-melting the ice shelf and destabilizing the grounding line. Major ice shelf recession may also entail continental ice mass loss from the eastern sector of the Amundsen Sea during the Late Holocene. Oceanographic forcing remains a key concern for the current stability of the Antarctic Ice Sheet, especially along the tidewater margins of West Antarctica. Ongoing work on diatom and foraminiferal assemblages of the Late Holocene in Ferrero Bay and other fjord settings will improve our understanding of recent oceanographic changes and their potential influence on ice shelves and outlet glaciers

  17. Efficacy of sanitized ice in reducing bacterial load on fish fillet and in the water collected from the melted ice.

    PubMed

    Feliciano, Lizanel; Lee, Jaesung; Lopes, John A; Pascall, Melvin A

    2010-05-01

    This study investigated the efficacy of sanitized ice for the reduction of bacteria in the water collected from the ice that melted during storage of whole and filleted Tilapia fish. Also, bacterial reductions on the fish fillets were investigated. The sanitized ice was prepared by freezing solutions of PRO-SAN (an organic acid formulation) and neutral electrolyzed water (NEW). For the whole fish study, the survival of the natural microflora was determined from the water of the melted ice prepared with PRO-SAN and tap water. These water samples were collected during an 8 h storage period. For the fish fillet study, samples were inoculated with Escherichia coli K12, Listeria innocua, and Pseudomonas putida then stored on crushed sanitized ice. The efficacies of these were tested by enumerating each bacterial species on the fish fillet and in the water samples at 12 and 24 h intervals for 72 h, respectively. Results showed that each bacterial population was reduced during the test. However, a bacterial reduction of < 1 log CFU was obtained for the fillet samples. A maximum of approximately 2 log CFU and > 3 log CFU reductions were obtained in the waters sampled after the storage of whole fish and the fillets, respectively. These reductions were significantly (P < 0.05) higher in the water from sanitized ice when compared with the water from the unsanitized melted ice. These results showed that the organic acid formulation and NEW considerably reduced the bacterial numbers in the melted ice and thus reduced the potential for cross-contamination.

  18. Investigating evaporation of melting ice particles within a bin melting layer model

    NASA Astrophysics Data System (ADS)

    Neumann, Andrea J.

    Single column models have been used to help develop algorithms for remote sensing retrievals. Assumptions in the single-column models may affect the assumptions of the remote sensing retrievals. Studies of the melting layer that use single column models often assume environments that are near or at water saturation. This study investigates the effects of evaporation upon melting particles to determine whether the assumption of negligible mass loss still holds within subsaturated melting layers. A single column, melting layer model is modified to include the effects of sublimation and evaporation upon the particles. Other changes to the model include switching the order in which the model loops over particle sizes and model layers; including a particle sedimentation scheme; adding aggregation, accretion, and collision and coalescence processes; allowing environmental variables such as the water vapor diffusivity and the Schmidt number to vary with the changes in the environment; adding explicitly calculated particle temperature, changing the particle terminal velocity parameterization; and using a newly-derived effective density-dimensional relationship for use in particle mass calculations. Simulations of idealized melting layer environments show that significant mass loss due to evaporation during melting is possible within subsaturated environments. Short melting distances, accelerating particle fall speeds, and short melting times help constrain the amount of mass lost due to evaporation while melting is occurring, even in subsaturated profiles. Sublimation prior to melting can also be a significant source of mass loss. The trends shown on the particle scale also appear in the bulk distribution parameters such as rainfall rate and ice water content. Simulations incorporating observed melting layer environments show that significant mass loss due to evaporation during the melting process is possible under certain environmental conditions. A profile such as the

  19. January 2016 West Antarctic Melt Event: Large Scale Forcing and Local Processes

    NASA Astrophysics Data System (ADS)

    Bromwich, D. H.; Nicolas, J. P.

    2017-12-01

    A huge surface melt event occurred in January 2016 that affected a large portion of the Ross Ice Shelf and adjacent parts of Marie Byrd Land of West Antarctica. It coincided with one of the strongest El Niño events on record in the tropical Pacific Ocean. The El Niño teleconnection pattern in the South Pacific Ocean favors the advection of warm, moist air into the western part of West Antarctica. At the same time strong westerly winds over the Southern Ocean, captured by the Southern Annular Mode or SAM, were strong before, during, and after the melting episode, and these tend to limit the transport of marine air into the Ross Ice Shelf region. This prominent melt event demonstrates that extensive melting can happen regardless of the state of the SAM when the El Niño forcing is strong. Furthermore, because climate models project more frequent major El Niños in the future with a warming climate, we can expect more major surface melt events in West Antarctica as the 21st century unfolds. The melting event occurred in part of the West Antarctic Ice Sheet that the ice sheet modeling study of DeConto and Pollard (2016) suggests is prone to collapse as a result of extreme greenhouse warming. This melt event happened while an important field campaign, the Atmospheric Radiation Measurement West Antarctic Radiation Experiment (AWARE), was ongoing in central West Antarctica. The observations collected during this campaign provided unique insight into some of the physical mechanisms governing surface melting in this otherwise data-sparse region. In particular, these observations highlighted the presence of low-level liquid-water clouds, which aided the radiative heating of the snow surface from both shortwave and longwave radiation, reminiscent of summer melting conditions in Greenland. The resulting large flux of energy into the snow pack was reflected in increased satellite microwave brightness temperatures that were used to follow the evolution of the widespread

  20. The Potsdam Parallel Ice Sheet Model (PISM-PIK) - Part 2: Dynamic equilibrium simulation of the Antarctic ice sheet

    NASA Astrophysics Data System (ADS)

    Martin, M. A.; Winkelmann, R.; Haseloff, M.; Albrecht, T.; Bueler, E.; Khroulev, C.; Levermann, A.

    2010-08-01

    We present a dynamic equilibrium simulation of the ice sheet-shelf system on Antarctica with the Potsdam Parallel Ice Sheet Model (PISM-PIK). The simulation is initialized with present-day conditions for topography and ice thickness and then run to steady state with constant present-day surface mass balance. Surface temperature and basal melt distribution are parameterized. Grounding lines and calving fronts are free to evolve, and their modeled equilibrium state is compared to observational data. A physically-motivated dynamic calving law based on horizontal spreading rates allows for realistic calving fronts for various types of shelves. Steady-state dynamics including surface velocity and ice flux are analyzed for whole Antarctica and the Ronne-Filchner and Ross ice shelf areas in particular. The results show that the different flow regimes in sheet and shelves, and the transition zone between them, are captured reasonably well, supporting the approach of superposition of SIA and SSA for the representation of fast motion of grounded ice. This approach also leads to a natural emergence of streams in this new 3-D marine ice sheet model.

  1. Airborne laser scanning based quantification of dead-ice melting in recently deglaciated terrain

    NASA Astrophysics Data System (ADS)

    Klug, C.; Sailer, R.; Schümberg, M.; Stötter, J.

    2012-04-01

    Dead-ice is explained as stagnant glacial ice, not influenced by glacier flow anymore. Whenever glaciers have negative mass balances and an accumulation of debris-cover on the surface, dead-ice may form. Although, there are numerous conceptual process-sediment-landform models for the melt-out of dead-ice bodies and areas of dead-ice environments at glacier margins are easily accessible, just a few quantitative studies of dead-ice melting have been carried out so far. Processes and rates of dead-ice melting are commonly believed to be controlled by climate and debris-cover properties, but there is still a lack of knowledge about this fact. This study has a focus on the quantification of process induced volumetric changes caused by dead-ice melting. The research for this project was conducted at Hintereisferner (Ötztal Alps, Austria), Gepatschferner (Ötztal Alps, Austria) and Schrankar (Stubai Alps, Austria), areas for which a good data basis of ALS (Airborne Laser Scanning) measurements is available. 'Hintereisferner' can be characterized as a typical high alpine environment in mid-latitudes, which ranges between approximately 2250 m and 3740 m a.s.l.. The Hintereisferner region has been investigated intensively since many decades. Two dead ice bodies at the orographic right side and one at the orographic left side of the Hintereisferner glacier terminus (approx. at 2500 m to 2550 m a.s.l.) were identified. Since 2001, ALS measurements have been carried out regularly at Hintereisferner resulting in a unique data record of 21 ALS flight campaigns, allowing long-term explorations of the two dead-ice areas. The second study area of 'Gepatschferner' in the Kaunertal ranges between 2060 m and 3520 m a.s.l. and is the second largest glacier of Austria. Near the glacier tongue at the orographic right side a significant dead ice body has formed. The ALS data used for quantification include a period of time of 4 years (2006 - 2010). 'Schrankar' is located in the Western

  2. Long-term monitoring of glacier dynamics of Fleming Glacier after the disintegration of Wordie Ice Shelf, Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    Friedl, Peter; Seehaus, Thorsten; Wendt, Anja; Braun, Matthias

    2017-04-01

    The Antarctic Peninsula is one of the world`s most affected regions by Climate Change. Dense and long time series of remote sensing data enable detailed studies of the rapid glaciological changes in this area. We present results of a study on Fleming Glacier, which was the major tributary glacier of former Wordie Ice Shelf, located at the south-western side of the Antarctic Peninsula. Since the ice shelf disintegrated in a series of events starting in the 1970s, only disconnected tidewater glaciers have remained today. As a reaction to the loss of the buttressing force of the ice shelf, Fleming Glacier accelerated and dynamically thinned. However, all previous studies conducted at Wordie Bay covered only relatively short investigation periods and ended in 2008 the latest. Hence it was not well known how long the process of adaption to the changing boundary conditions exactly lasts and how it is characterized in detail. We provide long time series (1994 - 2016) of glaciological parameters (i.e. ice extent, velocity, grounding line position, ice elevation) for Fleming Glacier obtained from multi-mission remote sensing data. For this purpose large datasets of previously active (e.g. ERS, Envisat, ALOS PALSAR, Radarsat-1) as well as currently recording SAR sensors (e.g. Sentinel-1, TerraSAR-X, TanDEM-X) were processed and combined with data from other sources (e.g. optical images, laser altimeter and ice thickness data). The high temporal resolution of our dataset enables us to present a detailed history of 22 years of glacial dynamics at Fleming Glacier after the disintegration of Wordie Ice Shelf. We found strong evidence for a rapid grounding line retreat of up to 13 km between 2008 and 2011, which led to a further amplification of dynamic ice thinning. Today Fleming Glacier seems to be far away from approaching a new equilibrium. Our data show that the current glacier dynamics of Fleming Glacier are not primarily controlled by the loss of the ice shelf anymore, but

  3. Role of ice-ocean interaction on glacier instability: Results from numerical modeling applied to Petermann Glacier (Invited)

    NASA Astrophysics Data System (ADS)

    Nick, F.; Hubbard, A.; Vieli, A.; van der Veen, C. J.; Box, J. E.; Bates, R.; Luckman, A. J.

    2009-12-01

    Calving of icebergs and bottom melting from ice shelves accounts for roughly half the ice transferred from the Greenland Ice Sheet into the surrounding ocean, and virtually all of the ice loss from the Antarctic Ice Sheet. Petermann Glacier (north Greenland) with its 16 km wide and 80 km long floating tongue, experiences massive bottom melting. We apply a numerical ice flow model using a physically-based calving criterion based on crevasse depth to investigate the contribution of processes such as bottom melting, sea ice or sikkusak disintegration, surface run off and iceberg calving to the mass balance and instability of Petermann Glacier and its ice shelf. Our modeling study provides insights into the role of ice-ocean interaction, and on how to incorporate calving in ice sheet models, improving our ability to predict future ice sheet change.

  4. An AirSAR 2004 view from the DC-8 as it approaches the Larsen Ice Shelf, which is part of the Antarctic Peninsula

    NASA Image and Video Library

    2004-03-13

    An AirSAR 2004 view from the DC-8 as it approaches the Larsen Ice Shelf, which is part of the Antarctic Peninsula. AirSAR 2004 is a three-week expedition in Central and South America by an international team of scientists that is using an all-weather imaging tool, called the Airborne Synthetic Aperture Radar (AirSAR), located onboard NASA's DC-8 airborne laboratory. Scientists from many parts of the world are combining ground research with NASA's AirSAR technology to improve and expand on the quality of research they are able to conduct. These photos are from the DC-8 aircraft while flying an AirSAR mission over Antarctica. The Antarctic Peninsula is more similar to Alaska and Patagonia than to the rest of the Antarctic continent. It is drained by fast glaciers, receives abundant precipitation, and melts significantly in the summer months. In recent decades, the Peninsula has experienced significant atmospheric warming (about 2 degrees C since 1950), which has triggered a vast and spectacular retreat of its floating ice shelves, glacier reduction, a decrease in permanent snow cover and a lengthening of the melt season. As a result, the contribution to sea level from this region could be rapid and substantial. With an area of 120,000 km, or ten times the Patagonia ice fields, the Peninsula could contribute as much as 0.4mm/yr sea level rise, which would be the largest single contribution to sea level from anywhere in the world. This region is being studied by NASA using a DC-8 equipped with the Airborne Synthetic Aperture Radar developed by scientists from NASA’s Jet Propulsion Laboratory. AirSAR will provide a baseline model and unprecedented mapping of the region. This data will make it possible to determine whether the warming trend is slowing, continuing or accelerating. AirSAR will also provide reliable information on ice shelf thickness to measure the contribution of the glaciers to sea level.

  5. New insights into ice growth and melting modifications by antifreeze proteins

    PubMed Central

    Bar-Dolev, Maya; Celik, Yeliz; Wettlaufer, J. S.; Davies, Peter L.; Braslavsky, Ido

    2012-01-01

    Antifreeze proteins (AFPs) evolved in many organisms, allowing them to survive in cold climates by controlling ice crystal growth. The specific interactions of AFPs with ice determine their potential applications in agriculture, food preservation and medicine. AFPs control the shapes of ice crystals in a manner characteristic of the particular AFP type. Moderately active AFPs cause the formation of elongated bipyramidal crystals, often with seemingly defined facets, while hyperactive AFPs produce more varied crystal shapes. These different morphologies are generally considered to be growth shapes. In a series of bright light and fluorescent microscopy observations of ice crystals in solutions containing different AFPs, we show that crystal shaping also occurs during melting. In particular, the characteristic ice shapes observed in solutions of most hyperactive AFPs are formed during melting. We relate these findings to the affinities of the hyperactive AFPs for the basal plane of ice. Our results demonstrate the relation between basal plane affinity and hyperactivity and show a clear difference in the ice-shaping mechanisms of most moderate and hyperactive AFPs. This study provides key aspects associated with the identification of hyperactive AFPs. PMID:22787007

  6. In-Situ Biological Decontamination of an Ice Melting Probe

    NASA Astrophysics Data System (ADS)

    Digel, Ilya

    A major concern in space and even many terrestrial missions is the forward contamination of the alien environment with microbes and biological molecules, transported on spacecraft from Earth. Furthermore, organisms and molecules can be brought to the sampling place from the surface. All this can lead to serious misinterpretations of the obtained data and more impor-tantly, could irreversibly alter the pristine nature of the extraterrestrial environments. These issues were addressed and are constantly updated in COSPAR planetary protection policy (20 October 2002; Amended 24 March 2005; 20 July 2008). The objective of our study was to investigate the efficacy of different in-situ decontamination protocols in the conditions of thermo-mechanical ice-melting. We evaluated survival rate of microorganisms on the melting probe as a function of both time and penetration depth. Special focus was made on deter-mination of the optimal concentration of chemical decontaminants (hydrogen peroxide and sodium hypochlorite) the peculiarities of their antimicrobial action at low temperatures (-80 to 0C) combined with constant dilution with melted ice and mechanical abrasion. Common, non-pathogenic microbial strains belonging to different morphological and metabolic groups (Pseudomonas, Micrococcus, Escherichia, Bacillus and others) were chosen as test objects for this study. The working part of the melting probe was first controllably contaminated by in-cubation in suspension of microbial cells. After appropriate sedimentation of microbial cells had been reached, the drilling-melting process was started using specially prepared sterile ice blocks. Every 2 minutes the samples were taken and analyzed. In the control tests, 1 mL of distilled water was injected into the penetration site at the onset of drilling. In the other tests, 1 mL of hydrogen peroxide (30Collected data suggest high efficacy of both used compounds in respect of all tested microbial groups. Typically, 99.9

  7. Automatic, Satellite-Linked "Webcams" as a Tool in Ice-Shelf and Iceberg Research.

    NASA Astrophysics Data System (ADS)

    Ross, R.; Okal, M. H.; Thom, J. E.; Macayeal, D. R.

    2004-12-01

    Important dynamic events governing the behavior of ice shelves and icebergs are episodic in time and small in scale, making them difficult to observe. Traditional satellite imagery is acquired on a rigid schedule with coarse spatial resolution and this means that collisions between icebergs or the processes which create ice "mélange" that fills detachment rifts leading to ice-shelf calving, to give examples, cannot be readily observed. To overcome the temporal and spatial gaps in traditional remote sensing, we have deployed cameras at locations in Antarctica where research is conducted on the calving and subsequent evolution of icebergs. One camera is located at the edge of iceberg C16 in the Ross Sea, and is positioned to capture visual imagery of collisions between C16 and neighboring B15A. The second camera is located within the anticipated detachment rift of a "nascent" iceberg on the Ross Ice Shelf. The second camera is positioned to capture visual imagery of the rift's propagation and the in-fill of ice mélange, which constrains the mechanical influence of such rifts on the surrounding ice shelf. Both cameras are designed for connection to the internet (hence are referred to as "webcams") and possess variable image qualities and image-control technology. The cameras are also connected to data servers via the Iridium satellite telephone network and produce a daily image that is transmitted to the internet through the Iridium connection. Results of the initial trial deployments will be presented as a means of assessing both the techniques involved and the value of the scientific information acquired by these webcams. In the case of the iceberg webcam, several collisions between B15A and C16 were monitored over the period between January, 2003 and December, 2004. The time-lapse imagery obtained through this period showed giant "push mounds" of damaged firn on the edge and surface of the icebergs within the zones of contact as a consequence of the collisions

  8. Projecting Antarctic ice discharge using response functions from SeaRISE ice-sheet models

    NASA Astrophysics Data System (ADS)

    Levermann, A.; Winkelmann, R.; Nowicki, S.; Fastook, J. L.; Frieler, K.; Greve, R.; Hellmer, H. H.; Martin, M. A.; Meinshausen, M.; Mengel, M.; Payne, A. J.; Pollard, D.; Sato, T.; Timmermann, R.; Wang, W. L.; Bindschadler, R. A.

    2014-08-01

    The largest uncertainty in projections of future sea-level change results from the potentially changing dynamical ice discharge from Antarctica. Basal ice-shelf melting induced by a warming ocean has been identified as a major cause for additional ice flow across the grounding line. Here we attempt to estimate the uncertainty range of future ice discharge from Antarctica by combining uncertainty in the climatic forcing, the oceanic response and the ice-sheet model response. The uncertainty in the global mean temperature increase is obtained from historically constrained emulations with the MAGICC-6.0 (Model for the Assessment of Greenhouse gas Induced Climate Change) model. The oceanic forcing is derived from scaling of the subsurface with the atmospheric warming from 19 comprehensive climate models of the Coupled Model Intercomparison Project (CMIP-5) and two ocean models from the EU-project Ice2Sea. The dynamic ice-sheet response is derived from linear response functions for basal ice-shelf melting for four different Antarctic drainage regions using experiments from the Sea-level Response to Ice Sheet Evolution (SeaRISE) intercomparison project with five different Antarctic ice-sheet models. The resulting uncertainty range for the historic Antarctic contribution to global sea-level rise from 1992 to 2011 agrees with the observed contribution for this period if we use the three ice-sheet models with an explicit representation of ice-shelf dynamics and account for the time-delayed warming of the oceanic subsurface compared to the surface air temperature. The median of the additional ice loss for the 21st century is computed to 0.07 m (66% range: 0.02-0.14 m; 90% range: 0.0-0.23 m) of global sea-level equivalent for the low-emission RCP-2.6 (Representative Concentration Pathway) scenario and 0.09 m (66% range: 0.04-0.21 m; 90% range: 0.01-0.37 m) for the strongest RCP-8.5. Assuming no time delay between the atmospheric warming and the oceanic subsurface, these

  9. The WAIS Melt Monitor: An automated ice core melting system for meltwater sample handling and the collection of high resolution microparticle size distribution data

    NASA Astrophysics Data System (ADS)

    Breton, D. J.; Koffman, B. G.; Kreutz, K. J.; Hamilton, G. S.

    2010-12-01

    Paleoclimate data are often extracted from ice cores by careful geochemical analysis of meltwater samples. The analysis of the microparticles found in ice cores can also yield unique clues about atmospheric dust loading and transport, dust provenance and past environmental conditions. Determination of microparticle concentration, size distribution and chemical makeup as a function of depth is especially difficult because the particle size measurement either consumes or contaminates the meltwater, preventing further geochemical analysis. Here we describe a microcontroller-based ice core melting system which allows the collection of separate microparticle and chemistry samples from the same depth intervals in the ice core, while logging and accurately depth-tagging real-time electrical conductivity and particle size distribution data. This system was designed specifically to support microparticle analysis of the WAIS Divide WDC06A deep ice core, but many of the subsystems are applicable to more general ice core melting operations. Major system components include: a rotary encoder to measure ice core melt displacement with 0.1 millimeter accuracy, a meltwater tracking system to assign core depths to conductivity, particle and sample vial data, an optical debubbler level control system to protect the Abakus laser particle counter from damage due to air bubbles, a Rabbit 3700 microcontroller which communicates with a host PC, collects encoder and optical sensor data and autonomously operates Gilson peristaltic pumps and fraction collectors to provide automatic sample handling, melt monitor control software operating on a standard PC allowing the user to control and view the status of the system, data logging software operating on the same PC to collect data from the melting, electrical conductivity and microparticle measurement systems. Because microparticle samples can easily be contaminated, we use optical air bubble sensors and high resolution ice core density

  10. Snow Dunes: A Controlling Factor of Melt Pond Distribution on Arctic Sea Ice

    NASA Technical Reports Server (NTRS)

    Petrich, Chris; Eicken, Hajo; Polashenski, Christopher M.; Sturm, Matthew; Harbeck, Jeremy P.; Perovich, Donald K.; Finnegan, David C.

    2012-01-01

    The location of snow dunes over the course of the ice-growth season 2007/08 was mapped on level landfast first-year sea ice near Barrow, Alaska. Landfast ice formed in mid-December and exhibited essentially homogeneous snow depths of 4-6 cm in mid-January; by early February distinct snow dunes were observed. Despite additional snowfall and wind redistribution throughout the season, the location of the dunes was fixed by March, and these locations were highly correlated with the distribution of meltwater ponds at the beginning of June. Our observations, including ground-based light detection and ranging system (lidar) measurements, show that melt ponds initially form in the interstices between snow dunes, and that the outline of the melt ponds is controlled by snow depth contours. The resulting preferential surface ablation of ponded ice creates the surface topography that later determines the melt pond evolution.

  11. Abnormal Winter Melting of the Arctic Sea Ice Cap Observed by the Spaceborne Passive Microwave Sensors

    NASA Astrophysics Data System (ADS)

    Lee, Seongsuk; Yi, Yu

    2016-12-01

    The spatial size and variation of Arctic sea ice play an important role in Earth’s climate system. These are affected by conditions in the polar atmosphere and Arctic sea temperatures. The Arctic sea ice concentration is calculated from brightness temperature data derived from the Defense Meteorological Satellite program (DMSP) F13 Special Sensor Microwave/Imagers (SSMI) and the DMSP F17 Special Sensor Microwave Imager/Sounder (SSMIS) sensors. Many previous studies point to significant reductions in sea ice and their causes. We investigated the variability of Arctic sea ice using the daily sea ice concentration data from passive microwave observations to identify the sea ice melting regions near the Arctic polar ice cap. We discovered the abnormal melting of the Arctic sea ice near the North Pole during the summer and the winter. This phenomenon is hard to explain only surface air temperature or solar heating as suggested by recent studies. We propose a hypothesis explaining this phenomenon. The heat from the deep sea in Arctic Ocean ridges and/ or the hydrothermal vents might be contributing to the melting of Arctic sea ice. This hypothesis could be verified by the observation of warm water column structure below the melting or thinning arctic sea ice through the project such as Coriolis dataset for reanalysis (CORA).

  12. Early Melt on the Greenland Ice Sheet

    NASA Image and Video Library

    2017-12-08

    On June 15, 2016, the Advanced Land Imager (ALI) on NASA’s Earth Observing-1 satellite acquired a natural-color image of an area just inland from the coast of southwestern Greenland (120 kilometers southeast of Ilulisat and 500 kilometers north-northeast of Nuuk). According to Marco Tedesco, a professor at Columbia University’s Lamont Doherty Earth Observatory, melting in this area began relatively early in April but was not sustained. It started up again in May and grew into the watery June scene pictured above. Surface melt can directly contribute to sea level rise via runoff. It can also force its way through crevasses to the base of a glacier, temporarily speeding up ice flow and indirectly contributing to sea level rise. Also, ponding of meltwater can “darken” the ice sheet’s surface and lead to further melting. Read more: earthobservatory.nasa.gov/IOTD/view.php?id=88288 Credit: NASA Earth Observatory image by Jesse Allen, using EO-1 ALI data provided courtesy of the NASA EO-1 team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  13. Ocean as the main driver of Antarctic ice sheet retreat during the Holocene

    NASA Astrophysics Data System (ADS)

    Crosta, Xavier; Crespin, Julien; Swingedouw, Didier; Marti, Olivier; Masson-Delmotte, Valérie; Etourneau, Johan; Goosse, Hugues; Braconnot, Pascale; Yam, Ruth; Brailovski, Irena; Shemesh, Aldo

    2018-07-01

    Ocean-driven basal melting has been shown to be the main ablation process responsible for the recession of many Antarctic ice shelves and marine-terminating glaciers over the last decades. However, much less is known about the drivers of ice shelf melt prior to the short instrumental era. Based on diatom oxygen isotope (δ18Odiatom; a proxy for glacial ice discharge in solid or liquid form) records from western Antarctic Peninsula (West Antarctica) and Adélie Land (East Antarctica), higher ocean temperatures were suggested to have been the main driver of enhanced ice melt during the Early-to-Mid Holocene while atmosphere temperatures were proposed to have been the main driver during the Late Holocene. Here, we present a new Holocene δ18Odiatom record from Prydz Bay, East Antarctica, also suggesting an increase in glacial ice discharge since 4500 years before present ( 4.5 kyr BP) as previously observed in Antarctic Peninsula and Adélie Land. Similar results from three different regions around Antarctica thus suggest common driving mechanisms. Combining marine and ice core records along with new transient accelerated simulations from the IPSL-CM5A-LR climate model, we rule out changes in air temperatures during the last 4.5 kyr as the main driver of enhanced glacial ice discharge. Conversely, our simulations evidence the potential for significant warmer subsurface waters in the Southern Ocean during the last 6 kyr in response to enhanced summer insolation south of 60°S and enhanced upwelling of Circumpolar Deep Water towards the Antarctic shelf. We conclude that ice front and basal melting may have played a dominant role in glacial discharge during the Late Holocene.

  14. A glimpse beneath Antarctic sea ice: observation of platelet-layer thickness and ice-volume fraction with multifrequency EM

    NASA Astrophysics Data System (ADS)

    Hoppmann, Mario; Hunkeler, Priska A.; Hendricks, Stefan; Kalscheuer, Thomas; Gerdes, Rüdiger

    2016-04-01

    In Antarctica, ice crystals (platelets) form and grow in supercooled waters below ice shelves. These platelets rise, accumulate beneath nearby sea ice, and subsequently form a several meter thick, porous sub-ice platelet layer. This special ice type is a unique habitat, influences sea-ice mass and energy balance, and its volume can be interpreted as an indicator of the health of an ice shelf. Although progress has been made in determining and understanding its spatio-temporal variability based on point measurements, an investigation of this phenomenon on a larger scale remains a challenge due to logistical constraints and a lack of suitable methodology. In the present study, we applied a lateral constrained Marquardt-Levenberg inversion to a unique multi-frequency electromagnetic (EM) induction sounding dataset obtained on the ice-shelf influenced fast-ice regime of Atka Bay, eastern Weddell Sea. We adapted the inversion algorithm to incorporate a sensor specific signal bias, and confirmed the reliability of the algorithm by performing a sensitivity study using synthetic data. We inverted the field data for sea-ice and platelet-layer thickness and electrical conductivity, and calculated ice-volume fractions within the platelet layer using Archie's Law. The thickness results agreed well with drillhole validation datasets within the uncertainty range, and the ice-volume fraction yielded results comparable to other studies. Both parameters together enable an estimation of the total ice volume within the platelet layer, which was found to be comparable to the volume of landfast sea ice in this region, and corresponded to more than a quarter of the annual basal melt volume of the nearby Ekström Ice Shelf. Our findings show that multi-frequency EM induction sounding is a suitable approach to efficiently map sea-ice and platelet-layer properties, with important implications for research into ocean/ice-shelf/sea-ice interactions. However, a successful application of this

  15. Recent Antarctic Peninsula warming relative to Holocene climate and ice-shelf history.

    PubMed

    Mulvaney, Robert; Abram, Nerilie J; Hindmarsh, Richard C A; Arrowsmith, Carol; Fleet, Louise; Triest, Jack; Sime, Louise C; Alemany, Olivier; Foord, Susan

    2012-09-06

    Rapid warming over the past 50 years on the Antarctic Peninsula is associated with the collapse of a number of ice shelves and accelerating glacier mass loss. In contrast, warming has been comparatively modest over West Antarctica and significant changes have not been observed over most of East Antarctica, suggesting that the ice-core palaeoclimate records available from these areas may not be representative of the climate history of the Antarctic Peninsula. Here we show that the Antarctic Peninsula experienced an early-Holocene warm period followed by stable temperatures, from about 9,200 to 2,500 years ago, that were similar to modern-day levels. Our temperature estimates are based on an ice-core record of deuterium variations from James Ross Island, off the northeastern tip of the Antarctic Peninsula. We find that the late-Holocene development of ice shelves near James Ross Island was coincident with pronounced cooling from 2,500 to 600 years ago. This cooling was part of a millennial-scale climate excursion with opposing anomalies on the eastern and western sides of the Antarctic Peninsula. Although warming of the northeastern Antarctic Peninsula began around 600 years ago, the high rate of warming over the past century is unusual (but not unprecedented) in the context of natural climate variability over the past two millennia. The connection shown here between past temperature and ice-shelf stability suggests that warming for several centuries rendered ice shelves on the northeastern Antarctic Peninsula vulnerable to collapse. Continued warming to temperatures that now exceed the stable conditions of most of the Holocene epoch is likely to cause ice-shelf instability to encroach farther southward along the Antarctic Peninsula.

  16. Ocean forcing of Ice Sheet retreat in central west Greenland from LGM to the early Holocene

    NASA Astrophysics Data System (ADS)

    Jennings, Anne E.; Andrews, John T.; Ó Cofaigh, Colm; Onge, Guillaume St.; Sheldon, Christina; Belt, Simon T.; Cabedo-Sanz, Patricia; Hillaire-Marcel, Claude

    2017-08-01

    Three radiocarbon dated sediment cores from trough mouth fans on the central west Greenland continental slope were studied to determine the timing and processes of Greenland Ice Sheet (GIS) retreat from the shelf edge during the last deglaciation and to test the role of ocean forcing (i.e. warm ocean water) thereon. Analyses of lithofacies, quantitative x-ray diffraction mineralogy, benthic foraminiferal assemblages, the sea-ice biomarker IP25, and δ18 O of the planktonic foraminifera Neogloboquadrina pachyderma sinistral from sediments in the interval from 17.5-10.8 cal ka BP provide consistent evidence for ocean and ice sheet interactions during central west Greenland (CWG) deglaciation. The Disko and Uummannaq ice streams both retreated from the shelf edge after the last glacial maximum (LGM) under the influence of subsurface, warm Atlantic Water. The warm subsurface water was limited to depths below the ice stream grounding lines during the LGM, when the GIS terminated as a floating ice shelf in a sea-ice covered Baffin Bay. The deeper Uummannaq ice stream retreated first (ca. 17.1 cal ka BP), while the shallower Disko ice stream retreated at ca. 16.2 cal ka BP. The grounding lines were protected from accelerating mass loss (calving) by a buttressing ice shelf and by landward shallowing bathymetry on the outer shelf. Calving retreat was delayed until ca. 15.3 cal ka BP in the Uummannaq Trough and until 15.1 cal ka BP in the Disko Trough, during another interval of ocean warming. Instabilities in the Laurentide, Innuitian and Greenland ice sheets with outlets draining into northern Baffin Bay periodically released cold, fresh water that enhanced sea ice formation and slowed GIS melt. During the Younger Dryas, the CWG records document strong cooling, lack of GIS meltwater, and an increase in iceberg rafted material from northern Baffin Bay. The ice sheet remained in the cross-shelf troughs until the early Holocene, when it retreated rapidly by calving and strong

  17. Dimethyl sulfide dynamics in first-year sea ice melt ponds in the Canadian Arctic Archipelago

    NASA Astrophysics Data System (ADS)

    Gourdal, Margaux; Lizotte, Martine; Massé, Guillaume; Gosselin, Michel; Poulin, Michel; Scarratt, Michael; Charette, Joannie; Levasseur, Maurice

    2018-05-01

    Melt pond formation is a seasonal pan-Arctic process. During the thawing season, melt ponds may cover up to 90 % of the Arctic first-year sea ice (FYI) and 15 to 25 % of the multi-year sea ice (MYI). These pools of water lying at the surface of the sea ice cover are habitats for microorganisms and represent a potential source of the biogenic gas dimethyl sulfide (DMS) for the atmosphere. Here we report on the concentrations and dynamics of DMS in nine melt ponds sampled in July 2014 in the Canadian Arctic Archipelago. DMS concentrations were under the detection limit ( < 0.01 nmol L-1) in freshwater melt ponds and increased linearly with salinity (rs = 0.84, p ≤ 0.05) from ˜ 3 up to ˜ 6 nmol L-1 (avg. 3.7 ± 1.6 nmol L-1) in brackish melt ponds. This relationship suggests that the intrusion of seawater in melt ponds is a key physical mechanism responsible for the presence of DMS. Experiments were conducted with water from three melt ponds incubated for 24 h with and without the addition of two stable isotope-labelled precursors of DMS (dimethylsulfoniopropionate), (D6-DMSP) and dimethylsulfoxide (13C-DMSO). Results show that de novo biological production of DMS can take place within brackish melt ponds through bacterial DMSP uptake and cleavage. Our data suggest that FYI melt ponds could represent a reservoir of DMS available for potential flux to the atmosphere. The importance of this ice-related source of DMS for the Arctic atmosphere is expected to increase as a response to the thinning of sea ice and the areal and temporal expansion of melt ponds on Arctic FYI.

  18. Turbulent convection driven by internal radiative heating of melt ponds on sea ice

    NASA Astrophysics Data System (ADS)

    Wells, Andrew; Langton, Tom; Rees Jones, David; Moon, Woosok

    2016-11-01

    The melting of Arctic sea ice is strongly influenced by heat transfer through melt ponds which form on the ice surface. Melt ponds are internally heated by the absorption of incoming radiation and cooled by surface heat fluxes, resulting in vigorous buoyancy-driven convection in the pond interior. Motivated by this setting, we conduct two-dimensional direct-numerical simulations of the turbulent convective flow of a Boussinesq fluid between two horizontal boundaries, with internal heating predicted from a two-stream radiation model. A linearised thermal boundary condition describes heat exchange with the overlying atmosphere, whilst the lower boundary is isothermal. Vertically asymmetric convective flow modifies the upper surface temperature, and hence controls the partitioning of the incoming heat flux between emission at the upper and lower boundaries. We determine how the downward heat flux into the ice varies with a Rayleigh number based on the internal heating rate, the flux ratio of background surface cooling compared to internal heating, and a Biot number characterising the sensitivity of surface fluxes to surface temperature. Thus we elucidate the physical controls on heat transfer through Arctic melt ponds which determine the fate of sea ice in the summer.

  19. Estimation of Melt Pond Fractions on First Year Sea Ice Using Compact Polarization SAR

    NASA Astrophysics Data System (ADS)

    Li, Haiyan; Perrie, William; Li, Qun; Hou, Yijun

    2017-10-01

    Melt ponds are a common feature on Arctic sea ice. They are linked to the sea ice surface albedo and transmittance of energy to the ocean from the atmosphere and thus constitute an important process to parameterize in Arctic climate models and simulations. This paper presents a first attempt to retrieve the melt pond fraction from hybrid-polarized compact polarization (CP) SAR imagery, which has wider swath and shorter revisit time than the quad-polarization systems, e.g., from RADARSAT-2 (RS-2). The co-polarization (co-pol) ratio has been verified to provide estimates of melt pond fractions. However, it is a challenge to link CP parameters and the co-pol ratio. The theoretical possibility is presented, for making this linkage with the CP parameter C22/C11 (the ratio between the elements of the coherence matrix of CP SAR) for melt pond detection and monitoring with the tilted-Bragg scattering model for the ocean surface. The empirical transformed formulation, denoted as the "compact polarization and quad-pol" ("CPQP") model, is proposed, based on 2062 RS-2 quad-pol SAR images, collocated with in situ measurements. We compared the retrieved melt pond fraction with CP parameters simulated from quad-pol SAR data with results retrieved from the co-pol ratio from quad-pol SAR observations acquired during the Arctic-Ice (Arctic-Ice Covered Ecosystem in a Rapidly Changing Environment) field project. The results are shown to be comparable for observed melt pond measurements in spatial and temporal distributions. Thus, the utility of CP mode SAR for melt pond fraction estimation on first year level ice is presented.

  20. Polarimetric C-/X-band Synthetic Aperture Radar Observations of Melting Sea Ice in the Canadian Arctic Archipelago

    NASA Astrophysics Data System (ADS)

    Casey, J. A.; Beckers, J. F.; Brossier, E.; Haas, C.

    2013-12-01

    Operational ice information services rely heavily on space-borne synthetic aperture radar (SAR) data for the production of ice charts to meet their mandate of providing timely and accurate sea ice information to support safe and efficient marine operations. During the summer melt period, the usefulness of SAR data for sea ice monitoring is limited by the presence of wet snow and melt ponds on the ice surface, which can mask the signature of the underlying ice. This is a critical concern for ice services whose clients (e.g. commercial shipping, cruise tourism, resource exploration and extraction) are most active at this time of year when sea ice is at its minimum extent, concentration and thickness. As a result, there is a need to further quantify the loss of ice information in SAR data during the melt season and to identify what information can still be retrieved about ice surface conditions and melt pond evolution at this time of year. To date the majority of studies have been limited to analysis of single-polarization C-band SAR data. This study will investigate the potential complimentary and unique sea ice information that polarimetric C- and X-band SAR data can provide to supplement the information available from traditional single co-polarized C-band SAR data. A time-series of polarimetric C- and X-band SAR data was acquired over Jones Sound in the Canadian Arctic Archipelago, in the vicinity of the Grise Fiord, Nunavut. Five RADARSAT-2 Wide Fine Quad-pol images and 11 TerraSAR-X StripMap dual-pol (HH/VV) images were acquired. The time-series begins at the onset of melt in early June and extends through advanced melt conditions in late July. Over this period several ponding and drainage events and two snowfall events occurred. Field observations of sea ice properties were collected using an Ice Mass Balance (IMB) buoy, hourly photos from a time-lapse camera deployed on a coastal cliff, and manual in situ measurements of snow thickness and melt pond depth

  1. Links Between Acceleration, Melting, and Supraglacial Lake Drainage of the Western Greenland Ice Sheet

    NASA Technical Reports Server (NTRS)

    Hoffman, M. J.; Catania, G. A.; Newmann, T. A.; Andrews, L. C.; Rumrill, J. A.

    2012-01-01

    The impact of increasing summer melt on the dynamics and stability of the Greenland Ice Sheet is not fully understood. Mounting evidence suggests seasonal evolution of subglacial drainage mitigates or counteracts the ability of surface runoff to increase basal sliding. Here, we compare subdaily ice velocity and uplift derived from nine Global Positioning System stations in the upper ablation zone in west Greenland to surface melt and supraglacial lake drainage during summer 2007. Starting around day 173, we observe speedups of 6-41% above spring velocity lasting approximately 40 days accompanied by sustained surface uplift at most stations, followed by a late summer slowdown. After initial speedup, we see a spatially uniform velocity response across the ablation zone and strong diurnal velocity variations during periods of melting. Most lake drainages were undetectable in the velocity record, and those that were detected only perturbed velocities for approximately 1 day, suggesting preexisting drainage systems could efficiently drain large volumes of water. The dynamic response to melt forcing appears to 1) be driven by changes in subglacial storage of water that is delivered in diurnal and episodic pulses, and 2) decrease over the course of the summer, presumably as the subglacial drainage system evolves to greater efficiency. The relationship between hydrology and ice dynamics observed is similar to that observed on mountain glaciers, suggesting that seasonally large water pressures under the ice sheet largely compensate for the greater ice thickness considered here. Thus, increases in summer melting may not guarantee faster seasonal ice flow.

  2. Links Between Acceleration, Melting, and Supraglacial Lake Drainage of the Western Greenland Ice Sheet

    NASA Technical Reports Server (NTRS)

    Hoffman, M. J.; Catania, G. A.; Neumann, T. A.; Andrews, L. C.; Rumrill, J. A.

    2011-01-01

    The impact of increasing summer melt on the dynamics and stability of the Greenland Ice Sheet is not fully understood. Mounting evidence suggests seasonal evolution of subglacial drainage mitigates or counteracts the ability of surface runoff to increase basal sliding. Here, we compare subdaily ice velocity and uplift derived from nine Global Positioning System stations in the upper ablation zone in west Greenland to surface melt and supraglacial lake drainage during summer 2007. Starting around day 173, we observe speedups of 6-41% above spring velocity lasting 40 days accompanied by sustained surface uplift at most stations, followed by a late summer slowdown. After initial speedup, we see a spatially uniform velocity response across the ablation zone and strong diurnal velocity variations during periods of melting. Most lake drainages were undetectable in the velocity record, and those that were detected only perturbed velocities for approx 1 day, suggesting preexisting drainage systems could efficiently drain large volumes of water. The dynamic response to melt forcing appears to (1) be driven by changes in subglacial storage of water that is delivered in diurnal and episodic pulses, and (2) decrease over the course of the summer, presumably as the subglacial drainage system evolves to greater efficiency. The relationship between hydrology and ice dynamics observed is similar to that observed on mountain glaciers, suggesting that seasonally large water pressures under the ice sheet largely compensate for the greater ice thickness considered here. Thus, increases in summer melting may not guarantee faster seasonal ice flow.

  3. Revisiting the Potential of Melt Pond Fraction as a Predictor for the Seasonal Arctic Sea Ice Extent Minimum

    NASA Technical Reports Server (NTRS)

    Liu, Jiping; Song, Mirong; Horton, Radley M.; Hu, Yongyun

    2015-01-01

    The rapid change in Arctic sea ice in recent decades has led to a rising demand for seasonal sea ice prediction. A recent modeling study that employed a prognostic melt pond model in a stand-alone sea ice model found that September Arctic sea ice extent can be accurately predicted from the melt pond fraction in May. Here we show that satellite observations show no evidence of predictive skill in May. However, we find that a significantly strong relationship (high predictability) first emerges as the melt pond fraction is integrated from early May to late June, with a persistent strong relationship only occurring after late July. Our results highlight that late spring to mid summer melt pond information is required to improve the prediction skill of the seasonal sea ice minimum. Furthermore, satellite observations indicate a much higher percentage of melt pond formation in May than does the aforementioned model simulation, which points to the need to reconcile model simulations and observations, in order to better understand key mechanisms of melt pond formation and evolution and their influence on sea ice state.

  4. What Models and Satellites Tell Us (and Don't Tell Us) About Arctic Sea Ice Melt Season Length

    NASA Astrophysics Data System (ADS)

    Ahlert, A.; Jahn, A.

    2017-12-01

    Melt season length—the difference between the sea ice melt onset date and the sea ice freeze onset date—plays an important role in the radiation balance of the Arctic and the predictability of the sea ice cover. However, there are multiple possible definitions for sea ice melt and freeze onset in climate models, and none of them exactly correspond to the remote sensing definition. Using the CESM Large Ensemble model simulations, we show how this mismatch between model and remote sensing definitions of melt and freeze onset limits the utility of melt season remote sensing data for bias detection in models. It also opens up new questions about the precise physical meaning of the melt season remote sensing data. Despite these challenges, we find that the increase in melt season length in the CESM is not as large as that derived from remote sensing data, even when we account for internal variability and different definitions. At the same time, we find that the CESM ensemble members that have the largest trend in sea ice extent over the period 1979-2014 also have the largest melt season trend, driven primarily by the trend towards later freeze onsets. This might be an indication that an underestimation of the melt season length trend is one factor contributing to the generally underestimated sea ice loss within the CESM, and potentially climate models in general.

  5. Variability of sea salts in ice and firn cores from Fimbul Ice Shelf, Dronning Maud Land, Antarctica

    NASA Astrophysics Data System (ADS)

    Paulina Vega, Carmen; Isaksson, Elisabeth; Schlosser, Elisabeth; Divine, Dmitry; Martma, Tõnu; Mulvaney, Robert; Eichler, Anja; Schwikowski-Gigar, Margit

    2018-05-01

    Major ions were analysed in firn and ice cores located at Fimbul Ice Shelf (FIS), Dronning Maud Land - DML, Antarctica. FIS is the largest ice shelf in the Haakon VII Sea, with an extent of approximately 36 500 km2. Three shallow firn cores (about 20 m deep) were retrieved in different ice rises, Kupol Ciolkovskogo (KC), Kupol Moskovskij (KM), and Blåskimen Island (BI), while a 100 m long core (S100) was drilled near the FIS edge. These sites are distributed over the entire FIS area so that they provide a variety of elevation (50-400 m a.s.l.) and distance (3-42 km) to the sea. Sea-salt species (mainly Na+ and Cl-) generally dominate the precipitation chemistry in the study region. We associate a significant sixfold increase in median sea-salt concentrations, observed in the S100 core after the 1950s, to an enhanced exposure of the S100 site to primary sea-salt aerosol due to a shorter distance from the S100 site to the ice front, and to enhanced sea-salt aerosol production from blowing salty snow over sea ice, most likely related to the calving of Trolltunga occurred during the 1960s. This increase in sea-salt concentrations is synchronous with a shift in non-sea-salt sulfate (nssSO42-) toward negative values, suggesting a possible contribution of fractionated aerosol to the sea-salt load in the S100 core most likely originating from salty snow found on sea ice. In contrast, there is no evidence of a significant contribution of fractionated sea salt to the ice-rises sites, where the signal would be most likely masked by the large inputs of biogenic sulfate estimated for these sites. In summary, these results suggest that the S100 core contains a sea-salt record dominated by the proximity of the site to the ocean, and processes of sea ice formation in the neighbouring waters. In contrast, the ice-rises firn cores register a larger-scale signal of atmospheric flow conditions and a less efficient transport of sea-salt aerosols to these sites. These findings are a

  6. Towards Estimate of Present Day Ice Melting in Polar Regions From Altimetry, Gravity, Ocean Bottom Pressure and GPS Observations

    NASA Astrophysics Data System (ADS)

    Jiang, Y.; Wu, X.; van den Broeke, M. R.; Munneke, P. K.; Simonsen, S. B.; van der Wal, W.; Vermeersen, B. L.

    2013-12-01

    The ice sheet in Polar Regions stores the largest freshwater bodies on Earth, sufficient to elevate global sea level by more than 65 meters if melted. The earth may have entered an intensive ice-melting episode, possibly due to anthropogenic global warming rather than natural orbit variations. Determining present-day ice mass balance, however, is complicated by the fact that most observations contain both present day ice melting signal and residual signals from past glacier melting. Despite decades of progress in geodynamic modeling and new observations, significant uncertainties remain in both. The key to separate present-day ice mass change and signals from past melting is to include data of different physical characteristics. We conducted a new global kinematic inversion scheme to estimate both present-day ice melting and past glacier signatures simultaneously and assess their contribution to current and future global mean sea level change. Our approach is designed to invert and separate present-day melting signal in the spherical harmonic domain using a globally distributed interdisciplinary data with distinct physical information. Interesting results with unprecedented precisions have been achieved so far. We will present our results of the estimated present-day ice mass balance trend in both Greenland and Antarctica ice sheet as well as other regions where significant mass change occurs.

  7. Thermodynamic origin of surface melting on ice crystals

    PubMed Central

    Murata, Ken-ichiro; Asakawa, Harutoshi; Nagashima, Ken; Furukawa, Yoshinori; Sazaki, Gen

    2016-01-01

    Since the pioneering prediction of surface melting by Michael Faraday, it has been widely accepted that thin water layers, called quasi-liquid layers (QLLs), homogeneously and completely wet ice surfaces. Contrary to this conventional wisdom, here we both theoretically and experimentally demonstrate that QLLs have more than two wetting states and that there is a first-order wetting transition between them. Furthermore, we find that QLLs are born not only under supersaturated conditions, as recently reported, but also at undersaturation, but QLLs are absent at equilibrium. This means that QLLs are a metastable transient state formed through vapor growth and sublimation of ice, casting a serious doubt on the conventional understanding presupposing the spontaneous formation of QLLs in ice–vapor equilibrium. We propose a simple but general physical model that consistently explains these aspects of surface melting and QLLs. Our model shows that a unique interfacial potential solely controls both the wetting and thermodynamic behavior of QLLs. PMID:27791107

  8. Perception of melting and flavor release of ice cream containing different types and contents of fat.

    PubMed

    Hyvönen, L; Linna, M; Tuorila, H; Dijksterhuis, G

    2003-04-01

    Temporal effects of dairy and vegetable fats (0 to 18%) on perception of strawberry flavor release and melting of ice cream were studied using the time intensity sensory method. Also, aroma and flavor attributes of the ice cream samples were evaluated. Only slight effects of fat on the rate of flavor release and flavor intensity were perceived. A slightly faster flavor release from the vegetable fat compared with dairy fat was noticed. Polydextrose and maltodextrin as bodying agents in the fat-free ice cream significantly increased flavor release and melting rate of the ice cream. Increasing fat content slightly retarded melting of ice cream in the mouth. No significant effect of the fat quality on perceived melting was noticed. Significant differences in aroma and flavor attributes of the fat-free and other samples were perceived. Intensity and sharpness of the strawberry aroma and flavor were greater in fat-free samples and they were perceived as nontypical. Fattiness and creaminess were highly correlated. Maltodextrin and polydextrose increased perceived fattiness and creaminess of fat-free ice cream.

  9. Coastal-change and glaciological map of the Ronne Ice Shelf area, Antarctica, 1974-2002

    USGS Publications Warehouse

    Ferrigno, Jane G.; Foley, K.M.; Swithinbank, C.; Williams, R.S.; Dalide, L.M.

    2005-01-01

    Changes in the area and volume of polar ice sheets are intricately linked to changes in global climate, and the resulting changes in sea level may severely impact the densely populated coastal regions on Earth. Melting of the West Antarctic part alone of the Antarctic ice sheet could cause a sea-level rise of approximately 6 meters (m). The potential sea-level rise after melting of the entire Antarctic ice sheet is estimated to be 65 m (Lythe and others, 2001) to 73 m (Williams and Hall, 1993). In spite of its importance, the mass balance (the net volumetric gain or loss) of the Antarctic ice sheet is poorly known; it is not known for certain whether the ice sheet is growing or shrinking. In a review paper, Rignot and Thomas (2002) concluded that the West Antarctic part of the Antarctic ice sheet is probably becoming thinner overall; although it is thickening in the west, it is thinning in the north. Joughin and Tulaczyk (2002), on the basis of analysis of ice-flow velocities derived from synthetic aperture radar, concluded that most of the Ross ice streams (ice streams on the east side of the Ross Ice Shelf) have a positive mass balance, whereas Rignot and others (in press) infer even larger negative mass balance for glaciers flowing northward into the Amundsen Sea, a trend suggested by Swithinbank and others (2003a,b, 2004). The mass balance of the East Antarctic part of the Antarctic ice sheet is unknown, but thought to be in near equilibrium. Measurement of changes in area and mass balance of the Antarctic ice sheet was given a very high priority in recommendations by the Polar Research Board of the National Research Council (1986), in subsequent recommendations by the Scientific Committee on Antarctic Research (SCAR) (1989, 1993), and by the National Science Foundation's (1990) Division of Polar Pro-grams. On the basis of these recommendations, the U.S. Geo-logical Survey (USGS) decided that the archive of early 1970s Landsat 1, 2, and 3 Multispectral Scanner

  10. Ice Core Records of West Greenland Melt and Climate Forcing

    NASA Astrophysics Data System (ADS)

    Graeter, K. A.; Osterberg, E. C.; Ferris, D. G.; Hawley, R. L.; Marshall, H. P.; Lewis, G.; Meehan, T.; McCarthy, F.; Overly, T.; Birkel, S. D.

    2018-04-01

    Remote sensing observations and climate models indicate that the Greenland Ice Sheet (GrIS) has been losing mass since the late 1990s, mostly due to enhanced surface melting from rising summer temperatures. However, in situ observational records of GrIS melt rates over recent decades are rare. Here we develop a record of frozen meltwater in the west GrIS percolation zone preserved in seven firn cores. Quantifying ice layer distribution as a melt feature percentage (MFP), we find significant increases in MFP in the southernmost five cores over the past 50 years to unprecedented modern levels (since 1550 CE). Annual to decadal changes in summer temperatures and MFP are closely tied to changes in Greenland summer blocking activity and North Atlantic sea surface temperatures since 1870. However, summer warming of 1.2°C since 1870-1900, in addition to warming attributable to recent sea surface temperature and blocking variability, is a critical driver of high modern MFP levels.

  11. Modeling interannual dense shelf water export in the region of the Mertz Glacier Tongue (1992-2007)

    NASA Astrophysics Data System (ADS)

    Cougnon, E. A.; Galton-Fenzi, B. K.; Meijers, A. J. S.; Legrésy, B.

    2013-10-01

    Ocean observations around the Australian-Antarctic basin show the importance of coastal latent heat polynyas near the Mertz Glacier Tongue (MGT) to the formation of Dense Shelf Water (DSW) and associated Antarctic Bottom Water (AABW). Here, we use a regional ocean/ice shelf model to investigate the interannual variability of the export of DSW from the Adélie (west of the MGT) and the Mertz (east of the MGT) depressions from 1992 to 2007. The variability in the model is driven by changes in observed surface heat and salt fluxes. The model simulates an annual mean export of DSW through the Adélie sill of about 0.07 ± 0.06 Sv. From 1992 to 1998, the export of DSW through the Adélie (Mertz) sills peaked at 0.14 Sv (0.29 Sv) during July to November. During periods of mean to strong polynya activity (defined by the surface ocean heat loss), DSW formed in the Adélie depression can spread into the Mertz depression via the cavity under the MGT. An additional simulation, where ocean/ice shelf thermodynamics have been disabled, highlights the fact that models without ocean/ice shelf interaction processes will significantly overestimate rates of DSW export. The melt rates of the MGT are 1.2 ± 0.4 m yr-1 during periods of average to strong polynya activity and can increase to 3.8 ± 1.5 m/yr during periods of sustained weak polynya activity, due to the increased presence of relatively warmer water interacting with the base of the ice shelf. The increased melting of the MGT during a weak polynya state can cause further freshening of the DSW and ultimately limits the production of AABW.

  12. North Greenland's Ice Shelves and Ocean Warming

    NASA Astrophysics Data System (ADS)

    Muenchow, A.; Schauer, U.; Padman, L.; Melling, H.; Fricker, H. A.

    2014-12-01

    Rapid disintegration of ice shelves (the floating extensions of marine-terminating glaciers) can lead to increasing ice discharge, thinning upstream ice sheets, rising sea level. Pine Island Glacier, Antarctica, and Jacobshavn Isbrae, Greenland, provide prominent examples of these processes which evolve at decadal time scales. We here focus on three glacier systems north of 78 N in Greenland, each of which discharges more than 10 Gt per year of ice and had an extensive ice shelf a decade ago; Petermann Gletscher (PG), Niogshalvfjerdsfjorden (79N), and Zachariae Isstrom (ZI). We summarize and discuss direct observations of ocean and glacier properties for these systems as they have evolved in the northwest (PG) and northeast (79N and ZI) of Greenland over the last two decades. We use a combination of modern and historical snapshots of ocean temperature and salinity (PG, 79N, ZI), moored observations in Nares Strait (PG), and snapshots of temperature and velocity fields on the broad continental shelf off northeast Greenland (79N, ZI) collected between 1993 and 2014. Ocean warming adjacent to PG has been small relative to the ocean warming adjacent to 79N and ZI; however, ZI lost its entire ice shelf during the last decade while 79N, less than 70 km to the north of ZI, remained stable. In contrast, PG has thinned by about 10 m/y just prior to shedding two ice islands representing almost half its ice shelf area or a fifth by volume. At PG advective ice flux divergence explains about half of the dominantly basal melting while response to non-steady external forcing explains the other half. The observations at PG,79N, and ZI suggest that remotely sensed ambient surface ocean temperatures are poor proxies to explain ice shelf thinning and retreat. We posit that local dynamics of the subsurface ocean heat flux matters most. Ocean heat must first be delivered over the sill into the fjord and then within the ice shelf cavity to the base of the shelf near the grounding line

  13. Mechanisms and implications of α-HCH enrichment in melt pond water on Arctic sea ice.

    PubMed

    Pućko, M; Stern, G A; Barber, D G; Macdonald, R W; Warner, K-A; Fuchs, C

    2012-11-06

    During the summer of 2009, we sampled 14 partially refrozen melt ponds and the top 1 m of old ice in the pond vicinity for α-hexachlorocyclohexane (α-HCH) concentrations and enantiomer fractions (EFs) in the Beaufort Sea. α-HCH concentrations were 3 - 9 times higher in melt ponds than in the old ice. We identify two routes of α-HCH enrichment in the ice over the summer. First, atmospheric gas deposition results in an increase of α-HCH concentration from 0.07 ± 0.02 ng/L (old ice) to 0.34 ± 0.08 ng/L, or ~20% less than the atmosphere-water equilibrium partitioning concentration (0.43 ng/L). Second, late-season ice permeability and/or complete ice thawing at the bottom of ponds permit α-HCH rich seawater (~0.88 ng/L) to replenish pond water, bringing concentrations up to 0.75 ± 0.06 ng/L. α-HCH pond enrichment may lead to substantial concentration patchiness in old ice floes, and changed exposures to biota as the surface meltwater eventually reaches the ocean through various drainage mechanisms. Melt pond concentrations of α-HCH were relatively high prior to the late 1980-s, with a Melt pond Enrichment Factor >1 (MEF; a ratio of concentration in surface meltwater to surface seawater), providing for the potential of increased biological exposures.

  14. Greenhouse to Icehouse Antarctic Paleoclimate and Ice History from George V Land and Adélie Land Shelf Sediments

    NASA Astrophysics Data System (ADS)

    Williams, T.; Escutia, C.; De Santis, L.; O'Brien, P.; Pekar, S. F.; Brinkhuis, H.; Domack, E. W.

    2013-12-01

    Along the George V and Adélie Land continental shelf of East Antarctica, shallowly-buried strata contain a record of Antarctica's climate and ice history from the lush forests of the Eocene greenhouse to the dynamic ice sheet margins of the Neogene. Short piston cores and dredges have recovered Early Cretaceous and Eocene organic-rich sediment at the seabed, and in 2010, IODP Expedition 318 recovered earliest Oligocene and early Pliocene subglacial and proglacial diamictites. However, challenging ice and drilling conditions from the JOIDES Resolution on the shelf resulted in poor core recovery and sites had to be abandoned before the stratigraphic targets could be reached. Therefore, in a new IODP drilling proposal submitted earlier this year, we propose to use the MeBo sea bed drill for improved core recovery and easier access to the shelf, and drill a stratigraphic transect of shallow (~80m) holes. To investigate the evolution of the Antarctic ice sheet in this sector, we target strata above and below regional erosional and downlap surfaces to date and characterize major episodes of ice sheet advance and retreat. These direct records of ice extent on the shelf can be set in the context of Southern Ocean records of temperature, ice-rafted debris (IRD) and latitudinal fluctuations of the opal belt, and hence we can relate ice sheet evolution to paleoclimate conditions. Targets include possible late Eocene precursor glaciations, the Eocene/Oligocene boundary erosion surface, Oligocene and Miocene ice extents, and ice margin fluctuations in the Pliocene. At the Cretaceous and Eocene proposed sites, marine and terrestrial temperature proxies and palynological records will provide information on high-latitude paleoenvironments and pole-equator temperature gradients. Here we present existing data from the area and the proposed new drill sites. The ice and climate history of the George V and Adélie Land margin can provide warm-world scenarios to help understand ice

  15. The frequency response of a coupled ice sheet-ice shelf-ocean system to climate forcing variability

    NASA Astrophysics Data System (ADS)

    Goldberg, D.; Snow, K.; Jordan, J. R.; Holland, P.; Arthern, R. J.

    2017-12-01

    Changes at the West Antarctic ice-ocean boundary in recent decades has triggered significant increases in the regions contribution to global sea-level rise, coincident with large scale, and in some cases potentially unstable, grounding line retreat. Much of the induced change is thought to be driven by fluctuations in the oceanic heat available at the ice-ocean boundary, transported on-shelf via warm Circumpolar Deep Water (CDW). However, the processes in which ocean heat drives ice-sheet loss remains poorly understood, with observational studies routinely hindered by the extreme environment notorious to the Antarctic region. In this study we apply a novel synchronous coupled ice-ocean model, developed within the MITgcm, and are thus able to provide detailed insight into the impacts of short time scale (interannual to decadal) climate variability and feedbacks within the ice-ocean system. Feedbacks and response are assessed in an idealised ice-sheet/ocean-cavity configuration in which the far field ocean condition is adjusted to emulate periodic climate variability patterns. We reveal a non-linear response of the ice-sheet to periodic variations in thermocline depth. These non-linearities illustrate the heightened sensitivity of fast flowing ice-shelves to periodic perturbations in heat fluxes occurring at interannual and decadal time scales. The results thus highlight how small perturbations in variable climate forcing, like that of ENSO, may trigger large changes in ice-sheet response.

  16. Arctic sea ice melt leads to atmospheric new particle formation.

    PubMed

    Dall Osto, M; Beddows, D C S; Tunved, P; Krejci, R; Ström, J; Hansson, H-C; Yoon, Y J; Park, Ki-Tae; Becagli, S; Udisti, R; Onasch, T; O Dowd, C D; Simó, R; Harrison, Roy M

    2017-06-12

    Atmospheric new particle formation (NPF) and growth significantly influences climate by supplying new seeds for cloud condensation and brightness. Currently, there is a lack of understanding of whether and how marine biota emissions affect aerosol-cloud-climate interactions in the Arctic. Here, the aerosol population was categorised via cluster analysis of aerosol size distributions taken at Mt Zeppelin (Svalbard) during a 11 year record. The daily temporal occurrence of NPF events likely caused by nucleation in the polar marine boundary layer was quantified annually as 18%, with a peak of 51% during summer months. Air mass trajectory analysis and atmospheric nitrogen and sulphur tracers link these frequent nucleation events to biogenic precursors released by open water and melting sea ice regions. The occurrence of such events across a full decade was anti-correlated with sea ice extent. New particles originating from open water and open pack ice increased the cloud condensation nuclei concentration background by at least ca. 20%, supporting a marine biosphere-climate link through sea ice melt and low altitude clouds that may have contributed to accelerate Arctic warming. Our results prompt a better representation of biogenic aerosol sources in Arctic climate models.

  17. Obliquity-paced Pliocene West Antarctic ice sheet oscillations.

    PubMed

    Naish, T; Powell, R; Levy, R; Wilson, G; Scherer, R; Talarico, F; Krissek, L; Niessen, F; Pompilio, M; Wilson, T; Carter, L; DeConto, R; Huybers, P; McKay, R; Pollard, D; Ross, J; Winter, D; Barrett, P; Browne, G; Cody, R; Cowan, E; Crampton, J; Dunbar, G; Dunbar, N; Florindo, F; Gebhardt, C; Graham, I; Hannah, M; Hansaraj, D; Harwood, D; Helling, D; Henrys, S; Hinnov, L; Kuhn, G; Kyle, P; Läufer, A; Maffioli, P; Magens, D; Mandernack, K; McIntosh, W; Millan, C; Morin, R; Ohneiser, C; Paulsen, T; Persico, D; Raine, I; Reed, J; Riesselman, C; Sagnotti, L; Schmitt, D; Sjunneskog, C; Strong, P; Taviani, M; Vogel, S; Wilch, T; Williams, T

    2009-03-19

    Thirty years after oxygen isotope records from microfossils deposited in ocean sediments confirmed the hypothesis that variations in the Earth's orbital geometry control the ice ages, fundamental questions remain over the response of the Antarctic ice sheets to orbital cycles. Furthermore, an understanding of the behaviour of the marine-based West Antarctic ice sheet (WAIS) during the 'warmer-than-present' early-Pliocene epoch ( approximately 5-3 Myr ago) is needed to better constrain the possible range of ice-sheet behaviour in the context of future global warming. Here we present a marine glacial record from the upper 600 m of the AND-1B sediment core recovered from beneath the northwest part of the Ross ice shelf by the ANDRILL programme and demonstrate well-dated, approximately 40-kyr cyclic variations in ice-sheet extent linked to cycles in insolation influenced by changes in the Earth's axial tilt (obliquity) during the Pliocene. Our data provide direct evidence for orbitally induced oscillations in the WAIS, which periodically collapsed, resulting in a switch from grounded ice, or ice shelves, to open waters in the Ross embayment when planetary temperatures were up to approximately 3 degrees C warmer than today and atmospheric CO(2) concentration was as high as approximately 400 p.p.m.v. (refs 5, 6). The evidence is consistent with a new ice-sheet/ice-shelf model that simulates fluctuations in Antarctic ice volume of up to +7 m in equivalent sea level associated with the loss of the WAIS and up to +3 m in equivalent sea level from the East Antarctic ice sheet, in response to ocean-induced melting paced by obliquity. During interglacial times, diatomaceous sediments indicate high surface-water productivity, minimal summer sea ice and air temperatures above freezing, suggesting an additional influence of surface melt under conditions of elevated CO(2).

  18. Variability and Trends in Sea Ice Extent and Ice Production in the Ross Sea

    NASA Technical Reports Server (NTRS)

    Comiso, Josefino; Kwok, Ronald; Martin, Seelye; Gordon, Arnold L.

    2011-01-01

    Salt release during sea ice formation in the Ross Sea coastal regions is regarded as a primary forcing for the regional generation of Antarctic Bottom Water. Passive microwave data from November 1978 through 2008 are used to examine the detailed seasonal and interannual characteristics of the sea ice cover of the Ross Sea and the adjacent Bellingshausen and Amundsen seas. For this period the sea ice extent in the Ross Sea shows the greatest increase of all the Antarctic seas. Variability in the ice cover in these regions is linked to changes in the Southern Annular Mode and secondarily to the Antarctic Circumpolar Wave. Over the Ross Sea shelf, analysis of sea ice drift data from 1992 to 2008 yields a positive rate of increase in the net ice export of about 30,000 sq km/yr. For a characteristic ice thickness of 0.6 m, this yields a volume transport of about 20 cu km/yr, which is almost identical, within error bars, to our estimate of the trend in ice production. The increase in brine rejection in the Ross Shelf Polynya associated with the estimated increase with the ice production, however, is not consistent with the reported Ross Sea salinity decrease. The locally generated sea ice enhancement of Ross Sea salinity may be offset by an increase of relatively low salinity of the water advected into the region from the Amundsen Sea, a consequence of increased precipitation and regional glacial ice melt.

  19. West Antarctic Ice Sheet retreat driven by Holocene warm water incursions

    PubMed Central

    Hillenbrand, Claus-Dieter; Smith, James A.; Hodell, David A.; Greaves, Mervyn; Poole, Christopher R.; Kender, Sev; Williams, Mark; Andersen, Thorbjørn Joest; Jernas, Patrycja E.; Klages, Johann P.; Roberts, Stephen J.; Gohl, Karsten; Larter, Robert D.; Kuhn, Gerhard

    2017-01-01

    Glaciological and oceanographic observations coupled with numerical models show that warm Circumpolar Deep Water (CDW) upwelling onto the West Antarctic continental shelf causes melting of the undersides of floating ice shelves. Because these ice shelves buttress glaciers feeding into them, their ocean-induced thinning is driving Antarctic ice-sheet loss today. Here we present the first multi-proxy data based reconstruction of variability in CDW inflow to the Amundsen Sea sector, the most vulnerable part of the West Antarctic Ice Sheet, during the last 11,000 years. The chemical composition of foraminifer shells and benthic foraminifer assemblages in marine sediments indicate that enhanced CDW upwelling, controlled by the latitudinal position of the Southern Hemisphere westerly winds, forced deglaciation of this sector both until 7,500 years ago, when an ice-shelf collapse may have caused rapid ice-sheet thinning further upstream, and since the 1940s. These results increase confidence in the predictive capability of current ice-sheet models. PMID:28682333

  20. FAST TRACK COMMUNICATION: Growth melt asymmetry in ice crystals under the influence of spruce budworm antifreeze protein

    NASA Astrophysics Data System (ADS)

    Pertaya, Natalya; Celik, Yeliz; Di Prinzio, Carlos L.; Wettlaufer, J. S.; Davies, Peter L.; Braslavsky, Ido

    2007-10-01

    Here we describe studies of the crystallization behavior of ice in an aqueous solution of spruce budworm antifreeze protein (sbwAFP) at atmospheric pressure. SbwAFP is an ice binding protein with high thermal hysteresis activity, which helps protect Choristoneura fumiferana (spruce budworm) larvae from freezing as they overwinter in the spruce and fir forests of the north eastern United States and Canada. Different types of ice binding proteins have been found in many other species. They have a wide range of applications in cryomedicine and cryopreservation, as well as the potential to protect plants and vegetables from frost damage through genetic engineering. However, there is much to learn regarding the mechanism of action of ice binding proteins. In our experiments, a solution containing sbwAFP was rapidly frozen and then melted back, thereby allowing us to produce small single crystals. These maintained their hexagonal shapes during cooling within the thermal hysteresis gap. Melt-growth-melt sequences in low concentrations of sbwAFP reveal the same shape transitions as are found in pure ice crystals at low temperature (-22 °C) and high pressure (2000 bar) (Cahoon et al 2006 Phys. Rev. Lett. 96 255502) while both growth and melt shapes display faceted hexagonal morphology, they are rotated 30° relative to one another. Moreover, the initial melt shape and orientation is recovered in the sequence. To visualize the binding of sbwAFP to ice, we labeled the antifreeze protein with enhanced green fluorescent protein (eGFP) and observed the sbwAFP-GFP molecules directly on ice crystals using confocal microscopy. When cooling the ice crystals, facets form on the six primary prism planes (slowest growing planes) that are evenly decorated with sbwAFP-GFP. During melting, apparent facets form on secondary prism planes (fastest melting planes), leaving residual sbwAFP at the six corners of the hexagon. Thus, the same general growth-melt behavior of an apparently rotated

  1. Melt onset over Arctic sea ice controlled by atmospheric moisture transport

    NASA Astrophysics Data System (ADS)

    Mortin, Jonas; Svensson, Gunilla; Graversen, Rune G.; Kapsch, Marie-Luise; Stroeve, Julienne C.; Boisvert, Linette N.

    2016-06-01

    The timing of melt onset affects the surface energy uptake throughout the melt season. Yet the processes triggering melt and causing its large interannual variability are not well understood. Here we show that melt onset over Arctic sea ice is initiated by positive anomalies of water vapor, clouds, and air temperatures that increase the downwelling longwave radiation (LWD) to the surface. The earlier melt onset occurs; the stronger are these anomalies. Downwelling shortwave radiation (SWD) is smaller than usual at melt onset, indicating that melt is not triggered by SWD. When melt occurs early, an anomalously opaque atmosphere with positive LWD anomalies preconditions the surface for weeks preceding melt. In contrast, when melt begins late, clearer than usual conditions are evident prior to melt. Hence, atmospheric processes are imperative for melt onset. It is also found that spring LWD increased during recent decades, consistent with trends toward an earlier melt onset.

  2. Evaluation of Surface and Near-Surface Melt Characteristics on the Greenland Ice Sheet using MODIS and QuikSCAT Data

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Nghiem, Son V.; Schaaf, Crystal B.; DiGirolamo, Nicolo E.

    2009-01-01

    The Greenland Ice Sheet has been the focus of much attention recently because of increasing melt in response to regional climate warming. To improve our ability to measure surface melt, we use remote-sensing data products to study surface and near-surface melt characteristics of the Greenland Ice Sheet for the 2007 melt season when record melt extent and runoff occurred. Moderate Resolution Imaging Spectroradiometer (MODIS) daily land-surface temperature (LST), MODIS daily snow albedo, and a special diurnal melt product derived from QuikSCAT (QS) scatterometer data, are all effective in measuring the evolution of melt on the ice sheet. These daily products, produced from different parts of the electromagnetic spectrum, are sensitive to different geophysical features, though QS- and MODIS-derived melt generally show excellent correspondence when surface melt is present on the ice sheet. Values derived from the daily MODIS snow albedo product drop in response to melt, and change with apparent grain-size changes. For the 2007 melt season, the QS and MODIS LST products detect 862,769 square kilometers and 766,184 square kilometers of melt, respectively. The QS product detects about 11% greater melt extent than is detected by the MODIS LST product probably because QS is more sensitive to surface melt, and can detect subsurface melt. The consistency of the response of the different products demonstrates unequivocally that physically-meaningful melt/freeze boundaries can be detected. We have demonstrated that these products, used together, can improve the precision in mapping surface and near-surface melt extent on the Greenland Ice Sheet.

  3. Sedimentology and chronology of the advance and retreat of the last British-Irish Ice Sheet on the continental shelf west of Ireland

    NASA Astrophysics Data System (ADS)

    Peters, Jared L.; Benetti, Sara; Dunlop, Paul; Ó Cofaigh, Colm; Moreton, Steven G.; Wheeler, Andrew J.; Clark, Christopher D.

    2016-05-01

    The last British-Irish Ice Sheet (BIIS) had extensive marine-terminating margins and was drained by multiple large ice streams and is thus a useful analogue for marine-based areas of modern ice sheets. However, despite recent advances from investigating the offshore record of the BIIS, the dynamic history of its marine margins, which would have been sensitive to external forcing(s), remain inadequately understood. This study is the first reconstruction of the retreat dynamics and chronology of the western, marine-terminating, margin of the last (Late Midlandian) BIIS. Analyses of shelf geomorphology and core sedimentology and chronology enable a reconstruction of the Late Midlandian history of the BIIS west of Ireland, from initial advance to final retreat onshore. Five AMS radiocarbon dates from marine cores constrain the timing of retreat and associated readvances during deglaciation. The BIIS advanced without streaming or surging, depositing a bed of highly consolidated subglacial traction till, and reached to within ∼20 km of the shelf break by ∼24,000 Cal BP. Ice margin retreat was likely preceded by thinning, grounding zone retreat and ice shelf formation on the outer shelf by ∼22,000 Cal BP. This ice shelf persisted for ≤2500 years, while retreating at a minimum rate of ∼24 m/yr and buttressing a >150-km long, 20-km wide, bathymetrically-controlled grounding zone. A large (∼150 km long), arcuate, flat-topped grounding-zone wedge, termed here the Galway Lobe Grounding-Zone Wedge (GLGZW), was deposited below this ice shelf and records a significant stillstand in BIIS retreat. Geomorphic relationships indicate that the BIIS experienced continued thinning during its retreat across the shelf, which led to increased topographic influence on its flow dynamics following ice shelf break up and grounding zone retreat past the GLGZW. At this stage of retreat the western BIIS was comprised of several discrete, asynchronous lobes that underwent several

  4. Observational Evidence for Enhanced Greenhouse Effect Reinforcing Wintertime Arctic Amplification and Sea Ice Melting Onset

    NASA Astrophysics Data System (ADS)

    Cao, Y.; Liang, S.

    2017-12-01

    Despite an apparent hiatus in global warming, the Arctic climate continues to experience unprecedented changes. Summer sea ice is retreating at an accelerated rate, and surface temperatures in this region are rising at a rate double that of the global average, a phenomenon known as Arctic amplification. Although a lot of efforts have been made, the causes this unprecedented phenomenon remain unclear and are subjects of considerable debate. In this study, we report strong observational evidence, for the first time from long-term (1984-2014) spatially complete satellite records, that increased cloudiness and atmospheric water vapor in winter and spring have caused an extraordinary downward longwave radiative flux to the ice surface, which may then amplify the Arctic wintertime ice-surface warming. In addition, we also provide observed evidence that it is quite likely the enhancement of the wintertime greenhouse effect caused by water vapor and cloudiness has advanced the time of onset of ice melting in mid-May through inhibiting sea-ice refreezing in the winter and accelerating the pre-melting process in the spring, and in turn triggered the positive sea-ice albedo feedback process and accelerated the sea ice melting in the summer.

  5. Sea-level response to ice sheet evolution: An ocean perspective

    NASA Technical Reports Server (NTRS)

    Jacobs, Stanley S.

    1991-01-01

    The ocean's influence upon and response to Antarctic ice sheet changes is considered in relation to sea level rise over recent and future decades. Assuming present day ice fronts are in approximate equilibrium, a preliminary budget for the ice sheet is estimated from accumulation vs. iceberg calving and the basal melting that occurs beneath floating ice shelves. Iceberg calving is derived from the volume of large bergs identified and tracked by the Navy/NOAA Joint Ice Center and from shipboard observations. Basal melting exceeds 600 cu km/yr and is concentrated near the ice fronts and ice shelf grounding lines. An apparent negative mass balance for the Antarctic ice sheet may result from an anomalous calving rate during the past decade, but there are large uncertainties associated with all components of the ice budget. The results from general circulation models are noted in the context of projected precipitation increases and ocean temperature changes on and near the continent. An ocean research program that could help refine budget estimates is consistent with goals of the West Antarctic Ice Sheet Initiative.

  6. Short commentary on marine productivity at Arctic shelf breaks: upwelling, advection and vertical mixing

    NASA Astrophysics Data System (ADS)

    Randelhoff, Achim; Sundfjord, Arild

    2018-04-01

    The future of Arctic marine ecosystems has received increasing attention in recent years as the extent of the sea ice cover is dwindling. Although the Pacific and Atlantic inflows both import huge quantities of nutrients and plankton, they feed into the Arctic Ocean in quite diverse regions. The strongly stratified Pacific sector has a historically heavy ice cover, a shallow shelf and dominant upwelling-favourable winds, while the Atlantic sector is weakly stratified, with a dynamic ice edge and a complex bathymetry. We argue that shelf break upwelling is likely not a universal but rather a regional, albeit recurring, feature of the new Arctic. It is the regional oceanography that decides its importance through a range of diverse factors such as stratification, bathymetry and wind forcing. Teasing apart their individual contributions in different regions can only be achieved by spatially resolved time series and dedicated modelling efforts. The Northern Barents Sea shelf is an example of a region where shelf break upwelling likely does not play a dominant role, in contrast to the shallower shelves north of Alaska where ample evidence for its importance has already accumulated. Still, other factors can contribute to marked future increases in biological productivity along the Arctic shelf break. A warming inflow of nutrient-rich Atlantic Water feeds plankton at the same time as it melts the sea ice, permitting increased photosynthesis. Concurrent changes in sea ice cover and zooplankton communities advected with the boundary currents make for a complex mosaic of regulating factors that do not allow for Arctic-wide generalizations.

  7. Increased ice flow in Western Palmer Land linked to ocean melting

    NASA Astrophysics Data System (ADS)

    Hogg, Anna E.; Shepherd, Andrew; Cornford, Stephen L.; Briggs, Kate H.; Gourmelen, Noel; Graham, Jennifer A.; Joughin, Ian; Mouginot, Jeremie; Nagler, Thomas; Payne, Antony J.; Rignot, Eric; Wuite, Jan

    2017-05-01

    A decrease in the mass and volume of Western Palmer Land has raised the prospect that ice speed has increased in this marine-based sector of Antarctica. To assess this possibility, we measure ice velocity over 25 years using satellite imagery and an optimized modeling approach. More than 30 unnamed outlet glaciers drain the 800 km coastline of Western Palmer Land at speeds ranging from 0.5 to 2.5 m/d, interspersed with near-stagnant ice. Between 1992 and 2015, most of the outlet glaciers sped up by 0.2 to 0.3 m/d, leading to a 13% increase in ice flow and a 15 km3/yr increase in ice discharge across the sector as a whole. Speedup is greatest where glaciers are grounded more than 300 m below sea level, consistent with a loss of buttressing caused by ice shelf thinning in a region of shoaling warm circumpolar water.

  8. Evolution of a Greenland Ice sheet Including Shelves and Regional Sea Level Variations

    NASA Astrophysics Data System (ADS)

    Bradley, Sarah; Reerink, Thomas; van de Wal, Roderik S. W.; Helsen, Michiel; Goelzer, Heiko

    2016-04-01

    Observational evidence, including offshore moraines and marine sediment cores infer that at the Last Glacial maximum (LGM) the Greenland ice sheet (GIS) grounded out across the Davis Strait into Baffin Bay, with fast flowing ice streams extending out to the continental shelf break along the NW margin. These observations lead to a number of questions as to weather the GIS and Laurentide ice sheet (LIS) coalesced during glacial maximums, and if so, did a significant ice shelf develop across Baffin Bay and how would such a configuration impact on the relative contribution of these ice sheets to eustatic sea level (ESL). Most previous paleo ice sheet modelling simulations of the GIS recreated an ice sheet that either did not extend out onto the continental shelf or utilised a simplified marine ice parameterisation to recreate an extended GIS, and therefore did not fully include ice shelf dynamics. In this study we simulate the evolution of the GIS from 220 kyr BP to present day using IMAU-ice; a 3D thermodynamical ice sheet model which fully accounts for grounded and floating ice, calculates grounding line migration and ice shelf dynamics. As there are few observational estimates of the long-term (yrs) sub marine basal melting rates (mbm) for the GIS, we developed a mbm parameterization within IMAU-ice controlled primarily by changes in paleo water depth. We also investigate the influence of the LIS on the GIS evolution by including relative sea level forcing's derived from a Glacial Isostatic Adjustment model. We will present results of how changes in the mbm directly impacts on the ice sheet dynamics, timing and spatial extent of the GIS at the glacial maximums, but also on the rate of retreat and spatial extent at the Last interglacial (LIG) minimum. Results indicate that with the inclusion of ice shelf dynamics, a larger GIS is generated which is grounded out into Davis strait, up to a water depth of -750 m, but significantly reduces the GIS contribution to Last

  9. Evolution of a Greenland Ice sheet Including Shelves and Regional Sea Level Variations

    NASA Astrophysics Data System (ADS)

    Bradley, S.; Reerink, T.; Vandewal, R.; Helsen, M.

    2015-12-01

    Observational evidence, including offshore moraines and marine sediment cores infer that at the Last Glacial maximum (LGM) the Greenland ice sheet (GIS) grounded out across the Davis Strait into Baffin Bay, with fast flowing ice streams extending out to the continental shelf break along the NW margin. These observations lead to a number of questions as to weather the GIS and Laurentide ice sheet (LIS) coalesced during glacial maximums, and if so, did a significant ice shelf develop across Baffin Bay and how would such a configuration impact on the relative contribution of these ice sheets to eustatic sea level (ESL). Most previous paleo ice sheet modelling simulations of the GIS recreated an ice sheet that either did not extend out onto the continental shelf or utilised a simplified marine ice parameterisation to recreate an extended GIS, and therefore did not fully include ice shelf dynamics. In this study we simulate the evolution of the GIS from 220 kyr BP to present day using IMAU-ice; a 3D thermodynamical ice sheet model which fully accounts for grounded and floating ice, calculates grounding line migration and ice shelf dynamics. There is few observational estimates of long-term (yrs) sub marine basal melting rates (mbm) for the GIS. Therefore we investigate a range of relationships to constrain the spatial and temporal parameterisation of mbm within IMAU-ice related to changes in paleo water depth, driven by changes in relative sea level and ocean temperature. We will present results of how changes in the mbm directly impacts on the ice sheet dynamics, timing and spatial extent of the GIS at the glacial maximums, but also on the rate of retreat and spatial extent at the Last interglacial (LIG) minimum. Initial results indicate that with the inclusion of ice shelf dynamics, a larger GIS is generated which is grounded out into Davis strait, up to a water depth of -750 m, but the total contribution to LIG ESL is reduced by up to 0.6 m.

  10. Simulations of coupled, Antarctic ice-ocean evolution using POP2x and BISICLES (Invited)

    NASA Astrophysics Data System (ADS)

    Price, S. F.; Asay-Davis, X.; Martin, D. F.; Maltrud, M. E.; Hoffman, M. J.

    2013-12-01

    We present initial results from Antarctic, ice-ocean coupled simulations using large-scale ocean circulation and land ice evolution models. The ocean model, POP2x is a modified version of POP, a fully eddying, global-scale ocean model (Smith and Gent, 2002). POP2x allows for circulation beneath ice shelf cavities using the method of partial top cells (Losch, 2008). Boundary layer physics, which control fresh water and salt exchange at the ice-ocean interface, are implemented following Holland and Jenkins (1999), Jenkins (1999), and Jenkins et al. (2010). Standalone POP2x output compares well with standard ice-ocean test cases (e.g., ISOMIP; Losch, 2008; Kimura et al., 2013) and with results from other idealized ice-ocean coupling test cases (e.g., Goldberg et al., 2012). The land ice model, BISICLES (Cornford et al., 2012), includes a 1st-order accurate momentum balance (L1L2) and uses block structured, adaptive-mesh refinement to more accurately model regions of dynamic complexity, such as ice streams, outlet glaciers, and grounding lines. For idealized test cases focused on marine-ice sheet dynamics, BISICLES output compares very favorably relative to simulations based on the full, nonlinear Stokes momentum balance (MISMIP-3d; Pattyn et al., 2013). Here, we present large-scale (southern ocean) simulations using POP2x with fixed ice shelf geometries, which are used to obtain and validate modeled submarine melt rates against observations. These melt rates are, in turn, used to force evolution of the BISICLES model. An offline-coupling scheme, which we compare with the ice-ocean coupling work of Goldberg et al. (2012), is then used to sequentially update the sub-shelf cavity geometry seen by POP2x.

  11. Downslope föhn winds over the Antarctic Peninsula and their effect on the Larsen ice shelves

    NASA Astrophysics Data System (ADS)

    Grosvenor, D. P.; King, J. C.; Choularton, T. W.; Lachlan-Cope, T.

    2014-09-01

    Mesoscale model simulations are presented of a westerly föhn event over the Antarctic Peninsula mountain ridge and onto the Larsen C ice shelf, just south of the recently collapsed Larsen B ice shelf. Aircraft observations showed the presence of föhn jets descending near the ice shelf surface with maximum wind speeds at 250-350 m in height. Surface flux measurements suggested that melting was occurring. Simulated profiles of wind speed, temperature and wind direction were very similar to the observations. However, the good match only occurred at a model time corresponding to ~9 h before the aircraft observations were made since the model föhn jets died down after this. This was despite the fact that the model was nudged towards analysis for heights greater than ~1.15 km above the surface. Timing issues aside, the otherwise good comparison between the model and observations gave confidence that the model flow structure was similar to that in reality. Details of the model jet structure are explored and discussed and are found to have ramifications for the placement of automatic weather station (AWS) stations on the ice shelf in order to detect föhn flow. Cross sections of the flow are also examined and were found to compare well to the aircraft measurements. Gravity wave breaking above the mountain crest likely created a~situation similar to hydraulic flow and allowed föhn flow and ice shelf surface warming to occur despite strong upwind blocking, which in previous studies of this region has generally not been considered. Our results therefore suggest that reduced upwind blocking, due to wind speed increases or stability decreases, might not result in an increased likelihood of föhn events over the Antarctic Peninsula, as previously suggested. The surface energy budget of the model during the melting periods showed that the net downwelling short-wave surface flux was the largest contributor to the melting energy, indicating that the cloud clearing effect of f

  12. Nonlinear Influence of Background Rotation on Iceberg Melting

    NASA Astrophysics Data System (ADS)

    Meroni, A. N.; McConnochie, C. D.; Cenedese, C.; Sutherland, B. R.; Snow, K.

    2017-12-01

    The Antarctic and Greenland Ice Sheets lose mass through direct melting from ice shelves and from the calving of icebergs. Once icebergs have calved they will drift in ocean currents and gradually melt. Where and how rapidly they melt will determine where the freshwater and nutrients contained in the iceberg will be released which can then affect sea ice formation and biological activity. Standard parameterizations of iceberg melting consider the fluid velocity and temperature but not the effect of planetary rotation. Particularly for large icebergs, such as that which recently calved from the Larson C ice shelf, rotation may also be important due to the formation of Taylor columns.We present the results of laboratory experiments investigating the effect of rotation on the melting of icebergs. In particular, the possible formation of Taylor columns underneath an iceberg is investigated. At high Rossby numbers, when rotation is weak compared to advection, iceberg melting is unaffected by the background rotation rate. However, as the Rossby number is decreased, the melt rate initially increases before decreasing as the Rossby number is further decreased.This non-monotonic dependence of iceberg melting on the Rossby number is explained by considering the integrated horizontal velocity under the iceberg. For moderate Rossby numbers the Taylor column that forms only occupies a small fraction of the iceberg bottom area. Although there is near-zero relative flow in the Taylor column, which reduces the melt rate, the effective blocking by the Taylor column causes an acceleration of the flow under the remainder of the iceberg and increases the total melt rate. However, for low Rossby numbers the Taylor column occupies a larger fraction of the iceberg bottom area and the flow acceleration no longer occurs underneath the iceberg, hence it is unable to increase the melt rate. We suggest an improved parameterization of iceberg melt that includes the effects of rotation.

  13. Ice velocity and SAR backscatter record for the Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    Scheuchl, B.; Mouginot, J.; Rignot, E. J.; Small, D.; Khazendar, A.; Seroussi, H. L.; Kellndorfer, J. M.

    2017-12-01

    The Antarctic Peninsula has undergone some dramatic changes in the last three decades. The latest high-profile change was the calving of iceberg A68 off the Larsen-C ice shelf, which resulted in the ice shelf to have the smallest extent since the beginning of satellite observations. A first indication of the beginning of the formation of the iceberg was reported based on 2008 ice velocity data by Khazendar et al. 2011 (GRL). With two long term funded missions as well as other available sensors, there is a wealth of data being collected not seen before. The European Sentinel-1 constellation provides InSAR coverage of the area every 6 days. In addition, lower resolution wide swath data are being collected over the Weddell sea and cover the shelf frequently. Landsat-8 thermal infrared imagery proved another valuable data source in monitoring the progression. USGS has committed Landsat-8 for frequent acquisitions in Antarctica during periods with available daylight. Here we take a longer term view of the Antarctic Peninsula and will provide a satellite data record of ice velocity data generated using SAR and optical data. In difference to our MEaSUREs Antarctica-wide 1 km annual product, this regional time series will be provided at 50 m posting to facilitate research that requires higher resolution velocity maps. We also use suitable InSAR data to determine the grounding line for the region. SAR backscatter can vary dramatically in the region, particularly in Austral summer. Low backscatter is an indication for surface melt, and in the case of Larsen-C, this can engulf the entire ice shelf at times. We will generate a calibrated backscatter time series using a precision DEM of the region. The maps will provide the temporal and spatial extent of surface melt and will be compared with results from the Regional Climate Model (RACMO) and, where available, with weather station data. We also use double difference interferograms, to chronicle the progression of the Larsen

  14. Experimental and theoretical evidence for bilayer-by-bilayer surface melting of crystalline ice

    PubMed Central

    Sánchez, M. Alejandra; Kling, Tanja; Ishiyama, Tatsuya; van Zadel, Marc-Jan; Mezger, Markus; Jochum, Mara N.; Cyran, Jenée D.; Smit, Wilbert J.; Bakker, Huib J.; Shultz, Mary Jane; Morita, Akihiro; Donadio, Davide; Nagata, Yuki; Bonn, Mischa; Backus, Ellen H. G.

    2017-01-01

    On the surface of water ice, a quasi-liquid layer (QLL) has been extensively reported at temperatures below its bulk melting point at 273 K. Approaching the bulk melting temperature from below, the thickness of the QLL is known to increase. To elucidate the precise temperature variation of the QLL, and its nature, we investigate the surface melting of hexagonal ice by combining noncontact, surface-specific vibrational sum frequency generation (SFG) spectroscopy and spectra calculated from molecular dynamics simulations. Using SFG, we probe the outermost water layers of distinct single crystalline ice faces at different temperatures. For the basal face, a stepwise, sudden weakening of the hydrogen-bonded structure of the outermost water layers occurs at 257 K. The spectral calculations from the molecular dynamics simulations reproduce the experimental findings; this allows us to interpret our experimental findings in terms of a stepwise change from one to two molten bilayers at the transition temperature. PMID:27956637

  15. Downslope flow across the Ross Sea shelf break (Antarctica)

    NASA Astrophysics Data System (ADS)

    Bergamasco, A.; Budillon, G.; Carniel, S.; Defendi, V.; Meloni, R.; Paschini, E.; Sclavo, M.; Spezie, G.

    2003-12-01

    The analysis of some high-resolution hydrological data sets acquired during the 1997, 1998, 2001 and 2003 austral summers across the Ross Sea continental shelf break are here presented. The main focus of these cruises carried out in the framework of the Italian National Antarctic Program was the investigation of the downslope flow of the dense waters originated inside the Ross Sea. Such dense waters, flow near the bottom and, reaching the continental shelf break, ventilate the deep ocean. Two Antarctic continental shelf mechanisms can originate dense and deep waters. The former mechanism involves the formation, along the Victoria Land coasts, of a dense and saline water mass, the High Salinity Shelf Water (HSSW). The HSSW formation is linked to the rejection of salt into the water column as sea ice freezes, especially during winter, in the polynya areas, where the ice is continuously pushed offshore by the strong katabatic winds. The latter one is responsible of the formation of a supercold water mass, the Ice Shelf Water (ISW). The salt supplied by the HSSW recirculated below the Ross Ice Shelf, the latent heat of melting and the heat sink provided by the Ross Ice Shelf give rise to plumes of ISW, characterized by temperatures below the sea-surface freezing point. The dense shelf waters migrate to the continental shelf-break, spill over the shelf edge and descend the continental slope as a shelf-break gravity current, subject to friction and possibly enhanced by topographic channelling. Friction, in particular, breaks the constraint of potential vorticity conservation, counteracting the geostrophic tendency for along slope flow. The density-driven downslope motion or cascading entrains ambient water, namely the lower layer of the CDW, reaches a depth where density is the same and spreads off-slope. In fact, the cascading event is inhibited by friction without entrainment. The downslope processes are important for the ocean and climate system because they play a

  16. Response of the Antarctic ice sheet to ocean forcing using the POPSICLES coupled ice sheet-ocean model

    NASA Astrophysics Data System (ADS)

    Martin, D. F.; Asay-Davis, X.; Price, S. F.; Cornford, S. L.; Maltrud, M. E.; Ng, E. G.; Collins, W.

    2014-12-01

    We present the response of the continental Antarctic ice sheet to sub-shelf-melt forcing derived from POPSICLES simulation results covering the full Antarctic Ice Sheet and the Southern Ocean spanning the period 1990 to 2010. Simulations are performed at 0.1 degree (~5 km) ocean resolution and ice sheet resolution as fine as 500 m using adaptive mesh refinement. A comparison of fully-coupled and comparable standalone ice-sheet model results demonstrates the importance of two-way coupling between the ice sheet and the ocean. The POPSICLES model couples the POP2x ocean model, a modified version of the Parallel Ocean Program (Smith and Gent, 2002), and the BISICLES ice-sheet model (Cornford et al., 2012). BISICLES makes use of adaptive mesh refinement to fully resolve dynamically-important regions like grounding lines and employs a momentum balance similar to the vertically-integrated formulation of Schoof and Hindmarsh (2009). Results of BISICLES simulations have compared favorably to comparable simulations with a Stokes momentum balance in both idealized tests like MISMIP3D (Pattyn et al., 2013) and realistic configurations (Favier et al. 2014). POP2x includes sub-ice-shelf circulation using partial top cells (Losch, 2008) and boundary layer physics following Holland and Jenkins (1999), Jenkins (2001), and Jenkins et al. (2010). Standalone POP2x output compares well with standard ice-ocean test cases (e.g., ISOMIP; Losch, 2008) and other continental-scale simulations and melt-rate observations (Kimura et al., 2013; Rignot et al., 2013). A companion presentation, "Present-day circum-Antarctic simulations using the POPSICLES coupled land ice-ocean model" in session C027 describes the ocean-model perspective of this work, while we focus on the response of the ice sheet and on details of the model. The figure shows the BISICLES-computed vertically-integrated ice velocity field about 1 month into a 20-year coupled Antarctic run. Groundling lines are shown in green.

  17. Abbot Ice Shelf, structure of the Amundsen Sea continental margin and the southern boundary of the Bellingshausen Plate seaward of West Antarctica.

    PubMed

    Cochran, James R; Tinto, Kirsty J; Bell, Robin E

    2015-05-01

    Inversion of NASA Operation IceBridge airborne gravity over the Abbot Ice Shelf in West Antarctica for subice bathymetry defines an extensional terrain made up of east-west trending rift basins formed during the early stages of Antarctica/Zealandia rifting. Extension is minor, as rifting jumped north of Thurston Island early in the rifting process. The Amundsen Sea Embayment continental shelf west of the rifted terrain is underlain by a deeper, more extensive sedimentary basin also formed during rifting between Antarctica and Zealandia. A well-defined boundary zone separates the mildly extended Abbot extensional terrain from the deeper Amundsen Embayment shelf basin. The shelf basin has an extension factor, β , of 1.5-1.7 with 80-100 km of extension occurring across an area now 250 km wide. Following this extension, rifting centered north of the present shelf edge and proceeded to continental rupture. Since then, the Amundsen Embayment continental shelf appears to have been tectonically quiescent and shaped by subsidence, sedimentation, and the advance and retreat of the West Antarctic Ice Sheet. The Bellingshausen Plate was located seaward of the Amundsen Sea margin prior to incorporation into the Antarctic Plate at about 62 Ma. During the latter part of its independent existence, Bellingshausen plate motion had a clockwise rotational component relative to Antarctica producing convergence across the north-south trending Bellingshausen Gravity Anomaly structure at 94°W and compressive deformation on the continental slope between 94°W and 102°W. Farther west, the relative motion was extensional along an east-west trending zone occupied by the Marie Byrd Seamounts. Abbot Ice Shelf is underlain by E-W rift basins created at ∼90 Ma Amundsen shelf shaped by subsidence, sedimentation, and passage of the ice sheet Bellingshausen plate boundary is located near the base of continental slope and rise.

  18. Abbot Ice Shelf, structure of the Amundsen Sea continental margin and the southern boundary of the Bellingshausen Plate seaward of West Antarctica

    PubMed Central

    Cochran, James R; Tinto, Kirsty J; Bell, Robin E

    2015-01-01

    Inversion of NASA Operation IceBridge airborne gravity over the Abbot Ice Shelf in West Antarctica for subice bathymetry defines an extensional terrain made up of east-west trending rift basins formed during the early stages of Antarctica/Zealandia rifting. Extension is minor, as rifting jumped north of Thurston Island early in the rifting process. The Amundsen Sea Embayment continental shelf west of the rifted terrain is underlain by a deeper, more extensive sedimentary basin also formed during rifting between Antarctica and Zealandia. A well-defined boundary zone separates the mildly extended Abbot extensional terrain from the deeper Amundsen Embayment shelf basin. The shelf basin has an extension factor, β, of 1.5–1.7 with 80–100 km of extension occurring across an area now 250 km wide. Following this extension, rifting centered north of the present shelf edge and proceeded to continental rupture. Since then, the Amundsen Embayment continental shelf appears to have been tectonically quiescent and shaped by subsidence, sedimentation, and the advance and retreat of the West Antarctic Ice Sheet. The Bellingshausen Plate was located seaward of the Amundsen Sea margin prior to incorporation into the Antarctic Plate at about 62 Ma. During the latter part of its independent existence, Bellingshausen plate motion had a clockwise rotational component relative to Antarctica producing convergence across the north-south trending Bellingshausen Gravity Anomaly structure at 94°W and compressive deformation on the continental slope between 94°W and 102°W. Farther west, the relative motion was extensional along an east-west trending zone occupied by the Marie Byrd Seamounts. Key Points: Abbot Ice Shelf is underlain by E-W rift basins created at ∼90 Ma Amundsen shelf shaped by subsidence, sedimentation, and passage of the ice sheet Bellingshausen plate boundary is located near the base of continental slope and rise PMID:26709352

  19. Ice shelf breaking and increase velocity of glacier: the view from analogue experiment

    NASA Astrophysics Data System (ADS)

    Corti, Giacomo; Iandelli, Irene

    2013-04-01

    Collapse of the Larsen II platform during the late 90s has generated an increase in velocity if ice sheet discharge, highlighting that these processes may strongly destabilize large ice masses speeding up the plateau discharge toward the sea. Parameters such as ice thickness, valley width and slope, ice pack dimensions may contribute to modulate the effect of increase in ice flow velocity following the removal of ice. We analyze this process through scale analogue models, aimed at reproducing the flow of ice from a plateau into the sea through a narrow valley. The ice is reproduced with a transparent silicone (Polydimethisiloxane), flowing at velocities of a few centimeters per hour and simulating natural velocities in the range of a few meters per year. Having almost the same density of the ice, PDMS floats on water and simulate the ice-shelf formation. Results of preliminary experimental series support that this methodology is able to reasonably reproduce the process and support a significant increase in velocity discharge following the removal of ice pack. Additional tests are designed to verify the influence of the above-mentioned parameters on the increase in ice velocity.

  20. Greenland ice sheet melt from MODIS and associated atmospheric variability.

    PubMed

    Häkkinen, Sirpa; Hall, Dorothy K; Shuman, Christopher A; Worthen, Denise L; DiGirolamo, Nicolo E

    2014-03-16

    Daily June-July melt fraction variations over the Greenland ice sheet (GIS) derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) (2000-2013) are associated with atmospheric blocking forming an omega-shape ridge over the GIS at 500 hPa height. Blocking activity with a range of time scales, from synoptic waves breaking poleward (<5 days) to full-fledged blocks (≥5 days), brings warm subtropical air masses over the GIS controlling daily surface temperatures and melt. The temperature anomaly of these subtropical air mass intrusions is also important for melting. Based on the years with the greatest melt (2002 and 2012) during the MODIS era, the area-average temperature anomaly of 2 standard deviations above the 14 year June-July mean results in a melt fraction of 40% or more. Though the summer of 2007 had the most blocking days, atmospheric temperature anomalies were too small to instigate extreme melting. Short-term atmospheric blocking over Greenland contributes to melt episodesAssociated temperature anomalies are equally important for the meltDuration and strength of blocking events contribute to surface melt intensity.

  1. Thermooptical properties of gold nanoparticles embedded in ice: characterization of heat generation and melting.

    PubMed

    Richardson, Hugh H; Hickman, Zackary N; Govorov, Alexander O; Thomas, Alyssa C; Zhang, Wei; Kordesch, Martin E

    2006-04-01

    We investigate the system of optically excited gold NPs in an ice matrix aiming to understand heat generation and melting processes at the nanoscale level. Along with the traditional fluorescence method, we introduce thermooptical spectroscopy based on phase transformation of a matrix. With this, we can not only measure optical response but also thermal response, that is, heat generation. After several recrystallization cycles, the nanoparticles are embedded into the ice film where the optical and thermal properties of the nanoparticles are probed. Spatial fluorescence mapping shows the locations of Au nanoparticles, whereas the time-resolved Raman signal of ice reveals the melting process. From the time-dependent Raman signals, we determine the critical light intensities at which the laser beam is able to melt ice around the nanoparticles. The melting intensity depends strongly on temperature and position. The position-dependence is especially strong and reflects a mesoscopic character of heat generation. We think that it comes from the fact that nanoparticles form small complexes of different geometry and each complex has a unique thermal response. Theoretical calculations and experimental data are combined to make a quantitative measure of the amount of heat generated by optically excited Au nanoparticles and agglomerates. The information obtained in this study can be used to design nanoscale heaters and actuators.

  2. Ice dynamics of Heinrich events: Insights and implications

    NASA Astrophysics Data System (ADS)

    Alley, R. B.; Parizek, B. R.; Anandakrishnan, S.

    2017-12-01

    Physical understanding of ice flow provides important constraints on Heinrich (H) events, which in turn provide lessons for ice dynamics and future sea-level change. Iceberg-rafted debris (IRD), the defining feature of H events, is a complex indicator; however, in cold climates with extensive marine-ending ice, increased IRD flux records ice-shelf loss. Ice shelves fed primarily by inflow from grounded ice experience net basal melting, giving sub-ice-sedimentation rather than open-ocean IRD. Ice-shelf loss has been observed recently in response to atmospheric warming increasing surface meltwater that wedged open crevasses (Larsen B), but also by break-off following thinning from warming of waters reaching the grounding line (Jakobshavn). The H events consistently occurred during cold times resulting from reduced North Atlantic overturning circulation ("conveyor"), but as argued by Marcott et al. (PNAS 2011), this was accompanied by delayed warming at grounding-line depths of the Hudson Strait ice stream, the source of the Heinrich layers, implicating oceanic control. As shown in a rich literature, additional considerations involving thermal state of the ice-stream bed, isostasy and probably other processes influenced why some reduced-conveyor events triggered H-events while others did not. Ice shelves, including the inferred Hudson Strait ice shelf, typically exist in high-salinity, cold waters produced by brine rejection from sea-ice formation, which are the coldest abundant waters in the world ocean. Thus, almost any change in air or ocean temperature, winds or currents can remove ice shelves, because "replacement" water masses are typically warmer. And, because ice shelves almost invariably slow flow of non-floating ice into the ocean, climatic perturbations to regions with ice shelves typically lead to sea-level rise, with important implications.

  3. The Sensitivity of the Greenland Ice Sheet to Glacial-Interglacial Oceanic Forcing

    NASA Astrophysics Data System (ADS)

    Tabone, I.; Blasco Navarro, J.; Robinson, A.; Alvarez-Solas, J.; Montoya, M.

    2017-12-01

    Up to now, the scientific community has mainly focused on the sensitivity of the Greenland Ice Sheet (GrIS) to atmospheric variations. However, several studies suggest that the enhanced ice mass loss experienced by the GrIS in the past decades is directly connected to the increasing North Atlantic temperatures. Melting of GrIS outlet glaciers triggers grounding-line retreat increasing ice discharge into the ocean. This new evidence leads to consider the ocean as a relevant driver to be taken into account when modeling the evolution of the GrIS. The ice-ocean interaction is a primary factor controling not only the likely future retreat of GrIS outlet glaciers, or the huge ice loss in past warming climates, but also, and more strongly, the past GrIS glacial expansion. The latter assumption is supported by reconstructions which propose the GrIS to be fully marine-based during glacials, and thus more exposed to the influence of the ocean. Here, for the first time, we investigate the response of the GrIS to past oceanic changes using a three-dimensional hybrid ice-sheet/ice-shelf model, which combines the Shallow Ice Approximation (SIA) for slow grounded ice sheets and the Shallow Shelf Approximation (SSA) in ice shelves and ice streams. The model accounts for a time-dependent parametrisation of the marine basal melting rate, which is used to reproduce past oceanic variations. In this work simulations of the last two glacial cycles are performed. Our results show that the GrIS is very sensitive to the ocean-triggered submarine melting (freezing). Mild oceanic temperature variations lead to a rapid retreat (expansion) of the GrIS margins, which, inducing a dynamic adjustment of the grounded ice sheet, drive the evolution of the whole ice sheet. Our results strongly suggest the need to consider the ocean as an active forcing in paleo ice sheet models.

  4. Comparison of DMSP SSM/I and Landsat 7 ETM+ Sea Ice Concentrations During Summer Melt

    NASA Technical Reports Server (NTRS)

    Cavalieri, Donald J.; Markus, Thorsten; Ivanoff, Alvaro; Koblinsky, Chester J. (Technical Monitor)

    2001-01-01

    As part of NASA's EOS Aqua sea ice validation program for the Advanced Microwave Scanning Radiometer (AMSR-E), Landsat 7 Enhanced Thematic Mapper (ETM+) images were acquired to develop a sea ice concentration data set with which to validate AMSR-E sea ice concentration retrievals. The standard AMSR-E Arctic sea ice concentration product will be obtained with the enhanced NASA Team (NT2) algorithm. The goal of this study is to assess the accuracy to which the NT2 algorithm, using DMSP Special Sensor Microwave Imager radiances, retrieves sea ice concentrations under summer melt conditions. Melt ponds are currently the largest source of error in the determination of Arctic sea ice concentrations with satellite passive microwave sensors. To accomplish this goal, Landsat 7 ETM+ images of Baffin Bay were acquired under clear sky conditions on the 26th and 27th of June 2000 and used to generate high-resolution sea ice concentration maps with which to compare the NT2 retrievals. Based on a linear regression analysis of 116 25-km samples, we find that overall the NT2 retrievals agree well with the Landsat concentrations. The regression analysis yields a correlation coefficient of 0.98. In areas of high melt ponding, the NT2 retrievals underestimate the sea ice concentrations by about 12% compared to the Landsat values.

  5. Greenland Ice Sheet Melt from MODIS and Associated Atmospheric Variability

    NASA Technical Reports Server (NTRS)

    Hakkinen, Sirpa; Hall, Dorothy K.; Shuman, Christopher A.; Worthen, Denise L.; DiGirolamo, Nicolo E.

    2014-01-01

    Daily June-July melt fraction variations over the Greenland Ice Sheet (GIS) derived from the MODerate-resolution Imaging Spectroradiometer (MODIS) (2000-2013) are associated with atmospheric blocking forming an omega-shape ridge over the GIS at 500hPa height (from NCEPNCAR). Blocking activity with a range of time scales, from synoptic waves breaking poleward ( 5 days) to full-fledged blocks (5 days), brings warm subtropical air masses over the GIS controlling daily surface temperatures and melt. The temperature anomaly of these subtropical air mass intrusions is also important for melting. Based on the largest MODIS melt years (2002 and 2012), the area-average temperature anomaly of 2 standard deviations above the 14-year June-July mean, results in a melt fraction of 40 or more. Summer 2007 had the most blocking days, however atmospheric temperature anomalies were too small to instigate extreme melting.

  6. Surface melt effects on Cryosat-2 elevation retrievals in the ablation zone of the Greenland ice sheet

    NASA Astrophysics Data System (ADS)

    Slater, T.; McMillan, M.; Shepherd, A.; Leeson, A.; Cornford, S. L.; Hogg, A.; Gilbert, L.; Muir, A. S.; Briggs, K.

    2017-12-01

    Over the past two decades, there has been an acceleration in the rate of mass losses from the Greenland ice sheet. This acceleration is, in part, attributed to an increasingly negative surface mass balance (SMB), linked to increasing melt water runoff rates due to enhanced surface melting. Understanding the past, present and future evolution in surface melting is central to ongoing monitoring of ice sheet mass balance and, in turn, to building realistic future projections. Currently, regional climate models are commonly used for this purpose, because direct in-situ observations are spatially and temporally sparse due to the logistics and resources required to collect such data. In particular, modelled SMB is used to estimate the extent and magnitude of surface melting, which influences (1) many geodetic mass balance estimates, and (2) snowpack microwave scattering properties. The latter is poorly understood and introduces uncertainty into radar altimeter estimates of ice sheet evolution. Here, we investigate the changes in CryoSat-2 waveforms and elevation measurements caused by the onset of surface melt in the summer months over the ablation zone of the Greenland ice sheet. Specifically, we use CryoSat-2 SARIn mode data acquired between 2011 and 2016, to characterise the effect of high variability in surface melt during this period, and to assess the associated impact on estimates of ice mass balance.

  7. Coastal-Change and Glaciological Map of the Northern Ross Ice Shelf Area, Antarctica: 1962-2004

    USGS Publications Warehouse

    Ferrigno, Jane G.; Foley, Kevin M.; Swithinbank, Charles; Williams, Richard S.

    2007-01-01

    Changes in the area and volume of polar ice sheets are intricately linked to changes in global climate, and the resulting changes in sea level could severely impact the densely populated coastal regions on Earth. Melting of the West Antarctic part alone of the Antarctic ice sheet would cause a sea-level rise of approximately 6 meters (m). The potential sea-level rise after melting of the entire Antarctic ice sheet is estimated to be 65 m (Lythe and others, 2001) to 73 m (Williams and Hall, 1993). The mass balance (the net volumetric gain or loss) of the Antarctic ice sheet is highly complex, responding differently to different conditions in each region (Vaughan, 2005). In a review paper, Rignot and Thomas (2002) concluded that the West Antarctic ice sheet is probably becoming thinner overall; although it is thickening in the west, it is thinning in the north. Thomas and others (2004), on the basis of aircraft and satellite laser altimetry surveys, believe the thinning may be accelerating. Joughin and Tulaczyk (2002), on the basis of analysis of ice-flow velocities derived from synthetic aperture radar, concluded that most of the Ross ice streams (ice streams on the east side of the Ross Ice Shelf) have a positive mass balance, whereas Rignot and others (2004) infer even larger negative mass balance for glaciers flowing northward into the Amundsen Sea, a trend suggested by Swithinbank and others (2003a,b; 2004). The mass balance of the East Antarctic ice sheet is thought by Davis and others (2005) to be strongly positive on the basis of the change in satellite altimetry measurements made between 1992 and 2003. Measurement of changes in area and mass balance of the Antarctic ice sheet was given a very high priority in recommendations by the Polar Research Board of the National Research Council (1986), in subsequent recommendations by the Scientific Committee on Antarctic Research (SCAR) (1989, 1993), and by the National Science Foundation?s (1990) Division of Polar

  8. Effects of Emulsifier, Overrun and Dasher Speed on Ice Cream Microstructure and Melting Properties.

    PubMed

    Warren, Maya M; Hartel, Richard W

    2018-03-01

    Ice cream is a multiphase frozen food containing ice crystals, air cells, fat globules, and partially coalesced fat globule clusters dispersed in an unfrozen serum phase (sugars, proteins, and stabilizers). This microstructure is responsible for ice cream's melting characteristics. By varying both formulation (emulsifier content and overrun) and processing conditions (dasher speed), the effects of different microstructural elements, particularly air cells and fat globule clusters, on ice cream melt-down properties were studied. Factors that caused an increase in shear stress within the freezer, namely increasing dasher speed and overrun, caused a decrease in air cell size and an increase in extent of fat destabilization. Increasing emulsifier content, especially of polysorbate 80, caused an increase in extent of fat destabilization. Both overrun and fat destabilization influenced drip-through rates. Ice creams with a combination of low overrun and low fat destabilization had the highest drip-through rates. Further, the amount of remnant foam left on the screen increased with reduced drip-through rates. These results provide a better understanding of the effects of microstructure components and their interactions on drip-through rate. Manipulating operating and formulation parameters in ice cream manufacture influences the microstructure (air cells, ice crystals, and fat globule clusters). This work provides guidance on which parameters have most effect on air cell size and fat globule cluster formation. Further, the structural characteristics that reduce melt-down rate were determined. Ice cream manufacturers will use these results to tailor their products for the desired quality attributes. © 2018 Institute of Food Technologists®.

  9. Recent Changes in Arctic Sea Ice Melt Onset, Freeze-Up, and Melt Season Length

    NASA Technical Reports Server (NTRS)

    Markus, Thorsten; Stroeve, Julienne C.; Miller, Jeffrey

    2010-01-01

    In order to explore changes and trends in the timing of Arctic sea ice melt onset and freeze-up and therefore melt season length, we developed a method that obtains this information directly from satellite passive microwave data, creating a consistent data set from 1979 through present. We furthermore distinguish between early melt (the first day of the year when melt is detected) and the first day of continuous melt. A similar distinction is made for the freeze-up. Using this method we analyze trends in melt onset and freeze-up for 10 different Arctic regions. In all regions except for the Sea of Okhotsk, which shows a very slight and statistically insignificant positive trend (O.4 days/decade), trends in melt onset are negative, i.e. towards earlier melt. The trends range from -1.0day/decade for the Bering Sea to -7.3 days/decade for the East Greenland Sea. Except for the Sea of Okhotsk all areas also show a trend towards later autumn freeze onset. The Chukchi/Beaufort Seas and Laptev/East Siberian Seas observe the strongest trends with 7 days/decade. For the entire Arctic, the melt season length has increased by about 20 days over the last 30 years. Largest trends of over 1O days/decade are seen for Hudson Bay, the East Greenland Sea the Laptev/East Siberian Seas, and the Chukchi/Beaufort Seas. Those trends are statistically significant a1 the 99% level.

  10. Consequences of rapid ice sheet melting on the Sahelian population vulnerability

    PubMed Central

    Ramstein, Gilles; Charbit, Sylvie; Vrac, Mathieu; Famien, Adjoua Moïse; Sultan, Benjamin; Swingedouw, Didier; Dumas, Christophe; Gemenne, François; Alvarez-Solas, Jorge; Vanderlinden, Jean-Paul

    2017-01-01

    The acceleration of ice sheet melting has been observed over the last few decades. Recent observations and modeling studies have suggested that the ice sheet contribution to future sea level rise could have been underestimated in the latest Intergovernmental Panel on Climate Change report. The ensuing freshwater discharge coming from ice sheets could have significant impacts on global climate, and especially on the vulnerable tropical areas. During the last glacial/deglacial period, megadrought episodes were observed in the Sahel region at the time of massive iceberg surges, leading to large freshwater discharges. In the future, such episodes have the potential to induce a drastic destabilization of the Sahelian agroecosystem. Using a climate modeling approach, we investigate this issue by superimposing on the Representative Concentration Pathways 8.5 (RCP8.5) baseline experiment a Greenland flash melting scenario corresponding to an additional sea level rise ranging from 0.5 m to 3 m. Our model response to freshwater discharge coming from Greenland melting reveals a significant decrease of the West African monsoon rainfall, leading to changes in agricultural practices. Combined with a strong population increase, described by different demography projections, important human migration flows could be potentially induced. We estimate that, without any adaptation measures, tens to hundreds million people could be forced to leave the Sahel by the end of this century. On top of this quantification, the sea level rise impact over coastal areas has to be superimposed, implying that the Sahel population could be strongly at threat in case of rapid Greenland melting. PMID:28584113

  11. Consequences of rapid ice sheet melting on the Sahelian population vulnerability.

    PubMed

    Defrance, Dimitri; Ramstein, Gilles; Charbit, Sylvie; Vrac, Mathieu; Famien, Adjoua Moïse; Sultan, Benjamin; Swingedouw, Didier; Dumas, Christophe; Gemenne, François; Alvarez-Solas, Jorge; Vanderlinden, Jean-Paul

    2017-06-20

    The acceleration of ice sheet melting has been observed over the last few decades. Recent observations and modeling studies have suggested that the ice sheet contribution to future sea level rise could have been underestimated in the latest Intergovernmental Panel on Climate Change report. The ensuing freshwater discharge coming from ice sheets could have significant impacts on global climate, and especially on the vulnerable tropical areas. During the last glacial/deglacial period, megadrought episodes were observed in the Sahel region at the time of massive iceberg surges, leading to large freshwater discharges. In the future, such episodes have the potential to induce a drastic destabilization of the Sahelian agroecosystem. Using a climate modeling approach, we investigate this issue by superimposing on the Representative Concentration Pathways 8.5 (RCP8.5) baseline experiment a Greenland flash melting scenario corresponding to an additional sea level rise ranging from 0.5 m to 3 m. Our model response to freshwater discharge coming from Greenland melting reveals a significant decrease of the West African monsoon rainfall, leading to changes in agricultural practices. Combined with a strong population increase, described by different demography projections, important human migration flows could be potentially induced. We estimate that, without any adaptation measures, tens to hundreds million people could be forced to leave the Sahel by the end of this century. On top of this quantification, the sea level rise impact over coastal areas has to be superimposed, implying that the Sahel population could be strongly at threat in case of rapid Greenland melting.

  12. Community dynamics of nematodes after Larsen ice-shelf collapse in the eastern Antarctic Peninsula.

    PubMed

    Hauquier, Freija; Ballesteros-Redondo, Laura; Gutt, Julian; Vanreusel, Ann

    2016-01-01

    Free-living marine nematode communities of the Larsen B embayment at the eastern Antarctic Peninsula were investigated to provide insights on their response and colonization rate after large-scale ice-shelf collapse. This study compares published data on the post-collapse situation from 2007 with new material from 2011, focusing on two locations in the embayment that showed highly divergent communities in 2007 and that are characterized by a difference in timing of ice-shelf breakup. Data from 2007 exposed a more diverse community at outer station B.South, dominated by the genus Microlaimus. On the contrary, station B.West in the inner part of Larsen B was poor in both numbers of individuals and genera, with dominance of a single Halomonhystera species. Re-assessment of the situation in 2011 showed that communities at both stations diverged even more, due to a drastic increase in Halomonhystera at B.West compared to relatively little change at B.South. On a broader geographical scale, it seems that B.South gradually starts resembling other Antarctic shelf communities, although the absence of the genus Sabatieria and the high abundance of Microlaimus still set it apart nine years after the main Larsen B collapse. In contrast, thriving of Halomonhystera at B.West further separates its community from other Antarctic shelf areas.

  13. Marine geological and geophysical records of the last British-Irish Ice Sheet on the continental shelf west of Ireland

    NASA Astrophysics Data System (ADS)

    O'Cofaigh, Colm; Callard, S. Louise; Benetti, Sara; Chiverell, Richard C.; Saher, Margot; van Landeghem, Katrien; Livingstone, Stephen J.; Scourse, James; Clark, Chris D.

    2015-04-01

    The record of glaciation on the continental shelf west of Ireland has, until recently, been relatively poorly studied. The UK NERC funded project BRITICE-CHRONO collected marine geophysical data in the form of multibeam swath bathymetry and sub-bottom profiles supplemented by over 50 vibro- and piston cores across the continental shelf west of Ireland during cruise JC106 of the RRS James Cook in 2014. Across the western Irish shelf, offshore of counties Galway and Clare, a series of large arcuate moraines record the former presence of a grounded ice sheet on the shelf. However, geophysical data from further to the west across the Porcupine Bank show a series of ridges and wedge-shaped sedimentary features whose form is consistent with an origin as moraines and/or grounding-zone wedges. Sediment cores from several of these landforms recovered stiff, massive diamictons containing reworked shells that are interpreted as subglacial tills. Cores from the eastern Porcupine Bank recovered laminated muds with cold-water glacimarine foraminifera, in some cases overlying till. Collectively the geophysical and sedimentary data imply the presence of grounded ice across the northern Porcupine Bank and thus much further west on the Irish margin than has previously been considered. This ice underwent retreat in a glacimarine setting. The large 'Olex Moraine' on the western Irish shelf is thus interpreted as recessional feature. Work is currently underway to dates these features and to obtain a retreat chronology for this sector of the last British-Irish Ice Sheet.

  14. Regional melt-pond fraction and albedo of thin Arctic first-year drift ice in late summer

    NASA Astrophysics Data System (ADS)

    Divine, D. V.; Granskog, M. A.; Hudson, S. R.; Pedersen, C. A.; Karlsen, T. I.; Divina, S. A.; Renner, A. H. H.; Gerland, S.

    2015-02-01

    The paper presents a case study of the regional (≈150 km) morphological and optical properties of a relatively thin, 70-90 cm modal thickness, first-year Arctic sea ice pack in an advanced stage of melt. The study combines in situ broadband albedo measurements representative of the four main surface types (bare ice, dark melt ponds, bright melt ponds and open water) and images acquired by a helicopter-borne camera system during ice-survey flights. The data were collected during the 8-day ICE12 drift experiment carried out by the Norwegian Polar Institute in the Arctic, north of Svalbard at 82.3° N, from 26 July to 3 August 2012. A set of > 10 000 classified images covering about 28 km2 revealed a homogeneous melt across the study area with melt-pond coverage of ≈ 0.29 and open-water fraction of ≈ 0.11. A decrease in pond fractions observed in the 30 km marginal ice zone (MIZ) occurred in parallel with an increase in open-water coverage. The moving block bootstrap technique applied to sequences of classified sea-ice images and albedo of the four surface types yielded a regional albedo estimate of 0.37 (0.35; 0.40) and regional sea-ice albedo of 0.44 (0.42; 0.46). Random sampling from the set of classified images allowed assessment of the aggregate scale of at least 0.7 km2 for the study area. For the current setup configuration it implies a minimum set of 300 images to process in order to gain adequate statistics on the state of the ice cover. Variance analysis also emphasized the importance of longer series of in situ albedo measurements conducted for each surface type when performing regional upscaling. The uncertainty in the mean estimates of surface type albedo from in situ measurements contributed up to 95% of the variance of the estimated regional albedo, with the remaining variance resulting from the spatial inhomogeneity of sea-ice cover.

  15. Melting probes revisited - Ice penetration experiments under Mars surface pressure conditions

    NASA Astrophysics Data System (ADS)

    Kömle, Norbert I.; Tiefenbacher, Patrick; Weiss, Peter; Bendiukova, Anastasiia

    2018-07-01

    Melting probes as vehicles to explore terrestrial ice sheets have been designed and applied successfully since the early 1960's. Later on, in the 1990's, various proposals were made to apply such probes also as a means to explore ice sheets on other bodies of the solar system, e.g. Jupiter's icy satellite Europa or the ice caps of Mars. For this type of subsurface probes the name cryobot has become common. We review both early developments and more recent efforts to develop probes for application in planetary environments, i.e. under low pressures and low temperatures. The current state of art as well as the pros and cons of the different concepts hitherto considered are described. While many tests with various probes have been done in terrestrial environments, experiments under low surface pressure conditions are rare. Therefore, we report here on lab tests with a simple melting probe under the range of pressure and temperature conditions that would be encountered on the surface of Mars and compare them with corresponding tests under a much lower gas pressure, possibly representative for icy satellites. The contribution of evaporation during the melting and its variation with surface pressure is also considered. All surface pressure measurements that have been performed on Mars up to now indicate a surface pressure above the water triple point pressure (612 Pa). This means that water ice always transforms into the liquid phase when warmed up to 0°C, before it evaporates into the ambient atmosphere. The temporary existence of the liquid phase around the heated tip of the cryobot allows good thermal conductance between probe and surrounding ice, which is an important pre-requisite for efficient melt penetration. Our experiments indicate that under all possible Mars surface pressures the liquid phase is present when the probe is heated up. This finding confirms experimentally that a probe as it was proposed by Paige (1992) for in situ exploration of the Mars north

  16. West Antarctic Ice Sheet retreat driven by Holocene warm water incursions.

    PubMed

    Hillenbrand, Claus-Dieter; Smith, James A; Hodell, David A; Greaves, Mervyn; Poole, Christopher R; Kender, Sev; Williams, Mark; Andersen, Thorbjørn Joest; Jernas, Patrycja E; Elderfield, Henry; Klages, Johann P; Roberts, Stephen J; Gohl, Karsten; Larter, Robert D; Kuhn, Gerhard

    2017-07-05

    Glaciological and oceanographic observations coupled with numerical models show that warm Circumpolar Deep Water (CDW) incursions onto the West Antarctic continental shelf cause melting of the undersides of floating ice shelves. Because these ice shelves buttress glaciers feeding into them, their ocean-induced thinning is driving Antarctic ice-sheet retreat today. Here we present a multi-proxy data based reconstruction of variability in CDW inflow to the Amundsen Sea sector, the most vulnerable part of the West Antarctic Ice Sheet, during the Holocene epoch (from 11.7 thousand years ago to the present). The chemical compositions of foraminifer shells and benthic foraminifer assemblages in marine sediments indicate that enhanced CDW upwelling, controlled by the latitudinal position of the Southern Hemisphere westerly winds, forced deglaciation of this sector from at least 10,400 years ago until 7,500 years ago-when an ice-shelf collapse may have caused rapid ice-sheet thinning further upstream-and since the 1940s. These results increase confidence in the predictive capability of current ice-sheet models.

  17. Quantifying the Evolution of Melt Ponds in the Marginal Ice Zone Using High Resolution Optical Imagery and Neural Networks

    NASA Astrophysics Data System (ADS)

    Ortiz, M.; Pinales, J. C.; Graber, H. C.; Wilkinson, J.; Lund, B.

    2016-02-01

    Melt ponds on sea ice play a significant and complex role on the thermodynamics in the Marginal Ice Zone (MIZ). Ponding reduces the sea ice's ability to reflect sunlight, and in consequence, exacerbates the albedo positive feedback cycle. In order to understand how melt ponds work and their effect on the heat uptake of sea ice, we must quantify ponds through their seasonal evolution first. A semi-supervised neural network three-class learning scheme using a gradient descent with momentum and adaptive learning rate backpropagation function is applied to classify melt ponds/melt areas in the Beaufort Sea region. The network uses high resolution panchromatic satellite images from the MEDEA program, which are collocated with autonomous platform arrays from the Marginal Ice Zone Program, including ice mass-balance buoys, arctic weather stations and wave buoys. The goal of the study is to capture the spatial variation of melt onset and freeze-up of the ponds within the MIZ, and gather ponding statistics such as size and concentration. The innovation of this work comes from training the neural network as the melt ponds evolve over time; making the machine learning algorithm time-dependent, which has not been previously done. We will achieve this by analyzing the image histograms through quantification of the minima and maxima intensity changes as well as linking textural variation information of the imagery. We will compare the evolution of the melt ponds against several different array sites on the sea ice to explore if there are spatial differences among the separated platforms in the MIZ.

  18. Is the Wilkins Ice Shelf a Firn Aquifer? Spaceborne Observation of Subsurface Winter Season Liquid Meltwater Storage on the Antarctic Peninsula using Multi-Frequency Active and Passive Microwave Remote Sensing

    NASA Astrophysics Data System (ADS)

    Miller, J.; Scambos, T.; Forster, R. R.; Long, D. G.; Ligtenberg, S.; van den Broeke, M.; Vaughan, D. G.

    2015-12-01

    Near-surface liquid meltwater on ice shelves has been inferred to influence ice shelf stability if it induces hydrofracture and is linked to disintegration events on the Larsen B and the Wilkins ice shelves on the Antarctic Peninsula during the summer months. While the initial Wilkins disintegration event occurred in March of 2009, two smaller disintegration events followed in May and in July of that year. It has long been assumed meltwater refreezes soon after surface melt processes cease. Given this assumption, an earlier hypothesis for the two winter season disintegration events was hydrofracture via a brine infiltration layer. Two lines of evidence supported this hypothesis 1) early airborne radar surveys did not record a reflection from the bottom of the ice shelf, and 2) a shallow core drilled in 1972 on the Wilkins encountered liquid water at a depth of ~7 m. The salinity of the water and the temperature at the base of the core, however, were not described. The recent discovery of winter season liquid meltwater storage on the Greenland ice sheet has changed perceptions on meltwater longevity at depth in firn. Evidence of Greenland's firn aquifer includes liquid meltwater encountered in shallow firn cores at 5 m depth and a lack of reflections from the base of the ice sheet in airborne surveys. Thus, previous lines of evidence suggesting brine infiltration may alternatively suggest the presence of a perennial firn aquifer. We recently demonstrated the capability for observation of Greenland's firn aquifer from space using multi-frequency active and passive microwave remote sensing. This research exploits the retrieval technique developed for Greenland to provide the first spaceborne mappings of winter season liquid meltwater storage on the Wilkins. We combine L-band brightness temperature and backscatter data from the MIRAS instrument (1.4 GHz) aboard ESA's Soil Moisture and Ocean Salinity mission and the radar (1.3 GHZ) and radiometer(1.4 GHz) aboard NASA

  19. Antarctic icebergs melt over the Southern Ocean : Climatology and impact on sea ice

    NASA Astrophysics Data System (ADS)

    Merino, Nacho; Le Sommer, Julien; Durand, Gael; Jourdain, Nicolas C.; Madec, Gurvan; Mathiot, Pierre; Tournadre, Jean

    2016-08-01

    Recent increase in Antarctic freshwater release to the Southern Ocean is suggested to contribute to change in water masses and sea ice. However, climate models differ in their representation of the freshwater sources. Recent improvements in altimetry-based detection of small icebergs and in estimates of the mass loss of Antarctica may help better constrain the values of Antarctic freshwater releases. We propose a model-based seasonal climatology of iceberg melt over the Southern Ocean using state-of-the-art observed glaciological estimates of the Antarctic mass loss. An improved version of a Lagrangian iceberg model is coupled with a global, eddy-permitting ocean/sea ice model and compared to small icebergs observations. Iceberg melt increases sea ice cover, about 10% in annual mean sea ice volume, and decreases sea surface temperature over most of the Southern Ocean, but with distinctive regional patterns. Our results underline the importance of improving the representation of Antarctic freshwater sources. This can be achieved by forcing ocean/sea ice models with a climatological iceberg fresh-water flux.

  20. Melting of the precipitated ice IV in LiCl aqueous solution and polyamorphism of water.

    PubMed

    Mishima, Osamu

    2011-12-08

    Melting of the precipitated ice IV in supercooled LiCl-H(2)O solution was studied in the range of 0-0.6 MPa and 160-270 K. Emulsified solution was used to detect this metastable transition. Ice IV was precipitated from the aqueous solution of 2.0 mol % LiCl (or 4.8 mol % LiCl) in each emulsion particle at low-temperature and high-pressure conditions, and the emulsion was decompressed at different temperatures. The melting of ice IV was detected from the temperature change of the emulsified sample during the decompression. There was an apparently sudden change in the slope of the ice IV melting curve (liquidus) in the pressure-temperature diagram. At the high-pressure and high-temperature side of the change, the solute-induced freezing point depression was observed. At the low-pressure and low-temperature side, ice IV transformed into ice Ih on the decompression, and the transition was almost unrelated to the concentration of LiCl. These experimental results were roughly explained by the presumed existence of two kinds of liquid water (low-density liquid water and high-density liquid water), or polyamorphism in water, and by the simple assumption that LiCl dissolved maily in high-density liquid water. © 2011 American Chemical Society

  1. The melting sea ice of Arctic polar cap in the summer solstice month and the role of ocean

    NASA Astrophysics Data System (ADS)

    Lee, S.; Yi, Y.

    2014-12-01

    The Arctic sea ice is becoming smaller and thinner than climatological standard normal and more fragmented in the early summer. We investigated the widely changing Arctic sea ice using the daily sea ice concentration data. Sea ice data is generated from brightness temperature data derived from the sensors: Defense Meteorological Satellite Program (DMSP)-F13 Special Sensor Microwave/Imagers (SSM/Is), the DMSP-F17 Special Sensor Microwave Imager/Sounder (SSMIS) and the Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E) instrument on the NASA Earth Observing System (EOS) Aqua satellite. We tried to figure out appearance of arctic sea ice melting region of polar cap from the data of passive microwave sensors. It is hard to explain polar sea ice melting only by atmosphere effects like surface air temperature or wind. Thus, our hypothesis explaining this phenomenon is that the heat from deep undersea in Arctic Ocean ridges and the hydrothermal vents might be contributing to the melting of Arctic sea ice.

  2. Obliquity-paced Pliocene West Antarctic ice sheet oscillations

    USGS Publications Warehouse

    Naish, T.; Powell, R.; Levy, R.; Wilson, G.; Scherer, R.; Talarico, F.; Krissek, L.; Niessen, F.; Pompilio, M.; Wilson, T.; Carter, L.; DeConto, R.; Huybers, P.; McKay, R.; Pollard, D.; Ross, J.; Winter, D.; Barrett, P.; Browne, G.; Cody, R.; Cowan, E.; Crampton, J.; Dunbar, G.; Dunbar, N.; Florindo, F.; Gebhardt, C.; Graham, I.; Hannah, M.; Hansaraj, D.; Harwood, D.; Helling, D.; Henrys, S.; Hinnov, L.; Kuhn, G.; Kyle, P.; Laufer, A.; Maffioli, P.; Magens, D.; Mandernack, K.; McIntosh, W.; Millan, C.; Morin, R.; Ohneiser, C.; Paulsen, T.; Persico, D.; Raine, I.; Reed, J.; Riesselman, C.; Sagnotti, L.; Schmitt, D.; Sjunneskog, C.; Strong, P.; Taviani, M.; Vogel, S.; Wilch, T.; Williams, T.

    2009-01-01

    Thirty years after oxygen isotope records from microfossils deposited in ocean sediments confirmed the hypothesis that variations in the Earth's orbital geometry control the ice ages1, fundamental questions remain over the response of the Antarctic ice sheets to orbital cycles2. Furthermore, an understanding of the behaviour of the marine-based West Antarctic ice sheet (WAIS) during the 'warmer-than-present' early-Pliocene epoch (5–3 Myr ago) is needed to better constrain the possible range of ice-sheet behaviour in the context of future global warming3. Here we present a marine glacial record from the upper 600 m of the AND-1B sediment core recovered from beneath the northwest part of the Ross ice shelf by the ANDRILL programme and demonstrate well-dated, 40-kyr cyclic variations in ice-sheet extent linked to cycles in insolation influenced by changes in the Earth's axial tilt (obliquity) during the Pliocene. Our data provide direct evidence for orbitally induced oscillations in the WAIS, which periodically collapsed, resulting in a switch from grounded ice, or ice shelves, to open waters in the Ross embayment when planetary temperatures were up to 3 °C warmer than today4 and atmospheric CO2 concentration was as high as 400 p.p.m.v. (refs 5, 6). The evidence is consistent with a new ice-sheet/ice-shelf model7 that simulates fluctuations in Antarctic ice volume of up to +7 m in equivalent sea level associated with the loss of the WAIS and up to +3 m in equivalent sea level from the East Antarctic ice sheet, in response to ocean-induced melting paced by obliquity. During interglacial times, diatomaceous sediments indicate high surface-water productivity, minimal summer sea ice and air temperatures above freezing, suggesting an additional influence of surface melt8 under conditions of elevated CO2.

  3. Predicting the melting temperature of ice-Ih with only electronic structure information as input.

    PubMed

    Pinnick, Eric R; Erramilli, Shyamsunder; Wang, Feng

    2012-07-07

    The melting temperature of ice-Ih was calculated with only electronic structure information as input by creating a problem-specific force field. The force field, Water model by AFM for Ice and Liquid (WAIL), was developed with the adaptive force matching (AFM) method by fitting to post-Hartree-Fock quality forces obtained in quantum mechanics∕molecular mechanics calculations. WAIL predicts the ice-Ih melting temperature to be 270 K. The model also predicts the densities of ice and water, the temperature of maximum density of water, the heat of vaporizations, and the radial distribution functions for both ice and water in good agreement with experimental measurements. The non-dissociative WAIL model is very similar to a flexible version of the popular TIP4P potential and has comparable computational cost. By customizing to problem-specific configurations with the AFM approach, the resulting model is remarkably more accurate than any variants of TIP4P for simulating ice-Ih and water in the temperature range from 253 K and 293 K under ambient pressure.

  4. Experimental study and numerical simulation of the salinity effect on water-freezing point and ice-melting rate

    NASA Astrophysics Data System (ADS)

    Qin, N.; Wu, Y.; Wang, H. W.; Wang, Y. Y.

    2017-12-01

    In this paper, based on the background of snowmelt de-icing tools, we studied the effect of salt on freezing point and melting rate of ice through laboratory test and FLUENT numerical simulation analysis. It was confirmed that the freezing point is inversely proportional to the salt solid content, and with the salt solid content increasing, the freezing process of salt water gradually accepts the curing rule of non-crystal solids. At the same temperature, an increase in the salt solid content, the ice melting rate increase by the empirical formula linking the melting time with temperature and salt content. The theoretical aspects of solid/fluid transformation are discussed in detail.

  5. Abbot Ice Shelf, the Amundsen Sea Continental Margin and the Southern Boundary of the Bellingshausen Plate Seaward of West Antarctica

    NASA Astrophysics Data System (ADS)

    Cochran, J. R.; Tinto, K. J.; Bell, R. E.

    2014-12-01

    The Abbot Ice Shelf extends 450 km along the coast of West Antarctica between 103°W and 89°W and straddles the boundary between the Bellingshausen Sea continental margin, which overlies a former subduction zone, and Amundsen Sea rifted continental margin. Inversion of NASA Operation IceBridge airborne gravity data for sub-ice bathymetry shows that the western part of the ice shelf, as well as Cosgrove Ice Shelf to the south, are underlain by a series of east-west trending rift basins. The eastern boundary of the rifted terrain coincides with the eastern boundary of rifting between Antarctica and Zealandia and the rifts formed during the early stages of this rifting. Extension in these rifts is minor as rifting quickly jumped north of Thurston Island. The southern boundary of the Cosgrove Rift is aligned with the southern boundary of a sedimentary basin under the Amundsen Embayment continental shelf to the west, also formed by Antarctica-Zealandia rifting. The shelf basin has an extension factor, β, of 1.5 - 1.7 with 80 -100 km of extension occurring in an area now ~250 km wide. Following this extension early in the rifting process, rifting centered to the north of the present shelf edge and proceeded to continental rupture. Since then, the Amundsen Embayment continental shelf has been tectonically quiescent and has primarily been shaped though subsidence, sedimentation and the passage of the West Antarctic Ice Sheet back and forth across it. The former Bellingshausen Plate was located seaward of the Amundsen Sea margin prior to its incorporation into the Antarctic Plate at ~62 Ma. During the latter part of its existence, Bellingshausen plate motion had a clockwise rotational component relative to Antarctica producing convergence between the Bellingshausen and Antarctic plates east of 102°W. Seismic reflection and gravity data show that this convergence is expressed by an area of intensely deformed sediments beneath the continental slope from 102°W to 95°W and

  6. Climate Modeling: Ocean Cavities below Ice Shelves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petersen, Mark Roger

    The Accelerated Climate Model for Energy (ACME), a new initiative by the U.S. Department of Energy, includes unstructured-mesh ocean, land-ice, and sea-ice components using the Model for Prediction Across Scales (MPAS) framework. The ability to run coupled high-resolution global simulations efficiently on large, high-performance computers is a priority for ACME. Sub-ice shelf ocean cavities are a significant new capability in ACME, and will be used to better understand how changing ocean temperature and currents influence glacial melting and retreat. These simulations take advantage of the horizontal variable-resolution mesh and adaptive vertical coordinate in MPAS-Ocean, in order to place high resolutionmore » below ice shelves and near grounding lines.« less

  7. Is the oceanic heat flux on the central Amundsen sea shelf caused by barotropic or baroclinic currents?

    NASA Astrophysics Data System (ADS)

    Kalén, Ola; Assmann, Karen M.; Wåhlin, Anna K.; Ha, Ho Kyung; Kim, Tae Wan; Lee, Sang Hoon

    2016-01-01

    The glaciers that drain the West Antarctic Ice Sheet into the Amundsen Sea are accelerating and experiencing increased basal melt of the floating ice shelves. Warm and salty deep water has been observed to flow southward in deep troughs leading from the shelf break to the inner shelf area where the glaciers terminate. It has been suggested that the melting induced by this warm water is responsible for the acceleration of the glaciers. Here we investigate the structure of the currents and the associated heat flow on the shelf using in-situ observations from 2008 to 2014 in Dotson Trough, the main channel in the western part of the Amundsen Sea shelf, together with output from a numerical model. The model is generally able to reproduce the observed velocities and temperatures in the trough, albeit with a thicker warm bottom layer. In the absence of measurements of sea surface height we define the barotropic component of the flow as the vertical average of the velocity. It is shown that the flow is dominated by warm barotropic inflows on the eastern side and colder and fresher barotropic outflows on the western side. The transport of heat appears to be primarily induced by this clockwise barotropic circulation in the trough, contrary to earlier studies emphasizing a bottom-intensified baroclinic inflow as the main contributor.

  8. Shock Melting of Permafrost on Mars: Water Ice Multiphase Equation of State for Numerical Modeling and Its Testing

    NASA Technical Reports Server (NTRS)

    Ivanov, B. A.

    2005-01-01

    The presence of water/ice/brine in upper layers of Martian crust affects many processes of impact cratering. Modeling of these effects promises better understanding of Martian cratering records. We present here the new ANEOS-based multiphase equation of state for water/ice constructed for usage in hydrocodes and first numerical experiments on permafrost shock melting. Preliminary results show that due to multiple shock compression of ice inclusions in rocks the entropy jump in shocked ice is smaller than in pure ice for the same shock pressure. Hence previous estimates of ice melting during impact cratering on Mars should be re-evaluated. Additional information is included in the original extended abstract.

  9. Winter ocean-ice interactions under thin sea ice observed by IAOOS platforms during N-ICE2015: Salty surface mixed layer and active basal melt

    NASA Astrophysics Data System (ADS)

    Koenig, Zoé; Provost, Christine; Villacieros-Robineau, Nicolas; Sennéchael, Nathalie; Meyer, Amelie

    2016-10-01

    IAOOS (Ice Atmosphere Arctic Ocean Observing System) platforms, measuring physical parameters at the atmosphere-snow-ice-ocean interface deployed as part of the N-ICE2015 campaign, provide new insights on winter conditions North of Svalbard. The three regions crossed during the drifts, the Nansen Basin, the Sofia Deep, and the Svalbard northern continental slope featured distinct hydrographic properties and ice-ocean exchanges. In the Nansen Basin, the quiescent warm layer was capped by a stepped halocline (60 and 110 m) and a deep thermocline (110 m). Ice was forming and the winter mixed layer salinity was larger by ˜0.1 g/kg than previously observed. Over the Svalbard continental slope, the Atlantic Water (AW) was very shallow (20 m from the surface) and extended offshore from the 500 m isobath by a distance of about 70 km, sank along the slope (40 m from the surface) and probably shed eddies into the Sofia Deep. In the Sofia Deep, relatively warm waters of Atlantic origin extended from 90 m downward. Resulting from different pathways, these waters had a wide range of hydrographic characteristics. Sea-ice melt was widespread over the Svalbard continental slope and ocean-to-ice heat fluxes reached values of 400 W m-2 (mean of ˜150 W m-2 over the continental slope). Sea-ice melt events were associated with near 12 h fluctuations in the mixed-layer temperature and salinity corresponding to the periodicity of tides and near-inertial waves potentially generated by winter storms, large barotropic tides over steep topography, and/or geostrophic adjustments.

  10. Airborne and ground based measurements in McMurdo Sound, Antarctica, for the validation of satellite derived ice thickness

    NASA Astrophysics Data System (ADS)

    Rack, Wolfgang; Haas, Christian; Langhorne, Pat; Leonard, Greg; Price, Dan; Barnsdale, Kelvin; Soltanzadeh, Iman

    2014-05-01

    Melting and freezing processes in the ice shelf cavities of the Ross and McMurdo Ice Shelves significantly influence the sea ice formation in McMurdo Sound. Between 2009 and 2013 we used a helicopter-borne laser and electromagnetic induction sounder (EM bird) to measure thickness and freeboard profiles across the ice shelf and the landfast sea ice, which was accompanied by extensive field validation, and coordinated with satellite altimeter overpasses. Using freeboard and thickness, the bulk density of all ice types was calculated assuming hydrostatic equilibrium. Significant density steps were detected between first-year and multi-year sea ice, with higher values for the younger sea ice. Values are overestimated in areas with abundance of sub-ice platelets because of overestimation in both ice thickness and freeboard. On the ice shelf, bulk ice densities were sometimes higher than that of pure ice, which can be explained by both the accretion of marine ice and glacial sediments. For thin ice, the freeboard to thickness conversion critically depends on the knowledge of snow properties. Our measurements allow tuning and validation of snow cover simulations using the Weather Research Forecasting (WRF) model. The simulated snowcover is used to calculate ice thickness from satellite derived freeboard. The results of our measurements, which are supported by the New Zealand Antarctic programme, draw a picture of how oceanographic processes influence the ice shelf morphology and sea ice formation in McMurdo Sound, and how satellite derived freeboard of ICESat and CryoSat together with information on snow cover can potentially capture the signature of these processes.

  11. Ice Melt, Sea Level Rise and Superstorms: Evidence from Paleoclimate Data, Climate Modeling, and Modern Observations that 2C Global Warming Could Be Dangerous

    NASA Technical Reports Server (NTRS)

    Hansen, J.; Sato, Makiko; Hearty, Paul; Ruedy, Reto; Kelley, Maxwell; Masson-Delmotte, Valerie; Russell, Gary; Tselioudis, George; Cao, Junji; Rignot, Eric; hide

    2016-01-01

    We use numerical climate simulations, paleoclimate data, and modern observations to study the effect of growing ice melt from Antarctica and Greenland. Meltwater tends to stabilize the ocean column, inducing amplifying feedbacks that increase subsurface ocean warming and ice shelf melting. Cold meltwater and induced dynamical effects cause ocean surface cooling in the Southern Ocean and North Atlantic, thus increasing Earth's energy imbalance and heat flux into most of the global ocean's surface. Southern Ocean surface cooling, while lower latitudes are warming, increases precipitation on the Southern Ocean, increasing ocean stratification, slowing deepwater formation, and increasing ice sheet mass loss. These feedbacks make ice sheets in contact with the ocean vulnerable to accelerating disintegration. We hypothesize that ice mass loss from the most vulnerable ice, sufficient to raise sea level several meters, is better approximated as exponential than by a more linear response. Doubling times of 10, 20 or 40 years yield multi-meter sea level rise in about 50, 100 or 200 years. Recent ice melt doubling times are near the lower end of the 10-40-year range, but the record is too short to confirm the nature of the response. The feedbacks, including subsurface ocean warming, help explain paleoclimate data and point to a dominant Southern Ocean role in controlling atmospheric CO2, which in turn exercised tight control on global temperature and sea level. The millennial (500-2000-year) timescale of deep-ocean ventilation affects the timescale for natural CO2 change and thus the timescale for paleo-global climate, ice sheet, and sea level changes, but this paleo-millennial timescale should not be misinterpreted as the timescale for ice sheet response to a rapid, large, human-made climate forcing. These climate feedbacks aid interpretation of events late in the prior interglacial, when sea level rose to C6-9m with evidence of extreme storms while Earth was less than 1 C

  12. Modeling the heating and melting of sea ice through light absorption by microalgae

    NASA Astrophysics Data System (ADS)

    Zeebe, Richard E.; Eicken, Hajo; Robinson, Dale H.; Wolf-Gladrow, Dieter; Dieckmann, Gerhard S.

    1996-01-01

    In sea ice of polar regions, high concentrations of microalgae are observed during the spring. Algal standing stocks may attain peak values of over 300 mg chl a m-2 in the congelation ice habitat. As of yet, the effect of additional heating of sea ice through conversion of solar radiation into heat by algae has not been investigated in detail. Local effects, such as a decrease in albedo, increasing melt rates, and a decrease of the physical strength of ice sheets may occur. To investigate the effects of microalgae on the thermal regime of sea ice, a time-dependent, one-dimensional thermodynamic model of sea ice was coupled to a bio-optical model. A spectral one-stream model was employed to determine spectral attenuation by snow, sea ice, and microalgae. Beer's law was assumed to hold for every wavelength. Energy absorption was obtained by calculating the divergence of irradiance in every layer of the model (Δz = 1 cm). Changes in sea ice temperature profiles were calculated by solving the heat conduction equation with a finite difference scheme. Model results indicate that when algal biomass is concentrated at the bottom of congelation ice, melting of ice resulting from the additional conversion of solar radiation into heat may effectively destroy the algal habitat, thereby releasing algal biomass into the water column. An algal layer located in the top of the ice sheet induced a significant increase in sea ice temperature (ΔT > 0.3 K) for snow depths less than 5 cm and algal standing stocks higher than 150 mg chl a m-2. Furthermore, under these conditions, brine volume increased by 21% from 181 to 219 parts per thousand, which decreased the physical strength of the ice.

  13. NASA's Observes Effects of Summer Melt on Greenland Ice Sheet

    NASA Image and Video Library

    2017-12-08

    NASA's IceBridge, an airborne survey of polar ice, flew over the Helheim/Kangerdlugssuaq region of Greenland on Sept. 11, 2016. This photograph from the flight captures Greenland's Steenstrup Glacier, with the midmorning sun glinting off of the Denmark Strait in the background. IceBridge completed the final flight of the summer campaign to observe the impact of the summer melt season on the ice sheet on Sept. 16. The IceBridge flights, which began on Aug. 27, are mostly repeats of lines that the team flew in early May, so that scientists can observe changes in ice elevation between the spring and late summer. For this short, end-of-summer campaign, the IceBridge scientists flew aboard an HU-25A Guardian aircraft from NASA's Langley Research Center in Hampton, Virginia. Credit: NASA/John Sonntag NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  14. Investigating methods to estimate melting event parameters over Arctic sea- ice using SSM/I, OKEAN, and RADARSAT Data

    NASA Astrophysics Data System (ADS)

    Belchansky, G.; Eremeev, V.; Mordvintsev, I.; Platonov, N.; Douglas, D.

    The melting events (early melt, melt onset, melt ponding, freeze-up onset) over Arctic sea-ice area are critical for climate and global change studies. They are combined with accuracy of surface energy balances estimates (due to contrasts in the short wave albedo of snow and ice, open water or melt ponds) and drives a number of important processes (onset of snow melt, thawing of boreal forest, etc). M icrowave measurements identify seasonal transition zones due to large differences in emissivity during melt onset, melt ponding and freeze-up periods. This report presents near coincident observation of backscatter cross section (0 ) and brightness temperature (Tb) from Russian OKEAN 01 satellite series, backscatter cross section (0) from RADARSAT-1, brightness temperatures (Tbs) from SSM/I sensors, and near-surface temperature derived from the International Arctic Buoy Program data (IABP) (Belchansky and Douglas, 2000, 2002). To determine the melt duration (time of freeze-up onset minus time of melt onset) passive and active microwave methods were developed. These methods used differences between SSM /I 19.3GHz,H and SSM/I 37.0 GHz, H channels (SSM/I Tb), OKEAN 0 (9.52GHz, VV) and Tb (37.47 GHz, H) channels, RADARSAT-1 0 (5.3GHz, HH), and a threshold technique. An evolution of the SSM/I Tb, OKEAN-01 0 and Tb, RADARSAT ScanSAR 0, MEAN ( 0), SD(0) and SD(0 ) / MEAN(0 ) as function of time was investigated along FY and MY dominant type ice areas during January 1996 through December 1998. The SSM/I, OKEAN and RADARSAT melt onset and freeze up onset algorithms were constructed. The SSM/I algorithm was based- on analysis of the SSM/I Tb. The OKEAN and RADARSAT ScanSAR algorithms were based, respectively, on analysis of OKEAN 0 and Tb of MY and FY sea ice at each MY and FY ice region (200 km by 200 km) determined in OKEAN imagery prior to melting period and changes in RADARSAT SD(0 ) / MEAN(0) of sea-ice during different stages of melting processes at each ice site (75 km

  15. Minimum distribution of subsea ice-bearing permafrost on the US Beaufort Sea continental shelf

    USGS Publications Warehouse

    Brothers, Laura L.; Hart, Patrick E.; Ruppel, Carolyn D.

    2012-01-01

    Starting in Late Pleistocene time (~19 ka), sea level rise inundated coastal zones worldwide. On some parts of the present-day circum-Arctic continental shelf, this led to flooding and thawing of formerly subaerial permafrost and probable dissociation of associated gas hydrates. Relict permafrost has never been systematically mapped along the 700-km-long U.S. Beaufort Sea continental shelf and is often assumed to extend to ~120 m water depth, the approximate amount of sea level rise since the Late Pleistocene. Here, 5,000 km of multichannel seismic (MCS) data acquired between 1977 and 1992 were examined for high-velocity (>2.3 km s−1) refractions consistent with ice-bearing, coarse-grained sediments. Permafrost refractions were identified along <5% of the tracklines at depths of ~5 to 470 m below the seafloor. The resulting map reveals the minimum extent of subsea ice-bearing permafrost, which does not extend seaward of 30 km offshore or beyond the 20 m isobath.

  16. Long-term record of Barents Sea Ice Sheet advance to the shelf edge from a 140,000 year record

    NASA Astrophysics Data System (ADS)

    Pope, Ed L.; Talling, Peter J.; Hunt, James E.; Dowdeswell, Julian A.; Allin, Joshua R.; Cartigny, Matthieu J. B.; Long, David; Mozzato, Alessandro; Stanford, Jennifer D.; Tappin, David R.; Watts, Millie

    2016-10-01

    The full-glacial extent and deglacial behaviour of marine-based ice sheets, such as the Barents Sea Ice Sheet, is well documented since the Last Glacial Maximum about 20,000 years ago. However, reworking of older sea-floor sediments and landforms during repeated Quaternary advances across the shelf typically obscures their longer-term behaviour, which hampers our understanding. Here, we provide the first detailed long-term record of Barents Sea Ice Sheet advances, using the timing of debris-flows on the Bear Island Trough-Mouth Fan. Ice advanced to the shelf edge during four distinct periods over the last 140,000 years. By far the largest sediment volumes were delivered during the oldest advance more than 128,000 years ago. Later advances occurred from 68,000 to 60,000, 39,400 to 36,000 and 26,000 to 20,900 years before present. The debris-flows indicate that the dynamics of the Saalian and the Weichselian Barents Sea Ice Sheet were very different. The repeated ice advance and retreat cycles during the Weichselian were shorter lived than those seen in the Saalian. Sediment composition shows the configuration of the ice sheet was also different between the two glacial periods, implying that the ice feeding the Bear Island Ice stream came predominantly from Scandinavia during the Saalian, whilst it drained more ice from east of Svalbard during the Weichselian.

  17. Radar measurements of melt zones on the Greenland Ice Sheet

    NASA Technical Reports Server (NTRS)

    Jezek, Kenneth C.; Gogineni, Prasad; Shanableh, M.

    1994-01-01

    Surface-based microwave radar measurements were performed at a location on the western flank of the Greenland Ice Sheet. Here, firn metamorphasis is dominated by seasonal melt, which leads to marked contrasts in the vertical structure of winter and summer firn. This snow regime is also one of the brightest radar targets on Earth with an average backscatter coefficient of 0 dB at 5.3 GHz and an incidence angle of 25 deg. By combining detailed observations of firn physical properties with ranging radar measurements we find that the glaciological mechanism associated with this strong electromagnetic response is summer ice lens formation within the previous winter's snow pack. This observation has important implications for monitoring and understanding changes in ice sheet volume using spaceborne microwave sensors.

  18. Ice streaming in western Scotland and the deglaciation of the Hebrides Shelf and Firth of Lorn

    NASA Astrophysics Data System (ADS)

    Arosio, Riccardo; Howe, John; O'Cofaigh, Colm; Crocket, Kirsty

    2014-05-01

    Previously, numerous studies have been undertaken both onshore and offshore to decipher the morphological and sedimentological record in order to better constrain the limits and duration of the British-Irish Ice Sheet (BIIS) (Ballantyne et al. 2009, Bradwell et al. 2008b, Clark et al. 2011, Dunlop et al. 2010, Howe et al. 2012, O'Cofaigh et al., 2012). Late glacial ice sheet dynamics have been revealed to be far more rapid and responsive to climatic amelioration than had previously been considered. Notable in this debate has been the evidence that has been obtained in the inshore and, to a lesser extent, offshore on the UK continental shelf. Here new geomorphological data, principally multibeam echo sounder (MBES) data has provided imagery of previously unseen features interpreted as being glacial in origin. In the wake of these new discoveries this projects aims to investigate the extent, timing, growth and final disintegration of the BIIS across Western Scotland. This area of particular interest for the development of the glaciated North Atlantic margin has been generally neglected in past studies, especially across the mid-outer shelf, which constitutes a missing part in the jigsaw of the reconstructed BIIS during the last ~20.000yrs. We aim to mainly focus on geomorphological analyses of MBES data collected in the Firth of Lorn and Sea of Hebrides; a study of features as moraines, glacial lineations and drumlins will provide important clues on the dynamics and maximum extension of the sheet. Subsequently we will examine the geometry and composition of the shelf sediment infill, aiming to constrain the influence of ice retreat on depositional environments using multi-element geochemical (Pb-isotopes ratios, 14C and OSL dating) and sedimentological techniques. Such an investigation will also give retrospective information on the sources for these sediments, hence more indications on ice configuration. Ultimately we aim to provide a model of deglaciation for the

  19. Damage Mechanics in the Community Ice Sheet Model

    NASA Astrophysics Data System (ADS)

    Whitcomb, R.; Cathles, L. M. M., IV; Bassis, J. N.; Lipscomb, W. H.; Price, S. F.

    2016-12-01

    Half of the mass that floating ice shelves lose to the ocean comes from iceberg calving, which is a difficult process to simulate accurately. This is especially true in the large-scale ice dynamics models that couple changes in the cryosphere to climate projections. Damage mechanics provide a powerful technique with the potential to overcome this obstacle by describing how fractures in ice evolve over time. Here, we demonstrate the application of a damage model to ice shelves that predicts realistic geometries. We incorporated this solver into the Community Ice Sheet Model, a three dimensional ice sheet model developed at Los Alamos National Laboratory. The damage mechanics formulation that we use comes from a first principles-based evolution law for the depth of basal and surface crevasses and depends on the large scale strain rate, stress state, and basal melt. We show that under idealized conditions it produces ice tongue lengths that match well with observations for a selection of natural ice tongues, including Erebus, Drygalski, and Pine Island in Antarctica, as well as Petermann in Greenland. We also apply the model to more generalized ideal ice shelf geometries and show that it produces realistic calving front positions. Although our results are preliminary, the damage mechanics model that we developed provides a promising first principles method for predicting ice shelf extent and how the calving margins of ice shelves respond to climate change.

  20. Sea Ice on the Southern Ocean

    NASA Technical Reports Server (NTRS)

    Jacobs, Stanley S.

    1998-01-01

    Year-round satellite records of sea ice distribution now extend over more than two decades, providing a valuable tool to investigate related characteristics and circulations in the Southern Ocean. We have studied a variety of features indicative of oceanic and atmospheric interactions with Antarctic sea ice. In the Amundsen & Bellingshausen Seas, sea ice extent was found to have decreased by approximately 20% from 1973 through the early 1990's. This change coincided with and probably contributed to recently warmer surface conditions on the west side of the Antarctic Peninsula, where air temperatures have increased by approximately 0.5 C/decade since the mid-1940's. The sea ice decline included multiyear cycles of several years in length superimposed on high interannual variability. The retreat was strongest in summer, and would have lowered the regional mean ice thickness, with attendant impacts upon vertical heat flux and the formation of snow ice and brine. The cause of the regional warming and loss of sea ice is believed to be linked to large-scale circulation changes in the atmosphere and ocean. At the eastern end of the Weddell Gyre, the Cosmonaut Polyna revealed greater activity since 1986, a recurrence pattern during recent winters and two possible modes of formation. Persistence in polynya location was noted off Cape Ann, where the coastal current can interact more strongly with the Antarctic Circumpolar Current. As a result of vorticity conservation, locally enhanced upwelling brings warmer deep water into the mixed layer, causing divergence and melting. In the Ross Sea, ice extent fluctuates over periods of several years, with summer minima and winter maxima roughly in phase. This leads to large interannual cycles of sea ice range, which correlate positively with meridinal winds, regional air temperatures and subsequent shelf water salinities. Deep shelf waters display considerable interannual variability, but have freshened by approximately 0.03/decade

  1. Bacterial Communities of Surface Mixed Layer in the Pacific Sector of the Western Arctic Ocean during Sea-Ice Melting

    PubMed Central

    Ha, Ho Kyung; Kim, Hyun Cheol; Kim, Ok-Sun; Lee, Bang Yong; Cho, Jang-Cheon; Hur, Hor-Gil; Lee, Yoo Kyung

    2014-01-01

    From July to August 2010, the IBRV ARAON journeyed to the Pacific sector of the Arctic Ocean to monitor bacterial variation in Arctic summer surface-waters, and temperature, salinity, fluorescence, and nutrient concentrations were determined during the ice-melting season. Among the measured physicochemical parameters, we observed a strong negative correlation between temperature and salinity, and consequently hypothesized that the melting ice decreased water salinity. The bacterial community compositions of 15 samples, includicng seawater, sea-ice, and melting pond water, were determined using a pyrosequencing approach and were categorized into three habitats: (1) surface seawater, (2) ice core, and (3) melting pond. Analysis of these samples indicated the presence of local bacterial communities; a deduction that was further corroborated by the discovery of seawater- and ice-specific bacterial phylotypes. In all samples, the Alphaproteobacteria, Flavobacteria, and Gammaproteobacteria taxa composed the majority of the bacterial communities. Among these, Alphaproteobacteria was the most abundant and present in all samples, and its variation differed among the habitats studied. Linear regression analysis suggested that changes in salinity could affect the relative proportion of Alphaproteobacteria in the surface water. In addition, the species-sorting model was applied to evaluate the population dynamics and environmental heterogeneity in the bacterial communities of surface mixed layer in the Arctic Ocean during sea-ice melting. PMID:24497990

  2. Bacterial communities of surface mixed layer in the Pacific sector of the western Arctic Ocean during sea-ice melting.

    PubMed

    Han, Dukki; Kang, Ilnam; Ha, Ho Kyung; Kim, Hyun Cheol; Kim, Ok-Sun; Lee, Bang Yong; Cho, Jang-Cheon; Hur, Hor-Gil; Lee, Yoo Kyung

    2014-01-01

    From July to August 2010, the IBRV ARAON journeyed to the Pacific sector of the Arctic Ocean to monitor bacterial variation in Arctic summer surface-waters, and temperature, salinity, fluorescence, and nutrient concentrations were determined during the ice-melting season. Among the measured physicochemical parameters, we observed a strong negative correlation between temperature and salinity, and consequently hypothesized that the melting ice decreased water salinity. The bacterial community compositions of 15 samples, includicng seawater, sea-ice, and melting pond water, were determined using a pyrosequencing approach and were categorized into three habitats: (1) surface seawater, (2) ice core, and (3) melting pond. Analysis of these samples indicated the presence of local bacterial communities; a deduction that was further corroborated by the discovery of seawater- and ice-specific bacterial phylotypes. In all samples, the Alphaproteobacteria, Flavobacteria, and Gammaproteobacteria taxa composed the majority of the bacterial communities. Among these, Alphaproteobacteria was the most abundant and present in all samples, and its variation differed among the habitats studied. Linear regression analysis suggested that changes in salinity could affect the relative proportion of Alphaproteobacteria in the surface water. In addition, the species-sorting model was applied to evaluate the population dynamics and environmental heterogeneity in the bacterial communities of surface mixed layer in the Arctic Ocean during sea-ice melting.

  3. Effects of locust bean gum and mono- and diglyceride concentrations on particle size and melting rates of ice cream.

    PubMed

    Cropper, S L; Kocaoglu-Vurma, N A; Tharp, B W; Harper, W J

    2013-06-01

    The objective of this study was to determine how varying concentrations of the stabilizer, locust bean gum (LBG), and different levels of the emulsifier, mono- and diglycerides (MDGs), influenced fat aggregation and melting characteristics of ice cream. Ice creams were made containing MDGs and LBG singly and in combination at concentrations ranging between 0.0% to 0.14% and 0.0% to 0.23%, respectively. Particle size analysis, conducted on both the mixes and ice cream, and melting rate testing on the ice cream were used to determine fat aggregation. No significant differences (P < 0.05) were found between particle size values for experimental ice cream mixes. However, higher concentrations of both LBG and MDG in the ice creams resulted in values that were larger than the control. This study also found an increase in the particle size values when MDG levels were held constant and LBG amounts were increased in the ice cream. Ice creams with higher concentrations of MDG and LBG together had the greatest difference in the rate of melting than the control. The melting rate decreased with increasing LBG concentrations at constant MDG levels. These results illustrated that fat aggregation may not only be affected by emulsifiers, but that stabilizers may play a role in contributing to the destabilization of fat globules. © 2013 Institute of Food Technologists®

  4. Motion of Major Ice Shelf Fronts in Antarctica from Slant Range Analysis of Radar Altimeter Data, 1978 - 1998

    NASA Technical Reports Server (NTRS)

    Zwally, H. J.; Beckley, M. A.; Brenner, A. C.; Giovinetto, M. B.; Koblinsky, Chester J. (Technical Monitor)

    2001-01-01

    Slant range analysis of radar altimeter data from the Seasat, Geosat, ERS-1 and ERS-2 databases are used to determine barrier location at particular times, and estimate barrier motion (km/yr) for major Antarctic ice shelves. The barrier locations, which are the seaward edges or fronts of floating ice shelves, advance with time as the ice flows from the grounded ice sheets and retreat whenever icebergs calve from the fronts. The analysis covers various multiyear intervals from 1978 to 1998, supplemented by barrier location maps produced elsewhere for 1977 and 1986. Barrier motion is estimated as the ratio between mean annual ice shelf area change for a particular interval, and the length of the discharge periphery. This value is positive if the barrier location progresses seaward, or negative if the barrier location regresses (break-back). Either positive or negative values are lower limit estimates because the method does not detect relatively small area changes due to calving or surge events. The findings are discussed in the context of the three ice shelves that lie in large embayments (the Filchner-Ronne, Amery, and Ross), and marginal ice shelves characterized by relatively short distances between main segments of grounding line and barrier (those in the Queen Maud Land sector between 10.1 deg. W and 32.5 deg. E, and the West and Shackleton ice shelves). All the ice shelves included in the study account for approximately three-fourths of the total ice shelf area of Antarctica, and discharge approximately two-thirds of the total grounded ice area.

  5. Geoengineering Outlet Glaciers and Ice Streams

    NASA Astrophysics Data System (ADS)

    Wolovick, Michael

    2017-04-01

    Mass loss from Greenland and Antarctica is highly sensitive to the presence of warm ocean water that drives melting of ice shelves and marine terminated glaciers. This warm water resides offshore at depth and accesses the grounding line through deep but narrow troughs and fjords. Here, we investigate the possibility of blocking warm water transport through these choke points with an artificial sill. Using a simple width-averaged model of ice stream flow coupled to a buoyant-plume model of submarine melt, we find that grounding line retreat and sea level rise can be delayed or reversed for hundreds of years if warm water is prevented from accessing outlet glaciers and ice-shelf cavities. Glaciers with a floating shelf exhibit a strong response to the presence of the artificial sill regardless of our choice of calving law, while tidewater glaciers require a strong linkage between submarine melt and iceberg calving for the artificial sill to have an effect. As a result of this difference and as a result of differing degrees of overdeepening in the basal topography, Antarctica and Greenland present very different societal cost-benefit analyses. Intervention in Greenland would be low-cost and low-reward: the volume of the artificial sill is comparable to existing large public works projects such as the Dubai Islands or the Suez Canal, but the magnitude of averted sea-level rise is small, the success of the intervention depends on the choice of calving law, and the glaciers return to their non-geoengineered trajectories within one to two centuries. Intervention in Antarctica, on the other hand, would be high-cost and high-reward: the volume of the artificial sill is one to two orders of magnitude greater, but the averted sea level rise is much larger, the intervention is successful regardless of the choice of calving law, and the ice streams remain far from their non-geoengineered trajectories throughout the 1000 year duration of our model runs. In both cases, an

  6. Dynamic influence of pinning points on marine ice-sheet stability: a numerical study in Dronning Maud Land, East Antarctica

    DOE PAGES

    Favier, Lionel; Pattyn, Frank; Berger, Sophie; ...

    2016-11-09

    The East Antarctic ice sheet is likely more stable than its West Antarctic counterpart because its bed is largely lying above sea level. However, the ice sheet in Dronning Maud Land, East Antarctica, contains marine sectors that are in contact with the ocean through overdeepened marine basins interspersed by grounded ice promontories and ice rises, pinning and stabilising the ice shelves. In this paper, we use the ice-sheet model BISICLES to investigate the effect of sub-ice-shelf melting, using a series of scenarios compliant with current values, on the ice-dynamic stability of the outlet glaciers between the Lazarev and Roi Baudouinmore » ice shelves over the next millennium. Overall, the sub-ice-shelf melting substantially impacts the sea-level contribution. Locally, we predict a short-term rapid grounding-line retreat of the overdeepened outlet glacier Hansenbreen, which further induces the transition of the bordering ice promontories into ice rises. Furthermore, our analysis demonstrated that the onset of the marine ice-sheet retreat and subsequent promontory transition into ice rise is controlled by small pinning points, mostly uncharted in pan-Antarctic datasets. Pinning points have a twofold impact on marine ice sheets. They decrease the ice discharge by buttressing effect, and they play a crucial role in initialising marine ice sheets through data assimilation, leading to errors in ice-shelf rheology when omitted. Our results show that unpinning increases the sea-level rise by 10%, while omitting the same pinning point in data assimilation decreases it by 10%, but the more striking effect is in the promontory transition time, advanced by two centuries for unpinning and delayed by almost half a millennium when the pinning point is missing in data assimilation. As a result, pinning points exert a subtle influence on ice dynamics at the kilometre scale, which calls for a better knowledge of the Antarctic margins.« less

  7. Dynamic influence of pinning points on marine ice-sheet stability: a numerical study in Dronning Maud Land, East Antarctica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Favier, Lionel; Pattyn, Frank; Berger, Sophie

    The East Antarctic ice sheet is likely more stable than its West Antarctic counterpart because its bed is largely lying above sea level. However, the ice sheet in Dronning Maud Land, East Antarctica, contains marine sectors that are in contact with the ocean through overdeepened marine basins interspersed by grounded ice promontories and ice rises, pinning and stabilising the ice shelves. In this paper, we use the ice-sheet model BISICLES to investigate the effect of sub-ice-shelf melting, using a series of scenarios compliant with current values, on the ice-dynamic stability of the outlet glaciers between the Lazarev and Roi Baudouinmore » ice shelves over the next millennium. Overall, the sub-ice-shelf melting substantially impacts the sea-level contribution. Locally, we predict a short-term rapid grounding-line retreat of the overdeepened outlet glacier Hansenbreen, which further induces the transition of the bordering ice promontories into ice rises. Furthermore, our analysis demonstrated that the onset of the marine ice-sheet retreat and subsequent promontory transition into ice rise is controlled by small pinning points, mostly uncharted in pan-Antarctic datasets. Pinning points have a twofold impact on marine ice sheets. They decrease the ice discharge by buttressing effect, and they play a crucial role in initialising marine ice sheets through data assimilation, leading to errors in ice-shelf rheology when omitted. Our results show that unpinning increases the sea-level rise by 10%, while omitting the same pinning point in data assimilation decreases it by 10%, but the more striking effect is in the promontory transition time, advanced by two centuries for unpinning and delayed by almost half a millennium when the pinning point is missing in data assimilation. As a result, pinning points exert a subtle influence on ice dynamics at the kilometre scale, which calls for a better knowledge of the Antarctic margins.« less

  8. Decadal-Scale Response of the Antarctic Ice sheet to a Warming Ocean using the POPSICLES Coupled Ice Sheet-Ocean model

    NASA Astrophysics Data System (ADS)

    Martin, D. F.; Asay-Davis, X.; Cornford, S. L.; Price, S. F.; Ng, E. G.; Collins, W.

    2015-12-01

    We present POPSICLES simulation results covering the full Antarctic Ice Sheet and the Southern Ocean spanning the period from 1990 to 2010. We use the CORE v. 2 interannual forcing data to force the ocean model. Simulations are performed at 0.1o(~5 km) ocean resolution with adaptive ice sheet resolution as fine as 500 m to adequately resolve the grounding line dynamics. We discuss the effect of improved ocean mixing and subshelf bathymetry (vs. the standard Bedmap2 bathymetry) on the behavior of the coupled system, comparing time-averaged melt rates below a number of major ice shelves with those reported in the literature. We also present seasonal variability and decadal melting trends from several Antarctic regions, along with the response of the ice shelves and the consequent dynamic response of the grounded ice sheet.POPSICLES couples the POP2x ocean model, a modified version of the Parallel Ocean Program, and the BISICLES ice-sheet model. POP2x includes sub-ice-shelf circulation using partial top cells and the commonly used three-equation boundary layer physics. Standalone POP2x output compares well with standard ice-ocean test cases (e.g., ISOMIP) and other continental-scale simulations and melt-rate observations. BISICLES makes use of adaptive mesh refinement and a 1st-order accurate momentum balance similar to the L1L2 model of Schoof and Hindmarsh to accurately model regions of dynamic complexity, such as ice streams, outlet glaciers, and grounding lines. Results of BISICLES simulations have compared favorably to comparable simulations with a Stokes momentum balance in both idealized tests (MISMIP-3d) and realistic configurations.The figure shows the BISICLES-computed vertically-integrated grounded ice velocity field 5 years into a 20-year coupled full-continent Antarctic-Southern-Ocean simulation. Submarine melt rates are painted onto the surface of the floating ice shelves. Grounding lines are shown in green.

  9. Ice melt, sea level rise and superstorms: evidence from paleoclimate data, climate modeling, and modern observations that 2 °C global warming could be dangerous

    NASA Astrophysics Data System (ADS)

    Hansen, James; Sato, Makiko; Hearty, Paul; Ruedy, Reto; Kelley, Maxwell; Masson-Delmotte, Valerie; Russell, Gary; Tselioudis, George; Cao, Junji; Rignot, Eric; Velicogna, Isabella; Tormey, Blair; Donovan, Bailey; Kandiano, Evgeniya; von Schuckmann, Karina; Kharecha, Pushker; Legrande, Allegra N.; Bauer, Michael; Lo, Kwok-Wai

    2016-03-01

    We use numerical climate simulations, paleoclimate data, and modern observations to study the effect of growing ice melt from Antarctica and Greenland. Meltwater tends to stabilize the ocean column, inducing amplifying feedbacks that increase subsurface ocean warming and ice shelf melting. Cold meltwater and induced dynamical effects cause ocean surface cooling in the Southern Ocean and North Atlantic, thus increasing Earth's energy imbalance and heat flux into most of the global ocean's surface. Southern Ocean surface cooling, while lower latitudes are warming, increases precipitation on the Southern Ocean, increasing ocean stratification, slowing deepwater formation, and increasing ice sheet mass loss. These feedbacks make ice sheets in contact with the ocean vulnerable to accelerating disintegration. We hypothesize that ice mass loss from the most vulnerable ice, sufficient to raise sea level several meters, is better approximated as exponential than by a more linear response. Doubling times of 10, 20 or 40 years yield multi-meter sea level rise in about 50, 100 or 200 years. Recent ice melt doubling times are near the lower end of the 10-40-year range, but the record is too short to confirm the nature of the response. The feedbacks, including subsurface ocean warming, help explain paleoclimate data and point to a dominant Southern Ocean role in controlling atmospheric CO2, which in turn exercised tight control on global temperature and sea level. The millennial (500-2000-year) timescale of deep-ocean ventilation affects the timescale for natural CO2 change and thus the timescale for paleo-global climate, ice sheet, and sea level changes, but this paleo-millennial timescale should not be misinterpreted as the timescale for ice sheet response to a rapid, large, human-made climate forcing. These climate feedbacks aid interpretation of events late in the prior interglacial, when sea level rose to +6-9 m with evidence of extreme storms while Earth was less than 1

  10. Comparison of Passive Microwave-Derived Early Melt Onset Records on Arctic Sea Ice

    NASA Technical Reports Server (NTRS)

    Bliss, Angela C.; Miller, Jeffrey A.; Meier, Walter N.

    2017-01-01

    Two long records of melt onset (MO) on Arctic sea ice from passive microwave brightness temperatures (Tbs) obtained by a series of satellite-borne instruments are compared. The Passive Microwave (PMW) method and Advanced Horizontal Range Algorithm (AHRA) detect the increase in emissivity that occurs when liquid water develops around snow grains at the onset of early melting on sea ice. The timing of MO on Arctic sea ice influences the amount of solar radiation absorbed by the ice-ocean system throughout the melt season by reducing surface albedos in the early spring. This work presents a thorough comparison of these two methods for the time series of MO dates from 1979through 2012. The methods are first compared using the published data as a baseline comparison of the publically available data products. A second comparison is performed on adjusted MO dates we produced to remove known differences in inter-sensor calibration of Tbs and masking techniques used to develop the original MO date products. These adjustments result in a more consistent set of input Tbs for the algorithms. Tests of significance indicate that the trends in the time series of annual mean MO dates for the PMW and AHRA are statistically different for the majority of the Arctic Ocean including the Laptev, E. Siberian, Chukchi, Beaufort, and central Arctic regions with mean differences as large as 38.3 days in the Barents Sea. Trend agreement improves for our more consistent MO dates for nearly all regions. Mean differences remain large, primarily due to differing sensitivity of in-algorithm thresholds and larger uncertainties in thin-ice regions.

  11. High-resolution coupled ice sheet-ocean modeling using the POPSICLES model

    NASA Astrophysics Data System (ADS)

    Ng, E. G.; Martin, D. F.; Asay-Davis, X.; Price, S. F.; Collins, W.

    2014-12-01

    It is expected that a primary driver of future change of the Antarctic ice sheet will be changes in submarine melting driven by incursions of warm ocean water into sub-ice shelf cavities. Correctly modeling this response on a continental scale will require high-resolution modeling of the coupled ice-ocean system. We describe the computational and modeling challenges in our simulations of the full Southern Ocean coupled to a continental-scale Antarctic ice sheet model at unprecedented spatial resolutions (0.1 degree for the ocean model and adaptive mesh refinement down to 500m in the ice sheet model). The POPSICLES model couples the POP2x ocean model, a modified version of the Parallel Ocean Program (Smith and Gent, 2002), with the BISICLES ice-sheet model (Cornford et al., 2012) using a synchronous offline-coupling scheme. Part of the PISCEES SciDAC project and built on the Chombo framework, BISICLES makes use of adaptive mesh refinement to fully resolve dynamically-important regions like grounding lines and employs a momentum balance similar to the vertically-integrated formulation of Schoof and Hindmarsh (2009). Results of BISICLES simulations have compared favorably to comparable simulations with a Stokes momentum balance in both idealized tests like MISMIP3D (Pattyn et al., 2013) and realistic configurations (Favier et al. 2014). POP2x includes sub-ice-shelf circulation using partial top cells (Losch, 2008) and boundary layer physics following Holland and Jenkins (1999), Jenkins (2001), and Jenkins et al. (2010). Standalone POP2x output compares well with standard ice-ocean test cases (e.g., ISOMIP; Losch, 2008) and other continental-scale simulations and melt-rate observations (Kimura et al., 2013; Rignot et al., 2013). For the POPSICLES Antarctic-Southern Ocean simulations, ice sheet and ocean models communicate at one-month coupling intervals.

  12. Isostasy as a Driver of Paleo Retreat of the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Robinson, A.; Tabone, I.; Alvarez-Solas, J.; Montoya, M.

    2016-12-01

    During glacial times, the Greenland ice sheet (GrIS) extended onto the continental shelf, and thus was much more directly affected by changing ocean temperatures through basal melt of the marine ice margins than it is today. The larger glacial ice sheet also induced lithospheric depression of several hundred meters in regions that are near sea level today. As the ice sheet retreated inland under interglacial climatic forcing, the regions significantly affected by local isostatic changes in elevation were exposed to much higher basal melt rates than they would have been given the present-day topography. Here we explore this effect using a hybrid ice sheet model that represents both grounded and floating ice, as well as local isostatic effects, and is driven by both atmospheric and oceanic temperature anomalies. We find that when transient oceanic forcing is included in the model, isostasy plays an important role in allowing oceanic melting to drive GrIS retreat in some regions. During the last interglacial, for example, this effect can account for a significant additional sea-level contribution, as well as an increase in the rate of sea-level rise. Our results highlight the importance of accounting for ice-ocean-lithosphere interactions in the past, in order to be able to properly reconstruct the evolution of the ice sheet, and for estimating its sensitivity to potential changes in climate in the future.

  13. Organochlorine compounds in ice melt water from Italian Alpine rivers.

    PubMed

    Villa, Sara; Negrelli, Christian; Finizio, Antonio; Flora, Onelio; Vighi, Marco

    2006-01-01

    Organochlorine chemicals (OCs) (dichlorodiphenyltrichloroethanes, hexachlorocyclohexanes, and hexachlorobenzene) were measured in ice melt water from five glaciers in the Italian Alps. Even though the data collected may not be sufficient for a precise description of persistent organic pollutant release patterns from glacier melting, they have, however, highlighted the potential for surface water contamination. Concentrations were of the same order of magnitude in all glacial streams, indicating comparable contamination levels in different glaciers of the alpine region. OC levels in nonglacial springs sampled in the same areas are usually lower. Even if differences during the melting season (from spring to autumn) have been identified, a regular seasonal pattern in OC concentrations was not observed. Risk for the aquatic environment is excluded through direct water exposure, but it is likely to occur through biomagnification and secondary poisoning exposure.

  14. A Model for the Formation and Melting of Ice on Surface Waters.

    NASA Astrophysics Data System (ADS)

    de Bruin, H. A. R.; Wessels, H. R. A.

    1988-02-01

    Ice covers have an important influence on the hydrology of surface waters. The growth of ice layer on stationary waters, such as lakes or canals, depends primarily on meteorological parameters like temperature and humidity of the air, windspeed and radiation balance. The more complicated ice formation in rapidly flowing rivers is not considered in this study. A model is described that simulates ice growth and melting utilizing observed or forecast weather data. The model includes situations with a snow cover. Special attention is given to the optimal estimation of the net radiation and to the role of the stability of the near-surface air. Since a major practical application in the Netherlands is the use of frozen waters for recreation skating, the model is extended to include artificial ice tracks.

  15. Modulation of Sea Ice Melt Onset and Retreat in the Laptev Sea by the Timing of Snow Retreat in the West Siberian Plain

    NASA Astrophysics Data System (ADS)

    Crawford, A. D.; Stroeve, J.; Serreze, M. C.; Rajagopalan, B.; Horvath, S.

    2017-12-01

    As much of the Arctic Ocean transitions to ice-free conditions in summer, efforts have increased to improve seasonal forecasts of not only sea ice extent, but also the timing of melt onset and retreat. This research investigates the potential of regional terrestrial snow retreat in spring as a predictor for subsequent sea ice melt onset and retreat in Arctic seas. One pathway involves earlier snow retreat enhancing atmospheric moisture content, which increases downwelling longwave radiation over sea ice cover downstream. Another pathway involves manipulation of jet stream behavior, which may affect the sea ice pack via both dynamic and thermodynamic processes. Although several possible connections between snow and sea ice regions are identified using a mutual information criterion, the physical mechanisms linking snow retreat and sea ice phenology are most clearly exemplified by variability of snow retreat in the West Siberian Plain impacting melt onset and sea ice retreat in the Laptev Sea. The detrended time series of snow retreat in the West Siberian Plain explains 26% of the detrended variance in Laptev Sea melt onset (29% for sea ice retreat). With modest predictive skill and an average time lag of 53 (88) days between snow retreat and sea ice melt onset (retreat), West Siberian Plains snow retreat is useful for refining seasonal sea ice predictions in the Laptev Sea.

  16. Ikaite crystals in melting sea ice - implications for pCO2 and pH levels in Arctic surface waters

    NASA Astrophysics Data System (ADS)

    Rysgaard, S.; Glud, R. N.; Lennert, K.; Cooper, M.; Halden, N.; Leakey, R. J. G.; Hawthorne, F. C.; Barber, D.

    2012-08-01

    A major issue of Arctic marine science is to understand whether the Arctic Ocean is, or will be, a source or sink for air-sea CO2 exchange. This has been complicated by the recent discoveries of ikaite (a polymorph of CaCO3·6H2O) in Arctic and Antarctic sea ice, which indicate that multiple chemical transformations occur in sea ice with a possible effect on CO2 and pH conditions in surface waters. Here, we report on biogeochemical conditions, microscopic examinations and x-ray diffraction analysis of single crystals from a melting 1.7 km2 (0.5-1 m thick) drifting ice floe in the Fram Strait during summer. Our findings show that ikaite crystals are present throughout the sea ice but with larger crystals appearing in the upper ice layers. Ikaite crystals placed at elevated temperatures disintegrated into smaller crystallites and dissolved. During our field campaign in late June, melt reduced the ice floe thickness by 0.2 m per week and resulted in an estimated 3.8 ppm decrease of pCO2 in the ocean surface mixed layer. This corresponds to an air-sea CO2 uptake of 10.6 mmol m-2 sea ice d-1 or to 3.3 ton km-2 ice floe week-1. This is markedly higher than the estimated primary production within the ice floe of 0.3-1.3 mmol m-2 sea ice d-1. Finally, the presence of ikaite in sea ice and the dissolution of the mineral during melting of the sea ice and mixing of the melt water into the surface oceanic mixed layer accounted for half of the estimated pCO2 uptake.

  17. Bottom melting of Arctic Sea Ice in the Nansen Basin due to Atlantic Water influence

    NASA Astrophysics Data System (ADS)

    Muilwijk, Morven; Smedsrud, Lars H.; Meyer, Amelie

    2016-04-01

    Our global climate is warming, and a shrinking Arctic sea ice cover remains one of the most visible signs of this warming. Sea Ice loss is now visible for all months in all regions of the Arctic. Hydrographic and current observations from a region north of Svalbard collected during the Norwegian Young Sea Ice Cruise (N-ICE2015) are presented here. Comparison with historical data shows that the new observations from January through June fill major gaps in available observations, and help describing important processes linking changes in regional Atlantic Water (AW) heat transport and sea ice. Warm and salty AW originating in the North Atlantic enters the Arctic Ocean through the Fram Strait and is present below the Arctic Sea Ice cover throughout the Arctic. However, the depth of AW varies by region and over time. In the region north of Svalbard, we assume that depth could be governed primarily by local processes, by upstream conditions of the ice cover (Northwards), or by upstream conditions of the AW (Southwards). AW carries heat corresponding to the volume transport of approximately 9 SV through Fram Strait, varying seasonally from 28 TW in winter to 46 TW in summer. Some heat is recirculated, but the net annual heat flux into the Arctic Ocean from AW is estimated to be around 40 TW. The Atlantic Water layer temperature at intermediate depths (150-900m) has increased in recent years. Until recently, maximum temperatures have been found to be 2-3 C in the Nansen Basin. Studies have shown that for example, in the West Spitsbergen Current the upper 50-200m shows an overall AW warming of 1.1 C since 1979. In general we expect efficient melting when AW is close to the surface. Previously the AW entering through Fram Strait has been considered as less important because changes in the sea ice cover have been connected to greater inflow of Pacific Water through Bering Strait and atmospheric forcing. Conversely it is now suggested that AW has direct impact on melting of

  18. A 400-Year Ice Core Melt Layer Record of Summertime Warming in the Alaska Range

    NASA Astrophysics Data System (ADS)

    Winski, Dominic; Osterberg, Erich; Kreutz, Karl; Wake, Cameron; Ferris, David; Campbell, Seth; Baum, Mark; Bailey, Adriana; Birkel, Sean; Introne, Douglas; Handley, Mike

    2018-04-01

    Warming in high-elevation regions has societally important impacts on glacier mass balance, water resources, and sensitive alpine ecosystems, yet very few high-elevation temperature records exist from the middle or high latitudes. While a variety of paleoproxy records provide critical temperature records from low elevations over recent centuries, melt layers preserved in alpine glaciers present an opportunity to develop calibrated, annually resolved temperature records from high elevations. Here we present a 400-year temperature proxy record based on the melt layer stratigraphy of two ice cores collected from Mt. Hunter in Denali National Park in the central Alaska Range. The ice core record shows a sixtyfold increase in water equivalent total annual melt between the preindustrial period (before 1850 Common Era) and present day. We calibrate the melt record to summer temperatures based on weather station data from the ice core drill site and find that the increase in melt production represents a summer warming rate of at least 1.92 ± 0.31°C per century during the last 100 years, exceeding rates of temperature increase at most low-elevation sites in Alaska. The Mt. Hunter melt layer record is significantly (p < 0.05) correlated with surface temperatures in the central tropical Pacific through a Rossby wave-like pattern that enhances high temperatures over Alaska. Our results show that rapid alpine warming has taken place in the Alaska Range for at least a century and that conditions in the tropical oceans contribute to this warming.

  19. Constraining variable density of ice shelves using wide-angle radar measurements

    NASA Astrophysics Data System (ADS)

    Drews, Reinhard; Brown, Joel; Matsuoka, Kenichi; Witrant, Emmanuel; Philippe, Morgane; Hubbard, Bryn; Pattyn, Frank

    2016-04-01

    The thickness of ice shelves, a basic parameter for mass balance estimates, is typically inferred using hydrostatic equilibrium, for which knowledge of the depth-averaged density is essential. The densification from snow to ice depends on a number of local factors (e.g., temperature and surface mass balance) causing spatial and temporal variations in density-depth profiles. However, direct measurements of firn density are sparse, requiring substantial logistical effort. Here, we infer density from radio-wave propagation speed using ground-based wide-angle radar data sets (10 MHz) collected at five sites on Roi Baudouin Ice Shelf (RBIS), Dronning Maud Land, Antarctica. We reconstruct depth to internal reflectors, local ice thickness, and firn-air content using a novel algorithm that includes traveltime inversion and ray tracing with a prescribed shape of the depth-density relationship. For the particular case of an ice-shelf channel, where ice thickness and surface slope change substantially over a few kilometers, the radar data suggest that firn inside the channel is about 5 % denser than outside the channel. Although this density difference is at the detection limit of the radar, it is consistent with a similar density anomaly reconstructed from optical televiewing, which reveals that the firn inside the channel is 4.7 % denser than that outside the channel. Hydrostatic ice thickness calculations used for determining basal melt rates should account for the denser firn in ice-shelf channels. The radar method presented here is robust and can easily be adapted to different radar frequencies and data-acquisition geometries.

  20. New Crustal Boundary Revealed Beneath the Ross Ice Shelf, Antarctica, through ROSETTA-Ice Integrated Aerogeophysics, Geology, and Ocean Research

    NASA Astrophysics Data System (ADS)

    Tinto, K. J.; Siddoway, C. S.; Bell, R. E.; Lockett, A.; Wilner, J.

    2017-12-01

    Now submerged within marine plateaus and rises bordering Antarctica, Australia and Zealandia, the East Gondwana accretionary margin was a belt of terranes and stitched by magmatic arcs, later stretched into continental ribbons separated by narrow elongate rifts. This crustal architecture is known from marine geophysical exploration and ocean drilling of the mid-latitude coastal plateaus and rises. A concealed sector of the former East Gondwana margin that underlies the Ross Ice Shelf (RIS), Antarctica, is the focus of ROSETTA-ICE, a new airborne data acquisition campaign that explores the crustal makeup, tectonic boundaries and seafloor bathymetry beneath RIS. Gravimeters and a magnetometer are deployed by LC130 aircraft surveying along E-W lines spaced at 10 km, and N-S tie lines at 55 km, connect 1970s points (RIGGS) for controls on ocean depth and gravity. The ROSETTA-ICE survey, 2/3 completed thus far, provides magnetic anomalies, Werner depth-to-basement solutions, a new gravity-based bathymetric model at 20-km resolution, and a new crustal density map tied to the 1970s data. Surprisingly, the data reveal that the major lithospheric boundary separating East and West Antarctica lies 300 km east of the Transantarctic Mountains, beneath the floating RIS. The East and West regions have contrasting geophysical characteristics and bathymetry, with relatively dense lithosphere, low amplitude magnetic anomalies, and deep bathymetry on the East Antarctica side, and high amplitude magnetic anomalies, lower overall density and shallower water depths on the West Antarctic side. The Central High, a basement structure cored at DSDP Site 270 and seismically imaged in the Ross Sea, continues beneath RIS as a faulted but coherent crustal ribbon coincident with the tectonic boundary. The continuity of Gondwana margin crustal architecture discovered beneath the West Antarctic Ice Sheet requires a revision of the existing tectonic framework. The sub-RIS narrow rift basins and