Sample records for ice sledge hockey

  1. Measuring static seated pressure distributions and risk for skin pressure ulceration in ice sledge hockey players.

    PubMed

    Darrah, Shaun D; Dicianno, Brad E; Berthold, Justin; McCoy, Andrew; Haas, Matthew; Cooper, Rory A

    2016-01-01

    To determine whether sledge hockey players with physical disability have higher average seated pressures compared to non-disabled controls. Fifteen age-matched controls without physical disability and 15 experimental participants with physical disability were studied using a pressure mapping device to determine risk for skin pressure ulceration and the impact of cushioning and knee angle positioning on seated pressure distributions. Regardless of participant group, cushioning, or knee angle, average seated pressures exceeded clinically acceptable seated pressures. Controls had significantly higher average seated pressures than the disability group when knees were flexed, both with the cushion (p = 0.013) and without (p = 0.015). Knee extension showed significantly lower average pressures in controls, both with the cushion (p < 0.001) and without (p < 0.001). Placement of the cushion resulted in significantly lower average pressure in controls when knees were extended (p = 0.024) but not when flexed (p = 0.248). Placement of the cushion resulted in no difference in pressure (p = 0.443) in the disability group. Pressures recorded indicate high risk for skin ulceration. Cushioning was effective only in the control group with knees extended. That knee extension significantly lowered average seated pressures is important, as many sledge hockey players utilize positioning with larger knee flexion angles. Implications for Rehabilitation Ice sledge hockey is a fast growing adaptive sport. Adaptive sports have been associated with several positive improvements in overall health and quality of life, though may be putting players at risk for skin ulceration. Measured static seated pressure in sledges greatly exceeds current clinically accepted clinical guidelines. With modern improvements in wheelchair pressure relief/cushioning there are potential methods for improvement of elevated seated pressure in ice hockey sledges.

  2. A PILOT SURVEY ON INJURY AND SAFETY CONCERNS IN INTERNATIONAL SLEDGE HOCKEY

    PubMed Central

    Finlayson, Heather; O'Connor, Russ; Anton, Hugh

    2011-01-01

    Objective: To describe sledge hockey injury patterns, safety issues and to develop potential injury prevention strategies. Design: Pilot survey study of international sledge hockey professionals, including trainers, physiotherapists, physicians, coaches and/or general managers. Setting: Personal encounter or online correspondence. Respondents: Sledge hockey professionals; a total of 10 respondents from the 5 top-ranked international teams recruited by personal encounter or online correspondence. Main Outcome Measurements: Descriptive Data reports on sledge athlete injury characteristics, quality of rules and enforcement, player equipment, challenges in the medical management during competition, and overall safety. Results: Muscle strains and concussions were identified as common, and injuries were reported to affect the upper body more frequently than the lower body. Overuse and body checking were predominant injury mechanisms. Safety concerns included excessive elbowing, inexperienced refereeing and inadequate equipment standards. Conclusions: This paper is the first publication primarily focused on sledge hockey injury and safety. This information provides unique opportunity for the consideration of implementation and evaluation of safety strategies. Safety interventions could include improved hand protection, cut-resistant materials in high-risk areas, increased vigilance to reduce intentional head-contact, lowered rink boards and modified bathroom floor surfacing. PMID:21904696

  3. Pressure mapping to assess seated pressure distributions and the potential risk for skin ulceration in a population of sledge hockey players and control subjects.

    PubMed

    Berthold, Justin; Dicianno, Brad E; Cooper, Rory A

    2013-09-01

    Ice sledge (or sled) hockey is a fast-paced sport that enables individuals with physical disabilities to play ice hockey. As the attraction to the sport continues to rise, the need for developing better equipment and installing preventative measures for injury will become increasingly important. One such injury includes skin pressure ulceration. A total of 26 subjects including active controls and those with spinal cord injury, multiple sclerosis, limb amputation and traumatic brain injury were studied using a pressure mapping device at the 2012 National Disabled Veterans Winter Sports Clinic to determine the risk for skin pressure ulceration and the impact of cushioning and knee angle positioning on seated pressure distributions. Sledge hockey athletes may be at increased risk for skin pressure ulceration based on seated pressure distribution data. This experiment failed to demonstrate a benefit for specialty cushioning in either group. Interestingly, knee angle positioning, particularly, knee extension significantly lowered the average seated pressures. When considering the risk for skin pressure ulceration, knee angle positioning is of particular clinical importance. More research is warranted, specifically targeting novel cushion and sledge designs and larger groups of individuals with sensory loss and severe spinal deformities. Implications for Rehabilitation Ice sledge (or sled) hockey is a fast-paced and growing adaptive sport played at the Paralympic level. Rehabilitation professionals should consider the potential for skin ulceration in this population of athletes. The effects of cushioning used in the sledge design warrants further investigation. Knee angle positioning; particularly, knee extension significantly lowers seated pressures and may reduce the potential for skin ulceration.

  4. Ice Hockey Injuries.

    ERIC Educational Resources Information Center

    Sim, Franklin H.; Simonet, William T.

    1988-01-01

    The article describes the mechanisms, management, and prevention of each type of injury to which hockey players are prone. It surveys the injuries sustained by ice hockey players and discusses treatment of specific injuries, including those injuries to the head, eye, shoulder, hand, thigh, scalp, and face. (JL)

  5. Incidence of Concussion in Youth Ice Hockey Players

    PubMed Central

    Elbin, R.J.; Sufrinko, Alicia; Dakan, Scott; Bookwalter, Kylie; Price, Ali; Meehan, William P.; Collins, Michael W.

    2016-01-01

    BACKGROUND: Ice hockey is a fast-paced collision sport that entails both intentional (ie, body checking) and incidental contact that may involve the head. The objective of this study was to determine the incidence of concussions in relation to games/practices and age among competition-level youth ice hockey players (ages 12–18 years). METHODS: Participants included 397 youth ice hockey players from Western Pennsylvania; Boston, Massachusetts; and Birmingham, Alabama, during the 2012–2013 and 2013–2014 youth ice hockey seasons. Incidence rates (IRs) and incidence rate ratios (IRRs) of concussion were calculated for games/practices and age groups. RESULTS: A total of 23 369 (12 784 practice/10 585 game) athletic exposures (AEs) involving 37 medically diagnosed concussions occurred. More than 40% of concussions involved illegal contact. The combined IR for games and practices was 1.58 concussions per 1000 AEs. The IRR was 2.86 times (95% confidence interval 0.68–4.42) higher during games (2.49 per 1000 AEs) than practices (1.04 per 1000 AEs). CONCLUSIONS: The overall IR for concussion in youth ice hockey was comparable to those reported in other youth collision sports. The game-to-practice IRR was lower than previously reported in ice hockey and other youth sports, although more concussions per exposure occurred in games compared with practices. Younger players had a higher rate of concussions than older players. PMID:26746405

  6. Incidence of Concussion in Youth Ice Hockey Players.

    PubMed

    Kontos, Anthony P; Elbin, R J; Sufrinko, Alicia; Dakan, Scott; Bookwalter, Kylie; Price, Ali; Meehan, William P; Collins, Michael W

    2016-02-01

    Ice hockey is a fast-paced collision sport that entails both intentional (ie, body checking) and incidental contact that may involve the head. The objective of this study was to determine the incidence of concussions in relation to games/practices and age among competition-level youth ice hockey players (ages 12-18 years). Participants included 397 youth ice hockey players from Western Pennsylvania; Boston, Massachusetts; and Birmingham, Alabama, during the 2012-2013 and 2013-2014 youth ice hockey seasons. Incidence rates (IRs) and incidence rate ratios (IRRs) of concussion were calculated for games/practices and age groups. A total of 23 369 (12 784 practice/10 585 game) athletic exposures (AEs) involving 37 medically diagnosed concussions occurred. More than 40% of concussions involved illegal contact. The combined IR for games and practices was 1.58 concussions per 1000 AEs. The IRR was 2.86 times (95% confidence interval 0.68-4.42) higher during games (2.49 per 1000 AEs) than practices (1.04 per 1000 AEs). The overall IR for concussion in youth ice hockey was comparable to those reported in other youth collision sports. The game-to-practice IRR was lower than previously reported in ice hockey and other youth sports, although more concussions per exposure occurred in games compared with practices. Younger players had a higher rate of concussions than older players. Copyright © 2016 by the American Academy of Pediatrics.

  7. Off-Ice Anaerobic Power Does Not Predict On-Ice Repeated Shift Performance in Hockey.

    PubMed

    Peterson, Ben J; Fitzgerald, John S; Dietz, Calvin C; Ziegler, Kevin S; Baker, Sarah E; Snyder, Eric M

    2016-09-01

    Peterson, BJ, Fitzgerald, JS, Dietz, CC, Ziegler, KS, Baker, SE, and Snyder, EM. Off-ice anaerobic power does not predict on-ice repeated shift performance in hockey. J Strength Cond Res 30(9): 2375-2381, 2016-Anaerobic power is a significant predictor of acceleration and top speed in team sport athletes. Historically, these findings have been applied to ice hockey although recent research has brought their validity for this sport into question. As ice hockey emphasizes the ability to repeatedly produce power, single bout anaerobic power tests should be examined to determine their ability to predict on-ice performance. We tested whether conventional off-ice anaerobic power tests could predict on-ice acceleration, top speed, and repeated shift performance. Forty-five hockey players, aged 18-24 years, completed anthropometric, off-ice, and on-ice tests. Anthropometric and off-ice testing included height, weight, body composition, vertical jump, and Wingate tests. On-ice testing consisted of acceleration, top speed, and repeated shift fatigue tests. Vertical jump (VJ) (r = -0.42; r = -0.58), Wingate relative peak power (WRPP) (r = -0.32; r = -0.43), and relative mean power (WRMP) (r = -0.34; r = -0.48) were significantly correlated (p ≤ 0.05) to on-ice acceleration and top speed, respectively. Conversely, none of the off-ice tests correlated with on-ice repeated shift performance, as measured by first gate, second gate, or total course fatigue; VJ (r = 0.06; r = 0.13; r = 0.09), WRPP (r = 0.06; r = 0.14; r = 0.10), or WRMP (r = -0.10; r = -0.01; r = -0.01). Although conventional off-ice anaerobic power tests predict single bout on-ice acceleration and top speed, they neither predict the repeated shift ability of the player, nor are good markers for performance in ice hockey.

  8. Evaluation, management and prevention of lower extremity youth ice hockey injuries.

    PubMed

    Popkin, Charles A; Schulz, Brian M; Park, Caroline N; Bottiglieri, Thomas S; Lynch, T Sean

    2016-01-01

    Ice hockey is a fast-paced sport played by increasing numbers of children and adolescents in North America and around the world. Requiring a unique blend of skill, finesse, power and teamwork, ice hockey can become a lifelong recreational activity. Despite the rising popularity of the sport, there is ongoing concern about the high frequency of musculoskeletal injury associated with participation in ice hockey. Injury rates in ice hockey are among the highest in all competitive sports. Numerous research studies have been implemented to better understand the risks of injury. As a result, rule changes were adopted by the USA Hockey and Hockey Canada to raise the minimum age at which body checking is permitted to 13-14 years (Bantam level) from 11-12 years (Pee Wee). Continuing the education of coaches, parents and players on rules of safe play, and emphasizing the standards for proper equipment use are other strategies being implemented to make the game safer to play. The objective of this article was to review the evaluation, management and prevention of common lower extremity youth hockey injuries.

  9. On-Ice Return-to-Hockey Progression After Anterior Cruciate Ligament Reconstruction.

    PubMed

    Capin, Jacob J; Behrns, William; Thatcher, Karen; Arundale, Amelia; Smith, Angela Hutchinson; Snyder-Mackler, Lynn

    2017-05-01

    Synopsis The literature pertaining to the rehabilitation of ice hockey players seeking to return to sport after anterior cruciate ligament reconstruction (ACLR) is currently limited. The purpose of this clinical commentary was to present a criterion-based progression for return to ice hockey for athletes after ACLR. First, we review pertinent literature and provide previously published guidelines on general rehabilitation after ACLR. Then, we present a 4-phase, on-ice skating progression with objective criteria to initiate each phase. During the early on-ice phase, the athlete is reintroduced to specific demands, including graded exposure to forward, backward, and crossover skating. In the intermediate on-ice phase, the emphasis shifts to developing power and introducing anticipated changes of direction within a controlled environment. During the late on-ice phase, the focus progresses to developing anaerobic endurance and introducing unanticipated changes of direction, but still without other players or contact. Finally, once objective return-to-sport criteria are met, noncontact team drills, outnumbered and even-numbered drills, practices, scrimmages, and games are progressively reintroduced during the return-to-sport phase. Recommendations for off-ice strength and conditioning exercises complement the on-ice progression. Additionally, we apply the return-to-hockey progression framework to a case report of a female collegiate defensive ice hockey player who returned to sport successfully after ACLR. This criterion-based return-to-hockey progression may guide rehabilitation specialists managing athletes returning to ice hockey after ACLR. J Orthop Sports Phys Ther 2017;47(5):324-333. Epub 29 Mar 2017. doi:10.2519/jospt.2017.7245.

  10. Head-impact mechanisms in men's and women's collegiate ice hockey.

    PubMed

    Wilcox, Bethany J; Machan, Jason T; Beckwith, Jonathan G; Greenwald, Richard M; Burmeister, Emily; Crisco, Joseph J

    2014-01-01

    Concussion injury rates in men's and women's ice hockey are reported to be among the highest of all collegiate sports. Quantification of the frequency of head impacts and the magnitude of head acceleration as a function of the different impact mechanisms (eg, head contact with the ice) that occur in ice hockey could provide a better understanding of this high injury rate. To quantify and compare the per-game frequency and magnitude of head impacts associated with various impact mechanisms in men's and women's collegiate ice hockey players. Cohort study. Collegiate ice hockey rink. Twenty-three men and 31 women from 2 National Collegiate Athletic Association Division I ice hockey teams. We analyzed magnitude and frequency (per game) of head impacts per player among impact mechanisms and between sexes using generalized mixed linear models and generalized estimating equations to account for repeated measures within players. Participants wore helmets instrumented with accelerometers to allow us to collect biomechanical measures of head impacts sustained during play. Video footage from 53 games was synchronized with the biomechanical data. Head impacts were classified into 8 categories: contact with another player; the ice, boards or glass, stick, puck, or goal; indirect contact; and contact from celebrating. For men and women, contact with another player was the most frequent impact mechanism, and contact with the ice generated the greatest-magnitude head accelerations. The men had higher per-game frequencies of head impacts from contact with another player and contact with the boards than did the women (P < .001), and these impacts were greater in peak rotational acceleration (P = .027). Identifying the impact mechanisms in collegiate ice hockey that result in frequent and high-magnitude head impacts will provide us with data that may improve our understanding of the high rate of concussion in the sport and inform injury-prevention strategies.

  11. Evaluation, management and prevention of lower extremity youth ice hockey injuries

    PubMed Central

    Popkin, Charles A; Schulz, Brian M; Park, Caroline N; Bottiglieri, Thomas S; Lynch, T Sean

    2016-01-01

    Ice hockey is a fast-paced sport played by increasing numbers of children and adolescents in North America and around the world. Requiring a unique blend of skill, finesse, power and teamwork, ice hockey can become a lifelong recreational activity. Despite the rising popularity of the sport, there is ongoing concern about the high frequency of musculoskeletal injury associated with participation in ice hockey. Injury rates in ice hockey are among the highest in all competitive sports. Numerous research studies have been implemented to better understand the risks of injury. As a result, rule changes were adopted by the USA Hockey and Hockey Canada to raise the minimum age at which body checking is permitted to 13–14 years (Bantam level) from 11–12 years (Pee Wee). Continuing the education of coaches, parents and players on rules of safe play, and emphasizing the standards for proper equipment use are other strategies being implemented to make the game safer to play. The objective of this article was to review the evaluation, management and prevention of common lower extremity youth hockey injuries. PMID:27920584

  12. The Hip in Ice Hockey: A Current Concepts Review.

    PubMed

    Kuhn, Andrew W; Noonan, Benjamin C; Kelly, Bryan T; Larson, Christopher M; Bedi, Asheesh

    2016-09-01

    Ice hockey is a fast, physical sport with unique associated biomechanical demands often placing the hip in forced and repetitive supraphysiological ranges of motion. Ice hockey players commonly endure and are sidelined by nebulous groin injury or hip pain. Underlying causes can be chronic or acute and extra-articular, intra-articular, or "hip-mimicking." This article serves to review common hip-related injuries in ice hockey. For each, we define the particular condition; comment on risk factors and preventive strategies; discuss key historical, physical examination, and imaging findings; and finally, suggest nonoperative and/or operative treatment plans. Copyright © 2016 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  13. Reducing injury risk from body checking in boys' youth ice hockey.

    PubMed

    Brooks, Alison; Loud, Keith J; Brenner, Joel S; Demorest, Rebecca A; Halstead, Mark E; Kelly, Amanda K Weiss; Koutures, Chris G; LaBella, Cynthia R; LaBotz, Michele; Martin, Stephanie S; Moffatt, Kody

    2014-06-01

    Ice hockey is an increasingly popular sport that allows intentional collision in the form of body checking for males but not for females. There is a two- to threefold increased risk of all injury, severe injury, and concussion related to body checking at all levels of boys' youth ice hockey. The American Academy of Pediatrics reinforces the importance of stringent enforcement of rules to protect player safety as well as educational interventions to decrease unsafe tactics. To promote ice hockey as a lifelong recreational pursuit for boys, the American Academy of Pediatrics recommends the expansion of nonchecking programs and the restriction of body checking to elite levels of boys' youth ice hockey, starting no earlier than 15 years of age.

  14. The Slap Shot in Ice Hockey

    NASA Astrophysics Data System (ADS)

    Cross, Rod; Lindsey, Crawford

    2018-01-01

    An ice hockey player can strike a puck at speeds up to about 45 m/s (100 mph) using a technique known as the slap shot. There is nothing unusual about the speed, since golf balls, tennis balls, and baseballs can also be projected at that speed or even higher. The unusual part is that the player strikes the ice before striking the puck, causing the stick to slow down and to bend. If a tennis player or a golfer did something like that, by hitting the ground before hitting the ball, it would be classed as a miss-hit and the ball would probably dribble away at low speed. Nevertheless, there appears to be a significant advantage in hitting the ice before hitting the puck, otherwise hockey players would have learned from experience not to do that.

  15. Gender in ice hockey: women in a male territory.

    PubMed

    Gilenstam, K; Karp, S; Henriksson-Larsén, K

    2008-04-01

    This study investigates how female ice hockey players describe and explain their situation within as well as outside their sport. Information was obtained by semi-structured interviews with female ice hockey players. The results were analyzed in a gender perspective where the main starting point was the concepts of different levels of power relations in society developed by Harding and applied to sports by Kolnes (the symbolic, structural, and individual level). The study shows that the players appeared to share the traditional views of men and women. They also described gender differences in terms of financial and structural conditions as well as differences in ice hockey history. Even though the players described structural inequalities, they were quite content with their situation and the differences in conditions were not considered when they explained the gender differences in ice hockey performance. At the individual level, the players considered themselves different from other women and appeared to share the traditional views of femininity and masculinity. It has been suggested that performance of a sport traditionally associated with the other sex might alter the traditional view of men and women; however, our results lend little support to this suggestion.

  16. Player and Game Characteristics and Head Impacts in Female Youth Ice Hockey Players.

    PubMed

    Reed, Nick; Taha, Tim; Greenwald, Richard; Keightley, Michelle

    2017-08-01

      Despite the growing popularity of ice hockey among female youth and interest in the biomechanics of head impacts in sport, the head impacts sustained by this population have yet to be characterized.   To describe the number of, biomechanical characteristics of, and exposure to head impacts of female youth ice hockey players during competition and to investigate the influences of player and game characteristics on head impacts.   Cohort study.   Twenty-seven female youth ice hockey players (mean age = 12.5 ± 0.52 years) wore instrumented ice hockey helmets during 66 ice hockey games over a 3-year period. Data specific to player, game, and biomechanical head impact characteristics were recorded. A multiple regression analysis identified factors most associated with head impacts of greater frequency and severity.   A total of 436 total head impacts were sustained during 6924 minutes of active ice hockey participation (0.9 ± 0.6 impacts per player per game; range, 0-2.1). A higher body mass index (BMI) significantly predicted a higher number of head impacts sustained per game (P = .008). Linear acceleration of head impacts was greater in older players and those who played the forward position, had a greater BMI, and spent more time on the ice (P = .008), whereas greater rotational acceleration was present in older players who had a greater BMI and played the forward position (P = .008). During tournament games, increased ice time predicted increased severity of head impacts (P = .03).   This study reveals for the first time that head impacts are occurring in female youth ice hockey players, albeit at a lower rate and severity than in male youth ice hockey players, despite the lack of intentional body checking.

  17. Home disadvantage in professional ice hockey.

    PubMed

    Loignon, Andrew; Gayton, William F; Brown, Melissa; Steinroeder, William; Johnson, Carrie

    2007-06-01

    Occurrence of the home field disadvantage in professional ice hockey was examined by analyzing data on penalty shots from 1983-2004. This datum was used as it does not involve physical contact for only the player taking the penalty shot is involved in the outcome. As a result, inhibition of anxiety associated with physical contact should not occur, and diffusion of responsibility would not occur since only the shooter is involved. Analysis indicated the player who took the penalty shot did not make significantly fewer shots at home than in away games. The result did not support hypotheses about roles of physical contact and diffusion of responsibility in accounting for past failures to find the home disadvantage in professional ice hockey.

  18. Reliability of Triaxial Accelerometry for Measuring Load in Men's Collegiate Ice Hockey.

    PubMed

    Van Iterson, Erik H; Fitzgerald, John S; Dietz, Calvin C; Snyder, Eric M; Peterson, Ben J

    2017-05-01

    Van Iterson, EH, Fitzgerald, JS, Dietz, CC, Snyder, EM, and Peterson, BJ. Reliability of triaxial accelerometry for measuring load in men's collegiate ice hockey. J Strength Cond Res 31(5): 1305-1312, 2017-Wearable microsensor technology incorporating triaxial accelerometry is used to quantify an index of mechanical stress associated with sport-specific movements termed PlayerLoad. The test-retest reliability of PlayerLoad in the environmental setting of ice hockey is unknown. The primary aim of this study was to quantify the test-retest reliability of PlayerLoad in ice hockey players during performance of tasks simulating game conditions. Division I collegiate male ice hockey players (N = 8) wore Catapult Optimeye S5 monitors during repeat performance of 9 ice hockey tasks simulating game conditions. Ordered ice hockey tasks during repeated bouts included acceleration (forward or backward), 60% top-speed, top-speed (forward or backward), repeated shift circuit, ice coasting, slap shot, and bench sitting. Coefficient of variation (CV), intraclass correlation coefficient (ICC), and minimum difference (MD) were used to assess PlayerLoad reliability. Test-retest CVs and ICCs of PlayerLoad were as follows: 8.6% and 0.54 for forward acceleration, 13.8% and 0.78 for backward acceleration, 2.2% and 0.96 for 60% top-speed, 7.5% and 0.79 for forward top-speed, 2.8% and 0.96 for backward top-speed, 26.6% and 0.95 for repeated shift test, 3.9% and 0.68 for slap shot, 3.7% and 0.98 for coasting, and 4.1% and 0.98 for bench sitting, respectively. Raw differences between bouts were not significant for ice hockey tasks (p > 0.05). For each task, between-bout raw differences were lower vs. MD: 0.06 vs. 0.35 (forward acceleration), 0.07 vs. 0.36 (backward acceleration), 0.00 vs. 0.06 (60% top-speed), 0.03 vs. 0.20 (forward top-speed), 0.02 vs. 0.09 (backward top-speed), 0.18 vs. 0.64 (repeated shift test), 0.02 vs. 0.10 (slap shot), 0.00 vs. 0.10 (coasting), and 0.01 vs. 0

  19. Clinical Commentary: On-Ice Return-to-Hockey Progression After Anterior Cruciate Ligament Reconstruction

    PubMed Central

    Capin, Jacob J.; Behrns, William; Thatcher, Karen; Arundale, Amelia; Smith, Angela Hutchinson; Snyder-Mackler, Lynn

    2017-01-01

    SYNOPSIS Limited literature exists pertaining to rehabilitation of ice hockey players seeking to return-to-sport after anterior cruciate ligament reconstruction (ACLR). The purpose of this clinical commentary is to present a criterion-based, return-to-ice hockey progression for athletes after ACLR. First, we review pertinent literature and provide previously published guidelines on general rehabilitation after ACLR. Then, we present a four-phase, on-ice skating progression with objective criteria to initiate each phase. During the early on-ice phase, the athlete is reintroduced to specific demands, including graded exposure to forward, backward, and crossover skating. In the intermediate on-ice phase, the emphasis shifts to developing power and introducing anticipated changes of direction within a controlled environment. During the late on-ice phase, the focus progresses to developing anaerobic endurance and introducing unanticipated changes of direction, but still without other players or contact. Finally, once objective return-to-sport criteria are met, non-contact team drills, outnumbered and even-numbered drills, practices, scrimmages, and games are progressively reintroduced during the return-to-sport phase. Recommendations for off-ice strength and conditioning exercises complement the on-ice progression. Additionally, we apply the return-to-hockey progression framework to a case report of a female collegiate defensive ice hockey player who returned to sport successfully after ACLR. This criterion-based return-to-hockey progression may guide rehabilitation specialists managing athletes returning to ice hockey after ACLR. PMID:28355976

  20. Re-examining the home disadvantage in professional ice hockey.

    PubMed

    Gayton, William F; Perry, Scott M; Loignon, Andrew C; Ricker, Angela

    2011-04-01

    Occurrence of the home disadvantage in professional ice hockey was examined by analyzing shootout data from 2005 through 2008. Results indicated that teams involved in shootouts playing at their home arenas did not lose significantly more games at home than on the road. Results did not support the hypotheses that emphasize the roles of physical contact and diffusion of responsibility in accounting for past failures to find the home disadvantage in professional ice hockey.

  1. Injuries in men's international ice hockey: a 7-year study of the International Ice Hockey Federation Adult World Championship Tournaments and Olympic Winter Games

    PubMed Central

    Tuominen, Markku; Stuart, Michael J; Aubry, Mark; Kannus, Pekka; Parkkari, Jari

    2015-01-01

    Background Information on ice hockey injuries at the international level is very limited. The aim of the study was to analyse the incidence, type, mechanism and severity of ice hockey injuries in men's international ice hockey tournaments. Methods All the injuries in men's International Ice Hockey Federation World Championship tournaments over a 7-year period were analysed using a strict definition of injury, standardised reporting strategies and an injury diagnosis made by a team physician. Results 528 injuries were recorded in games resulting in an injury rate of 14.2 per 1000 player-games (52.1/1000 player-game hours). Additionally, 27 injuries occurred during practice. For WC A-pool Tournaments and Olympic Winter Games (OWG) the injury rate was 16.3/1000 player-games (59.6/1000 player-game hours). Body checking, and stick and puck contact caused 60.7% of the injuries. The most common types of injuries were lacerations, sprains, contusions and fractures. A laceration was the most common facial injury and was typically caused by a stick. The knee was the most frequently injured part of the lower body and the shoulder was the most common site of an upper body injury. Arenas with flexible boards and glass reduced the risk of injury by 29% (IRR 0.71, (95% CI 0.56 to 0.91)). Conclusions The incidence of injury during international ice hockey competition is relatively high. Arena characteristics, such as flexible boards and glass, appeared to reduce the risk of injury. PMID:25293341

  2. Physiological correlates of skating performance in women's and men's ice hockey.

    PubMed

    Gilenstam, Kajsa M; Thorsen, Kim; Henriksson-Larsén, Karin B

    2011-08-01

    The purpose of the current investigation was to identify relationships between physiological off-ice tests and on-ice performance in female and male ice hockey players on a comparable competitive level. Eleven women, 24 ± 3.0 years, and 10 male ice hockey players, 23 ± 2.4 years, were tested for background variables: height, body weight (BW), ice hockey history, and lean body mass (LBM) and peak torque (PT) of the thigh muscles, VO2peak and aerobic performance (Onset of Blood Lactate Accumulation [OBLA], respiratory exchange ratio [RER1]) during an incremental bicycle ergometer test. Four different on-ice tests were used to measure ice skating performance. For women, skating time was positively correlated (p < 0.05) to BW and negatively correlated to LBM%, PT/BW, OBLA, RER 1, and VO2peak (ml O2·kg(-1) BW(-1)·min(-1)) in the Speed test. Acceleration test was positively correlated to BW and negatively correlated to OBLA and RER 1. For men, correlation analysis revealed only 1 significant correlation where skating time was positively correlated to VO2peak (L O2·min(-1)) in the Acceleration test. The male group had significantly higher physiological test values in all variables (absolute and relative to BW) but not in relation to LBM. Selected off-ice tests predict skating performance for women but not for men. The group of women was significantly smaller and had a lower physiological performance than the group of men and were slower in the on-ice performance tests. However, gender differences in off-ice variables were reduced or disappeared when values were related to LBM, indicating a similar capacity of producing strength and aerobic power in female and male hockey players. Skating performance in female hockey players may be improved by increasing thigh muscle strength, oxygen uptake, and relative muscle mass.

  3. Morphological, Physiological and Skating Performance Profiles of Male Age-Group Elite Ice Hockey Players.

    PubMed

    Allisse, Maxime; Sercia, Pierre; Comtois, Alain-Steve; Leone, Mario

    2017-09-01

    The purpose of this study was to describe the evolution of morphological, physiological and skating performance profiles of elite age-group ice hockey players based on repeated measures spread over one season. In addition, the results of fitness tests and training programs performed in off-ice conditions and their relationship with skating performance were analyzed. Eighteen high level age-group ice hockey players (13.1 ± 0.6 years) were assessed off and on-ice at the beginning and at the end of the hockey season. A third evaluation was also conducted at the beginning of the following hockey season. The players were taller, heavier, and showed bone breadths and muscle girths above the reference population of the same age. Muscular variables improved significantly during and between the two hockey seasons (p < 0.05). However, maximal aerobic power improved only during the off-season. All skating performance tests exhibited significant enhancements during the hockey season, but not during the off-season where some degradation was observed. Finally, weak observed variances (generally <20% of the explained variance) between physiological variables measured off-ice and on-ice skating performance tests indicated important gaps, both in the choice of the off-ice assessment tools as well as in training methods conventionally used. The reflection on the best way to assess and train hockey players certainly deserves to be continued.

  4. Morphological, Physiological and Skating Performance Profiles of Male Age-Group Elite Ice Hockey Players

    PubMed Central

    Allisse, Maxime; Sercia, Pierre; Comtois, Alain-Steve; Leone, Mario

    2017-01-01

    Abstract The purpose of this study was to describe the evolution of morphological, physiological and skating performance profiles of elite age-group ice hockey players based on repeated measures spread over one season. In addition, the results of fitness tests and training programs performed in off-ice conditions and their relationship with skating performance were analyzed. Eighteen high level age-group ice hockey players (13.1 ± 0.6 years) were assessed off and on-ice at the beginning and at the end of the hockey season. A third evaluation was also conducted at the beginning of the following hockey season. The players were taller, heavier, and showed bone breadths and muscle girths above the reference population of the same age. Muscular variables improved significantly during and between the two hockey seasons (p < 0.05). However, maximal aerobic power improved only during the off-season. All skating performance tests exhibited significant enhancements during the hockey season, but not during the off-season where some degradation was observed. Finally, weak observed variances (generally <20% of the explained variance) between physiological variables measured off-ice and on-ice skating performance tests indicated important gaps, both in the choice of the off-ice assessment tools as well as in training methods conventionally used. The reflection on the best way to assess and train hockey players certainly deserves to be continued. PMID:28828080

  5. The Slap Shot in Ice Hockey

    ERIC Educational Resources Information Center

    Cross, Rod; Lindsey, Crawford

    2018-01-01

    An ice hockey player can strike a puck at speeds up to about 45 m/s (100 mph) using a technique known as the slap shot. There is nothing unusual about the speed, since golf balls, tennis balls, and baseballs can also be projected at that speed or even higher. The unusual part is that the player strikes the ice before striking the puck, causing the…

  6. Hypothenar hammer syndrome from ice hockey stick-handling.

    PubMed

    Zayed, Mohamed A; McDonald, Joey; Tittley, Jacques G

    2013-11-01

    Ulnar artery thrombosis and hypothenar hammer syndrome are rare vascular complications that could potentially occur with repeated blows or trauma to the hand. Although initially reported as an occupational hazard among laborers and craftsmen, it has been observed more recently among recreationalists and athletes. Until now, it has never been reported as a complication in ice hockey players. In this case report, a 26-year-old Canadian professional ice hockey player presented with acute dominant right hand paleness, coolness, and pain with hand use. The patient used a wooden hockey stick with a large knob of tape at the end of the handle, which he regularly gripped in the palm of his right hand to help with face-offs and general stick-handling. Sonographic evaluation demonstrated no arterial flow in the distal right ulnar artery distribution, and ulnar artery occlusion with no aneurysmal degeneration was confirmed by magnetic resonance angiogram. Intraarterial thrombolytic therapy was initiated, and subsequent serial angiograms demonstrated significant improvement in distal ulnar artery flow as well as recanalization of right hand deep palmar arch and digital arteries. The patient's symptoms resolved, and he was maintained on therapeutic anticoagulation for 3 months prior to returning to playing ice hockey professionally, but with a padded glove and no tape knob at the handle tip. This case highlights a unique presentation of hockey stick-handling causing ulnar artery thrombosis that was likely from repeated palmar hypothenar trauma. Appropriate diagnostic imaging, early intraarterial thrombolysis, and postoperative surveillance and follow-up were crucial for the successful outcome in this patient. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. The effect of a complex training program on skating abilities in ice hockey players.

    PubMed

    Lee, Changyoung; Lee, Sookyung; Yoo, Jaehyun

    2014-04-01

    [Purpose] Little data exist on systemic training programs to improve skating abilities in ice hockey players. The purpose of this study was to evaluate the effectiveness of a complex training program on skating abilities in ice hockey players. [Methods] Ten male ice hockey players (training group) that engaged in 12 weeks of complex training and skating training and ten male players (control group) that only participated in 12 weeks of skating training completed on-ice skating tests including a 5 time 18 meters shuttle, t-test, Rink dash 5 times, and line drill before, during, and the training. [Results] Significant group-by-time interactions were found in all skating ability tests. [Conclusion] The complex training program intervention for 12 weeks improved their skating abilities of the ice hockey players.

  8. The Effect of a Complex Training Program on Skating Abilities in Ice Hockey Players

    PubMed Central

    Lee, Changyoung; Lee, Sookyung; Yoo, Jaehyun

    2014-01-01

    [Purpose] Little data exist on systemic training programs to improve skating abilities in ice hockey players. The purpose of this study was to evaluate the effectiveness of a complex training program on skating abilities in ice hockey players. [Methods] Ten male ice hockey players (training group) that engaged in 12 weeks of complex training and skating training and ten male players (control group) that only participated in 12 weeks of skating training completed on-ice skating tests including a 5 time 18 meters shuttle, t-test, Rink dash 5 times, and line drill before, during, and the training. [Results] Significant group-by-time interactions were found in all skating ability tests. [Conclusion] The complex training program intervention for 12 weeks improved their skating abilities of the ice hockey players. PMID:24764628

  9. PHYSICAL THERAPY MANAGEMENT OF ICE HOCKEY ATHLETES: FROM THE RINK TO THE CLINIC AND BACK.

    PubMed

    Wolfinger, Christopher R; Davenport, Todd E

    2016-06-01

    The increasing number of athletes playing hockey compels rehabilitation professionals working in orthopedic and sports settings to understand the unique functional demands of ice hockey and the patterns of injuries they may promote. The purpose of this clinical perspective is to: (1) discuss the functional implications of different positions and age levels on injury prevalence within the sport; (2) summarize the seven most common injuries sustained by ice hockey athletes; and (3) present a conceptual model for the clinical management and prevention of these injuries by rehabilitation professionals. A narrative review and synthesis was conducted of currently available literature on prevalence, etiology, rehabilitative intervention, prognosis, and prevention of ice hockey injuries. Research evidence is available to support the prevalence of injuries sustained while participating in ice hockey, as well as the most effective clinical treatment protocols to treat them. Most of the existing protocols are based on clinical and sports experience with incorporation of scientific data. This clinical commentary reviews the current concepts of ice hockey injury care and prevention, based on scientific information regarding the incidence, mechanism, rehabilitation protocols, prognosis, and prevention of injuries. Science-based, patient-centered reasoning is integral to provide the highest quality of rehabilitative and preventative care for ice hockey athletes by physical therapists. 5.

  10. Are There Differences in Ice Hockey Injuries Between Sexes?: A Systematic Review.

    PubMed

    MacCormick, Lauren; Best, Thomas M; Flanigan, David C

    2014-01-01

    Men's ice hockey allows for body checking, and women's ice hockey prohibits it. Studies have reported injury data on both sexes, but no systematic reviews have compared the injury patterns between male and female ice hockey players. Men's and women's ice hockey would have different types of injuries, and this difference would extend across the different age groups and levels of play. Systematic review; Level of evidence, 4. Three databases, 3 scientific journals, and selected bibliographies were searched to identify articles relevant to this study. Articles were further screened by the use of predetermined inclusion and exclusion criteria. Twenty-two studies met these criteria and were subsequently reviewed. Men sustained higher rates of injuries than women at all age levels, and both sexes sustained at least twice as many injuries in games than practices. Both sexes sustained most of their injuries from player contact. Men and women in college sustained most injuries to the head and face, and women suffered from higher percentages of concussion. At all ages and levels of play, men had higher rates of upper extremity injuries (shoulder), while women were found to sustain more injuries to the lower extremity (thigh, knee). Although findings showed men sustaining higher rates of injuries than women, the predominant mechanism of player contact was the same. The most common locations and types of injuries in female ice hockey players are comparable to other sports played by women, and similar interventions could offer protection against injury. Further studies that report injury data for women playing ice hockey at all levels will assist in understanding what prevention strategies should be implemented.

  11. The usefulness and reliability of fitness testing protocols for ice hockey players: a literature review.

    PubMed

    Nightingale, Steven C; Miller, Stuart; Turner, Anthony

    2013-06-01

    Ice hockey, like most sports, uses fitness testing to assess athletes. This study reviews the current commonly used fitness testing protocols for ice hockey players, discussing their predictive values and reliability. It also discusses a range of less commonly used measures and limitations in current testing protocols. The article concludes with a proposed testing program suitable for ice hockey players.

  12. Predictors of injury in ice hockey players. A multivariate, multidisciplinary approach.

    PubMed

    Smith, A M; Stuart, M J; Wiese-Bjornstal, D M; Gunnon, C

    1997-01-01

    Eighty-six male high school ice hockey players participated in this prospective study to determine both the incidence of injury in high school ice hockey and the influence of physical, situational, and psychosocial factors. Physical factors included height, weight, vision, previous injuries, musculoskeletal abnormalities, and injuries present at the time of screening evaluations. Situational factors examined were level of participation, playing time, player position, and games versus practices. Psychosocial factors such as confidence, stress, social support, positive states of mind, and mood states were also examined to determine their influences on injury. Twenty-seven injuries occurred during the 1994 to 1995 season. As hypothesized, the overall incidence of injury in high school hockey games (34.4 per 1000 player-game hours) was less than the incidence of injury in Junior A hockey (96.1 per 1000 player-game hours) and was more than previously reported for Bantam youth hockey (10.9 per 1000 player-game hours). Injuries occurred more often in games than in practices, usually as a result of collisions. Physical factors such as player position and previous injuries did not significantly predict injuries, but players in the high playing time group were more likely to be injured. Psychosocial factors of low vigor and high fatigue as measured by the Incredibly Short Profile of Mood States (ISPOMS) significantly predicted high school ice hockey injuries.

  13. PHYSICAL THERAPY MANAGEMENT OF ICE HOCKEY ATHLETES: FROM THE RINK TO THE CLINIC AND BACK

    PubMed Central

    Davenport, Todd E.

    2016-01-01

    ABSTRACT Background The increasing number of athletes playing hockey compels rehabilitation professionals working in orthopedic and sports settings to understand the unique functional demands of ice hockey and the patterns of injuries they may promote. Purpose The purpose of this clinical perspective is to: (1) discuss the functional implications of different positions and age levels on injury prevalence within the sport; (2) summarize the seven most common injuries sustained by ice hockey athletes; and (3) present a conceptual model for the clinical management and prevention of these injuries by rehabilitation professionals. Methods A narrative review and synthesis was conducted of currently available literature on prevalence, etiology, rehabilitative intervention, prognosis, and prevention of ice hockey injuries. Results Research evidence is available to support the prevalence of injuries sustained while participating in ice hockey, as well as the most effective clinical treatment protocols to treat them. Most of the existing protocols are based on clinical and sports experience with incorporation of scientific data. Conclusion This clinical commentary reviews the current concepts of ice hockey injury care and prevention, based on scientific information regarding the incidence, mechanism, rehabilitation protocols, prognosis, and prevention of injuries. Science-based, patient-centered reasoning is integral to provide the highest quality of rehabilitative and preventative care for ice hockey athletes by physical therapists. Level of Evidence 5 PMID:27274432

  14. Relationship between Physiological Off-Ice Testing, On-Ice Skating, and Game Performance in Division I Women's Ice Hockey Players.

    PubMed

    Boland, Michelle; Miele, Emily M; Delude, Katie

    2017-10-07

    The purpose was to identify off-ice testing variables that correlate to skating and game performance in Division I collegiate women ice hockey players. Twenty female, forward and defensive players (19.95 ± 1.35 yr) were assessed for weight, height, percent fat mass (%FAT), bone mineral density, predicted one repetition maximum (RM) absolute and relative (REL%) bench press (BP) and hex bar deadlift (HDL), lower body explosive power, anaerobic power, countermovement vertical jump (CMJ), maximum inspiratory pressure (MIP), and on-ice repeated skate sprint (RSS) performance. The on-ice RSS test included 6 timed 85.6 m sprints with participants wearing full hockey equipment; fastest time (FT), average time (AT) and fatigue index (FI) for the first length skate (FLS; 10 m) and total length skate (TLS; 85.6 m) were used for analysis. Game performance was evaluated with game statistics: goals, assists, points, plus-minus, and shots on goal (SOG). Correlation coefficients were used to determine relationships. Percent fat mass was positively correlated (p < 0.05) with FLS-FI and TLS-AT; TLS-FT was negatively correlated with REL%HDL; BP-RM was negatively correlated with FLS-FT and FLS-AT; MIP positively correlated with assists, points, and SOG; FLS-AT negatively correlated with assists. Game performance in women ice hockey players may be enhanced by greater MIP, repeat acceleration ability, and mode-specific training. Faster skating times were associated with lower %FAT. Skating performance in women ice hockey players may be enhanced by improving body composition, anaerobic power, and both lower and upper body strength in off-ice training.

  15. Conservative management of an elite ice hockey goaltender with femoroacetabular impingement (FAI): a case report.

    PubMed

    MacIntyre, Kyle; Gomes, Brendan; MacKenzie, Steven; D'Angelo, Kevin

    2015-12-01

    To detail the presentation of an elite male ice hockey goaltender with cam-type femoroacetabular impingement (FAI) and acetabular labral tears. This case will outline the prevalence, clinical presentation, imaging criteria, pathomechanics, and management of FAI, with specific emphasis on the ice hockey goaltender. A 22-year old retired ice hockey goaltender presented to a chiropractor after being diagnosed by an orthopaedic surgeon with MRI confirmed left longitudinal and chondral flap acetabular labral tears and cam-type femoroacetabular impingement (FAI). As the patient was not a candidate for surgical intervention, a multimodal conservative treatment approach including manual therapy, electroacupuncture and rehabilitation exercises were implemented. FAI is prevalent in ice hockey players, particularly with goaltenders. Both skating and position-dependent hip joint mechanics involved in ice hockey may exacerbate or contribute to acquired and congenital forms of symptomatic FAI. As such, practitioners managing this population must address sport-specific demands in manual therapy, rehabilitation and physical training, to improve functional outcomes and prevent future injury.

  16. Conservative management of an elite ice hockey goaltender with femoroacetabular impingement (FAI): a case report

    PubMed Central

    MacIntyre, Kyle; Gomes, Brendan; MacKenzie, Steven; D’Angelo, Kevin

    2015-01-01

    Objective: To detail the presentation of an elite male ice hockey goaltender with cam-type femoroacetabular impingement (FAI) and acetabular labral tears. This case will outline the prevalence, clinical presentation, imaging criteria, pathomechanics, and management of FAI, with specific emphasis on the ice hockey goaltender. Clinical Features: A 22-year old retired ice hockey goaltender presented to a chiropractor after being diagnosed by an orthopaedic surgeon with MRI confirmed left longitudinal and chondral flap acetabular labral tears and cam-type femoroacetabular impingement (FAI). As the patient was not a candidate for surgical intervention, a multimodal conservative treatment approach including manual therapy, electroacupuncture and rehabilitation exercises were implemented. Summary: FAI is prevalent in ice hockey players, particularly with goaltenders. Both skating and position-dependent hip joint mechanics involved in ice hockey may exacerbate or contribute to acquired and congenital forms of symptomatic FAI. As such, practitioners managing this population must address sport-specific demands in manual therapy, rehabilitation and physical training, to improve functional outcomes and prevent future injury. PMID:26816416

  17. An on-ice measurement approach to analyse the biomechanics of ice hockey skating.

    PubMed

    Buckeridge, Erica; LeVangie, Marc C; Stetter, Bernd; Nigg, Sandro R; Nigg, Benno M

    2015-01-01

    Skating is a fundamental movement in ice hockey; however little research has been conducted within the field of hockey skating biomechanics due to the difficulties of on-ice data collection. In this study a novel on-ice measurement approach was tested for reliability, and subsequently implemented to investigate the forward skating technique, as well as technique differences across skill levels. Nine high caliber (High) and nine low caliber (Low) hockey players performed 30 m forward skating trials. A 3D accelerometer was mounted to the right skate for the purpose of stride detection, with the 2nd and 6th strides defined as acceleration and steady-state, respectively. The activity of five lower extremity muscles was recorded using surface electromyography. Biaxial electro-goniometers were used to quantify hip and knee angles, and in-skate plantar force was measured using instrumented insoles. Reliability was assessed with the coefficient of multiple correlation, which demonstrated moderate (r>0.65) to excellent (r>0.95) scores across selected measured variables. Greater plantar-flexor muscle activity and hip extension were evident during acceleration strides, while steady state strides exhibited greater knee extensor activity and hip abduction range of motion (p<0.05). High caliber exhibited greater hip range of motion and forefoot force application (p<0.05). The successful implementation of this on-ice mobile measurement approach offers potential for athlete monitoring, biofeedback and training advice.

  18. Mechanisms of injury for concussions in university football, ice hockey, and soccer.

    PubMed

    Delaney, J Scott; Al-Kashmiri, Ammar; Correa, José A

    2014-05-01

    To examine the mechanisms of injury for concussions in university football, ice hockey, and soccer. Prospective cohort design. McGill University Sport Medicine Clinic. Male and female athletes participating in varsity football, ice hockey, and soccer. Athletes were followed prospectively over a 10-year period to determine the mechanisms of injury for concussions and whether contact with certain areas of the body or individual variables predisposed to longer recovery from concussions. For soccer, data were collected on whether concussions occurred while attempting to head the ball. There were 226 concussions in 170 athletes over the study period. The side/temporal area of the head or helmet was the most common area to be struck resulting in concussion in all 3 sports. Contact from another player's head or helmet was the most probable mechanism in football and soccer. In hockey, concussion impacts were more likely to occur from contact with another body part or object rather than another head/helmet. Differences in mechanisms of injuries were found between males and females in soccer and ice hockey. Athletes with multiple concussions took longer to return to play with each subsequent concussion. Half of the concussions in soccer were related to attempting to head the soccer ball. The side of the head or helmet was the most common area to be struck resulting in concussion in all 3 sports. In ice hockey and soccer, there are differences in the mechanisms of injury for males and females within the same sport.

  19. The Relationship of Various Psychosocial Variables on the Positioning of College Ice Hockey Players.

    ERIC Educational Resources Information Center

    Krotee, March L.; La Point, James D.

    This paper presents the results of research conducted to investigate the relationship of various psychosocial variables on the positioning of college ice hockey players. The California Personality Inventory (CPI) was administered to the NCAA Championship ice hockey team at the University of Minnesota, and a separate subjective psychosocial rating…

  20. An On-Ice Measurement Approach to Analyse the Biomechanics of Ice Hockey Skating

    PubMed Central

    Buckeridge, Erica; LeVangie, Marc C.; Stetter, Bernd; Nigg, Sandro R.; Nigg, Benno M.

    2015-01-01

    Skating is a fundamental movement in ice hockey; however little research has been conducted within the field of hockey skating biomechanics due to the difficulties of on-ice data collection. In this study a novel on-ice measurement approach was tested for reliability, and subsequently implemented to investigate the forward skating technique, as well as technique differences across skill levels. Nine high caliber (High) and nine low caliber (Low) hockey players performed 30m forward skating trials. A 3D accelerometer was mounted to the right skate for the purpose of stride detection, with the 2nd and 6th strides defined as acceleration and steady-state, respectively. The activity of five lower extremity muscles was recorded using surface electromyography. Biaxial electro-goniometers were used to quantify hip and knee angles, and in-skate plantar force was measured using instrumented insoles. Reliability was assessed with the coefficient of multiple correlation, which demonstrated moderate (r>0.65) to excellent (r>0.95) scores across selected measured variables. Greater plantar-flexor muscle activity and hip extension were evident during acceleration strides, while steady state strides exhibited greater knee extensor activity and hip abduction range of motion (p<0.05). High caliber exhibited greater hip range of motion and forefoot force application (p<0.05). The successful implementation of this on-ice mobile measurement approach offers potential for athlete monitoring, biofeedback and training advice. PMID:25973775

  1. Improvement of Ice Hockey Players' On-Ice Sprint With Combined Plyometric and Strength Training.

    PubMed

    Dæhlin, Torstein E; Haugen, Ole C; Haugerud, Simen; Hollan, Ivana; Raastad, Truls; Rønnestad, Bent R

    2017-08-01

    Combined plyometric and strength training has previously been suggested as a strategy to improve skating performance in ice hockey players. However, the effects of combined plyometric and strength training have not previously been compared with the effects of strength training only. To compare the effects of combined plyometric and strength training on ice hockey players' skating sprint performance with those of strength training only. Eighteen participants were randomly assigned to 2 groups that completed 5 strength-training sessions/wk for 8 wk. One group included plyometric exercises at the start of 3 sessions/wk (PLY+ST), and the other group included core exercises in the same sessions (ST). Tests of 10- and 35-m skating sprints, horizontal jumping, 1-repetition-maximum (1 RM) squat, skating multistage aerobic test (SMAT), maximal oxygen consumption, repeated cycle sprints, and body composition were performed before and after the intervention. The participants increased their 1RM squat, lean mass, and body mass (P < .05), with no difference between the groups. Furthermore, they improved their 3×broad jump, repeated cycle sprint, and SMAT performance (P < .05), with no difference between the groups. PLY+ST gained a larger improvement in 10-m on-ice sprint performance than ST (P < .025). Combining plyometric and strength training for 8 wk was superior to strength training alone at improving 10-m on-ice sprint performance in high-level ice hockey players.

  2. Do physical maturity and birth date predict talent in male youth ice hockey players?

    PubMed

    Sherar, Lauren B; Baxter-Jones, Adam D G; Faulkner, Robert A; Russell, Keith W

    2007-06-01

    The aim of this study was to examine the relationships among biological maturity, physical size, relative age (i.e. birth date), and selection into a male Canadian provincial age-banded ice hockey team. In 2003, 619 male ice hockey players aged 14-15 years attended Saskatchewan provincial team selection camps, 281 of whom participated in the present study. Data from 93 age-matched controls were obtained from the Saskatchewan Pediatric Bone Mineral Accrual Study (1991-1997). During the initial selection camps, birth dates, heights, sitting heights, and body masses were recorded. Age at peak height velocity, an indicator of biological maturity, was determined in the controls and predicted in the ice hockey players. Data were analysed using one-way analysis of variance, logistic regression, and a Kolmogorov-Smirnov test. The ice hockey players selected for the final team were taller, heavier, and more mature (P < 0.05) than both the unselected players and the age-matched controls. Furthermore, age at peak height velocity predicted (P < 0.05) being selected at the first and second selection camps. The birth dates of those players selected for the team were positively skewed, with the majority of those selected being born in the months January to June. In conclusion, team selectors appear to preferentially select early maturing male ice hockey players who have birth dates early in the selection year.

  3. Skating start propulsion: three-dimensional kinematic analysis of elite male and female ice hockey players.

    PubMed

    Shell, Jaymee R; Robbins, Shawn M K; Dixon, Philippe C; Renaud, Philippe J; Turcotte, René A; Wu, Tom; Pearsall, David J

    2017-09-01

    The forward skating start is a fundamental skill for male and female ice hockey players. However, performance differences by athlete's sex cannot be fully explained by physiological variables; hence, other factors such as skating technique warrant examination. Therefore, the purpose of this study was to evaluate the body movement kinematics of ice hockey skating starts between elite male and female ice hockey participants. Male (n = 9) and female (n = 10) elite ice hockey players performed five forward skating start accelerations. An 18-camera motion capture system placed on the arena ice surface captured full-body kinematics during the first seven skating start steps within 15 meters. Males' maximum skating speeds were greater than females. Skating technique sex differences were noted: in particular, females presented ~10° lower hip abduction throughout skating stance as well as ~10° greater knee extension at initial ice stance contact, conspicuously followed by a brief cessation in knee extension at the moment of ice contact, not evident in male skaters. Further study is warranted to explain why these skating technique differences exist in relation to factors such as differences in training, equipment, performance level, and anthropometrics.

  4. Carbon Monoxide Exposure in Youth Ice Hockey.

    PubMed

    Macnow, Theodore; Mannix, Rebekah; Meehan, William P

    2017-11-01

    To examine the effect of ice resurfacer type on carboxyhemoglobin levels in youth hockey players. We hypothesized that players in arenas with electric resurfacers would have normal, stable carboxyhemoglobin levels during games, whereas those in arenas with internal combustion engine (IC) resurfacers would have an increase in carboxyhemoglobin levels. Prospective cohort study. Enclosed ice arenas in the northeastern United States. Convenience sample of players aged 8 to 18 years old in 16 games at different arenas. Eight arenas (37 players) used an IC ice resurfacer and 8 arenas (36 players) an electric resurfacer. Carboxyhemoglobin levels (SpCO) were measured using a pulse CO-oximeter before and after the game. Arena air was tested for carbon monoxide (CO) using a metered gas detector. Players completed symptom questionnaires. The change in SpCO from pregame to postgame was compared between players at arenas with electric versus IC resurfacers. Carbon monoxide was present at 6 of 8 arenas using IC resurfacers, levels ranged from 4 to 42 parts per million. Carbon monoxide was not found at arenas with electric resurfacers. Players at arenas with IC resurfacers had higher median pregame SpCO levels compared with those at electric arenas (4.3% vs 1%, P < 0.01). Players in the IC group also had a significant increase in their SpCO level during a hockey game compared with those in the electric group (2.8% vs 1%, P = 0.01). There were no significant differences in symptom scores. Players at arenas operating IC resurfacers had significantly higher SpCO levels. Youth hockey players in arenas with IC resurfacers have an increase in carboxyhemoglobin during games and have elevated baseline carboxyhemoglobin levels compared with players at arenas with electric resurfacers. Electric resurfacers decrease the risk of CO exposure.

  5. Adolescent perspectives of the recreational ice hockey food environment and influences on eating behaviour revealed through photovoice.

    PubMed

    Caswell, M Susan; Hanning, Rhona M

    2018-05-01

    Unhealthy dietary behaviours are prevalent among adolescents. This might relate, in part, to obesogenic environments, including recreation food facilities. The REFRESH Study (Recreation Environment and Food Research: Experiences from Hockey) aimed to explore, from the perspectives of adolescent ice hockey players and parents, broad social and physical environmental influences on adolescent food behaviours associated with hockey participation. Players used photovoice to describe their food experiences in relation to ice hockey. The approach included photos, individual interviews and focus groups. Exemplar photographs were exhibited for stakeholders, including five parents who were interviewed. Interview and focus group transcripts were thematically analysed. Recreational ice hockey environment, Ontario, Canada, 2015-16. Ice hockey players (n 24) aged 11-15 years recruited from five leagues. Dominant influences among players included: their perceived importance of nutrients (e.g. protein) or foods (e.g. chocolate milk) for performance and recovery; marketing and branding (e.g. the pro-hockey aura of Tim Horton's®, Canada's largest quick-service restaurant); social aspects of tournaments and team meals; and moral values around 'right' and 'wrong' food choices. Both players and parents perceived recreational facility food options as unhealthy and identified that travel and time constraints contributed to less healthy choices. Results indicate recreation facilities are only one of a range of environments that influence eating behaviours of adolescent ice hockey players. Players' susceptibility to advertising/brand promotion and the value of healthy food choices for performance are findings that can inform policy and interventions to support healthy environments and behaviours.

  6. The Relationship Between Maximal Aerobic Power and Recovery in Elite Ice Hockey Players During a Simulated Game.

    PubMed

    Steeves, Darren; Campagna, Phil

    2018-02-14

    This project investigated whether there was a relationship between maximal aerobic power and the recovery or performance in elite ice hockey players during a simulated hockey game. An on-ice protocol was used to simulate a game of ice hockey. Recovery values were determined by the differences in lactate and heart rate measures. Total distance traveled was also recorded as a performance measure. On two other days, subjects returned and completed a maximal aerobic power test on a treadmill and a maximal lactate test on ice. Statistical analysis showed no relationship between maximal aerobic power or maximal lactate values and recovery (heart rate, lactate) or the performance measure of distance traveled. It was concluded there was no relationship between maximal aerobic power and recovery during a simulated game in elite hockey players.

  7. Aggression, Violence and Injury in Minor League Ice Hockey: Avenues for Prevention of Injury.

    PubMed

    Cusimano, Michael D; Ilie, Gabriela; Mullen, Sarah J; Pauley, Christopher R; Stulberg, Jennifer R; Topolovec-Vranic, Jane; Zhang, Stanley

    2016-01-01

    In North America, more than 800,000 youth are registered in organized ice hockey leagues. Despite the many benefits of involvement, young players are at significant risk for injury. Body-checking and aggressive play are associated with high frequency of game-related injury including concussion. We conducted a qualitative study to understand why youth ice hockey players engage in aggressive, injury-prone behaviours on the ice. Semi-structured interviews were conducted with 61 minor ice hockey participants, including male and female players, parents, coaches, trainers, managers and a game official. Players were aged 13-15 playing on competitive body checking teams or on non-body checking teams. Interviews were manually transcribed, coded and analyzed for themes relating to aggressive play in minor ice hockey. Parents, coaches, teammates and the media exert a large influence on player behavior. Aggressive behavior is often reinforced by the player's social environment and justified by players to demonstrate loyalty to teammates and especially injured teammates by seeking revenge particularly in competitive, body-checking leagues. Among female and male players in non-body checking organizations, aggressive play is not reinforced by the social environment. These findings are discussed within the framework of social identity theory and social learning theory, in order to understand players' need to seek revenge and how the social environment reinforces aggressive behaviors. This study provides a better understanding of the players' motivations and environmental influences around aggressive and violent play which may be conducive to injury. The findings can be used to help design interventions aimed at reducing aggression and related injuries sustained during ice hockey and sports with similar cultures and rules.

  8. Aggression, Violence and Injury in Minor League Ice Hockey: Avenues for Prevention of Injury

    PubMed Central

    Cusimano, Michael D.; Ilie, Gabriela; Mullen, Sarah J.; Pauley, Christopher R.; Stulberg, Jennifer R.; Topolovec-Vranic, Jane; Zhang, Stanley

    2016-01-01

    Background In North America, more than 800,000 youth are registered in organized ice hockey leagues. Despite the many benefits of involvement, young players are at significant risk for injury. Body-checking and aggressive play are associated with high frequency of game-related injury including concussion. We conducted a qualitative study to understand why youth ice hockey players engage in aggressive, injury-prone behaviours on the ice. Methods Semi-structured interviews were conducted with 61 minor ice hockey participants, including male and female players, parents, coaches, trainers, managers and a game official. Players were aged 13–15 playing on competitive body checking teams or on non-body checking teams. Interviews were manually transcribed, coded and analyzed for themes relating to aggressive play in minor ice hockey. Results Parents, coaches, teammates and the media exert a large influence on player behavior. Aggressive behavior is often reinforced by the player’s social environment and justified by players to demonstrate loyalty to teammates and especially injured teammates by seeking revenge particularly in competitive, body-checking leagues. Among female and male players in non-body checking organizations, aggressive play is not reinforced by the social environment. These findings are discussed within the framework of social identity theory and social learning theory, in order to understand players’ need to seek revenge and how the social environment reinforces aggressive behaviors. Conclusion This study provides a better understanding of the players’ motivations and environmental influences around aggressive and violent play which may be conducive to injury. The findings can be used to help design interventions aimed at reducing aggression and related injuries sustained during ice hockey and sports with similar cultures and rules. PMID:27258426

  9. Understanding the resistance to creating safer ice hockey: essential points for injury prevention.

    PubMed

    Todd, Ryan A; Soklaridis, Sophie; Treen, Alice K; Bhalerao, Shree U; Cusimano, Michael D

    2017-11-27

    Despite the known negative health outcomes of concussions in minor level boys' hockey, there has been significant resistance to creating a safer game with less body checking. To better understand cultural barriers that prevent making the sport safer for youth and adolescents, semistructured interviews, with 20 ice hockey stakeholders, were conducted and analysed using thematic analysis. Through this analysis, two primary concepts arose from respondents. The first concept is that body checking, despite the harm it can cause, should be done in a respectful sportsmanlike fashion. The second concept is the contradiction that the game of ice hockey is both dynamic and unchangeable. Using structural functionalist theory, we propose an argument that the unfortunate perpetuation of violence and body checking in youth ice hockey serves to maintain the social order of the game and its culture. Any strategies aimed at modifying and promoting healthy behaviour in the game should take these concepts into account. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  10. Validation of the FAST skating protocol to predict aerobic power in ice hockey players.

    PubMed

    Petrella, Nicholas J; Montelpare, William J; Nystrom, Murray; Plyley, Michael; Faught, Brent E

    2007-08-01

    Few studies have reported a sport-specific protocol to measure the aerobic power of ice hockey players using a predictive process. The purpose of our study was to validate an ice hockey aerobic field test on players of varying ages, abilities, and levels. The Faught Aerobic Skating Test (FAST) uses an on-ice continuous skating protocol on a course measuring 160 feet (48.8 m) using a CD to pace the skater with a beep signal to cross the starting line at each end of the course. The FAST incorporates the principle of increasing workload at measured time intervals during a continuous skating exercise. Step-wise multiple regression modelling was used to determine the estimate of aerobic power. Participants completed a maximal aerobic power test using a modified Bruce incremental treadmill protocol, as well as the on-ice FAST. Normative data were collected on 406 ice hockey players (291 males, 115 females) ranging in age from 9 to 25 y. A regression to predict maximum aerobic power was developed using body mass (kg), height (m), age (y), and maximum completed lengths of the FAST as the significant predictors of skating aerobic power (adjusted R2 = 0.387, SEE = 7.25 mL.kg-1.min-1, p < 0.0001). These results support the application of the FAST in estimating aerobic power among male and female competitive ice hockey players between the ages of 9 and 25 years.

  11. Injuries in Youth Hockey. On-Ice Emergency Care.

    ERIC Educational Resources Information Center

    Blanchard, Bradford M.; Castaldi, Cosmo R.

    1991-01-01

    Reviews the nature and frequency of injuries in youth hockey (which range from musculoskeletal injuries to life-threatening emergencies). Overall injury rates have decreased, but there is an increase in head, neck, and spine injuries. Those injuries that are serious demand prompt, skillful attention. A comprehensive format for on-ice management is…

  12. Proprioception of foot and ankle complex in young regular practitioners of ice hockey, ballet dancing and running.

    PubMed

    Li, Jing Xian; Xu, Dong Qing; Hoshizaki, Blaine

    2009-01-01

    This study examined the proprioception of the foot and ankle complex in regular ice hockey practitioners, runners, and ballet dancers. A total of 45 young people with different exercise habits formed four groups: the ice hockey, ballet dancing, running, and sedentary groups. Kinesthesia of the foot and ankle complex was measured in plantarflexion (PF), dorsiflexion (DF), inversion (IV), and eversion (EV) at 0.4 degrees /s using a custom-made device. The results showed the following: (1) significantly better perceived passive motion sense in PF/DF was found as compared with the measurements in IV/EV within each group (P < .01); (2) ice hockey and ballet groups perceived significantly better passive motion sense in IV/EV than the running (P < .05) and the sedentary (P < .01) groups; and (3) no significant difference in the all measurements was found between running and sedentary groups. The benefits of ice hockey and ballet dancing on proprioception may be associated with their movement characteristics.

  13. Neck injuries presenting to emergency departments in the United States from 1990 to 1999 for ice hockey, soccer, and American football.

    PubMed

    Delaney, J S; Al-Kashmiri, A

    2005-04-01

    To examine the number and rate of neck injuries in the community as a whole for ice hockey, soccer, and American football by analysing data from patients presenting to emergency departments in the United States from 1990 to 1999. Data compiled for the US Consumer Product Safety Commission were used to generate estimates for the total number of neck injuries and the more specific diagnoses of neck fractures, dislocations, contusions, sprains, strains, and lacerations occurring nationally from 1990 to 1999. These data were combined with yearly participation figures to generate rates of injury presenting to emergency departments for each sport. There were an estimated 5038 neck injuries from ice hockey, 19,341 from soccer, and 114 706 from American football. These could be broken down as follows: 4964 contusions, sprains, or strains from ice hockey, 17,927 from soccer, and 104 483 from football; 105 neck fractures or dislocations from ice hockey, 214 from soccer, and 1588 from football; 199 neck lacerations for ice hockey, 0 for soccer, and 621 for football. The rates for total neck injuries and combined neck contusions, sprains, or strains were higher for football than for ice hockey or soccer in all years for which data were available. The rate of neck injury in the United States was higher in football than in ice hockey or soccer in the time period studied.

  14. Trends in reporting of mechanisms and incidence of hip injuries in males playing minor ice hockey in Canada: a cross-sectional study.

    PubMed

    Ayeni, Olufemi R; Kowalczuk, Marcin; Farag, Jordan; Farrokhyar, Forough; Chu, Raymond; Bedi, Asheesh; Willits, Kevin; Bhandari, Mohit

    2014-01-01

    There has been a noted increase in the diagnosis and reporting of sporting hip injuries and conditions in the medical literature but reporting at the minor hockey level is unknown. The purpose of this study is to investigate the trend of reporting hip injuries in amateur ice hockey players in Canada with a focus on injury type and mechanism. A retrospective review of the Hockey Canada insurance database was performed and data on ice hockey hip injuries reported between January 2005 and June 2011 were collected. The study population included all male hockey players from Peewee (aged 11-12 years) to Senior (aged 20+ years) participating in amateur level competition sanctioned by Hockey Canada. Reported cases of ice hockey hip injuries were analyzed according to age, mechanism of injury, and injury subtype. Annual injury reporting rates were determined and using a linear regression analysis trended to determine the change in ice hockey hip injury reporting rate over time. One hundred and six cases of ice hockey-related hip injuries were reported in total. The majority of injuries (75.5%) occurred in players aged 15-20 years playing at the Junior level. Most injuries were caused by a noncontact mechanism (40.6%) and strains were the most common subtype (50.0%). From 2005 to 2010, the number of reported hip injuries increased by 5.31 cases per year and the rate of reported hip injury per 1,000 registered players increased by 0.02 cases annually. Reporting of hip injuries in amateur ice hockey players is increasing. A more accurate injury reporting system is critical for future epidemiologic studies to accurately document the rate and mechanism of hip injury in amateur ice hockey players.

  15. Forecheck, backcheck, health check: the benefits of playing recreational ice hockey for adults in Canada.

    PubMed

    Kitchen, Peter; Chowhan, James

    2016-11-01

    More than 1 million Canadian adults play recreational ice hockey. Compared to elite players, very little is known about the physical and health characteristics of people who play the game for fun. Analyzing data from Statistics Canada's 2011/12 Canadian Community Health Survey, the paper found that there is an association between physically active males age 35 or over who play ice hockey regularly (at least once a week) and enhanced health more so than other physically active males. While these players are larger in body size, they have significantly lower rates of diabetes, high blood pressure and heart disease and report significantly higher rates of self-assessed health. Given the potential health benefits associated with this high intensity sport, the paper discusses ways in which participation can be promoted among less physically active adults and people who are new to the game or who have historically lower levels of participation including women and recent immigrants. Finally, the paper argues that compared to the very high costs associated with child and youth hockey, participation in adult recreational ice hockey is quite affordable.

  16. Neck injuries presenting to emergency departments in the United States from 1990 to 1999 for ice hockey, soccer, and American football

    PubMed Central

    Delaney, J; Al-Kashmiri, A

    2005-01-01

    Objective: To examine the number and rate of neck injuries in the community as a whole for ice hockey, soccer, and American football by analysing data from patients presenting to emergency departments in the United States from 1990 to 1999. Methods: Data compiled for the US Consumer Product Safety Commission were used to generate estimates for the total number of neck injuries and the more specific diagnoses of neck fractures, dislocations, contusions, sprains, strains, and lacerations occurring nationally from 1990 to 1999. These data were combined with yearly participation figures to generate rates of injury presenting to emergency departments for each sport. Results: There were an estimated 5038 neck injuries from ice hockey, 19 341 from soccer, and 114 706 from American football. These could be broken down as follows: 4964 contusions, sprains, or strains from ice hockey, 17 927 from soccer, and 104 483 from football; 105 neck fractures or dislocations from ice hockey, 214 from soccer, and 1588 from football; 199 neck lacerations for ice hockey, 0 for soccer, and 621 for football. The rates for total neck injuries and combined neck contusions, sprains, or strains were higher for football than for ice hockey or soccer in all years for which data were available. Conclusion: The rate of neck injury in the United States was higher in football than in ice hockey or soccer in the time period studied. PMID:15793079

  17. Analysis of High-Intensity Skating in Top-Class Ice Hockey Match-Play in Relation to Training Status and Muscle Damage.

    PubMed

    Lignell, Erik; Fransson, Dan; Krustrup, Peter; Mohr, Magni

    2018-05-01

    Lignell, E, Fransson, D, Krustrup, P, and Mohr, M. Analysis of high-intensity skating in top-class ice hockey match-play in relation to training status and muscle damage. J Strength Cond Res 32(5): 1303-1310, 2018-We examined high-intensity activities in a top-class ice-hockey game and the effect of training status. Male ice-hockey players (n = 36) from the National Hockey League participated. Match analysis was performed during a game and physical capacity was assessed by a submaximal Yo-Yo Intermittent Recovery Ice-hockey test, level 1 (YYIR1-IHSUB). Venous blood samples were collected 24-hour post-game to determine markers of muscle damage. Players performed 119 ± 8 and 31 ± 3 m·min of high intensity and sprint skating, respectively, during a game. Total distance covered was 4,606 ± 219 m (2,260-6,749 m), of which high-intensity distance was 2042 ± 97 m (757-3,026 m). Sprint-skating speed was 5-8% higher (p ≤ 0.05) in periods 1 and 2 vs. period 3 and overtime. Defensemen (D) covered 29% more (p ≤ 0.05) skating in total than forwards (F) and were on the ice 47% longer. However, F performed 54% more (p ≤ 0.05) high-intensity skating per minute than defensemen. Plasma creatine kinase (CK) was 338 ± 45 (78-757) U·L 24-hour post-game. Heart rate loading during YYIR1-IHSUB correlated inversely (p ≤ 0.05) to the frequency of high-intensity skating bouts (r = -0.55) and V[Combining Dot Above]O2max (r = -0.85) and positively to post-game CK (r = 0.49; p ≤ 0.05). In conclusion, ice hockey is a multiple-sprint sport that provokes fatigue in the latter half of a game. Forwards perform more intense skating than defensemen. Moreover, high-intensity game activities during top-class ice hockey are correlated with cardiovascular loading during a submaximal skating test. Taken together, training of elite ice-hockey players should improve the ability for repeated high-intensity skating, and testing should include the YYIR1-IHSUB test as an indicator for ice-hockey

  18. Effectiveness of interventions to reduce aggression and injuries among ice hockey players: a systematic review.

    PubMed

    Cusimano, Michael D; Nastis, Sofia; Zuccaro, Laura

    2013-01-08

    The increasing incidence of injuries related to playing ice hockey is an important public health issue. We conducted a systematic review to evaluate the effectiveness of interventions designed to reduce injuries related to aggressive acts in ice hockey. We identified relevant articles by searching electronic databases from their inception through July 2012, by using Internet search engines, and by manually searching sports medicine journals, the book series Safety in Ice Hockey and reference lists of included articles. We included studies that evaluated interventions to reduce aggression-related injuries and reported ratings of aggressive behaviour or rates of penalties or injuries. We identified 18 eligible studies. Most involved players in minor hockey leagues. Of 13 studies that evaluated changes in mandatory rules intended to lessen aggression (most commonly the restriction of body-checking), 11 observed a reduction in penalty or injury rates associated with rule changes, and 9 of these showed a statistically significant decrease. The mean number of penalties decreased by 1.2-5.9 per game, and injury rates decreased 3- to 12-fold. All 3 studies of educational interventions showed a reduction in penalty rates, but they were not powered or designed to show a change in injury rates. In 2 studies of cognitive behavioural interventions, reductions in aggressive behaviours were observed. Changes to mandatory rules were associated with reductions in penalties for aggressive acts and in injuries related to aggression among ice hockey players. Effects of educational and cognitive behavioural interventions on injury rates are less clear. Well-designed studies of multifaceted strategies that combine such approaches are required.

  19. Changes in Collegiate Ice Hockey Player Anthropometrics and Aerobic Fitness Over Three Decades.

    PubMed

    Triplett, Ashley N; Ebbing, Amy C; Green, Matthew R; Connolly, Christopher P; Carrier, David P; Pivarnik, James M

    2018-04-09

    Over the past several decades, an increased emphasis on fitness training has emerged among collegiate ice hockey teams, with the objective to improve on-ice performance. However, it is unknown if this increase in training has translated over time to changes in anthropometric and fitness profiles of collegiate ice hockey players. The purposes of this study were to describe anthropometric (height, weight, BMI, %fat) and aerobic fitness (VO2peak) characteristics of collegiate ice hockey players over 36 years, and to evaluate whether these characteristics differ between player positions. Anthropometric and physiologic data were obtained through preseason fitness testing of players (N=279) from a NCAA Division I men's ice hockey team from the years of 1980 through 2015. Changes over time in the anthropometric and physiologic variables were evaluated via regression analysis using linear and polynomial models and differences between player position were compared via ANOVA (p<0.05). Regression analysis revealed a cubic model best predicted changes in mean height (R2=0.65), weight (R2=0.77), and BMI (R2=0.57), while a quadratic model best fit change in %fat by year (R2=0.30). Little change was observed over time in the anthropometric characteristics. Defensemen were significantly taller than forwards (184.7±12.1 vs. 181.3±5.9cm)(p=0.007) and forwards had a higher relative VO2peak compared to defensemen (58.7±4.7 vs. 57.2±4.4ml/kg/min)(p=0.032). No significant differences were observed in %fat or weight by position. While average player heights and weights fluctuated over time, increased emphasis on fitness training did not affect athletes' relative aerobic fitness. Differences in height and aerobic fitness levels were observed between player position.

  20. Common Ice Hockey Injuries and Treatment: A Current Concepts Review.

    PubMed

    Mosenthal, William; Kim, Michael; Holzshu, Robert; Hanypsiak, Bryan; Athiviraham, Aravind

    Injuries are common in ice hockey, a contact sport where players skate at high speeds on a sheet of ice and shoot a vulcanized rubber puck in excess of one hundred miles per hour. This article reviews the diagnoses and treatment of concussions, injuries to the cervical spine, and lower and upper extremities as they pertain to hockey players. Soft tissue injury of the shoulder, acromioclavicular joint separation, glenohumeral joint dislocation, clavicle fractures, metacarpal fractures, and olecranon bursitis are discussed in the upper-extremity section of the article. Lower-extremity injuries reviewed in this article include adductor strain, athletic pubalgia, femoroacetabular impingement, sports hernia, medial collateral and anterior cruciate ligament tears, skate bite, and ankle sprains. This review is intended to aid the sports medicine physician in providing optimal sports-specific care to allow their athlete to return to their preinjury level of performance.

  1. Relationship of physical fitness test results and hockey playing potential in elite-level ice hockey players.

    PubMed

    Burr, Jaime F; Jamnik, Roni K; Baker, Joseph; Macpherson, Alison; Gledhill, Norman; McGuire, E J

    2008-09-01

    The primary purpose of this study was to determine the fitness variables with the highest capability for predicting hockey playing potential at the elite level as determined by entry draft selection order. We also examined the differences associated with the predictive abilities of the test components among playing positions. The secondary purpose of this study was to update the physiological profile of contemporary hockey players including positional differences. Fitness test results conducted by our laboratory at the National Hockey League Entry Draft combine were compared with draft selection order on a total of 853 players. Regression models revealed peak anaerobic power output to be important for higher draft round selection in all positions; however, the degree of importance of this measurement varied with playing position. The body index, which is a composite score of height, lean mass, and muscular development, was similarly important in all models, with differing influence by position. Removal of the goalies' data increased predictive capacity, suggesting that talent identification using physical fitness testing of this sort may be more appropriate for skating players. Standing long jump was identified as a significant predictor variable for forwards and defense and could be a useful surrogate for assessing overall hockey potential. Significant differences exist between the physiological profiles of current players based on playing position. There are also positional differences in the relative importance of anthropometric and fitness measures of off-ice hockey tests in relation to draft order. Physical fitness measures and anthropometric data are valuable in helping predict hockey playing potential. Emphasis on anthropometry should be used when comparing elite-level forwards, whereas peak anaerobic power and fatigue rate are more useful for differentiating between defense.

  2. Is hockey just a game? Contesting meanings of the ice hockey life projects through a career-threatening injury.

    PubMed

    Ronkainen, Noora J; Ryba, Tatiana V

    2017-05-01

    This study is situated within an existential-narrative theoretical framework to examine the impact of career-threatening injury on professional ice hockey players' well-being and career construction. Professional ice hockey culture is construed as a privileged space characterised by hegemonic masculinity, fierce competition as well as high-risk behaviours often resulting in sports injuries. In this paper, we analyse two players' life stories with a particular focus on injury as a boundary situation involving social and temporal breakdown and re-evaluation of meaning of sporting life projects. Emergent narratives surrounding existential themes of loss of meaning and loneliness in the face of injury were analysed in connection with players' search for authenticity and realignment with self-concept. Each player developed resistant narratives to the dominant ethos of professional sport in order to restore well-being and sense of self. The relational aspects of injury are highlighted in practical recommendations.

  3. Multiple Off-Ice Performance Variables Predict On-Ice Skating Performance in Male and Female Division III Ice Hockey Players.

    PubMed

    Janot, Jeffrey M; Beltz, Nicholas M; Dalleck, Lance D

    2015-09-01

    The purpose of this study was to determine if off-ice performance variables could predict on-ice skating performance in Division III collegiate hockey players. Both men (n = 15) and women (n = 11) hockey players (age = 20.5 ± 1.4 years) participated in the study. The skating tests were agility cornering S-turn, 6.10 m acceleration, 44.80 m speed, modified repeat skate, and 15.20 m full speed. Off-ice variables assessed were years of playing experience, height, weight and percent body fat and off-ice performance variables included vertical jump (VJ), 40-yd dash (36.58m), 1-RM squat, pro-agility, Wingate peak power and peak power percentage drop (% drop), and 1.5 mile (2.4km) run. Results indicated that 40-yd dash (36.58m), VJ, 1.5 mile (2.4km) run, and % drop were significant predictors of skating performance for repeat skate (slowest, fastest, and average time) and 44.80 m speed time, respectively. Four predictive equations were derived from multiple regression analyses: 1) slowest repeat skate time = 2.362 + (1.68 x 40-yd dash time) + (0.005 x 1.5 mile run), 2) fastest repeat skate time = 9.762 - (0.089 x VJ) - (0.998 x 40-yd dash time), 3) average repeat skate time = 7.770 + (1.041 x 40-yd dash time) - (0.63 x VJ) + (0.003 x 1.5 mile time), and 4) 47.85 m speed test = 7.707 - (0.050 x VJ) - (0.01 x % drop). It was concluded that selected off-ice tests could be used to predict on-ice performance regarding speed and recovery ability in Division III male and female hockey players. Key pointsThe 40-yd dash (36.58m) and vertical jump tests are significant predictors of on-ice skating performance specific to speed.In addition to 40-yd dash and vertical jump, the 1.5 mile (2.4km) run for time and percent power drop from the Wingate anaerobic power test were also significant predictors of skating performance that incorporates the aspect of recovery from skating activity.Due to the specificity of selected off-ice variables as predictors of on-ice performance, coaches can

  4. Multiple Off-Ice Performance Variables Predict On-Ice Skating Performance in Male and Female Division III Ice Hockey Players

    PubMed Central

    Janot, Jeffrey M.; Beltz, Nicholas M.; Dalleck, Lance D.

    2015-01-01

    The purpose of this study was to determine if off-ice performance variables could predict on-ice skating performance in Division III collegiate hockey players. Both men (n = 15) and women (n = 11) hockey players (age = 20.5 ± 1.4 years) participated in the study. The skating tests were agility cornering S-turn, 6.10 m acceleration, 44.80 m speed, modified repeat skate, and 15.20 m full speed. Off-ice variables assessed were years of playing experience, height, weight and percent body fat and off-ice performance variables included vertical jump (VJ), 40-yd dash (36.58m), 1-RM squat, pro-agility, Wingate peak power and peak power percentage drop (% drop), and 1.5 mile (2.4km) run. Results indicated that 40-yd dash (36.58m), VJ, 1.5 mile (2.4km) run, and % drop were significant predictors of skating performance for repeat skate (slowest, fastest, and average time) and 44.80 m speed time, respectively. Four predictive equations were derived from multiple regression analyses: 1) slowest repeat skate time = 2.362 + (1.68 x 40-yd dash time) + (0.005 x 1.5 mile run), 2) fastest repeat skate time = 9.762 - (0.089 x VJ) - (0.998 x 40-yd dash time), 3) average repeat skate time = 7.770 + (1.041 x 40-yd dash time) - (0.63 x VJ) + (0.003 x 1.5 mile time), and 4) 47.85 m speed test = 7.707 - (0.050 x VJ) - (0.01 x % drop). It was concluded that selected off-ice tests could be used to predict on-ice performance regarding speed and recovery ability in Division III male and female hockey players. Key points The 40-yd dash (36.58m) and vertical jump tests are significant predictors of on-ice skating performance specific to speed. In addition to 40-yd dash and vertical jump, the 1.5 mile (2.4km) run for time and percent power drop from the Wingate anaerobic power test were also significant predictors of skating performance that incorporates the aspect of recovery from skating activity. Due to the specificity of selected off-ice variables as predictors of on-ice performance, coaches

  5. A comparison of the capacity of ice hockey goaltender masks for the protection from puck impacts.

    PubMed

    Nur, Sarah; Kendall, Marshall; Clark, J Michio; Hoshizaki, T Blaine

    2015-01-01

    Goaltenders in ice hockey are the only players that are on the ice for the entire game. Their position exposes them to impacts from collisions with other players, falls to the ice, and puck impacts. In competitive ice hockey leagues, head injuries resulting from puck impacts have been reported with some cases resulting in ending the player's career. Considerable research has been conducted to assess the performance of hockey helmets; however, few have assessed the performance of goaltenders' masks. The purpose of this study was to compare the capacity of four goaltenders' masks for the protection from puck impact as measured by head acceleration and peak force. A Hybrid III headform was fitted with four different goaltender masks and impacted with a hockey puck in three locations at 25 m/s. The masks were found to vary in the level of protection they offered as the mask with the thickest liner resulted in lower forces than the thinnest mask for side impacts; however, the thinnest mask resulted in the lowest force for front impacts. Despite performance differences at specific locations, no one mask proved to be superior as peak acceleration and peak force values did not exceed the thresholds necessary for concussion.

  6. Effectiveness of interventions to reduce aggression and injuries among ice hockey players: a systematic review

    PubMed Central

    Cusimano, Michael D.; Nastis, Sofia; Zuccaro, Laura

    2013-01-01

    Background: The increasing incidence of injuries related to playing ice hockey is an important public health issue. We conducted a systematic review to evaluate the effectiveness of interventions designed to reduce injuries related to aggressive acts in ice hockey. Methods: We identified relevant articles by searching electronic databases from their inception through July 2012, by using Internet search engines, and by manually searching sports medicine journals, the book series Safety in Ice Hockey and reference lists of included articles. We included studies that evaluated interventions to reduce aggression-related injuries and reported ratings of aggressive behaviour or rates of penalties or injuries. Results: We identified 18 eligible studies. Most involved players in minor hockey leagues. Of 13 studies that evaluated changes in mandatory rules intended to lessen aggression (most commonly the restriction of body-checking), 11 observed a reduction in penalty or injury rates associated with rule changes, and 9 of these showed a statistically significant decrease. The mean number of penalties decreased by 1.2–5.9 per game, and injury rates decreased 3- to 12-fold. All 3 studies of educational interventions showed a reduction in penalty rates, but they were not powered or designed to show a change in injury rates. In 2 studies of cognitive behavioural interventions, reductions in aggressive behaviours were observed. Interpretation: Changes to mandatory rules were associated with reductions in penalties for aggressive acts and in injuries related to aggression among ice hockey players. Effects of educational and cognitive behavioural interventions on injury rates are less clear. Well-designed studies of multifaceted strategies that combine such approaches are required. PMID:23209118

  7. Ingesting A Sports Drink Enhances Simulated Ice Hockey Performance While Reducing Perceived Effort.

    PubMed

    Palmer, Matthew Stephen; Heigenhauser, George; Duong, MyLinh; Spriet, Lawrence L

    2017-12-01

    This study determined whether ingesting a carbohydrate-electrolyte solution (CES) vs. progressive dehydration affected skeletal muscle glycogen use and performance in ice hockey players during simulated ice hockey exercise comprised of 3 active "periods". Seven males (21.3±0.3 years, 184.7±1.2 cm, 84.2±3.9 kg, and 49.6±1.8 mL·kg -1 ·min -1 ) performed a hockey-specific protocol on two occasions and either dehydrated progressively (NF), or stayed well-hydrated by ingesting a CES. Muscle biopsies were taken at rest, before the 3 rd period (P3), and after the final sprint in the protocol. Compared to dehydration in the NF trial (-1.8% BM), CES ingestion enhanced voluntary performance (151.0±8.0 vs. 144.1±8.7 kJ) and glycogen use (177.5±31.1 vs. 103.5±16.2 mmol·kg dm -1 ), and reduced perceived exertion (16±1 vs. 18±1) in P3. Mean core temperature was reduced by CES ingestion throughout the protocol (38.0±0.2 vs. 38.1±0.1°C). These results suggest that compared to progressive dehydration, staying hydrated by ingesting a CES helps preserve performance, while reducing thermal and perceptual strains, in P3 of cycle-based simulation of ice hockey exercise. These benefits are observed despite greater glycogen use in P3 with CES ingestion. © Georg Thieme Verlag KG Stuttgart · New York.

  8. SnapShot: Visualization to Propel Ice Hockey Analytics.

    PubMed

    Pileggi, H; Stolper, C D; Boyle, J M; Stasko, J T

    2012-12-01

    Sports analysts live in a world of dynamic games flattened into tables of numbers, divorced from the rinks, pitches, and courts where they were generated. Currently, these professional analysts use R, Stata, SAS, and other statistical software packages for uncovering insights from game data. Quantitative sports consultants seek a competitive advantage both for their clients and for themselves as analytics becomes increasingly valued by teams, clubs, and squads. In order for the information visualization community to support the members of this blossoming industry, it must recognize where and how visualization can enhance the existing analytical workflow. In this paper, we identify three primary stages of today's sports analyst's routine where visualization can be beneficially integrated: 1) exploring a dataspace; 2) sharing hypotheses with internal colleagues; and 3) communicating findings to stakeholders.Working closely with professional ice hockey analysts, we designed and built SnapShot, a system to integrate visualization into the hockey intelligence gathering process. SnapShot employs a variety of information visualization techniques to display shot data, yet given the importance of a specific hockey statistic, shot length, we introduce a technique, the radial heat map. Through a user study, we received encouraging feedback from several professional analysts, both independent consultants and professional team personnel.

  9. Skating mechanics of change-of-direction manoeuvres in ice hockey players.

    PubMed

    Fortier, Antoine; Turcotte, René A; Pearsall, David J

    2014-11-01

    Ice hockey requires rapid transitions between skating trajectories to effectively navigate about the ice surface. Player performance relates in large part to effective change-of-direction manoeuvres, but little is known about how those skills are performed mechanically and the effect of equipment design on them. The purpose of this study was to observe the kinetics involved in those manoeuvres as well as to compare whether kinetic differences may result between two skate models of varying ankle mobility. Eight subjects with competitive ice hockey playing experience performed rapid lateral (90°) left and right change-of-direction manoeuvres. Kinetic data were collected using force strain gauge transducers on the blade holders of the skates. Significantly greater forces were applied by the outside skate (50-70% body weight, %BW) in comparison to the inside skate (12-24%BW, p < 0.05). Skate model and turn direction had no main effect, though significant mixed interactions between leg side (inside/outside) with skate model or turn direction (p < 0.05) were observed, with a trend for left-turn dominance. This study demonstrates the asymmetric dynamic behaviour inherent in skating change-of-direction tasks.

  10. Effects of badminton and ice hockey on bone mass in young males: a 12-year follow-up.

    PubMed

    Tervo, Taru; Nordström, Peter; Nordström, Anna

    2010-09-01

    The purpose of the present study was to investigate the influence of different types of weight bearing physical activity on bone mineral density (BMD, g/cm(2)) and evaluate any residual benefits after the active sports career. Beginning at 17 years of age, BMD was measured 5 times, during 12 years, in 19 badminton players, 48 ice hockey players, and 25 controls. During the active career, badminton players gained significantly more BMD compared to ice hockey players at all sites: in their femoral neck (mean difference (Delta) 0.06 g/cm(2), p=0.04), humerus (Delta 0.06 g/cm(2), p=0.01), lumbar spine (Delta 0.08 g/cm(2), p=0.01), and their legs (Delta 0.05 g/cm(2), p=0.003), after adjusting for age at baseline, changes in weight, height, and active years. BMD gains in badminton players were higher also compared to in controls at all sites (Delta 0.06-0.17 g/cm(2), p<0.01 for all). Eleven badminton players and 37 ice hockey players stopped their active career a mean of 6 years before the final follow-up. Both these groups lost significantly more BMD at the femoral neck and lumbar spine compared to the control group (Delta 0.05-0.12 g/cm(2), p<0.05 for all). At the final follow-up, badminton players had significantly higher BMD of the femoral neck, humerus, lumbar spine, and legs (Delta 0.08-0.20 g/cm(2), p<0.01 for all) than both ice hockey players and controls. In summary, the present study may suggest that badminton is a more osteogenic sport compared to ice hockey. The BMD benefits from previous training were partially sustained with reduced activity. Copyright 2010 Elsevier Inc. All rights reserved.

  11. The Hockey/Art Alliance

    ERIC Educational Resources Information Center

    Wadeson, Harriet; Wirtz, Gail

    2005-01-01

    Ice hockey can be a violent sport as evidenced by the fighting among the members of an ice hockey team of 13-year-old boys from mixed racial and socioeconomic backgrounds. Two series of eight art sessions were used to help the boys develop respect for themselves and others, to solve conflicts without combat, and to build more positive…

  12. Concussion in the international ice hockey World Championships and Olympic Winter Games between 2006 and 2015.

    PubMed

    Tuominen, Markku; Hänninen, Timo; Parkkari, Jari; Stuart, Michael J; Luoto, Teemu; Kannus, Pekka; Aubry, Mark

    2017-02-01

    Concussions in sports are a growing concern. This study describes the incidence, injury characteristics and time trends of concussions in international ice hockey. All concussions in the International Ice Hockey Federation (IIHF) World Championships (WC) and Olympic Winter Games were analysed over 9 ice hockey seasons between 2006 and 2015 using a standardised injury reporting system and diagnoses made by the team physicians. A total of 3293 games were played (169 tournaments, 1212 teams, 26 130 players) comprising 142 244 athletic game exposures. The average injury rate (IR) for concussion was 1.1 per 1000 ice hockey player-games for all IIHF WC tournaments. The IR was the highest in the men's WC A-pool tournaments and Olympic Games (IR 1.6). However, the annual IR for concussion in the men's tournaments has been lower than that in the World Junior tournaments since 2012. When a concussion occurred with contact to a flexible board, the IR was 0.2 per 1000 player games. In contrast, the IR was 1.1, if the board and glass were traditional (for the latter, RR 6.44 (95% CI 1.50 to 27.61)). In the men's tournaments, the trend of concussions caused by illegal hits decreased over the study period. After the 4th Consensus Statement on Concussion in Sport was published (2013), none of the concussed players in the men's WC returned to play on the day of injury. The annual risk of concussion in the men's WC has decreased during the study period. This was most likely due to a reduction in illegal hits. The risk of concussion was significantly lower if games were played on rinks with flexible boards and glass. Rink modifications, improved education and strict rule enforcement should be considered by policymakers in international ice hockey. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  13. Update and Overview of Spinal Injuries in Canadian Ice Hockey, 1943 to 2011: The Continuing Need for Injury Prevention and Education.

    PubMed

    Tator, Charles H; Provvidenza, Christine; Cassidy, J David

    2016-05-01

    To identify spinal injuries in Canadian ice hockey from 2006 to 2011 and to discuss data from 1943 to 2011 and impact of injury prevention programs. Data about spinal injuries with and without spinal cord injury in ice hockey have been collected by ThinkFirst's (now Parachute Canada) Canadian Ice Hockey Spinal Injuries Registry since 1981 through questionnaires from practitioners, ice hockey organizations, and media. All Canadian provinces and territories. All registered Canadian ice hockey players. Age, gender, level of play, location, mechanism of injury. Incidence, incidence rate, prevalence, and nature (morbidity) of the injuries. Between 2006 and 2011, 44 cases occurred, 4 (9.1%) of which were severe. The incidence in the recent years continues to be lower than the peak years. From 1943 to 2011, 355 cases have been documented, primarily males (97.7%) and cervical spine injuries (78.9%), resulting from impact with the boards (64.2%). Check or push from behind (36.0%) was still the most common cause of injury, although slightly lower during 2006 to 2011. From 1943 to 2011, Prince Edward Island, New Brunswick, and British Columbia/Yukon had the highest injury rates. Ontario and Quebec continued to show markedly different injury rates, with Ontario more than twice that of Quebec. Current data for 2006 to 2011 indicate that spinal injuries in ice hockey continue to occur, although still at lower rates than the peak years 1982 to 1995. It is imperative to continue educating players and team officials about spinal injury prevention and to reinforce the rules against checking or pushing from behind to reduce the incidence of these serious injuries.

  14. Describing Strategies Used by Elite, Intermediate, and Novice Ice Hockey Referees

    ERIC Educational Resources Information Center

    Hancock, David J.; Ste-Marie, Diane M.

    2014-01-01

    Much is known about sport officials' decisions (e.g., anticipation, visual search, and prior experience). Comprehension of the entire decision process, however, requires an ecologically valid examination. To address this, we implemented a 2-part study using an expertise paradigm with ice hockey referees. Purpose: Study 1 explored the…

  15. Ice Hockey Players Using a Weighted Implement when Training on the Ice: A Randomized Control Trial

    ERIC Educational Resources Information Center

    Stark, Timothy W.; Tvoric, Bojan; Walker, Bruce; Noonan, Dom; Sibla, Janeene

    2009-01-01

    The purpose of this study was to investigate the potential for improving hockey players' performance using a weighted implement on the ice. Forty-eight players were tested using a grip strength dynamometer. They also were assessed on their abilities to stick-handle. The participants were randomly placed into a control or research group. The…

  16. Receiving Video-Based Feedback in Elite Ice-Hockey: A Player's Perspective

    ERIC Educational Resources Information Center

    Nelson, Lee J.; Potrac, Paul; Groom, Ryan

    2014-01-01

    The aim of this paper was to provide some rich insights into how an elite ice-hockey player responded to his coaches' pedagogical delivery of video-based feedback sessions. Data for this study were gathered through a series of in-depth, semi-structured interviews and a reflective log relating to those interviews. The interviews were transcribed…

  17. On-Ice Functional Assessment of an Elite Ice Hockey Goaltender After Treatment for Femoroacetabular Impingement.

    PubMed

    Tramer, Joseph S; Deneweth, Jessica M; Whiteside, David; Ross, James R; Bedi, Asheesh; Goulet, Grant C

    2015-01-01

    Femoroacetabular impingement (FAI) is a major cause of performance inhibition in elite-level athletes. The condition is characterized by pain, osseous abnormalities such as an increased alpha angle, and decreased range of motion at the affected hip joint. Arthroscopic surgical decompression is useful in reshaping the joint to alleviate symptoms. Functional kinematic outcomes of sport-specific movements after surgery, however, are presently unknown. The ability of an ice hockey goaltender to execute sport-specific movements would improve after arthroscopic surgery. Clinical research. Level 5. An ice hockey goaltender was evaluated after arthroscopic correction of FAI on the symptomatic hip. Passive range of motion and radiographic parameters were assessed from a computed tomography-derived 3-dimensional model. An on-ice motion capture system was also used to determine peak femoral shock and concurrent hip joint postures during the butterfly and braking movements. Maximum alpha angles were 47° in the surgical and 61° in the nonsurgical hip. Internal rotation range of motion was, on average, 23° greater in the surgically corrected hip compared with contralateral. Peak shock was lower in the surgical hip by 1.39 g and 0.86 g during butterfly and braking, respectively. At peak shock, the surgical hip demonstrated increased flexion, adduction, and internal rotation for both tasks (butterfly, 6.1°, 12.3°, and 30.8°; braking, 14.8°, 19.2°, and 41.4°). On-ice motion capture revealed performance differences between hips after arthroscopic surgery in a hockey goaltender. Range of motion and the patient's subjective assessment of hip function were improved in the surgical hip. While presenting as asymptomatic, it was discovered that the contralateral hip displayed measurements consistent with FAI. Therefore, consideration of preemptive treatment in a presently painless hip may be deemed beneficial for young athletes seeking a long career in sport, and future work is

  18. Mechanisms of injury for concussions in university football, ice hockey, and soccer: a pilot study.

    PubMed

    Scott Delaney, J; Puni, Vishal; Rouah, Fabrice

    2006-03-01

    To examine the mechanisms of injury for concussions in university football, ice hockey, and soccer. Prospective analysis. McGill University. All athletes participating in varsity football, ice hockey, and soccer. Athletes participating in university varsity football, ice hockey, and soccer were followed prospectively to determine the mechanisms of injury for concussions, whether certain mechanisms of injury causing concussions were more common in any of the three sports, whether different areas of the body seem to be more vulnerable to a concussion after contact, and whether these areas might be predisposed to higher grades of concussion after contact. There were 69 concussions in 60 athletes over a 3-year period. Being hit in the head or helmet was the most common mechanism of injury for all 3 sports. The side/temporal area of the head or helmet was the most probable area to be struck, resulting in concussion for both football and soccer. When examining the body part or object delivering the concussive blow, contact with another player's helmet was the most probable mechanism in football. The mechanisms of injury for concussions in football are similar to previously published research on professional football players. The mechanisms of injury for concussions in soccer are similar to past research on Australian rules football and rugby.

  19. Psychologic, situational, and physiologic variables and on-ice performance of youth hockey goalkeepers.

    PubMed

    Smith, A M; Sim, F H; Smith, H C; Stuart, M J; Laskowski, E R

    1998-01-01

    To determine the relationship between psychologic, situational, and physiologic variables and on-ice performance of youth hockey goalkeepers. This study was structured to identify relationships and predictors of goalie performance. Because athletes playing solo positions in team sports have not been analyzed in depth in terms of precompetition anxiety and because goalkeeper performance is critical to game outcome, we undertook a study of 43 goalies at a hockey camp. These goalies completed psychometric inventories to assess trait and state anxiety, confidence, life stress, and social support. Holter monitors measured heart rate while the goalies rotated through on-ice stations. Goalies were videotaped at the puck-shooting machine station, and performance (percent saves) was calculated. Trait (somatic) anxiety and positive mood state (ability to share) had different but significant relationships with on-ice performance. Heart rates ranged from 88 to 208 beats/min at the on-ice stations. Mean heart rate for older goalies (14 to 18 years of age) was 164 beats/min at the puck-shooting machine and 176 beats/min at other stations such as the slap-shot station. Older goalies performed well at a high level of arousal. Better performing goalies were more experienced, had faster heart rates "in the net," and had lower scores on all measures of anxiety.

  20. Relationship Between Skating Economy and Performance During a Repeated-Shift Test in Elite and Subelite Ice Hockey Players.

    PubMed

    Lamoureux, Nicholas R; Tomkinson, Grant R; Peterson, Benjamin J; Fitzgerald, John S

    2018-04-01

    Lamoureux, NR, Tomkinson, GR, Peterson, BJ, and Fitzgerald, JS. Relationship between skating economy and performance during a repeated-shift test in elite and subelite ice hockey players. J Strength Cond Res 32(4): 1109-1113, 2018-The purpose of this study was to determine the importance of skating economy to fatigue during repeated high-intensity efforts of a simulated ice hockey shift. Forty-five collegiate and Junior A male ice hockey players (aged 18-24 years) performed a continuous graded exercise test using a skate treadmill. Breath-by-breath data for oxygen consumption (V[Combining Dot Above]O2) and respiratory exchange ratio were collected and used to derive energy expenditure (EE) averaged over the final 10 seconds of each stage. Economy was determined as the slope of the regression line relating V[Combining Dot Above]O2 and EE against skating speed separately. Participants also completed 8 bouts of maximal ice skating through a course designed to simulate typical shift, with timing gates determining first half, second half, and total fatigue decrement, calculated by a percent decrement score. Partial correlation was used to determine the association between economy measures and decrement during the repeated-shift test. Twenty-six participants met inclusion criteria and were included in data analysis. Skating economy measures (both relative V[Combining Dot Above]O2 and EE) were very likely moderate positive correlates of total fatigue decrement (r [95% confidence interval]: V[Combining Dot Above]O2, 0.46 [0.09, 0.72] and EE, 0.44, [0.06, 0.71]) but not with first or second gate decrement. Our results indicate that skating economy plays an important role in fatigue resistance over repeated on-ice sprints designed to simulate a typical shift. This supports the use of technical skating coaching and training techniques to enhance skating economy as a means of improving ice hockey performance.

  1. Trends in North American Newspaper Reporting of Brain Injury in Ice Hockey

    PubMed Central

    Cusimano, Michael D.; Sharma, Bhanu; Lawrence, David W.; Ilie, Gabriela; Silverberg, Sarah; Jones, Rochelle

    2013-01-01

    The frequency and potential long-term effects of sport-related traumatic brain injuries (TBI) make it a major public health concern. The culture within contact sports, such as ice hockey, encourages aggression that puts youth at risk of TBI such as concussion. Newspaper reports play an important role in conveying and shaping the culture around health-related behaviors. We qualitatively studied reports about sport-related TBI in four major North American newspapers over the last quarter-century. We used the grounded-theory approach to identify major themes and then did a content analysis to compare the frequency of key themes between 1998–2000 and 2009–2011. The major themes were: perceptions of brain injury, aggression, equipment, rules and regulations, and youth hockey. Across the full study period, newspaper articles from Canada and America portrayed violence and aggression that leads to TBI both as integral to hockey and as an unavoidable risk associated with playing the game. They also condemned violence in ice hockey, criticized the administrative response to TBI, and recognized the significance of TBI. In Canada, aggression was reported more often recently and there was a distinctive shift in portraying protective equipment as a solution to TBI in earlier years to a potential contributing factor to TBI later in the study period. American newspapers gave a greater attention to ‘perception of risks’ and the role of protective equipment, and discussed TBI in a broader context in the recent time period. Newspapers from both countries showed similar recent trends in regards to a need for rule changes to curb youth sport-related TBI. This study provides a rich description of the reporting around TBI in contact sport. Understanding this reporting is important for evaluating whether the dangers of sport-related TBI are being appropriately communicated by the media. PMID:23613957

  2. Trends in North American newspaper reporting of brain injury in ice hockey.

    PubMed

    Cusimano, Michael D; Sharma, Bhanu; Lawrence, David W; Ilie, Gabriela; Silverberg, Sarah; Jones, Rochelle

    2013-01-01

    The frequency and potential long-term effects of sport-related traumatic brain injuries (TBI) make it a major public health concern. The culture within contact sports, such as ice hockey, encourages aggression that puts youth at risk of TBI such as concussion. Newspaper reports play an important role in conveying and shaping the culture around health-related behaviors. We qualitatively studied reports about sport-related TBI in four major North American newspapers over the last quarter-century. We used the grounded-theory approach to identify major themes and then did a content analysis to compare the frequency of key themes between 1998-2000 and 2009-2011. The major themes were: perceptions of brain injury, aggression, equipment, rules and regulations, and youth hockey. Across the full study period, newspaper articles from Canada and America portrayed violence and aggression that leads to TBI both as integral to hockey and as an unavoidable risk associated with playing the game. They also condemned violence in ice hockey, criticized the administrative response to TBI, and recognized the significance of TBI. In Canada, aggression was reported more often recently and there was a distinctive shift in portraying protective equipment as a solution to TBI in earlier years to a potential contributing factor to TBI later in the study period. American newspapers gave a greater attention to 'perception of risks' and the role of protective equipment, and discussed TBI in a broader context in the recent time period. Newspapers from both countries showed similar recent trends in regards to a need for rule changes to curb youth sport-related TBI. This study provides a rich description of the reporting around TBI in contact sport. Understanding this reporting is important for evaluating whether the dangers of sport-related TBI are being appropriately communicated by the media.

  3. Comparison of Concussion Rates Between NCAA Division I and Division III Men's and Women's Ice Hockey Players.

    PubMed

    Rosene, John M; Raksnis, Bryan; Silva, Brie; Woefel, Tyler; Visich, Paul S; Dompier, Thomas P; Kerr, Zachary Y

    2017-09-01

    Examinations related to divisional differences in the incidence of sports-related concussions (SRC) in collegiate ice hockey are limited. To compare the epidemiologic patterns of concussion in National Collegiate Athletic Association (NCAA) ice hockey by sex and division. Descriptive epidemiology study. A convenience sample of men's and women's ice hockey teams in Divisions I and III provided SRC data via the NCAA Injury Surveillance Program during the 2009-2010 to 2014-2015 academic years. Concussion counts, rates, and distributions were examined by factors including injury activity and position. Injury rate ratios (IRRs) and injury proportion ratios (IPRs) with 95% confidence intervals (CIs) were used to compare concussion rates and distributions, respectively. Overall, 415 concussions were reported for men's and women's ice hockey combined. The highest concussion rate was found in Division I men (0.83 per 1000 athlete-exposures [AEs]), followed by Division III women (0.78/1000 AEs), Division I women (0.65/1000 AEs), and Division III men (0.64/1000 AEs). However, the only significant IRR was that the concussion rate was higher in Division I men than Division III men (IRR = 1.29; 95% CI, 1.02-1.65). The proportion of concussions from checking was higher in men than women (28.5% vs 9.4%; IPR = 3.02; 95% CI, 1.63-5.59); however, this proportion was higher in Division I women than Division III women (18.4% vs 1.8%; IPR = 10.47; 95% CI, 1.37-79.75). The proportion of concussions sustained by goalkeepers was higher in women than men (14.2% vs 2.9%; IPR = 4.86; 95% CI, 2.19-10.77), with findings consistent within each division. Concussion rates did not vary by sex but differed by division among men. Checking-related concussions were less common in women than men overall but more common in Division I women than Division III women. Findings highlight the need to better understand the reasons underlying divisional differences within men's and women's ice hockey and the

  4. Acute injuries in soccer, ice hockey, volleyball, basketball, judo, and karate: analysis of national registry data.

    PubMed

    Kujala, U M; Taimela, S; Antti-Poika, I; Orava, S; Tuominen, R; Myllynen, P

    1995-12-02

    To determine the acute injury profile in each of six sports and compare the injury rates between the sports. Analysis of national sports injury insurance registry data. Finland during 1987-91. 621,691 person years of exposure among participants in soccer, ice hockey, volleyball, basketball, judo, or karate. Acute sports injuries requiring medical treatment and reported to the insurance company on structured forms by the patients and their doctors. 54,186 sports injuries were recorded. Injury rates were low in athletes aged under 15, while 20-24 year olds had the highest rates. Differences in injury rates between the sports were minor in this adult age group. Overall injury rates were higher in sports entailing more frequent and powerful body contact. Each sport had a specific injury profile. Fractures and dental injuries were most common in ice hockey and karate and least frequent in volleyball. Knee injuries were the most common cause of permanent disability. Based on the defined injury profiles in the different sports it is recommended that sports specific preventive measures should be employed to decrease the number of violent contacts between athletes, including improved game rules supported by careful refereeing. To prevent dental injuries the wearing of mouth guards should be encouraged, especially in ice hockey, karate, and basketball.

  5. The effect of laryngoscope handle size on possible endotracheal intubation success in university football, ice hockey, and soccer players.

    PubMed

    Delaney, J Scott; Al-Kashmiri, Ammar; Baylis, Penny-Jane; Aljufaili, Mahmood; Correa, José A

    2012-07-01

    To assess the effectiveness of a standard long-handle laryngoscope and a short-handle laryngoscope on ease of possible intubation in football, ice hockey, and soccer players. Prospective crossover study. University Sport Medicine Clinic. Sixty-two university varsity football (62 males), 45 ice hockey (26 males and 19 females), and 39 soccer players (20 males, 19 females). Athletes were assessed for different airway and physical characteristics. Three different physicians then assessed the use of laryngoscopes of different handle sizes in supine athletes who were wearing protective equipment while in-line cervical spine immobilization was maintained. The ease of passage of a laryngoscope blade into the posterior oropharynx of a supine athlete was assessed using both a standard long-handle and a short-handle laryngoscope. Use of a short-handle laryngoscope was easier for all physicians in all sports as compared with a standard-sized laryngoscope. Passage of a laryngoscope blade into the posterior oropharynx of a supine athlete was easiest in soccer players and most difficult in football and ice hockey players for both sizes of laryngoscope. Interference from chest or shoulder pads was a common cause for difficulty in passing the laryngoscope blade into the posterior oropharynx for football and ice hockey players. In the rare instances that an endotracheal intubation is to be attempted on an unconscious athlete, a short-handle laryngoscope may provide the best chance for successful intubation.

  6. A Comparison of Somatic Variables of Elite Ice Hockey Players from the Czech ELH and Russian KHL

    PubMed Central

    Kutáč, Petr; Sigmund, Martin

    2015-01-01

    The goals of this study were to evaluate the basic morphological variables of contemporary elite ice hockey players, compare the parameters of players in the top Russian ice hockey league (KHL) with those of the top Czech ice hockey league (ELH), and to evaluate the parameters of players according to their position in the game. The research participants included 30 KHL players (mean age: 27.1 ± 5.1 years) and 25 ELH players (mean age: 26.4 ± 5.8 years). We determined body height, body mass, and body composition (body fat, fat-free mass, segmental fat analysis). All measurements were performed at the end of preseason training. The KHL players had the following anthropometric characteristics: body height 182.97 ± 5.61 cm (forward) and 185.72 ± 3.57 cm (defenseman), body mass 89.70 ± 5.28 kg (forward) and 92.52 ± 4.01 kg (defenseman), body fat 10.76 ± 0.63 kg (forward) and 11.10 ± 0.48 kg (defenseman), fat-free mass 78.94 ± 4.65 kg (forward) and 81.42 ± 3.52 kg (defenseman). The values for ELH players were as follows: body height 182.06 ± 5.93 cm (forward) and 185.88 ± 7.13 cm (defenseman), body mass 88.47 ± 7.06 kg (forward) and 89.36 ± 10.91 kg (defenseman), body fat 12.57 ± 2.89 kg (forward) and 11.91 ± 3.10 kg (defenseman), fat-free mass 75.93 ± 6.54 kg (forward) and 77.46 ± 7.89 kg (defenseman). The results indicate that it is beneficial to ice hockey players to have increased body mass and lower body fat, which leads to higher muscle mass, thus enabling a player to perform at the highest level and meet the specific challenges of the game. PMID:25949747

  7. Acute injuries in soccer, ice hockey, volleyball, basketball, judo, and karate: analysis of national registry data.

    PubMed Central

    Kujala, U. M.; Taimela, S.; Antti-Poika, I.; Orava, S.; Tuominen, R.; Myllynen, P.

    1995-01-01

    OBJECTIVE--To determine the acute injury profile in each of six sports and compare the injury rates between the sports. DESIGN--Analysis of national sports injury insurance registry data. SETTING--Finland during 1987-91. SUBJECTS--621,691 person years of exposure among participants in soccer, ice hockey, volleyball, basketball, judo, or karate. MAIN OUTCOME MEASURES--Acute sports injuries requiring medical treatment and reported to the insurance company on structured forms by the patients and their doctors. RESULTS--54,186 sports injuries were recorded. Injury rates were low in athletes aged under 15, while 20-24 year olds had the highest rates. Differences in injury rates between the sports were minor in this adult age group. Overall injury rates were higher in sports entailing more frequent and powerful body contact. Each sport had a specific injury profile. Fractures and dental injuries were most common in ice hockey and karate and least frequent in volleyball. Knee injuries were the most common cause of permanent disability. CONCLUSIONS--Based on the defined injury profiles in the different sports it is recommended that sports specific preventive measures should be employed to decrease the number of violent contacts between athletes, including improved game rules supported by careful refereeing. To prevent dental injuries the wearing of mouth guards should be encouraged, especially in ice hockey, karate, and basketball. PMID:8520333

  8. Evaluation of cardiovascular demands of game play and practice in women's ice hockey.

    PubMed

    Spiering, Barry A; Wilson, Meredith H; Judelson, Daniel A; Rundell, Kenneth W

    2003-05-01

    Preparation for the physical demands of competition often involves game simulation during practice. This paradigm is thought to promote physiological adaptations that enhance maximal performance. However, a mismatch between practice intensity and actual competition intensity may not provide adequate training to achieve optimal game-play fitness. The purpose of this study was to evaluate the effectiveness of practice in meeting the cardiovascular demands of a women's ice hockey game. Heart rate (HR) data from 11 U.S. National Women's Ice Hockey team members were collected (5-second intervals) during a game and a typical practice session. Data was normalized to individual HRmax determined during Vo(2)max testing. Working time was defined as a game shift or practice-working interval. Mean working HR was greater during the game than the practice, 90 +/- 2% and 76 +/- 3% of HRmax, respectively (p < 0.05). Mean percent session time (game or practice) >90% HRmax was also longer during the game than the practice, 10.5 +/- 4.1% and 5.6 +/- 3.5% (p < 0.05), respectively. Mean session HR, percent time >80% HRmax, and mean resting HR were not different between game and practice (68 +/- 7% vs. 69 +/- 5%, 23.2 +/- 5.3% vs. 26.1 +/- 9.2%, and 59 +/- 8% vs. 56 +/- 5%, respectively). Elite women hockey players experience significantly greater cardiovascular load during game play than during practice. This mismatch in cardiovascular demand may prevent players from achieving "game shape," thus affecting competition play.

  9. Upper respiratory tract infection and mucosal immunity in young ice hockey players during the pre-tournament training period.

    PubMed

    Orysiak, Joanna; Witek, Konrad; Malczewska-Lenczowska, Jadwiga; Zembron-Lacny, Agnieszka; Pokrywka, Andrzej; Sitkowski, Dariusz

    2018-02-27

    The aim of this study was to determine the effects of 17 days of training during preparation for the Ice Hockey Under 18 World Championship of the Polish ice hockey national team on the mucosal immune function and monitor upper respiratory tract infection (URTI) incidence before, during and after the competition. Twelve male ice hockey players (age 17.7±0.5 years) were recruited for this study. The first saliva/blood collection took place at the beginning of the training camp (without training at the training camp), the second one was conducted on the 9th day of the training camp immediately after the intensification of training, and the third collection was carried out on the 13th day of training (4 days before leaving for the World Championship) in the tapering phase. To assess the mucosal immune function, concentrations of secretory immunoglobulin A (sIgA), sIgA1, and sIgA2 were analyzed in saliva. Cortisol concentration and creatine kinase activity were determined in blood, as indicators of stress and muscle damage, respectively. The Wisconsin Upper Respiratory Symptom Survey-21 questionnaire was used to assess URTI symptoms. A significant increase in the sIgA1 and sIgA2 concentrations was observed in the third collection compared with the second time point (114.45±33.00 vs 77.49±27.29 and 88.97±25.33 vs 71.65±32.44 U, respectively). There were no statistically significant correlations between the URTI incidence and saliva variables. In conclusion, the tapering period positively affects the mucosal immune function, especially sIgA1 and sIgA2 concentrations, with no significant change in frequency of URTI in young ice hockey players.

  10. Checking in: An Analysis of the (Lack of) Body Checking in Women's Ice Hockey

    ERIC Educational Resources Information Center

    Weaving, Charlene; Roberts, Samuel

    2012-01-01

    Despite the growing popularity of women's ice hockey in North America, players continue to face limitations because of the prohibition of body checking. In this paper, we argue from a liberal feminist philosophical perspective that this prohibition reinforces existing traditional stereotypes of female athletes. Because the women's game does not…

  11. Influence of viewing professional ice hockey on youth hockey injuries.

    PubMed

    Keays, G; Pless, B

    2013-03-01

    Most televised National Hockey League (NHL) games include violent body checks, illegal hits and fights. We postulated that minor league players imitated these behaviours and that not seeing these games would reduce the rate of injuries among younger hockey players. Using a quasi-experimental design, we compared 7 years of televised NHL matches (2002-2009) with the year of the NHL lock-out (2004/2005). Data from the Canadian Hospitals Injury Reporting and Prevention Program (CHIRPP) were used to identify the injuries and to ascertain whether they were due to intentional contact and illegal acts including fights. We found no significant differences in the proportions of all injuries and those involving intentional contact, violations or illegal acts among male minor league hockey players during the year when professional players were locked out and the years before and after the lock-out. We concluded that not seeing televised NHL violence may not reduce injuries, although a possible effect may have been obscured because there was a striking increase in attendance at equally violent minor league games during the lock-out.

  12. The development and reliability of a repeated anaerobic cycling test in female ice hockey players.

    PubMed

    Wilson, Kier; Snydmiller, Gary; Game, Alex; Quinney, Art; Bell, Gordon

    2010-02-01

    The purpose of this study was to develop and assess the reliability of a repeated anaerobic power cycling test designed to mimic the repeated sprinting nature of the sport of ice hockey. Nineteen female varsity ice hockey players (mean X +/- SD age, height and body mass = 21 +/- 2 yr, 166.6 +/- 6.3 cm and 62.3 +/- 7.3) completed 3 trials of a repeated anaerobic power test on a Monark cycle ergometer on different days. The test consisted of "all-out" cycling for 5 seconds separated by 10 seconds of low-intensity cycling, repeated 4 times. The relative load factor used for the resistance setting was equal to 0.095 kg per kilogram body mass. There was no significant difference between the peak 5-second power output (PO), mean PO, or the fatigue index (%) among the 3 different trials. The peak 5-second PO was 702.6 +/- 114.8 w and 11.3 +/- 1.1 w x kg, whereas the mean PO across the 4 repeats was 647.1 +/- 96.3 w and 10.4 +/- 1.0 w x kg averaged for the 3 different tests. The fatigue index averaged 17.8 +/- 6.5%. The intraclass correlation coefficient for peak 5-second, mean PO, and fatigue index was 0.82, 0.86, and 0.82, respectively. This study reports the methodology of a repeated anaerobic power cycling test that was reliable for the measurement of PO and calculated fatigue index in varsity women ice hockey players and can be used as a laboratory-based assessment of repeated anaerobic fitness.

  13. Head injuries presenting to emergency departments in the United States from 1990 to 1999 for ice hockey, soccer, and football.

    PubMed

    Delaney, J Scott

    2004-03-01

    To examine the number and rates of head injuries occurring in the community as a whole for the team sports of ice hockey, soccer, and football by analyzing data from patients presenting to US emergency departments (EDs) from 1990 to 1999. Retrospective analysis. Data compiled for the US Consumer Product Safety Commission using the National Electronic Injury Surveillance System were used to generate estimates for the total number of head injuries, concussions, internal head injuries, and skull fractures occurring on a national level from the years 1990 to 1999. These data were combined with yearly participation figures to generate rates of injuries presenting to the ED for each sport. There were an estimated 17,008 head injuries from ice hockey, 86,697 from soccer, and 204,802 from football that presented to US EDs from 1990 to 1999. The total number of concussions presenting to EDs in the United States over the same period was estimated to be 4820 from ice hockey, 21,715 from soccer, and 68,861 from football. While the rates of head injuries, concussions, and combined concussions/internal head injuries/skull fractures presenting to EDs per 10,000 players were not always statistically similar for all 3 sports in each year data were available, they were usually comparable. While the total numbers of head injuries, concussions, and combined concussions/skull fractures/internal head injuries presenting to EDs in the United States are different for ice hockey, soccer, and football for the years studied, the yearly rates for these injuries are comparable among all 3 sports.

  14. The risk of injury associated with body checking among Pee Wee ice hockey players: an evaluation of Hockey Canada's national body checking policy change.

    PubMed

    Black, Amanda M; Hagel, Brent E; Palacios-Derflingher, Luz; Schneider, Kathryn J; Emery, Carolyn A

    2017-12-01

    In 2013, Hockey Canada introduced an evidence-informed policy change delaying the earliest age of introduction to body checking in ice hockey until Bantam (ages 13-14) nationwide. To determine if the risk of injury, including concussions, changes for Pee Wee (11-12 years) ice hockey players in the season following a national policy change disallowing body checking. In a historical cohort study, Pee Wee players were recruited from teams in all divisions of play in 2011-2012 prior to the rule change and in 2013-2014 following the change. Baseline information, injury and exposure data for both cohorts were collected using validated injury surveillance. Pee Wee players were recruited from 59 teams in Calgary, Alberta (n=883) in 2011-2012 and from 73 teams in 2013-2014 (n=618). There were 163 game-related injuries (incidence rate (IR)=4.37/1000 game-hours) and 104 concussions (IR=2.79/1000 game-hours) in Alberta prior to the rule change, and 48 injuries (IR=2.16/1000 game-hours) and 25 concussions (IR=1.12/1000 game-hours) after the rule change. Based on multivariable Poisson regression with exposure hours as an offset, the adjusted incidence rate ratio associated with the national policy change disallowing body checking was 0.50 for all game-related injuries (95% CI 0.33 to 0.75) and 0.36 for concussion specifically (95% CI 0.22 to 0.58). Introduction of the 2013 national body checking policy change disallowing body checking in Pee Wee resulted in a 50% relative reduction in injury rate and a 64% reduction in concussion rate in 11-year-old and 12-year-old hockey players in Alberta. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  15. Vitamin D status and its relation to exercise performance and iron status in young ice hockey players

    PubMed Central

    Orysiak, Joanna; Mazur-Rozycka, Joanna; Fitzgerald, John; Starczewski, Michal; Malczewska-Lenczowska, Jadwiga

    2018-01-01

    Objectives The aim was to examine the association between serum vitamin D concentration and isometric strength of various muscle groups, vertical jump performance, and repeated sprint ability in young ice hockey players. The secondary aim was to determine the association between vitamin D deficiency and indices of iron status. Methods Fifty male ice hockey players (17.2±0.9 years) participated in this cross-sectional study. Exercise performance was evaluated using isometric strength measures of upper and lower extremities, vertical jump performance and repeated sprint ability (RSA). Blood samples were collected for the determination of serum 25-hydroxyvitamin D (25(OH)D) and multiple indicies of iron status. Results The mean serum 25(OH)D concentration was 30.4 ng·ml-1 and ranged from 12.5 to 91.4 ng·ml-1. Eleven participants (22%) had vitamin D deficiency and 20 athletes (40%) had vitamin D insufficiency. Serum 25(OH)D concentration was not positively correlated with isometric muscle strength, vertical jump performance, or RSA after adjusting for age, training experience, fat mass, fat free mass and height. Serum 25(OH)D concentration was not associated with indices of iron status. Conclusion Vitamin D insufficiency is highly prevalent in ice hockey players, but 25(OH)D concentration but it is not associated with exercise performance or indices of iron status. PMID:29630669

  16. Less efficient oculomotor performance is associated with increased incidence of head impacts in high school ice hockey.

    PubMed

    Kiefer, Adam W; DiCesare, Christopher; Nalepka, Patrick; Foss, Kim Barber; Thomas, Staci; Myer, Gregory D

    2018-01-01

    To evaluate associations between pre-season oculomotor performance on visual tracking tasks and in-season head impact incidence during high school boys ice hockey. Prospective observational study design. Fifteen healthy high school aged male hockey athletes (M=16.50±1.17years) performed two 30s blocks each of a prosaccade and self-paced saccade task, and two trials each of a slow, medium, and fast smooth pursuit task (90°s -1 ; 180°s -1 ; 360°s -1 ) during the pre-season. Regular season in-game collision data were collected via helmet-mounted accelerometers. Simple linear regressions were used to examine relations between oculomotor performance measures and collision incidence at various impact thresholds. The variability of prosaccade latency was positively related to total collisions for the 20g force cutoff (p=0.046, adjusted R 2 =0.28). The average self-paced saccade velocity (p=0.020, adjusted R 2 =0.37) and variability of smooth pursuit gaze velocity (p=0.012, adjusted R 2 =0.47) were also positively associated with total collisions for the 50g force cutoff. These results provide preliminary evidence that less efficient oculomotor performance on three different oculomotor tasks is associated with increased incidence of head impacts during a competitive ice hockey season. The variability of prosaccade latency, the average self-paced saccade velocity and the variability of gaze velocity during predictable smooth pursuit all related to increased head impacts. Future work is needed to further understand player initiated collisions, but this is an important first step toward understanding strategies to reduce incidence of injury risk in ice hockey, and potentially contact sports more generally. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  17. Evaluation of cricket helmet performance and comparison with baseball and ice hockey helmets.

    PubMed

    McIntosh, A S; Janda, D

    2003-08-01

    Protective helmets in sport are important for reducing the risk of head and facial injury. In cricket and other sports with projectiles, national test standards control the minimum helmet performance. However, there are few field data showing if helmets are effective in reducing head injury. (a) To examine the performance of cricket helmets in laboratory tests; (b) to examine performance with regard to test standards, game hazards, and helmet construction; (c) to compare and contrast these findings with baseball and ice hockey helmets. Impact tests were conducted on a selection of helmet models: five cricket, two baseball, and two ice hockey. Ball to helmet impacts at speeds of 19, 27, 36, and 45 m/s were produced using an air cannon and a Hybrid III dummy headform and neck unit. Free fall drop tests with a rigid headform on to a selection of anvils (flat rigid, flat deformable, and hemispherical rigid) were conducted. Resultant headform acceleration was measured and compared between tests. At the lower speed impacts, all helmets produced a good reduction in headform acceleration, and thus injury risk. At the higher speed impacts, the effectiveness was less. For example, the mean maximum headform accelerations for all cricket helmets at each speed were: 67, 160, 316, and 438 g for 19, 27, 36, and 45 m/s ball speeds respectively. Drop tests on to a hemispherical anvil produced the highest accelerations. The variation in performance increased as the magnitude of the impact energy increased, in both types of testing. The test method used for baseball helmets in which the projectile is fired at the helmet may be superior to helmet drop tests. Cricket helmet performance is satisfactory for low speed impacts, but not for impacts at higher, more realistic, speeds. Baseball and ice hockey helmets offer slightly better relative and absolute performance at the 27 m/s ball and puck impacts.

  18. The assessment of airway maneuvers and interventions in university Canadian football, ice hockey, and soccer players.

    PubMed

    Delaney, J Scott; Al-Kashmiri, Ammar; Baylis, Penny-Jane; Troutman, Tracy; Aljufaili, Mahmood; Correa, José A

    2011-01-01

    Managing an airway in an unconscious athlete is a lifesaving skill that may be made more difficult by the recent changes in protective equipment. Different airway maneuvers and techniques may be required to help ventilate an unconscious athlete who is wearing full protective equipment. To assess the effectiveness of different airway maneuvers with football, ice hockey, and soccer players wearing full protective equipment. Crossover study. University sports medicine clinic. A total of 146 university varsity athletes, consisting of 62 football, 45 ice hockey, and 39 soccer players. Athletes were assessed for different airway and physical characteristics. Three investigators then evaluated the effectiveness of different bag-valve-mask (BVM) ventilation techniques in supine athletes who were wearing protective equipment while inline cervical spine immobilization was maintained. The effectiveness of 1-person BVM ventilation (1-BVM), 2-person BVM ventilation (2-BVM), and inline immobilization and ventilation (IIV) was judged by each investigator for each athlete using a 4-point rating scale. All forms of ventilation were least difficult in soccer players and most difficult in football players. When compared with 1-BVM, both 2-BVM and IIV were deemed more effective by all investigators for all athletes. Interference from the helmet and stabilizer were common reasons for difficult ventilation in football and ice hockey players. Sports medicine professionals should practice and be comfortable with different ventilation techniques for athletes wearing full equipment. The use of a new ventilation technique, termed inline immobilization and ventilation, may be beneficial, especially when the number of responders is limited.

  19. High-intensity interval training has positive effects on performance in ice hockey players.

    PubMed

    Naimo, M A; de Souza, E O; Wilson, J M; Carpenter, A L; Gilchrist, P; Lowery, R P; Averbuch, B; White, T M; Joy, J

    2015-01-01

    In spite of the well-known benefits that have been shown, few studies have looked at the practical applications of high-intensity interval training (HIIT) on athletic performance. This study investigated the effects of a HIIT program compared to traditional continuous endurance exercise training. 24 hockey players were randomly assigned to either a continuous or high-intensity interval group during a 4-week training program. The interval group (IG) was involved in a periodized HIIT program. The continuous group (CG) performed moderate intensity cycling for 45-60 min at an intensity that was 65% of their calculated heart rate reserve. Body composition, muscle thickness, anaerobic power, and on-ice measures were assessed pre- and post-training. Muscle thickness was significantly greater in IG (p=0.01) when compared to CG. The IG had greater values for both ∆ peak power (p<0.003) and ∆ mean power (p<0.02). Additionally, IG demonstrated a faster ∆ sprint (p<0.02) and a trend (p=0.08) for faster ∆ endurance test time to completion for IG. These results indicate that hockey players may utilize short-term HIIT to elicit positive effects in muscle thickness, power and on-ice performance. © Georg Thieme Verlag KG Stuttgart · New York.

  20. The Assessment of Airway Maneuvers and Interventions in University Canadian Football, Ice Hockey, and Soccer Players

    PubMed Central

    Delaney, J. Scott; Al-Kashmiri, Ammar; Baylis, Penny-Jane; Troutman, Tracy; Aljufaili, Mahmood; Correa, José A.

    2011-01-01

    Abstract Context: Managing an airway in an unconscious athlete is a lifesaving skill that may be made more difficult by the recent changes in protective equipment. Different airway maneuvers and techniques may be required to help ventilate an unconscious athlete who is wearing full protective equipment. Objective: To assess the effectiveness of different airway maneuvers with football, ice hockey, and soccer players wearing full protective equipment. Design: Crossover study. Setting: University sports medicine clinic. Patients or Other Participants: A total of 146 university varsity athletes, consisting of 62 football, 45 ice hockey, and 39 soccer players. Intervention(s): Athletes were assessed for different airway and physical characteristics. Three investigators then evaluated the effectiveness of different bag-valve-mask (BVM) ventilation techniques in supine athletes who were wearing protective equipment while inline cervical spine immobilization was maintained. Main Outcome Measure(s): The effectiveness of 1-person BVM ventilation (1-BVM), 2-person BVM ventilation (2-BVM), and inline immobilization and ventilation (IIV) was judged by each investigator for each athlete using a 4-point rating scale. Results: All forms of ventilation were least difficult in soccer players and most difficult in football players. When compared with 1-BVM, both 2-BVM and IIV were deemed more effective by all investigators for all athletes. Interference from the helmet and stabilizer were common reasons for difficult ventilation in football and ice hockey players. Conclusions: Sports medicine professionals should practice and be comfortable with different ventilation techniques for athletes wearing full equipment. The use of a new ventilation technique, termed inline immobilization and ventilation, may be beneficial, especially when the number of responders is limited. PMID:21391796

  1. Ice hockey lung – a case of mass nitrogen dioxide poisoning in the Czech Republic

    PubMed Central

    Brat, Kristian; Merta, Zdenek; Plutinsky, Marek; Skrickova, Jana; Ing, Miroslav Stanek

    2013-01-01

    Nitrogen dioxide (NO2) is a toxic gas, a product of combustion in malfunctioning ice-resurfacing machines. NO2 poisoning is rare but potentially lethal. The authors report a case of mass NO2 poisoning involving 15 amateur ice hockey players in the Czech Republic. All players were treated in the Department of Respiratory Diseases at Brno University Hospital in November 2010 – three as inpatients because they developed pneumonitis. All patients were followed-up until November 2011. Complete recovery in all but one patient was achieved by December 2010. None of the 15 patients developed asthma-like disease or chronic cough. Corticosteroids appeared to be useful in treatment. Electric-powered ice-resurfacing machines are preferable in indoor ice skating arenas. PMID:24032121

  2. Ice friction of flared ice hockey skate blades.

    PubMed

    Federolf, Peter A; Mills, Robert; Nigg, Benno

    2008-09-01

    In ice hockey, skating performance depends on the skill and physical conditioning of the players and on the characteristics of their equipment. CT Edge have recently designed a new skate blade that angles outward near the bottom of the blade. The objective of this study was to compare the frictional characteristics of three CT Edge blades (with blade angles of 4 degrees, 60, and 8 degrees, respectively) with the frictional characteristics of a standard skate blade. The friction coefficients of the blades were determined by measuring the deceleration of an aluminium test sled equipped with three test blades. The measurements were conducted with an initial sled speed of 1.8 m s(-1) and with a load of 53 kg on each blade. The friction coefficient of the standard blades was 0.0071 (s = 0.0005). For the CT Edge blades with blade angles of 4 degrees, 6 degrees, and 8 degrees, friction coefficients were lower by about 13%, 21%, and 22%, respectively. Furthermore, the friction coefficients decreased with increasing load. The results of this study show that widely accepted paradigms such as "thinner blades cause less friction" need to be revisited. New blade designs might also be able to reduce friction in speed skating, figure skating, bobsledding, and luge.

  3. THE ROLE OF AEROBIC CAPACITY IN HIGH-INTENSITY INTERMITTENT EFFORTS IN ICE-HOCKEY

    PubMed Central

    Roczniok, R.; Maszczyk, A.; Pietraszewski, P.; Zając, A.

    2014-01-01

    The primary objective of this study was to determine a relationship between aerobic capacity (V.O2max) and fatigue from high-intensity skating in elite male hockey players. The subjects were twenty-four male members of the senior national ice hockey team of Poland who played the position of forward or defence. Each subject completed an on-ice Repeated-Skate Sprint test (RSS) consisting of 6 timed 89-m sprints, with 30 s of rest between subsequent efforts, and an incremental test on a cycle ergometer in the laboratory, the aim of which was to establish their maximal oxygen uptake (V.O2max). The analysis of variance showed that each next repetition in the 6x89 m test was significantly longer than the previous one (F5,138=53.33, p<0.001). An analysis of the fatigue index (FI) calculated from the times recorded for subsequent repetitions showed that the value of the FI increased with subsequent repetitions, reaching its maximum between repetitions 5 and 6 (3.10±1.16%). The total FI was 13.77±1.74%. The coefficient of correlation between V.O2max and the total FI for 6 sprints on the distance of 89 m (r =–0.584) was significant (p=0.003). The variance in the index of players’ fatigue in the 6x89 m test accounted for 34% of the variance in V.O2max. The 6x89 m test proposed in this study offers a high test-retest correlation coefficient (r=0.78). Even though the test is criticized for being too exhaustive and thereby for producing highly variable results it still seems that it was well selected for repeated sprint ability testing in hockey players. PMID:25177097

  4. Femoroacetabular Impingement in Elite Ice Hockey Goaltenders: Etiological Implications of On-Ice Hip Mechanics.

    PubMed

    Whiteside, David; Deneweth, Jessica M; Bedi, Asheesh; Zernicke, Ronald F; Goulet, Grant C

    2015-07-01

    Femoroacetabular impingement (FAI) is particularly prevalent in ice hockey. The butterfly goalie technique is thought to involve extreme ranges of hip motion that may predispose goaltenders to FAI. To quantify hip mechanics during 3 common goaltender movements and interpret their relevance to the development of FAI. Descriptive laboratory study. Fourteen collegiate and professional goaltenders performed skating, butterfly save, and recovery movements on the ice. Hip mechanics were compared across the 3 movements. The butterfly did not exhibit the greatest range of hip motion in any of the 3 planes. Internal rotation was the only hip motion that appeared close to terminal in this study. When subjects decelerated during skating—shaving the blade of their skate across the surface of the ice—the magnitude of peak hip internal rotation was 54% greater than in the butterfly and 265% greater than in the recovery. No movement involved levels of concomitant flexion, adduction, and internal rotation that resembled the traditional impingement (FADIR) test. The magnitude of internal rotation was the most extreme planar hip motion (relative to end-range) recorded in this study (namely during decelerating) and appeared to differentiate this cohort from other athletic populations. Consequently, repetitive end-range hip internal rotation may be the primary precursor to symptomatic FAI in hockey goaltenders and provides the most plausible account for the high incidence of FAI in these athletes. Resection techniques should, therefore, focus on enhancing internal rotation in goaltenders, compared with flexion and adduction. While the butterfly posture can require significant levels of hip motion, recovering from a save and, in particular, decelerating during skating are also demanding on goaltenders' hip joints. Therefore, it appears critical to consider and accommodate a variety of sport-specific hip postures to comprehensively diagnose, treat, and rehabilitate FAI. © 2015 The

  5. Safe-Play Knowledge, Aggression, and Head-Impact Biomechanics in Adolescent Ice Hockey Players.

    PubMed

    Schmidt, Julianne D; Pierce, Alice F; Guskiewicz, Kevin M; Register-Mihalik, Johna K; Pamukoff, Derek N; Mihalik, Jason P

    2016-05-01

    Addressing safe-play knowledge and player aggression could potentially improve ice hockey sport safety. To compare (1) safe-play knowledge and aggression between male and female adolescent ice hockey players and (2) head-impact frequency and severity between players with high and low levels of safe-play knowledge and aggression during practices and games. Cohort study. On field. Forty-one male (n = 29) and female (n = 12) adolescent ice hockey players. Players completed the Safe Play Questionnaire (0 = less knowledge, 7 = most knowledge) and Competitive Aggressiveness and Anger Scale (12 = less aggressive, 60 = most aggressive) at midseason. Aggressive penalty minutes were recorded throughout the season. The Head Impact Telemetry System was used to capture head-impact frequency and severity (linear acceleration [g], rotational acceleration [rad/s(2)], Head Impact Technology severity profile) at practices and games. One-way analyses of variance were used to compare safe play knowledge and aggression between sexes. Players were categorized as having high or low safe-play knowledge and aggression using a median split. A 2 × 2 mixed-model analysis of variance was used to compare head-impact frequency, and random-intercept general linear models were used to compare head-impact severity between groups (high, low) and event types (practice, game). Boys (5.8 of 7 total; 95% confidence interval [CI] = 5.3, 6.3) had a trend toward better safe-play knowledge compared with girls (4.9 of 7 total; 95% CI = 3.9, 5.9; F1,36 = 3.40, P = .073). Less aggressive male players sustained significantly lower head rotational accelerations during practices (1512.8 rad/s (2) , 95% CI = 1397.3, 1637.6 rad/s(2)) versus games (1754.8 rad/s (2) , 95% CI = 1623.9, 1896.2 rad/s(2)) and versus high-aggression players during practices (1773.5 rad/s (2) , 95% CI = 1607.9, 1956.3 rad/s (2) ; F1,26 = 6.04, P = .021). Coaches and sports medicine professionals should ensure that athletes of all levels

  6. Relationship between body composition, leg strength, anaerobic power, and on-ice skating performance in division I men's hockey athletes.

    PubMed

    Potteiger, Jeffrey A; Smith, Dean L; Maier, Mark L; Foster, Timothy S

    2010-07-01

    The purpose of this study was to examine relationships between laboratory tests and on-ice skating performance in division I men's hockey athletes. Twenty-one men (age 20.7 +/- 1.6 years) were assessed for body composition, isokinetic force production in the quadriceps and hamstring muscles, and anaerobic muscle power via the Wingate 30-second cycle ergometer test. Air displacement plethysmography was used to determine % body fat (%FAT), fat-free mass (FFM), and fat mass. Peak torque and total work during 10 maximal effort repetitions at 120 degrees .s were measured during concentric muscle actions using an isokinetic dynamometer. Muscle power was measured using a Monark cycle ergometer with resistance set at 7.5% of body mass. On-ice skating performance was measured during 6 timed 89-m sprints with subjects wearing full hockey equipment. First length skate (FLS) was 54 m, and total length skate (TLS) was 89 m with fastest and average skating times used in the analysis. Correlation coefficients were used to determine relationships between laboratory testing and on-ice performance. Subjects had a body mass of 88.8 +/- 7.8 kg and %FAT of 11.9 +/- 4.6. First length skate-Average and TLS-Average skating times were moderately correlated to %FAT ([r = 0.53; p = 0.013] and [r = 0.57; p = 0.007]) such that a greater %FAT was related to slower skating speeds. First length skate-Fastest was correlated to Wingate percent fatigue index (r = -0.48; p = 0.027) and FLS-Average was correlated to Wingate peak power per kilogram body mass (r = -0.43; p = 0.05). Laboratory testing of select variables can predict skating performance in ice hockey athletes. This information can be used to develop targeted and effective strength and conditioning programs that will improve on-ice skating speed.

  7. Enforcement of Mouthguard Use and Athlete Compliance in National Collegiate Athletic Association Men's Collegiate Ice Hockey Competition.

    ERIC Educational Resources Information Center

    Hawn, Kristen L.; Visser, Mary Frances; Sexton, Patrick J.

    2002-01-01

    Investigated enforcement patterns and athlete compliance with the National Collegiate Athletic Association rule requiring the wearing of mouthguards in men's collegiate ice hockey games during one season. Surveys of athletic trainers indicated that the use of mouthguards in competition was not consistently enforced by athletic trainers, coaches,…

  8. Effects of Carbohydrate Intake Before and During An Ice Hockey Game on Blood and Muscle Energy Substrates.

    ERIC Educational Resources Information Center

    Simard, Clermont; And Others

    1988-01-01

    Study of the effect of a supplemental carbohydrate intake for seven elite ice hockey players before and during a game demonstrated that the supplement could result in less glycogen usage per distance skated, which had important implications for athletes who may participate in more than one game a day. (Author/CB)

  9. Development and Validation of a Method for Determining Tridimensional Angular Displacements with Special Applications to Ice Hockey Motions.

    ERIC Educational Resources Information Center

    Gagnon, Micheline; And Others

    1983-01-01

    A method for determining the tridimensional angular displacement of skates during the two-legged stop in ice hockey was developed and validated. The angles were measured by geometry, using a cinecamera and specially equipped skates. The method provides a new tool for kinetic analyses of skating movements. (Authors/PP)

  10. Safe-Play Knowledge, Aggression, and Head-Impact Biomechanics in Adolescent Ice Hockey Players

    PubMed Central

    Schmidt, Julianne D.; Pierce, Alice F.; Guskiewicz, Kevin M.; Register-Mihalik, Johna K.; Pamukoff, Derek N.; Mihalik, Jason P.

    2016-01-01

    Context:  Addressing safe-play knowledge and player aggression could potentially improve ice hockey sport safety. Objectives:  To compare (1) safe-play knowledge and aggression between male and female adolescent ice hockey players and (2) head-impact frequency and severity between players with high and low levels of safe-play knowledge and aggression during practices and games. Design:  Cohort study. Setting:  On field. Patients or Other Participants:  Forty-one male (n = 29) and female (n = 12) adolescent ice hockey players. Intervention(s):  Players completed the Safe Play Questionnaire (0 = less knowledge, 7 = most knowledge) and Competitive Aggressiveness and Anger Scale (12 = less aggressive, 60 = most aggressive) at midseason. Aggressive penalty minutes were recorded throughout the season. The Head Impact Telemetry System was used to capture head-impact frequency and severity (linear acceleration [g], rotational acceleration [rad/s2], Head Impact Technology severity profile) at practices and games. Main Outcome Measure(s):  One-way analyses of variance were used to compare safe play knowledge and aggression between sexes. Players were categorized as having high or low safe-play knowledge and aggression using a median split. A 2 × 2 mixed-model analysis of variance was used to compare head-impact frequency, and random-intercept general linear models were used to compare head-impact severity between groups (high, low) and event types (practice, game). Results:  Boys (5.8 of 7 total; 95% confidence interval [CI] = 5.3, 6.3) had a trend toward better safe-play knowledge compared with girls (4.9 of 7 total; 95% CI = 3.9, 5.9; F1,36 = 3.40, P = .073). Less aggressive male players sustained significantly lower head rotational accelerations during practices (1512.8 rad/s2, 95% CI = 1397.3, 1637.6 rad/s2) versus games (1754.8 rad/s2, 95% CI = 1623.9, 1896.2 rad/s2) and versus high-aggression players during practices (1773.5 rad/s2, 95% CI = 1607

  11. [Factors Associated with the Use of Protective Gear among Adults during Recreational Sledging].

    PubMed

    Ruedl, G; Pocecco, E; Kopp, M; Raas, C; Blauth, M; Brucker, P U; Burtscher, M

    2015-09-01

    Recreational sledging (tobogganing) is a very popular winter sport in the Alps. Therefore, injury prevention through the usage of protective gear seems important. Therefore, the aim of this study was to evaluate factors associated with the use of protective gear among adults during recreational sledging. Adult recreational sledgers were interviewed during the winter seasons 2012/13 and 2013/14 at six sledging tracks in Austria on demographics, skill level, sledging frequency, risk taking behaviour, sitting alone or with another person on the sledge, previous sledging-related injuries, and use of protective gear, respectively. Interviews were conducted on all days of the week. A total of 1968 adult sledgers (49.4 % females) with a mean age of 37.1 ± 14.4 years participated in this study. A (ski) helmet, sun or snow goggles, a back protector, and wrist guards were used by 42.3 %, 71.0 %, 5.9 %, 2.6 % of sledgers, respectively. Helmet use was significantly higher with increasing age and increasing skill level as well as when sitting alone compared to sitting together with another person. Females, Austrians, persons sitting alone on the sledge, a higher frequency of sledging and a higher skill level were significantly associated with an increasing use of goggles. A back protector was significantly more often worn by younger people, more risky sledgers, and persons with a previous sledging-related injury. Wrist guards were significantly more often used by persons with a previous sledging-related injury. During recreational sledging, the factors age, sex, nationality, skill level, sitting alone compared to sitting together with another person on the sledge, sledging frequency, and injury experience were associated with the frequencies of usage of different types of protective gear. These factors should be considered when implementing preventive measures for recreational sledging. © Georg Thieme Verlag KG Stuttgart · New York.

  12. Moral disengagement in the legitimation and realization of aggressive behavior in soccer and ice hockey.

    PubMed

    Traclet, Alan; Moret, Orlan; Ohl, Fabien; Clémence, Alain

    2015-03-01

    The aim of the present study was to verify that the level of tolerance for aggression is higher in a collective context than in an individual context (polarization effect), and to test the association between moral disengagement, team and self-attitudes toward aggression, and tolerance and realization of aggressive acts in Swiss male soccer and ice hockey. In individual or collective answering conditions, 104 soccer and 98 ice hockey players viewed videotaped aggressive acts and completed a questionnaire, including measures of the perceived legitimacy of videotaped aggression, of the teammates, coach, and self attitudes toward transgressions (modified TNQ), of the moral disengagement in sport (modified MDSS-S), and of self-reported aggressive behavior. A multilevel analysis confirmed a strong polarization effect on the perception of instrumental aggression, the videotaped aggressive acts appearing more tolerated in the collective than in the individual answering condition. Using a structural equation modeling, we found that the moral disengagement, which mediates the effects of perceived coach and ego attitudes toward transgressions, correlates positively with the tolerance of hostile aggression within teams, and with the level of aggressive acts reported by the participants. Aggr. Behav. Aggr. Behav. 42:123-133, 2015. © 2014 Wiley Periodicals, Inc. © 2014 Wiley Periodicals, Inc.

  13. Motivational climate, goal orientation, perceived sport ability, and enjoyment within Finnish junior ice hockey players.

    PubMed

    Jaakkola, T; Ntoumanis, N; Liukkonen, J

    2016-01-01

    The aim of this study was to investigate the relations among situational motivational climate, dispositional approach and avoidance achievement goals, perceived sport ability, and enjoyment in Finnish male junior ice hockey players. The sample comprised 265 junior B-level male players with a mean age of 17.03 years (SD = 0.63). Players filled questionnaires tapping their perceptions of coach motivational climate, achievement goals, perceived sport ability, and enjoyment. For the statistical analysis, players were divided into high and low perceived sport ability groups. Multigroup structural equation modeling (SEM) revealed an indirect path from task-involving motivational climate via task-approach goal to enjoyment. Additionally, SEM demonstrated four other direct associations, which existed in both perceived ability groups: from ego-involving motivational climate to ego-approach and ego-avoidance goals; from ego-approach goal to ego-avoidance goal; and from task-avoidance goal to ego-avoidance goal. Additionally, in the high perceived sport ability group, there was an association from task-involving motivational climate to enjoyment. The results of this study reveal that motivational climate emphasizing effort, personal development and improvement, and achievement goal mastering tasks are significant elements of enjoyment in junior ice hockey. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Effects of Short Term Camp Periods on Aerobic and Anaerobic Performance Parameters in Ice Hockey National Team Athletes

    ERIC Educational Resources Information Center

    Eler, Serdar

    2016-01-01

    This study was conducted for determining the effects of trainings, applied to athletes during short term camp period, on their aerobic and anaerobic performance. Measurements were made by the participation of 28 volunteer male ice hockey national team players. During the 15-day camp period, 10-minute running and stretching for warming and then…

  15. The injury experience at the 2010 winter paralympic games.

    PubMed

    Webborn, Nick; Willick, Stuart; Emery, Carolyn A

    2012-01-01

    The objective of this study was to examine incidence proportion and the characteristics of athlete injuries sustained during the 2010 Vancouver Paralympic Games. Descriptive epidemiological study. All medical venues at the 2010 Vancouver Paralympic Games, Canada. A total of 505 athletes from 44 National Paralympic Committees participating in the 2010 Vancouver Winter Paralympic Games. Baseline covariates included sport specificity (ie, ice sledge hockey, alpine skiing, Nordic skiing, wheelchair curling), gender, age, and disability classification. All injuries that occurred during the 2010 Vancouver Paralympic Games. "Injury" was defined as any sport-related musculoskeletal complaint that caused the athlete to seek medical attention during the study period, regardless of the athlete's ability to continue with training or competition. The Injury Surveillance System identified a total of 120 injuries among 505 athletes [incidence proportion = 23.8% (95% confidence interval, 20.11-27.7)] participating in the 2010 Winter Paralympic Games. There was a similar injury incidence proportion among male (22.8%) and female (26.6%) athletes [incidence rate ratio = 1.1 (95% confidence interval, 0.7-1.7)]. Medical encounters for musculoskeletal complaints were generated in 34% of all sledge hockey athletes, 22% of alpine ski racers, 19% of Nordic skiers, and 18% of wheelchair curling athletes. The Injury Surveillance System identified sport injuries in 24% of all athletes participating in the 2010 Winter Paralympic Games. The injury risk was significantly higher than during the 2002 (9.4%) and 2006 (8.4%) Winter Paralympic Games. This may reflect improved data collection systems but also highlights the high risk of acute injury in alpine skiing and ice sledge hockey at Paralympic Games. These data will assist future Organizing Committees with the delivery of medical care to athletes with a disability and guide future injury prevention research.

  16. Mild Dehydration Does Not Influence Performance Or Skeletal Muscle Metabolism During Simulated Ice Hockey Exercise In Men.

    PubMed

    Palmer, Matthew S; Heigenhauser, George J F; Duong, MyLinh; Spriet, Lawrence L

    2017-04-01

    This study determined whether mild dehydration influenced skeletal muscle glycogen use, core temperature or performance during high-intensity, intermittent cycle-based exercise in ice hockey players vs. staying hydrated with water. Eight males (21.6 ± 0.4 yr, 183.5 ± 1.6 cm, 83.9 ± 3.7 kg, 50.2 ± 1.9 ml·kg -1 ·min -1 ) performed two trials separated by 7 days. The protocol consisted of 3 periods (P) containing 10 × 45-s cycling bouts at ~133% VO 2max , followed by 135 s of passive rest. Subjects drank no fluid and dehydrated during the protocol (NF), or maintained body mass by drinking WATER. Muscle biopsies were taken at rest, immediately before and after P3. Subjects were mildly dehydrated (-1.8% BM) at the end of P3 in the NF trial. There were no differences between the NF and WATER trials for glycogen use (P1+P2; 350.1 ± 31.9 vs. 413.2 ± 33.2, P3; 103.5 ± 16.2 vs. 131.5 ± 18.9 mmol·kg dm -1 ), core temperature (P1; 37.8 ± 0.1 vs. 37.7 ± 0.1, P2; 38.2 ± 0.1 vs. 38.1 ± 0.1, P3; 38.3 ± 0.1 vs. 38.2 ± 0.1 °C) or performance (P1; 156.3 ± 7.8 vs. 154.4 ± 8.2, P2; 150.5 ± 7.8 vs. 152.4 ± 8.3, P3; 144.1 ± 8.7 vs. 148.4 ± 8.7 kJ). This study demonstrated that typical dehydration experienced by ice hockey players (~1.8% BM loss), did not affect glycogen use, core temperature, or voluntary performance vs. staying hydrated by ingesting water during a cycle-based simulation of ice hockey exercise in a laboratory environment.

  17. Sex differences in white matter alterations following repetitive subconcussive head impacts in collegiate ice hockey players.

    PubMed

    Sollmann, Nico; Echlin, Paul S; Schultz, Vivian; Viher, Petra V; Lyall, Amanda E; Tripodis, Yorghos; Kaufmann, David; Hartl, Elisabeth; Kinzel, Philipp; Forwell, Lorie A; Johnson, Andrew M; Skopelja, Elaine N; Lepage, Christian; Bouix, Sylvain; Pasternak, Ofer; Lin, Alexander P; Shenton, Martha E; Koerte, Inga K

    2018-01-01

    Repetitive subconcussive head impacts (RSHI) may lead to structural, functional, and metabolic alterations of the brain. While differences between males and females have already been suggested following a concussion, whether there are sex differences following exposure to RSHI remains unknown. The aim of this study was to identify and to characterize sex differences following exposure to RSHI. Twenty-five collegiate ice hockey players (14 males and 11 females, 20.6 ± 2.0 years), all part of the Hockey Concussion Education Project (HCEP), underwent diffusion-weighted magnetic resonance imaging (dMRI) before and after the Canadian Interuniversity Sports (CIS) ice hockey season 2011-2012 and did not experience a concussion during the season. Whole-brain tract-based spatial statistics (TBSS) were used to compare pre- and postseason imaging in both sexes for fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD). Pre- and postseason neurocognitive performance were assessed by the Immediate Post-Concussion Assessment and Cognitive Test (ImPACT). Significant differences between the sexes were primarily located within the superior longitudinal fasciculus (SLF), the internal capsule (IC), and the corona radiata (CR) of the right hemisphere (RH). In significant voxel clusters (p < 0.05), decreases in FA (absolute difference pre- vs. postseason: 0.0268) and increases in MD (0.0002), AD (0.00008), and RD (0.00005) were observed in females whereas males showed no significant changes. There was no significant correlation between the change in diffusion scalar measures over the course of the season and neurocognitive performance as evidenced from postseason ImPACT scores. The results of this study suggest sex differences in structural alterations following exposure to RSHI. Future studies need to investigate further the underlying mechanisms and association with exposure and clinical outcomes.

  18. A simple video-based timing system for on-ice team testing in ice hockey: a technical report.

    PubMed

    Larson, David P; Noonan, Benjamin C

    2014-09-01

    The purpose of this study was to describe and evaluate a newly developed on-ice timing system for team evaluation in the sport of ice hockey. We hypothesized that this new, simple, inexpensive, timing system would prove to be highly accurate and reliable. Six adult subjects (age 30.4 ± 6.2 years) performed on ice tests of acceleration and conditioning. The performance times of the subjects were recorded using a handheld stopwatch, photocell, and high-speed (240 frames per second) video. These results were then compared to allow for accuracy calculations of the stopwatch and video as compared with filtered photocell timing that was used as the "gold standard." Accuracy was evaluated using maximal differences, typical error/coefficient of variation (CV), and intraclass correlation coefficients (ICCs) between the timing methods. The reliability of the video method was evaluated using the same variables in a test-retest analysis both within and between evaluators. The video timing method proved to be both highly accurate (ICC: 0.96-0.99 and CV: 0.1-0.6% as compared with the photocell method) and reliable (ICC and CV within and between evaluators: 0.99 and 0.08%, respectively). This video-based timing method provides a very rapid means of collecting a high volume of very accurate and reliable on-ice measures of skating speed and conditioning, and can easily be adapted to other testing surfaces and parameters.

  19. Physical fitness and performance of polish ice-hockey players competing at different sports levels

    PubMed Central

    Stanula, Arkadiusz; Gabryś, Tomasz; Szmatlan-Gabryś, Urszula; Gołaś, Artur; Stastny, Petr

    2016-01-01

    Abstract The study aimed to determine the values of selected aerobic and anaerobic capacity variables, physical profiles, and to analyze the results of on-ice tests performed by ice-hockey players relegated to a lower league. Performance of 24 ice-hockey players competing in the top league in the 2012/2013 season was analysed to this end. In the 2013/2014 season, 14 of them still played in the top league (the control group), while 10 played in the first league (the experimental group). The study was conducted one week after the end of the playoffs in the seasons under consideration. The results revealed that only in the experimental group the analysed variables changed significantly between the seasons. In the Wingate test, significant changes were only noted in mean relative power (a decrease from 9.91 to 9.14 W/kg; p=0.045) and relative total work (a decrease from 299.17 to 277.22 J/kg; p=0.048). The ramp test indicated significantly lower power output in its final stages (364 compared with 384 W; p=0.034), as well as a significant decrease in relative VO2max (from 52.70 to 48.30 ml/min/kg). Blood lactate concentrations were recorded at the 3rd, 6th, 9th and 12th min of recovery after the ramp test. The rate of post-exercise recovery, ∆LA, recorded after the ramp test turned out to be significantly lower. The times recorded in the on-ice “6x30 m stop” test increased from 32.18 to 33.10 s (p=0.047). The study showed that playing in a lower league where games were less intensive, training sessions shorter and less frequent, had an adverse effect on the performance level of the investigated players. Lower VO2max recorded in the study participants slowed down their rates of post-exercise recovery and led to a significantly worse performance in the 6x30 m stop test, as well as lower relative power and relative total work in the Wingate test. PMID:28149383

  20. Three-dimensional kinematics of the knee and ankle joints for three consecutive push-offs during ice hockey skating starts.

    PubMed

    Lafontaine, Dany

    2007-09-01

    Little biomechanical research has been conducted recently on hockey skating despite the sport's worldwide appeal. One reason for this lack of biomechanical knowledge stems from the difficulty of collecting data. The lack of accuracy, the disputable realism of treadmills, and the large field of view required are some of the technical challenges that have to be overcome. The main objective of the current study was to improve our knowledge of the joint kinematics during the skating stroke. A second objective was to improve the data collection system we developed and the third was to establish if a kinematic progression exists in the hockey skating stroke similar to that in speed skating. Relative motions at the knee and ankle joints were computed using a joint coordinate system approach. The differences at the knee joints in push-offs indicated that the skating skill was progressively changing with each push-off. The relative stability of the ankle angles can be attributed to the design of the skate boots, which have recently become very rigid. Further research on ice hockey skating is warranted and should include more skaters and investigate the effect various starting strategies and variations in equipment have on skaters' performance.

  1. Vitamin D status is associated with adiposity in male ice hockey players.

    PubMed

    Fitzgerald, John S; Peterson, Ben J; Wilson, Patrick B; Rhodes, Greg S; Ingraham, Stacy J

    2015-03-01

    The prevalence of insufficient vitamin D status is of concern and may negatively affect health and physical performance. The purpose of this study was twofold, as follows: to assess the prevalence of 25-hydroxyvitamin D (25(OH)D) insufficiency among young hockey players and evaluate the association between 25(OH)D concentration and fat mass (FM) after adjusting for covariates. Data were collected for 53 junior and collegiate ice hockey players residing near Minneapolis, MN (44.9° N) during the off-season (May 16 to June 28). Liquid chromatography-tandem mass spectrometry was used to assess 25(OH)D concentration, and hydrostatic weighing was used to determine FM. Dietary intake and endogenous synthesis of vitamin D were evaluated via a questionnaire. Twenty (37.7%) athletes possessed insufficient 25(OH)D concentrations (<32 ng·mL(-1)). Log-transformed 25(OH)D concentration was inversely associated with FM in the athletes (r = -0.52, n = 51, P = 0.001). After controlling for measured covariates using sequential linear regression, the adjusted R2 change value indicated that 8.1% of the variability in (log of) 25(OH)D concentration was predicted by FM (P = 0.005). The findings of this study demonstrate an inverse association between FM and vitamin D status after adjusting for environmental, dietary, and anthropometric predictors in a sample population of athletes. Athletes with higher levels of adiposity may be at increased risk of poor vitamin D status.

  2. Examining social identity and intrateam moral behaviours in competitive youth ice hockey using stimulated recall.

    PubMed

    Bruner, Mark W; Boardley, Ian D; Allan, Veronica; Root, Zach; Buckham, Sara; Forrest, Chris; Côté, Jean

    2017-10-01

    Social identity - identity formed through membership in groups - may play an important role in regulating intrateam moral behaviour in youth sport (Bruner, M. W., Boardley, I., & Côté, J. (2014). Social identity and prosocial and antisocial behavior in youth sport. Psychology of Sport and Exercise, 15(1), 56-64. doi:10.1016/j.psychsport.2013.09.003). The aim of this study was to qualitatively examine this potential role through stimulated recall interviews with competitive youth-ice-hockey players. Twenty-three players (M age  = 13.27 years, SD = 1.79) who reported engaging in high, median or low frequency of antisocial teammate behaviour (determined through pre-screening with the Prosocial and Antisocial Behaviour in Sport Scale [Kavussanu, M., & Boardley, I. D. (2009). The prosocial and antisocial behavior in sport scale. Journal of Sport and Exercise Psychology, 31(1), 97-117. doi:10.1123/jsep.31.1.97]) were recruited from eight youth-ice-hockey teams in Canada. Interviews involved participants recalling their thoughts during prosocial/antisocial interactions with teammates, prompted by previously recorded video sequences of such incidents. Thematic analysis of interview data revealed all athletes - regardless of reported frequency of intrateam antisocial behaviour - felt prosocial interactions with teammates enhanced social identity. In contrast, the perceived influence of antisocial teammate behaviour on social identity differed depending on athletes' reported frequency of intrateam antisocial behaviour; those reporting low and median frequencies described how such behaviour undermines social identity, whereas athletes reporting high frequency did not perceive this effect. The study findings highlight the potential importance of intrateam moral behaviour and social identity for youth-sport team functioning.

  3. Arthroscopic Excision of Bipartite Patella With Preservation of Lateral Retinaculum in an Adolescent Ice Hockey Player.

    PubMed

    James, Evan W; LaPrade, Christopher M; Chahla, Jorge; Cinque, Mark E; Kennedy, Nicholas I; LaPrade, Robert F

    Bipartite patella usually is an asymptomatic anatomical variant. However, in some adolescent athletes, it causes anterior knee pain, resulting in decreased participation and performance. We report the case of a high-level adolescent ice hockey player who underwent successful arthroscopic excision with preservation of the lateral retinaculum of a symptomatic bipartite patella after failed nonoperative treatment. The patient returned to play by 6 weeks, and 31-month subjective follow-up scores showed high satisfaction and good clinical outcomes. For patients with a symptomatic bipartite patella, arthroscopic surgery is a good option for reducing pain and returning the athlete to competition.

  4. Saccades and memory: baseline associations of the King-Devick and SCAT2 SAC tests in professional ice hockey players.

    PubMed

    Galetta, Matthew S; Galetta, Kristin M; McCrossin, Jim; Wilson, James A; Moster, Stephen; Galetta, Steven L; Balcer, Laura J; Dorshimer, Gary W; Master, Christina L

    2013-05-15

    The Sports Concussion Assessment Tool 2 (SCAT2) and King-Devick (K-D) tests have both been proposed as sideline tools to detect sports-related concussion. We performed an exploratory analysis to determine the relation of SCAT2 components, particularly the Standardized Assessment of Concussion (SAC), to K-D test scores in a professional ice hockey team cohort during pre-season baseline testing. We also examined changes in scores for two athletes who developed concussion and had rinkside testing. A modified SCAT2 (no balance testing) and the K-D test, a brief measure of rapid number naming, were administered to 27 members of a professional ice hockey team during the 2011-2012 pre-season. Athletes with concussion also underwent rinkside testing. Lower (worse) scores for the SCAT2 SAC Immediate Memory Score and the overall SAC score were associated with greater (worse) times required to complete the K-D test at baseline. On average, for every 1-point reduction in SAC Immediate Memory Score, we found a corresponding increase (worsening) of K-D time score of 7.3s (95% CI 4.9, 9.7, p<0.001, R(2)=0.62, linear regression, accounting for age). For the overall SAC score, 1-point reductions were associated with K-D score worsening of 2.2s (95% CI 0.6, 3.8, p=0.01, R(2)=0.25, linear regression). In two players tested rinkside immediately following concussion, K-D test scores worsened from baseline by 4.2 and 6.4s. These athletes had no differences found for SCAT2 SAC components, but reported symptoms of concussion. In this study of professional athletes, scores for the K-D test, a measure for which saccadic (fast) eye movements are required for the task of rapid number naming, were associated with reductions in Immediate Memory at a pre-season baseline. Both working memory and saccadic eye movements share closely related anatomical structures, including the dorsolateral prefrontal cortex (DLPFC). A composite of brief rapid sideline tests, including SAC and K-D (and balance

  5. The incidence of concussion in professional and collegiate ice hockey: are we making progress? A systematic review of the literature.

    PubMed

    Ruhe, Alexander; Gänsslen, Axel; Klein, Wolfgang

    2014-01-01

    The fast, random nature and characteristics of ice hockey make injury prevention a challenge as high-velocity impacts with players, sticks and boards occur and may result in a variety of injuries, including concussion. Five online databases (January 1970 and May 2012) were systematically searched followed by a manual search of retrieved papers. Seventeen studies met the inclusion criteria. The heterogeneous diagnostic procedures and criteria for concussion prevented a pooling of data. When comparing the injury data of European and North American or Canadian leagues, the latter show a higher percentage of concussions in relation to the overall number of injuries (2-7% compared with 5.3-18.6%). The incidence ranged from 0.2/1000 to 6.5/1000 game-hours, 0.72/1000 to 1.81/1000 athlete-exposures and was estimated at 0.1/1000 practice-hours. The included studies indicate a high incidence of concussion in professional and collegiate ice hockey. Despite all efforts there is no conclusive evidence that rule changes or other measures lead to a decrease in the actual incidence of concussions over the last few decades. This review supports the need for standardisation of the diagnostic criteria and reporting protocols for concussion to allow interstudy comparisons in the future.

  6. Laboratory- and field-based testing as predictors of skating performance in competitive-level female ice hockey.

    PubMed

    Henriksson, Tommy; Vescovi, Jason D; Fjellman-Wiklund, Anncristine; Gilenstam, Kajsa

    2016-01-01

    The purpose of this study was to examine whether field-based and/or laboratory-based assessments are valid tools for predicting key performance characteristics of skating in competitive-level female hockey players. Cross-sectional study. Twenty-three female ice hockey players aged 15-25 years (body mass: 66.1±6.3 kg; height: 169.5±5.5 cm), with 10.6±3.2 years playing experience volunteered to participate in the study. The field-based assessments included 20 m sprint, squat jump, countermovement jump, 30-second repeated jump test, standing long jump, single-leg standing long jump, 20 m shuttle run test, isometric leg pull, one-repetition maximum bench press, and one-repetition maximum squats. The laboratory-based assessments included body composition (dual energy X-ray absorptiometry), maximal aerobic power, and isokinetic strength (Biodex). The on-ice tests included agility cornering s-turn, cone agility skate, transition agility skate, and modified repeat skate sprint. Data were analyzed using stepwise multivariate linear regression analysis. Linear regression analysis was used to establish the relationship between key performance characteristics of skating and the predictor variables. Regression models (adj R (2)) for the on-ice variables ranged from 0.244 to 0.663 for the field-based assessments and from 0.136 to 0.420 for the laboratory-based assessments. Single-leg tests were the strongest predictors for key performance characteristics of skating. Single leg standing long jump alone explained 57.1%, 38.1%, and 29.1% of the variance in skating time during transition agility skate, agility cornering s-turn, and modified repeat skate sprint, respectively. Isokinetic peak torque in the quadriceps at 90° explained 42.0% and 32.2% of the variance in skating time during agility cornering s-turn and modified repeat skate sprint, respectively. Field-based assessments, particularly single-leg tests, are an adequate substitute to more expensive and time

  7. Laboratory- and field-based testing as predictors of skating performance in competitive-level female ice hockey

    PubMed Central

    Henriksson, Tommy; Vescovi, Jason D; Fjellman-Wiklund, Anncristine; Gilenstam, Kajsa

    2016-01-01

    Objectives The purpose of this study was to examine whether field-based and/or laboratory-based assessments are valid tools for predicting key performance characteristics of skating in competitive-level female hockey players. Design Cross-sectional study. Methods Twenty-three female ice hockey players aged 15–25 years (body mass: 66.1±6.3 kg; height: 169.5±5.5 cm), with 10.6±3.2 years playing experience volunteered to participate in the study. The field-based assessments included 20 m sprint, squat jump, countermovement jump, 30-second repeated jump test, standing long jump, single-leg standing long jump, 20 m shuttle run test, isometric leg pull, one-repetition maximum bench press, and one-repetition maximum squats. The laboratory-based assessments included body composition (dual energy X-ray absorptiometry), maximal aerobic power, and isokinetic strength (Biodex). The on-ice tests included agility cornering s-turn, cone agility skate, transition agility skate, and modified repeat skate sprint. Data were analyzed using stepwise multivariate linear regression analysis. Linear regression analysis was used to establish the relationship between key performance characteristics of skating and the predictor variables. Results Regression models (adj R2) for the on-ice variables ranged from 0.244 to 0.663 for the field-based assessments and from 0.136 to 0.420 for the laboratory-based assessments. Single-leg tests were the strongest predictors for key performance characteristics of skating. Single leg standing long jump alone explained 57.1%, 38.1%, and 29.1% of the variance in skating time during transition agility skate, agility cornering s-turn, and modified repeat skate sprint, respectively. Isokinetic peak torque in the quadriceps at 90° explained 42.0% and 32.2% of the variance in skating time during agility cornering s-turn and modified repeat skate sprint, respectively. Conclusion Field-based assessments, particularly single-leg tests, are an adequate

  8. A longitudinal study of ice hockey in boys aged 8--12.

    PubMed

    MacNab, R B

    1979-03-01

    A group of fifteen boys (experimental or competitive) were studied over a five year period of competitive ice hockey beginning at age 8. The subjects were members of a team which averaged 66 games per year, ranging from 50 at age 8 to 78 at age 12. In addition, they practiced twice a week with heavy stress on skating and individual puck handling skills. A second group of eleven boys (control or less competitive) were studied from age 10 to 12. The latter subjects played an average of 25 games per year and practiced once a week. All subjects were measured each year on skating and puck control skills, fitness-performance tests, grip strength, physical work capacity as well as height and weight. The results demonstrate learning curves for skating and puck control tests which, while typical in nature, show extremely high levels of achievement. Fitness-Performance, grip strength and physical work capacity levels of the competitive group are extremely high in comparison with data from other countries.

  9. Vitamin D status and V[combining dot above]O2peak during a skate treadmill graded exercise test in competitive ice hockey players.

    PubMed

    Fitzgerald, John S; Peterson, Ben J; Warpeha, Joseph M; Wilson, Patrick B; Rhodes, Greg S; Ingraham, Stacy J

    2014-11-01

    Vitamin D status has been associated with cardiorespiratory fitness (CRF) in cross-sectional investigations in the general population. Data characterizing the association between 25-hydroxyvitamin D (25(OH)D) concentration and CRF in athletes are lacking. Junior and collegiate ice hockey players were recruited from the Minneapolis, MN (44.9° N), area during the off-season period (May 16-June 28). The purpose of this study was to examine the cross-sectional association between 25(OH)D concentration and CRF in a sample population of competitive ice hockey players. Circulating 25(OH)D level was assessed from a capillary blood sample analyzed using liquid chromatography-tandem mass spectrometry. V[Combining Dot Above]O2peak during a skate treadmill graded exercise test (GXT) was used to assess CRF. Data on both 25(OH)D concentration and V[Combining Dot Above]O2peak were available for 52 athletes. Insufficient 25(OH)D concentrations were found in 37.7% of the athletes (<32 ng·ml). Vitamin D status was not significantly associated with any physiological or physical parameter during the skate treadmill GXT.

  10. Evaluation of the ThinkFirst Canada, Smart Hockey, brain and spinal cord injury prevention video

    PubMed Central

    Cook, D; Cusimano, M; Tator, C; Chipman, M; Macarthur, C

    2003-01-01

    Objective: The ThinkFirst Canada Smart Hockey program is an educational injury prevention video that teaches the mechanisms, consequences, and prevention of brain and spinal cord injury in ice hockey. This study evaluates knowledge transfer and behavioural outcomes in 11–12 year old hockey players who viewed the video. Design: Randomized controlled design. Setting: Greater Toronto Minor Hockey League, Toronto Ontario. Subjects: Minor, competitive 11–12 year old male ice hockey players and hockey team coaches. Interventions: The Smart Hockey video was shown to experimental teams at mid-season. An interview was conducted with coaches to understand reasons to accept or refuse the injury prevention video. Main outcome measures: A test of concussion knowledge was administered before, immediately after, and three months after exposure to the video. The incidence of aggressive penalties was measured before and after viewing the video. Results: The number of causes and mechanisms of concussion named by players increased from 1.13 to 2.47 and from 0.67 to 1.22 respectively. This effect was maintained at three months. There was no significant change in control teams. There was no significant change in total penalties after video exposure; however, specific body checking related penalties were significantly reduced in the experimental group. Conclusion: This study showed some improvements in knowledge and behaviours after a single viewing of a video; however, these findings require confirmation with a larger sample to understand the sociobehavioural aspects of sport that determine the effectiveness and acceptance of injury prevention interventions. PMID:14693901

  11. Cardiovascular Prevention in a High Risk Sport, Ice Hockey: Applications in Wider Sports Physical Therapy Practice

    PubMed Central

    2006-01-01

    Although acute myocardial infarction and sudden cardiac death are relatively rare occurrences in athletics, cardiovascular accidents do occur. This manuscript presents information on the cardiovascular risks in athletics. In addition, information is provided on screening for cardiovascular risk – including history taking, chart review, physical examination – and the appropriate guidelines on the treatment of athletes found to be at risk. For the purpose of this article, the sport of ice hockey is used to illustrate the subject matter and highlight the behaviors in sport that carry cardiovascular risk. Physical therapists have ethical and legal responsibility to undertake the necessary screening procedures to recognize and respond to any signs of cardiovascular risk in their clients. PMID:21522221

  12. Cardiovascular prevention in a high risk sport, ice hockey: applications in wider sports physical therapy practice.

    PubMed

    Hopkins-Rosseel, Diana H

    2006-11-01

    Although acute myocardial infarction and sudden cardiac death are relatively rare occurrences in athletics, cardiovascular accidents do occur. This manuscript presents information on the cardiovascular risks in athletics. In addition, information is provided on screening for cardiovascular risk - including history taking, chart review, physical examination - and the appropriate guidelines on the treatment of athletes found to be at risk. For the purpose of this article, the sport of ice hockey is used to illustrate the subject matter and highlight the behaviors in sport that carry cardiovascular risk. Physical therapists have ethical and legal responsibility to undertake the necessary screening procedures to recognize and respond to any signs of cardiovascular risk in their clients.

  13. The Effect of the "Zero Tolerance for Head Contact" Rule Change on the Risk of Concussions in Youth Ice Hockey Players.

    PubMed

    Krolikowski, Maciej P; Black, Amanda M; Palacios-Derflingher, Luz; Blake, Tracy A; Schneider, Kathryn J; Emery, Carolyn A

    2017-02-01

    Ice hockey is a popular winter sport in Canada. Concussions account for the greatest proportion of all injuries in youth ice hockey. In 2011, a policy change enforcing "zero tolerance for head contact" was implemented in all leagues in Canada. To determine if the risk of game-related concussions and more severe concussions (ie, resulting in >10 days of time loss) and the mechanisms of a concussion differed for Pee Wee class (ages 11-12 years) and Bantam class (ages 13-14 years) players after the 2011 "zero tolerance for head contact" policy change compared with players in similar divisions before the policy change. Cohort study; Level of evidence, 3. The retrospective cohort included Pee Wee (most elite 70%, 2007-2008; n = 891) and Bantam (most elite 30%, 2008-2009; n = 378) players before the rule change and Pee Wee (2011-2012; n = 588) and Bantam (2011-2012; n = 242) players in the same levels of play after the policy change. Suspected concussions were identified by a team designate and referred to a sport medicine physician for diagnosis. Incidence rate ratios (IRRs) were estimated based on multiple Poisson regression analysis, controlling for clustering by team and other important covariates and offset by game-exposure hours. Incidence rates based on the mechanisms of a concussion were estimated based on univariate Poisson regression analysis. The risk of game-related concussions increased after the head contact rule in Pee Wee (IRR, 1.85; 95% CI, 1.20-2.86) and Bantam (IRR, 2.48; 95% CI, 1.17-5.24) players. The risk of more severe concussions increased after the head contact rule in Pee Wee (IRR, 4.12; 95% CI, 2.00-8.50) and Bantam (IRR, 7.91; 95% CI, 3.13-19.94) players. The rates of concussions due to body checking and direct head contact increased after the rule change. The "zero tolerance for head contact" policy change did not reduce the risk of game-related concussions in Pee Wee or Bantam class ice hockey players. Increased concussion awareness and

  14. Le Hockey [Hockey]. Teacher's Guide.

    ERIC Educational Resources Information Center

    Balchunas, Martha; Ullmann, Rebecca

    A resource kit for the teaching of French at the intermediate level is represented by a teacher's guide and the duplicating master for a tape transcript. The aim of this module is to make the elementary or secondary school student of French familiar with basic hockey terms in French, and to enable the student to understand hockey games broadcast…

  15. Multinational outbreak of Salmonella Enteritidis infection during an international youth ice hockey competition in Riga, Latvia, preliminary report, March and April 2015.

    PubMed

    Pesola, A K; Parn, T; Huusko, S; Perevosčikovs, J; Ollgren, J; Salmenlinna, S; Lienemann, T; Gossner, C; Danielsson, N; Rimhanen-Finne, R

    2015-05-21

    A multinational outbreak of salmonellosis linked to the Riga Cup 2015 junior ice-hockey competition was detected by the Finnish health authorities in mid-April and immediately notified at the European Union level. This prompted an international outbreak investigation supported by the European Centre for Disease Prevention and Control. As of 8 May 2015, seven countries have reported 214 confirmed and suspected cases, among which 122 from Finland. The search for the source of the outbreak is ongoing.

  16. A 13-year analysis from Switzerland of non-fatal sledging (sledding or tobogganing) injuries.

    PubMed

    Heim, Dominik; Altgeld, Katrin; Hasler, Rebecca M; Aghayev, Emin; Exadaktylos, Aristomenis K

    2014-01-01

    Winter sports have evolved from an upper class activity to a mass industry. Especially sledging regained popularity at the start of this century, with more and more winter sports resorts offering sledge runs. This study investigated the rates of sledging injuries over the last 13 years and analysed injury patterns specific for certain age groups, enabling us to make suggestions for preventive measures. We present a retrospective analysis of prospectively collected data. From 1996/1997 to 2008/2009, all patients involved in sledging injuries were recorded upon admission to a Level III trauma centre. Injuries were classified into body regions according to the Abbreviated Injury Scale (AIS). The Injury Severity Score (ISS) was calculated. Patients were stratified into 7 age groups. Associations between age and injured body region were tested using the chi-squared test. The slope of the linear regression with 95% confidence intervals was calculated for the proportion of patients with different injured body regions and winter season. 4956 winter sports patients were recorded. 263 patients (5%) sustained sledging injuries. Sledging injury patients had a median age of 22 years (interquartile range [IQR] 14-38 years) and a median ISS of 4 (IQR 1-4). 136 (51.7%) were male. Injuries (AIS ≥ 2) were most frequent to the lower extremities (n=91, 51.7% of all AIS ≥ 2 injuries), followed by the upper extremities (n=48, 27.3%), the head (n=17, 9.7%), the spine (n=7, 4.0%). AIS ≥ 2 injuries to different body regions varied from season to season, with no significant trends (p>0.19). However, the number of patients admitted with AIS ≥ 2 injuries increased significantly over the seasons analysed (p=0.031), as did the number of patients with any kind of sledging injury (p=0.004). Mild head injuries were most frequent in the youngest age group (1-10 years old). Injuries to the lower extremities were more often seen in the age groups from 21 to 60 years (p<0.001). Mild head

  17. Hockey Fans in Training: A Pilot Pragmatic Randomized Controlled Trial.

    PubMed

    Petrella, Robert J; Gill, Dawn P; Zou, Guangyong; DE Cruz, Ashleigh; Riggin, Brendan; Bartol, Cassandra; Danylchuk, Karen; Hunt, Kate; Wyke, Sally; Gray, Cindy M; Bunn, Christopher; Zwarenstein, Merrick

    2017-12-01

    Hockey Fans in Training (Hockey FIT) is a gender-sensitized weight loss and healthy lifestyle program. We investigated 1) feasibility of recruiting and retaining overweight and obese men into a pilot pragmatic randomized controlled trial and 2) potential for Hockey FIT to lead to weight loss and improvements in other outcomes at 12 wk and 12 months. Male fans of two ice hockey teams (35-65 yr; body mass index ≥28 kg·m) located in Ontario (Canada) were randomized to intervention (Hockey FIT) or comparator (wait-list control). Hockey FIT includes a 12-wk active phase (weekly, coach-led group meetings including provision of dietary information, practice of behavior change techniques, and safe exercise sessions plus incremental pedometer walking) and a 40-wk minimally supported phase (smartphone app for sustaining physical activity, private online social network, standardized e-mails, booster session/reunion). Measurement at baseline and 12 wk (both groups) and 12 months (intervention group only) included clinical outcomes (e.g., weight) and self-reported physical activity, diet, and self-rated health. Eighty men were recruited in 4 wk; trial retention was >80% at 12 wk and >75% at 12 months. At 12 wk, the intervention group lost 3.6 kg (95% confidence interval, -5.26 to -1.90 kg) more than the comparator group (P < 0.001) and maintained this weight loss to 12 months. The intervention group also demonstrated greater improvements in other clinical measures, physical activity, diet, and self-rated health at 12 wk; most sustained to 12 months. Results suggest feasible recruitment/retention of overweight and obese men in the Hockey FIT program. Results provide evidence for the potential effectiveness of Hockey FIT for weight loss and improved health in at-risk men and, thus, evidence to proceed with a definitive trial.

  18. Hockey Fans in Training: A Pilot Pragmatic Randomized Controlled Trial

    PubMed Central

    PETRELLA, ROBERT J.; GILL, DAWN P.; ZOU, GUANGYONG; DE CRUZ, ASHLEIGH; RIGGIN, BRENDAN; BARTOL, CASSANDRA; DANYLCHUK, KAREN; HUNT, KATE; WYKE, SALLY; GRAY, CINDY M.; BUNN, CHRISTOPHER; ZWARENSTEIN, MERRICK

    2017-01-01

    ABSTRACT Introduction Hockey Fans in Training (Hockey FIT) is a gender-sensitized weight loss and healthy lifestyle program. We investigated 1) feasibility of recruiting and retaining overweight and obese men into a pilot pragmatic randomized controlled trial and 2) potential for Hockey FIT to lead to weight loss and improvements in other outcomes at 12 wk and 12 months. Methods Male fans of two ice hockey teams (35–65 yr; body mass index ≥28 kg·m−2) located in Ontario (Canada) were randomized to intervention (Hockey FIT) or comparator (wait-list control). Hockey FIT includes a 12-wk active phase (weekly, coach-led group meetings including provision of dietary information, practice of behavior change techniques, and safe exercise sessions plus incremental pedometer walking) and a 40-wk minimally supported phase (smartphone app for sustaining physical activity, private online social network, standardized e-mails, booster session/reunion). Measurement at baseline and 12 wk (both groups) and 12 months (intervention group only) included clinical outcomes (e.g., weight) and self-reported physical activity, diet, and self-rated health. Results Eighty men were recruited in 4 wk; trial retention was >80% at 12 wk and >75% at 12 months. At 12 wk, the intervention group lost 3.6 kg (95% confidence interval, −5.26 to −1.90 kg) more than the comparator group (P < 0.001) and maintained this weight loss to 12 months. The intervention group also demonstrated greater improvements in other clinical measures, physical activity, diet, and self-rated health at 12 wk; most sustained to 12 months. Conclusions Results suggest feasible recruitment/retention of overweight and obese men in the Hockey FIT program. Results provide evidence for the potential effectiveness of Hockey FIT for weight loss and improved health in at-risk men and, thus, evidence to proceed with a definitive trial. PMID:28719494

  19. Cardiovascular Response to Recreational Hockey in Middle-Aged Men.

    PubMed

    Goodman, Zack A; Thomas, Scott G; Wald, Robert C; Goodman, Jack M

    2017-06-15

    The present study examined the hemodynamic response to recreational pick-up hockey relative to maximal exercise testing in middle-aged men. A total of 23 men with a mean age of 53 ± 7 years were studied. Graded exercise testing on a cycle ergometer determined maximal oxygen consumption, blood pressure (BP), and heart rate (HR). Ambulatory BP and Holter electrocardiographic monitoring was performed during one of their weekly hockey games (mean duration = 45 ± 7.2 minutes): for "On-Ice" responses (PLAY; data recorded while standing immediately after a shift; 8.0 ± 1.4 shifts per game) and during seated recovery (BENCH), 15 minutes after the game. On-Ice HRs and BPs were significantly higher than values obtained during maximal cycle exercise, respectively (HR 174 ± 8.9 vs 163 ± 11.0 beats/min) (systolic blood pressure 202 ± 20 vs 173 ± 31 mm Hg; p <0.05). Both systolic and diastolic blood pressures decreased significantly throughout the duration of the game, whereas HR increased from 139 ± 20 to 155 ± 16 beats/min during the game. The myocardial oxygen demand (myocardial time tension index) increased significantly during PLAY concurrent with a decrease in estimated myocardial oxygen supply (diastolic pressure time index), with the endocardial viability ratio during PLAY demonstrating a significant decrease during the third quarter of the game (1.25 ± 0.24) versus the first quarter (1.56 ± 0.30), which remained depressed 15 minutes post-game (p <0.05). In conclusion, recreational pick-up hockey in middle-aged men is an extremely vigorous interval exercise with increasing relative intensity as the game progresses. Hockey elicits peak BPs and HRs that can exceed values observed during maximal exercise testing and is characterized by progressive increases in myocardial oxygen demand and lowered supply during PLAY and BENCH time. Given the progressive and high cardiovascular demands, caution is warranted when estimating the cardiovascular demands of hockey

  20. Skin conditions in figure skaters, ice-hockey players and speed skaters: part II - cold-induced, infectious and inflammatory dermatoses.

    PubMed

    Tlougan, Brook E; Mancini, Anthony J; Mandell, Jenny A; Cohen, David E; Sanchez, Miguel R

    2011-11-01

    Participation in ice-skating sports, particularly figure skating, ice hockey and speed skating, has increased in recent years. Competitive athletes in these sports experience a range of dermatological injuries related to mechanical factors: exposure to cold temperatures, infectious agents and inflammation. Part I of this two part review discussed the mechanical dermatoses affecting ice-skating athletes that result from friction, pressure, and chronic irritation related to athletic equipment and contact with surfaces. Here, in Part II, we review the cold-induced, infectious and inflammatory skin conditions observed in ice-skating athletes. Cold-induced dermatoses experienced by ice-skating athletes result from specific physiological effects of cold exposure on the skin. These conditions include physiological livedo reticularis, chilblains (pernio), Raynaud phenomenon, cold panniculitis, frostnip and frostbite. Frostbite, that is the literal freezing of tissue, occurs with specific symptoms that progress in a stepwise fashion, starting with frostnip. Treatment involves gradual forms of rewarming and the use of friction massages and pain medications as needed. Calcium channel blockers, including nifedipine, are the mainstay of pharmacological therapy for the major nonfreezing cold-induced dermatoses including chilblains and Raynaud phenomenon. Raynaud phenomenon, a vasculopathy involving recurrent vasospasm of the fingers and toes in response to cold, is especially common in figure skaters. Protective clothing and insulation, avoidance of smoking and vasoconstrictive medications, maintaining a dry environment around the skin, cold avoidance when possible as well as certain physical manoeuvres that promote vasodilation are useful preventative measures. Infectious conditions most often seen in ice-skating athletes include tinea pedis, onychomycosis, pitted keratolysis, warts and folliculitis. Awareness, prompt treatment and the use of preventative measures are

  1. Updating the Skating Multistage Aerobic Test and Correction for V[Combining Dot Above]O2max Prediction Using a New Skating Economy Index in Elite Youth Ice Hockey Players.

    PubMed

    Allisse, Maxime; Bui, Hung Tien; Léger, Luc; Comtois, Alain-Steve; Leone, Mario

    2018-05-07

    Allisse, M, Bui, HT, Léger, L, Comtois, A-S, and Leone, M. Updating the skating multistage aerobic test and correction for V[Combining Dot Above]O2max prediction using a new skating economy index in elite youth ice hockey players. J Strength Cond Res XX(X): 000-000, 2018-A number of field tests, including the skating multistage aerobic test (SMAT), have been developed to predict V[Combining Dot Above]O2max in ice hockey players. The SMAT, like most field tests, assumes that participants who reach a given stage have the same oxygen uptake, which is not usually true. Thus, the objectives of this research are to update the V[Combining Dot Above]O2 values during the SMAT using a portable breath-by-breath metabolic analyzer and to propose a simple index of skating economy to improve the prediction of oxygen uptake. Twenty-six elite hockey players (age 15.8 ± 1.3 years) participated in this study. The oxygen uptake was assessed using a portable metabolic analyzer (K4b) during an on-ice maximal shuttle skate test. To develop an index of skating economy called the skating stride index (SSI), the number of skating strides was compiled for each stage of the test. The SMAT enabled the prediction of the V[Combining Dot Above]O2max (ml·kg·min) from the maximal velocity (m·s) and the SSI (skating strides·kg) using the following regression equation: V[Combining Dot Above]O2max = (14.94 × maximal velocity) + (3.68 × SSI) - 24.98 (r = 0.95, SEE = 1.92). This research allowed for the update of the oxygen uptake values of the SMAT and proposed a simple measure of skating efficiency for a more accurate evaluation of V[Combining Dot Above]O2max in elite youth hockey players. By comparing the highest and lowest observed SSI scores in our sample, it was noted that the V[Combining Dot Above]O2 values can vary by up to 5 ml·kg·min. Our results suggest that skating economy should be included in the prediction of V[Combining Dot Above]O2max to improve prediction accuracy.

  2. Hockey, iPads, and Projectile Motion in a Physics Classroom

    ERIC Educational Resources Information Center

    Hechter, Richard P.

    2013-01-01

    With the increased availability of modern technology and handheld probeware for classrooms, the iPad and the Video Physics application developed by Vernier are used to capture and analyze the motion of an ice hockey puck within secondary-level physics education. Students collect, analyze, and generate digital modes of representation of physics…

  3. [The relevance of core muscles in ice hockey players: a feasibility study].

    PubMed

    Rogan, S; Blasimann, A; Nyffenegger, D; Zimmerli, N; Radlinger, L

    2013-12-01

    Good core strength is seen as a condition for high performance in sports. In general, especially maximum voluntary contraction (MVC) and strength endurance (SE) measurements of the core muscles are used. In addition, a few studies can be found that examine the core muscles in terms of MVC, rate of force development (RFD) and SE. Primary aims of this feasibility study were to investigate the feasibility regarding recruiting process, compliance and safety of the testing conditions and raise the force capabilities MVC, RFD and SE of the core muscles in amateur ice hockey players. Secondarily, tendencies of correlations between muscle activity and either shot speed and sprint time shall be examined. In this feasibility study the recruitment process has been approved by 29 ice hockey players, their adherence to the study measurements of trunk muscles, and safety of the measurements was evaluated. To determine the MVC, RFD and SE for the ventral, lateral and dorsal core muscles a dynamic force measurement was performed. To determine the correlation between core muscles and shot speed and 40-m sprint, respectively, the rank correlation coefficient (rho) from Spearman was used. The recruited number of eight field players and one goal-keeper was not very high. The compliance with 100 % was excellent. The players reported no adverse symptoms or injuries after the measurements. The results show median values for the ventral core muscles for MVC with 46.5 kg for RFD with 2.23 m/s2 and 96 s for the SE. For lateral core muscle median values of the lateral core muscles for MVC with 71.10 kg, RFD with 2.59 m/s2 and for SE over 66 s were determined. The dorsal core muscles shows values for MVC 69.7 kg, for RFD 3.39 m/s2 and for SE of 75 s. High correlations between MVC of the ventral core muscles (rho = -0.721, p = 0.021), and between the SE of the ventral core muscles (rho = 0.787, p = 0.012), and the shot velocity rate were determined. Another

  4. Crash-test dummy and pendulum impact tests of ice hockey boards: greater displacement does not reduce impact

    PubMed Central

    Schmitt, Kai-Uwe; Muser, Markus H; Thueler, Hansjuerg; Bruegger, Othmar

    2018-01-01

    Background One injury mechanism in ice hockey is impact with the boards. We investigated whether more flexible hockey boards would provide less biomechanical loading on impact than did existing (reference) boards. Methods We conducted impact tests with a dynamic pendulum (mass 60 kg) and with crash test dummies (ES-2 dummy, 4.76 m/s impact speed). Outcomes were biomechanical loading experienced by a player in terms of head acceleration, impact force to the shoulder, spine, abdomen and pelvis as well as compression of the thorax. Results The more flexible board designs featured substantial displacement at impact. Some so-called flexible boards were displaced four times more than the reference board. The new boards possessed less stiffness and up to 90 kg less effective mass, reducing the portion of the board mass a player experienced on impact, compared with boards with a conventional design. Flexible boards resulted in a similar or reduced loading for all body regions, apart from the shoulder. The displacement of a board system did not correlate directly with the biomechanical loading. Conclusions Flexible board systems can reduce the loading of a player on impact. However, we found no correlation between the displacement and the biomechanical loading; accordingly, displacement alone was insufficient to characterise the overall loading of a player and thus the risk of injury associated with board impact. Ideally, the performance of boards is assessed on the basis of parameters that show a good correlation to injury risk. PMID:29084724

  5. Optimization of the Hockey Fans in Training (Hockey FIT) weight loss and healthy lifestyle program for male hockey fans.

    PubMed

    Blunt, Wendy; Gill, Dawn P; Sibbald, Shannon L; Riggin, Brendan; Pulford, Roseanne W; Scott, Ryan; Danylchuk, Karen; Gray, Cindy M; Wyke, Sally; Bunn, Christopher; Petrella, Robert J

    2017-11-28

    The health outcomes of men continue to be poorer than women globally. Challenges in addressing this problem include difficulties engaging men in weight loss programs as they tend to view these programs as contrary to the masculine narrative of independence and self-reliance. Researchers have been turning towards sports fans to engage men in health promotion programs as sports fans are typically male, and tend to have poor health habits. Developed from the highly successful gender-sensitized Football Fans in Training program, Hockey Fans in Training (Hockey FIT) recruited 80 male hockey fans of the London Knights and Sarnia Sting who were overweight or obese into a weekly, 90-minute classroom education and group exercise program held over 12 weeks; a 40-week minimally-supported phase followed. A process evaluation of the Hockey FIT program was completed alongside a pragmatic randomized controlled trial and outcome evaluation in order to fully explore the acceptability of the Hockey FIT program from the perspectives of coaches delivering and participants engaged in the program. Data sources included attendance records, participant focus groups, coach interviews, assessment of fidelity (program observations and post-session coach reflections), and 12-month participant interviews. Coaches enjoyed delivering the program and found it simple to deliver. Men valued being among others of similar body shape and similar weight loss goals, and found the knowledge they gained through the program helped them to make and maintain health behaviour changes. Suggested improvements include having more hockey-related information and activities, greater flexibility with timing of program delivery, and greater promotion of technology support tools. We confirmed Hockey FIT was an acceptable "gender-sensitized" health promotion program for male hockey fans who were overweight or obese. Minor changes were required for optimization, which will be evaluated in a future definitive trial

  6. Hockey Games and the Incidence of ST-Elevation Myocardial Infarction.

    PubMed

    Gebhard, Caroline E; Gebhard, Catherine; Maafi, Foued; Bertrand, Marie-Jeanne; Stähli, Barbara E; Wildi, Karin; Galvan, Zurine; Toma, Aurel; Zhang, Zheng W; Smith, David; Ly, Hung Q

    2018-06-01

    The association between diagnosed acute ST-elevation myocardial infarction (STEMI) and hockey games in the Canadian population is unknown. We retrospectively analyzed the association between hockey games of the National Hockey League Montreal Canadiens and daily hospital admissions for acute STEMI at the Montreal Heart Institute, Canada. Between June 2010 and December 2014, a total of 2199 patients (25.9% women; mean age, 62.6 ± 12.4 years) were admitted for acute STEMI. An increase in STEMI admissions was observed the day after a hockey game of the Montreal Canadiens in the overall population (from 1.3 ± 1.2 to 1.5 ± 1.3), however, this difference was not significant (P = 0.1). The number of STEMI admissions increased significantly from 0.9 ± 1.0 to 1.2 ± 1.0 per day in men (P = 0.04), but not in women (P = 0.7). The association between ice hockey matches and STEMI admission rates was strongest after a victory of the Montreal Canadiens. Accordingly, an increased risk for the occurrence of STEMI was observed in the overall population (hazard ratio [HR], 1.15; 95% confidence interval [CI], 1.0-1.3; P = 0.037) when the Montreal Canadiens won a match. This association was present in men (HR, 1.2; 95% CI, 1.03-1.4; P = 0.02) but not in women (P = 0.87), with a most pronounced effect seen in younger men (younger than 55 years; HR, 1.4; 95% CI, 1.1-1.8; P = 0.009). Although a weak association between hockey games and hospital admissions for STEMI was found in our overall population, the event of a hockey game significantly increased the risk for STEMI in younger men. Preventive measures targeting behavioural changes could positively affect this risk. Copyright © 2018 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.

  7. Individual fluid plans versus ad libitum on hydration status in minor professional ice hockey players.

    PubMed

    Emerson, Dawn M; Torres-McGehee, Toni M; Emerson, Charles C; LaSalle, Teri L

    2017-01-01

    Despite exercising in cool environments, ice hockey players exhibit several dehydration risk factors. Individualized fluid plans (IFPs) are designed to mitigate dehydration by matching an individual's sweat loss in order to optimize physiological systems and performance. A randomized control trial was used to examine IFP versus ad libitum fluid ingestion on hydration in 11 male minor professional ice hockey players (mean age = 24.4 ± 2.6 years, height = 183.0 ± 4.6 cm, weight = 92.9 ± 7.8 kg). Following baseline measures over 2 practices, participants were randomly assigned to either control (CON) or intervention (INT) for 10 additional practices. CON participants were provided water and/or carbohydrate electrolyte beverage to drink ad libitum. INT participants were instructed to consume water and an electrolyte-enhanced carbohydrate electrolyte beverage to match sweat and sodium losses. Urine specific gravity, urine color, and percent body mass change characterized hydration status. Total fluid consumed during practice was assessed. INT consumed significantly more fluid than CON (1180.8 ± 579.0 ml vs. 788.6 ± 399.7 ml, p  = 0.002). However, CON participants replaced only 25.4 ± 12.9% of their fluid needs and INT 35.8 ± 17.5%. Mean percent body mass loss was not significantly different between groups and overall indicated minimal dehydration (<1.2% loss). Pre-practice urine specific gravity indicated CON and INT began hypohydrated (mean = 1.024 ± 0.007 and 1.024 ± 0.006, respectively) and experienced dehydration during practice (post = 1.026 ± 0.006 and 1.027 ± 0.005, respectively, p  < 0.001). Urine color increased pre- to post-practice for CON (5 ± 2 to 6 ± 1, p  < 0.001) and INT (5 ± 1 to 6 ± 1, p <  0.001). Participants consistently reported to practice hypohydrated. Ad libitum fluid intake was not significantly different than IFP on hydration status. Based on urine measures, both methods were

  8. Ice Skating Instruction at the University of Illinois.

    ERIC Educational Resources Information Center

    Christensen, Char; And Others

    1981-01-01

    The University of Illinois at Urbana-Champaign conducts a instructional ice skating program for its students and the community. Activities include: a figure skating club; a speed skating club; ice hockey program; and ice skating classes. (CJ)

  9. Integration of the functional movement screen into the National Hockey League Combine.

    PubMed

    Rowan, Chip P; Kuropkat, Christiane; Gumieniak, Robert J; Gledhill, Norman; Jamnik, Veronica K

    2015-05-01

    The sport of ice hockey requires coordination of complex skills involving musculoskeletal and physiological abilities while simultaneously exposing players to a high risk for injury. The Functional Movement Screen (FMS) was developed to assess fundamental movement patterns that underlie both sport performance and injury risk. The top 111 elite junior hockey players from around the world took part in the 2013 National Hockey League Entry Draft Combine (NHL Combine). The FMS was integrated into the comprehensive medical and physiological fitness evaluations at the request of strength and conditioning coaches with affiliations to NHL teams. The inclusion of the FMS aimed to help develop strategies that could maximize its utility among elite hockey players and to encourage or inform further research in this field. This study evaluated the outcomes of integrating the FMS into the NHL Combine and identified any links to other medical plus physical and physiological fitness assessment outcomes. These potential associations may provide valuable information to identify elements of future training programs that are individualized to athletes' specific needs. The results of the FMS (total score and number of asymmetries identified) were significantly correlated to various body composition measures, aerobic and anaerobic fitness, leg power, timing of recent workouts, and the presence of lingering injury at the time of the NHL Combine. Although statistically significant correlations were observed, the implications of the FMS assessment outcomes remain difficult to quantify until ongoing assessment of FMS patterns, tracking of injuries, and hockey performance are available.

  10. Hockey Concussion Education Project, Part 1: Susceptibility-weighted imaging study in male and female ice hockey players over a single season

    PubMed Central

    Helmer, Karl G.; Pasternak, Ofer; Fredman, Eli; Preciado, Ronny I.; Koerte, Inga K.; Sasaki, Takeshi; Mayinger, Michael; Johnson, Andrew M.; Holmes, Jeffrey D.; Forwell, Lorie; Skopelja, Elaine N.; Shenton, Martha E.; Echlin, Paul S.

    2015-01-01

    Object Concussion, or mild traumatic brain injury (mTBI), is a commonly occurring sports-related injury, especially in contact sports such as hockey. Cerebral microbleeds (CMBs), which are small, hypointense lesions on T2*-weighted images, can result from TBI. The authors use susceptibility-weighted imaging (SWI) to automatically detect small hypointensities that may be subtle signs of chronic and acute damage due to both subconcussive and concussive injury. The goal was to investigate how the burden of these hypointensities change over time, over a playing season, and postconcussion, compared with subjects who did not suffer a medically observed and diagnosed concussion. Methods Images were obtained in 45 university-level adult male and female ice hockey players before and after a single Canadian Interuniversity Sports season. In addition, 11 subjects (5 men and 6 women) underwent imaging at 72 hours, 2 weeks, and 2 months after concussion. To identify subtle changes in brain tissue and potential CMBs, nonvessel clusters of hypointensities on SWI were automatically identified and a hypointensity burden index was calculated for all subjects at the beginning of the season (BOS) and the end of the season (EOS), in addition to postconcussion time points (where applicable). Results A statistically significant increase in the hypointensity burden, relative to the BOS, was observed for male subjects at the 2-week postconcussion time point. A smaller, nonsignificant rise in the burden for all female subjects was also observed within the same time period. The difference in hypointensity burden was also statistically significant for men with concussions between the 2-week time point and the BOS. There were no significant changes in burden for nonconcussed subjects of either sex between the BOS and EOS time points. However, there was a statistically significant difference in the burden between male and female subjects in the nonconcussed group at both the BOS and EOS time

  11. Effect of the look-up line on the gaze and head orientation of elite ice hockey players.

    PubMed

    Vickers, Joan N; Causer, Joe; Stuart, Michael; Little, Elaine; Dukelow, Sean; Lavangie, Marc; Nigg, Sandro; Arsenault, Gina; Morton, Barry; Scott, Matt; Emery, Carolyn

    2017-02-01

    A "look-up line" (LUL) has been proposed for ice hockey, which is an orange 1 m (40') warning line (WL) painted on the ice at the base of the boards. The LUL purports to provide an early warning to players to keep their head up prior to and as they are being checked. We determined if players looked up more on a rink with the LUL compared to a traditional Control rink. Elite offensive (O) and defensive (D) players competed 1 vs. 1, while wearing an eye tracker that recorded their quiet eye (QE) and fixation and tracking (F-T) and an electrogoniometer that measured head angle. External cameras recorded skate duration during four skate phases: P1 preparation, P2 decision-making, P3 cut to boards, P4 contact. The QE was the final fixation prior to contact between O and D as they skated towards and across the WL during P3 and P4. Skate phase durations (%) did not differ by rink or rink by position. More QE and F-T occurred on the WL on the LUL rink than on the Control. The expected increase in head angle on the LUL rink did not occur during P3 or P4. Post-hoc results also showed O and D skated further from the boards on the LUL rink, suggesting the players preferred to control the puck on white ice, rather than the orange colour of the LUL rink. More research is needed to determine if these results apply to the competitive setting.

  12. Hockey Fans in Training (Hockey FIT) pilot study protocol: a gender-sensitized weight loss and healthy lifestyle program for overweight and obese male hockey fans.

    PubMed

    Gill, Dawn P; Blunt, Wendy; De Cruz, Ashleigh; Riggin, Brendan; Hunt, Kate; Zou, Guangyong; Sibbald, Shannon; Danylchuk, Karen; Zwarenstein, Merrick; Gray, Cindy M; Wyke, Sally; Bunn, Christopher; Petrella, Robert J

    2016-10-19

    Effective approaches that engage men in weight loss and lifestyle change are important because of worldwide increases, including in Canada, in obesity and chronic diseases. Football Fans in Training (FFIT), developed in Scotland, successfully tackled these problems by engaging overweight/obese male football fans in sustained weight loss and positive health behaviours, through program deliveries at professional football stadia. Aims: 1) Adapt FFIT to hockey within the Canadian context and integrate with HealtheSteps™ (evidence-based lifestyle program) to develop Hockey Fans in Training (Hockey FIT); 2) Explore potential for Hockey FIT to help overweight/obese men lose weight and improve other outcomes by 12 weeks, and retain these improvements to 12 months; 3) Evaluate feasibility of recruiting and retaining overweight/obese men; 4) Evaluate acceptability of Hockey FIT; and 5) Conduct program optimization via a process evaluation. We conducted a two-arm pilot pragmatic randomized controlled trial (pRCT) whereby 80 overweight/obese male hockey fans (35-65 years; body-mass index ≥28 kg/m 2 ) were recruited through their connection to two junior A hockey teams (London and Sarnia, ON) and randomized to Intervention (Hockey FIT) or Comparator (Wait-List Control). Hockey FIT includes a 12-week Active Phase (classroom instruction and exercise sessions delivered weekly by trained coaches) and a 40-week Maintenance Phase. Data collected at baseline and 12 weeks (both groups), and 12 months (Intervention only), will inform evaluation of the potential of Hockey FIT to help men lose weight and improve other health outcomes. Feasibility and acceptability will be assessed using data from self-reports at screening and baseline, program fidelity (program observations and coach reflections), participant focus group discussions, coach interviews, as well as program questionnaires and interviews with participants. This information will be analyzed to inform program

  13. Crash-test dummy and pendulum impact tests of ice hockey boards: greater displacement does not reduce impact.

    PubMed

    Schmitt, Kai-Uwe; Muser, Markus H; Thueler, Hansjuerg; Bruegger, Othmar

    2018-01-01

    One injury mechanism in ice hockey is impact with the boards. We investigated whether more flexible hockey boards would provide less biomechanical loading on impact than did existing (reference) boards. We conducted impact tests with a dynamic pendulum (mass 60 kg) and with crash test dummies (ES-2 dummy, 4.76 m/s impact speed). Outcomes were biomechanical loading experienced by a player in terms of head acceleration, impact force to the shoulder, spine, abdomen and pelvis as well as compression of the thorax. The more flexible board designs featured substantial displacement at impact. Some so-called flexible boards were displaced four times more than the reference board. The new boards possessed less stiffness and up to 90 kg less effective mass, reducing the portion of the board mass a player experienced on impact, compared with boards with a conventional design. Flexible boards resulted in a similar or reduced loading for all body regions, apart from the shoulder. The displacement of a board system did not correlate directly with the biomechanical loading. Flexible board systems can reduce the loading of a player on impact. However, we found no correlation between the displacement and the biomechanical loading; accordingly, displacement alone was insufficient to characterise the overall loading of a player and thus the risk of injury associated with board impact. Ideally, the performance of boards is assessed on the basis of parameters that show a good correlation to injury risk. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  14. A systematic video analysis of National Hockey League (NHL) concussions, part I: who, when, where and what?

    PubMed

    Hutchison, Michael G; Comper, Paul; Meeuwisse, Willem H; Echemendia, Ruben J

    2015-04-01

    Although there is a growing understanding of the consequences of concussions in hockey, very little is known about the precipitating factors associated with this type of injury. To describe player characteristics and situational factors associated with concussions in the National Hockey League (NHL). Case series of medically diagnosed concussions for regular season games over a 3.5-year period during the 2006-2010 seasons using an inclusive cohort of professional hockey players. Digital video records were coded and analysed using the Heads Up Checklist. Of 197 medically diagnosed concussions, 88% involved contact with an opponent. Forwards accounted for more concussions than expected compared with on-ice proportional representation (95% CI 60 to 73; p=0.04). Significantly more concussions occurred in the first period (47%) compared with the second and third periods (p=0.047), with the majority of concussions occurring in the defensive zone (45%). Approximately 47% of the concussions occurred in open ice, 53% occurred in the perimeter. Finally, 37% of the concussions involved injured players' heads contacting the boards or glass. This study describes several specific factors associated with concussions in the NHL, including period of the game, player position, body size, and specific locations on the ice and particular situations based on a player's position. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  15. Ice hockey shoulder pad design and the effect on head response during shoulder-to-head impacts.

    PubMed

    Richards, Darrin; Ivarsson, B Johan; Scher, Irving; Hoover, Ryan; Rodowicz, Kathleen; Cripton, Peter

    2016-11-01

    Ice hockey body checks involving direct shoulder-to-head contact frequently result in head injury. In the current study, we examined the effect of shoulder pad style on the likelihood of head injury from a shoulder-to-head check. Shoulder-to-head body checks were simulated by swinging a modified Hybrid-III anthropomorphic test device (ATD) with and without shoulder pads into a stationary Hybrid-III ATD at 21 km/h. Tests were conducted with three different styles of shoulder pads (traditional, integrated and tethered) and without shoulder pads for the purpose of control. Head response kinematics for the stationary ATD were measured. Compared to the case of no shoulder pads, the three different pad styles significantly (p < 0.05) reduced peak resultant linear head accelerations of the stationary ATD by 35-56%. The integrated shoulder pads reduced linear head accelerations by an additional 18-21% beyond the other two styles of shoulder pads. The data presented here suggest that shoulder pads can be designed to help protect the head of the struck player in a shoulder-to-head check.

  16. Comparative fate of organohalogen contaminants in two top carnivores in Greenland: captive sledge dogs and wild polar bears.

    PubMed

    Verreault, Jonathan; Dietz, Rune; Sonne, Christian; Gebbink, Wouter A; Shahmiri, Soheila; Letcher, Robert J

    2008-04-01

    The limited knowledge and/or the inability to control physiological condition parameters that influence the fate of organohalogen contaminants (OHCs) has been the foremost confounding aspect in monitoring programs and health risk assessments of wild top predators in the Arctic such as the polar bear (Ursus maritimus). In the present comparative study, we used a potential surrogate Canoidea species for the East Greenland polar bear, the captive sledge dog (Canis familiaris), to investigate some factors that may influence the bioaccumulation and biotransformation of major chlorinated and brominated OHCs in adipose tissue and blood (plasma) of control (fed commercial pork fat) and exposed (fed West Greenland minke whale (Balaenoptera acutorostrata) blubber) adult female sledge dogs. Furthermore, we compared the patterns and concentrations of OHCs and their known or suggested hydroxylated (OH) metabolites (e.g., OH-PCBs) in sledge dogs with those in adipose tissue and blood (plasma) of East Greenland adult female polar bears, and blubber of their main prey species, the ringed seal (Pusa hispida). The two-year feeding regime conducted with sledge dogs led to marked differences in overall adipose tissue (and plasma) OHC residue accumulation between the control and exposed groups. Characteristic prey-to-predator OHC bioaccumulation dynamics for major PCB and PBDE congeners (patterns and concentrations) and biotransformation capacity with respect to PCB metabolite formation and OH-PCB retention distinguished, to some extent, captive sledge dogs and wild polar bears. Based on the present findings, we conclude that the use of surrogate species in toxicological investigations for species in the Canoidea family should be done with great caution, although they remain essential in the context of contaminants research with sensitive arctic top carnivore species such as the polar bear.

  17. The Instructional Instrument SL-EDGE Student Library-Educational DiGital Environment.

    ERIC Educational Resources Information Center

    Kyriakopoulou, Antonia; Kalamboukis, Theodore

    An educational digital environment that will provide appropriate methods and techniques for the support and enhancement of the educational and learning process is a valuable tool for both educators and learners. In the context of such a mission, the educational tool SL-EDGE (Student Library-Educational DiGital Environment) has been developed. The…

  18. Hip abduction-adduction strength and one-leg hop tests: test-retest reliability and relationship to function in elite ice hockey players.

    PubMed

    Kea, J; Kramer, J; Forwell, L; Birmingham, T

    2001-08-01

    Single group, test-retest. To determine: (1) hip abduction and adduction torques during concentric and eccentric muscle actions, (2) medial and lateral one-leg hop distances, (3) the test-retest reliability of these measurements, and (4) the relationship between isokinetic measures of hip muscle strength and hop distances in elite ice hockey players. The skating motion used in ice hockey requires strong contractions of the hip and knee musculature. However, baseline scores for hip strength and hop distances, their test-retest reliability, and measures of the extent to which these tests are related for this population are not available. The dominant leg of 27 men (mean age 20 +/- 3 yrs) was tested on 2 occasions. Hip abduction and adduction movements were completed at 60 degrees.s(-1) angular velocity, with the subject lying on the non-test side and the test leg moving vertically in the subject's coronal plane. One-leg hops requiring jumping from and landing on the same leg without losing balance were completed in the medial and lateral directions. Hip adduction torques were significantly greater than abduction torques during both concentric and eccentric muscle actions, while no significant difference was observed between medial and lateral hop distances. Although hop test scores produced excellent ICCs (> 0.75) when determined using scores on 1 occasion, torques needed to be averaged over 2 test occasions to reach this level. Correlations between the strength and hop tests ranged from slight to low (r = -0.26 to 0.27) and were characterized by wide 95% confidence intervals (-0.54 to 0.61). Isokinetic tests of hip abduction and adduction did not provide a strong indication of performance during sideways hop tests. Although isokinetic tests can provide a measure of muscular strength under specific test conditions, they should not be relied upon as a primary indicator of functional abilities or readiness to return to activity.

  19. Are Canadian-born Major League Baseball players more likely to bat left-handed? A partial test of the hockey-influence on batting hypothesis.

    PubMed

    Cairney, John; Chirico, Daniele; Li, Yao-Chuen; Bremer, Emily; Graham, Jeffrey D

    2018-01-01

    It has been suggested that Canadian-born Major League Baseball (MLB) players are more likely to bat left-handed, possibly owing to the fact that they learn to play ice hockey before baseball, and that there is no clear hand-preference when shooting with a hockey stick; approximately half of all ice hockey players shoot left. We constructed a database on active (i.e., October, 2016) MLB players from four countries/regions based on place of birth (Canada, United States of America [USA], Dominican Republic and South Asia [i.e., Japan, Taiwan and South Korea]), including information on which hand they use to bat and throw. We also extracted information on all Canadian-born MLB players, dating back to 1917. Our results confirm that the proportion of left-handed batters born in Canada is higher when compared to the other countries selected; also, since 1917, the proportion of Canadian MLB players who bat left has been consistently higher than the league average. We also compared the proportion of left-handed batters in Canada with players born in states in the USA grouped into high, average and low based on hockey participation. The proportion of MLB players born in states with a high level of hockey participation were more likely to bat left, although the differences were significant at trend level only (p < .10). Lastly, we found that while Canadians were more likely to bat left-handed, this did not correspond with a greater left-hand dominance, as determined by throwing hand. In conclusion, the present study confirms that Canadian-born MLB players are more likely to bat left-handed when compared to American, Dominican Republic and South Asian-born MLB players, providing partial support for the hockey influence on batting hypothesis.

  20. Bodychecking Rules and Concussion in Elite Hockey

    PubMed Central

    Donaldson, Laura; Asbridge, Mark; Cusimano, Michael D.

    2013-01-01

    Athletes participating in contact sports such as ice hockey are exposed to a high risk of suffering a concussion. We determined whether recent rule changes regulating contact to the head introduced in 2010–11 and 2011–12 have been effective in reducing the incidence of concussion in the National Hockey League (NHL). A league with a longstanding ban on hits contacting the head, the Ontario Hockey League (OHL), was also studied. A retrospective study of NHL and OHL games for the 2009–10 to 2011–12 seasons was performed using official game records and team injury reports in addition to other media sources. Concussion incidence over the 3 seasons analyzed was 5.23 per 100 NHL regular season games and 5.05 per 100 OHL regular season games (IRR 1.04; 95% CI 1.01, 1.50). When injuries described as concussion-like or suspicious of concussion were included, incidences rose to 8.8 and 7.1 per 100 games respectively (IRR 1.23; 95% CI 0.81, 1.32). The number of NHL concussions or suspected concussions was lower in 2009–10 than in 2010–11 (IRR 0.61; 95% CI 0.45, 0.83), but did not increase from 2010–11 to 2011–12 (IRR 1.05; 95% CI 0.80, 1.38). 64.2% of NHL concussions were caused by bodychecking, and only 28.4% of concussions and 36.8% of suspected concussions were caused by illegal incidents. We conclude that rules regulating bodychecking to the head did not reduce the number of players suffering concussions during NHL regular season play and that further changes or stricter enforcement of existing rules may be required to minimize the risk of players suffering these injuries. PMID:23874888

  1. Mass carbon monoxide poisoning at an ice-hockey game: initial approach and long-term follow-up.

    PubMed

    Mortelmans, Luc J M; Populaire, Jacques; Desruelles, Didier; Sabbe, Marc B

    2013-12-01

    A mass carbon monoxide (CO) intoxication during an ice-hockey game is described. Two hundred and thirty-five patients were seen in different hospitals, 88 of them the same night at the nearby emergency department. To evaluate long-term implications and to identify relevant indicators, a follow-up study was organized 1 year after the incident. Apart from the file data from the emergency departments, a 1-year follow-up mailing was sent to all patients. One hundred and ninety-one patients returned their questionnaire (86%). The mean age of the patients was 28 years, with 61% men. The mean carboxyhaemoglobin (COHb) was 9.9%. COHb levels were significantly higher for individuals on the ice (referee, players and maintenance personnel). There was a significant relationship with the initial presence of dizziness, fatigue and the COHb level. Headache, abdominal pain, nausea and vomiting were not significantly related to the COHb levels. The relationship between symptoms and CO level, however, should be interpreted with caution as there was a wide range between exposure and blood tests. 5.2% of patients had residual complaints, all including headache, with a significant higher incidence with high COHb levels. Only two patients had an abnormal neurological control (one slightly disturbed electroencephalography and one persistent encephalopathic complaint). Work incapacity was also significantly related to COHb levels. CO mass poisonings remain a risk in indoor sporting events. Although it causes an acute mass casualty incident, it is limited in time and delayed problems are scarce. Symptomatology is a poor tool for triage. The best prevention is the use of nonmineral energy sources such as for example electricity.

  2. Exposure to nitrogen dioxide in an indoor ice arena - New Hampshire, 2011.

    PubMed

    2012-03-02

    In January 2011, the New Hampshire Department of Health and Human Services (NHDHHS) investigated acute respiratory symptoms in a group of ice hockey players. The symptoms, which included cough, shortness of breath, hemoptysis, and chest pain or tightness, were consistent with exposure to nitrogen dioxide gas (NO), a byproduct of combustion. Environmental and epidemiologic investigations were begun to determine the source of the exposure and identify potentially exposed persons. This report summarizes the results of those investigations, which implicated a local indoor ice arena that had hosted two hockey practice sessions during a 24-hour period when the arena ventilation system was not functioning. A total of 43 exposed persons were interviewed, of whom 31 (72.1%) reported symptoms consistent with NO exposure. The highest attack rate was among the hockey players (87.9%). After repair of the ventilation system, no additional cases were identified. To prevent similar episodes, ice arena operators should ensure ventilation systems and alarms are operating properly and that levels of NO and carbon monoxide (CO) are monitored continuously for early detection of increased gas levels.

  3. Sports hernia in National Hockey League players: does surgery affect performance?

    PubMed

    Jakoi, Andre; O'Neill, Craig; Damsgaard, Christopher; Fehring, Keith; Tom, James

    2013-01-01

    Athletic pubalgia is a complex injury that results in loss of play in competitive athletes, especially hockey players. The number of reported sports hernias has been increasing, and the importance of their management is vital. There are no studies reporting whether athletes can return to play at preinjury levels. The focus of this study was to evaluate the productivity of professional hockey players before an established athletic pubalgia diagnosis contrasted with the productivity after sports hernia repair. Cohort study; Level of evidence, 3. Professional National Hockey League (NHL) players who were reported to have a sports hernia and who underwent surgery from 2001 to 2008 were identified. Statistics were gathered on the players' previous 2 full seasons and compared with the statistics 2 full seasons after surgery. Data concerning games played, goals, average time on ice, time of productivity, and assists were gathered. Players were divided into 3 groups: group A incorporated all players, group B were players with 6 or fewer seasons of play, and group C consisted of players with 7 or more seasons of play. A control group was chosen to compare player deterioration or improvement over a career; each player selected for the study had a corresponding control player with the same tenure in his career and position during the same years. Forty-three hockey players were identified to have had sports hernia repairs from 2001 to 2008; ultimately, 80% would return to play 2 or more full seasons. Group A had statistically significant decreases in games played, goals scored, and assists. Versus the control group, the decreases in games played and assists were supported. Statistical analysis showed significant decreases in games played, goals scored, assists, and average time on ice the following 2 seasons in group C, which was also seen in comparison with the control group. Group B (16 players) showed only statistical significance in games played versus the control group

  4. Prevalence of Os Styloideum in National Hockey League Players

    PubMed Central

    Greditzer, Harry G.; Hutchinson, Ian D.; Geannette, Christian S.; Hotchkiss, Robert N.; Kelly, Bryan T.; Potter, Hollis G.

    2017-01-01

    Background: Os styloideum describes an accessory carpal ossicle between the trapezoid, the capitate, and the second and third metacarpals. Injuries to this tissue have been described as part of the carpal boss syndrome. While the etiology of os styloideum remains uncertain, it may represent a physiologic response to altered loading forces in the wrist, similar to the development of cam-type deformity in the hips of ice hockey players or the Bennett lesion in the shoulders of baseball pitchers. Hypothesis: Professional hockey players will have a higher prevalence of os styloideum compared with the general population. Study Design: Case series. Level of Evidence: Level 4. Methods: A retrospective review of 16 professional hockey players from 4 different National Hockey League (NHL) teams who underwent unilateral imaging of the wrist was performed. Seventeen wrists were reviewed for the presence of os styloideum. Results: Thirteen of 16 players (81%) had an os styloideum, representing an increased prevalence compared with the general population. Previous clinical and cadaveric studies estimated a general prevalence of up to 19% (P < 0.001). For the 10 players who had their leading wrist scanned, 9 had an os styloideum (90%). Ten of 11 (91%) players demonstrated a bone marrow edema pattern within the metacarpal and the os styloideum on magnetic resonance imaging. There was no significant association between the presence of an os styloideum and the player’s position, leading wrist, or years in the league. Conclusion: There appears to be an increased prevalence of os styloideum among NHL players, and team physicians should consider this finding while formulating a differential diagnosis for dorsal wrist pain. Clinical Relevance: This study identified NHL players as having an increased prevalence of os styloideum compared with the general population. By doing so, these findings represent an opportunity to enhance our understanding of the etiology, clinical significance

  5. Solving the energy dilemma at Seven Bridges Ice Arena

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Louria, D.

    1996-08-01

    Seven Bridges Ice Arena with three ice skating rinks is among the largest ice skating facilities in the US. A complete fitness center, pro shop, second level observation gallery, restaurant, aerobics room, dance studio and children`s play room round out the 120,000 ft{sup 2} (11,215 m{sup 2}) world class facility. The Olympic Hockey League ice rink has seating for 800 spectators; and the National Hockey League ice rink has 1,200 spectator seats. The collegiate ice sheet has participant seating only. When building the one-year-old facility, the management initially solicited HVAC design/build system plans based on the usual Package Roof Topmore » (RTU) heat/cool units or split system parameters. Such a plan could have been a disaster because high energy costs have contributed directly to the closing of 20 rinks in the Chicago area. This article describes a HVAC system that would take advantage of every Energy Conservation Opportunities (ECO) possible to ensure the economic well being of this property. This included a plan that uses the refrigeration for both cooling and heating, which eliminated the need for commercial packaged units.« less

  6. Carbon monoxide in indoor ice skating rinks: Evaluation of absorption by adult hockey players

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levesque, B.; Dewailly, E.; Lavoie, R.

    1990-05-01

    We evaluated alveolar carbon monoxide (CO) levels of 122 male, adult hockey players active in recreational leagues of the Quebec City region (Canada), before and after 10 weekly 90-minute games in 10 different rinks. We also determined exposure by quantifying the average CO level in the rink during the games. Other variables documented included age, pulmonary function, aerobic capacity, and smoking status. Environmental concentrations varied from 1.6 to 131.5 parts per million (ppm). We examined the absorption/exposure relationship using a simple linear regression model. In low CO exposure levels, physical exercise lowered the alveolar CO concentration. However, we noted thatmore » for each 10 ppm of CO in the ambient air, the players had adsorbed enough CO to raise their carboxyhemoglobin (COHb) levels by 1 percent. This relationship was true both for smokers and non-smokers. We suggest that an average environmental concentration of 20 ppm of CO for the duration of a hockey game (90 minutes) should be reference limit not to be exceeded in indoor skating rinks.« less

  7. Exposure to Elevated Carbon Monoxide Levels at an Indoor Ice Arena--Wisconsin, 2014.

    PubMed

    Creswell, Paul D; Meiman, Jon G; Nehls-Lowe, Henry; Vogt, Christy; Wozniak, Ryan J; Werner, Mark A; Anderson, Henry

    2015-11-20

    On December 13, 2014, the emergency management system in Lake Delton, Wisconsin, was notified when a male hockey player aged 20 years lost consciousness after participation in an indoor hockey tournament that included approximately 50 hockey players and 100 other attendees. Elevated levels of carbon monoxide (CO) (range = 45 ppm-165 ppm) were detected by the fire department inside the arena. The emergency management system encouraged all players and attendees to seek medical evaluation for possible CO poisoning. The Wisconsin Department of Health Services (WDHS) conducted an epidemiologic investigation to determine what caused the exposure and to recommend preventive strategies. Investigators abstracted medical records from area emergency departments (EDs) for patients who sought care for CO exposure during December 13-14, 2014, conducted a follow-up survey of ED patients approximately 2 months after the event, and conducted informant interviews. Ninety-two persons sought ED evaluation for possible CO exposure, all of whom were tested for CO poisoning. Seventy-four (80%) patients had blood carboxyhemoglobin (COHb) levels consistent with CO poisoning; 32 (43%) CO poisoning cases were among hockey players. On December 15, the CO emissions from the propane-fueled ice resurfacer were demonstrated to be 4.8% of total emissions when actively resurfacing and 2.3% when idling, both above the optimal range of 0.5%-1.0%. Incomplete fuel combustion by the ice resurfacer was the most likely source of elevated CO. CO poisonings in ice arenas can be prevented through regular maintenance of ice resurfacers, installation of CO detectors, and provision of adequate ventilation.

  8. A 26 year physiological description of a National Hockey League team.

    PubMed

    Quinney, H A; Dewart, Randy; Game, Alex; Snydmiller, Gary; Warburton, Darren; Bell, Gordon

    2008-08-01

    The primary purpose of this investigation was to examine the physiological profile of a National Hockey League (NHL) team over a period of 26 years. All measurements were made at a similar time of year (pre-season) in 703 male (mean age +/- SD = 24 +/- 4 y) hockey players. The data were analyzed across years, between positions (defensemen, forwards, and goaltenders), and between what were deemed successful and non-successful years using a combination of points acquired during the season and play-off success. Most anthropometric (height, mass, and BMI) and physiological parameters (absolute and relative VO2 peak, relative peak 5 s power output, abdominal endurance, and combined grip strength) showed a gradual increase over the 26 year period. Defensemen were taller and heavier, had higher absolute VO2 peak, and had greater combined grip strength than forwards and goaltenders. Forwards were younger and had higher values for relative VO2 peak. Goaltenders were shorter, had less body mass, a higher sum of skinfolds, lower VO2 peak, and better flexibility. The overall pre-season fitness profile was not related to team success. In conclusion, this study revealed that the fitness profile for a professional NHL ice-hockey team exhibited increases in player size and anaerobic and aerobic fitness parameters over a 26 year period that differed by position. However, this evolution of physiological profile did not necessarily translate into team success in this particular NHL franchise.

  9. Playing Hockey, Riding Motorcycles, and the Ethics of Protection

    PubMed Central

    2012-01-01

    Ice hockey and motorcycle riding are increasingly popular activities in the United States that are associated with high risks of head and facial injuries. In both, effective head and facial protective equipment are available. Yet the debates about safety policies regarding the use of head protection in these activities have taken different forms, in terms of the influence of epidemiological data as well as of the ethical concerns raised. I examine these debates over injury prevention in the context of leisure activities, in which the public health duty to prevent avoidable harm must be balanced with the freedom to assume voluntary risks. PMID:23078472

  10. The role of visual perception measures used in sports vision programmes in predicting actual game performance in Division I collegiate hockey players.

    PubMed

    Poltavski, Dmitri; Biberdorf, David

    2015-01-01

    Abstract In the growing field of sports vision little is still known about unique attributes of visual processing in ice hockey and what role visual processing plays in the overall athlete's performance. In the present study we evaluated whether visual, perceptual and cognitive/motor variables collected using the Nike SPARQ Sensory Training Station have significant relevance to the real game statistics of 38 Division I collegiate male and female hockey players. The results demonstrated that 69% of variance in the goals made by forwards in 2011-2013 could be predicted by their faster reaction time to a visual stimulus, better visual memory, better visual discrimination and a faster ability to shift focus between near and far objects. Approximately 33% of variance in game points was significantly related to better discrimination among competing visual stimuli. In addition, reaction time to a visual stimulus as well as stereoptic quickness significantly accounted for 24% of variance in the mean duration of the player's penalty time. This is one of the first studies to show that some of the visual skills that state-of-the-art generalised sports vision programmes are purported to target may indeed be important for hockey players' actual performance on the ice.

  11. Paralympic medical services for the 2010 paralympic winter games.

    PubMed

    Taunton, Jack; Wilkinson, Michael; Celebrini, Rick; Stewart, Robert; Stasyniuk, Treny; Van de Vliet, Peter; Willick, Stuart; Ferrer, Josep Martinez

    2012-01-01

    To present the planning and medical encounters for the 2010 Paralympic Winter Games. Prospective medical encounter study. 2010 Paralympic Winter Games. Athletes, coaches, officials, workforce, volunteers, and media. Sport type: alpine, Nordic, and sledge hockey and curling. Participant type: athlete, workforce, and spectators. Terrain and speed. Medical encounters entered in database at competitive (alpine skiing, biathlon, cross-country skiing, sledge hockey, and curling) and noncompetitive (Whistler and Vancouver Polyclinics, presentation centers, opening and closing ceremonies, media center, Paralympic Family Hotel) venues. Forty-two nations participated with 1350 Paralympic athletes, coaches, and officials. There were 2590 accredited medical encounters (657 athletes, 25.4%; 682 International Federation/National Paralympic Committee officials, 26.3%; 57 IPC, 2.2%; 8 media, 0.3%; 1075 workforce, 41.5%; 111 others, 4.3%) and 127 spectator encounters for a total of 2717 encounters. During the preopening period medical services saw 201 accredited personnel. The busiest venues during the Paralympic Games were the Whistler (1633 encounters) and Vancouver (748 encounters) Polyclinics. Alpine, sledge hockey, and curling were the busiest competitive venues. The majority of medical encounters were musculoskeletal (44.6%, n = 1156). Medical services recorded 1657 therapy treatments, 977 pharmaceutical prescriptions dispensed, 204 dental treatments, 353 imaging examinations (more than 50% from alpine skiing), and 390 laboratory tests. There were 24 ambulance transfers with 7 inpatient hospitalizations for a total of 24 inpatient days and 4 outpatient visits. The mandate to have minimal impact on the health services of Vancouver and the Olympic Corridor while offering excellent medical services to the Games was accomplished. This data will be valuable to future organizing committees.

  12. Expert-novice differences in brain function of field hockey players.

    PubMed

    Wimshurst, Z L; Sowden, P T; Wright, M

    2016-02-19

    The aims of this study were to use functional magnetic resonance imaging to examine the neural bases for perceptual-cognitive superiority in a hockey anticipation task. Thirty participants (15 hockey players, 15 non-hockey players) lay in an MRI scanner while performing a video-based task in which they predicted the direction of an oncoming shot in either a hockey or a badminton scenario. Video clips were temporally occluded either 160 ms before the shot was made or 60 ms after the ball/shuttle left the stick/racquet. Behavioral data showed a significant hockey expertise×video-type interaction in which hockey experts were superior to novices with hockey clips but there were no significant differences with badminton clips. The imaging data on the other hand showed a significant main effect of hockey expertise and of video type (hockey vs. badminton), but the expertise×video-type interaction did not survive either a whole-brain or a small-volume correction for multiple comparisons. Further analysis of the expertise main effect revealed that when watching hockey clips, experts showed greater activation in the rostral inferior parietal lobule, which has been associated with an action observation network, and greater activation than novices in Brodmann areas 17 and 18 and middle frontal gyrus when watching badminton videos. The results provide partial support both for domain-specific and domain-general expertise effects in an action anticipation task. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Man in the Arctic, The Changing Nature of His Quest for Food and Water as Related to Snow, Ice, and Permafrost

    DTIC Science & Technology

    1962-01-01

    Sub- marines have been used under the ice pack. The most systematic and concerted effort has bet that conducted in Greenland where data from nearly...ml -’ -•- ice individually, chronic thirst was a common complaint. In fact, one cause of dehydration ex- haustion was seen .15 The problem of...made by truck or sledge and bar- rel. For example, at Hay River water is supplied under franchise by a trucker. This water is drawn from the river and

  14. Increasing Social Interactions Using Prompts and Rewards for Adolescents with ASD in an Ice Hockey Practice Context

    ERIC Educational Resources Information Center

    Beiers, Kevin; Derby, K. Mark; McLaughlin, T. F.

    2016-01-01

    We evaluated the effects of using prompts and reinforcement procedures to increase the social interaction of two children with autism (ASD). This study took place during the context of a hockey practice. Two adolescent participants were evaluated using an ABAB single subject reversal design. Baseline data were collected prior to and after the…

  15. Automatic acquisition of motion trajectories: tracking hockey players

    NASA Astrophysics Data System (ADS)

    Okuma, Kenji; Little, James J.; Lowe, David

    2003-12-01

    Computer systems that have the capability of analyzing complex and dynamic scenes play an essential role in video annotation. Scenes can be complex in such a way that there are many cluttered objects with different colors, shapes and sizes, and can be dynamic with multiple interacting moving objects and a constantly changing background. In reality, there are many scenes that are complex, dynamic, and challenging enough for computers to describe. These scenes include games of sports, air traffic, car traffic, street intersections, and cloud transformations. Our research is about the challenge of inventing a descriptive computer system that analyzes scenes of hockey games where multiple moving players interact with each other on a constantly moving background due to camera motions. Ultimately, such a computer system should be able to acquire reliable data by extracting the players" motion as their trajectories, querying them by analyzing the descriptive information of data, and predict the motions of some hockey players based on the result of the query. Among these three major aspects of the system, we primarily focus on visual information of the scenes, that is, how to automatically acquire motion trajectories of hockey players from video. More accurately, we automatically analyze the hockey scenes by estimating parameters (i.e., pan, tilt, and zoom) of the broadcast cameras, tracking hockey players in those scenes, and constructing a visual description of the data by displaying trajectories of those players. Many technical problems in vision such as fast and unpredictable players' motions and rapid camera motions make our challenge worth tackling. To the best of our knowledge, there have not been any automatic video annotation systems for hockey developed in the past. Although there are many obstacles to overcome, our efforts and accomplishments would hopefully establish the infrastructure of the automatic hockey annotation system and become a milestone for

  16. Seasonal Changes of Arctic Sea Ice Physical Properties Observed During N-ICE2015: An Overview

    NASA Astrophysics Data System (ADS)

    Gerland, S.; Spreen, G.; Granskog, M. A.; Divine, D.; Ehn, J. K.; Eltoft, T.; Gallet, J. C.; Haapala, J. J.; Hudson, S. R.; Hughes, N. E.; Itkin, P.; King, J.; Krumpen, T.; Kustov, V. Y.; Liston, G. E.; Mundy, C. J.; Nicolaus, M.; Pavlov, A.; Polashenski, C.; Provost, C.; Richter-Menge, J.; Rösel, A.; Sennechael, N.; Shestov, A.; Taskjelle, T.; Wilkinson, J.; Steen, H.

    2015-12-01

    Arctic sea ice is changing, and for improving the understanding of the cryosphere, data is needed to describe the status and processes controlling current seasonal sea ice growth, change and decay. We present preliminary results from in-situ observations on sea ice in the Arctic Basin north of Svalbard from January to June 2015. Over that time, the Norwegian research vessel «Lance» was moored to in total four ice floes, drifting with the sea ice and allowing an international group of scientists to conduct detailed research. Each drift lasted until the ship reached the marginal ice zone and ice started to break up, before moving further north and starting the next drift. The ship stayed within the area approximately 80°-83° N and 5°-25° E. While the expedition covered measurements in the atmosphere, the snow and sea ice system, and in the ocean, as well as biological studies, in this presentation we focus on physics of snow and sea ice. Different ice types could be investigated: young ice in refrozen leads, first year ice, and old ice. Snow surveys included regular snow pits with standardized measurements of physical properties and sampling. Snow and ice thickness were measured at stake fields, along transects with electromagnetics, and in drillholes. For quantifying ice physical properties and texture, ice cores were obtained regularly and analyzed. Optical properties of snow and ice were measured both with fixed installed radiometers, and from mobile systems, a sledge and an ROV. For six weeks, the surface topography was scanned with a ground LIDAR system. Spatial scales of surveys ranged from spot measurements to regional surveys from helicopter (ice thickness, photography) during two months of the expedition, and by means of an array of autonomous buoys in the region. Other regional information was obtained from SAR satellite imagery and from satellite based radar altimetry. The analysis of the data collected has started, and first results will be

  17. The Protective Effect of Kevlar ® Socks Against Hockey Skate Blade Injuries: A Biomechanical Study

    PubMed Central

    Nauth, Aaron; Aziz, Mina; Tsuji, Matthew; Whelan, Daniel B.; Theodoropoulos, John S.; Zdero, Rad

    2014-01-01

    simulate a typical ice hockey injury. Peak force, energy and power were calculated from the force-displacement data collected from the 7 matched pair trials. The cadavers were then dissected to identify the extent of the injury the skin and Achilles tendon from blade impact. Analysis of variance was used to test for a significant difference between the groups. Results: None (0/7) of the achilles tendons were lacerated when protected with Kevlar® reinforced socks; whereas all (7/7) achilles tendons tested using the standard synthetic sock were completely severed (Figure 1). Peak force (4030 +/- 1191 N vs. 2037 +/- 729 N), energy (81.4 +/- 38.9 J vs. 26.3 +/- 13.2 J) and power (471.2 +/- 166.7 W vs. 258.3 +/- 93.5 W) were all significantly (p<0.05) increased in the Kevlar® reinforced sock group compared to the standard synthetic sock group in our testing model (Figures 2 and 3). Conclusion: The Kevlar® reinforced socks provided significantly more cut resistance and were able to withstand a significantly larger peak force, energy and power from skate blade impact and prevent achilles tendon laceration when compared to standard synthetic hockey socks in a biomechanical testing model using human cadaver limbs. This is the first investigation to address the benefits of wearing Kevlar® reinforced hockey socks in a simulated model of hockey skate injuries and our results suggest a significant protective effect from the use of Kevlar® reinforced socks against hockey skate injuries.

  18. Return to play after an initial or recurrent concussion in a prospective study of physician-observed junior ice hockey concussions: implications for return to play after a concussion.

    PubMed

    Echlin, Paul Sean; Tator, Charles H; Cusimano, Michael D; Cantu, Robert C; Taunton, Jack E; Upshur, Ross E G; Czarnota, Michael; Hall, Craig R; Johnson, Andrew M; Forwell, Lorie A; Driediger, Molly; Skopelja, Elaine N

    2010-11-01

    The authors investigated return-to-play duration for initial and recurrent concussion in the same season in 2 teams of junior (16-21-year-old) ice hockey players during a regular season. The authors conducted a prospective cohort study during 1 junior regular season (2009-2010) of 67 male fourth-tier ice hockey players (mean age 18.2 ± 1.2 years [SD], range 16-21 years) from 2 teams. Prior to the start of the season, every player underwent baseline assessments that were determined using the Sideline Concussion Assessment Tool 2 (SCAT2) and the Immediate Post-Concussion Assessment and Cognitive Test (ImPACT). The study protocol also required players who entered the study during the season to complete a baseline SCAT2 and ImPACT. If the protocol was not followed, the postinjury test results of a player without true baseline test results were compared with previously established age- and sex-matched group normative levels. Each game was directly observed by a physician and at least 1 neutral nonphysician observer. Players suspected of suffering a concussion were evaluated by the physician during the game. If a concussion was diagnosed, the player underwent clinical evaluation at the physician's office within 24 hours. The return-to-play decision was based on clinical evaluation guided by the Zurich return-to-play protocol (contained in the consensus statement of international expert opinion at the 3rd International Conference on Concussion in Sport held in Zurich, November 2008). This clinical evaluation and return-to-play protocol was augmented by the 2 tests (SCAT2 and ImPACT) also recommended by the Zurich consensus statement, for which baseline values had been obtained. Seventeen players sustained a physician-observed or self-reported, physician-diagnosed concussion during a physician-observed ice hockey game. The mean clinical return-to-play duration (in 15 cases) was 12.8 ± 7.02 days (median 10 days, range 7-29 days); the mean number of physician office visits

  19. Gaze characteristics of elite and near-elite athletes in ice hockey defensive tactics.

    PubMed

    Martell, Stephen G; Vickers, Joan N

    2004-04-01

    Traditional visual search experiments, where the researcher pre-selects video-based scenes for the participant to respond to, shows that elite players make more efficient decisions than non-elites, but disagree on how they temporally regulate their gaze. Using the vision-in-action [J.N. Vickers, J. Exp. Psychol.: Human Percept. Perform. 22 (1996) 342] approach, we tested whether the significant gaze that differentiates elite and non-elite athletes occurred either: early in the task and was of more rapid duration [A.M. Williams et al., Res. Quart. Exer. Sport 65 (1994) 127; A.M. Williams and K. Davids, Res. Quart. Exer. Sport 69 (1998) 111], or late in the task and was of longer duration [W. Helsen, J.M. Pauwels, A cognitive approach to visual search in sport, in: D. Brogan, K. Carr (Eds.), Visual Search, vol. II, Taylor and Francis, London, 1992], or whether a more complex gaze control strategy was used that consisted of both early and rapid fixations followed by a late fixation of long duration prior to the final execution. We tested this using a live defensive zone task in ice hockey. Results indicated that athletes temporally regulated their gaze using two different gaze control strategies. First, fixation/tracking (F/T) gaze early in the trial were significantly shorter than the final F/T and confirmed that the elite group fixated the tactical locations more rapidly than the non-elite on successful plays. And secondly, the final F/T prior to critical movement initiation (i.e. F/T-1) was significantly longer for both groups, averaging 30% of the final part of the phase and occurred as the athletes isolated a single object or location to end the play. The results imply that expertise in defensive tactics is defined by a cascade of F/T, which began with the athletes fixating or tracking specific locations for short durations at the beginning of the play, and concluded with a final gaze of long duration to a relatively stable target at the end. The results are

  20. Ice lubrication for moving heavy stones to the Forbidden City in 15th- and 16th-century China

    PubMed Central

    Li, Jiang; Chen, Haosheng; Stone, Howard A.

    2013-01-01

    Lubrication plays a crucial role in reducing friction for transporting heavy objects, from moving a 60-ton statue in ancient Egypt to relocating a 15,000-ton building in modern society. Although in China spoked wheels appeared ca. 1500 B.C., in the 15th and 16th centuries sliding sledges were still used in transporting huge stones to the Forbidden City in Beijing. We show that an ice lubrication technique of water-lubricated wood-on-ice sliding was used instead of the common ancient approaches, such as wood-on-wood sliding or the use of log rollers. The technique took full advantage of the natural properties of ice, such as sufficient hardness, flatness, and low friction with a water film. This ice-assisted movement is more efficient for such heavy-load and low-speed transportation necessary for the stones of the Forbidden City. The transportation of the huge stones provides an early example of ice lubrication and complements current studies of the high-speed regime relevant to competitive ice sports. PMID:24191029

  1. A prospective study of concussions among National Hockey League players during regular season games: the NHL-NHLPA Concussion Program.

    PubMed

    Benson, Brian W; Meeuwisse, Willem H; Rizos, John; Kang, Jian; Burke, Charles J

    2011-05-17

    In 1997, the National Hockey League (NHL) and NHL Players' Association (NHLPA) launched a concussion program to improve the understanding of this injury. We explored initial postconcussion signs, symptoms, physical examination findings and time loss (i.e., time between the injury and medical clearance by the physician to return to competitive play), experienced by male professional ice-hockey players, and assessed the utility of initial postconcussion clinical manifestations in predicting time loss among hockey players. We conducted a prospective case series of concussions over seven NHL regular seasons (1997-2004) using an inclusive cohort of players. The primary outcome was concussion and the secondary outcome was time loss. NHL team physicians documented post-concussion clinical manifestations and recorded the date when a player was medically cleared to return to play. Team physicians reported 559 concussions during regular season games. The estimated incidence was 1.8 concussions per 1000 player-hours. The most common postconcussion symptom was headache (71%). On average, time loss (in days) increased 2.25 times (95% confidence interval [CI] 1.41-3.62) for every subsequent (i.e., recurrent) concussion sustained during the study period. Controlling for age and position, significant predictors of time loss were postconcussion headache (p < 0.001), low energy or fatigue (p = 0.01), amnesia (p = 0.02) and abnormal neurologic examination (p = 0.01). Using a previously suggested time loss cut-point of 10 days, headache (odds ratio [OR] 2.17, 95% CI 1.33-3.54) and low energy or fatigue (OR 1.72, 95% CI 1.04-2.85) were significant predictors of time loss of more than 10 days. Postconcussion headache, low energy or fatigue, amnesia and abnormal neurologic examination were significant predictors of time loss among professional hockey players.

  2. A prospective study of concussions among National Hockey League players during regular season games: the NHL-NHLPA Concussion Program

    PubMed Central

    Benson, Brian W.; Meeuwisse, Willem H.; Rizos, John; Kang, Jian; Burke, Charles J.

    2011-01-01

    Background In 1997, the National Hockey League (NHL) and NHL Players’ Association (NHLPA) launched a concussion program to improve the understanding of this injury. We explored initial postconcussion signs, symptoms, physical examination findings and time loss (i.e., time between the injury and medical clearance by the physician to return to competitive play), experienced by male professional ice-hockey players, and assessed the utility of initial postconcussion clinical manifestations in predicting time loss among hockey players. Methods We conducted a prospective case series of concussions over seven NHL regular seasons (1997–2004) using an inclusive cohort of players. The primary outcome was concussion and the secondary outcome was time loss. NHL team physicians documented post-concussion clinical manifestations and recorded the date when a player was medically cleared to return to play. Results Team physicians reported 559 concussions during regular season games. The estimated incidence was 1.8 concussions per 1000 player-hours. The most common postconcussion symptom was headache (71%). On average, time loss (in days) increased 2.25 times (95% confidence interval [CI] 1.41–3.62) for every subsequent (i.e., recurrent) concussion sustained during the study period. Controlling for age and position, significant predictors of time loss were postconcussion headache (p < 0.001), low energy or fatigue (p = 0.01), amnesia (p = 0.02) and abnormal neurologic examination (p = 0.01). Using a previously suggested time loss cut-point of 10 days, headache (odds ratio [OR] 2.17, 95% CI 1.33–3.54) and low energy or fatigue (OR 1.72, 95% CI 1.04–2.85) were significant predictors of time loss of more than 10 days. Interpretation Postconcussion headache, low energy or fatigue, amnesia and abnormal neurologic examination were significant predictors of time loss among professional hockey players. PMID:21502355

  3. Sea-Ice Thickness Monitoring from Sensor Equipped Inuit Sleds

    NASA Astrophysics Data System (ADS)

    Rodwell, Shane; Jones, Bryn; Wilkinson, Jeremy

    2013-04-01

    A novel instrumentation package capable of measuring sea-ice thickness autonomously has been designed for long-term deployment upon the dog drawn sleds of the indigenous peoples of the Arctic. The device features a range of sensors that have been integrated with an electromagnetic induction device. These include a global positioning system, temperature sensor, tilt meter and accelerometer. Taken together, this system is able to provide accurate (+/-5cm) measurements of ice thickness with spatio-temporal resolution ranging from 1m to 5m every second. Autonomous data transmission capability is provided via GSM, inspired by the fact that many of the coastal communities in Greenland possess modern cell-phone infrastructure, enabling an inexpensive means of data-retrieval. Such data is essential in quantifying the sea-ice mass balance; given that existing satellite based systems are unable to measure ice-thickness directly. Field-campaign results from a prototype device, deployed in the North West of Greenland during three consecutive seasons, have demonstrated successful proof-of-concept when compared to data provided by ice mass balance (IMB) stations provided at fixed positions along the route of the sled. This project highlights not only the use of novel polar technology, but how opportunistic deployment using an existing roving platform (Inuit sledges) can provide economical, yet highly valuable, data for instrumentation development.

  4. Three-dimensional kinematics of the lower limbs during forward ice hockey skating.

    PubMed

    Upjohn, Tegan; Turcotte, René; Pearsall, David J; Loh, Jonathan

    2008-05-01

    The objectives of the study were to describe lower limb kinematics in three dimensions during the forward skating stride in hockey players and to contrast skating techniques between low- and high-calibre skaters. Participant motions were recorded with four synchronized digital video cameras while wearing reflective marker triads on the thighs, shanks, and skates. Participants skated on a specialized treadmill with a polyethylene slat bed at a self-selected speed for 1 min. Each participant completed three 1-min skating trials separated by 5 min of rest. Joint and limb segment angles were calculated within the local (anatomical) and global reference planes. Similar gross movement patterns and stride rates were observed; however, high-calibre participants showed a greater range and rate of joint motion in both the sagittal and frontal planes, contributing to greater stride length for high-calibre players. Furthermore, consequent postural differences led to greater lateral excursion during the power stroke in high-calibre skaters. In conclusion, specific kinematic differences in both joint and limb segment angle movement patterns were observed between low- and high-calibre skaters.

  5. Seasonal Mood Disturbances in Collegiate Hockey Players

    PubMed Central

    Rosen, Lionel W.; Shafer, Christine L.; Smokler, Carol; Carrier, David; McKeag, Douglas B.

    1996-01-01

    Objective: The purpose of this paper is to: 1) describe the seasonal affective disorder syndrome using a case illustration, 2) provide a simple and reliable method for identifying seasonal affective disorder, and 3) provide data as to the prevalence of the syndrome in a subset of collegiate hockey players. Design and Setting: Collegiate hockey players were selected, because their practices begin in the fall and play is completed in the spring. The teams selected for participation were from the far Northwest and the upper Midwest regions. Subjects: Sixty-eight Division I hockey players volunteered for the study. The three teams from which the subjects were chosen were located above latitude 42°/45' north. Subjects were from the northern latitudes. Measurements: The Seasonal Pattern Assessment Questionnaire was used to screen for seasonality. A sample of the athletes was also examined using the Hamilton Rating Scale for Depression together with the Diagnostic and Statistical Manual of Mental Disorders (4th ed) criteria for Seasonal Pattern Specifier. Results: Thirty-three (51%) were asymptomatic, 7 (11%) met the criteria for seasonal affective disorder, and 25 (39%) hockey players scored in the range that could classify them as candidates for subsyndromal seasonal affective disorder. Conclusions: The prevalence of seasonal affective disorder among our sample approximated the national norm for the northern latitudes. However, the prevalence of subsyndromal seasonal affective disorder in our population was 25% compared to 13% reported nationally. Light therapy has been shown to reverse the effects of the disorders; however, further research needs to be conducted to determine its acceptance and effectiveness by the athletic population. PMID:16558403

  6. Heat transfer with hockey-stick steam generator. [LMFBR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moody, E; Gabler, M J

    1977-11-01

    The hockey-stick modular design concept is a good answer to future needs for reliable, economic LMFBR steam generators. The concept was successfully demonstrated in the 30 Mwt MSG test unit; scaled up versions are currently in fabrication for CRBRP usage, and further scaling has been accomplished for PLBR applications. Design and performance characteristics are presented for the three generations of hockey-stick steam generators. The key features of the design are presented based on extensive analytical effort backed up by extensive ancillary test data. The bases for and actual performance evaluations are presented with emphasis on the CRBRP design. The designmore » effort on these units has resulted in the development of analytical techniques that are directly applicable to steam generators for any LMFBR application. In conclusion, the hockey-stick steam generator concept has been proven to perform both thermally and hydraulically as predicted. The heat transfer characteristics are well defined, and proven analytical techniques are available as are personnel experienced in their use.« less

  7. Spinal mobility and trunk muscle strength in elite hockey players.

    PubMed

    Lindgren, S; Twomey, L

    1988-01-01

    Elite hockey players of both sexes from the Australian Institute of Sport were assessed for lumbar spine mobility, trunk flexion and back extensor muscle strength, hamstring flexibility and postural characteristics over a two year period. All the athletes were more mobile in rotation than the 'normal' West Australian population, and demonstrated flexible hamstrings and powerful back extensor muscles; trunk flexion was less strong initially, but improved after intervention in the form of a specific exercise programme, over the measurement period. A questionnaire disclosed that low back pain is a common complaint of hockey players, but rarely required intensive physical and medical treatment. The term 'hockey player's back' has been coined in recognition of the long flat thoracolumbar spine frequently noted in these subjects. Copyright © 1988 Australian Physiotherapy Association. Published by . All rights reserved.

  8. Dupuytren disease is highly prevalent in male field hockey players aged over 60 years.

    PubMed

    Broekstra, Dieuwke C; van den Heuvel, Edwin R; Lanting, Rosanne; Harder, Tom; Smits, Inge; Werker, Paul M N

    2016-09-22

    Dupuytren disease is a fibroproliferative hand condition. The role of exposure to vibration as a risk factor has been studied with contradictory results. Since field hockey is expected to be a strong source of hand-arm vibration, we hypothesised that long-term exposure to field hockey is associated with Dupuytren disease. In this cross-sectional cohort study, the hands of 169 male field hockey players (IQR: 65-71 years) and 156 male controls (IQR: 59-71 years) were examined for signs of Dupuytren disease. Details about their age, lifestyle factors, medical history, employment history and leisure activities were gathered. Prior to the analyses, the groups were balanced in risk factors using propensity score matching. The association between field hockey and Dupuytren disease was determined using a subject-specific generalised linear mixed model with a binomial distribution and logit link function (matched pairs analysis). Dupuytren disease was observed in 51.7% of the field hockey players, and in 13.8% of the controls. After propensity score matching, field hockey playing as dichotomous variable, was associated with Dupuytren disease (OR=9.42, 95% CI 3.01 to 29.53). A linear dose-response effect of field hockey (hours/week x years) within the field hockey players could not be demonstrated (OR=1.03, 95% CI 0.68 to 1.56). We found that field hockey playing has a strong association with the presence of Dupuytren disease. Clinicians in sports medicine should be alert to this less common diagnosis in this sport. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  9. Promoting respect for the rules and injury prevention in ice hockey: evaluation of the fair-play program.

    PubMed

    Brunelle, J P; Goulet, C; Arguin, H

    2005-09-01

    To reduce the number of transgressions to the rule, the occurrence of violent acts and to prevent injuries, Hockey Québec adopted the Fair-Play Program (FPP). The objective of the present study was to evaluate the effectiveness of the FPP. 52 Bantam (14-15 years) teams participated in this cohort study. In total, 49 games (13 with the FPP, 36 without FPP) were systematically assessed for transgressions to the rule. Body checking was allowed in all games. Transgressions to the rule data were obtained using a real time observation system in a natural setting, while injury data were collected through a self-administered questionnaire. Data were analysed using generalised linear models with generalised estimating equations accounting for potential team effect. The number of penalties per game was significantly lower (p < 0.01) for games played with the FPP. Overall, no difference was noted in the number of transgressions observed during games played with or without the FPP. Players in leagues where the FPP was used held their opponents more frequently (p < 0.0001). On the other hand, players in leagues without the FPP shoved and hit more (p = 0.05). No difference was noted in the injury rate for games played with or without the FPP. This study showed that the FPP is one of the tools available to help those in the hockey world promote fair play values. Moreover, this project clearly showed the importance of program evaluation and the value of direct observation in a natural setting.

  10. Hockey-stick steam generator for LMFBR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hallinan, G.J.; Svedlund, P.E.

    1981-01-01

    This paper presents the criteria and evaluation leading to the selection of the Hockey Stick Steam Generator Concept and subsequent development of that concept for LMFBR application. The selection process and development of the Modular Steam Generator (MSG) is discussed, including the extensive test programs that culminated in the manufacture and test of a 35 MW(t) Steam Generator. The design of the CRBRP Steam Generator is described, emphasizing the current status and a review of the critical structural areas. CRBRP steam generator development tests are evaluated, with a discussion of test objectives and rating of the usefulness of test resultsmore » to the CRBRP prototype design. Manufacturing experience and status of the CRBRP prototype and plant units is covered. The scaleup of the Hockey Stick concept to large commercial plant application is presented, with an evaluation of scaleup limitations, transient effects, and system design implications.« less

  11. Hubble's Hockey Stick Galaxy

    NASA Image and Video Library

    2017-12-08

    The star of this NASA/ESA Hubble Space Telescope image is a galaxy known as NGC 4656, located in the constellation of Canes Venatici (The Hunting Dogs). However, it also has a somewhat more interesting and intriguing name: the Hockey Stick Galaxy! The reason for this is a little unclear from this partial view, which shows the bright central region, but the galaxy is actually shaped like an elongated, warped stick, stretching out through space until it curls around at one end to form a striking imitation of a celestial hockey stick. This unusual shape is thought to be due to an interaction between NGC 4656 and a couple of near neighbors, NGC 4631 (otherwise known as The Whale Galaxy) and NGC 4627 (a small elliptical). Galactic interactions can completely reshape a celestial object, shifting and warping its constituent gas, stars, and dust into bizarre and beautiful configurations. Credit: ESA/Hubble & NASA NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  12. A Cool Sport Full of Physics

    ERIC Educational Resources Information Center

    Hache, Alain

    2008-01-01

    Of all sports, ice hockey is possibly the one with the widest array of physics elements in it. The game provides many examples that can bring physics to life in the classroom. Ice hockey (or just "hockey" as many Canadians would say) sees athletes sliding on ice at high speeds and in various ways, shooting and slapping pucks, and…

  13. Evaluation of anthropometric, physiological, and skill-related tests for talent identification in female field hockey.

    PubMed

    Keogh, Justin W L; Weber, Clare L; Dalton, Carl T

    2003-06-01

    The purpose of the present study was to develop an effective testing battery for female field hockey by using anthropometric, physiological, and skill-related tests to distinguish between regional representative (Rep, n = 35) and local club level (Club, n = 39) female field hockey players. Rep players were significantly leaner and recorded faster times for the 10-m and 40-m sprints as well as the Illinois Agility Run (with and without dribbling a hockey ball). Rep players also had greater aerobic and lower body muscular power and were more accurate in the shooting accuracy test, p < 0.05. No significant differences between groups were evident for height, body mass, speed decrement in 6 x 40-m repeated sprints, handgrip strength, or pushing speed. These results indicate that %BF, sprinting speed, agility, dribbling control, aerobic and muscular power, and shooting accuracy can distinguish between female field hockey players of varying standards. Therefore talent identification programs for female field hockey should include assessments of these physical parameters.

  14. Long-term reliability of ImPACT in professional ice hockey.

    PubMed

    Echemendia, Ruben J; Bruce, Jared M; Meeuwisse, Willem; Comper, Paul; Aubry, Mark; Hutchison, Michael

    2016-02-01

    This study sought to assess the test-retest reliability of Immediate Post-Concussion Assessment and Cognitive Testing (ImPACT) across 2-4 year time intervals and evaluate the utility of a newly proposed two-factor (Speed/Memory) model of ImPACT across multiple language versions. Test-retest data were collected from non-concussed National Hockey League (NHL) players across 2-, 3-, and 4-year time intervals. The two-factor model was examined using different language versions (English, French, Czech, Swedish) of the test using a one-year interval, and across 2-4 year intervals using the English version of the test. The two-factor Speed index improved reliability across multiple language versions of ImPACT. The Memory factor also improved but reliability remained below the traditional cutoff of .70 for use in clinical decision-making. ImPACT reliabilities remained low (below .70) regardless of whether the four-composite or the two-factor model was used across 2-, 3-, and 4-year time intervals. The two-factor approach increased ImPACT's one-year reliability over the traditional four-composite model among NHL players. The increased stability in test scores improves the test's ability to detect cognitive changes following injury, which increases the diagnostic utility of the test and allows for better return to play decision-making by reducing the risk of exposing an athlete to additional trauma while the brain may be at a heightened vulnerability to such trauma. Although the Speed Index increases the clinical utility of the test, the stability of the Memory index remains low. Irrespective of whether the two-factor or traditional four-composite approach is used, these data suggest that new baselines should occur on a yearly basis in order to maximize clinical utility.

  15. Bone properties in child and adolescent male hockey and soccer players.

    PubMed

    Falk, Bareket; Braid, Sarah; Moore, Michael; Yao, Matthew; Sullivan, Phil; Klentrou, Nota

    2010-07-01

    Children and adolescents who train extensively in high-impact, weight-bearing activities have enhanced bone mineral density. The purpose of this study was to evaluate bone strength, as reflected by quantitative ultrasound (QUS, Sunlight Omniscence), of child (10-12 yrs old) and adolescent (14-16 yrs old) male soccer and hockey players in comparison with age-matched controls. The groups included 30 child (CH) and 31 adolescent (AH) hockey players, 26 child (CS) and 30 adolescent (AS) soccer players, as well as 34 child (CC) and 31 adolescent (AC) healthy, non-athletic, age-matched controls. All athletes trained at an elite level year-round, with no difference in training volume between groups. Ultrasound speed of sound (SOS) was measured at the distal-radius and mid-tibia. In both age groups, hockey players were the heaviest and had the highest fat-free mass. No differences were found among groups in total energy intake, calcium or vitamin D intake. Radial and tibial SOS increased with age. Hockey players had higher radial SOS in both age groups (children: CH:3763+/-74, CS:3736+/-77, CC:3721+/-88 m/s; adolescents: AH:3809+/-105, AS:3767+/-85, AC:3760+/-94 m/s). Tibial SOS was higher in soccer players compared with controls. In spite of the higher body mass and fat-free mass in hockey players, their tibial SOS was similar to the non-athletes in both age groups. These findings support previous suggestions of sport-specific effects on bone strength. However, they need to be corroborated with longitudinal or prospective intervention studies. Copyright 2009 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  16. The past, present, and future of hockey-stick-shaped liquid crystals

    NASA Astrophysics Data System (ADS)

    Choi, E.-Joon

    2014-02-01

    Recently, the liquid crystalline materials with a bent-core mesogen have attracted attentions because their interesting properties such as polarity and biaxiality of the mesophase. There are several types of bent-core mesogenic structures have been reported, for instance, banana-shaped, V-shaped molecules, boomerang-shaped, hockey stick-shaped, and Yshaped molecules. In this study, the liquid crystals and the reactive mesogens with the hockey-stick shaped mesogens will be described concerning with the structure-property relationship.

  17. A Cool Sport Full of Physics

    NASA Astrophysics Data System (ADS)

    Haché, Alain

    2008-10-01

    Of all sports, ice hockey is possibly the one with the widest array of physics elements in it. The game provides many examples that can bring physics to life in the classroom. Ice hockey (or just "hockey" as many Canadians would say) sees athletes sliding on ice at high speeds and in various ways, shooting and slapping pucks, and colliding against each other. The interaction between the skate blade and the ice is a problem of great physical complexity. The question "Why is ice so slippery?" has puzzled generations of scientists and, surprisingly, clear answers have come relatively recently. There is even some optics involved in hockey: how many sports are watched behind tempered glass (or Plexiglas) windows? The optical and mechanical properties of these materials are worth a physics classroom discussion. In this paper, I will review a few topics discussed at length in my book The Physics of Hockey.1,2 Interested readers may also find additional articles on our website.3

  18. Hockey: Special Olympics Sports Skills Instructional Program.

    ERIC Educational Resources Information Center

    Special Olympics, Inc., Washington, DC.

    Suggestions for coaching and teaching hockey skills to mentally retarded persons are presented in this guide, one of seven booklets on Special Olympics Sports Skills Instructional Programs. An introductory section presents an overview of the sport, information on the organization of the training session, and a list of goals, objectives, and…

  19. Establishing the Test-Retest Reliability & Concurrent Validity for the Repeat Ice Skating Test (RIST) in Adolescent Male Ice Hockey Players

    ERIC Educational Resources Information Center

    Power, Allan; Faught, Brent E.; Przysucha, Eryk; McPherson, Moira; Montelpare, William

    2012-01-01

    In this study the authors examine the test-retest reliability and concurrent validity of the Repeat Ice Skating Test (RIST). This was an on-ice field anaerobic test that measured average peak power and was validated with 3 anaerobic lab tests: (a) vertical jump, (b) the Margaria-Kalamen stair test, and (c) the Wingate Anaerobic Test. The…

  20. Change Agent Research for Windsor Minor Hockey.

    ERIC Educational Resources Information Center

    Moriarty, Dick; Duthie, James

    This study was based on an earlier 1972-73 study (see SP 009 113) which led to organizational restructuring of Windsor minor hockey (WMH). It was felt that further studies comparing attitudes and beliefs with behavior would be beneficial. Of particular interest were: (a) whether or not attitudes and beliefs changed due to adjusted organization and…

  1. Comparison of skating kinetics and kinematics on ice and on a synthetic surface.

    PubMed

    Stidwill, T J; Pearsall, David; Turcotte, Rene

    2010-03-01

    The recent popularization and technological improvements of synthetic or artificial ice surfaces provide an attractive alternative to real ice in venues where the latter is impractical to install. Potentially, synthetic ice (SI) may be installed in controlled laboratory settings to permit detailed biomechanical analysis of skating manoeuvres. Unknown, however, is the extent to which skating on SI replicates skating on traditional ice (ICE). Hence, the purpose of this study was to compare kinetic and kinematic forward skating parameters between SI and ICE surfaces. With 11 male hockey players, a portable strain gauge system adhered to the outside of the skate blade holder was used to measure skate propulsive force synchronized with electrogoniometers for tracking dynamic knee and ankle movements during forward skating acceleration. In general, the kinetic and kinematic variables investigated in this study showed minimal differences between the two surfaces (P > 0.06), and no individual variable differences were identified between the two surfaces (P > or = 0.1) with the exception of greater knee extension on SI than ICE (15.2 degrees to 11.0 degrees; P < or = 0.05). Overall, SI surfaces permit comparable mechanics for on-ice forward skating, and thus offer the potential for valid analogous conditions for in-lab testing and training.

  2. The hockey-stick method to estimate evening dim light melatonin onset (DLMO) in humans.

    PubMed

    Danilenko, Konstantin V; Verevkin, Evgeniy G; Antyufeev, Viktor S; Wirz-Justice, Anna; Cajochen, Christian

    2014-04-01

    The onset of melatonin secretion in the evening is the most reliable and most widely used index of circadian timing in humans. Saliva (or plasma) is usually sampled every 0.5-1 hours under dim-light conditions in the evening 5-6 hours before usual bedtime to assess the dim-light melatonin onset (DLMO). For many years, attempts have been made to find a reliable objective determination of melatonin onset time either by fixed or dynamic threshold approaches. The here-developed hockey-stick algorithm, used as an interactive computer-based approach, fits the evening melatonin profile by a piecewise linear-parabolic function represented as a straight line switching to the branch of a parabola. The switch point is considered to reliably estimate melatonin rise time. We applied the hockey-stick method to 109 half-hourly melatonin profiles to assess the DLMOs and compared these estimates to visual ratings from three experts in the field. The DLMOs of 103 profiles were considered to be clearly quantifiable. The hockey-stick DLMO estimates were on average 4 minutes earlier than the experts' estimates, with a range of -27 to +13 minutes; in 47% of the cases the difference fell within ±5 minutes, in 98% within -20 to +13 minutes. The raters' and hockey-stick estimates showed poor accordance with DLMOs defined by threshold methods. Thus, the hockey-stick algorithm is a reliable objective method to estimate melatonin rise time, which does not depend on a threshold value and is free from errors arising from differences in subjective circadian phase estimates. The method is available as a computerized program that can be easily used in research settings and clinical practice either for salivary or plasma melatonin values.

  3. The Hockey Stick and the Climate Wars: Dispatches From The Front Lines

    NASA Astrophysics Data System (ADS)

    Mann, M. E.

    2011-12-01

    A central figure in the controversy over human-caused climate change has been The Hockey Stick, a simple, easy-to-understand graph my colleagues and I constructed to depict changes in Earth's temperature back to 1000 AD. The graph was featured in the high-profile Summary for Policy Makers of the 2001 report of the Intergovernmental Panel on Climate Change (IPCC), and it quickly became an icon in the debate over human-caused (anthropogenic) climate change. I will tell the story behind the Hockey Stick, using it as a vehicle for exploring broader issues regarding the role of skepticism in science, the uneasy relationship between science and politics, and the dangers that arise when special economic interests and those who do their bidding attempt to skew the discourse over policy-relevant areas of science. In short, I attempt to use the Hockey Stick to cut through the fog of disinformation that has been generated by the campaign to deny the reality of climate change. It is my intent, in so doing, to reveal the very real threat to our future that lies behind it.

  4. Factors Influencing the Underreporting of Concussion in Sports: A Qualitative Study of Minor Hockey Participants.

    PubMed

    Cusimano, Michael D; Topolovec-Vranic, Jane; Zhang, Stanley; Mullen, Sarah J; Wong, Mattew; Ilie, Gabriela

    2017-07-01

    The present study is to identify factors contributing to underreporting of concussion in adolescent athletes. Qualitative interviews. Participants were interviewed in an office environment. Interviews were conducted with 31 minor hockey players, 10 parents, 6 coaches, 4 trainers, 2 managers, and one game official. Players were 13 to 15 year old. With selective sampling, an inductive approach of analyzing the interviews was undertaken and themes were identified and analyzed. Underreporting is a complex phenomenon. A number of risk factors related to hockey culture, players, reference others, and rules of play were assessed. Reasons not reporting concussion is accepted in minor hockey. Aspects of hockey culture such as an overemphasis on winning games and upheld misperceptions about the risks associated with concussion were identified as relevant to the underreporting of concussions. Various factors relevant to the underreporting of concussions include player's motivation to win, group membership dynamics such as a player's role as the team's "enforcer," coaches' own motivation to win to further their own opportunities in the sport, and parents' personal financial interest or alternative agenda in terms of time commitments and their child's future career prospects. Our findings indicate that underreporting of concussion among those players interviewed appears to be prevalent and associated with misconceptions about injury risk, and a culture that both reinforces and encourages underreporting with tacit or overt complicity of parents and coaches. Our findings support the need to alter the culture of violence and tough play in hockey by education, rule changes, economic measures, and changes in governance of the sport. Interviewing more stakeholders and policy makers would shed light on such potential interventions.

  5. Echocardiographic findings in professional hockey players

    PubMed Central

    Fazel, Poorya; Roberts, Brad J.; Brooks, John

    2009-01-01

    Tissue Doppler imaging was used to evaluate the physiological and morphological response in athletes whose cardiac system must not only adapt to intense cardiovascular demands but also support sudden, transient changes in cardiac output. A total of 45 professional hockey players with a mean age of 24 years underwent a baseline transthoracic echocardiographic protocol after a typical morning workout; 12 healthy age- and gender-matched controls were evaluated as a means of comparison. The athletes in this study possessed larger left ventricular diastolic and systolic dimensions than the control group (5.5 ± 0.4 vs 4.9 ± 0.4 cm and 3.9 ± 0.4 vs 3.3 ± 0.4 cm, P < 0.0001). The increase in athletes' septal and posterior wall thickness was not substantial, nor was there a significant difference in left ventricular ejection fraction. The athletes demonstrated consistently larger left ventricular end-diastolic volume (196 ± 34 vs 136 ± 23 mL, P < 0.001) and end-systolic volume (87 ± 20 vs 57 ± 12 mL, P < 0.0001). They also had lower annular septal and lateral early diastolic and systolic tissue Doppler velocities compared with the control group. Thus, characteristic myocardial changes previously reported in elite athletes were also represented in professional hockey players. The lower left ventricular tissue Doppler velocities was a relatively unique finding and probably a consequence of lower postexertion preload levels compared with controls who were measured at rest. PMID:19633740

  6. A biomechanical comparison in the lower limb and lumbar spine between a hit and drag flick in field hockey.

    PubMed

    Ng, Leo; Rosalie, Simon M; Sherry, Dorianne; Loh, Wei Bing; Sjurseth, Andreas M; Iyengar, Shrikant; Wild, Catherine Y

    2018-03-01

    Research has revealed that field hockey drag flickers have greater odds of hip and lumbar injuries compared to non-drag flickers (DF). This study aimed to compare the biomechanics of a field hockey hit and a specialised field hockey drag flick. Eighteen male and seven female specialised hockey DF performed a hit and a drag flick in a motion analysis laboratory with an 18-camera three-dimensional motion analysis system and a calibrated multichannel force platform to examine differences in lower limb and lumbar kinematics and kinetics. Results revealed that drag flicks were performed with more of a forward lunge on the left lower limb resulting in significantly greater left ankle dorsiflexion, knee, hip and lumbar flexion (Ps<0.001) compared to a hit. Drag flicks were also performed with significantly greater lateral flexion (P < 0.002) and rotation of the lumbar spine (P < 0.006) compared to a hit. Differences in kinematics lead to greater shear, compression and tensile forces in multiple left lower limb and lumbar joints in the drag flick compared to the hit (P < 0.05). The biomechanical differences in drag flicks compared to a hit may have ramifications with respect to injury in field hockey drag flickers.

  7. Skating crossovers on a motorized flywheel: a preliminary experimental design to test effect on speed and on crossovers.

    PubMed

    Smith, Aynsley M; Krause, David A; Stuart, Michael J; Montelpare, William J; Sorenson, Matthew C; Link, Andrew A; Gaz, Daniel V; Twardowski, Casey P; Larson, Dirk R; Stuart, Michael B

    2013-12-01

    Ice hockey requires frequent skater crossovers to execute turns. Our investigation aimed to determine the effectiveness of training crossovers on a motorized, polyethylene high-resistance flywheel. We hypothesized that high school hockey players training on the flywheel would perform as well as their peers training on ice. Participants were 23 male high-school hockey players (age 15-19 years). The study used an experimental prospective design to compare players who trained for 9 sessions on the 22-foot flywheel with players who trained for 9 sessions on a similarly sized on-ice circle. Both groups were compared with control subjects who were randomly selected from the same participant pool as those training on ice. All players were tested before and after their 3-week training regimens, and control subjects were asked to not practice crossovers between testing. Group 1 trained in a hockey training facility housing the flywheel, and group 2 trained in the ice hockey arena where testing occurred. Primary outcome measures tested in both directions were: (a) speed (time in seconds) required to skate crossovers for 3 laps of a marked face-off circle, (b) cadence of skating crossovers on the similarly sized circles, and (c) a repeat interval speed test, which measures anaerobic power. No significant changes were found between groups in on-ice testing before and after training. Among the group 1 players, 7 of 8 believed they benefited from flywheel training. Group 2 players, who trained on ice, did not improve performance significantly over group 1 players. Despite the fact that no significant on-ice changes in performance were observed in objective measures, players who trained on the flywheel subjectively reported that the flywheel is an effective cost-effective alternative to training on ice. This is a relevant finding when placed in context with limited availability of on-ice training.

  8. Ice Friction in the Sport of Bobsleigh

    NASA Astrophysics Data System (ADS)

    Poirier, Louis

    The primary objective of this work is to examine the effect of the bobsleigh runner profile on ice / runner friction. The work is centered on a computational model (F.A.S.T. 3.2b) which calculates the coefficient of friction between a steel blade and ice. The first step was to analyze runners used in the sport of bobsleigh. This analysis was performed using a handheld rocker gauge, a device used in speed skating. The size of the device was optimized for hockey, short and long track speed skating, and bobsleigh. A number of runners were measured using the gauge and it was found that the portion of the runner contacting the ice generally has a rocker value of (20--50) m. Next, the hardness of athletic ice surfaces was analyzed. The ice hardness was determined by dropping steel balls varying in mass from (8--540) g onto the ice surface, from a height of (0.3--1.2) m, and measuring the diameter of the indentation craters. The ice hardness was found to be P¯(T) = ((--0.6 +/- 0.4) T + 14.7 +/- 2.1) MPa and the elastic recovery of the ice surface was found to be negligible. The F.A.S.T. model was adapted from a speed skate model to calculate the coefficient of friction between a bobsleigh runner and a flat ice surface. The model predicts that maximum velocities are obtained for temperatures between --10 and --20°C, in agreement with observations on the Calgary bobsleigh track. The model for flat ice suggests that the flattest runners produce the lowest coefficient of friction and that the rocker affects friction more than the cross-sectional radius. The coefficient of friction between runners and ice and the drag performance of 2-men bobsleighs were determined from radar speed measurements taken at the Calgary Olympic Oval and at Canada Olympic Park: at the Ice House and on the bobsleigh track during a World Cup competition. The mean coefficient of friction was found to be mu = (5.3 +/- 2.0) x 10--3 and the mean drag performance was CdA = (0.18 +/- 0.02) m2.

  9. The relative age effect reversal among the National Hockey League elite

    PubMed Central

    Gibbs, Benjamin G.; Jarvis, Jonathan A.; Rossi, Giambattista

    2017-01-01

    Like many sports in adolescence, junior hockey is organized by age groups. Typically, players born after December 31st are placed in the subsequent age cohort and as a result, will have an age advantage over those players born closer to the end of the year. While this relative age effect (RAE) has been well-established in junior hockey and other professional sports, the long-term impact of this phenomenon is not well understood. Using roster data on North American National Hockey League (NHL) players from the 2008–2009 season to the 2015–2016 season, we document a RAE reversal—players born in the last quarter of the year (October-December) score more and command higher salaries than those born in the first quarter of the year. This reversal is even more pronounced among the NHL “elite.” We find that among players in the 90th percentile of scoring, those born in the last quarter of the year score about 9 more points per season than those born in the first quarter. Likewise, elite players in the 90th percentile of salary who are born in the last quarter of the year earn 51% more pay than players born at the start of the year. Surprisingly, compared to players at the lower end of the performance distribution, the RAE reversal is about three to four times greater among elite players. PMID:28806751

  10. Skin temperature, thermal comfort, sweating, clothing and activity of men sledging in Antarctica

    PubMed Central

    Budd, G. M.

    1966-01-01

    1. Three men were studied while dog-sledging 320 km in 12 days in Antarctica. Conventional Antarctic clothing (`sweaters and windproofs') was worn. Four hundred observations were made of medial thigh skin temperature, thermal comfort, sweating, clothing, activity and environmental conditions. 2. Work occupied an average of 11·0 hr/day and sleep 7·5 hr. Estimated daily energy expenditure averaged 5100 kcal (range 2740-6660 kcal). 3. Skin temperature fell on exposure to cold despite the clothing worn, but was not changed by the level of activity. Sweating, and thermal comfort, were directly related to both skin temperature and activity. 4. Inside the tent, the modal value of skin temperature was 33° C (range 27-36° C) and the men were comfortable in 94% of observations. 5. During the 9·2 hr/day spent outdoors the modal value of skin temperature was 27° C (range 18-33° C) and the men felt too cold (but did not shiver) in 11% (range 7-20%) of observations, suggesting that cold stress was not negligible. However, they also felt too hot in 20% of observations and were sweating in 23%. PMID:5914254

  11. A Hockey Night in Canada: An Imagined Conversation between Theorists

    ERIC Educational Resources Information Center

    Fogel, Curtis

    2010-01-01

    In this paper, various methodological issues surrounding the sociological study of sport are explored. Through an imagined dialogue between two graduate students at a hockey game, this work brings together three divergent approaches to social enquiry: Positivist Grounded Theory, Constructivist Grounded Theory, and Actor-Network Theory. This paper…

  12. Comparison of Dynamic Balance in Collegiate Field Hockey and Football Players Using Star Excursion Balance Test

    PubMed Central

    Bhat, Rashi; Moiz, Jamal Ali

    2013-01-01

    Purpose The preliminary study aimed to compare dynamic balance between collegiate athletes competing or training in football and hockey using star excursion balance test. Methods A total thirty university level players, football (n = 15) and field hockey (n = 15) were participated in the study. Dynamic balance was assessed by using star excursion balance test. The testing grid consists of 8 lines each 120 cm in length extending from a common point at 45° increments. The subjects were instructed to maintain a stable single leg stance with the test leg with shoes off and to reach for maximal distance with the other leg in each of the 8 directions. A pencil was used to point and read the distance to which each subject's foot reached. The normalized leg reach distances in each direction were summed for both limbs and the total sum of the mean of summed normalized distances of both limbs were calculated. Results There was no significant difference in all the directions of star excursion balance test scores in both the groups. Additionally, composite reach distances of both groups also found non-significant (P=0.5). However, the posterior (P=0.05) and lateral (P=0.03) normalized reach distances were significantly more in field hockey players. Conclusion Field hockey players and football players did not differ in terms of dynamic balance. PMID:24427482

  13. Comparison of dynamic balance in collegiate field hockey and football players using star excursion balance test.

    PubMed

    Bhat, Rashi; Moiz, Jamal Ali

    2013-09-01

    The preliminary study aimed to compare dynamic balance between collegiate athletes competing or training in football and hockey using star excursion balance test. A total thirty university level players, football (n = 15) and field hockey (n = 15) were participated in the study. Dynamic balance was assessed by using star excursion balance test. The testing grid consists of 8 lines each 120 cm in length extending from a common point at 45° increments. The subjects were instructed to maintain a stable single leg stance with the test leg with shoes off and to reach for maximal distance with the other leg in each of the 8 directions. A pencil was used to point and read the distance to which each subject's foot reached. The normalized leg reach distances in each direction were summed for both limbs and the total sum of the mean of summed normalized distances of both limbs were calculated. There was no significant difference in all the directions of star excursion balance test scores in both the groups. Additionally, composite reach distances of both groups also found non-significant (P=0.5). However, the posterior (P=0.05) and lateral (P=0.03) normalized reach distances were significantly more in field hockey players. Field hockey players and football players did not differ in terms of dynamic balance.

  14. Heart Rate and Energy Expenditure in Division I Field Hockey Players During Competitive Play.

    PubMed

    Sell, Katie M; Ledesma, Allison B

    2016-08-01

    Sell, KM and Ledesma, AB. Heart rate and energy expenditure in Division I field hockey players during competitive play. J Strength Cond Res 30(8): 2122-2128, 2016-The purpose of this study was to quantify energy expenditure and heart rate data for Division I female field hockey players during competitive play. Ten female Division I collegiate field hockey athletes (19.8 ± 1.6 years; 166.4 ± 6.1 cm; 58.2 ± 5.3 kg) completed the Yo-Yo intermittent endurance test to determine maximal heart rate. One week later, all subjects wore a heart rate monitor during a series of 3 matches in an off-season competition. Average heart rate (AvHR), average percentage of maximal heart rate (AvHR%), peak exercise heart rate (PExHR), and percentage of maximal heart rate (PExHR%), time spent in each of the predetermined heart rate zones, and caloric expenditure per minute of exercise (kcalM) were determined for all players. Differences between positions (backs, midfielders, and forwards) were assessed. No significant differences in AvHR, AvHR%, PExHR, PExHR%, and %TM were observed between playing positions. The AvHR% and PExHR% for each position fell into zones 4 (77-93% HRmax) and 5 (>93% HRmax), respectively, and significantly more time was spent in zone 4 compared with zones 1, 2, 3, and 5 across all players (p ≤ 0.05). The kcalM reflected very heavy intensity exercise. The results of this study will contribute toward understanding the sport-specific physiological demands of women's field hockey and has specific implications for the duration and schedule of training regimens.

  15. Score a Facilities Hat Trick: Strategic Goals for Successful Hiring, Training, and Team Commitment

    ERIC Educational Resources Information Center

    Loy, Darcy

    2012-01-01

    Granted, it might be a bit of a stretch to find comparable attributes between an ice hockey team and facilities management organizations. However, if you are open-minded to the possibility and begin to analyze each of these entities, you will find there are some distinct similarities. Ice hockey is a fast-paced and ever-changing game, much like a…

  16. Developmental contexts and sporting success: birth date and birthplace effects in national hockey league draftees 2000-2005.

    PubMed

    Baker, Joseph; Logan, A Jane

    2007-08-01

    To examine relative age and birth place effects in hockey players drafted to play in the National Hockey League (NHL) between 2000 and 2005 and determine whether these factors influenced when players were chosen in the draft. 1013 North American draftees were evaluated from the official NHL website, which provided birthplace, date of birth and selection order in the draft. Population size was collected from Canadian and American census information. Athletes were divided into four quartiles on the basis of selection date to define age cohorts in hockey. Data between the Canadian and American players were also compared to see if the optimal city sizes differed between the two nations. Relative age and birthplace effects were found, although the optimal city size found was dissimilar to that found in previous studies. Further, there were inconsistencies between the Canadian and American data. Contextual factors such as relative age and size of birthplace have a significant effect on likelihood of being selected in the NHL draft.

  17. Sports-related eye injuries: the current picture.

    PubMed

    Leivo, Tiina; Haavisto, Anna-Kaisa; Sahraravand, Ahmad

    2015-05-01

    This study aims to represent the epidemiologies, findings, treatments, use of resources, outcomes and protective-eyewear-use recommendations in sports-related eye injuries by sport type. The study population is comprised of all new eye injury patients in 1 year in Helsinki University Eye Hospital. Data were collected from patient questionnaires and hospital records. The follow-up period was 3 months. 149/1151 (12.9%) of eye injuries were sports-related. Thirty two percent were related to floorball (type of hockey played on a mat with a stick and a ball); football, tennis and ice hockey were the next most common eye-injury-causing sports. Relatively, the most dangerous sports were rink bandy, (bandy played on ice hockey rink with a stick and a ball) (0.50 injuries in 12 months/1000 participants, CI 0.10-1.46), floorball (0.47, CI 0.34-0.62) and tennis (0.47, CI 0.26-0.77). Contusion was the primary diagnosis in 77% of cases; 41% of contusion patients had severe, mainly retinal findings. The number of outpatient visits was 459; inpatient days 25 and major surgeries 31. One hundred and eight patients were estimated to need life-long follow-up. Seventeen patients had a permanent functional impairment, 4 in ice hockey, 3 in floorball, 2 each in tennis and badminton. Compared to a previous study, ice hockey eye injuries are increasing and relatively severe, and a third of these injuries occurred despite visor use. Floorball eye injury incidence has significantly declined, mainly due to recently enforced mandatory protective eyewear for younger age groups. Based on these findings, we recommend, in floorball, that protective eyewear should be mandatory in all age groups. Universally in ice hockey, the proper use of a visor should be emphasised. © 2015 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  18. Gluteus medius coactivation response in field hockey players with and without low back pain.

    PubMed

    Bussey, Melanie D; Kennedy, James E; Kennedy, Gavin

    2016-01-01

    To examine the effect of prolonged standing on gluteus medius coactivation and to observe whether the changes in gluteus medius coactivation over time were related to the development of low back pain in elite female field hockey players. Prospective cohort design. Participants were 39 elite female field hockey players (14 with a history of low back pain). Before the prolonged stand, maximal hip abduction strength, side bridge hold endurance and hip abduction range of motion were measured bilaterally. Surface electromyography was collected from the gluteus medius for coactivation analysis during a prolonged stand for 70 min. Low back pain was rated every 10 min on a visual analogue scale. Fourteen of 39 participants developed low back pain. The Time effect was significant for gluteus medius coactivation response (p = 0.003) and visual analogue scale score (p < 0.001). There were no significant group × time interactions. Yet athletes who developed pain had higher coactivation for the majority of the stand task. While female field hockey players have high agonist-antagonist coactivation patterns during prolonged standing, stand task is a useful tool to predict low back pain occurrence in players with and without history of pain. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Impact of visors on eye and orbital injuries in the National Hockey League.

    PubMed

    Micieli, Jonathan A; Zurakowski, David; Ahmed, Iqbal Ike K

    2014-06-01

    Eye and orbital injuries are a significant risk to professional hockey league players and have resulted in career-ending injuries. The goal of this study was to determine the incidence, value lost, mechanism, and effect of visors on eye and orbital injuries over the last 10 National Hockey League (NHL) seasons: 2002-2003 to 2012-2013. Retrospective case-control study. Participants were 8741 NHL players who had played at least 1 game during the last 10 seasons. Using The Sports Network (TSN), ProSportsTransactions, and the Sporting News Hockey Register, NHL players were searched to identify eye and orbital injuries. The mechanism of injury was obtained from media reports and direct observation from online videos. The number of players wearing visors each year was obtained from The Hockey News annual visor survey. A total of 149 eye or orbital injuries over the last 10 seasons resulted in an overall incidence of 2.48 per 10 000 athlete exposures. A total of 1120 missed games led to a lost financial value of more than $33 million. Visor use among players grew from 32% in 2002-2003 to 73% in 2012-2013, and there was a significantly increased risk for having an eye or orbital injury when a visor was not worn (OR 4.23, 95% CI 2.84-6.30). Most injuries were a result of being hit by a deflected or direct puck (37%) followed by being struck by a high stick (28%). Players who did not wear a visor were found to be involved in more fights, hits, and penalty minutes (p < 0.001). Eye and orbital injuries are mostly accidental in nature and represent a significant risk and cost to the NHL and its players. Eye and orbital injuries are significantly more likely in players who do not wear visors. Copyright © 2014 Canadian Ophthalmological Society. Published by Elsevier Inc. All rights reserved.

  20. Posterior approach for arthroscopic treatment of posterolateral impingement syndrome of the ankle in a top-level field hockey player.

    PubMed

    Lohrer, Heinz; Arentz, Sabine

    2004-04-01

    A case history of a 25-year-old field hockey player, a member of the German National Field Hockey Team, is presented. The patient could not remember any specific ankle injury, but since the World Indoor Championship in February 2003, he experienced significant but diffuse pain around the posterior ankle, especially while loading the forefoot in hockey training and competition. For 2 months, the patient was unable to run. Conservative treatment failed, and surgery was performed. Posterior ankle arthroscopy revealed a frayed posterior intermalleolar ligament and meniscoid-like scar tissue at the posterolateral ankle, indicating a posterolateral soft tissue ankle impingement syndrome. A concomitant inflammation of the posterolateral ankle and subtalar synovium was present. After arthroscopic resection and early functional aftertreatment, the patient returned to full high-level sports ability within 2 months.

  1. Chronic Traumatic Encephalopathy

    MedlinePlus

    ... trauma is likely the cause of CTE. Football players have been the focus of most CTE studies. However, athletes participating in other sports, including soccer, ice hockey, rugby, boxing, wrestling, basketball, field hockey, ...

  2. Ground reaction forces produced by two different hockey skating arm swing techniques.

    PubMed

    Hayward-Ellis, Julie; Alexander, Marion J L; Glazebrook, Cheryl M; Leiter, Jeff

    2017-10-01

    The arm swing in hockey skating can have a positive effect on the forces produced by each skate, and the resulting velocity from each push off. The main purpose of this study was to measure the differences in ground reaction forces (GRFs) produced from an anteroposterior versus a mediolateral style hockey skating arm swing. Twenty-four elite-level female hockey players performed each technique while standing on a ground-mounted force platform, and all trials were filmed using two video cameras. Force data was assessed for peak scaled GRFs in the frontal and sagittal planes, and resultant GRF magnitude and direction. Upper limb kinematics were assessed from the video using Dartfish video analysis software, confirming that the subjects successfully performed two distinct arm swing techniques. The mediolateral arm swing used a mean of 18.38° of glenohumeral flexion/extension and 183.68° of glenohumeral abduction/adduction while the anteroposterior technique used 214.17° and 28.97° respectively. The results of this study confirmed that the mediolateral arm swing produced 37% greater frontal plane and 33% less sagittal plane GRFs than the anteroposterior arm swing. The magnitudes of the resultant GRFs were not significantly different between the two techniques; however, the mediolateral technique produced a resultant GRF with a significantly larger angle from the direction of travel (44.44°) as compared to the anteroposterior technique (31.60°). The results of this study suggest that the direction of GRFs produced by the mediolateral arm swing more closely mimic the direction of lower limb propulsion during the skating stride.

  3. A faceoff with hazardous noise: Noise exposure and hearing threshold shifts of indoor hockey officials.

    PubMed

    Adams, Karin L; Brazile, William J

    2017-02-01

    Noise exposure and hearing thresholds of indoor hockey officials of the Western States Hockey League were measured to assess the impact of hockey game noise on hearing sensitivity. Twenty-nine hockey officials who officiated the league in an arena in southeastern Wyoming in October, November, and December 2014 participated in the study. Personal noise dosimetry was conducted to determine if officials were exposed to an equivalent sound pressure level greater than 85 dBA. Hearing thresholds were measured before and after hockey games to determine if a 10 dB or greater temporary threshold shift in hearing occurred. Pure-tone audiometry was conducted in both ears at 500, 1000, 2000, 3000, 4000, 6000, and 8000 Hz. All noise exposures were greater than 85 dBA, with a mean personal noise exposure level of 93 dBA (SD = 2.2), providing 17.7% (SD = 6.3) of the officials' daily noise dose according to the OSHA criteria. Hearing threshold shifts of 10 dB or greater were observed in 86.2% (25/29) of officials, with 36% (9/25) of those threshold shifts equaling 15 dB or greater. The largest proportion of hearing threshold shifts occurred at 4000 Hz, comprising 35.7% of right ear shifts and 31.8% of left ear shifts. The threshold shifts between the pre- and post-game audiometry were statistically significant in the left ear at 500 (p=.019), 2000 (p=.0009), 3000 (p<.0001) and 4000 Hz (p=.0002), and in the right ear at 2000 (p=.0001), 3000 (p=.0001) and 4000 Hz (p<.0001), based on Wilcoxon-ranked sum analysis. Although not statistically significant at alpha = 0.05, logistic regression indicated that with each increase of one dB of equivalent sound pressure measured from personal noise dosimetry, the odds of a ≥ 10 dB TTS were increased in the left ear at 500 (OR=1.33, 95% CI 0.73-2.45), 3000 (OR=1.02, 95% CI 0.68-1.51), 4000 (OR=1.26, 95% CI 0.93-1.71) and 8000 Hz (OR=1.22, 95% CI 0.76-1.94) and in the right ear at 6000 (OR=1.03, 95% CI 0.14-7.84) and 8000 Hz (OR=1.29, 95

  4. Hip Labral Tear

    MedlinePlus

    ... participate in such sports as ice hockey, soccer, football, golf and ballet are at higher risk of ... accidents or from playing contact sports such as football or hockey — can cause a hip labral tear. ...

  5. Cognitive and psychosocial function in retired professional hockey players.

    PubMed

    Esopenko, Carrie; Chow, Tiffany W; Tartaglia, Maria Carmela; Bacopulos, Agnes; Kumar, Priya; Binns, Malcolm A; Kennedy, James L; Müller, Daniel J; Levine, Brian

    2017-06-01

    The relationship between repeated concussions and neurodegenerative disease has received significant attention, particularly research in postmortem samples. Our objective was to characterise retired professional ice hockey players' cognitive and psychosocial functioning in relation to concussion exposure and apolipoprotein ε4 status. Alumni athletes (N=33, aged 34-71 years) and an age-matched sample of comparison participants (N=18) were administered measures of cognitive function and questionnaires concerning psychosocial and psychiatric functioning. No significant group differences were found on neuropsychological measures of speeded attention, verbal memory or visuospatial functions, nor were significant differences observed on computerised measures of response speed, inhibitory control and visuospatial problem solving. Reliable group differences in cognitive performance were observed on tests of executive and intellectual function; performance on these measures was associated with concussion exposure. Group differences were observed for cognitive, affective and behavioural impairment on psychosocial questionnaires and psychiatric diagnoses. There was no evidence of differential effects associated with age in the alumni athletes. Possession of an apolipoprotein ε4 allele was associated with increased endorsement of psychiatric complaints, but not with objective cognitive performance. We found only subtle objective cognitive impairment in alumni athletes in the context of high subjective complaints and psychiatric impairment. Apolipoprotein ε4 status related to psychiatric, but not cognitive status. These findings provide benchmarks for the degree of cognitive and behavioural impairment in retired professional athletes and a point of comparison for future neuroimaging and longitudinal studies. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  6. Heart Rate Response in Spectators of the Montreal Canadiens Hockey Team.

    PubMed

    Khairy, Leia T; Barin, Roxana; Demonière, Fabrice; Villemaire, Christine; Billo, Marie-Josée; Tardif, Jean-Claude; Macle, Laurent; Khairy, Paul

    2017-12-01

    To our knowledge, heart rate responses have not previously been assessed in hockey fans. We quantified heart rate increases in spectators of the Montreal Canadiens, compared televised with live games, explored features associated with peak heart rates, and assessed whether increases correlate with a fan passion score. Healthy adults were enrolled, with half attending live games and half viewing televised games. All subjects completed questionnaires and had continuous Holter monitoring. Intensity of the physical stress response was defined according to previously published heart rate index thresholds as mild (< 1.33), moderate (1.33-1.83), or vigorous (> 1.83). In 20 participants, 35% women, age 46 ± 10 years, the heart rate increased by a median of 92% during the hockey game, from 60 (interquartile range, 54-65) beats per minute at rest to 114 (interquartile range, 103-129) beats per minute (P < 0.001). The heart rate increased by 110% vs 75% during live vs televised games (P < 0.001). Heart rate index (2.16 ± 0.27 vs 1.73 ± 0.15; P < 0.001) and percent maximum predicted heart rate attained (75% ± 8% vs 58% ± 7%; P < 0.001) were significantly higher during live vs televised games. Number of premature beats was nonsignificantly higher during live games (5 vs 1; P = 0.181). The fan passion score was not predictive of the heart rate response (P = 0.753). Peak heart rates most commonly occurred during overtime (40%) and scoring opportunities for (25%) and against (15%). It is exciting to watch the Montreal Canadiens! Viewing a live hockey game is associated with a heart rate response equivalent to vigorous physical stress and a televised game to moderate physical stress. Copyright © 2017 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.

  7. Effect of sewage sledge and their bio-char on some soil qualities in Second year cropping

    NASA Astrophysics Data System (ADS)

    fathi dokht, hamed; Movahedi Naeini, Seyed Alireza; Dordipor, Esmaeil; mirzanejad, moujan

    2016-04-01

    Bio char (BC) application as a soil amendment has achieved much interest and has been found that considerably improves soil nutrient status and crop yields on poor soils. However, information on the effect of BC on illitic soils in temperate climates is still insufficient. The primary objective in this study was to assess the influence of sewage sledge and their bio-char on the soil physical properties, nutrient status and plant production in Second year cropping. The result may also provide a reference for the use of biochars as a solution in agricultural waste management when sludge with considerable load of pathogens are involved. Soybean was already grown one year and will be repeated one more year with same treatments. The investigated soil properties included soil water content and mechanical resistance, pH, electrical conductivity (EC), calcium- acetate-lactate (CAL)-extractable P (PCAL) and K (KCAL), C, N, and nitrogen-supplying potential (NSP). The results show soil water content, potassium uptake and plant yield were increased. Heating sludge removed all pathogens and soybean yield was increased by 7%.

  8. Y-Balance Test Performance Following a Competitive Field Hockey Season: A Pretest-Posttest Study.

    PubMed

    Hoch, Matthew C; Welsch, Lauren A; Hartley, Emily M; Powden, Cameron J; Hoch, Johanna M

    2017-05-22

    The Y-Balance Test (YBT) is a dynamic balance assessment used as a preseason musculoskeletal screen to determine injury risk. While the YBT has demonstrated excellent test-retest reliability, it is unknown if YBT performance changes following participation in a competitive athletic season. Determine if a competitive athletic season affects YBT performance in field hockey players. Pretest-posttest. Laboratory. Twenty NCAA Division I women's field hockey players (age=19.55±1.30 years; height=165.10±5.277cm; mass=62.62±4.64kg) from a single team volunteered. Participants had to be free from injury throughout the entire study and participate in all athletic activities. Participants completed data collection sessions prior to (preseason) and following the athletic season (postseason). Between data collections, participants competed in the fall competitive field hockey season, which was ~3 months in duration. During data collection, participants completed the YBT bilaterally. The independent variable was time (preseason, postseason) and the dependent variables were normalized reach distances (anterior, posteromedial, posterolateral, composite) and between-limb symmetry for each reach direction. Differences between preseason and postseason were examined using paired t-tests (p≤0.05) as well as Bland-Altman limits of agreement. Four players sustained a lower extremity injury during the season and were excluded from analysis. There were no significant differences between preseason and postseason reach distances for any reach directions on either limb (p≥0.31) or in the between-limb symmetries (p≥0.52). The limits of agreement analyses determined there was a low mean bias across measurements (≤1.67%); however, the 95% confidence intervals indicated there was high variability within the posterior reach directions over time (±4.75-±14.83%). No changes in YBT performance were identified following a competitive field hockey season in Division I female athletes

  9. Sports Institute for Research/Change Agent Research (SIR/CAR) Windsor Minor Hockey.

    ERIC Educational Resources Information Center

    Moriarty, Dick; Duthie, James

    This organizational analysis of Windsor minor hockey was conducted as a pilot study into the policy decision making process in a sports organization. The study was divided into three phases. In the first phase the organization was audited and provided with information about various feedback channels. In phase two observations, available…

  10. Pre-game perceived wellness highly associates with match running performances during an international field hockey tournament.

    PubMed

    Ihsan, Mohammed; Tan, Frankie; Sahrom, Sofyan; Choo, Hui Cheng; Chia, Michael; Aziz, Abdul Rashid

    2017-06-01

    This study examined the associations between pre-game wellness and changes in match running performance normalised to either (i) playing time, (ii) post-match RPE or (iii) both playing time and post-match RPE, over the course of a field hockey tournament. Twelve male hockey players were equipped with global positioning system (GPS) units while competing in an international tournament (six matches over 9 days). The following GPS-derived variables, total distance (TD), low-intensity activity (LIA; <15 km/h), high-intensity running (HIR; >15 km/h), high-intensity accelerations (HIACC; >2 m/s 2 ) and decelerations (HIDEC; >-2 m/s 2 ) were acquired and normalised to either (i) playing time, (ii) post-match RPE or (iii) both playing time and post-match RPE. Each morning, players completed ratings on a 0-10 scale for four variables: fatigue, muscle soreness, mood state and sleep quality, with cumulative scores determined as wellness. Associations between match performances and wellness were analysed using Pearson's correlation coefficient. Combined time and RPE normalisation demonstrated the largest associations with Δwellness compared with time or RPE alone for most variables; TD (r = -0.95; -1.00 to -0.82, p = .004), HIR (r = -0.95; -1.00 to -0.83, p = .003), LIA (r = -0.94; -1.00 to -0.81, p = .026), HIACC (r = -0.87; -1.00 to -0.66, p = .004) and HIDEC (r = -0.90; -0.99 to -0.74, p = .008). These findings support the use of wellness measures as a pre-match tool to assist with managing internal load over the course of a field hockey tournament. Highlights Fixtures during international field hockey tournaments are typically congested and impose high physiological demands on an athlete. To minimise decrements in running performance over the course of a tournament, measures to identify players who have sustained high internal loads are logically warranted. The present study examined the association between changes in

  11. Pond Hockey on Whitmore Lacus: the Formation of Ponds and Ethane Ice Deposits Following Storm Events on Titan

    NASA Astrophysics Data System (ADS)

    Steckloff, Jordan; Soderblom, Jason M.

    2017-10-01

    Cassini ISS observations reveled regions, later identified as topographic low spots (Soderblom et al. 2014, DPS) on Saturn’s moon Titan become significantly darker (lower albedo) following storm events (Turtle et al. 2009, GRL; 2011, Science), suggesting pools of liquid hydrocarbon mixtures (predominantly methane-ethane-nitrogen). However, these dark ponds then significantly brighten (higher albedo relative to pre-storm albedo), before fading to their pre-storm albedos (Barnes et al. 2013 Planet. Sci; Soderblom et al. 2014, DPS). We interpret these data to be the result of ethane ice formation, which cools from evaporation of methane. The formation of ethane ices results from a unique sequence of thermophysical processes. Initially, the methane in the ternary mixture evaporates, cooling the pond. Nitrogen, dissolved primarily in the methane, exsolves, further cooling the liquid. However, because nitrogen is significantly more soluble in cooler methane-hydrocarbon mixtures, the relative concentration of nitrogen in the solution increases as it cools. This increased nitrogen fraction increases the density of the pond, as nitrogen is significantly more dense thane methane or ethane (pure ethane’s density is intermediate to that of methane and nitrogen). At around ~85 K the mixture is as dense as pure liquid ethane. Thus, further evaporative methane loss and cooling at the pond’s surface leads to a chemical stratification, with an increasingly ethane rich epilimnion (surface layer) overlying a methane rich hypolimnion (subsurface layer). Further evaporation of methane from the ethane-rich epilimnion drives its temperature and composition toward the methane-ethane-nitrogen liquidus curve, causing pure ethane ice to precipitate out of solution and settle to the bottom of the pool. This settling would obscure the ethane ice from Cassini VIMS and ISS, which would instead continue to appear as a dark pond on the surface. As the ethane precipitates out completely, a

  12. Composition and abundance of epibenthic-sledge catches in the South Polar Front of the Atlantic

    NASA Astrophysics Data System (ADS)

    Brandt, A.; Havermans, C.; Janussen, D.; Jörger, K. M.; Meyer-Löbbecke, A.; Schnurr, S.; Schüller, M.; Schwabe, E.; Brandão, S. N.; Würzberg, L.

    2014-10-01

    An epibenthic sledge (EBS) was deployed at seven different deep-sea stations along the South Polar Front of the Atlantic in order to explore the composition and abundance of macrofaunal organisms and to identify the most abundant taxa in this transition zone to the Southern Ocean. In total 3,130 specimens were sampled by means of the EBS on board of RV Polarstern during the expedition ANT-XXVIII/3 in the austral summer of 2012. Benthic and suprabenthic Crustacea occurred to be most frequent in the samples. Among those, copepods were by far most numerous, with 1,585 specimens followed by the peracarid taxa Isopoda (236 ind.), Amphipoda (103 ind.), Tanaidacea (78 ind.) and Cumacea (50 ind.). Annelida were represented by a high number of specimens belonging to different polychaete taxa (404 ind.). The molluscan fauna was clearly dominated by Bivalvia (255 ind.), followed in numbers of specimens by Gastropoda (47 ind.). The deep-sea benthos sampled along the Southern Polar Front occurred in surprisingly low abundances, contrasting the largely high surface productivity of the area. Numbers of specimens across different macrofaunal taxa and especially of peracarid crustaceans underscored by far those from South Ocean sites at higher latitudes in the Weddell Sea.

  13. Incidence and body location of reported acute sport injuries in seven sports using a national insurance database.

    PubMed

    Åman, M; Forssblad, M; Larsén, K

    2018-03-01

    Sports with high numbers of athletes and acute injuries are an important target for preventive actions at a national level. Both for the health of the athlete and to reduce costs associated with injury. The aim of this study was to identify injuries where injury prevention should focus, in order to have major impact on decreasing acute injury rates at a national level. All athletes in the seven investigated sport federations (automobile sports, basketball, floorball, football (soccer), handball, ice hockey, and motor sports) were insured by the same insurance company. Using this insurance database, the incidence and proportion of acute injuries, and injuries leading to permanent medical impairment (PMI), at each body location, was calculated. Comparisons were made between sports, sex, and age. In total, there were 84 754 registered injuries during the study period (year 2006-2013). Athletes in team sports, except in male ice hockey, had the highest risk to sustain an injury and PMI in the lower limb. Females had higher risk of injury and PMI in the lower limb compared to males, in all sports except in ice hockey. This study recommends that injury prevention at national level should particularly focus on lower limb injuries. In ice hockey and motor sports, head/neck and upper limb injuries also need attention. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. The Impact of a Sports Vision Training Program in Youth Field Hockey Players

    PubMed Central

    Schwab, Sebastian; Memmert, Daniel

    2012-01-01

    The aim of this study was to investigate whether a sports vision training program improves the visual performance of youth male field hockey players, ages 12 to 16 years, after an intervention of six weeks compared to a control group with no specific sports vision training. The choice reaction time task at the D2 board (Learning Task I), the functional field of view task (Learning Task II) and the multiple object tracking (MOT) task (Transfer Task) were assessed before and after the intervention and again six weeks after the second test. Analyzes showed significant differences between the two groups for the choice reaction time task at the D2 board and the functional field of view task, with significant improvements for the intervention group and none for the control group. For the transfer task, we could not find statistically significant improvements for either group. The results of this study are discussed in terms of theoretical and practical implications. Key pointsPerceptual training with youth field hockey playersCan a sports vision training program improve the visual performance of youth male field hockey players, ages 12 to 16 years, after an intervention of six weeks compared to a control group with no specific sports vision training?The intervention was performed in the “VisuLab” as DynamicEye® SportsVision Training at the German Sport University Cologne.We ran a series of 3 two-factor univariate analysis of variance (ANOVA) with repeated measures on both within subject independent variables (group; measuring point) to examine the effects on central perception, peripheral perception and choice reaction time.The present study shows an improvement of certain visual abilities with the help of the sports vision training program. PMID:24150071

  15. Safety in Team Sports. Sports Safety Series, Monograph No. 3.

    ERIC Educational Resources Information Center

    Borozne, Joseph, Ed.; And Others

    This monograph examines methods of promoting safe practices in the conduct of selected team sports with the aim of reducing and eliminating the occurrance of injuries. The team sports discussed are baseball and softball, basketball, field hockey, tackle football, touch and flag football, ice hockey, lacrosse, and soccer. (MJB)

  16. Trajectories of Affective States in Adolescent Hockey Players: Turning Point and Motivational Antecedents

    ERIC Educational Resources Information Center

    Gaudreau, Patrick; Amiot, Catherine E.; Vallerand, Robert J.

    2009-01-01

    This study examined longitudinal trajectories of positive and negative affective states with a sample of 265 adolescent elite hockey players followed across 3 measurement points during the 1st 11 weeks of a season. Latent class growth modeling, incorporating a time-varying covariate and a series of predictors assessed at the onset of the season,…

  17. An Examination of the Relative Age Effect in Developmental Girls' Hockey in Ontario

    ERIC Educational Resources Information Center

    Smith, Kristy L.; Weir, Patricia L.

    2013-01-01

    The relative age effect (RAE) suggests that athletes may be provided with greater opportunities for success depending on the position of their birthdate in a sport's selection year. While the effect has been well established in men's sports, less is known about women's sports. This study examined the RAE in developmental girls' hockey in Ontario.…

  18. Effect of increasing maximal aerobic exercise on serum muscles enzymes in professional field hockey players.

    PubMed

    Hazar, Muhsin; Otag, Aynur; Otag, Ilhan; Sezen, Mehmet; Sever, Ozan

    2014-11-04

    Exercise results in oxidative enzyme increase and micro-injuries in skeletal muscles. The aim of this study was to investigate the effect of maximal aerobic exercise on serum muscle enzymes in professional field hockey players. This study aims to determine the effect of increasing maximal aerobic exercise on creatine kinase (CK), creatine kinase-MB (CK-MB), aspartate aminotransferase (AST) and alanine aminotransferase (ALT) serum levels. 31 young professional field hockey players (13 female and 18 male players) volunteered for this study. All participants underwent the shuttle run test. Blood samples were taken from each participant before the shuttle run test. Post test blood samples were taken immediately after exercise and one hour after respectively. Pre and post test CK, CK-MB, AST and ALT values were measured by means of auto analyzer using original kits. The acute post test measure of the CK level increased in male (p=0.002) and female (p=0.00) sportsmen. CK-MB values obtained one hour after the exercise was lower than those before the exercise in males (p=0.02). In females (p=0.017) and males (p=0.05) AST activity significantly increased immediately after exercise and decreased to resting activity 1 h recovery. ALT significantly increased immediately after exercise in female (p=0.03) and male (p=0.00) athletes and after 1 h recovery ALT activities decreased below resting values. The timing and severity of exercise used in our study increased CK values, decreased CK-MB values and AST, ALT values increased in female and male field hockey players.

  19. Nontraditional Games in a Foreign Environment.

    ERIC Educational Resources Information Center

    Cross, Thomas S.

    A study investigated students' reactions to the addition of nontraditional games (played in and traditional to another country) to the physical education curriculum. Seventh grade students in Australia were introduced to game development, skills, and present status of two sports, 'Midget' Hockey, a modified version of Canadian ice hockey, and…

  20. Scheduling for the National Hockey League Using a Multi-objective Evolutionary Algorithm

    NASA Astrophysics Data System (ADS)

    Craig, Sam; While, Lyndon; Barone, Luigi

    We describe a multi-objective evolutionary algorithm that derives schedules for the National Hockey League according to three objectives: minimising the teams' total travel, promoting equity in rest time between games, and minimising long streaks of home or away games. Experiments show that the system is able to derive schedules that beat the 2008-9 NHL schedule in all objectives simultaneously, and that it returns a set of schedules that offer a range of trade-offs across the objectives.

  1. Martian polar expeditions: problems and solutions.

    PubMed

    Cockell, C S

    2001-12-01

    The Martian polar ice caps are regions of substantial scientific interest, being the most dynamic regions of Mars. They are volatile sinks and thus closely linked to Martian climatic conditions. Because of their scale and the precedent set by the past history of polar exploration on Earth, it is likely that an age of polar exploration will emerge on the surface of Mars after the establishment of a capable support structure at lower latitudes. Expeditions might be launched either from a lower latitude base camp or from a human-tended polar base. Based on previously presented expeditionary routes to the Martian poles, in this paper a "spiral in-spiral out" unsupported transpolar assault on the Martian north geographical pole is used as a Reference expedition to propose new types of equipment for the human polar exploration of Mars. Martian polar "ball" tents and "hover" modifications to the Nansen sledge for sledging on CO2-containing water ice substrates under low atmospheric pressures are suggested as elements for the success of these endeavours. Other challenges faced by these expeditions are quantitatively and qualitatively addressed. c 2001 Elsevier Science Ltd. All rights reserved.

  2. Practicing Field Hockey Skills Along the Contextual Interference Continuum: A Comparison of Five Practice Schedules

    PubMed Central

    Cheong, Jadeera Phaik Geok; Lay, Brendan; Grove, J. Robert; Medic, Nikola; Razman, Rizal

    2012-01-01

    To overcome the weakness of the contextual interference (CI) effect within applied settings, Brady, 2008 recommended that the amount of interference be manipulated. This study investigated the effect of five practice schedules on the learning of three field hockey skills. Fifty-five pre-university students performed a total of 90 trials for each skill under blocked, mixed or random practice orders. Results showed a significant time effect with all five practice conditions leading to improvements in acquisition and learning of the skills. No significant differences were found between the groups. The findings of the present study did not support the CI effect and suggest that either blocked, mixed, or random practice schedules can be used effectively when structuring practice for beginners. Key pointsThe contextual interference effect did not surface when using sport skills.There appears to be no difference between blocked and random practice schedules in the learning of field hockey skills.Low (blocked), moderate (mixed) or high (random) interference practice schedules can be used effectively when conducting a multiple skill practice session for beginners. PMID:24149204

  3. Practicing field hockey skills along the contextual interference continuum: a comparison of five practice schedules.

    PubMed

    Cheong, Jadeera Phaik Geok; Lay, Brendan; Grove, J Robert; Medic, Nikola; Razman, Rizal

    2012-01-01

    To overcome the weakness of the contextual interference (CI) effect within applied settings, Brady, 2008 recommended that the amount of interference be manipulated. This study investigated the effect of five practice schedules on the learning of three field hockey skills. Fifty-five pre-university students performed a total of 90 trials for each skill under blocked, mixed or random practice orders. Results showed a significant time effect with all five practice conditions leading to improvements in acquisition and learning of the skills. No significant differences were found between the groups. The findings of the present study did not support the CI effect and suggest that either blocked, mixed, or random practice schedules can be used effectively when structuring practice for beginners. Key pointsThe contextual interference effect did not surface when using sport skills.There appears to be no difference between blocked and random practice schedules in the learning of field hockey skills.Low (blocked), moderate (mixed) or high (random) interference practice schedules can be used effectively when conducting a multiple skill practice session for beginners.

  4. Experiential Learning in the Introductory Class: The Role of Minor League Hockey in Teaching Social Psychology

    ERIC Educational Resources Information Center

    Forrest, Krista D.

    2005-01-01

    To convince my students they are surrounded by social psychology, we attended a minor league hockey game. During the next class period I asked students to write a brief paragraph about their experiences. From those paragraphs I chose four reoccurring themes to analyze from a social psychological perspective. My introductory classes and I benefited…

  5. Multidisciplinary approach to non-surgical management of inguinal disruption in a professional hockey player treated with platelet-rich plasma, manual therapy and exercise: a case report

    PubMed Central

    St-Onge, Eric; MacIntyre, Ian G.; Galea, Anthony M.

    2015-01-01

    Objective: To present the clinical management of inguinal disruption in a professional hockey player and highlight the importance of a multidisciplinary approach to diagnosis and management. Clinical Features: A professional hockey player with recurrent groin pain presented to the clinic after an acute exacerbation of pain while playing hockey. Intervention: The patient received a clinical diagnosis of inguinal disruption. Imaging revealed a tear in the rectus abdominis. Management included two platelet-rich plasma (PRP) injections to the injured tissue, and subsequent manual therapy and exercise. The patient returned to his prior level of performance in 3.5 weeks. Discussion: This case demonstrated the importance of a multidisciplinary team and the need for advanced imaging in athletes with groin pain. Summary: Research quality concerning the non-surgical management of inguinal disruption remains low. This case adds evidence that PRP, with the addition of manual therapy and exercise may serve as a relatively quick and effective non-surgical management strategy. PMID:26816415

  6. Multidisciplinary approach to non-surgical management of inguinal disruption in a professional hockey player treated with platelet-rich plasma, manual therapy and exercise: a case report.

    PubMed

    St-Onge, Eric; MacIntyre, Ian G; Galea, Anthony M

    2015-12-01

    To present the clinical management of inguinal disruption in a professional hockey player and highlight the importance of a multidisciplinary approach to diagnosis and management. A professional hockey player with recurrent groin pain presented to the clinic after an acute exacerbation of pain while playing hockey. The patient received a clinical diagnosis of inguinal disruption. Imaging revealed a tear in the rectus abdominis. Management included two platelet-rich plasma (PRP) injections to the injured tissue, and subsequent manual therapy and exercise. The patient returned to his prior level of performance in 3.5 weeks. This case demonstrated the importance of a multidisciplinary team and the need for advanced imaging in athletes with groin pain. Research quality concerning the non-surgical management of inguinal disruption remains low. This case adds evidence that PRP, with the addition of manual therapy and exercise may serve as a relatively quick and effective non-surgical management strategy.

  7. Multiparametric MRI changes persist beyond recovery in concussed adolescent hockey players.

    PubMed

    Manning, Kathryn Y; Schranz, Amy; Bartha, Robert; Dekaban, Gregory A; Barreira, Christy; Brown, Arthur; Fischer, Lisa; Asem, Kevin; Doherty, Timothy J; Fraser, Douglas D; Holmes, Jeff; Menon, Ravi S

    2017-11-21

    To determine whether multiparametric MRI data can provide insight into the acute and long-lasting neuronal sequelae after a concussion in adolescent athletes. Players were recruited from Bantam hockey leagues in which body checking is first introduced (male, age 11-14 years). Clinical measures, diffusion metrics, resting-state network and region-to-region functional connectivity patterns, and magnetic resonance spectroscopy absolute metabolite concentrations were analyzed from an independent, age-matched control group of hockey players (n = 26) and longitudinally in concussed athletes within 24 to 72 hours (n = 17) and 3 months (n = 14) after a diagnosed concussion. There were diffusion abnormalities within multiple white matter tracts, functional hyperconnectivity, and decreases in choline 3 months after concussion. Tract-specific spatial statistics revealed a large region along the superior longitudinal fasciculus with the largest decreases in diffusivity measures, which significantly correlated with clinical deficits. This region also spatially intersected with probabilistic tracts connecting cortical regions where we found acute functional connectivity changes. Hyperconnectivity patterns at 3 months after concussion were present only in players with relatively less severe clinical outcomes, higher choline concentrations, and diffusivity indicative of relatively less axonal disruption. Changes persisted well after players' clinical scores had returned to normal and they had been cleared to return to play. Ongoing white matter maturation may make adolescent athletes particularly vulnerable to brain injury, and they may require extended recovery periods. The consequences of early brain injury for ongoing brain development and risk of more serious conditions such as second impact syndrome or neural degenerative processes need to be elucidated. Copyright © 2017 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.

  8. Multiparametric MRI changes persist beyond recovery in concussed adolescent hockey players

    PubMed Central

    Manning, Kathryn Y.; Schranz, Amy; Bartha, Robert; Dekaban, Gregory A.; Barreira, Christy; Brown, Arthur; Fischer, Lisa; Asem, Kevin; Doherty, Timothy J.; Fraser, Douglas D.; Holmes, Jeff

    2017-01-01

    Objective: To determine whether multiparametric MRI data can provide insight into the acute and long-lasting neuronal sequelae after a concussion in adolescent athletes. Methods: Players were recruited from Bantam hockey leagues in which body checking is first introduced (male, age 11–14 years). Clinical measures, diffusion metrics, resting-state network and region-to-region functional connectivity patterns, and magnetic resonance spectroscopy absolute metabolite concentrations were analyzed from an independent, age-matched control group of hockey players (n = 26) and longitudinally in concussed athletes within 24 to 72 hours (n = 17) and 3 months (n = 14) after a diagnosed concussion. Results: There were diffusion abnormalities within multiple white matter tracts, functional hyperconnectivity, and decreases in choline 3 months after concussion. Tract-specific spatial statistics revealed a large region along the superior longitudinal fasciculus with the largest decreases in diffusivity measures, which significantly correlated with clinical deficits. This region also spatially intersected with probabilistic tracts connecting cortical regions where we found acute functional connectivity changes. Hyperconnectivity patterns at 3 months after concussion were present only in players with relatively less severe clinical outcomes, higher choline concentrations, and diffusivity indicative of relatively less axonal disruption. Conclusions: Changes persisted well after players' clinical scores had returned to normal and they had been cleared to return to play. Ongoing white matter maturation may make adolescent athletes particularly vulnerable to brain injury, and they may require extended recovery periods. The consequences of early brain injury for ongoing brain development and risk of more serious conditions such as second impact syndrome or neural degenerative processes need to be elucidated. PMID:29070666

  9. The Control of Externalities in Sports Leagues: An Analysis of Restrictions in the National Hockey League

    ERIC Educational Resources Information Center

    Carlton, Dennis W.; Frankel, Alan S.; Landes, Elisabeth M.

    2004-01-01

    This paper provides one of the few successful demonstrations of the efficiency of certain types of restrictions in the context of a joint venture. The joint venture we examine is the National Hockey League (NHL) in the 1980s, which was then composed of 21 separately owned teams. (It now has 30 teams.) The restriction we analyze is the NHL rule on…

  10. NON-SURGICAL TREATMENT OF A PROFESSIONAL HOCKEY PLAYER WITH THE SIGNS AND SYMPTOMS OF SPORTS HERNIA: A CASE REPORT

    PubMed Central

    Woodward, J. Scott; Parker, Andrew; MacDonald, Robert M.

    2012-01-01

    Study Design: Case Report Background: Injury or weakness of lower abdominal attachments and the posterior inguinal wall can be symptoms of a “sports hernia” and an underlying source of groin pain. Although several authors note conservative treatment as the initial step in the management of this condition, very little has been written on the specific description of non-surgical measures. Most published articles favoring operative care describe poor results related to conservative management; however they fail to report what treatment techniques comprise non-operative management. Case Presentation: The subject of this case report is a professional ice hockey player who sustained an abdominal injury in a game, which was diagnosed as a sports hernia. Following the injury, structured conservative treatment emphasized core control and stability with progressive peripheral demand challenges. Intrinsic core control emphasis continued throughout the treatment progression and during the functional training prior to return to sport. Outcome: The player completed his recovery with return to full competition seven weeks post injury, and continues to compete in the NHL seven years later. Discussion: Surgical intervention has been shown to be effective in the treatment of the “sports hernia.” However it is the authors' opinion that conservative care emphasizing evaluation of intrinsic core muscular deficits and rehabilitation directed at addressing these deficits is an appropriate option, and should be considered prior to surgical intervention. PMID:22319682

  11. Evaluation of a Hockey Deceased Organ Donation Awareness Campaign: A Population-Based Cohort Study

    PubMed Central

    Naylor, Kyla L.; McKenzie, Susan; Cherry, Cindy; McArthur, Eric; Li, Alvin H.; McCallum, Megan K.; Kim, S. Joseph; Prakash, Versha; Knoll, Gregory A.; Garg, Amit X.

    2017-01-01

    Background: The Kidney Foundation of Canada developed a pilot campaign to educate persons attending junior hockey league games in London, Ontario, Canada, on deceased organ donation. Objective: To evaluate the impact of a hockey campaign on the number of new organ and tissue donor registrants. Design: Population-based retrospective cohort study. Setting: Residents of London, Ontario. Patients: We included 255 476 individuals eligible to register for organ donation with a London, Ontario postal code. Measurements: We compared the number of new deceased organ donor registrants in London, Ontario, during the campaign period (March 12 to April 16, 2015) with 3 different time periods (December 30, 2014 to February 3, 2015; February 4 to March 11, 2015; April 17 to May 22, 2015). We also compared registration rates in London with 2 Ontario cities (Kitchener-Waterloo and Hamilton) matching in a 1:1 ratio on age, sex, and income quintile. Methods: To compare registrations across time periods, we used binomial regression with an identity link function and generalized estimating equations with an independence correlation structure. We used modified Poisson regression to compare registration rates between cities. Results: During the campaign period, there were slightly more registrations (1218 registered of 252 832 unregistered individuals [0.48%]) compared with an earlier time period (risk difference: 0.09%; 95% confidence interval [CI]: 0.05%-0.12%). However, there was no significant difference compared with 2 time periods immediately before and after the campaign. London had slightly more registrations during the campaign period compared with the matched city of Hamilton (1180 registered of 236 582 unregistered individuals [0.50%] vs 490 registered of 236 582 unregistered individuals [0.21%]; risk ratio: 2.41; 95% CI: 2.17-2.68). The registration rate in London did not significantly differ from Kitchener-Waterloo. Limitations: Unable to conclude whether the minor increase

  12. Bone mineral density and body composition of the United States Olympic women's field hockey team

    PubMed Central

    Sparling, P. B.; Snow, T. K.; Rosskopf, L. B.; O'Donnell, E. M.; Freedson, P. S.; Byrnes, W. C.

    1998-01-01

    OBJECTIVE: To evaluate total bone mineral density (BMD) and body composition (% fat) in world class women field hockey players, members of the 1996 United States Olympic team. METHODS: Whole body BMD (g/cm2) and relative body fatness (% fat) were assessed by dual energy x ray absorptiometry using a Lunar DPX-L unit with software version 1.3z. Body composition was also estimated by hydrostatic weighing and the sum of seven skinfolds. Results: Mean (SD) BMD was 1.253 (0.048) g/cm2 which is 113.2 (4.0)% of age and weight adjusted norms. Estimates of body composition from the three methods were similar (statistically non- significant): 16.1 (4.4)% fat from dual energy x ray absorptiometry, 17.6 (3.2)% from hydrostatic weighing, and 16.9 (2.6)% from the sum of seven skinfolds. Mean fat free mass was approximately 50 kg. CONCLUSIONS: The mean whole body BMD value for members of the 1996 United States Olympic women's field hockey team is one of the highest reported for any women's sports team. Moreover, the mean fat free mass per unit height was quite high and % fat was low. In this group of world class sportswomen, low % fat was not associated with low BMD. 




 PMID:9865404

  13. The relation between perceived parent-created sport climate and competitive male youth hockey players' good and poor sport behaviors.

    PubMed

    LaVoi, Nicole M; Stellino, Megan Babkes

    2008-09-01

    The authors examined achievement goal orientation (J. L. Duda & J. G. Nicholls, 1992), parental influence (M. L. Babkes & M. R. Weiss, 1999), and the parent-initiated motivational climate (S. A. White, 1996, 1998) in combination to broaden understanding of competitive male youth hockey players' (N = 259) perceptions of the parent-created sport climate and its relation to their self-reported good and poor sport behaviors (GPSB). Exploratory factor analysis revealed a multidimensional measure of GPSB. Multiple regression analyses indicated that athletes' GPSB were significantly predicted by different forms of parental influence. Canonical correlations revealed a complex picture of the contributions of goal orientation and the parent-created sport climate on boys' GPSB in youth hockey. Results expand knowledge of the influence that parents have in youth sport and emphasize the importance of understanding how children's interpretations of parental beliefs and behaviors affect their choices to engage in good and poor sport behaviors.

  14. The influence of social variables and moral disengagement on prosocial and antisocial behaviours in field hockey and netball.

    PubMed

    Boardley, Ian D; Kavussanu, Maria

    2009-06-01

    In this study, we examined: (a) the effects of perceived motivational climate and coaching character-building competency on prosocial and antisocial behaviours towards team-mates and opponents in field hockey and netball; (b) whether the effects of perceived character-building competency on sport behaviours are mediated by moral disengagement; and (c) whether these relationships are invariant across sport. Field hockey (n = 200) and netball (n = 179) players completed questionnaires assessing the aforementioned variables. Structural equation modelling indicated that mastery climate had positive effects on prosocial and negative effects on antisocial behaviour towards team-mates, while performance climate had a positive effect on antisocial behaviour towards team-mates. Perceived character-building competency had a positive effect on prosocial behaviour towards opponents and negative effects on the two antisocial behaviours; all of these effects were mediated by moral disengagement. No effect was found for prosocial behaviour towards team-mates. The model was largely invariant across sport. The findings aid our understanding of social influences on prosocial and antisocial behaviours in sport.

  15. “I Went to a Fight the Other Night and a Hockey Game Broke Out”

    PubMed Central

    Goldschmied, Nadav; Espindola, Samantha

    2013-01-01

    Background: The current study explored the relationship between fighting behavior and passage of time, across games and seasons, in an attempt to assess if violent behavior in hockey is impulsive or intentional. Hypothesis: Before engaging in fighting behavior, players assess the utility of their actions and thus will fight less when the game is on the line (third period) and when champions are crowned (postseason). Methods: An archival exploration utilizing open access databases from multiple Internet sources. Results: During the 2010-2011 National Hockey League (NHL) season, players were significantly less likely to be involved in a fight as the game was coming to a close than in its early stages. In addition, data from the past 10 NHL seasons showed that players were significantly more violent in preseason games than during the regular season. They were also least likely to be involved in a fight during the postseason. Conclusion: The converging evidence suggests that players take into account the penalties associated with fighting and are less likely to engage in violence when the stakes are high, such as at the end of a game or a season. This implies, in turn, that major acts of aggression in the league are more likely to be calculated rather than impulsive. The findings suggest that a more punitive system should diminish fighting behavior markedly. PMID:24427418

  16. Four weeks of training in a sledge jump system improved the jump pattern to almost natural reactive jumps.

    PubMed

    Kramer, Andreas; Ritzmann, Ramona; Gruber, Markus; Gollhofer, Albert

    2012-01-01

    In spite of extensive training regimens during long-term space missions with existing training devices, astronauts suffer from muscle and bone loss. It has been suggested that reactive jumps inducing high forces in the muscles-consequently exposing the bones to high strains-help to counteract these degradations. In a previous study, a new sledge jump system (SJS) was found to allow fairly natural reactive jumps. The aim of the present study was to evaluate if training in the SJS would further reduce the differences between jumps in the SJS and normal jumps, particularly with respect to ground reaction forces (GRF) and rate of force development (RFD). Sixteen participants in a training group (TG) and 16 in a control group (CON) were tested before and after the TGs four-week hopping training in the SJS. During the tests, kinetic, kinematic and electromyographic data were compared between hops on the ground and in the SJS. After the training period, the GRF, the RFD and the leg stiffness in the SJS significantly increased for the TG (but not for CON) by 10, 35 and 38%, respectively. The kinematic and electromyographic data showed no significant changes. A short training regimen in the SJS reduced the differences between jumps in the SJS and normal jumps. Considering that a natural movement that exposes the muscles and thus also the bones to high loads is regarded as important for the preservation of muscle and bone, the SJS seems to be a promising countermeasure.

  17. Maximal anaerobic power in Indian national hockey players.

    PubMed Central

    Bhanot, J. L.; Sidhu, L. S.

    1983-01-01

    Anaerobic power in relation to field position of 90 Indian hockey players has been studied. These players included 10 goalkeepers, 16 backs, 20 half-backs and 44 forwards. The goalkeepers possess maximum and forwards possess minimum anaerobic power while in vertical velocity, the former are the fastest and the latter are the slowest. In body weight the backs are heaviest followed by half-backs, goalkeepers and forwards. Among backs, the lefts are heavier, faster and have more anaerobic power than rights. In half-line players, the centre-half-backs are followed by left-half-backs and right-half-backs both in body weight and anaerobic power, while in vertical velocity, the left-half-backs are the fastest and centre-half-backs are the slowest. Among forwards, the centre-forwards are heaviest with maximum anaerobic power and are followed by inside-forwards and outside-forwards, whereas, in vertical velocity the inside-forwards are fastest followed by centre-forwards and outside-forwards. Images p34-a p34-b PMID:6850203

  18. Alpine Skiing in the Classroom

    ERIC Educational Resources Information Center

    Mendez-Gimenez, Antonio; Fernandez-Rio, Javier

    2012-01-01

    Many students settle indoors in the winter. However, this does not mean that winter should be a period of time with no physical activity. Several snow activities could be practiced during those months, such as ice-skating, ice-hockey, snowshoeing, cross-country skiing, alpine skiing, or snowboarding. In order to counteract the tendency for…

  19. Locomotor, Heart-Rate, and Metabolic Power Characteristics of Youth Women's Field Hockey: Female Athletes in Motion (FAiM) Study

    ERIC Educational Resources Information Center

    Vescovi, Jason D.

    2016-01-01

    Purpose: The purpose of this study was to quantify the locomotor, heart-rate, and metabolic power characteristics of high-level youth female field hockey matches. Method: Players from the U21 and U17 Canadian women's national teams were monitored during a 4-match test series using Global Positioning System technology. Position (forward,…

  20. Seismic refraction and GPR measurements of depth to bedrock: A case study from Randolph College, Virginia

    NASA Astrophysics Data System (ADS)

    Datta, A.; Pokharel, R.; Toteva, T.

    2007-12-01

    Randolph College is located in Lynchburg, VA, in the eastern edge of the Blue Ridge Mountains. Lynchburg city lies in the James River Synclinorium and consists of metasedimentary and metaigneous rocks. As part of College's plan to expand, a new soccer field will be build. For that purpose, part of a hill has to be excavated. Information was needed on the depth to the bedrock at the site. We conducted a seismic refraction experiment as part of an eight week summer research program for undergraduate students. We used 24 vertical geophones, spaced at 1.5 m interval. Our recording device was a 12 channel Geometrics geode (ES 3000). The source was an 8 pound sledge hummer. Source positions were chosen to be at 5, 10, 15 and 20 m on both sides of the array. We collected data along a tree line (in two segments) and across a hockey field. The data collected from the hockey field had very low signal to noise ratio and clear refraction arrivals. The other two acquisition lines were much noisier and difficult to interpret. Our results are consistent with data from seven bore holes in close proximity to the field site. We interpreted depth to bedrock to be between 4 and 12 m. The bedrock velocities are consistent with weathered gneiss. To improve the interpretation of the tree line records, we conducted a GPR survey. The preliminary radar images are showing highly heterogeneous subsurface with multiple point reflectors.

  1. Ice Shelf-Ocean Interactions Near Ice Rises and Ice Rumples

    NASA Astrophysics Data System (ADS)

    Lange, M. A.; Rückamp, M.; Kleiner, T.

    2013-12-01

    The stability of ice shelves depends on the existence of embayments and is largely influenced by ice rises and ice rumples, which act as 'pinning-points' for ice shelf movement. Of additional critical importance are interactions between ice shelves and the water masses underlying them in ice shelf cavities, particularly melting and refreezing processes. The present study aims to elucidate the role of ice rises and ice rumples in the context of climate change impacts on Antarctic ice shelves. However, due to their smaller spatial extent, ice rumples react more sensitively to climate change than ice rises. Different forcings are at work and need to be considered separately as well as synergistically. In order to address these issues, we have decided to deal with the following three issues explicitly: oceanographic-, cryospheric and general topics. In so doing, we paid particular attention to possible interrelationships and feedbacks in a coupled ice-shelf-ocean system. With regard to oceanographic issues, we have applied the ocean circulation model ROMBAX to ocean water masses adjacent to and underneath a number of idealized ice shelf configurations: wide and narrow as well as laterally restrained and unrestrained ice shelves. Simulations were performed with and without small ice rises located close to the calving front. For larger configurations, the impact of the ice rises on melt rates at the ice shelf base is negligible, while for smaller configurations net melting rates at the ice-shelf base differ by a factor of up to eight depending on whether ice rises are considered or not. We employed the thermo-coupled ice flow model TIM-FD3 to simulate the effects of several ice rises and one ice rumple on the dynamics of ice shelf flow. We considered the complete un-grounding of the ice shelf in order to investigate the effect of pinning points of different characteristics (interior or near calving front, small and medium sized) on the resulting flow and stress fields

  2. Preventing head injuries in children

    MedlinePlus

    Concussion - preventing in children; Traumatic brain injury - preventing in children; TBI - children; Safety - preventing head injury ... Playing contact sports, such as lacrosse, ice hockey, football Riding a skateboard, scooter, or in-line skates ...

  3. What Can I Do to Help Prevent Traumatic Brain Injury?

    MedlinePlus

    ... terrain vehicle; Playing a contact sport, such as football, ice hockey, or boxing; Using in-line skates ... Brain Injury Awareness Additional Pevention Resources Childhood Injuries Concussion in Children and Teens Injuries from Violence Injuries ...

  4. Facial Sports Injuries

    MedlinePlus

    ... high speed or contact sports, such as boxing, football, soccer, ice hockey, bicycling skiing, and snowmobiling. Most ... protective equipment - such as helmets and padding for football, bicycling and rollerblading; face masks, head and mouth ...

  5. Treating and Preventing Sports Hernias

    MedlinePlus

    ... Close ‹ Back to Healthy Living Treating and Preventing Sports Hernias If you play ice hockey, tennis or ... for the most commonly misdiagnosed groin pain—a sports hernia. A sports hernia often results from overuse ...

  6. Ice swimming - 'Ice Mile' and '1 km Ice event'.

    PubMed

    Knechtle, Beat; Rosemann, Thomas; Rüst, Christoph A

    2015-01-01

    Ice swimming for 1 mile and 1 km is a new discipline in open-water swimming since 2009. This study examined female and male performances in swimming 1 mile ('Ice Mile') and 1 km ('1 km Ice event') in water of 5 °C or colder between 2009 and 2015 with the hypothesis that women would be faster than men. Between 2009 and 2015, 113 men and 38 women completed one 'Ice Mile' and 26 men and 13 completed one '1 km Ice event' in water colder than +5 °C following the rules of International Ice Swimming Association (IISA). Differences in performance between women and men were determined. Sex difference (%) was calculated using the equation ([time for women] - [time for men]/[time for men] × 100). For 'Ice Mile', a mixed-effects regression model with interaction analyses was used to investigate the influence of sex and environmental conditions on swimming speed. The association between water temperature and swimming speed was assessed using Pearson correlation analyses. For 'Ice Mile' and '1 km Ice event', the best men were faster than the best women. In 'Ice Mile', calendar year, number of attempts, water temperature and wind chill showed no association with swimming speed for both women and men. For both women and men, water temperature was not correlated to swimming speed in both 'Ice Mile' and '1 km Ice event'. In water colder than 5 °C, men were faster than women in 'Ice Mile' and '1 km Ice event'. Water temperature showed no correlation to swimming speed.

  7. Ice Bridge Antarctic Sea Ice

    NASA Image and Video Library

    2009-10-21

    Sea ice is seen out the window of NASA's DC-8 research aircraft as it flies 2,000 feet above the Bellingshausen Sea in West Antarctica on Wednesday, Oct., 21, 2009. This was the fourth science flight of NASA’s Operation Ice Bridge airborne Earth science mission to study Antarctic ice sheets, sea ice, and ice shelves. Photo Credit: (NASA/Jane Peterson)

  8. Ice Crystal Icing Research at NASA

    NASA Technical Reports Server (NTRS)

    Flegel, Ashlie B.

    2017-01-01

    Ice crystals found at high altitude near convective clouds are known to cause jet engine power-loss events. These events occur due to ice crystals entering a propulsion system's core flowpath and accreting ice resulting in events such as uncommanded loss of thrust (rollback), engine stall, surge, and damage due to ice shedding. As part of a community with a growing need to understand the underlying physics of ice crystal icing, NASA has been performing experimental efforts aimed at providing datasets that can be used to generate models to predict the ice accretion inside current and future engine designs. Fundamental icing physics studies on particle impacts, accretion on a single airfoil, and ice accretions observed during a rollback event inside a full-scale engine in the Propulsion Systems Laboratory are summarized. Low fidelity code development using the results from the engine tests which identify key parameters for ice accretion risk and the development of high fidelity codes are described. These activities have been conducted internal to NASA and through collaboration efforts with industry, academia, and other government agencies. The details of the research activities and progress made to date in addressing ice crystal icing research challenges are discussed.

  9. Ice Crystal Icing Research at NASA

    NASA Technical Reports Server (NTRS)

    Flegel, Ashlie B.

    2017-01-01

    Ice crystals found at high altitude near convective clouds are known to cause jet engine power-loss events. These events occur due to ice crystals entering a propulsion systems core flowpath and accreting ice resulting in events such as uncommanded loss of thrust (rollback), engine stall, surge, and damage due to ice shedding. As part of a community with a growing need to understand the underlying physics of ice crystal icing, NASA has been performing experimental efforts aimed at providing datasets that can be used to generate models to predict the ice accretion inside current and future engine designs. Fundamental icing physics studies on particle impacts, accretion on a single airfoil, and ice accretions observed during a rollback event inside a full-scale engine in the Propulsion Systems Laboratory are summarized. Low fidelity code development using the results from the engine tests which identify key parameters for ice accretion risk and the development of high fidelity codes are described. These activities have been conducted internal to NASA and through collaboration efforts with industry, academia, and other government agencies. The details of the research activities and progress made to date in addressing ice crystal icing research challenges are discussed.

  10. Battling fire and ice: remote guidance ultrasound to diagnose injury on the International Space Station and the ice rink.

    PubMed

    Kwon, David; Bouffard, J Antonio; van Holsbeeck, Marnix; Sargsyan, Asot E; Hamilton, Douglas R; Melton, Shannon L; Dulchavsky, Scott A

    2007-03-01

    National Aeronautical and Space and Administration (NASA) researchers have optimized training methods that allow minimally trained, non-physician operators to obtain diagnostic ultrasound (US) images for medical diagnosis including musculoskeletal injury. We hypothesize that these techniques could be expanded to non-expert operators including National Hockey League (NHL) and Olympic athletic trainers to diagnose musculoskeletal injuries in athletes. NHL and Olympic athletic trainers received a brief course on musculoskeletal US. Remote guidance musculoskeletal examinations were conducted by athletic trainers, consisting of hockey groin hernia, knee, ankle, elbow, or shoulder evaluations. US images were transmitted to remote experts for interpretation. Groin, knee, ankle, elbow, or shoulder images were obtained on 32 athletes; all real-time US video stream and still capture images were considered adequate for diagnostic interpretation. This experience suggests that US can be expanded for use in locations without a high level of on-site expertise. A non-physician with minimal training can perform complex, diagnostic-quality examinations when directed by a remote-based expert.

  11. Ice sheet margins and ice shelves

    NASA Technical Reports Server (NTRS)

    Thomas, R. H.

    1984-01-01

    The effect of climate warming on the size of ice sheet margins in polar regions is considered. Particular attention is given to the possibility of a rapid response to warming on the order of tens to hundreds of years. It is found that the early response of the polar regions to climate warming would be an increase in the area of summer melt on the ice sheets and ice shelves. For sufficiently large warming (5-10C) the delayed effects would include the breakup of the ice shelves by an increase in ice drainage rates, particularly from the ice sheets. On the basis of published data for periodic changes in the thickness and melting rates of the marine ice sheets and fjord glaciers in Greenland and Antarctica, it is shown that the rate of retreat (or advance) of an ice sheet is primarily determined by: bedrock topography; the basal conditions of the grounded ice sheet; and the ice shelf condition downstream of the grounding line. A program of satellite and ground measurements to monitor the state of ice sheet equilibrium is recommended.

  12. The effect of sequence of skating-specific training on skating performance.

    PubMed

    Farlinger, Chris Mj; Fowles, Jonathon R

    2008-06-01

    To determine the effectiveness of a progressively "skating specific" periodized off-season training program on skating performance in competitive hockey players. Twenty (M = 18; F = 2) highly skilled hockey players (age 15.9 +/- 1.5 yr) completed 16 wk of standardized resistance and stability training supplemented with either off-ice simulated skating using the SkateSIM (SIM) or plyometric training (PLY) in a crossover design. Group 1 (PLY-SIM; N = 11) completed 8 wk of PLY followed by 8 wk of SIM. Group 2 (SIM-PLY; N = 9) completed 8 wk of SIM followed by 8 wk of PLY. Subjects completed on- and off-ice testing PRE, MID, and POST training. Significant improvements in on-ice 35-m skating sprint (1.0%; P = .009) with significant improvements of 5% to 12% in various off-ice testing measures were observed PRE-MID in both groups. While few off-ice tests improved MID-POST, on-ice 35-m skating sprint times improved MID-POST by 2.3% (P = .000) with greater improvement in PLYSIM (3.5%) versus SIM-PLY (0.8%; P < .002). Off-ice 30-m sprint (r = 0.56; P = .010) and Edgren side shuffle (r = -0.46; P < .040) were the only off-ice tests that significantly correlated to improvements in on-ice skating sprint performance. The initial gains PRE-MID and then the lack of improvement in many off-ice tests from the MID-POST supports the principle of diminishing returns in response to standardized resistance training. The improvement in on-ice skating sprint performance when supplemental training progressed in specificity supports the principle of specificity and promotes transfer to a complex sporting movement such as skating.

  13. Ice, Ice, Baby!

    NASA Astrophysics Data System (ADS)

    Hamilton, C.

    2008-12-01

    The Center for Remote Sensing of Ice Sheets (CReSIS) has developed an outreach program based on hands-on activities called "Ice, Ice, Baby". These lessons are designed to teach the science principles of displacement, forces of motion, density, and states of matter. These properties are easily taught through the interesting topics of glaciers, icebergs, and sea level rise in K-8 classrooms. The activities are fun, engaging, and simple enough to be used at science fairs and family science nights. Students who have participated in "Ice, Ice, Baby" have successfully taught these to adults and students at informal events. The lessons are based on education standards which are available on our website www.cresis.ku.edu. This presentation will provide information on the activities, survey results from teachers who have used the material, and other suggested material that can be used before and after the activities.

  14. Ice stream activity scaled to ice sheet volume during Laurentide Ice Sheet deglaciation.

    PubMed

    Stokes, C R; Margold, M; Clark, C D; Tarasov, L

    2016-02-18

    The contribution of the Greenland and West Antarctic ice sheets to sea level has increased in recent decades, largely owing to the thinning and retreat of outlet glaciers and ice streams. This dynamic loss is a serious concern, with some modelling studies suggesting that the collapse of a major ice sheet could be imminent or potentially underway in West Antarctica, but others predicting a more limited response. A major problem is that observations used to initialize and calibrate models typically span only a few decades, and, at the ice-sheet scale, it is unclear how the entire drainage network of ice streams evolves over longer timescales. This represents one of the largest sources of uncertainty when predicting the contributions of ice sheets to sea-level rise. A key question is whether ice streams might increase and sustain rates of mass loss over centuries or millennia, beyond those expected for a given ocean-climate forcing. Here we reconstruct the activity of 117 ice streams that operated at various times during deglaciation of the Laurentide Ice Sheet (from about 22,000 to 7,000 years ago) and show that as they activated and deactivated in different locations, their overall number decreased, they occupied a progressively smaller percentage of the ice sheet perimeter and their total discharge decreased. The underlying geology and topography clearly influenced ice stream activity, but--at the ice-sheet scale--their drainage network adjusted and was linked to changes in ice sheet volume. It is unclear whether these findings can be directly translated to modern ice sheets. However, contrary to the view that sees ice streams as unstable entities that can accelerate ice-sheet deglaciation, we conclude that ice streams exerted progressively less influence on ice sheet mass balance during the retreat of the Laurentide Ice Sheet.

  15. Incidence of Shoulder Injury in Elite Wheelchair Athletes Differ Between Sports: A Critically Appraised Topic.

    PubMed

    Fairbairn, Jessica R; Huxel Bliven, Kellie C

    2018-02-06

    Clinical Scenario: Until recently, injury epidemiology data on elite Paralympic athletes was limited. Current data suggests high rates of shoulder injury in wheelchair athletes. Differences in shoulder injury rates between sports have not been reported in this population. Is the incidence of shoulder injury in elite wheelchair athletes different between sports? Summary of Key Findings: Shoulder injury rates are high in elite wheelchair athletes, particularly in sports such as field events and fencing that require a stable base (eg, trunk, core control) from which to perform. Wheelchair racing requires repetitive motions that contribute to shoulder injuries, but rates are lower than field sports and fencing. Wheelchair curling and sledge hockey have low shoulder injury risk. Clinical Bottom Line: Shoulder injury rates vary based on sport in elite wheelchair athletes. In addition to incorporating shoulder complex specific rehabilitation for overuse shoulder injuries, clinicians should focus on core and trunk stabilization in elite wheelchair athletes competing in sports such as field events and fencing. Strength of Recommendation: Grade C evidence exists that reports shoulder injury rates among elite wheelchair athletes differ base upon sport participation.

  16. Ice Bridge Antarctic Sea Ice

    NASA Image and Video Library

    2009-10-21

    An iceberg is seen out the window of NASA's DC-8 research aircraft as it flies 2,000 feet above the Amundsen Sea in West Antarctica on Wednesday, Oct., 21, 2009. This was the fourth science flight of NASA’s Operation Ice Bridge airborne Earth science mission to study Antarctic ice sheets, sea ice, and ice shelves. Photo Credit: (NASA/Jane Peterson)

  17. Greater circadian disadvantage during evening games for the National Basketball Association (NBA), National Hockey League (NHL) and National Football League (NFL) teams travelling westward.

    PubMed

    Roy, Jonathan; Forest, Geneviève

    2018-02-01

    We investigated the effects of a circadian disadvantage (i.e. playing in a different time zone) on the winning percentages in three major sport leagues in North America: the National Basketball Association, the National Hockey League and the National Football League. We reviewed 5 years of regular season games in the National Basketball Association, National Hockey League and National Football League, and noted the winning percentage of the visiting team depending on the direction of travel (west, east, and same time zone) and game time (day and evening games). T-tests and analysis of variance were performed to evaluate the effects of the circadian disadvantage, its direction, the number of time zones travelled, and the game time on winning percentages in each major league. The results showed an association between the winning percentages and the number of time zones traveled for the away evening games, with a clear disadvantage for the teams travelling westward. There was a significant difference in the teams' winning percentages depending on the travelling direction in the National Basketball Association (F 2,5908  = 16.12, P < 0.0001) and the National Hockey League (F 2,5639  = 4.48, P = 0.011), and a trend was found in the National Football League (F 2,1279  = 2.86, P = 0.058). The effect of the circadian disadvantage transcends the type of sport and needs to be addressed for greater equity among the western and eastern teams in professional sports. These results also highlight the importance of circadian rhythms in sport performance and athletic competitions. © 2017 European Sleep Research Society.

  18. Ice cream structure modification by ice-binding proteins.

    PubMed

    Kaleda, Aleksei; Tsanev, Robert; Klesment, Tiina; Vilu, Raivo; Laos, Katrin

    2018-04-25

    Ice-binding proteins (IBPs), also known as antifreeze proteins, were added to ice cream to investigate their effect on structure and texture. Ice recrystallization inhibition was assessed in the ice cream mixes using a novel accelerated microscope assay and the ice cream microstructure was studied using an ice crystal dispersion method. It was found that adding recombinantly produced fish type III IBPs at a concentration 3 mg·L -1 made ice cream hard and crystalline with improved shape preservation during melting. Ice creams made with IBPs (both from winter rye, and type III IBP) had aggregates of ice crystals that entrapped pockets of the ice cream mixture in a rigid network. Larger individual ice crystals and no entrapment in control ice creams was observed. Based on these results a model of ice crystals aggregates formation in the presence of IBPs was proposed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Anterior Cruciate Ligament Injuries in the National Hockey League: Epidemiology and Performance Impact.

    PubMed

    Longstaffe, Robert; Leiter, Jeff; MacDonald, Peter

    2018-03-27

    To determine the incidence of anterior cruciate ligament (ACL) injuries in the National Hockey League (NHL) and to examine the effects of this injury on return-to-play status and performance. Case series; level of evidence, 4. This was a 2-phase study. Phase I used the NHL electronic injury surveillance system and Athlete Health Management System to collect data on ACL injuries and man games lost over 10 seasons (2006/2007-2015/2016). Data collected in phase I were received in deidentified form. Phase II examined the performance impact of an ACL injury. Players were identified through publically available sources, and performance-related statistics were analyzed. Data collected in phase II were not linked to data collected in phase I. A paired t test was used to determine any difference in the matching variables between controls and cases in the preinjury time period. A General linear model (mixed) was used to determine the performance impact. Phase I: 67 ACL injuries occurred over 10 seasons. The incidence for all players was 0.42/1000 player game hours (forward, 0.61; defenseman, 0.32, goalie, 0.08) and by game exposure was 0.2/1000 player game exposures (forward, 0.33; defenseman, 0.11; goalie, 0.07). Forwards had a greater incidence rate of ACL tears with both game hours and game exposures when compared with defensemen and goalies (P < 0.001, <0.001; P = 0.008, <0.001, respectively). Phase II: 70 ACL tears (60 players) were identified. Compared with controls, players who suffered an ACL tear demonstrated a decrease in goals/season (P < 0.04), goals/game (P < 0.015), points/season (0.007), and points/game (0.001). Number of games and seasons played after an ACL injury did not differ compared with controls (P = 0.068, 0.122, respectively). Anterior cruciate ligament injuries occur infrequently, as it relates to other hockey injuries. Despite a high return to play, the performance after an ACL injury demonstrated a decrease in points and goals per game and per

  20. Experimental provocation of 'ice-cream headache' by ice cubes and ice water.

    PubMed

    Mages, Stephan; Hensel, Ole; Zierz, Antonia Maria; Kraya, Torsten; Zierz, Stephan

    2017-04-01

    Background There are various studies on experimentally provoked 'ice-cream headache' or 'headache attributed to ingestion or inhalation of a cold stimulus' (HICS) using different provocation protocols. The aim of this study was to compare two provocation protocols. Methods Ice cubes pressed to the palate and fast ingestion of ice water were used to provoke HICS and clinical features were compared. Results The ice-water stimulus provoked HICS significantly more often than the ice-cube stimulus (9/77 vs. 39/77). Ice-water-provoked HICS had a significantly shorter latency (median 15 s, range 4-97 s vs. median 68 s, range 27-96 s). There was no difference in pain localisation. Character after ice-cube stimulation was predominantly described as pressing and after ice-water stimulation as stabbing. A second HICS followed in 10/39 (26%) of the headaches provoked by ice water. Lacrimation occurred significantly more often in volunteers with than in those without HICS. Discussion HICS provoked by ice water was more frequent, had a shorter latency, different pain character and higher pain intensity than HICS provoked by ice cubes. The finding of two subsequent HICS attacks in the same volunteers supports the notion that two types of HICS exist. Lacrimation during HICS indicates involvement of the trigeminal-autonomic reflex.

  1. Breakup of Pack Ice, Antarctic Ice Shelf

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Breakup of Pack Ice along the periphery of the Antarctic Ice Shelf (53.5S, 3.0E) produced this mosaic of ice floes off the Antarctic Ice Shelf. Strong offshore winds, probably associated with strong katabatic downdrafts from the interior of the continent, are seen peeling off the edges of the ice shelf into long filamets of sea ice, icebergs, bergy bits and growlers to flow northward into the South Atlantic Ocean. 53.5S, 3.0E

  2. Ice-shell purification of ice-binding proteins.

    PubMed

    Marshall, Craig J; Basu, Koli; Davies, Peter L

    2016-06-01

    Ice-affinity purification is a simple and efficient method of purifying to homogeneity both natural and recombinant ice-binding proteins. The purification involves the incorporation of ice-binding proteins into slowly-growing ice and the exclusion of other proteins and solutes. In previous approaches, the ice was grown around a hollow brass finger through which coolant was circulated. We describe here an easily-constructed apparatus that employs ice affinity purification that not only shortens the time for purification from 1-2 days to 1-2 h, but also enhances yield and purity. In this apparatus, the surface area for the separation was increased by extracting the ice-binding proteins into an ice-shell formed inside a rotating round-bottom flask partially submerged in a sub-zero bath. In principle, any ice-binding compound can be recovered from liquid solution, and the method is readily scalable. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Quantification of Ice Accretions for Icing Scaling Evaluations

    NASA Technical Reports Server (NTRS)

    Ruff, Gary A.; Anderson, David N.

    2003-01-01

    The comparison of ice accretion characteristics is an integral part of aircraft icing research. It is often necessary to compare an ice accretion obtained from a flight test or numerical simulation to one produced in an icing wind tunnel or for validation of an icing scaling method. Traditionally, this has been accomplished by overlaying two-dimensional tracings of ice accretion shapes. This paper addresses the basic question of how to compare ice accretions using more quantitative methods. For simplicity, geometric characteristics of the ice accretions are used for the comparison. One method evaluated is a direct comparison of the percent differences of the geometric measurements. The second method inputs these measurements into a fuzzy inference system to obtain a single measure of the goodness of the comparison. The procedures are demonstrated by comparing ice shapes obtained in the Icing Research Tunnel at NASA Glenn Research Center during recent icing scaling tests. The results demonstrate that this type of analysis is useful in quantifying the similarity of ice accretion shapes and that the procedures should be further developed by expanding the analysis to additional icing data sets.

  4. Using Elite Athletes to Promote Drug Abstinence: Evaluation of a Single-Session School-Based Drug Use Prevention Program Delivered by Junior Hockey Players

    ERIC Educational Resources Information Center

    Wong, Jennifer

    2016-01-01

    School-based substance use prevention programs are a common method to approaching drug use in youths. Project SOS is a single-session drug prevention program developed by police officers and delivered by elite junior hockey players to students in grades 6 and 7. The current study evaluates the effects of Project SOS at achieving its objectives of…

  5. Ice Accretions and Icing Effects for Modern Airfoils

    NASA Technical Reports Server (NTRS)

    Addy, Harold E., Jr.

    2000-01-01

    Icing tests were conducted to document ice shapes formed on three different two-dimensional airfoils and to study the effects of the accreted ice on aerodynamic performance. The models tested were representative of airfoil designs in current use for each of the commercial transport, business jet, and general aviation categories of aircraft. The models were subjected to a range of icing conditions in an icing wind tunnel. The conditions were selected primarily from the Federal Aviation Administration's Federal Aviation Regulations 25 Appendix C atmospheric icing conditions. A few large droplet icing conditions were included. To verify the aerodynamic performance measurements, molds were made of selected ice shapes formed in the icing tunnel. Castings of the ice were made from the molds and placed on a model in a dry, low-turbulence wind tunnel where precision aerodynamic performance measurements were made. Documentation of all the ice shapes and the aerodynamic performance measurements made during the icing tunnel tests is included in this report. Results from the dry, low-turbulence wind tunnel tests are also presented.

  6. Sunlight, Sea Ice, and the Ice Albedo Feedback in a Changing Arctic Sea Ice Cover

    DTIC Science & Technology

    2013-09-30

    Sea Ice , and the Ice Albedo Feedback in a...COVERED 00-00-2013 to 00-00-2013 4. TITLE AND SUBTITLE Sunlight, Sea Ice , and the Ice Albedo Feedback in a Changing Arctic Sea Ice Cover 5a...during a period when incident solar irradiance is large increasing solar heat input to the ice . Seasonal sea ice typically has a smaller albedo

  7. Altitude training considerations for the winter sport athlete.

    PubMed

    Chapman, Robert F; Stickford, Jonathon L; Levine, Benjamin D

    2010-03-01

    Winter sports events routinely take place at low to moderate altitudes, and nearly all Winter Olympic Games have had at least one venue at an altitude >1000 m. The acute and chronic effects of altitude can have a substantial effect on performance outcomes. Acutely, the decline in oxygen delivery to working muscle decreases maximal oxygen uptake, negatively affecting performance in endurance events, such as cross-country skiing and biathlon. The reduction in air resistance at altitude can dramatically affect sports involving high velocities and technical skill components, such as ski jumping, speed skating, figure skating and ice hockey. Dissociation between velocity and sensations usually associated with work intensity (ventilation, metabolic signals in skeletal muscle and heart rate) may impair pacing strategy and make it difficult to determine optimal race pace. For competitions taking place at altitude, a number of strategies may be useful, depending on the altitude of residence of the athlete and ultimate competition altitude, as follows. First, allow extra time and practice (how much is yet undetermined) for athletes to adjust to the changes in projectile motion; hockey, shooting, figure skating and ski jumping may be particularly affected. These considerations apply equally in the reverse direction; that is, for athletes practising at altitude but competing at sea level. Second, allow time for acclimatization for endurance sports: 3-5 days if possible, especially for low altitude (500-2000 m); 1-2 weeks for moderate altitude (2000-3000 m); and at least 2 weeks if possible for high altitude (>3000 m). Third, increase exercise-recovery ratios as much as possible, with 1:3 ratio probably optimal, and consider more frequent substitutions for sports where this is allowed, such as ice hockey. Fourth, consider the use of supplemental O(2) on the sideline (ice hockey) or in between heats (skating and Alpine skiing) to facilitate recovery. For competitions at sea

  8. Comparisons of Cubed Ice, Crushed Ice, and Wetted Ice on Intramuscular and Surface Temperature Changes

    PubMed Central

    Dykstra, Joseph H; Hill, Holly M; Miller, Michael G; Cheatham, Christopher C; Michael, Timothy J; Baker, Robert J

    2009-01-01

    Context: Many researchers have investigated the effectiveness of different types of cold application, including cold whirlpools, ice packs, and chemical packs. However, few have investigated the effectiveness of different types of ice used in ice packs, even though ice is one of the most common forms of cold application. Objective: To evaluate and compare the cooling effectiveness of ice packs made with cubed, crushed, and wetted ice on intramuscular and skin surface temperatures. Design: Repeated-measures counterbalanced design. Setting: Human performance research laboratory. Patients or Other Participants: Twelve healthy participants (6 men, 6 women) with no history of musculoskeletal disease and no known preexisting inflammatory conditions or recent orthopaedic injuries to the lower extremities. Intervention(s): Ice packs made with cubed, crushed, or wetted ice were applied to a standardized area on the posterior aspect of the right gastrocnemius for 20 minutes. Each participant was given separate ice pack treatments, with at least 4 days between treatment sessions. Main Outcome Measure(s): Cutaneous and intramuscular (2 cm plus one-half skinfold measurement) temperatures of the right gastrocnemius were measured every 30 seconds during a 20-minute baseline period, a 20-minute treatment period, and a 120-minute recovery period. Results: Differences were observed among all treatments. Compared with the crushed-ice treatment, the cubed-ice and wetted-ice treatments produced lower surface and intramuscular temperatures. Wetted ice produced the greatest overall temperature change during treatment and recovery, and crushed ice produced the smallest change. Conclusions: As administered in our protocol, wetted ice was superior to cubed or crushed ice at reducing surface temperatures, whereas both cubed ice and wetted ice were superior to crushed ice at reducing intramuscular temperatures. PMID:19295957

  9. Sport- and sample-specific features of trace elements in adolescent female field hockey players and fencers.

    PubMed

    Nabatov, Alexey A; Troegubova, Natalya A; Gilmutdinov, Ruslan R; Sereda, Andrey P; Samoilov, Alexander S; Rylova, Natalya V

    2017-09-01

    Active physical exercises and growth are associated with mineral imbalances in young athletes. The purpose of this study was to examine the impact of sport-related factors on tissue mineral status in adolescent female athletes. Saliva and hair samples were used for the analysis of immediate and more permanent tissue mineral status, respectively. Samples taken from a control non-athletic female group and two groups of female athletes (field hockey and fencing) were analyzed for seven essential minerals: calcium, chromium, iron, potassium, magnesium, selenium and zinc. Inductively-coupled plasma mass spectrometry was used for the quantification of elements having very low concentration range in samples (Se, Cr and Zn) whereas inductively coupled plasma optical emission spectrometry was used for quantification of more ubiquitous elements (Mg, К, Са, Fe). The obtained results for athletic groups were compared with control. Female athletes had increased levels of selenium in both saliva and hair as well as chromium in saliva. Field hockey players had the higher level of zinc in hair whereas fencers had the lower levels of salivary calcium. Strong negative correlation between potassium levels in saliva and hair was identified. Iron and magnesium did not differ between the studied groups. In conclusion, novel sport-specific features of chromium tissue levels in female athletes were found. The studied sport disciplines have different impact on the distribution of osteoporosis-related minerals (calcium and zinc). Our finding can help in the development of osteoporosis preventive trainings and in the proper nutrient supplementation to correct mineral imbalances in female athletes. Copyright © 2016 Elsevier GmbH. All rights reserved.

  10. Wave-Ice and Air-Ice-Ocean Interaction During the Chukchi Sea Ice Edge Advance

    DTIC Science & Technology

    2014-09-30

    During cruise CU-B UAF UW Airborne expendable Ice Buoy (AXIB) Ahead, at and inside ice edge Surface meteorology T, SLP ~1 year CU-B UW...Balance (IMB) buoys Inside ice edge w/ >50cm thickness Ice mass balance T in snow-ice-ocean, T, SLP at surface ~1 year WHOI CRREL (SeaState DRI

  11. "Emerging" Sports for Women.

    ERIC Educational Resources Information Center

    Blum, Debra E.

    1994-01-01

    The National Collegiate Athletic Association has recently introduced nine new sports to intercollegiate athletics: team handball, archery, badminton, bowling, crew, ice hockey, squash, synchronized swimming, and water polo. The initiative is intended to encourage colleges to create more athletic opportunities for women. It sets scholarship limits…

  12. Ice Front at Venable Ice Shelf

    NASA Image and Video Library

    2013-06-13

    This photo, taken onboard the Chilean Navy P3 aircraft, shows the ice front of Venable Ice Shelf, West Antarctica, in October 2008. It is an example of a small-size ice shelf that is a large melt water producer.

  13. Looking Into and Through the Ross Ice Shelf - ROSETTA-ICE

    NASA Astrophysics Data System (ADS)

    Bell, R. E.

    2015-12-01

    Our current understanding of the structure and stability of the Ross Ice Shelf is based on satellite studies of the ice surface and the 1970's RIGGS program. The study of the flowlines evident in the MODIS imagery combined with surface geophysics has revealed a complex history with ice streams Mercer, Whillans and Kamb changing velocity over the past 1000 years. Here, we present preliminary IcePod and IceBridge radar data acquired in December 2014 and November 2013 across the Ross Ice Shelf that show clearly, for the first time, the structure of the ice shelf and provide insights into ice-ocean interaction. The three major layers of the ice shelf are (1) the continental meteoric ice layer), ice formed on the grounded ice sheet that entered the ice shelf where ice streams and outlet glaciers crossed the grounding line (2) the locally accumulating meteoric ice layer, ice and snow that forms from snowfall on the floating ice shelf and (3) a basal marine ice layer. The locally accumulating meteoric ice layer contains well-defined internal layers that are generally parallel to the ice surface and thickens away from the grounding line and reaches a maximum thickness of 220m along the line crossing Roosevelt Island. The continental meteoric layer is located below a broad irregular internal reflector, and is characterized by irregular internal layers. These internal layers are often folded, likely a result of deformation as the ice flowed across the grounding line. The basal marine ice layer, up to 50m thick, is best resolved in locations where basal crevasses are present, and appears to thicken along the flow at rates of decimeters per year. Each individual flowband of the ice shelf contains layers that are distinct in their structure. For example, the thickness of the locally accumulated layer is a function of both the time since crossing the grounding line and the thickness of the incoming ice. Features in the meteoric ice, such as distinct folds, can be traced between

  14. Habituation of 10-year-old hockey players to treadmill skating.

    PubMed

    Lockwood, Kelly L; Frost, Gail

    2007-05-01

    This study assessed changes in selected physiological and kinematic variables over 6 weeks of treadmill skating in an effort to understand the process of habituation to this novel training modality. Seven male, Atom-A hockey players who were injury-free and had no previous treadmill skating experience participated in the study. Players performed four 1-min skating bouts at progressively increasing speeds, each week, for 6 weeks. One speed (10.5 km/h) was repeated weekly to allow for assessment of the habituation process. Our criteria for habituation were: a decrease in stride rate, heart rate and rating of perceived exertion, and an increase in stride length, trunk angle and vertical movement of the centre of mass, leading to a plateau, over the course of the 6-week study. Significant decreases were seen in stride rate, heart rate and ratings of perceived exertion, and significant increases were found in stride length. Some of these changes were evident after only one week of training and all were present by week 4. After 6 weeks (24 min) of exposure to treadmill skating, all participants displayed a visibly more efficient skating style.

  15. Extensive massive basal-ice structures in West Antarctica relate to ice-sheet anisotropy and ice-flow

    NASA Astrophysics Data System (ADS)

    Ross, N.; Bingham, R. G.; Corr, H. F. J.; Siegert, M. J.

    2016-12-01

    Complex structures identified within both the East Antarctic and Greenland ice sheets are thought to be generated by the action of basal water freezing to the ice-sheet base, evolving under ice flow. Here, we use ice-penetrating radar to image an extensive series of similarly complex basal ice facies in West Antarctica, revealing a thick (>500 m) tectonised unit in an area of cold-based and relatively slow-flowing ice. We show that major folding and overturning of the unit perpendicular to ice flow elevates deep, warm ice into the mid ice-sheet column. Fold axes align with present ice flow, and axis amplitudes increase down-ice, suggesting long-term consistency in the direction and convergence of flow. In the absence of basal water, and the draping of the tectonised unit over major subglacial mountain ranges, the formation of the unit must be solely through the deformation of meteoric ice. Internal layer radar reflectivity is consistently greater parallel to flow compared with the perpendicular direction, revealing ice-sheet crystal anisotropy is associated with the folding. By linking layers to the Byrd ice-core site, we show the basal ice dates to at least the last glacial cycle and may be as old as the last interglacial. Deformation of deep-ice in this sector of WAIS, and potentially elsewhere in Antarctica, may be caused by differential shearing at interglacial-glacial boundaries, in a process analogous to that proposed for interior Greenland. The scale and heterogeneity of the englacial structures, and their subsequent impact on ice sheet rheology, means that the nature of ice flow across the bulk of West Antarctica must be far more complex that is currently accounted for by any numerical ice sheet model.

  16. Ice Roughness in Short Duration SLD Icing Events

    NASA Technical Reports Server (NTRS)

    McClain, Stephen T.; Reed, Dana; Vargas, Mario; Kreeger, Richard E.; Tsao, Jen-Ching

    2014-01-01

    Ice accretion codes depend on models of roughness parameters to account for the enhanced heat transfer during the ice accretion process. While mitigating supercooled large droplet (SLD or Appendix O) icing is a significant concern for manufacturers seeking future vehicle certification due to the pending regulation, historical ice roughness studies have been performed using Appendix C icing clouds which exhibit mean volumetric diameters (MVD) much smaller than SLD clouds. Further, the historical studies of roughness focused on extracting parametric representations of ice roughness using multiple images of roughness elements. In this study, the ice roughness developed on a 21-in. NACA 0012 at 0deg angle of attack exposed to short duration SLD icing events was measured in the Icing Research Tunnel at the NASA Glenn Research Center. The MVD's used in the study ranged from 100 micrometer to 200 micrometers, in a 67 m/s flow, with liquid water contents of either 0.6 gm/cubic meters or 0.75 gm/cubic meters. The ice surfaces were measured using a Romer Absolute Arm laser scanning system. The roughness associated with each surface point cloud was measured using the two-dimensional self-organizing map approach developed by McClain and Kreeger (2013) resulting in statistical descriptions of the ice roughness.

  17. Wave-Ice and Air-Ice-Ocean Interaction During the Chukchi Sea Ice Edge Advance

    DTIC Science & Technology

    2015-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Wave -Ice and Air-Ice-Ocean Interaction During the...Chukchi Sea in the late summer have potentially changed the impact of fall storms by creating wave fields in the vicinity of the advancing ice edge. A...first) wave -ice interaction field experiment that adequately documents the relationship of a growing pancake ice cover with a time and space varying

  18. Ice Flow in the North East Greenland Ice Stream

    NASA Technical Reports Server (NTRS)

    Joughin, Ian; Kwok, Ron; Fahnestock, M.; MacAyeal, Doug

    1999-01-01

    Early observations with ERS-1 SAR image data revealed a large ice stream in North East Greenland (Fahnestock 1993). The ice stream has a number of the characteristics of the more closely studied ice streams in Antarctica, including its large size and gross geometry. The onset of rapid flow close to the ice divide and the evolution of its flow pattern, however, make this ice stream unique. These features can be seen in the balance velocities for the ice stream (Joughin 1997) and its outlets. The ice stream is identifiable for more than 700 km, making it much longer than any other flow feature in Greenland. Our research goals are to gain a greater understanding of the ice flow in the northeast Greenland ice stream and its outlet glaciers in order to assess their impact on the past, present, and future mass balance of the ice sheet. We will accomplish these goals using a combination of remotely sensed data and ice sheet models. We are using satellite radar interferometry data to produce a complete maps of velocity and topography over the entire ice stream. We are in the process of developing methods to use these data in conjunction with existing ice sheet models similar to those that have been used to improve understanding of the mechanics of flow in Antarctic ice streams.

  19. A coupled ice-ocean model of ice breakup and banding in the marginal ice zone

    NASA Technical Reports Server (NTRS)

    Smedstad, O. M.; Roed, L. P.

    1985-01-01

    A coupled ice-ocean numerical model for the marginal ice zone is considered. The model consists of a nonlinear sea ice model and a two-layer (reduced gravity) ocean model. The dependence of the upwelling response on wind stress direction is discussed. The results confirm earlier analytical work. It is shown that there exist directions for which there is no upwelling, while other directions give maximum upwelling in terms of the volume of uplifted water. The ice and ocean is coupled directly through the stress at the ice-ocean interface. An interesting consequence of the coupling is found in cases when the ice edge is almost stationary. In these cases the ice tends to break up a few tenths of kilometers inside of the ice edge.

  20. Icing flight research: Aerodynamic effects of ice and ice shape documentation with stereo photography

    NASA Technical Reports Server (NTRS)

    Mikkelsen, K. L.; Mcknight, R. C.; Ranaudo, R. J.; Perkins, P. J., Jr.

    1985-01-01

    Aircraft icing flight research was performed in natural icing conditions. A data base consisting of icing cloud measurements, ice shapes, and aerodynamic measurements is being developed. During research icing encounters the icing cloud was continuously measured. After the encounter, the ice accretion shapes on the wing were documented with a stereo camera system. The increase in wing section drag was measured with a wake survey probe. The overall aircraft performance loss in terms of lift and drag coefficient changes was obtained by steady level speed/power measurements. Selective deicing of the airframe components was performed to determine their contributions to the total drag increase. Engine out capability in terms of power available was analyzed for the iced aircraft. It was shown that the stereo photography system can be used to document ice shapes in flight and that the wake survey probe can measure increases in wing section drag caused by ice. On one flight, the wing section drag coefficient (c sub d) increased approximately 120 percent over the uniced baseline at an aircraft angle of attack of 6 deg. On another flight, the aircraft darg coefficient (c sub d) increased by 75 percent over the uniced baseline at an aircraft lift coefficient (C sub d) of 0.5.

  1. Icing flight research - Aerodynamic effects of ice and ice shape documentation with stereo photography

    NASA Technical Reports Server (NTRS)

    Mikkelsen, K. L.; Mcknight, R. C.; Ranaudo, R. J.; Perkins, P. J., Jr.

    1985-01-01

    Aircraft icing flight research was performed in natural icing conditions. A data base consisting of icing cloud measurements, ice shapes, and aerodynamic measurements is being developed. During research icing encounters the icing cloud was continuously measured. After the encounter, the ice accretion shapes on the wing were documented with a stereo camera system. The increase in wing section drag was measured with a wake survey probe. The overall aircraft performance loss in terms of lift and drag coefficient changes were obtained by steady level speed/power measurements. Selective deicing of the airframe components was performed to determine their contributions to the total drag increase. Engine out capability in terms of power available was analyzed for the iced aircraft. It was shown that the stereo photography system can be used to document ice shapes in flight and that the wake survey probe can measure increases in wing section drag caused by ice. On one flight, the wing section drag coefficient (c sub d) increased approximately 120 percent over the uniced baseline at an aircraft angle of attack of 6 deg. On another flight, the aircraft drag coefficient (c sub d) increased by 75 percent over the uniced baseline at an aircraft lift coefficient (c sub d) of 0.5.

  2. Are Children's Competitive Team Sports Socializing Agents for Corporate America?

    ERIC Educational Resources Information Center

    Berlage, Gai Ingham

    In a study of the similarities between childrens' competitive team sports and the typical corporate or business environment, two research questions were posed: (1) Does the structural organization of childrens' soccer and ice hockey organizations resemble that of American corporations?; and (2) Are the values of childrens' competitive sports…

  3. Ice recrystallization inhibition in ice cream as affected by ice structuring proteins from winter wheat grass.

    PubMed

    Regand, A; Goff, H D

    2006-01-01

    Ice recrystallization in quiescently frozen sucrose solutions that contained some of the ingredients commonly found in ice cream and in ice cream manufactured under commercial conditions, with or without ice structuring proteins (ISP) from cold-acclimated winter wheat grass extract (AWWE), was assessed by bright field microscopy. In sucrose solutions, critical differences in moisture content, viscosity, ionic strength, and other properties derived from the presence of other ingredients (skim milk powder, corn syrup solids, locust bean gum) caused a reduction in ice crystal growth. Significant ISP activity in retarding ice crystal growth was observed in all solutions (44% for the most complex mix) containing 0.13% total protein from AWWE. In heat-shocked ice cream, ice recrystallization rates were significantly reduced 40 and 46% with the addition of 0.0025 and 0.0037% total protein from AWWE. The ISP activity in ice cream was not hindered by its inclusion in mix prior to pasteurization. A synergistic effect between ISP and stabilizer was observed, as ISP activity was reduced in the absence of stabilizer in ice cream formulations. A remarkably smoother texture for ice creams containing ISP after heat-shock storage was evident by sensory evaluation. The efficiency of ISP from AWWE in controlling ice crystal growth in ice cream has been demonstrated.

  4. Atmosphere-Ice-Ocean-Ecosystem Processes in a Thinner Arctic Sea Ice Regime: The Norwegian Young Sea ICE (N-ICE2015) Expedition

    NASA Astrophysics Data System (ADS)

    Granskog, Mats A.; Fer, Ilker; Rinke, Annette; Steen, Harald

    2018-03-01

    Arctic sea ice has been in rapid decline the last decade and the Norwegian young sea ICE (N-ICE2015) expedition sought to investigate key processes in a thin Arctic sea ice regime, with emphasis on atmosphere-snow-ice-ocean dynamics and sea ice associated ecosystem. The main findings from a half-year long campaign are collected into this special section spanning the Journal of Geophysical Research: Atmospheres, Journal of Geophysical Research: Oceans, and Journal of Geophysical Research: Biogeosciences and provide a basis for a better understanding of processes in a thin sea ice regime in the high Arctic. All data from the campaign are made freely available to the research community.

  5. GenIce: Hydrogen-Disordered Ice Generator.

    PubMed

    Matsumoto, Masakazu; Yagasaki, Takuma; Tanaka, Hideki

    2018-01-05

    GenIce is an efficient and user-friendly tool to generate hydrogen-disordered ice structures. It makes ice and clathrate hydrate structures in various file formats. More than 100 kinds of structures are preset. Users can install their own crystal structures, guest molecules, and file formats as plugins. The algorithm certifies that the generated structures are completely randomized hydrogen-disordered networks obeying the ice rule with zero net polarization. © 2017 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc. © 2017 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc.

  6. Observed platelet ice distributions in Antarctic sea ice: An index for ocean-ice shelf heat flux

    NASA Astrophysics Data System (ADS)

    Langhorne, P. J.; Hughes, K. G.; Gough, A. J.; Smith, I. J.; Williams, M. J. M.; Robinson, N. J.; Stevens, C. L.; Rack, W.; Price, D.; Leonard, G. H.; Mahoney, A. R.; Haas, C.; Haskell, T. G.

    2015-07-01

    Antarctic sea ice that has been affected by supercooled Ice Shelf Water (ISW) has a unique crystallographic structure and is called platelet ice. In this paper we synthesize platelet ice observations to construct a continent-wide map of the winter presence of ISW at the ocean surface. The observations demonstrate that, in some regions of coastal Antarctica, supercooled ISW drives a negative oceanic heat flux of -30 Wm-2 that persists for several months during winter, significantly affecting sea ice thickness. In other regions, particularly where the thinning of ice shelves is believed to be greatest, platelet ice is not observed. Our new data set includes the longest ice-ocean record for Antarctica, which dates back to 1902 near the McMurdo Ice Shelf. These historical data indicate that, over the past 100 years, any change in the volume of very cold surface outflow from this ice shelf is less than the uncertainties in the measurements.

  7. The mass balance of the ice plain of Ice Stream B and Crary Ice Rise

    NASA Technical Reports Server (NTRS)

    Bindschadler, Robert

    1993-01-01

    The region in the mouth of Ice Stream B (the ice plain) and that in the vicinity of Crary Ice Rise are experiencing large and rapid changes. Based on velocity, ice thickness, and accumulation rate data, the patterns of net mass balance in these regions were calculated. Net mass balance, or the rate of ice thickness change, was calculated as the residual of all mass fluxes into and out of subregions (or boxes). Net mass balance provides a measure of the state of health of the ice sheet and clues to the current dynamics.

  8. Operationally Monitoring Sea Ice at the Canadian Ice Service

    NASA Astrophysics Data System (ADS)

    de Abreu, R.; Flett, D.; Carrieres, T.; Falkingham, J.

    2004-05-01

    The Canadian Ice Service (CIS) of the Meteorological Service of Canada promotes safe and efficient maritime operations and protects Canada's environment by providing reliable and timely information about ice and iceberg conditions in Canadian waters. Daily and seasonal charts describing the extent, type and concentration of sea ice and icebergs are provided to support navigation and other activities (e.g. oil and gas) in coastal waters. The CIS relies on a suite of spaceborne visible, infrared and microwave sensors to operationally monitor ice conditions in Canadian coastal and inland waterways. These efforts are complemented by operational sea ice models that are customized and run at the CIS. The archive of these data represent a 35 year archive of ice conditions and have proven to be a valuable dataset for historical sea ice analysis. This presentation will describe the daily integration of remote sensing observations and modelled ice conditions used to produce ice and iceberg products. A review of the decadal evolution of this process will be presented, as well as a glimpse into the future of ice and iceberg monitoring. Examples of the utility of the CIS digital sea ice archive for climate studies will also be presented.

  9. Sea Ice

    NASA Technical Reports Server (NTRS)

    Parkinson, Claire L.; Cavalieri, Donald J.

    2005-01-01

    Sea ice covers vast areas of the polar oceans, with ice extent in the Northern Hemisphere ranging from approximately 7 x 10(exp 6) sq km in September to approximately 15 x 10(exp 6) sq km in March and ice extent in the Southern Hemisphere ranging from approximately 3 x 10(exp 6) sq km in February to approximately 18 x 10(exp 6) sq km in September. These ice covers have major impacts on the atmosphere, oceans, and ecosystems of the polar regions, and so as changes occur in them there are potential widespread consequences. Satellite data reveal considerable interannual variability in both polar sea ice covers, and many studies suggest possible connections between the ice and various oscillations within the climate system, such as the Arctic Oscillation, North Atlantic Oscillation, and Antarctic Oscillation, or Southern Annular Mode. Nonetheless, statistically significant long-term trends are also apparent, including overall trends of decreased ice coverage in the Arctic and increased ice coverage in the Antarctic from late 1978 through the end of 2003, with the Antarctic ice increases following marked decreases in the Antarctic ice during the 1970s. For a detailed picture of the seasonally varying ice cover at the start of the 21st century, this chapter includes ice concentration maps for each month of 2001 for both the Arctic and the Antarctic, as well as an overview of what the satellite record has revealed about the two polar ice covers from the 1970s through 2003.

  10. Prevalence of joint-related pain in the extremities and spine in five groups of top athletes.

    PubMed

    Jonasson, Pall; Halldin, Klas; Karlsson, Jon; Thoreson, Olof; Hvannberg, Jonas; Swärd, Leif; Baranto, Adad

    2011-09-01

    Joint-related pain conditions from the spine and extremities are common among top athletes. The frequency of back pain has, however, been studied in more detail, and the frequency of low-back pain in top athletes in different high-load sports has been reported to be as high as 85%. Sport-related pain from different joints in the extremities is, however, infrequently reported on in the literature. Seventy-five male athletes, i.e. divers, weight-lifters, wrestlers, orienteers and ice-hockey players and 12 non-athletes (control group) were included in the study. A specific self-assessed pain-oriented questionnaire related to the cervical, thoracic and lumbar spine, as well as the various joints, i.e. shoulders, elbows, wrists, hips, knees and ankles, was filled out by the athletes and the non-athletes. The overall frequency of pain reported by the athletes during the last week/last year was as follows; cervical spine 35/55%; thoracic spine 22/33%; lumbar spine 50/68%; shoulder 10/21%; elbow 7/7%; wrist 7/8%; hip 15/23%; knee 22/44%; and ankle 11/25%. The corresponding values for non-athletes were cervical spine 9/36%; thoracic spine 17/33%; lumbar spine 36/50%; shoulder 0/9%; elbow 9/0%; wrist 0/0%; hip 9/16%; knee 10/9%; and ankle 0/0%. A higher percentage of athletes reported pain in almost all joint regions, but there were no statistically significant differences (n.s.), with the exception of the knees (P = 0.05). Over the last year, athletes reporting the highest pain frequency in the lumbar spine were ice-hockey players and, in the cervical spine, wrestlers and ice-hockey players. The highest levels of knee pain were found among wrestlers and ice-hockey players, whereas the highest levels for wrist pain were found among divers, hip pain among weight-lifters, orienteers and divers and ankle pain among orienteers. For the thoracic spine, shoulder and elbow regions, only minor differences were found. There was no statistically significant difference in prevalence of

  11. Validation and Interpretation of a new sea ice GlobIce dataset using buoys and the CICE sea ice model

    NASA Astrophysics Data System (ADS)

    Flocco, D.; Laxon, S. W.; Feltham, D. L.; Haas, C.

    2012-04-01

    The GlobIce project has provided high resolution sea ice product datasets over the Arctic derived from SAR data in the ESA archive. The products are validated sea ice motion, deformation and fluxes through straits. GlobIce sea ice velocities, deformation data and sea ice concentration have been validated using buoy data provided by the International Arctic Buoy Program (IABP). Over 95% of the GlobIce and buoy data analysed fell within 5 km of each other. The GlobIce Eulerian image pair product showed a high correlation with buoy data. The sea ice concentration product was compared to SSM/I data. An evaluation of the validity of the GlobICE data will be presented in this work. GlobICE sea ice velocity and deformation were compared with runs of the CICE sea ice model: in particular the mass fluxes through the straits were used to investigate the correlation between the winter behaviour of sea ice and the sea ice state in the following summer.

  12. Regressing Team Performance on Collective Efficacy: Considerations of Temporal Proximity and Concordance

    ERIC Educational Resources Information Center

    Myers, Nicholas D.; Paiement, Craig A.; Feltz, Deborah L.

    2007-01-01

    The purpose of this study was to determine to what degree collective efficacy judgments based on summative team performance capabilities exhibited different levels of prediction for three additive intervals of team performance in women's ice hockey. Collective efficacy beliefs of 12 teams were assessed prior to Friday's game and Saturday's game…

  13. Athletes' Evaluations of Their Head Coach's Coaching Competency

    ERIC Educational Resources Information Center

    Myers, Nicholas D.; Feltz, Deborah L.; Maier, Kimberly S.; Wolfe, Edward W.; Reckase, Mark D.

    2006-01-01

    This study provided initial validity evidence for multidimensional measures of coaching competency derived from the Coaching Competency Scale (CCS). Data were collected from intercollegiate men's (n = 8) and women's (n = 13) soccer and women's ice hockey teams (n = 11). The total number of athletes was 585. Within teams, a multidimensional…

  14. Staying at the Top: Playing Position and Performance Affect Career Length in Professional Sport

    ERIC Educational Resources Information Center

    Baker, Joseph; Koz, Dan; Kungl, Ann-Marie; Fraser-Thomas, Jessica; Schorer, Jorg

    2013-01-01

    In an effort to understand the process of skill acquisition and decline, researchers have largely neglected a critical aspect of this development--maximizing time at the highest levels of achievement. This study examined length of career for professional athletes in basketball, football, ice hockey, and baseball and considers whether career length…

  15. Characterization of Ice Roughness From Simulated Icing Encounters

    NASA Technical Reports Server (NTRS)

    Anderson, David N.; Shin, Jaiwon

    1997-01-01

    Detailed measurements of the size of roughness elements on ice accreted on models in the NASA Lewis Icing Research Tunnel (IRT) were made in a previous study. Only limited data from that study have been published, but included were the roughness element height, diameter and spacing. In the present study, the height and spacing data were found to correlate with the element diameter, and the diameter was found to be a function primarily of the non-dimensional parameters freezing fraction and accumulation parameter. The width of the smooth zone which forms at the leading edge of the model was found to decrease with increasing accumulation parameter. Although preliminary, the success of these correlations suggests that it may be possible to develop simple relationships between ice roughness and icing conditions for use in ice-accretion-prediction codes. These codes now require an ice-roughness estimate to determine convective heat transfer. Studies using a 7.6-cm-diameter cylinder and a 53.3-cm-chord NACA 0012 airfoil were also performed in which a 1/2-min icing spray at an initial set of conditions was followed by a 9-1/2-min spray at a second set of conditions. The resulting ice shape was compared with that from a full 10-min spray at the second set of conditions. The initial ice accumulation appeared to have no effect on the final ice shape. From this result, it would appear the accreting ice is affected very little by the initial roughness or shape features.

  16. Submesoscale sea ice-ocean interactions in marginal ice zones

    NASA Astrophysics Data System (ADS)

    Thompson, A. F.; Manucharyan, G.

    2017-12-01

    Signatures of ocean eddies, fronts and filaments are commonly observed within the marginal ice zones (MIZ) from satellite images of sea ice concentration, in situ observations via ice-tethered profilers or under-ice gliders. Localized and intermittent sea ice heating and advection by ocean eddies are currently not accounted for in climate models and may contribute to their biases and errors in sea ice forecasts. Here, we explore mechanical sea ice interactions with underlying submesoscale ocean turbulence via a suite of numerical simulations. We demonstrate that the release of potential energy stored in meltwater fronts can lead to energetic submesoscale motions along MIZs with sizes O(10 km) and Rossby numbers O(1). In low-wind conditions, cyclonic eddies and filaments efficiently trap the sea ice and advect it over warmer surface ocean waters where it can effectively melt. The horizontal eddy diffusivity of sea ice mass and heat across the MIZ can reach O(200 m2 s-1). Submesoscale ocean variability also induces large vertical velocities (order of 10 m day-1) that can bring relatively warm subsurface waters into the mixed layer. The ocean-sea ice heat fluxes are localized over cyclonic eddies and filaments reaching about 100 W m-2. We speculate that these submesoscale-driven intermittent fluxes of heat and sea ice can potentially contribute to the seasonal evolution of MIZs. With continuing global warming and sea ice thickness reduction in the Arctic Ocean, as well as the large expanse of thin sea ice in the Southern Ocean, submesoscale sea ice-ocean processes are expected to play a significant role in the climate system.

  17. Ice Stars

    NASA Image and Video Library

    2017-12-08

    Ice Stars - August 4th, 2002 Description: Like distant galaxies amid clouds of interstellar dust, chunks of sea ice drift through graceful swirls of grease ice in the frigid waters of Foxe Basin near Baffin Island in the Canadian Arctic. Sea ice often begins as grease ice, a soupy slick of tiny ice crystals on the ocean's surface. As the temperature drops, grease ice thickens and coalesces into slabs of more solid ice. Credit: USGS/NASA/Landsat 7 To learn more about the Landsat satellite go to: landsat.gsfc.nasa.gov/ NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook

  18. Upper-Tropospheric Cloud Ice from IceCube

    NASA Astrophysics Data System (ADS)

    Wu, D. L.

    2017-12-01

    Cloud ice plays important roles in Earth's energy budget and cloud-precipitation processes. Knowledge of global cloud ice and its properties is critical for understanding and quantifying its roles in Earth's atmospheric system. It remains a great challenge to measure these variables accurately from space. Submillimeter (submm) wave remote sensing has capability of penetrating clouds and measuring ice mass and microphysical properties. In particular, the 883-GHz frequency is a highest spectral window in microwave frequencies that can be used to fill a sensitivity gap between thermal infrared (IR) and mm-wave sensors in current spaceborne cloud ice observations. IceCube is a cubesat spaceflight demonstration of 883-GHz radiometer technology. Its primary objective is to raise the technology readiness level (TRL) of 883-GHz cloud radiometer for future Earth science missions. By flying a commercial receiver on a 3U cubesat, IceCube is able to achieve fast-track maturation of space technology, by completing its development, integration and testing in 2.5 years. IceCube was successfully delivered to ISS in April 2017 and jettisoned from the International Space Station (ISS) in May 2017. The IceCube cloud-ice radiometer (ICIR) has been acquiring data since the jettison on a daytime-only operation. IceCube adopted a simple design without payload mechanism. It makes maximum utilization of solar power by spinning the spacecraft continuously about the Sun vector at a rate of 1.2° per second. As a result, the ICIR is operated under the limited resources (8.6 W without heater) and largely-varying (18°C-28°C) thermal environments. The spinning cubesat also allows ICIR to have periodical views between the Earth (atmosphere and clouds) and cold space (calibration), from which the first 883-GHz cloud map is obtained. The 883-GHz cloud radiance, sensitive to ice particle scattering, is proportional to cloud ice amount above 10 km. The ICIR cloud map acquired during June 20-July 2

  19. Ice shelf fracture parameterization in an ice sheet model

    NASA Astrophysics Data System (ADS)

    Sun, Sainan; Cornford, Stephen L.; Moore, John C.; Gladstone, Rupert; Zhao, Liyun

    2017-11-01

    Floating ice shelves exert a stabilizing force onto the inland ice sheet. However, this buttressing effect is diminished by the fracture process, which on large scales effectively softens the ice, accelerating its flow, increasing calving, and potentially leading to ice shelf breakup. We add a continuum damage model (CDM) to the BISICLES ice sheet model, which is intended to model the localized opening of crevasses under stress, the transport of those crevasses through the ice sheet, and the coupling between crevasse depth and the ice flow field and to carry out idealized numerical experiments examining the broad impact on large-scale ice sheet and shelf dynamics. In each case we see a complex pattern of damage evolve over time, with an eventual loss of buttressing approximately equivalent to halving the thickness of the ice shelf. We find that it is possible to achieve a similar ice flow pattern using a simple rule of thumb: introducing an enhancement factor ˜ 10 everywhere in the model domain. However, spatially varying damage (or equivalently, enhancement factor) fields set at the start of prognostic calculations to match velocity observations, as is widely done in ice sheet simulations, ought to evolve in time, or grounding line retreat can be slowed by an order of magnitude.

  20. Microbiological quality of ice and ice machines used in food establishments.

    PubMed

    Hampikyan, Hamparsun; Bingol, Enver Baris; Cetin, Omer; Colak, Hilal

    2017-06-01

    The ice used in the food industry has to be safe and the water used in ice production should have the quality of drinking water. The consumption of contaminated ice directly or indirectly may be a vehicle for transmission of pathogenic bacteria to humans producing outbreaks of gastrointestinal diseases. The objective of this study was to monitor the microbiological quality of ice, the water used in producing ice and the hygienic conditions of ice making machines in various food enterprises. Escherichia coli was detected in seven (6.7%) ice and 23 (21.9%) ice chest samples whereas E. coli was negative in all examined water samples. Psychrophilic bacteria were detected in 83 (79.0%) of 105 ice chest and in 68 (64.7%) of 105 ice samples, whereas Enterococci were detected only in 13 (12.4%) ice samples. Coliforms were detected in 13 (12.4%) water, 71 (67.6%) ice chest and 54 (51.4%) ice samples. In order to improve the microbiological quality of ice, the maintenance, cleaning and disinfecting of ice machines should be carried out effectively and periodically. Also, high quality water should be used for ice production.

  1. Constraining ice sheet history in the Weddell Sea, West Antarctica, using ice fabric at Korff Ice Rise

    NASA Astrophysics Data System (ADS)

    Brisbourne, A.; Smith, A.; Kendall, J. M.; Baird, A. F.; Martin, C.; Kingslake, J.

    2017-12-01

    The grounding history of ice rises (grounded area of independent flow regime within a floating ice shelf) can be used to constrain large scale ice sheet history: ice fabric, resulting from the preferred orientation of ice crystals due to the stress regime, can be used to infer this grounding history. With the aim of measuring the present day ice fabric at Korff Ice Rise, West Antarctica, a multi-azimuth wide-angle seismic experiment was undertaken. Three wide-angle common-midpoint gathers were acquired centred on the apex of the ice rise, at azimuths of 60 degrees to one another, to measure variation in seismic properties with offset and azimuth. Both vertical and horizontal receivers were used to record P and S arrivals including converted phases. Measurements of the variation with offset and azimuth of seismic traveltimes, seismic attenuation and shear wave splitting have been used to quantify seismic anisotropy in the ice column. The observations cannot be reproduced using an isotropic ice column model. Anisotropic ray tracing has been used to test likely models of ice fabric by comparison with the data. A model with a weak girdle fabric overlying a strong cluster fabric provides the best fit to the observations. Fabric of this nature is consistent with Korff Ice Rise having been stable for the order of 10,000 years without any ungrounding or significant change in the ice flow configuration across the ice rise for this period. This observation has significant implications for the ice sheet history of the Weddell Sea sector.

  2. Submesoscale Sea Ice-Ocean Interactions in Marginal Ice Zones

    NASA Astrophysics Data System (ADS)

    Manucharyan, Georgy E.; Thompson, Andrew F.

    2017-12-01

    Signatures of ocean eddies, fronts, and filaments are commonly observed within marginal ice zones (MIZs) from satellite images of sea ice concentration, and in situ observations via ice-tethered profilers or underice gliders. However, localized and intermittent sea ice heating and advection by ocean eddies are currently not accounted for in climate models and may contribute to their biases and errors in sea ice forecasts. Here, we explore mechanical sea ice interactions with underlying submesoscale ocean turbulence. We demonstrate that the release of potential energy stored in meltwater fronts can lead to energetic submesoscale motions along MIZs with spatial scales O(10 km) and Rossby numbers O(1). In low-wind conditions, cyclonic eddies and filaments efficiently trap the sea ice and advect it over warmer surface ocean waters where it can effectively melt. The horizontal eddy diffusivity of sea ice mass and heat across the MIZ can reach O(200 m2 s-1). Submesoscale ocean variability also induces large vertical velocities (order 10 m d-1) that can bring relatively warm subsurface waters into the mixed layer. The ocean-sea ice heat fluxes are localized over cyclonic eddies and filaments reaching about 100 W m-2. We speculate that these submesoscale-driven intermittent fluxes of heat and sea ice can contribute to the seasonal evolution of MIZs. With the continuing global warming and sea ice thickness reduction in the Arctic Ocean, submesoscale sea ice-ocean processes are expected to become increasingly prominent.

  3. Modeling Commercial Turbofan Engine Icing Risk With Ice Crystal Ingestion

    NASA Technical Reports Server (NTRS)

    Jorgenson, Philip C. E.; Veres, Joseph P.

    2013-01-01

    The occurrence of ice accretion within commercial high bypass aircraft turbine engines has been reported under certain atmospheric conditions. Engine anomalies have taken place at high altitudes that have been attributed to ice crystal ingestion, partially melting, and ice accretion on the compression system components. The result was degraded engine performance, and one or more of the following: loss of thrust control (roll back), compressor surge or stall, and flameout of the combustor. As ice crystals are ingested into the fan and low pressure compression system, the increase in air temperature causes a portion of the ice crystals to melt. It is hypothesized that this allows the ice-water mixture to cover the metal surfaces of the compressor stationary components which leads to ice accretion through evaporative cooling. Ice accretion causes a blockage which subsequently results in the deterioration in performance of the compressor and engine. The focus of this research is to apply an engine icing computational tool to simulate the flow through a turbofan engine and assess the risk of ice accretion. The tool is comprised of an engine system thermodynamic cycle code, a compressor flow analysis code, and an ice particle melt code that has the capability of determining the rate of sublimation, melting, and evaporation through the compressor flow path, without modeling the actual ice accretion. A commercial turbofan engine which has previously experienced icing events during operation in a high altitude ice crystal environment has been tested in the Propulsion Systems Laboratory (PSL) altitude test facility at NASA Glenn Research Center. The PSL has the capability to produce a continuous ice cloud which are ingested by the engine during operation over a range of altitude conditions. The PSL test results confirmed that there was ice accretion in the engine due to ice crystal ingestion, at the same simulated altitude operating conditions as experienced previously in

  4. Wave effects on ocean-ice interaction in the marginal ice zone

    NASA Technical Reports Server (NTRS)

    Liu, Antony K.; Hakkinen, Sirpa; Peng, Chih Y.

    1993-01-01

    The effects of wave train on ice-ocean interaction in the marginal ice zone are studied through numerical modeling. A coupled two-dimensional ice-ocean model has been developed to include wave effects and wind stress for the predictions of ice edge dynamics. The sea ice model is coupled to the reduced-gravity ocean model through interfacial stresses. The main dynamic balance in the ice momentum is between water-ice stress, wind stress, and wave radiation stresses. By considering the exchange of momentum between waves and ice pack through radiation stress for decaying waves, a parametric study of the effects of wave stress and wind stress on ice edge dynamics has been performed. The numerical results show significant effects from wave action. The ice edge is sharper, and ice edge meanders form in the marginal ice zone owing to forcing by wave action and refraction of swell system after a couple of days. Upwelling at the ice edge and eddy formation can be enhanced by the nonlinear effects of wave action; wave action sharpens the ice edge and can produce ice meandering, which enhances local Ekman pumping and pycnocline anomalies. The resulting ice concentration, pycnocline changes, and flow velocity field are shown to be consistent with previous observations.

  5. Autonomous Ice Mass Balance Buoys for Seasonal Sea Ice

    NASA Astrophysics Data System (ADS)

    Whitlock, J. D.; Planck, C.; Perovich, D. K.; Parno, J. T.; Elder, B. C.; Richter-Menge, J.; Polashenski, C. M.

    2017-12-01

    The ice mass-balance represents the integration of all surface and ocean heat fluxes and attributing the impact of these forcing fluxes on the ice cover can be accomplished by increasing temporal and spatial measurements. Mass balance information can be used to understand the ongoing changes in the Arctic sea ice cover and to improve predictions of future ice conditions. Thinner seasonal ice in the Arctic necessitates the deployment of Autonomous Ice Mass Balance buoys (IMB's) capable of long-term, in situ data collection in both ice and open ocean. Seasonal IMB's (SIMB's) are free floating IMB's that allow data collection in thick ice, thin ice, during times of transition, and even open water. The newest generation of SIMB aims to increase the number of reliable IMB's in the Arctic by leveraging inexpensive commercial-grade instrumentation when combined with specially developed monitoring hardware. Monitoring tasks are handled by a custom, expandable data logger that provides low-cost flexibility for integrating a large range of instrumentation. The SIMB features ultrasonic sensors for direct measurement of both snow depth and ice thickness and a digital temperature chain (DTC) for temperature measurements every 2cm through both snow and ice. Air temperature and pressure, along with GPS data complete the Arctic picture. Additionally, the new SIMB is more compact to maximize deployment opportunities from multiple types of platforms.

  6. Spin Ice

    NASA Astrophysics Data System (ADS)

    Bramwell, Steven T.; Gingras, Michel J. P.; Holdsworth, Peter C. W.

    2013-03-01

    Pauling's model of hydrogen disorder in water ice represents the prototype of a frustrated system. Over the years it has spawned several analogous models, including Anderson's model antiferromagnet and the statistical "vertex" models. Spin Ice is a sixteen vertex model of "ferromagnetic frustration" that is approximated by real materials, most notably the rare earth pyrochlores Ho2Ti2O7, Dy2Ti2O7 and Ho2Sn2O7. These "spin ice materials" have the Pauling zero point entropy and in all respects represent almost ideal realisations of Pauling's model. They provide experimentalists with unprecedented access to a wide variety of novel magnetic states and phase transitions that are located in different regions of the field-temperature phase diagram. They afford theoreticians the opportunity to explore many new features of the magnetic interactions and statistical mechanics of frustrated systems. This chapter is a comprehensive review of the physics -- both experimental and theoretical -- of spin ice. It starts with a discussion of the historic problem of water ice and its relation to spin ice and other frustrated magnets. The properties of spin ice are then discussed in three sections that deal with the zero field spin ice state, the numerous field-induced states (including the recently identified "kagomé ice") and the magnetic dynamics. Some materials related to spin ice are briefly described and the chapter is concluded with a short summary of spin ice physics.

  7. Trajectories of affective states in adolescent hockey players: turning point and motivational antecedents.

    PubMed

    Gaudreau, Patrick; Amiot, Catherine E; Vallerand, Robert J

    2009-03-01

    This study examined longitudinal trajectories of positive and negative affective states with a sample of 265 adolescent elite hockey players followed across 3 measurement points during the 1st 11 weeks of a season. Latent class growth modeling, incorporating a time-varying covariate and a series of predictors assessed at the onset of the season, was used to chart out distinct longitudinal trajectories of affective states. Results provided evidence for 3 trajectories of positive affect and 3 trajectories of negative affect. Two of these trajectories were deflected by team selection, a seasonal turning point occurring after the 1st measurement point. Furthermore, the trajectories of positive and negative affective states were predicted by theoretically driven predictors assessed at the start of the season (i.e., self-determination, need satisfaction, athletic identity, and school identity). These results contribute to a better understanding of the motivational, social, and identity-related processes associated with the distinct affective trajectories of athletes participating in elite sport during adolescence.

  8. Vapor deposition of water on graphitic surfaces: formation of amorphous ice, bilayer ice, ice I, and liquid water.

    PubMed

    Lupi, Laura; Kastelowitz, Noah; Molinero, Valeria

    2014-11-14

    Carbonaceous surfaces are a major source of atmospheric particles and could play an important role in the formation of ice. Here we investigate through molecular simulations the stability, metastability, and molecular pathways of deposition of amorphous ice, bilayer ice, and ice I from water vapor on graphitic and atomless Lennard-Jones surfaces as a function of temperature. We find that bilayer ice is the most stable ice polymorph for small cluster sizes, nevertheless it can grow metastable well above its region of thermodynamic stability. In agreement with experiments, the simulations predict that on increasing temperature the outcome of water deposition is amorphous ice, bilayer ice, ice I, and liquid water. The deposition nucleation of bilayer ice and ice I is preceded by the formation of small liquid clusters, which have two wetting states: bilayer pancake-like (wetting) at small cluster size and droplet-like (non-wetting) at larger cluster size. The wetting state of liquid clusters determines which ice polymorph is nucleated: bilayer ice nucleates from wetting bilayer liquid clusters and ice I from non-wetting liquid clusters. The maximum temperature for nucleation of bilayer ice on flat surfaces, T(B)(max) is given by the maximum temperature for which liquid water clusters reach the equilibrium melting line of bilayer ice as wetting bilayer clusters. Increasing water-surface attraction stabilizes the pancake-like wetting state of liquid clusters leading to larger T(B)(max) for the flat non-hydrogen bonding surfaces of this study. The findings of this study should be of relevance for the understanding of ice formation by deposition mode on carbonaceous atmospheric particles, including soot.

  9. Wave-Ice interaction in the Marginal Ice Zone: Toward a Wave-Ocean-Ice Coupled Modeling System

    DTIC Science & Technology

    2015-09-30

    MIZ using WW3 (3 frequency bins, ice retreat in August and ice advance in October); Blue (solid): Based on observations near Antarctica by Meylan...1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Wave- Ice interaction in the Marginal Ice Zone: Toward a...Wave-Ocean- Ice Coupled Modeling System W. E. Rogers Naval Research Laboratory, Code 7322 Stennis Space Center, MS 39529 phone: (228) 688-4727

  10. Mechanical sea-ice strength parameterized as a function of ice temperature

    NASA Astrophysics Data System (ADS)

    Hata, Yukie; Tremblay, Bruno

    2016-04-01

    Mechanical sea-ice strength is key for a better simulation of the timing of landlock ice onset and break-up in the Canadian Arctic Archipelago (CAA). We estimate the mechanical strength of sea ice in the CAA by analyzing the position record measured by the several buoys deployed in the CAA between 2008 and 2013, and wind data from the Canadian Meteorological Centre's Global Deterministic Prediction System (CMC_GDPS) REforecasts (CGRF). First, we calculate the total force acting on the ice using the wind data. Next, we estimate upper (lower) bounds on the sea-ice strength by identifying cases when the sea ice deforms (does not deform) under the action of a given total force. Results from this analysis show that the ice strength of landlock sea ice in the CAA is approximately 40 kN/m on the landfast ice onset (in ice growth season). Additionally, it becomes approximately 10 kN/m on the landfast ice break-up (in melting season). The ice strength decreases with ice temperature increase, which is in accord with results from Johnston [2006]. We also include this new parametrization of sea-ice strength as a function of ice temperature in a coupled slab ocean sea ice model. The results from the model with and without the new parametrization are compared with the buoy data from the International Arctic Buoy Program (IABP).

  11. Sensitivity of open-water ice growth and ice concentration evolution in a coupled atmosphere-ocean-sea ice model

    NASA Astrophysics Data System (ADS)

    Shi, Xiaoxu; Lohmann, Gerrit

    2017-09-01

    A coupled atmosphere-ocean-sea ice model is applied to investigate to what degree the area-thickness distribution of new ice formed in open water affects the ice and ocean properties. Two sensitivity experiments are performed which modify the horizontal-to-vertical aspect ratio of open-water ice growth. The resulting changes in the Arctic sea-ice concentration strongly affect the surface albedo, the ocean heat release to the atmosphere, and the sea-ice production. The changes are further amplified through a positive feedback mechanism among the Arctic sea ice, the Atlantic Meridional Overturning Circulation (AMOC), and the surface air temperature in the Arctic, as the Fram Strait sea ice import influences the freshwater budget in the North Atlantic Ocean. Anomalies in sea-ice transport lead to changes in sea surface properties of the North Atlantic and the strength of AMOC. For the Southern Ocean, the most pronounced change is a warming along the Antarctic Circumpolar Current (ACC), owing to the interhemispheric bipolar seasaw linked to AMOC weakening. Another insight of this study lies on the improvement of our climate model. The ocean component FESOM is a newly developed ocean-sea ice model with an unstructured mesh and multi-resolution. We find that the subpolar sea-ice boundary in the Northern Hemisphere can be improved by tuning the process of open-water ice growth, which strongly influences the sea ice concentration in the marginal ice zone, the North Atlantic circulation, salinity and Arctic sea ice volume. Since the distribution of new ice on open water relies on many uncertain parameters and the knowledge of the detailed processes is currently too crude, it is a challenge to implement the processes realistically into models. Based on our sensitivity experiments, we conclude a pronounced uncertainty related to open-water sea ice growth which could significantly affect the climate system sensitivity.

  12. Greenland ice sheet retreat since the Little Ice Age

    NASA Astrophysics Data System (ADS)

    Beitch, Marci J.

    Late 20th century and 21st century satellite imagery of the perimeter of the Greenland Ice Sheet (GrIS) provide high resolution observations of the ice sheet margins. Examining changes in ice margin positions over time yield measurements of GrIS area change and rates of margin retreat. However, longer records of ice sheet margin change are needed to establish more accurate predictions of the ice sheet's future response to global conditions. In this study, the trimzone, the area of deglaciated terrain along the ice sheet edge that lacks mature vegetation cover, is used as a marker of the maximum extent of the ice from its most recent major advance during the Little Ice Age. We compile recently acquired Landsat ETM+ scenes covering the perimeter of the GrIS on which we map area loss on land-, lake-, and marine-terminating margins. We measure an area loss of 13,327 +/- 830 km2, which corresponds to 0.8% shrinkage of the ice sheet. This equates to an averaged horizontal retreat of 363 +/- 69 m across the entire GrIS margin. Mapping the areas exposed since the Little Ice Age maximum, circa 1900 C.E., yields a century-scale rate of change. On average the ice sheet lost an area of 120 +/- 16 km 2/yr, or retreated at a rate of 3.3 +/- 0.7 m/yr since the LIA maximum.

  13. Wilkins Ice Shelf

    NASA Image and Video Library

    2009-04-20

    The Wilkins Ice Shelf, as seen by NASA Terra spacecraft, on the western side of the Antarctic Peninsula, experienced multiple disintegration events in 2008. By the beginning of 2009, a narrow ice bridge was all that remained to connect the ice shelf to ice fragments fringing nearby Charcot Island. That bridge gave way in early April 2009. Days after the ice bridge rupture, on April 12, 2009, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite acquired this image of the southern base of the ice bridge, where it connected with the remnant ice shelf. Although the ice bridge has played a role in stabilizing the ice fragments in the region, its rupture doesn't guarantee the ice will immediately move away. http://photojournal.jpl.nasa.gov/catalog/PIA11991

  14. A review of sea ice proxy information from polar ice cores

    NASA Astrophysics Data System (ADS)

    Abram, Nerilie J.; Wolff, Eric W.; Curran, Mark A. J.

    2013-11-01

    Sea ice plays an important role in Earth's climate system. The lack of direct indications of past sea ice coverage, however, means that there is limited knowledge of the sensitivity and rate at which sea ice dynamics are involved in amplifying climate changes. As such, there is a need to develop new proxy records for reconstructing past sea ice conditions. Here we review the advances that have been made in using chemical tracers preserved in ice cores to determine past changes in sea ice cover around Antarctica. Ice core records of sea salt concentration show promise for revealing patterns of sea ice extent particularly over glacial-interglacial time scales. In the coldest climates, however, the sea salt signal appears to lose sensitivity and further work is required to determine how this proxy can be developed into a quantitative sea ice indicator. Methane sulphonic acid (MSA) in near-coastal ice cores has been used to reconstruct quantified changes and interannual variability in sea ice extent over shorter time scales spanning the last ˜160 years, and has potential to be extended to produce records of Antarctic sea ice changes throughout the Holocene. However the MSA ice core proxy also requires careful site assessment and interpretation alongside other palaeoclimate indicators to ensure reconstructions are not biased by non-sea ice factors, and we summarise some recommended strategies for the further development of sea ice histories from ice core MSA. For both proxies the limited information about the production and transfer of chemical markers from the sea ice zone to the Antarctic ice sheets remains an issue that requires further multidisciplinary study. Despite some exploratory and statistical work, the application of either proxy as an indicator of sea ice change in the Arctic also remains largely unknown. As information about these new ice core proxies builds, so too does the potential to develop a more comprehensive understanding of past changes in sea

  15. Ice recrystallization inhibition in ice cream by propylene glycol monostearate.

    PubMed

    Aleong, J M; Frochot, S; Goff, H D

    2008-11-01

    The effectiveness of propylene glycol monostearate (PGMS) to inhibit ice recrystallization was evaluated in ice cream and frozen sucrose solutions. PGMS (0.3%) dramatically reduced ice crystal sizes in ice cream and in sucrose solutions frozen in a scraped-surface freezer before and after heat shock, but had no effect in quiescently frozen solutions. PGMS showed limited emulsifier properties by promoting smaller fat globule size distributions and enhanced partial coalescence in the mix and ice cream, respectively, but at a much lower level compared to conventional ice cream emulsifier. Low temperature scanning electron microscopy revealed highly irregular crystal morphology in both ice cream and sucrose solutions frozen in a scraped-surface freezer. There was strong evidence to suggest that PGMS directly interacts with ice crystals and interferes with normal surface propagation. Shear during freezing may be required for its distribution around the ice and sufficient surface coverage.

  16. Arctic ice islands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sackinger, W.M.; Jeffries, M.O.; Lu, M.C.

    1988-01-01

    The development of offshore oil and gas resources in the Arctic waters of Alaska requires offshore structures which successfully resist the lateral forces due to moving, drifting ice. Ice islands are floating, a tabular icebergs, up to 60 meters thick, of solid ice throughout their thickness. The ice islands are thus regarded as the strongest ice features in the Arctic; fixed offshore structures which can directly withstand the impact of ice islands are possible but in some locations may be so expensive as to make oilfield development uneconomic. The resolution of the ice island problem requires two research steps: (1)more » calculation of the probability of interaction between an ice island and an offshore structure in a given region; and (2) if the probability if sufficiently large, then the study of possible interactions between ice island and structure, to discover mitigative measures to deal with the moving ice island. The ice island research conducted during the 1983-1988 interval, which is summarized in this report, was concerned with the first step. Monte Carlo simulations of ice island generation and movement suggest that ice island lifetimes range from 0 to 70 years, and that 85% of the lifetimes are less then 35 years. The simulation shows a mean value of 18 ice islands present at any time in the Arctic Ocean, with a 90% probability of less than 30 ice islands. At this time, approximately 34 ice islands are known, from observations, to exist in the Arctic Ocean, not including the 10-meter thick class of ice islands. Return interval plots from the simulation show that coastal zones of the Beaufort and Chukchi Seas, already leased for oil development, have ice island recurrences of 10 to 100 years. This implies that the ice island hazard must be considered thoroughly, and appropriate safety measures adopted, when offshore oil production plans are formulated for the Alaskan Arctic offshore. 132 refs., 161 figs., 17 tabs.« less

  17. Icing Cloud Calibration of the NASA Glenn Icing Research Tunnel

    NASA Technical Reports Server (NTRS)

    Ide, Robert F.; Oldenburg, John R.

    2001-01-01

    The icing research tunnel at the NASA Glenn Research Center underwent a major rehabilitation in 1999, necessitating recalibration of the icing clouds. This report describes the methods used in the recalibration, including the procedure used to establish a uniform icing cloud and the use of a standard icing blade technique for measurement of liquid water content. The instruments and methods used to perform the droplet size calibration are also described. The liquid water content/droplet size operating envelopes of the icing tunnel are shown for a range of airspeeds and compared to the FAA icing certification criteria. The capabilities of the IRT to produce large droplet icing clouds is also detailed.

  18. Interaction of ice binding proteins with ice, water and ions.

    PubMed

    Oude Vrielink, Anneloes S; Aloi, Antonio; Olijve, Luuk L C; Voets, Ilja K

    2016-03-19

    Ice binding proteins (IBPs) are produced by various cold-adapted organisms to protect their body tissues against freeze damage. First discovered in Antarctic fish living in shallow waters, IBPs were later found in insects, microorganisms, and plants. Despite great structural diversity, all IBPs adhere to growing ice crystals, which is essential for their extensive repertoire of biological functions. Some IBPs maintain liquid inclusions within ice or inhibit recrystallization of ice, while other types suppress freezing by blocking further ice growth. In contrast, ice nucleating proteins stimulate ice nucleation just below 0 °C. Despite huge commercial interest and major scientific breakthroughs, the precise working mechanism of IBPs has not yet been unraveled. In this review, the authors outline the state-of-the-art in experimental and theoretical IBP research and discuss future scientific challenges. The interaction of IBPs with ice, water and ions is examined, focusing in particular on ice growth inhibition mechanisms.

  19. Possible Mechanisms for Turbofan Engine Ice Crystal Icing at High Altitude

    NASA Technical Reports Server (NTRS)

    Tsao, Jen-Ching; Struk, Peter M.; Oliver, Michael

    2014-01-01

    A thermodynamic model is presented to describe possible mechanisms of ice formation on unheated surfaces inside a turbofan engine compression system from fully glaciated ice crystal clouds often formed at high altitude near deep convective weather systems. It is shown from the analysis that generally there could be two distinct types of ice formation: (1) when the "surface freezing fraction" is in the range of 0 to 1, dominated by the freezing of water melt from fully or partially melted ice crystals, the ice structure is formed from accretion with strong adhesion to the surface, and (2) when the "surface melting fraction" is the range of 0 to 1, dominated by the further melting of ice crystals, the ice structure is formed from accumulation of un-melted ice crystals with relatively weak bonding to the surface. The model captures important qualitative trends of the fundamental ice-crystal icing phenomenon reported earlier1,2 from the research collaboration work by NASA and the National Research Council (NRC) of Canada. Further, preliminary analysis of test data from the 2013 full scale turbofan engine ice crystal icing test3 conducted in the NASA Glenn Propulsion Systems Laboratory (PSL) has also suggested that (1) both types of ice formation occurred during the test, and (2) the model has captured some important qualitative trend of turning on (or off) the ice crystal ice formation process in the tested engine low pressure compressor (LPC) targeted area under different icing conditions that ultimately would lead to (or suppress) an engine core roll back (RB) event.

  20. Possible Mechanisms for Turbofan Engine Ice Crystal Icing at High Altitude

    NASA Technical Reports Server (NTRS)

    Tsao, Jen-Ching; Struk, Peter M.; Oliver, Michael J.

    2016-01-01

    A thermodynamic model is presented to describe possible mechanisms of ice formation on unheated surfaces inside a turbofan engine compression system from fully glaciated ice crystal clouds often formed at high altitude near deep convective weather systems. It is shown from the analysis that generally there could be two distinct types of ice formation: (1) when the "surface freezing fraction" is in the range of 0 to 1, dominated by the freezing of water melt from fully or partially melted ice crystals, the ice structure is formed from accretion with strong adhesion to the surface, and (2) when the "surface melting fraction" is the range of 0 to 1, dominated by the further melting of ice crystals, the ice structure is formed from accumulation of un-melted ice crystals with relatively weak bonding to the surface. The model captures important qualitative trends of the fundamental ice-crystal icing phenomenon reported earlier (Refs. 1 and 2) from the research collaboration work by NASA and the National Research Council (NRC) of Canada. Further, preliminary analysis of test data from the 2013 full scale turbofan engine ice crystal icing test (Ref. 3) conducted in the NASA Glenn Propulsion Systems Laboratory (PSL) has also suggested that (1) both types of ice formation occurred during the test, and (2) the model has captured some important qualitative trend of turning on (or off) the ice crystal ice formation process in the tested engine low pressure compressor (LPC) targeted area under different icing conditions that ultimately would lead to (or suppress) an engine core roll back (RB) event.

  1. Sea ice roughness: the key for predicting Arctic summer ice albedo

    NASA Astrophysics Data System (ADS)

    Landy, J.; Ehn, J. K.; Tsamados, M.; Stroeve, J.; Barber, D. G.

    2017-12-01

    Although melt ponds on Arctic sea ice evolve in stages, ice with smoother surface topography typically allows the pond water to spread over a wider area, reducing the ice-albedo and accelerating further melt. Building on this theory, we simulated the distribution of meltwater on a range of statistically-derived topographies to develop a quantitative relationship between premelt sea ice surface roughness and summer ice albedo. Our method, previously applied to ICESat observations of the end-of-winter sea ice roughness, could account for 85% of the variance in AVHRR observations of the summer ice-albedo [Landy et al., 2015]. Consequently, an Arctic-wide reduction in sea ice roughness over the ICESat operational period (from 2003 to 2008) explained a drop in ice-albedo that resulted in a 16% increase in solar heat input to the sea ice cover. Here we will review this work and present new research linking pre-melt sea ice surface roughness observations from Cryosat-2 to summer sea ice albedo over the past six years, examining the potential of winter roughness as a significant new source of sea ice predictability. We will further evaluate the possibility for high-resolution (kilometre-scale) forecasts of summer sea ice albedo from waveform-level Cryosat-2 roughness data in the landfast sea ice zone of the Canadian Arctic. Landy, J. C., J. K. Ehn, and D. G. Barber (2015), Albedo feedback enhanced by smoother Arctic sea ice, Geophys. Res. Lett., 42, 10,714-10,720, doi:10.1002/2015GL066712.

  2. Mechanisms of Team-Sport-Related Brain Injuries in Children 5 to 19 Years Old: Opportunities for Prevention

    PubMed Central

    Cusimano, Michael D.; Cho, Newton; Amin, Khizer; Shirazi, Mariam; McFaull, Steven R.; Do, Minh T.; Wong, Matthew C.; Russell, Kelly

    2013-01-01

    Background There is a gap in knowledge about the mechanisms of sports-related brain injuries. The objective of this study was to determine the mechanisms of brain injuries among children and youth participating in team sports. Methods We conducted a retrospective case series of brain injuries suffered by children participating in team sports. The Canadian Hospitals Injury Reporting and Prevention Program (CHIRPP) database was searched for brain injury cases among 5–19 year-olds playing ice hockey, soccer, American football (football), basketball, baseball, or rugby between 1990 and 2009. Mechanisms of injury were classified as “struck by player,” “struck by object,” “struck by sport implement,” “struck surface,” and “other.” A descriptive analysis was performed. Results There were 12,799 brain injuries related to six team sports (16.2% of all brain injuries registered in CHIRPP). Males represented 81% of injuries and the mean age was 13.2 years. Ice hockey accounted for the greatest number of brain injuries (44.3%), followed by soccer (19.0%) and football (12.9%). In ice hockey, rugby, and basketball, striking another player was the most common injury mechanism. Football, basketball, and soccer also demonstrated high proportions of injuries due to contact with an object (e.g., post) among younger players. In baseball, a common mechanism in the 5–9 year-old group was being hit with a bat as a result of standing too close to the batter (26.1% males, 28.3% females). Interpretation Many sports-related brain injury mechanisms are preventable. The results suggest that further efforts aimed at universal rule changes, safer playing environments, and the education of coaches, players, and parents should be targeted in maximizing prevention of sport-related brain injury using a multifaceted approach. PMID:23555602

  3. ICE911 Research: Preserving and Rebuilding Reflective Ice

    NASA Astrophysics Data System (ADS)

    Field, L. A.; Chetty, S.; Manzara, A.; Venkatesh, S.

    2014-12-01

    We have developed a localized surface albedo modification technique that shows promise as a method to increase reflective multi-year ice using floating materials, chosen so as to have low subsidiary environmental impact. It is now well-known that multi-year reflective ice has diminished rapidly in the Arctic over the past 3 decades and this plays a part in the continuing rapid decrease of summer-time ice. As summer-time bright ice disappears, the Arctic is losing its ability to reflect summer insolation, and this has widespread climatic effects, as well as a direct effect on sea level rise, as oceans heat and once-land-based ice melts into the sea. We have tested the albedo modification technique on a small scale over six Winter/Spring seasons at sites including California's Sierra Nevada Mountains, a Canadian lake, and a small man-made lake in Minnesota, using various materials and an evolving array of instrumentation. The materials can float and can be made to minimize effects on marine habitat and species. The instrumentation is designed to be deployed in harsh and remote locations. Localized snow and ice preservation, and reductions in water heating, have been quantified in small-scale testing. We have continued to refine our material and deployment approaches, and we have had laboratory confirmation by NASA. In the field, the materials were successfully deployed to shield underlying snow and ice from melting; applications of granular materials remained stable in the face of local wind and storms. We are evaluating the effects of snow and ice preservation for protection of infrastructure and habitat stabilization, and we are concurrently developing our techniques to aid in water conservation. Localized albedo modification options such as those being studied in this work may act to preserve ice, glaciers, permafrost and seasonal snow areas, and perhaps aid natural ice formation processes. If this method is deployed on a large enough scale, it could conceivably

  4. Ocean-ice interaction in the marginal ice zone

    NASA Technical Reports Server (NTRS)

    Liu, Antony K.; Peng, Chich Y.

    1994-01-01

    Ocean ice interaction processes in the Marginal Ice Zone (MIZ) by wind, waves, and mesoscale features, such as upwelling and eddies, are studied using ERS-1 Synthetic Aperture Radar (SAR) images and ocean ice interaction model. A sequence of SAR images of the Chukchi Sea MIZ with three days interval are studied for ice edge advance/retreat. Simultaneous current measurements from the northeast Chukchi Sea as well as the Barrow wind record are used to interpret the MIZ dynamics.

  5. Understanding Ice Shelf Basal Melting Using Convergent ICEPOD Data Sets: ROSETTA-Ice Study of Ross Ice Shelf

    NASA Astrophysics Data System (ADS)

    Bell, R. E.; Frearson, N.; Tinto, K. J.; Das, I.; Fricker, H. A.; Siddoway, C. S.; Padman, L.

    2017-12-01

    The future stability of the ice shelves surrounding Antarctica will be susceptible to increases in both surface and basal melt as the atmosphere and ocean warm. The ROSETTA-Ice program is targeted at using the ICEPOD airborne technology to produce new constraints on Ross Ice Shelf, the underlying ocean, bathymetry, and geologic setting, using radar sounding, gravimetry and laser altimetry. This convergent approach to studying the ice-shelf and basal processes enables us to develop an understanding of the fundamental controls on ice-shelf evolution. This work leverages the stratigraphy of the ice shelf, which is detected as individual reflectors by the shallow-ice radar and is often associated with surface scour, form close to the grounding line or pinning points on the ice shelf. Surface accumulation on the ice shelf buries these reflectors as the ice flows towards the calving front. This distinctive stratigraphy can be traced across the ice shelf for the major East Antarctic outlet glaciers and West Antarctic ice streams. Changes in the ice thickness below these reflectors are a result of strain and basal melting and freezing. Correcting the estimated thickness changes for strain using RIGGS strain measurements, we can develop decadal-resolution flowline distributions of basal melt. Close to East Antarctica elevated melt-rates (>1 m/yr) are found 60-100 km from the calving front. On the West Antarctic side high melt rates primarily develop within 10 km of the calving front. The East Antarctic side of Ross Ice Shelf is dominated by melt driven by saline water masses that develop in Ross Sea polynyas, while the melting on the West Antarctic side next to Hayes Bank is associated with modified Continental Deep Water transported along the continental shelf. The two sides of Ross Ice Shelf experience differing basal melt in part due to the duality in the underlying geologic structure: the East Antarctic side consists of relatively dense crust, with low amplitude

  6. Floating ice-algal aggregates below melting arctic sea ice.

    PubMed

    Assmy, Philipp; Ehn, Jens K; Fernández-Méndez, Mar; Hop, Haakon; Katlein, Christian; Sundfjord, Arild; Bluhm, Katrin; Daase, Malin; Engel, Anja; Fransson, Agneta; Granskog, Mats A; Hudson, Stephen R; Kristiansen, Svein; Nicolaus, Marcel; Peeken, Ilka; Renner, Angelika H H; Spreen, Gunnar; Tatarek, Agnieszka; Wiktor, Jozef

    2013-01-01

    During two consecutive cruises to the Eastern Central Arctic in late summer 2012, we observed floating algal aggregates in the melt-water layer below and between melting ice floes of first-year pack ice. The macroscopic (1-15 cm in diameter) aggregates had a mucous consistency and were dominated by typical ice-associated pennate diatoms embedded within the mucous matrix. Aggregates maintained buoyancy and accumulated just above a strong pycnocline that separated meltwater and seawater layers. We were able, for the first time, to obtain quantitative abundance and biomass estimates of these aggregates. Although their biomass and production on a square metre basis was small compared to ice-algal blooms, the floating ice-algal aggregates supported high levels of biological activity on the scale of the individual aggregate. In addition they constituted a food source for the ice-associated fauna as revealed by pigments indicative of zooplankton grazing, high abundance of naked ciliates, and ice amphipods associated with them. During the Arctic melt season, these floating aggregates likely play an important ecological role in an otherwise impoverished near-surface sea ice environment. Our findings provide important observations and measurements of a unique aggregate-based habitat during the 2012 record sea ice minimum year.

  7. Floating Ice-Algal Aggregates below Melting Arctic Sea Ice

    PubMed Central

    Assmy, Philipp; Ehn, Jens K.; Fernández-Méndez, Mar; Hop, Haakon; Katlein, Christian; Sundfjord, Arild; Bluhm, Katrin; Daase, Malin; Engel, Anja; Fransson, Agneta; Granskog, Mats A.; Hudson, Stephen R.; Kristiansen, Svein; Nicolaus, Marcel; Peeken, Ilka; Renner, Angelika H. H.; Spreen, Gunnar; Tatarek, Agnieszka; Wiktor, Jozef

    2013-01-01

    During two consecutive cruises to the Eastern Central Arctic in late summer 2012, we observed floating algal aggregates in the melt-water layer below and between melting ice floes of first-year pack ice. The macroscopic (1-15 cm in diameter) aggregates had a mucous consistency and were dominated by typical ice-associated pennate diatoms embedded within the mucous matrix. Aggregates maintained buoyancy and accumulated just above a strong pycnocline that separated meltwater and seawater layers. We were able, for the first time, to obtain quantitative abundance and biomass estimates of these aggregates. Although their biomass and production on a square metre basis was small compared to ice-algal blooms, the floating ice-algal aggregates supported high levels of biological activity on the scale of the individual aggregate. In addition they constituted a food source for the ice-associated fauna as revealed by pigments indicative of zooplankton grazing, high abundance of naked ciliates, and ice amphipods associated with them. During the Arctic melt season, these floating aggregates likely play an important ecological role in an otherwise impoverished near-surface sea ice environment. Our findings provide important observations and measurements of a unique aggregate-based habitat during the 2012 record sea ice minimum year. PMID:24204642

  8. Ross Ice Shelf, Antarctic Ice and Clouds

    NASA Technical Reports Server (NTRS)

    1991-01-01

    In this view of Antarctic ice and clouds, (56.5S, 152.0W), the Ross Ice Shelf of Antarctica is almost totally clear, showing stress cracks in the ice surface caused by wind and tidal drift. Clouds on the eastern edge of the picture are associated with an Antarctic cyclone. Winds stirred up these storms have been known to reach hurricane force.

  9. Analytical ice shape predictions for flight in natural icing conditions

    NASA Technical Reports Server (NTRS)

    Berkowitz, Brian M.; Riley, James T.

    1988-01-01

    LEWICE is an analytical ice prediction code that has been evaluated against icing tunnel data, but on a more limited basis against flight data. Ice shapes predicted by LEWICE is compared with experimental ice shapes accreted on the NASA Lewis Icing Research Aircraft. The flight data selected for comparison includes liquid water content recorded using a hot wire device and droplet distribution data from a laser spectrometer; the ice shape is recorded using stereo photography. The main findings are as follows: (1) An equivalent sand grain roughness correlation different from that used for LEWICE tunnel comparisons must be employed to obtain satisfactory results for flight; (2) Using this correlation and making no other changes in the code, the comparisons to ice shapes accreted in flight are in general as good as the comparisons to ice shapes accreted in the tunnel (as in the case of tunnel ice shapes, agreement is least reliable for large glaze ice shapes at high angles of attack); (3) In some cases comparisons can be somewhat improved by utilizing the code so as to take account of the variation of parameters such as liquid water content, which may vary significantly in flight.

  10. Large Ice Discharge From the Greenland Ice Sheet

    NASA Technical Reports Server (NTRS)

    Rignot, Eric

    1999-01-01

    The objectives of this work are to measure the ice discharge of the Greenland Ice Sheet close to the grounding line and/or calving front, and compare the results with mass accumulation and ablation in the interior to estimate the ice sheet mass balance.

  11. Body composition in male elite athletes, comparison of bioelectrical impedance spectroscopy with dual energy X-ray absorptiometry

    PubMed Central

    Svantesson, Ulla; Zander, Martina; Klingberg, Sofia; Slinde, Frode

    2008-01-01

    Background The aim of this study was to compare body composition results from bioelectrical spectroscopy (BIS) with results from dual energy X-ray absorptiometry (DXA) in a population of male elite athletes. Body composition was assessed using DXA (Lunar Prodigy, GE Lunar Corp., Madison, USA) and BIS (Hydra 4200, Xitron Technologies Inc, San Diego, California, USA) at the same occasion. Agreement between methods was assessed using paired t-tests and agreement-plots. Results Thirty-three male elite athletes (soccer and ice hockey) were included in the study. The results showed that BIS underestimates the proportion of fat mass by 4.6% points in the ice hockey players. In soccer players the BIS resulted in a lower mean fat mass by 1.1% points. Agreement between the methods at the individual level was highly variable. Conclusion Body composition results assessed by BIS in elite athletes should be interpreted with caution, especially in individual subjects. BIS may present values of fat mass that is either higher or lower than fat mass assessed by DXA, independent of true fat content of the individual. PMID:18211680

  12. Polar Ice Caps: a Canary for the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Honsaker, W.; Lowell, T. V.; Sagredo, E.; Kelly, M. A.; Hall, B. L.

    2010-12-01

    Ice caps are glacier masses that are highly sensitive to climate change. Because of their hypsometry they can have a binary state. When relatively slight changes in the equilibrium line altitude (ELA) either intersect or rise above the land the ice can become established or disappear. Thus these upland ice masses have a fast response time. Here we consider a way to extract the ELA signal from independent ice caps adjacent to the Greenland Ice Sheet margin. It may be that these ice caps are sensitive trackers of climate change that also impact the ice sheet margin. One example is the Istorvet Ice Cap located in Liverpool Land, East Greenland (70.881°N, 22.156°W). The ice cap topography and the underlying bedrock surface dips to the north, with peak elevation of the current ice ranging in elevation from 1050 to 745 m.a.s.l. On the eastern side of the ice mass the outlet glaciers extending down to sea level. The western margin has several small lobes in topographic depressions, with the margin reaching down to 300 m.a.s.l. Topographic highs separate the ice cap into at least 5 main catchments, each having a pair of outlet lobes toward either side of the ice cap. Because of the regional bedrock slope each catchment has its own elevation range. Therefore, as the ELA changes it is possible for some catchments of the ice cap to experience positive mass balance while others have a negative balance. Based on weather observations we estimate the present day ELA to be ~1000 m.a.s.l, meaning mass balance is negative for the majority of the ice cap. By tracking glacier presence/absence in these different catchments, we can reconstruct small changes in the ELA. Another example is the High Ice Cap (informal name) in Milne Land (70.903°N, 25.626°W, 1080 m), East Greenland. Here at least 4 unconformities in ice layers found near the southern margin of the ice cap record changing intervals of accumulation and ablation. Therefore, this location may also be sensitive to slight

  13. Broken ice

    NASA Image and Video Library

    2017-12-08

    An area of broken glacier ice seen from the IceBridge DC-8 on Oct. 22, 2012. Credit: NASA / George Hale NASA's Operation IceBridge is an airborne science mission to study Earth's polar ice. For more information about IceBridge, visit: www.nasa.gov/icebridge NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  14. An Examination of the Sea Ice Rheology for Seasonal Ice Zones Based on Ice Drift and Thickness Observations

    NASA Astrophysics Data System (ADS)

    Toyota, Takenobu; Kimura, Noriaki

    2018-02-01

    The validity of the sea ice rheological model formulated by Hibler (1979), which is widely used in present numerical sea ice models, is examined for the Sea of Okhotsk as an example of the seasonal ice zone (SIZ), based on satellite-derived sea ice velocity, concentration and thickness. Our focus was the formulation of the yield curve, the shape of which can be estimated from ice drift pattern based on the energy equation of deformation, while the strength of the ice cover that determines its magnitude was evaluated using ice concentration and thickness data. Ice drift was obtained with a grid spacing of 37.5 km from the AMSR-E 89 GHz brightness temperature using a maximum cross-correlation method. The ice thickness was obtained with a spatial resolution of 100 m from a regression of the PALSAR backscatter coefficients with ice thickness. To assess scale dependence, the ice drift data derived from a coastal radar covering a 70 km range in the southernmost Sea of Okhotsk were similarly analyzed. The results obtained were mostly consistent with Hibler's formulation that was based on the Arctic Ocean on both scales with no dependence on a time scale, and justify the treatment of sea ice as a plastic material, with an elliptical shaped yield curve to some extent. However, it also highlights the difficulty in parameterizing sub-grid scale ridging in the model because grid scale ice velocities reduce the deformation magnitude by half due to the large variation of the deformation field in the SIZ.

  15. Preliminary Evaluation of Altitude Scaling for Turbofan Engine Ice Crystal Icing

    NASA Technical Reports Server (NTRS)

    Tsao, Jen-Ching

    2017-01-01

    Preliminary evaluation of altitude scaling for turbofan engine ice crystal icing simulation was conducted during the 2015 LF11 engine icing test campaign in PSL.The results showed that a simplified approach for altitude scaling to simulate the key reference engine ice growth feature and associated icing effects to the engine is possible. But special considerations are needed to address the facility operation limitation for lower altitude engine icing simulation.

  16. Characterization of Ice Roughness Variations in Scaled Glaze Icing Conditions

    NASA Technical Reports Server (NTRS)

    McClain, Stephen T.; Vargas, Mario; Tsao, Jen-Ching

    2016-01-01

    Because of the significant influence of surface tension in governing the stability and breakdown of the liquid film in flooded stagnation regions of airfoils exposed to glaze icing conditions, the Weber number is expected to be a significant parameter governing the formation and evolution of ice roughness. To investigate the influence of the Weber number on roughness formation, 53.3-cm (21-in.) and 182.9-cm (72-in.) NACA 0012 airfoils were exposed to flow conditions with essentially the same Weber number and varying stagnation collection efficiency to illuminate similarities of the ice roughness created on the different airfoils. The airfoils were exposed to icing conditions in the Icing Research Tunnel (IRT) at the NASA Glenn Research Center. Following exposure to the icing event, the airfoils were then scanned using a ROMER Absolute Arm scanning system. The resulting point clouds were then analyzed using the self-organizing map approach of McClain and Kreeger (2013) to determine the spatial roughness variations along the surfaces of the iced airfoils. The roughness characteristics on each airfoil were then compared using the relative geometries of the airfoil. The results indicate that features of the ice shape and roughness such as glaze-ice plateau limits and maximum airfoil roughness were captured well by Weber number and collection efficiency scaling of glaze icing conditions. However, secondary ice roughness features relating the instability and waviness of the liquid film on the glaze-ice plateau surface are scaled based on physics that were not captured by the local collection efficiency variations.

  17. Dark ice dynamics of the south-west Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Tedstone, Andrew J.; Bamber, Jonathan L.; Cook, Joseph M.; Williamson, Christopher J.; Fettweis, Xavier; Hodson, Andrew J.; Tranter, Martyn

    2017-11-01

    Runoff from the Greenland Ice Sheet (GrIS) has increased in recent years due largely to changes in atmospheric circulation and atmospheric warming. Albedo reductions resulting from these changes have amplified surface melting. Some of the largest declines in GrIS albedo have occurred in the ablation zone of the south-west sector and are associated with the development of dark ice surfaces. Field observations at local scales reveal that a variety of light-absorbing impurities (LAIs) can be present on the surface, ranging from inorganic particulates to cryoconite materials and ice algae. Meanwhile, satellite observations show that the areal extent of dark ice has varied significantly between recent successive melt seasons. However, the processes that drive such large interannual variability in dark ice extent remain essentially unconstrained. At present we are therefore unable to project how the albedo of bare ice sectors of the GrIS will evolve in the future, causing uncertainty in the projected sea level contribution from the GrIS over the coming decades. Here we use MODIS satellite imagery to examine dark ice dynamics on the south-west GrIS each year from 2000 to 2016. We quantify dark ice in terms of its annual extent, duration, intensity and timing of first appearance. Not only does dark ice extent vary significantly between years but so too does its duration (from 0 to > 80 % of June-July-August, JJA), intensity and the timing of its first appearance. Comparison of dark ice dynamics with potential meteorological drivers from the regional climate model MAR reveals that the JJA sensible heat flux, the number of positive minimum-air-temperature days and the timing of bare ice appearance are significant interannual synoptic controls. We use these findings to identify the surface processes which are most likely to explain recent dark ice dynamics. We suggest that whilst the spatial distribution of dark ice is best explained by outcropping of particulates from

  18. IceCube

    Science.gov Websites

    Press and Public Interest IceCube Acronym Dictionary Articles about IceCube "Inside Story the End of the Earth" LBNL CRD Report Education/ Public Interest A New Window on the Universe Ice

  19. A coupled ice-ocean model of upwelling in the marginal ice zone

    NASA Technical Reports Server (NTRS)

    Roed, L. P.; Obrien, J. J.

    1983-01-01

    A dynamical coupled ice-ocean numerical model for the marginal ice zone (MIZ) is suggested and used to study upwelling dynamics in the MIZ. The nonlinear sea ice model has a variable ice concentration and includes internal ice stress. The model is forced by stresses on the air/ocean and air/ice surfaces. The main coupling between the ice and the ocean is in the form of an interfacial stress on the ice/ocean interface. The ocean model is a linear reduced gravity model. The wind stress exerted by the atmosphere on the ocean is proportional to the fraction of open water, while the interfacial stress ice/ocean is proportional to the concentration of ice. A new mechanism for ice edge upwelling is suggested based on a geostrophic equilibrium solution for the sea ice medium. The upwelling reported in previous models invoking a stationary ice cover is shown to be replaced by a weak downwelling due to the ice motion. Most of the upwelling dynamics can be understood by analysis of the divergence of the across ice edge upper ocean transport. On the basis of numerical model, an analytical model is suggested that reproduces most of the upwelling dynamics of the more complex numerical model.

  20. Mixed Phase Modeling in GlennICE with Application to Engine Icing

    NASA Technical Reports Server (NTRS)

    Wright, William B.; Jorgenson, Philip C. E.; Veres, Joseph P.

    2011-01-01

    A capability for modeling ice crystals and mixed phase icing has been added to GlennICE. Modifications have been made to the particle trajectory algorithm and energy balance to model this behavior. This capability has been added as part of a larger effort to model ice crystal ingestion in aircraft engines. Comparisons have been made to four mixed phase ice accretions performed in the Cox icing tunnel in order to calibrate an ice erosion model. A sample ice ingestion case was performed using the Energy Efficient Engine (E3) model in order to illustrate current capabilities. Engine performance characteristics were supplied using the Numerical Propulsion System Simulation (NPSS) model for this test case.

  1. Sea ice ecosystems.

    PubMed

    Arrigo, Kevin R

    2014-01-01

    Polar sea ice is one of the largest ecosystems on Earth. The liquid brine fraction of the ice matrix is home to a diverse array of organisms, ranging from tiny archaea to larger fish and invertebrates. These organisms can tolerate high brine salinity and low temperature but do best when conditions are milder. Thriving ice algal communities, generally dominated by diatoms, live at the ice/water interface and in recently flooded surface and interior layers, especially during spring, when temperatures begin to rise. Although protists dominate the sea ice biomass, heterotrophic bacteria are also abundant. The sea ice ecosystem provides food for a host of animals, with crustaceans being the most conspicuous. Uneaten organic matter from the ice sinks through the water column and feeds benthic ecosystems. As sea ice extent declines, ice algae likely contribute a shrinking fraction of the total amount of organic matter produced in polar waters.

  2. Heavy Metal Presence in Two Different Types of Ice Cream: Artisanal Ice Cream (Italian Gelato) and Industrial Ice Cream.

    PubMed

    Conficoni, D; Alberghini, L; Bissacco, E; Ferioli, M; Giaccone, V

    2017-03-01

    Ice cream, a popular product worldwide, is usually a milk-based product with other types of ingredients (fruit, eggs, cocoa, dried fruit, additives, and others). Different materials are used to obtain the desired taste, texture, consistency, and appearance of the final product. This study surveyed ice cream products available in Italy for heavy metals (lead, cadmium, chromium, tin, and arsenic). The differences between artisanal and industrial ice cream were also investigated because of the importance in the Italian diet and the diffusion of this ready-to-eat food. Ice cream sampling was performed between October 2010 and February 2011 in the northeast of Italy. A total of 100 samples were randomly collected from different sources: 50 industrial samples produced by 19 different brands were collected in coffee bars and supermarkets; 50 artisanal ice cream samples were gathered at nine different artisanal ice cream shops. Ten wooden sticks of industrial ice cream were analyzed in parallel to the ice cream. All samples were negative for arsenic and mercury. None of the artisanal ice cream samples were positive for lead and tin; 18% of the industrial ice cream samples were positive. All positive lead samples were higher than the legal limit stated for milk (0.02 mg/kg). All industrial ice cream samples were negative for cadmium, but cadmium was present in 10% of the artisanal ice cream samples. Chromium was found in 26% of the artisanal and in 58% of the industrial ice cream samples. The heavy metals found in the wooden sticks were different from the corresponding ice cream, pointing out the lack of cross-contamination between the products. Considering the results and the amount of ice cream consumed during the year, contamination through ice cream is a low risk for the Italian population, even though there is need for further analysis.

  3. The response of grounded ice to ocean temperature forcing in a coupled ice sheet-ice shelf-ocean cavity model

    NASA Astrophysics Data System (ADS)

    Goldberg, D. N.; Little, C. M.; Sergienko, O. V.; Gnanadesikan, A.

    2010-12-01

    Ice shelves provide a pathway for the heat content of the ocean to influence continental ice sheets. Changes in the rate or location of basal melting can alter their geometry and effect changes in stress conditions at the grounding line, leading to a grounded ice response. Recent observations of ice streams and ice shelves in the Amundsen Sea sector of West Antarctica have been consistent with this story. On the other hand, ice dynamics in the grounding zone control flux into the shelf and thus ice shelf geometry, which has a strong influence on the circulation in the cavity beneath the shelf. Thus the coupling between the two systems, ocean and ice sheet-ice shelf, can be quite strong. We examine the response of the ice sheet-ice shelf-ocean cavity system to changes in ocean temperature using a recently developed coupled model. The coupled model consists a 3-D ocean model (GFDL's Generalized Ocean Layered Dynamics model, or GOLD) to a two-dimensional ice sheet-ice shelf model (Goldberg et al, 2009), and allows for changing cavity geometry and a migrating grounding line. Steady states of the coupled system are found even under considerable forcing. The ice shelf morphology and basal melt rate patterns of the steady states exhibit detailed structure, and furthermore seem to be unique and robust. The relationship between temperature forcing and area-averaged melt rate is influenced by the response of ice shelf morphology to thermal forcing, and is found to be sublinear in the range of forcing considered. However, results suggest that area-averaged melt rate is not the best predictor of overall system response, as grounding line stability depends on local aspects of the basal melt field. Goldberg, D N, D M Holland and C G Schoof, 2009. Grounding line movement and ice shelf buttressing in marine ice sheets, Journal of Geophysical Research-Earth Surfaces, 114, F04026.

  4. Breakup of Pack Ice, Antarctic Ice Shelf

    NASA Image and Video Library

    1991-09-18

    STS048-152-007 (12-18 Sept 1991) --- The periphery of the Antarctic ice shelf and the Antarctic Peninsula were photographed by the STS 48 crew members. Strong offshore winds, probably associated with katabatic winds from the interior of the continent, are peeling off the edges of the ice shelf into ribbons of sea ice, icebergs, bergy bits and growlers into the cold waters of the circum-Antarctic southern ocean.

  5. Boreal pollen contain ice-nucleating as well as ice-binding ‘antifreeze’ polysaccharides

    NASA Astrophysics Data System (ADS)

    Dreischmeier, Katharina; Budke, Carsten; Wiehemeier, Lars; Kottke, Tilman; Koop, Thomas

    2017-02-01

    Ice nucleation and growth is an important and widespread environmental process. Accordingly, nature has developed means to either promote or inhibit ice crystal formation, for example ice-nucleating proteins in bacteria or ice-binding antifreeze proteins in polar fish. Recently, it was found that birch pollen release ice-nucleating macromolecules when suspended in water. Here we show that birch pollen washing water exhibits also ice-binding properties such as ice shaping and ice recrystallization inhibition, similar to antifreeze proteins. We present spectroscopic evidence that both the ice-nucleating as well as the ice-binding molecules are polysaccharides bearing carboxylate groups. The spectra suggest that both polysaccharides consist of very similar chemical moieties, but centrifugal filtration indicates differences in molecular size: ice nucleation occurs only in the supernatant of a 100 kDa filter, while ice shaping is strongly enhanced in the filtrate. This finding may suggest that the larger ice-nucleating polysaccharides consist of clusters of the smaller ice-binding polysaccharides, or that the latter are fragments of the ice-nucleating polysaccharides. Finally, similar polysaccharides released from pine and alder pollen also display both ice-nucleating as well as ice-binding ability, suggesting a common mechanism of interaction with ice among several boreal pollen with implications for atmospheric processes and antifreeze protection.

  6. Boreal pollen contain ice-nucleating as well as ice-binding ‘antifreeze’ polysaccharides

    PubMed Central

    Dreischmeier, Katharina; Budke, Carsten; Wiehemeier, Lars; Kottke, Tilman; Koop, Thomas

    2017-01-01

    Ice nucleation and growth is an important and widespread environmental process. Accordingly, nature has developed means to either promote or inhibit ice crystal formation, for example ice-nucleating proteins in bacteria or ice-binding antifreeze proteins in polar fish. Recently, it was found that birch pollen release ice-nucleating macromolecules when suspended in water. Here we show that birch pollen washing water exhibits also ice-binding properties such as ice shaping and ice recrystallization inhibition, similar to antifreeze proteins. We present spectroscopic evidence that both the ice-nucleating as well as the ice-binding molecules are polysaccharides bearing carboxylate groups. The spectra suggest that both polysaccharides consist of very similar chemical moieties, but centrifugal filtration indicates differences in molecular size: ice nucleation occurs only in the supernatant of a 100 kDa filter, while ice shaping is strongly enhanced in the filtrate. This finding may suggest that the larger ice-nucleating polysaccharides consist of clusters of the smaller ice-binding polysaccharides, or that the latter are fragments of the ice-nucleating polysaccharides. Finally, similar polysaccharides released from pine and alder pollen also display both ice-nucleating as well as ice-binding ability, suggesting a common mechanism of interaction with ice among several boreal pollen with implications for atmospheric processes and antifreeze protection. PMID:28157236

  7. The Analysis of the Thinking Styles and Creativity of the Sports Students Studying in the Different Fields of University

    ERIC Educational Resources Information Center

    Eraslan, Meric

    2014-01-01

    This study analyzes the creativity and thinking levels of athletes studying at the different college departments; 61 female and 75 male athletes, a total of 136 ice-hockey players have participated in the research. As data collection tools, Thinking Styles Inventory and The Creativity Scale have been used in the study. SPSS 15.0 for Windows…

  8. Korean Affairs Report

    DTIC Science & Technology

    1986-09-02

    volleyball, handball, pingpong, boxing, wrestling, jujitsu, badminton, heavy gymnastics , and artistic gymnastics , can be played. And, all the facilities...various games, including various swimming races, basketball, volleyball, hard gymnastics , artistic gymnastics , pingpong, boxing, jujitsu, and wrestling...pingpong, boxing, 33 artistic gymnastics , jujitsu, wrestling, swimming, ice hockey, figure skating are actively being held year after year amid the great

  9. Duality of Ross Ice Shelf systems: crustal boundary, ice sheet processes and ocean circulation from ROSETTA-Ice surveys

    NASA Astrophysics Data System (ADS)

    Tinto, K. J.; Siddoway, C. S.; Padman, L.; Fricker, H. A.; Das, I.; Porter, D. F.; Springer, S. R.; Siegfried, M. R.; Caratori Tontini, F.; Bell, R. E.

    2017-12-01

    Bathymetry beneath Antarctic ice shelves controls sub-ice-shelf ocean circulation and has a major influence on the stability and dynamics of the ice sheets. Beneath the Ross Ice Shelf, the sea-floor bathymetry is a product of both tectonics and glacial processes, and is influenced by the processes it controls. New aerogeophysical surveys have revealed a fundamental crustal boundary bisecting the Ross Ice Shelf and imparting a duality to the Ross Ice Shelf systems, encompassing bathymetry, ocean circulation and ice flow history. The ROSETTA-Ice surveys were designed to increase the resolution of Ross Ice Shelf mapping from the 55 km RIGGS survey of the 1970s to a 10 km survey grid, flown over three years from New York Air National Guard LC130s. Radar, LiDAR, gravity and magnetic instruments provide a top to bottom profile of the ice shelf and the underlying seafloor, with 20 km resolution achieved in the first two survey seasons (2015 and 2016). ALAMO ocean-profiling floats deployed in the 2016 season are measuring the temperature and salinity of water entering and exiting the sub-ice water cavity. A significant east-west contrast in the character of the magnetic and gravity fields reveals that the lithospheric boundary between East and West Antarctica exists not at the base of the Transantarctic Mountains (TAM), as previously thought, but 300 km further east. The newly-identified boundary spatially coincides with the southward extension of the Central High, a rib of shallow basement identified in the Ross Sea. The East Antarctic side is characterized by lower amplitude magnetic anomalies and denser TAM-type lithosphere compared to the West Antarctic side. The crustal structure imparts a fundamental duality on the overlying ice and ocean, with deeper bathymetry and thinner ice on the East Antarctic side creating a larger sub-ice cavity for ocean circulation. The West Antarctic side has a shallower seabed, more restricted ocean access and a more complex history of

  10. Multiyear ice transport and small scale sea ice deformation near the Alaska coast measured by air-deployable Ice Trackers

    NASA Astrophysics Data System (ADS)

    Mahoney, A. R.; Kasper, J.; Winsor, P.

    2015-12-01

    Highly complex patterns of ice motion and deformation were captured by fifteen satellite-telemetered GPS buoys (known as Ice Trackers) deployed near Barrow, Alaska, in spring 2015. Two pentagonal clusters of buoys were deployed on pack ice by helicopter in the Beaufort Sea between 20 and 80 km offshore. During deployment, ice motion in the study region was effectively zero, but two days later the buoys captured a rapid transport event in which multiyear ice from the Beaufort Sea was flushed into the Chukchi Sea. During this event, westward ice motion began in the Chukchi Sea and propagated eastward. This created new openings in the ice and led to rapid elongation of the clusters as the westernmost buoys accelerated away from their neighbors to the east. The buoys tracked ice velocities of over 1.5 ms-1, with fastest motion occurring closest to the coast indicating strong current shear. Three days later, ice motion reversed and the two clusters became intermingled, rendering divergence calculations based on the area enclosed by clusters invalid. The data show no detectable difference in velocity between first year and multiyear ice floes, but Lagrangian timeseries of SAR imagery centered on each buoy show that first year ice underwent significant small-scale deformation during the event. The five remaining buoys were deployed by local residents on prominent ridges embedded in the landfast ice within 16 km of Barrow in order to track the fate of such features after they detached from the coast. Break-up of the landfast ice took place over a period of several days and, although the buoys each initially followed a similar eastward trajectory around Point Barrow into the Beaufort Sea, they rapidly dispersed over an area more than 50 km across. With rapid environmental and socio-economic change in the Arctic, understanding the complexity of nearshore ice motion is increasingly important for predict future changes in the ice and the tracking ice-related hazards

  11. Modern Airfoil Ice Accretions

    NASA Technical Reports Server (NTRS)

    Addy, Harold E., Jr.; Potapczuk, Mark G.; Sheldon, David W.

    1997-01-01

    This report presents results from the first icing tests performed in the Modem Airfoils program. Two airfoils have been subjected to icing tests in the NASA Lewis Icing Research Tunnel (IRT). Both airfoils were two dimensional airfoils; one was representative of a commercial transport airfoil while the other was representative of a business jet airfoil. The icing test conditions were selected from the FAR Appendix C envelopes. Effects on aerodynamic performance are presented including the effects of varying amounts of glaze ice as well as the effects of approximately the same amounts of glaze, mixed, and rime ice. Actual ice shapes obtained in these tests are also presented for these cases. In addition, comparisons are shown between ice shapes from the tests and ice shapes predicted by the computer code, LEWICE for similar conditions. Significant results from the tests are that relatively small amounts of ice can have nearly as much effect on airfoil lift coefficient as much greater amounts of ice and that glaze ice usually has a more detrimental effect than either rime or mixed ice. LEWICE predictions of ice shapes, in general, compared reasonably well with ice shapes obtained in the IRT, although differences in details of the ice shapes were observed.

  12. Blue Beaufort Sea Ice from Operation IceBridge

    NASA Image and Video Library

    2017-12-08

    Mosaic image of sea ice in the Beaufort Sea created by the Digital Mapping System (DMS) instrument aboard the IceBridge P-3B. The dark area in the middle of the image is open water seen through a lead, or opening, in the ice. Light blue areas are thick sea ice and dark blue areas are thinner ice formed as water in the lead refreezes. Leads are formed when cracks develop in sea ice as it moves in response to wind and ocean currents. DMS uses a modified digital SLR camera that points down through a window in the underside of the plane, capturing roughly one frame per second. These images are then combined into an image mosaic using specialized computer software. Credit: NASA/DMS NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  13. Massive subsurface ice formed by refreezing of ice-shelf melt ponds

    PubMed Central

    Hubbard, Bryn; Luckman, Adrian; Ashmore, David W.; Bevan, Suzanne; Kulessa, Bernd; Kuipers Munneke, Peter; Philippe, Morgane; Jansen, Daniela; Booth, Adam; Sevestre, Heidi; Tison, Jean-Louis; O'Leary, Martin; Rutt, Ian

    2016-01-01

    Surface melt ponds form intermittently on several Antarctic ice shelves. Although implicated in ice-shelf break up, the consequences of such ponding for ice formation and ice-shelf structure have not been evaluated. Here we report the discovery of a massive subsurface ice layer, at least 16 km across, several kilometres long and tens of metres deep, located in an area of intense melting and intermittent ponding on Larsen C Ice Shelf, Antarctica. We combine borehole optical televiewer logging and radar measurements with remote sensing and firn modelling to investigate the layer, found to be ∼10 °C warmer and ∼170 kg m−3 denser than anticipated in the absence of ponding and hitherto used in models of ice-shelf fracture and flow. Surface ponding and ice layers such as the one we report are likely to form on a wider range of Antarctic ice shelves in response to climatic warming in forthcoming decades. PMID:27283778

  14. Holocene Accumulation and Ice Flow near the West Antarctic Ice Sheet Divide Ice Core Site

    NASA Technical Reports Server (NTRS)

    Koutnik, Michelle R.; Fudge, T.J.; Conway, Howard; Waddington, Edwin D.; Neumann, Thomas A.; Cuffey, Kurt M.; Buizert, Christo; Taylor, Kendrick C.

    2016-01-01

    The West Antarctic Ice Sheet Divide Core (WDC) provided a high-resolution climate record from near the Ross-Amundsen Divide in Central West Antarctica. In addition, radar-detected internal layers in the vicinity of the WDC site have been dated directly from the ice core to provide spatial variations in the age structure of the region. Using these two data sets together, we first infer a high-resolution Holocene accumulation-rate history from 9.2 thousand years of the ice-core timescale and then confirm that this climate history is consistent with internal layers upstream of the core site. Even though the WDC was drilled only 24 kilometers from the modern ice divide, advection of ice from upstream must be taken into account. We evaluate histories of accumulation rate by using a flowband model to generate internal layers that we compare to observed layers. Results show that the centennially averaged accumulation rate was over 20 percent lower than modern at 9.2 thousand years before present (B.P.), increased by 40 percent from 9.2 to 2.3 thousand years B.P., and decreased by at least 10 percent over the past 2 thousand years B.P. to the modern values; these Holocene accumulation-rate changes in Central West Antarctica are larger than changes inferred from East Antarctic ice-core records. Despite significant changes in accumulation rate, throughout the Holocene the regional accumulation pattern has likely remained similar to today, and the ice-divide position has likely remained on average within 5 kilometers of its modern position. Continent-scale ice-sheet models used for reconstructions of West Antarctic ice volume should incorporate this accumulation history.

  15. Arctic Sea Ice Predictability and the Sea Ice Prediction Network

    NASA Astrophysics Data System (ADS)

    Wiggins, H. V.; Stroeve, J. C.

    2014-12-01

    Drastic reductions in Arctic sea ice cover have increased the demand for Arctic sea ice predictions by a range of stakeholders, including local communities, resource managers, industry and the public. The science of sea-ice prediction has been challenged to keep up with these developments. Efforts such as the SEARCH Sea Ice Outlook (SIO; http://www.arcus.org/sipn/sea-ice-outlook) and the Sea Ice for Walrus Outlook have provided a forum for the international sea-ice prediction and observing community to explore and compare different approaches. The SIO, originally organized by the Study of Environmental Change (SEARCH), is now managed by the new Sea Ice Prediction Network (SIPN), which is building a collaborative network of scientists and stakeholders to improve arctic sea ice prediction. The SIO synthesizes predictions from a variety of methods, including heuristic and from a statistical and/or dynamical model. In a recent study, SIO data from 2008 to 2013 were analyzed. The analysis revealed that in some years the predictions were very successful, in other years they were not. Years that were anomalous compared to the long-term trend have proven more difficult to predict, regardless of which method was employed. This year, in response to feedback from users and contributors to the SIO, several enhancements have been made to the SIO reports. One is to encourage contributors to provide spatial probability maps of sea ice cover in September and the first day each location becomes ice-free; these are an example of subseasonal to seasonal, local-scale predictions. Another enhancement is a separate analysis of the modeling contributions. In the June 2014 SIO report, 10 of 28 outlooks were produced from models that explicitly simulate sea ice from dynamic-thermodynamic sea ice models. Half of the models included fully-coupled (atmosphere, ice, and ocean) models that additionally employ data assimilation. Both of these subsets (models and coupled models with data

  16. State of Arctic Sea Ice North of Svalbard during N-ICE2015

    NASA Astrophysics Data System (ADS)

    Rösel, Anja; King, Jennifer; Gerland, Sebastian

    2016-04-01

    The N-ICE2015 cruise, led by the Norwegian Polar Institute, was a drift experiment with the research vessel R/V Lance from January to June 2015, where the ship started the drift North of Svalbard at 83°14.45' N, 21°31.41' E. The drift was repeated as soon as the vessel drifted free. Altogether, 4 ice stations where installed and the complex ocean-sea ice-atmosphere system was studied with an interdisciplinary Approach. During the N-ICE2015 cruise, extensive ice thickness and snow depth measurements were performed during both, winter and summer conditions. Total ice and snow thickness was measured with ground-based and airborne electromagnetic instruments; snow depth was measured with a GPS snow depth probe. Additionally, ice mass balance and snow buoys were deployed. Snow and ice thickness measurements were performed on repeated transects to quantify the ice growth or loss as well as the snow accumulation and melt rate. Additionally, we collected independent values on surveys to determine the general ice thickness distribution. Average snow depths of 32 cm on first year ice, and 52 cm on multi-year ice were measured in January, the mean snow depth on all ice types even increased until end of March to 49 cm. The average total ice and snow thickness in winter conditions was 1.92 m. During winter we found a small growth rate on multi-year ice of about 15 cm in 2 months, due to above-average snow depths and some extraordinary storm events that came along with mild temperatures. In contrast thereto, we also were able to study new ice formation and thin ice on newly formed leads. In summer conditions an enormous melt rate, mainly driven by a warm Atlantic water inflow in the marginal ice zone, was observed during two ice stations with melt rates of up to 20 cm per 24 hours. To reinforce the local measurements around the ship and to confirm their significance on a larger scale, we compare them to airborne thickness measurements and classified SAR-satellite scenes. The

  17. Investigation of Controls on Ice Dynamics in Northeast Greenland from Ice-Thickness Change Record Using Ice Sheet System Model (ISSM)

    NASA Astrophysics Data System (ADS)

    Csatho, B. M.; Larour, E. Y.; Schenk, A. F.; Schlegel, N.; Duncan, K.

    2015-12-01

    We present a new, complete ice thickness change reconstruction of the NE sector of the Greenland Ice Sheet for 1978-2014, partitioned into changes due to surface processes and ice dynamics. Elevation changes are computed from all available stereoscopic DEMs, and laser altimetry data (ICESat, ATM, LVIS). Surface Mass Balance and firn-compaction estimates are from RACMO2.3. Originating nearly at the divide of the Greenland Ice Sheet (GrIS), the dynamically active North East Ice Stream (NEGIS) is capable of rapidly transmitting ice-marginal forcing far inland. Thus, NEGIS provides a possible mechanism for a rapid drawdown of ice from the ice sheet interior as marginal warming, thinning and retreat continues. Our altimetry record shows accelerating dynamic thinning of Zachariæ Isstrom, initially limited to the deepest part of the fjord near the calving front (1978-2000) and then extending at least 75 km inland. At the same time, changes over the Nioghalvfjerdsfjorden (N79) Glacier are negligible. We also detect localized large dynamic changes at higher elevations on the ice sheet. These thickness changes, often occurring at the onset of fast flow, could indicate rapid variations of basal lubrication due to rerouting of subglacial drainage. We investigate the possible causes of the observed spatiotemporal pattern of ice sheet elevation changes using the Ice Sheet System Model (ISSM). This work build on our previous studies examining the sensitivity of ice flow within the Northeast Greenland Ice Stream (NEGIS) to key fields, including ice viscosity, basal drag. We assimilate the new altimetry record into ISSM to improve the reconstruction of basal friction and ice viscosity. Finally, airborne geophysical (gravity, magnetic) and ice-penetrating radar data is examined to identify the potential geologic controls on the ice thickness change pattern. Our study provides the first comprehensive reconstruction of ice thickness changes for the entire NEGIS drainage basin during

  18. Reconciling records of ice streaming and ice margin retreat to produce a palaeogeographic reconstruction of the deglaciation of the Laurentide Ice Sheet

    NASA Astrophysics Data System (ADS)

    Margold, Martin; Stokes, Chris R.; Clark, Chris D.

    2018-06-01

    This paper reconstructs the deglaciation of the Laurentide Ice Sheet (LIS; including the Innuitian Ice Sheet) from the Last Glacial Maximum (LGM), with a particular focus on the spatial and temporal variations in ice streaming and the associated changes in flow patterns and ice divides. We build on a recent inventory of Laurentide ice streams and use an existing ice margin chronology to produce the first detailed transient reconstruction of the ice stream drainage network in the LIS, which we depict in a series of palaeogeographic maps. Results show that the drainage network at the LGM was similar to modern-day Antarctica. The majority of the ice streams were marine terminating and topographically-controlled and many of these continued to function late into the deglaciation, until the ice sheet lost its marine margin. Ice streams with a terrestrial ice margin in the west and south were more transient and ice flow directions changed with the build-up, peak-phase and collapse of the Cordilleran-Laurentide ice saddle. The south-eastern marine margin in Atlantic Canada started to retreat relatively early and some of the ice streams in this region switched off at or shortly after the LGM. In contrast, the ice streams draining towards the north-western and north-eastern marine margins in the Beaufort Sea and in Baffin Bay appear to have remained stable throughout most of the Late Glacial, and some of them continued to function until after the Younger Dryas (YD). The YD influenced the dynamics of the deglaciation, but there remains uncertainty about the response of the ice sheet in several sectors. We tentatively ascribe the switching-on of some major ice streams during this period (e.g. M'Clintock Channel Ice Stream at the north-west margin), but for other large ice streams whose timing partially overlaps with the YD, the drivers are less clear and ice-dynamical processes, rather than effects of climate and surface mass balance are viewed as more likely drivers. Retreat

  19. Ocean-Forced Ice-Shelf Thinning in a Synchronously Coupled Ice-Ocean Model

    NASA Astrophysics Data System (ADS)

    Jordan, James R.; Holland, Paul R.; Goldberg, Dan; Snow, Kate; Arthern, Robert; Campin, Jean-Michel; Heimbach, Patrick; Jenkins, Adrian

    2018-02-01

    The first fully synchronous, coupled ice shelf-ocean model with a fixed grounding line and imposed upstream ice velocity has been developed using the MITgcm (Massachusetts Institute of Technology general circulation model). Unlike previous, asynchronous, approaches to coupled modeling our approach is fully conservative of heat, salt, and mass. Synchronous coupling is achieved by continuously updating the ice-shelf thickness on the ocean time step. By simulating an idealized, warm-water ice shelf we show how raising the pycnocline leads to a reduction in both ice-shelf mass and back stress, and hence buttressing. Coupled runs show the formation of a western boundary channel in the ice-shelf base due to increased melting on the western boundary due to Coriolis enhanced flow. Eastern boundary ice thickening is also observed. This is not the case when using a simple depth-dependent parameterized melt, as the ice shelf has relatively thinner sides and a thicker central "bulge" for a given ice-shelf mass. Ice-shelf geometry arising from the parameterized melt rate tends to underestimate backstress (and therefore buttressing) for a given ice-shelf mass due to a thinner ice shelf at the boundaries when compared to coupled model simulations.

  20. 77 FR 42700 - Procurement List; Additions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-20

    ...-NIB-0011--Splitting Maul--6 lb, Sledge Eye, 36'' Fiberglass Handle NSN: 5120-00-NIB-0012--Splitting Maul--8 lb, Sledge Eye, 36'' Fiberglass Handle NSN:: Keystone Vocational Services, Inc., Sharon, PA... Service Type/Location: Laundry and Dry Cleaning Service, Buckley AFB Lodging & Medical Facilities, Buckley...

  1. Comparison of NASA Team2 and AES-York Ice Concentration Algorithms Against Operational Ice Charts From the Canadian Ice Service

    NASA Technical Reports Server (NTRS)

    Shokr, Mohammed; Markus, Thorsten

    2006-01-01

    Ice concentration retrieved from spaceborne passive-microwave observations is a prime input to operational sea-ice-monitoring programs, numerical weather prediction models, and global climate models. Atmospheric Environment Service (AES)- York and the Enhanced National Aeronautics and Space Administration Team (NT2) are two algorithms that calculate ice concentration from Special Sensor Microwave/Imager observations. This paper furnishes a comparison between ice concentrations (total, thin, and thick types) output from NT2 and AES-York algorithms against the corresponding estimates from the operational analysis of Radarsat images in the Canadian Ice Service (CIS). A new data fusion technique, which incorporates the actual sensor's footprint, was developed to facilitate this study. Results have shown that the NT2 and AES-York algorithms underestimate total ice concentration by 18.35% and 9.66% concentration counts on average, with 16.8% and 15.35% standard deviation, respectively. However, the retrieved concentrations of thin and thick ice are in much more discrepancy with the operational CIS estimates when either one of these two types dominates the viewing area. This is more likely to occur when the total ice concentration approaches 100%. If thin and thick ice types coexist in comparable concentrations, the algorithms' estimates agree with CIS'S estimates. In terms of ice concentration retrieval, thin ice is more problematic than thick ice. The concept of using a single tie point to represent a thin ice surface is not realistic and provides the largest error source for retrieval accuracy. While AES-York provides total ice concentration in slightly more agreement with CIS'S estimates, NT2 provides better agreement in retrieving thin and thick ice concentrations.

  2. Tropospheric characteristics over sea ice during N-ICE2015

    NASA Astrophysics Data System (ADS)

    Kayser, Markus; Maturilli, Marion; Graham, Robert; Hudson, Stephen; Cohen, Lana; Rinke, Annette; Kim, Joo-Hong; Park, Sang-Jong; Moon, Woosok; Granskog, Mats

    2017-04-01

    Over recent years, the Arctic Ocean region has shifted towards a younger and thinner sea-ice regime. The Norwegian young sea ICE (N-ICE2015) expedition was designed to investigate the atmosphere-snow-ice-ocean interactions in this new ice regime north of Svalbard. Here we analyze upper-air measurements made by radiosondes launched twice daily together with surface meteorology observations during N-ICE2015 from January to June 2015. We study the multiple cyclonic events observed during N-ICE2015 with respect to changes in the vertical thermodynamic structure, sudden increases in moisture content and temperature, temperature inversions and boundary layer dynamics. The influence of synoptic cyclones is strongest under polar night conditions, when radiative cooling is most effective and the moisture content is low. We find that transitions between the radiatively clear and opaque state are the largest drivers of changes to temperature inversion and stability characteristics in the boundary layer during winter. In spring radiative fluxes warm the surface leading to lifted temperature inversions and a statically unstable boundary layer. The unique N-ICE2015 dataset is used for case studies investigating changes in the vertical structure of the atmosphere under varying synoptic conditions. The goal is to deepen our understanding of synoptic interactions within the Arctic climate system, to improve model performance, as well as to identify gaps in instrumentation, which precludes further investigations.

  3. Arctic multiyear ice classification and summer ice cover using passive microwave satellite data

    NASA Astrophysics Data System (ADS)

    Comiso, J. C.

    1990-08-01

    The ability to classify and monitor Arctic multiyear sea ice cover using multispectral passive microwave data is studied. Sea ice concentration maps during several summer minima have been analyzed to obtain estimates of ice surviving the summer. The results are compared with multiyear ice concentrations derived from data the following winter, using an algorithm that assumes a certain emissivity for multiyear ice. The multiyear ice cover inferred from the winter data is approximately 25 to 40% less than the summer ice cover minimum, suggesting that even during winter when the emissivity of sea ice is most stable, passive microwave data may account for only a fraction of the total multiyear ice cover. The difference of about 2×106 km2 is considerably more than estimates of advection through Fram Strait during the intervening period. It appears that as in the Antarctic, some multiyear ice floes in the Arctic, especially those near the summer marginal ice zone, have first-year ice or intermediate signatures in the subsequent winter. A likely mechanism for this is the intrusion of seawater into the snow-ice interface, which often occurs near the marginal ice zone or in areas where snow load is heavy. Spatial variations in melt and melt ponding effects also contribute to the complexity of the microwave emissivity of multiyear ice. Hence the multiyear ice data should be studied in conjunction with the previous summer ice data to obtain a more complete characterization of the state of the Arctic ice cover. The total extent and actual areas of the summertime Arctic pack ice were estimated to be 8.4×106 km2 and 6.2×106 km2, respectively, and exhibit small interannual variability during the years 1979 through 1985, suggesting a relatively stable ice cover.

  4. An Overview of NASA Engine Ice-Crystal Icing Research

    NASA Technical Reports Server (NTRS)

    Addy, Harold E., Jr.; Veres, Joseph P.

    2011-01-01

    Ice accretions that have formed inside gas turbine engines as a result of flight in clouds of high concentrations of ice crystals in the atmosphere have recently been identified as an aviation safety hazard. NASA s Aviation Safety Program (AvSP) has made plans to conduct research in this area to address the hazard. This paper gives an overview of NASA s engine ice-crystal icing research project plans. Included are the rationale, approach, and details of various aspects of NASA s research.

  5. West-Antarctic Ice Streams: Analog to Ice Flow in Channels on Mars

    NASA Technical Reports Server (NTRS)

    Lucchitta, B. K.

    1997-01-01

    Sounding of the sea floor in front of the Ross Ice Shelf in Antarctica recently revealed large persistent patterns of longitudinal megaflutes and drumlinoid forms, which are interpreted to have formed at the base of ice streams during the list glacial advance. The flutes bear remarkable resemblance to longitudinal grooves and highly elongated streamlined islands found on the floors of some large martian channels, called outflow channels. ln addition, other similarities exist between Antarctic ice streams and outflow channels. Ice streams are 30 to 80 km wide and hundreds of kilometers long, as are the martian channels. Ice stream beds are below sea level. Floors of many martian outflow channels lie below martian datum, which may have been close to or below past martian sea levels. The Antarctic ice stream bed gradient is flat and locally may go uphill, and surface slopes are exceptionally low. So are gradients of martian channels. The depth to the bed in ice streams is 1 to 1.5 km. At bankful stage, the depth of the fluid in outflow channels would have been 1 to 2 km. These similarities suggest that the martian outflow channels, whose origin is commonly attributed to gigantic catastrophic floods, were locally filled by ice that left a conspicuous morphologic imprint. Unlike the West-Antarctic-ice streams, which discharge ice from an ice sheet, ice in the martian channels came from water erupting from the ground. In the cold martian environment, this water, if of moderate volume, would eventually freeze. Thus it may have formed icings on springs, ice dams and jams on constrictions in the channel path, or frozen pools. Given sufficient thickness and downhill surface gradient, these ice masses would have moved; and given the right conditions, they could have moved like Antarctic ice streams.

  6. Channelized melting drives thinning under Dotson ice shelf, Western Antarctic Ice Sheet

    NASA Astrophysics Data System (ADS)

    Gourmelen, N.; Goldberg, D.; Snow, K.; Henley, S. F.; Bingham, R. G.; Kimura, S.; Hogg, A.; Shepherd, A.; Mouginot, J.; Lenaerts, J.; Ligtenberg, S.; Van De Berg, W. J.

    2017-12-01

    The majority of meteoric ice that forms in West Antarctica leaves the ice sheet through floating ice shelves, many of which have been thinning substantially over the last 25 years. A significant proportion of ice-shelf thinning has been driven by submarine melting facilitated by increased access of relatively warm (>0.6oC) modified Circumpolar Deep Water to sub-shelf cavities. Ice shelves play a significant role in stabilising the ice sheet from runaway retreat and regulating its contribution to sea level change. Ice-shelf melting has also been implicated in sustaining high primary productivity in Antarctica's coastal seas. However, these processes vary regionally and are not fully understood. Under some ice shelves, concentrated melting leads to the formation of inverted channels. These channels guide buoyant melt-laden outflow, which can lead to localised melting of the sea ice cover. The channels may also potentially lead to heightened crevassing, which in turn affects ice-shelf stability. Meanwhile, numerical studies suggest that buttressing loss is sensitive to the location of ice removal within an ice-shelf. Thus it is important that we observe spatial patterns, as well as magnitudes, of ice-shelf thinning, in order to improve understanding of the ocean drivers of thinning and of their impacts on ice-shelf stability. Here we show from high-resolution altimetry measurements acquired between 2010 to 2016 that Dotson Ice Shelf, West Antarctica, thins in response to basal melting focussed along a single 5 km-wide and 60 km-long channel extending from the ice shelf's grounding zone to its calving front. The coupled effect of geostrophic circulation and ice-shelf topography leads to the observed concentration of basal melting. Analysis of previous datasets suggests that this process has been ongoing for at least the last 25 years. If focused thinning continues at present rates, the channel would melt through within 40-50 years, almost two centuries before it is

  7. Basal melt beneath whillans ice stream and ice streams A and C

    NASA Technical Reports Server (NTRS)

    Joughin, I.; Teluezyk, S.; Engelhardt, H.

    2002-01-01

    We have used a recently derived map of the velocity of Whillans Ice Stream and Ice Streams A and C to help estimate basal melt. Temperature was modeled with a simple vertical advection-diffusion equation, 'tuned' to match temperature profiles. We find that most of the melt occurs beneath the tributaries where larger basal shear stresses and thicker ice favors greater melt (e.g., 10-20 mm/yr). The occurrence of basal freezing is predicted beneath much of the ice plains of Ice Stream C and Whillans Ice Stream. Modelled melt rates for when Ice Stream C was active suggest there was just enough melt water generated in its tributaries to balance basal freezing on its ice plain. Net basal melt for Whillans Ice Stream is positive due to smaller basal temperature gradients. Modelled temperatures on Whillans Ice Stream, however, were constrained by a single temperature profile at UpB. Basal temperature gradients for Whillans B1 and Ice Stream A may have conditions more similar to those beneath Ice Streams C and D, in which case, there may not be sufficient melt to sustain motion. This would be consistent with the steady deceleration of Whillans stream over the last few decades.

  8. There goes the sea ice: following Arctic sea ice parcels and their properties.

    NASA Astrophysics Data System (ADS)

    Tschudi, M. A.; Tooth, M.; Meier, W.; Stewart, S.

    2017-12-01

    Arctic sea ice distribution has changed considerably over the last couple of decades. Sea ice extent record minimums have been observed in recent years, the distribution of ice age now heavily favors younger ice, and sea ice is likely thinning. This new state of the Arctic sea ice cover has several impacts, including effects on marine life, feedback on the warming of the ocean and atmosphere, and on the future evolution of the ice pack. The shift in the state of the ice cover, from a pack dominated by older ice, to the current state of a pack with mostly young ice, impacts specific properties of the ice pack, and consequently the pack's response to the changing Arctic climate. For example, younger ice typically contains more numerous melt ponds during the melt season, resulting in a lower albedo. First-year ice is typically thinner and more fragile than multi-year ice, making it more susceptible to dynamic and thermodynamic forcing. To investigate the response of the ice pack to climate forcing during summertime melt, we have developed a database that tracks individual Arctic sea ice parcels along with associated properties as these parcels advect during the summer. Our database tracks parcels in the Beaufort Sea, from 1985 - present, along with variables such as ice surface temperature, albedo, ice concentration, and convergence. We are using this database to deduce how these thousands of tracked parcels fare during summer melt, i.e. what fraction of the parcels advect through the Beaufort, and what fraction melts out? The tracked variables describe the thermodynamic and dynamic forcing on these parcels during their journey. This database will also be made available to all interested investigators, after it is published in the near future. The attached image shows the ice surface temperature of all parcels (right) that advected through the Beaufort Sea region (left) in 2014.

  9. Development of a Capacitive Ice Sensor to Measure Ice Growth in Real Time

    PubMed Central

    Zhi, Xiang; Cho, Hyo Chang; Wang, Bo; Ahn, Cheol Hee; Moon, Hyeong Soon; Go, Jeung Sang

    2015-01-01

    This paper presents the development of the capacitive sensor to measure the growth of ice on a fuel pipe surface in real time. The ice sensor consists of pairs of electrodes to detect the change in capacitance and a thermocouple temperature sensor to examine the ice formation situation. In addition, an environmental chamber was specially designed to control the humidity and temperature to simulate the ice formation conditions. From the humidity, a water film is formed on the ice sensor, which results in an increase in capacitance. Ice nucleation occurs, followed by the rapid formation of frost ice that decreases the capacitance suddenly. The capacitance is saturated. The developed ice sensor explains the ice growth providing information about the icing temperature in real time. PMID:25808770

  10. Arctic multiyear ice classification and summer ice cover using passive microwave satellite data

    NASA Technical Reports Server (NTRS)

    Comiso, J. C.

    1990-01-01

    Passive microwave data collected by Nimbus 7 were used to classify and monitor the Arctic multilayer sea ice cover. Sea ice concentration maps during several summer minima are analyzed to obtain estimates of ice floes that survived summer, and the results are compared with multiyear-ice concentrations derived from these data by using an algorithm that assumes a certain emissivity for multiyear ice. The multiyear ice cover inferred from the winter data was found to be about 25 to 40 percent less than the summer ice-cover minimum, indicating that the multiyear ice cover in winter is inadequately represented by the passive microwave winter data and that a significant fraction of the Arctic multiyear ice floes exhibits a first-year ice signature.

  11. Development of a capacitive ice sensor to measure ice growth in real time.

    PubMed

    Zhi, Xiang; Cho, Hyo Chang; Wang, Bo; Ahn, Cheol Hee; Moon, Hyeong Soon; Go, Jeung Sang

    2015-03-19

    This paper presents the development of the capacitive sensor to measure the growth of ice on a fuel pipe surface in real time. The ice sensor consists of pairs of electrodes to detect the change in capacitance and a thermocouple temperature sensor to examine the ice formation situation. In addition, an environmental chamber was specially designed to control the humidity and temperature to simulate the ice formation conditions. From the humidity, a water film is formed on the ice sensor, which results in an increase in capacitance. Ice nucleation occurs, followed by the rapid formation of frost ice that decreases the capacitance suddenly. The capacitance is saturated. The developed ice sensor explains the ice growth providing information about the icing temperature in real time.

  12. Ice bridges and ridges in the Maxwell-EB sea ice rheology

    NASA Astrophysics Data System (ADS)

    Dansereau, Véronique; Weiss, Jérôme; Saramito, Pierre; Lattes, Philippe; Coche, Edmond

    2017-09-01

    This paper presents a first implementation of a new rheological model for sea ice on geophysical scales. This continuum model, called Maxwell elasto-brittle (Maxwell-EB), is based on a Maxwell constitutive law, a progressive damage mechanism that is coupled to both the elastic modulus and apparent viscosity of the ice cover and a Mohr-Coulomb damage criterion that allows for pure (uniaxial and biaxial) tensile strength. The model is tested on the basis of its capability to reproduce the complex mechanical and dynamical behaviour of sea ice drifting through a narrow passage. Idealized as well as realistic simulations of the flow of ice through Nares Strait are presented. These demonstrate that the model reproduces the formation of stable ice bridges as well as the stoppage of the flow, a phenomenon occurring within numerous channels of the Arctic. In agreement with observations, the model captures the propagation of damage along narrow arch-like kinematic features, the discontinuities in the velocity field across these features dividing the ice cover into floes, the strong spatial localization of the thickest, ridged ice, the presence of landfast ice in bays and fjords and the opening of polynyas downstream of the strait. The model represents various dynamical behaviours linked to an overall weakening of the ice cover and to the shorter lifespan of ice bridges, with implications in terms of increased ice export through narrow outflow pathways of the Arctic.

  13. Dynamic behaviour of ice streams: the North East Greenland Ice Stream

    NASA Astrophysics Data System (ADS)

    Bons, Paul D.; Jansen, Daniela; Schaufler, Svenja; de Riese, Tamara; Sachau, Till; Weikusat, Ilka

    2017-04-01

    The flow of ice towards the margins of ice sheets is far from homogeneous. Ice streams show much higher flow velocities than their surroundings and may extend, for example the North East Greenland Ice Stream (NEGIS), towards the centre of the sheet. The elevated flow velocity inside an ice stream causes marginal shearing and convergent flow, which in turn leads to folding of ice layers. Such folding was documented in the Petermann Glacier in northern Greenland (Bons et al., 2016). 3-dimensional structural modelling using radargrams shows that folding is more intense adjacent to NEGIS than inside it, despite the strong flow perturbation at NEGIS. Analysis of fold amplitude as a function of stratigraphic level indicates that folding adjacent to NEGIS ceased in the early Holocene, while it is currently active inside NEGIS. The presence of folds adjacent of NEGIS, but also at other sites far in the interior of the Greenland Ice Sheet with no direct connection to the present-day surface velocity field, indicates that ice flow is not only heterogeneous in space (as the present-day flow velocity field shows), but also in time. The observations suggest that ice streams are dynamic, ephemeral structures that emerge and die out, and may possibly shift during their existence, but leave traces within the stratigraphic layering of the ice. The dynamic nature of ice streams such as NEGIS speaks against deterministic models for their accelerated flow rates, such as bedrock topography or thermal perturbations at their base. Instead, we suggest that ice streams can also result from strain localisation induced inside the ice sheet by the complex coupling of rheology, anisotropy, grain-size changes and possibly shear heating. Bons, P.D., Jansen, D., Mundel, F., Bauer, C.C., Binder, T., Eisen, O., Jessell, M.W., Llorens, M.-G, Steinbach, F., Steinhage, D. & Weikusat, I. 2016. Converging flow and anisotropy cause large-scale folding in Greenland's ice sheet. Nature Communications 7

  14. Preparing and Analyzing Iced Airfoils

    NASA Technical Reports Server (NTRS)

    Vickerman, Mary B.; Baez, Marivell; Braun, Donald C.; Cotton, Barbara J.; Choo, Yung K.; Coroneos, Rula M.; Pennline, James A.; Hackenberg, Anthony W.; Schilling, Herbert W.; Slater, John W.; hide

    2004-01-01

    SmaggIce version 1.2 is a computer program for preparing and analyzing iced airfoils. It includes interactive tools for (1) measuring ice-shape characteristics, (2) controlled smoothing of ice shapes, (3) curve discretization, (4) generation of artificial ice shapes, and (5) detection and correction of input errors. Measurements of ice shapes are essential for establishing relationships between characteristics of ice and effects of ice on airfoil performance. The shape-smoothing tool helps prepare ice shapes for use with already available grid-generation and computational-fluid-dynamics software for studying the aerodynamic effects of smoothed ice on airfoils. The artificial ice-shape generation tool supports parametric studies since ice-shape parameters can easily be controlled with the artificial ice. In such studies, artificial shapes generated by this program can supplement simulated ice obtained from icing research tunnels and real ice obtained from flight test under icing weather condition. SmaggIce also automatically detects geometry errors such as tangles or duplicate points in the boundary which may be introduced by digitization and provides tools to correct these. By use of interactive tools included in SmaggIce version 1.2, one can easily characterize ice shapes and prepare iced airfoils for grid generation and flow simulations.

  15. Effect of hockey-stick-shaped molecules on the critical behavior at the nematic to isotropic and smectic-A to nematic phase transitions in octylcyanobiphenyl

    NASA Astrophysics Data System (ADS)

    Chakraborty, Anish; Chakraborty, Susanta; Das, Malay Kumar

    2015-03-01

    In the field of soft matter research, the characteristic behavior of both nematic-isotropic (N -I ) and smectic-A nematic (Sm -A N ) phase transitions has gained considerable attention due to their several attractive features. In this work, a high-resolution measurement of optical birefringence (Δ n ) has been performed to probe the critical behavior at the N -I and Sm -A N phase transitions in a binary system comprising the rodlike octylcyanobiphenyl and a laterally methyl substituted hockey-stick-shaped mesogen, 4-(3-n -decyloxy-2-methyl-phenyliminomethyl)phenyl 4-n -dodecyloxycinnamate. For the investigated mixtures, the critical exponent β related to the limiting behavior of the nematic order parameter close to the N -I phase transition has come out to be in good conformity with the tricritical hypothesis. Moreover, the yielded effective critical exponents (α', β', γ') characterizing the critical fluctuation near the Sm -A N phase transition have appeared to be nonuniversal in nature. With increasing hockey-stick-shaped dopant concentration, the Sm -A N phase transition demonstrates a strong tendency to be driven towards a first-order nature. Such a behavior has been accounted for by considering a modification of the effective intermolecular interactions and hence the related coupling between the nematic and smectic order parameters, caused by the introduction of the angular mesogenic molecules.

  16. Capabilities and performance of Elmer/Ice, a new generation ice-sheet model

    NASA Astrophysics Data System (ADS)

    Gagliardini, O.; Zwinger, T.; Gillet-Chaulet, F.; Durand, G.; Favier, L.; de Fleurian, B.; Greve, R.; Malinen, M.; Martín, C.; Råback, P.; Ruokolainen, J.; Sacchettini, M.; Schäfer, M.; Seddik, H.; Thies, J.

    2013-03-01

    The Fourth IPCC Assessment Report concluded that ice-sheet flow models are unable to forecast the current increase of polar ice sheet discharge and the associated contribution to sea-level rise. Since then, the glaciological community has undertaken a huge effort to develop and improve a new generation of ice-flow models, and as a result, a significant number of new ice-sheet models have emerged. Among them is the parallel finite-element model Elmer/Ice, based on the open-source multi-physics code Elmer. It was one of the first full-Stokes models used to make projections for the evolution of the whole Greenland ice sheet for the coming two centuries. Originally developed to solve local ice flow problems of high mechanical and physical complexity, Elmer/Ice has today reached the maturity to solve larger scale problems, earning the status of an ice-sheet model. Here, we summarise almost 10 yr of development performed by different groups. We present the components already included in Elmer/Ice, its numerical performance, selected applications, as well as developments planned for the future.

  17. Arctic sea ice decline contributes to thinning lake ice trend in northern Alaska

    USGS Publications Warehouse

    Alexeev, Vladimir; Arp, Christopher D.; Jones, Benjamin M.; Cai, Lei

    2016-01-01

    Field measurements, satellite observations, and models document a thinning trend in seasonal Arctic lake ice growth, causing a shift from bedfast to floating ice conditions. September sea ice concentrations in the Arctic Ocean since 1991 correlate well (r = +0.69,p < 0.001) to this lake regime shift. To understand how and to what extent sea ice affects lakes, we conducted model experiments to simulate winters with years of high (1991/92) and low (2007/08) sea ice extent for which we also had field measurements and satellite imagery characterizing lake ice conditions. A lake ice growth model forced with Weather Research and Forecasting model output produced a 7% decrease in lake ice growth when 2007/08 sea ice was imposed on 1991/92 climatology and a 9% increase in lake ice growth for the opposing experiment. Here, we clearly link early winter 'ocean-effect' snowfall and warming to reduced lake ice growth. Future reductions in sea ice extent will alter hydrological, biogeochemical, and habitat functioning of Arctic lakes and cause sub-lake permafrost thaw.

  18. Dynamics of coupled ice-ocean system in the marginal ice zone: Study of the mesoscale processes and of constitutive equations for sea ice

    NASA Technical Reports Server (NTRS)

    Hakkinen, S.

    1984-01-01

    This study is aimed at the modelling of mesoscale processed such as up/downwelling and ice edge eddies in the marginal ice zones. A 2-dimensional coupled ice-ocean model is used for the study. The ice model is coupled to the reduced gravity ocean model (f-plane) through interfacial stresses. The constitutive equations of the sea ice are formulated on the basis of the Reiner-Rivlin theory. The internal ice stresses are important only at high ice concentrations (90-100%), otherwise the ice motion is essentially free drift, where the air-ice stress is balanced by the ice-water stress. The model was tested by studying the upwelling dynamics. Winds parallel to the ice edge with the ice on the right produce upwilling because the air-ice momentum flux is much greater that air-ocean momentum flux, and thus the Ekman transport is bigger under the ice than in the open water. The upwelling simulation was extended to include temporally varying forcing, which was chosen to vary sinusoidally with a 4 day period. This forcing resembles successive cyclone passings. In the model with a thin oceanic upper layer, ice bands were formed.

  19. Inhibition of ice crystal growth in ice cream mix by gelatin hydrolysate.

    PubMed

    Damodaran, Srinivasan

    2007-12-26

    The inhibition of ice crystal growth in ice cream mix by gelatin hydrolysate produced by papain action was studied. The ice crystal growth was monitored by thermal cycling between -14 and -12 degrees C at a rate of one cycle per 3 min. It is shown that the hydrolysate fraction containing peptides in the molecular weight range of about 2000-5000 Da exhibited the highest inhibitory activity on ice crystal growth in ice cream mix, whereas fractions containing peptides greater than 7000 Da did not inhibit ice crystal growth. The size distribution of gelatin peptides formed in the hydrolysate was influenced by the pH of hydrolysis. The optimum hydrolysis conditions for producing peptides with maximum ice crystal growth inhibitory activity was pH 7 at 37 degrees C for 10 min at a papain to gelatin ratio of 1:100. However, this may depend on the type and source of gelatin. The possible mechanism of ice crystal growth inhibition by peptides from gelatin is discussed. Molecular modeling of model gelatin peptides revealed that they form an oxygen triad plane at the C-terminus with oxygen-oxygen distances similar to those found in ice nuclei. Binding of this oxygen triad plane to the prism face of ice nuclei via hydrogen bonding appears to be the mechanism by which gelatin hydrolysate might be inhibiting ice crystal growth in ice cream mix.

  20. Depth, ice thickness, and ice-out timing cause divergent hydrologic responses among Arctic lakes

    USGS Publications Warehouse

    Arp, Christopher D.; Jones, Benjamin M.; Liljedahl, Anna K.; Hinkel, Kenneth M.; Welker, Jeffery A.

    2015-01-01

    Lakes are prevalent in the Arctic and thus play a key role in regional hydrology. Since many Arctic lakes are shallow and ice grows thick (historically 2-m or greater), seasonal ice commonly freezes to the lake bed (bedfast ice) by winter's end. Bedfast ice fundamentally alters lake energy balance and melt-out processes compared to deeper lakes that exceed the maximum ice thickness (floating ice) and maintain perennial liquid water below floating ice. Our analysis of lakes in northern Alaska indicated that ice-out of bedfast ice lakes occurred on average 17 days earlier (22-June) than ice-out on adjacent floating ice lakes (9-July). Earlier ice-free conditions in bedfast ice lakes caused higher open-water evaporation, 28% on average, relative to floating ice lakes and this divergence increased in lakes closer to the coast and in cooler summers. Water isotopes (18O and 2H) indicated similar differences in evaporation between these lake types. Our analysis suggests that ice regimes created by the combination of lake depth relative to ice thickness and associated ice-out timing currently cause a strong hydrologic divergence among Arctic lakes. Thus understanding the distribution and dynamics of lakes by ice regime is essential for predicting regional hydrology. An observed regime shift in lakes to floating ice conditions due to thinner ice growth may initially offset lake drying because of lower evaporative loss from this lake type. This potential negative feedback caused by winter processes occurs in spite of an overall projected increase in evapotranspiration as the Arctic climate warms.

  1. Laser vaporization of cirrus-like ice particles with secondary ice multiplication

    PubMed Central

    Matthews, Mary; Pomel, François; Wender, Christiane; Kiselev, Alexei; Duft, Denis; Kasparian, Jérôme; Wolf, Jean-Pierre; Leisner, Thomas

    2016-01-01

    We investigate the interaction of ultrashort laser filaments with individual 90-μm ice particles, representative of cirrus particles. The ice particles fragment under laser illumination. By monitoring the evolution of the corresponding ice/vapor system at up to 140,000 frames per second over 30 ms, we conclude that a shockwave vaporization supersaturates the neighboring region relative to ice, allowing the nucleation and growth of new ice particles, supported by laser-induced plasma photochemistry. This process constitutes the first direct observation of filament-induced secondary ice multiplication, a process that strongly modifies the particle size distribution and, thus, the albedo of typical cirrus clouds. PMID:27386537

  2. Laser vaporization of cirrus-like ice particles with secondary ice multiplication.

    PubMed

    Matthews, Mary; Pomel, François; Wender, Christiane; Kiselev, Alexei; Duft, Denis; Kasparian, Jérôme; Wolf, Jean-Pierre; Leisner, Thomas

    2016-05-01

    We investigate the interaction of ultrashort laser filaments with individual 90-μm ice particles, representative of cirrus particles. The ice particles fragment under laser illumination. By monitoring the evolution of the corresponding ice/vapor system at up to 140,000 frames per second over 30 ms, we conclude that a shockwave vaporization supersaturates the neighboring region relative to ice, allowing the nucleation and growth of new ice particles, supported by laser-induced plasma photochemistry. This process constitutes the first direct observation of filament-induced secondary ice multiplication, a process that strongly modifies the particle size distribution and, thus, the albedo of typical cirrus clouds.

  3. The ice VII-ice X phase transition with implications for planetary interiors

    NASA Astrophysics Data System (ADS)

    Aarestad, B.; Frank, M. R.; Scott, H.; Bricker, M.; Prakapenka, V.

    2008-12-01

    A significant amount of research on the high pressure polymorphs of H2O have detailed the lattice structure and density of these phases, namely ice VI, ice VII, and ice X. These high pressure ices are noteworthy as they may comprise a considerable part of the interior of large icy planets and satellites. However, there is a dearth of data on how the incorporation of an impurity, charged or non-charged, affects the ice VII-ice X transition. This study examined the ice VII-ice X transition that occurs at approximately 62 GPa with a pure system and two select impure systems. Solutions of pure H2O, 1.6 mole percent NaCl in H2O, and 1.60 mole percent CH3OH in H2O were compressed in a diamond anvil cell (DAC). The experiments were performed at the GSECARS 13-BM-D beam line at the Advanced Photon Source at Argonne National Laboratory. Powder diffraction data of the ice samples were collected using monochromatic X-ray radiation, 0.2755 Å, and a MAR 345 online imaging system at intervals of approximately 2 GPa up to ~71.5, ~74.5, and ~68 GPa, respectively. Analyses of the data provided volume-pressure relations (at 298 K) which were used to detail the ice VII-ice X phase transition. The pressure of the phase transition, based upon an interpretation of the X-ray diffraction data, was found to vary as a function of the impurity type. Thus, the depth of the ice VII-ice X phase transition within an ice-rich planetary body can be influenced by trace-level impurities.

  4. IceCube

    Science.gov Websites

    . PDF file High pT muons in Cosmic-Ray Air Showers with IceCube. PDF file IceCube Performance with Artificial Light Sources: the road to a Cascade Analyses + Energy scale calibration for EHE. PDF file , 2006. PDF file Thorsten Stetzelberger "IceCube DAQ Design & Performance" Nov 2005 PPT

  5. Revisit submergence of ice blocks in front of ice cover—an experimental study

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Wu, Yi-fan; Sui, Jueyi

    2018-04-01

    The present paper studies the stabilities of ice blocks in front of an ice cover based on experiments carried out in laboratory by using four types of ice blocks with different dimensions. The forces acting on the ice blocks in front of the ice cover are analyzed. The critical criteria for the entrainment of ice blocks in front of the ice cover are established by considering the drag force caused by the flowing water, the collision force, and the hydraulic pressure force. Formula for determining whether or not an ice block will be entrained under the ice cover is derived. All three dimensions of the ice block are considered in the proposed formula. The velocities calculated by using the developed formula are compared with those of calculated by other formulas proposed by other researchers, as well as the measured flow velocities for the entrainment of ice blocks in laboratory. The fitting values obtained by using the derived formula agree well with the experimental results.

  6. Breaking Ice: Fracture Processes in Floating Ice on Earth and Elsewhere

    NASA Astrophysics Data System (ADS)

    Scambos, T. A.

    2016-12-01

    Rapid, intense fracturing events in the ice shelves of the Antarctic Peninsula reveal a set of processes that were not fully appreciated prior to the series of ice shelf break-ups observed in the late 1990s and early 2000s. A series of studies have uncovered a fascinating array of relationships between climate, ocean, and ice: intense widespread hydrofracture; repetitive hydrofracture induced by ice plate bending; the ability for sub-surface flooded firn to support hydrofracture; potential triggering by long-period wave action; accelerated fracturing by trapped tsunamic waves; iceberg disintegration, and a remarkable ice rebound process from lake drainage that resembles runaway nuclear fission. The events and subsequent studies have shown that rapid regional warming in ice shelf areas leads to catastrophic changes in a previously stable ice mass. More typical fracturing of thick ice plates is a natural consequence of ice flow in a complex geographic setting, i.e., it is induced by shear and divergence of spreading plate flow around obstacles. While these are not a result of climate or ocean change, weather and ocean processes may impact the exact timing of final separation of an iceberg from a shelf. Taking these terrestrial perspectives to other ice-covered ocean worlds, cautiously, provides an observational framework for interpreting features on Europa and Enceladus.

  7. Icing: Accretion, Detection, Protection

    NASA Technical Reports Server (NTRS)

    Reinmann, John J.

    1994-01-01

    The global aircraft industry and its regulatory agencies are currently involved in three major icing efforts: ground icing; advanced technologies for in-flight icing; and tailplane icing. These three major icing topics correspondingly support the three major segments of any aircraft flight profile: takeoff; cruise and hold; and approach and land. This lecture addressess these three topics in the same sequence as they appear in flight, starting with ground deicing, followed by advanced technologies for in-flight ice protection, and ending with tailplane icing.

  8. Sea Ice

    NASA Technical Reports Server (NTRS)

    Perovich, D.; Gerland, S.; Hendricks, S.; Meier, Walter N.; Nicolaus, M.; Richter-Menge, J.; Tschudi, M.

    2013-01-01

    During 2013, Arctic sea ice extent remained well below normal, but the September 2013 minimum extent was substantially higher than the record-breaking minimum in 2012. Nonetheless, the minimum was still much lower than normal and the long-term trend Arctic September extent is -13.7 per decade relative to the 1981-2010 average. The less extreme conditions this year compared to 2012 were due to cooler temperatures and wind patterns that favored retention of ice through the summer. Sea ice thickness and volume remained near record-low levels, though indications are of slightly thicker ice compared to the record low of 2012.

  9. [Problems with placement and using of automated external defibrillators in Czech Republic].

    PubMed

    Olos, Tomás; Bursa, Filip; Gregor, Roman; Holes, David

    2011-01-01

    The use of automated external defibrillators improves the survival of adults who suffer from cardiopulmonary arrest. Automated external defibrillators detect ventricular fibrillation with almost perfect sensitivity and specificity. Authors describe the use of automated external defibrillator during cardiopulmonary resuscitation in a patient with sudden cardiac arrest during ice-hockey match. The article reports also the use of automated external defibrillators in children.

  10. Sea ice and pollution-modulated changes in Greenland ice core methanesulfonate and bromine

    NASA Astrophysics Data System (ADS)

    Maselli, Olivia J.; Chellman, Nathan J.; Grieman, Mackenzie; Layman, Lawrence; McConnell, Joseph R.; Pasteris, Daniel; Rhodes, Rachael H.; Saltzman, Eric; Sigl, Michael

    2017-01-01

    Reconstruction of past changes in Arctic sea ice extent may be critical for understanding its future evolution. Methanesulfonate (MSA) and bromine concentrations preserved in ice cores have both been proposed as indicators of past sea ice conditions. In this study, two ice cores from central and north-eastern Greenland were analysed at sub-annual resolution for MSA (CH3SO3H) and bromine, covering the time period 1750-2010. We examine correlations between ice core MSA and the HadISST1 ICE sea ice dataset and consult back trajectories to infer the likely source regions. A strong correlation between the low-frequency MSA and bromine records during pre-industrial times indicates that both chemical species are likely linked to processes occurring on or near sea ice in the same source regions. The positive correlation between ice core MSA and bromine persists until the mid-20th century, when the acidity of Greenland ice begins to increase markedly due to increased fossil fuel emissions. After that time, MSA levels decrease as a result of declining sea ice extent but bromine levels increase. We consider several possible explanations and ultimately suggest that increased acidity, specifically nitric acid, of snow on sea ice stimulates the release of reactive Br from sea ice, resulting in increased transport and deposition on the Greenland ice sheet.

  11. Recent Changes in Arctic Glaciers, Ice Caps, and the Greenland Ice Sheet: Cold Facts About Warm Ice

    NASA Astrophysics Data System (ADS)

    Abdalati, W.

    2005-12-01

    One of the major manifestations of Arctic change can be observed in the state of balance of Arctic glaciers and ice caps and the Greenland ice sheet. These ice masses are estimated to contain nearly 3 million cubic kilometers of ice, which is more than six times greater than all the water stored in the Earth's lakes, rivers, and snow combined and is the equivalent of over 7 meters of sea level. Most of these ice masses have been shrinking in recent in years, but their mass balance is highly variable on a wide range of spatial and temporal scales. On the Greenland ice sheet most of the coastal regions have thinned substantially as melt has increased and some of its outlet glaciers have accelerated. Near the equilibrium line in West Greenland, we have seen evidence of summer acceleration that is linked to surface meltwater production, suggesting a relatively rapid response mechanism of the ice sheet change to a warming climate. At the same time, however, the vast interior regions of the Greenland ice sheet have shown little change or slight growth, as accumulation in these areas may have increased. Throughout much of the rest of the Arctic, many glaciers and ice caps have been shrinking in the past few decades, and in Canada and Alaska, the rate of ice loss seems to have accelerated during the late 1990s. These recent observations offer only a snapshot in time of the long-term behavior, but they are providing crucial information about the current state of ice mass balance and the mechanisms that control it in one of the most climatically sensitive regions on Earth. As we continue to learn more through a combination of remote sensing observations, in situ measurements and improved modeling capabilities, it is important that we coordinate and integrate these approaches effectively in order to predict future changes and their impact on sea level, freshwater discharge, and ocean circulation.

  12. Antarctic ice-sheet loss driven by basal melting of ice shelves.

    PubMed

    Pritchard, H D; Ligtenberg, S R M; Fricker, H A; Vaughan, D G; van den Broeke, M R; Padman, L

    2012-04-25

    Accurate prediction of global sea-level rise requires that we understand the cause of recent, widespread and intensifying glacier acceleration along Antarctic ice-sheet coastal margins. Atmospheric and oceanic forcing have the potential to reduce the thickness and extent of floating ice shelves, potentially limiting their ability to buttress the flow of grounded tributary glaciers. Indeed, recent ice-shelf collapse led to retreat and acceleration of several glaciers on the Antarctic Peninsula. But the extent and magnitude of ice-shelf thickness change, the underlying causes of such change, and its link to glacier flow rate are so poorly understood that its future impact on the ice sheets cannot yet be predicted. Here we use satellite laser altimetry and modelling of the surface firn layer to reveal the circum-Antarctic pattern of ice-shelf thinning through increased basal melt. We deduce that this increased melt is the primary control of Antarctic ice-sheet loss, through a reduction in buttressing of the adjacent ice sheet leading to accelerated glacier flow. The highest thinning rates occur where warm water at depth can access thick ice shelves via submarine troughs crossing the continental shelf. Wind forcing could explain the dominant patterns of both basal melting and the surface melting and collapse of Antarctic ice shelves, through ocean upwelling in the Amundsen and Bellingshausen seas, and atmospheric warming on the Antarctic Peninsula. This implies that climate forcing through changing winds influences Antarctic ice-sheet mass balance, and hence global sea level, on annual to decadal timescales.

  13. Ice Surfaces.

    PubMed

    Shultz, Mary Jane

    2017-05-05

    Ice is a fundamental solid with important environmental, biological, geological, and extraterrestrial impact. The stable form of ice at atmospheric pressure is hexagonal ice, I h . Despite its prevalence, I h remains an enigmatic solid, in part due to challenges in preparing samples for fundamental studies. Surfaces of ice present even greater challenges. Recently developed methods for preparation of large single-crystal samples make it possible to reproducibly prepare any chosen face to address numerous fundamental questions. This review describes preparation methods along with results that firmly establish the connection between the macroscopic structure (observed in snowflakes, microcrystallites, or etch pits) and the molecular-level configuration (detected with X-ray or electron scattering techniques). Selected results of probing interactions at the ice surface, including growth from the melt, surface vibrations, and characterization of the quasi-liquid layer, are discussed.

  14. Arctic ice cover, ice thickness and tipping points.

    PubMed

    Wadhams, Peter

    2012-02-01

    We summarize the latest results on the rapid changes that are occurring to Arctic sea ice thickness and extent, the reasons for them, and the methods being used to monitor the changing ice thickness. Arctic sea ice extent had been shrinking at a relatively modest rate of 3-4% per decade (annually averaged) but after 1996 this speeded up to 10% per decade and in summer 2007 there was a massive collapse of ice extent to a new record minimum of only 4.1 million km(2). Thickness has been falling at a more rapid rate (43% in the 25 years from the early 1970s to late 1990s) with a specially rapid loss of mass from pressure ridges. The summer 2007 event may have arisen from an interaction between the long-term retreat and more rapid thinning rates. We review thickness monitoring techniques that show the greatest promise on different spatial and temporal scales, and for different purposes. We show results from some recent work from submarines, and speculate that the trends towards retreat and thinning will inevitably lead to an eventual loss of all ice in summer, which can be described as a 'tipping point' in that the former situation, of an Arctic covered with mainly multi-year ice, cannot be retrieved.

  15. Little Ice Age Fluctuations of Quelccaya Ice Cap, Peru

    NASA Astrophysics Data System (ADS)

    Stroup, J. S.; Kelly, M. A.; Lowell, T.

    2009-12-01

    A record of the past extents of Quelccaya Ice Cap (QIC) provides valuable information about tropical climate change from late glacial to recent time. Here, we examine the timing and regional significance of fluctuations of QIC during the Little Ice Age (LIA; ~1300-1850 AD). One prominent set of moraines, known as the Huancane I moraines, is located ~1 km from the present-day western ice cap margin and provides a near-continuous outline of the most recent advance of QIC. This moraine set was radiocarbon dated (~298 ± 134 and 831 ± 87 yr BP) by Mercer and Palacios (1977) and presented as some of the first evidence for cooling in the tropics during the Little Ice Age. Recent field investigations in the QIC region focused on refining the chronology of the Huancane I moraines. In 2008, new stratigraphic sections exposed by local lake-flooding events revealed multiple layers of peat within the Huancane I moraines. In both 2008 and 2009, samples were obtained for 10Be dating of boulders on Huancane I moraines. A combination of radiocarbon and 10Be ages indicate that the Huancane I moraines were deposited by ice cap expansion after ~3800 yr BP and likely by multiple advances at approximately 1000, 600, 400, and 200 yr BP. Radiocarbon and 10Be chronologies of the Huancane I moraines are compared with the Quelccaya ice core records (Thompson et al., 1985; 1986; 2006). Accumulation data from the ice core records are interpreted to indicate a significant wet period at ~1500-1700 AD followed by a significant drought at ~1720-1860 AD. We examine ice marginal fluctuations during these times to determine influence of such events on the ice cap extent.

  16. High incidence of injury at the Sochi 2014 Winter Paralympic Games: a prospective cohort study of 6564 athlete days.

    PubMed

    Derman, W; Schwellnus, M P; Jordaan, E; Runciman, P; Van de Vliet, P; Blauwet, C; Webborn, N; Willick, S; Stomphorst, J

    2016-09-01

    To describe the epidemiology of injuries at the Sochi 2014 Winter Paralympic Games. A total of 547 athletes from 45 countries were monitored daily for 12 days during the Sochi 2014 Winter Paralympic Games (6564 athlete days). Daily injury data were obtained from teams with their own medical support (32 teams, 510 athletes) and teams without their own medical support (13 teams, 37 athletes) through electronic data capturing systems. There were 174 total injuries reported, with an injury incidence rate (IR) of 26.5 per 1000 athlete days (95% CI 22.7% to 30.8%). There was a significantly higher IR recorded in alpine skiing/snowboarding (IR of 41.1 (95% CI 33.7% to 49.6%) p=0.0001) compared to cross-country skiing/biathlon, ice sledge hockey or wheelchair curling. Injuries in the shoulder region were the highest single-joint IR (IR of 6.4 (95% CI 4.6% to 8.6%)), although total upper and lower body IR were similar (IR 8.5 vs 8.4 (95% CI 6.4% to 11.1%)). Furthermore, the IR of acute injuries was significantly higher than other types of injury onset (IR of 17.8 (95% CI 14.7% to 21.4%)). In a Winter Paralympic Games setting, athletes report higher injury incidence than do Olympic athletes or athletes in a Summer Paralympic Games setting. The highest incidence of injury was reported in the alpine skiing/snowboarding sporting category. There was a similar incidence of injury in the upper and lower limbs. The joint with the greatest rate of injury reported was the shoulder joint. Our data can inform injury prevention programmes and policy considerations regarding athlete safety in future Winter Paralympic Games. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  17. Alaska shorefast ice: Interfacing geophysics with local sea ice knowledge and use

    NASA Astrophysics Data System (ADS)

    Druckenmiller, Matthew L.

    This thesis interfaces geophysical techniques with local and traditional knowledge (LTK) of indigenous ice experts to track and evaluate coastal sea ice conditions over annual and inter-annual timescales. A novel approach is presented for consulting LTK alongside a systematic study of where, when, and how the community of Barrow, Alaska uses the ice cover. The goal of this research is to improve our understanding of and abilities to monitor the processes that govern the state and dynamics of shorefast sea ice in the Chukchi Sea and use of ice by the community. Shorefast ice stability and community strategies for safe hunting provide a framework for data collection and knowledge sharing that reveals how nuanced observations by Inupiat ice experts relate to identifying hazards. In particular, shorefast ice break-out events represent a significant threat to the lives of hunters. Fault tree analysis (FTA) is used to combine local and time-specific observations of ice conditions by both geophysical instruments and local experts, and to evaluate how ice features, atmospheric and oceanic forces, and local to regional processes interact to cause break-out events. Each year, the Barrow community builds trails across shorefast ice for use during the spring whaling season. In collaboration with hunters, a systematic multi-year survey (2007--2011) was performed to map these trails and measure ice thickness along them. Relationships between ice conditions and hunter strategies that guide trail placement and risk assessment are explored. In addition, trail surveys provide a meaningful and consistent approach to monitoring the thickness distribution of shorefast ice, while establishing a baseline for assessing future environmental change and potential impacts to the community. Coastal communities in the region have proven highly adaptive in their ability to safely and successfully hunt from sea ice over the last 30 years as significant changes have been observed in the ice zone

  18. Measurements of sea ice mass redistribution during ice deformation event in Arctic winter

    NASA Astrophysics Data System (ADS)

    Itkin, P.; Spreen, G.; King, J.; Rösel, A.; Skourup, H.; Munk Hvidegaard, S.; Wilkinson, J.; Oikkonen, A.; Granskog, M. A.; Gerland, S.

    2016-12-01

    Sea-ice growth during high winter is governed by ice dynamics. The highest growth rates are found in leads that open under divergent conditions, where exposure to the cold atmosphere promotes thermodynamic growth. Additionally ice thickens dynamically, where convergence causes rafting and ridging. We present a local study of sea-ice growth and mass redistribution between two consecutive airborne measurements, on 19 and 24 April 2015, during the N-ICE2015 expedition in the area north of Svalbard. Between the two overflights an ice deformation event was observed. Airborne laser scanner (ALS) measurements revisited the same sea-ice area of approximately 3x3 km. By identifying the sea surface within the ALS measurements as a reference the sea ice plus snow freeboard was obtained with a spatial resolution of 5 m. By assuming isostatic equilibrium of level floes, the freeboard heights can be converted to ice thickness. The snow depth is estimated from in-situ measurements. Sea ice thickness measurements were made in the same area as the ALS measurements by electromagnetic sounding from a helicopter (HEM), and with a ground-based device (EM31), which allows for cross-validation of the sea-ice thickness estimated from all 3 procedures. Comparison of the ALS snow freeboard distributions between the first and second overflight shows a decrease in the thin ice classes and an increase of the thick ice classes. While there was no observable snowfall and a very low sea-ice growth of older level ice during this period, an autonomous buoy array deployed in the surroundings of the area measured by the ALS shows first divergence followed by convergence associated with shear. To quantify and link the sea ice deformation with the associated sea-ice thickness change and mass redistribution we identify over 100 virtual buoys in the ALS data from both overflights. We triangulate the area between the buoys and calculate the strain rates and freeboard change for each individual triangle

  19. Does Relative Age Affect Career Length in North American Professional Sports?

    PubMed

    Steingröver, C; Wattie, N; Baker, J; Schorer, J

    Relative age effects (RAEs) typically favour older members within a cohort; however, research suggests that younger players may experience some long-term advantages, such as longer career length. The purposes of this study were to replicate previous findings on RAEs among National Hockey League (NHL) ice hockey players, National Basketball Association (NBA) basketball players and National Football League (NFL) football players and to investigate the influence of relative age on career length in all three sports. Using official archives, birthdates and number of games played were collected for players drafted into the NBA ( N  = 407), NFL ( N  = 2380) and NHL ( N  = 1028) from 1980 to 1989. We investigated the possibility that younger players might be able to maximize their career length by operationalizing career length as players' number of games played throughout their careers. There was a clear RAE for the NHL, but effects were not significant for the NBA or NFL. Moreover, there was a significant difference in matches played between birth quartiles in the NHL favouring relatively younger players. There were no significant quartiles by career length effects in the NBA or NFL. The significant relationship between relative age and career length provides further support for relative age as an important constraint on expertise development in ice hockey but not basketball or football. Currently, the reason why relatively younger players have longer careers is not known. However, it may be worth exploring the influence of injury risk or the development of better playing skills.

  20. Identification of Plant Ice-binding Proteins Through Assessment of Ice-recrystallization Inhibition and Isolation Using Ice-affinity Purification.

    PubMed

    Bredow, Melissa; Tomalty, Heather E; Walker, Virginia K

    2017-05-05

    Ice-binding proteins (IBPs) belong to a family of stress-induced proteins that are synthesized by certain organisms exposed to subzero temperatures. In plants, freeze damage occurs when extracellular ice crystals grow, resulting in the rupture of plasma membranes and possible cell death. Adsorption of IBPs to ice crystals restricts further growth by a process known as ice-recrystallization inhibition (IRI), thereby reducing cellular damage. IBPs also demonstrate the ability to depress the freezing point of a solution below the equilibrium melting point, a property known as thermal hysteresis (TH) activity. These protective properties have raised interest in the identification of novel IBPs due to their potential use in industrial, medical and agricultural applications. This paper describes the identification of plant IBPs through 1) the induction and extraction of IBPs in plant tissue, 2) the screening of extracts for IRI activity, and 3) the isolation and purification of IBPs. Following the induction of IBPs by low temperature exposure, extracts are tested for IRI activity using a 'splat assay', which allows the observation of ice crystal growth using a standard light microscope. This assay requires a low protein concentration and generates results that are quickly obtained and easily interpreted, providing an initial screen for ice binding activity. IBPs can then be isolated from contaminating proteins by utilizing the property of IBPs to adsorb to ice, through a technique called 'ice-affinity purification'. Using cell lysates collected from plant extracts, an ice hemisphere can be slowly grown on a brass probe. This incorporates IBPs into the crystalline structure of the polycrystalline ice. Requiring no a priori biochemical or structural knowledge of the IBP, this method allows for recovery of active protein. Ice-purified protein fractions can be used for downstream applications including the identification of peptide sequences by mass spectrometry and the

  1. The internal structure of the Brunt Ice Shelf, Antarctica from ice-penetrating radar

    NASA Astrophysics Data System (ADS)

    King, Edward; De Rydt, Jan; Gudmundsson, Hilmar

    2016-04-01

    The Brunt Ice Shelf is a small feature on the Coats Land Coast of the Weddell Sea, Antarctica. It is unusual among Antarctic ice shelves because the ice crossing the grounding line from the ice sheet retains no structural integrity, so the ice shelf comprises icebergs of continental ice cemented together by sea ice, with the whole blanketed by in-situ snowfall. The size and distribution of the icebergs is governed by the thickness profile along the grounding line. Where bedrock troughs discharge thick ice to the ice shelf, the icebergs are large and remain close together with little intervening sea ice. Where bedrock ridges mean the ice crossing the grounding line is thin, the icebergs are small and widely-scattered with large areas of sea ice between them. To better understand the internal structure of the Brunt Ice Shelf and how this might affect the flow dynamics we conducted ice-penetrating radar surveys during December 2015 and January 2016. Three different ground-based radar systems were used, operating at centre frequencies of 400, 50 and 10 MHz respectively. The 400 MHz system gave detailed firn structure and accumulation profiles as well as time-lapse profiles of the active propagation of a crevasse. The 50 MHz system provided intermediate-level detail of iceberg distribution and thickness as well as information on the degree of salt water infiltration into the accumulating snow pack. The 10 MHz system used a high-power transmitter in an attempt to measure ice thickness beneath salt-impregnated ice. In this poster we will present example data from each of the three radar systems which will demonstrate the variability of the internal structure of the ice shelf. We will also present preliminary correlations between the internal structure and the surface topography from satellite data.

  2. How Will Sea Ice Loss Affect the Greenland Ice Sheet? On the Puzzling Features of Greenland Ice-Core Isotopic Composition

    NASA Technical Reports Server (NTRS)

    Pausata, Francesco S. R.; Legrande, Allegra N.; Roberts, William H. G.

    2016-01-01

    The modern cryosphere, Earth's frozen water regime, is in fast transition. Greenland ice cores show how fast theses changes can be, presenting evidence of up to 15 C warming events over timescales of less than a decade. These events, called Dansgaard/Oeschger (D/O) events, are believed to be associated with rapid changes in Arctic sea ice, although the underlying mechanisms are still unclear. The modern demise of Arctic sea ice may, in turn, instigate abrupt changes on the Greenland Ice Sheet. The Arctic Sea Ice and Greenland Ice Sheet Sensitivity (Ice2Ice Chttps://ice2ice.b.uib.noD) initiative, sponsored by the European Research Council, seeks to quantify these past rapid changes to improve our understanding of what the future may hold for the Arctic. Twenty scientists gathered in Copenhagen as part of this initiative to discuss the most recent observational, technological, and model developments toward quantifying the mechanisms behind past climate changes in Greenland. Much of the discussion focused on the causes behind the changes in stable water isotopes recorded in ice cores. The participants discussed sources of variability for stable water isotopes and framed ways that new studies could improve understanding of modern climate. The participants also discussed how climate models could provide insights into the relative roles of local and nonlocal processes in affecting stable water isotopes within the Greenland Ice Sheet. Presentations of modeling results showed how a change in the source or seasonality of precipitation could occur not only between glacial and modern climates but also between abrupt events. Recent fieldwork campaigns illustrate an important role of stable isotopes in atmospheric vapor and diffusion in the final stable isotope signal in ice. Further, indications from recent fieldwork campaigns illustrate an important role of stable isotopes in atmospheric vapor and diffusion in the final stable isotope signal in ice. This feature complicates

  3. Arctic landfast sea ice

    NASA Astrophysics Data System (ADS)

    Konig, Christof S.

    Landfast ice is sea ice which forms and remains fixed along a coast, where it is attached either to the shore, or held between shoals or grounded icebergs. Landfast ice fundamentally modifies the momentum exchange between atmosphere and ocean, as compared to pack ice. It thus affects the heat and freshwater exchange between air and ocean and impacts on the location of ocean upwelling and downwelling zones. Further, the landfast ice edge is essential for numerous Arctic mammals and Inupiat who depend on them for their subsistence. The current generation of sea ice models is not capable of reproducing certain aspects of landfast ice formation, maintenance, and disintegration even when the spatial resolution would be sufficient to resolve such features. In my work I develop a new ice model that permits the existence of landfast sea ice even in the presence of offshore winds, as is observed in mature. Based on viscous-plastic as well as elastic-viscous-plastic ice dynamics I add tensile strength to the ice rheology and re-derive the equations as well as numerical methods to solve them. Through numerical experiments on simplified domains, the effects of those changes are demonstrated. It is found that the modifications enable landfast ice modeling, as desired. The elastic-viscous-plastic rheology leads to initial velocity fluctuations within the landfast ice that weaken the ice sheet and break it up much faster than theoretically predicted. Solving the viscous-plastic rheology using an implicit numerical method avoids those waves and comes much closer to theoretical predictions. Improvements in landfast ice modeling can only verified in comparison to observed data. I have extracted landfast sea ice data of several decades from several sources to create a landfast sea ice climatology that can be used for that purpose. Statistical analysis of the data shows several factors that significantly influence landfast ice distribution: distance from the coastline, ocean depth, as

  4. Compression experiments on artificial, alpine and marine ice: implications for ice-shelf/continental interactions

    NASA Astrophysics Data System (ADS)

    Dierckx, Marie; Goossens, Thomas; Samyn, Denis; Tison, Jean-Louis

    2010-05-01

    Antarctic ice shelves are important components of continental ice dynamics, in that they control grounded ice flow towards the ocean. As such, Antarctic ice shelves are a key parameter to the stability of the Antarctic ice sheet in the context of global change. Marine ice, formed by sea water accretion beneath some ice shelves, displays distinct physical (grain textures, bubble content, ...) and chemical (salinity, isotopic composition, ...) characteristics as compared to glacier ice and sea ice. The aim is to refine Glen's flow relation (generally used for ice behaviour in deformation) under various parameters (temperature, salinity, debris, grain size ...) to improve deformation laws used in dynamic ice shelf models, which would then give more accurate and / or realistic predictions on ice shelf stability. To better understand the mechanical properties of natural ice, deformation experiments were performed on ice samples in laboratory, using a pneumatic compression device. To do so, we developed a custom built compression rig operated by pneumatic drives. It has been designed for performing uniaxial compression tests at constant load and under unconfined conditions. The operating pressure ranges from about 0.5 to 10 Bars. This allows modifying the experimental conditions to match the conditions found at the grounding zone (in the 1 Bar range). To maintain the ice at low temperature, the samples are immersed in a Silicone oil bath connected to an external refrigeration system. During the experiments, the vertical displacement of the piston and the applied force is measured by sensors which are connected to a digital acquisition system. We started our experiments with artificial ice and went on with continental ice samples from glaciers in the Alps. The first results allowed us to acquire realistic mechanical data for natural ice. Ice viscosity was calculated for different types of artificial ice, using Glen's flow law, and showed the importance of impurities

  5. Ice-Nucleating Bacteria

    NASA Astrophysics Data System (ADS)

    Obata, Hitoshi

    Since the discovery of ice-nucleating bacteria in 1974 by Maki et al., a large number of studies on the biological characteristics, ice-nucleating substance, ice nucleation gene and frost damage etc. of the bacteria have been carried out. Ice-nucleating bacteria can cause the freezing of water at relatively warm temperature (-2.3°C). Tween 20 was good substrates for ice-nucleating activity of Pseudomonas fluorescens KUIN-1. Major fatty acids of Isolate (Pseudomonas fluorescens) W-11 grown at 30°C were palmitic, cis-9-hexadecenoic and cis-11-octadecenoic which amounted to 90% of the total fatty acids. Sequence analysis shows that an ice nucleation gene from Pseudomonas fluorescens is related to the gene of Pseudomonas syringae.

  6. Retention of ice-associated amphipods: possible consequences for an ice-free Arctic Ocean.

    PubMed

    Berge, J; Varpe, O; Moline, M A; Wold, A; Renaud, P E; Daase, M; Falk-Petersen, S

    2012-12-23

    Recent studies predict that the Arctic Ocean will have ice-free summers within the next 30 years. This poses a significant challenge for the marine organisms associated with the Arctic sea ice, such as marine mammals and, not least, the ice-associated crustaceans generally considered to spend their entire life on the underside of the Arctic sea ice. Based upon unique samples collected within the Arctic Ocean during the polar night, we provide a new conceptual understanding of an intimate connection between these under-ice crustaceans and the deep Arctic Ocean currents. We suggest that downwards vertical migrations, followed by polewards transport in deep ocean currents, are an adaptive trait of ice fauna that both increases survival during ice-free periods of the year and enables re-colonization of sea ice when they ascend within the Arctic Ocean. From an evolutionary perspective, this may have been an adaptation allowing success in a seasonally ice-covered Arctic. Our findings may ultimately change the perception of ice fauna as a biota imminently threatened by the predicted disappearance of perennial sea ice.

  7. ICE SLURRY APPLICATIONS

    PubMed Central

    Kauffeld, M.; WANG, M. J.; Goldstein, V.; Kasza, K. E.

    2011-01-01

    The role of secondary refrigerants is expected to grow as the focus on the reduction of greenhouse gas emissions increases. The effectiveness of secondary refrigerants can be improved when phase changing media are introduced in place of single phase media. Operating at temperatures below the freezing point of water, ice slurry facilitates several efficiency improvements such as reductions in pumping energy consumption as well as lowering the required temperature difference in heat exchangers due to the beneficial thermo-physical properties of ice slurry. Research has shown that ice slurry can be engineered to have ideal ice particle characteristics so that it can be easily stored in tanks without agglomeration and then be extractable for pumping at very high ice fraction without plugging. In addition ice slurry can be used in many direct contact food and medical protective cooling applications. This paper provides an overview of the latest developments in ice slurry technology. PMID:21528014

  8. Factors Affecting the Changes of Ice Crystal Form in Ice Cream

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Watanabe, Manabu; Suzuki, Toru

    In this study, the shape of ice crystals in ice cream was quantitatively evaluated by introducing fractal analysis. A small droplet of commercial ice cream mix was quickly cooled to about -30°C on the cold stage of microscope. Subsequently, it was heated to -5°C or -10°C and then held for various holding time. Based on the captured images at each holding time, the cross-sectional area and the length of circumference for each ice crystal were measured to calculate fractal dimension using image analysis software. The results showed that the ice crystals were categorized into two groups, e.g. simple-shape and complicated-shape, according to their fractal dimensions. The fractal dimension of ice crystals became lower with increasing holding time and holding temperature. It was also indicated that the growing rate of complicated-shape ice crystals was relatively higher because of aggregation.

  9. Evaporation of ice in planetary atmospheres - Ice-covered rivers on Mars

    NASA Technical Reports Server (NTRS)

    Wallace, D.; Sagan, C.

    1979-01-01

    The existence of ice covered rivers on Mars is considered. It is noted that the evaporation rate of water ice on the surface of a planet with an atmosphere involves an equilibrium between solar heating and radiative and evaporative cooling of the ice layer. It is determined that even with a mean Martian insolation rate above the ice of approximately 10 to the -8th g per sq cm/sec, a flowing channel of liquid water will be covered by ice which evaporates sufficiently slowly that the water below can flow for hundreds of kilometers even with modest discharges. Evaporation rates are calculated for a range of frictional velocities, atmospheric pressures, and insolations and it is suggested that some subset of observed Martian channels may have formed as ice-choked rivers. Finally, the exobiological implications of ice covered channels or lakes on Mars are discussed.

  10. Mapping Ross Ice Shelf with ROSETTA-Ice airborne laser altimetry

    NASA Astrophysics Data System (ADS)

    Becker, M. K.; Fricker, H. A.; Padman, L.; Bell, R. E.; Siegfried, M. R.; Dieck, C. C. M.

    2017-12-01

    The Ross Ocean and ice Shelf Environment and Tectonic setting Through Aerogeophysical surveys and modeling (ROSETTA-Ice) project combines airborne glaciological, geological, and oceanographic observations to enhance our understanding of the history and dynamics of the large ( 500,000 square km) Ross Ice Shelf (RIS). Here, we focus on the Light Detection And Ranging (LiDAR) data collected in 2015 and 2016. This data set represents a significant advance in resolution: Whereas the last attempt to systematically map RIS (the surface-based RIGGS program in the 1970s) was at 55 km grid spacing, the ROSETTA-Ice grid has 10-20 km line spacing and much higher along-track resolution. We discuss two different strategies for processing the raw LiDAR data: one that requires proprietary software (Riegl's RiPROCESS package), and one that employs open-source programs and libraries. With the processed elevation data, we are able to resolve fine-scale ice-shelf features such as the "rampart-moat" ice-front morphology, which has previously been observed on and modeled for icebergs. This feature is also visible in the ROSETTA-Ice shallow-ice radar data; comparing the laser data with radargrams provides insight into the processes leading to their formation. Near-surface firn state and total firn air content can also be investigated through combined analysis of laser altimetry and radar data. By performing similar analyses with data from the radar altimeter aboard CryoSat-2, we demonstrate the utility of the ROSETTA-Ice LiDAR data set in satellite validation efforts. The incorporation of the LiDAR data from the third and final field season (December 2017) will allow us to construct a DEM and an ice thickness map of RIS for the austral summers of 2015-2017. These products will be used to validate and extend observations of height changes from satellite radar and laser altimetry, as well as to update regional models of ocean circulation and ice dynamics.

  11. SPH non-Newtonian Model for Ice Sheet and Ice Shelf Dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tartakovsky, Alexandre M.; Pan, Wenxiao; Monaghan, Joseph J.

    2012-07-07

    We propose a new three-dimensional smoothed particle hydrodynamics (SPH) non-Newtonian model to study coupled ice sheet and ice shelf dynamics. Most existing ice sheet numerical models use a grid-based Eulerian approach, and are usually restricted to shallow ice sheet and ice shelf approximations of the momentum conservation equation. SPH, a fully Lagrangian particle method, solves the full momentum conservation equation. SPH method also allows modeling of free-surface flows, large material deformation, and material fragmentation without employing complex front-tracking schemes, and does not require re-meshing. As a result, SPH codes are highly scalable. Numerical accuracy of the proposed SPH model ismore » first verified by simulating a plane shear flow with a free surface and the propagation of a blob of ice along a horizontal surface. Next, the SPH model is used to investigate the grounding line dynamics of ice sheet/shelf. The steady position of the grounding line, obtained from our SPH simulations, is in good agreement with laboratory observations for a wide range of bedrock slopes, ice-to-fluid density ratios, and flux. We examine the effect of non-Newtonian behavior of ice on the grounding line dynamics. The non-Newtonian constitutive model is based on Glen's law for a creeping flow of a polycrystalline ice. Finally, we investigate the effect of a bedrock geometry on a steady-state position of the grounding line.« less

  12. Capabilities and performance of Elmer/Ice, a new-generation ice sheet model

    NASA Astrophysics Data System (ADS)

    Gagliardini, O.; Zwinger, T.; Gillet-Chaulet, F.; Durand, G.; Favier, L.; de Fleurian, B.; Greve, R.; Malinen, M.; Martín, C.; Råback, P.; Ruokolainen, J.; Sacchettini, M.; Schäfer, M.; Seddik, H.; Thies, J.

    2013-08-01

    The Fourth IPCC Assessment Report concluded that ice sheet flow models, in their current state, were unable to provide accurate forecast for the increase of polar ice sheet discharge and the associated contribution to sea level rise. Since then, the glaciological community has undertaken a huge effort to develop and improve a new generation of ice flow models, and as a result a significant number of new ice sheet models have emerged. Among them is the parallel finite-element model Elmer/Ice, based on the open-source multi-physics code Elmer. It was one of the first full-Stokes models used to make projections for the evolution of the whole Greenland ice sheet for the coming two centuries. Originally developed to solve local ice flow problems of high mechanical and physical complexity, Elmer/Ice has today reached the maturity to solve larger-scale problems, earning the status of an ice sheet model. Here, we summarise almost 10 yr of development performed by different groups. Elmer/Ice solves the full-Stokes equations, for isotropic but also anisotropic ice rheology, resolves the grounding line dynamics as a contact problem, and contains various basal friction laws. Derived fields, like the age of the ice, the strain rate or stress, can also be computed. Elmer/Ice includes two recently proposed inverse methods to infer badly known parameters. Elmer is a highly parallelised code thanks to recent developments and the implementation of a block preconditioned solver for the Stokes system. In this paper, all these components are presented in detail, as well as the numerical performance of the Stokes solver and developments planned for the future.

  13. Numerical model of ice melange expansion during abrupt ice-shelf collapse

    NASA Astrophysics Data System (ADS)

    Guttenberg, N.; Abbot, D. S.; Amundson, J. M.; Burton, J. C.; Cathles, L. M.; Macayeal, D. R.; Zhang, W.

    2010-12-01

    Satellite imagery of the February 2008 Wilkins Ice-Shelf Collapse event reveals that a large percentage of the involved ice shelf was converted to capsized icebergs and broken fragments of icebergs over a relatively short period of time, possibly less than 24 hours. The extreme violence and short time scale of the event, and the considerable reduction of gravitational potential energy between upright and capsized icebergs, suggests that iceberg capsize might be an important driving mechanism controlling both the rate and spatial extent of ice shelf collapse. To investigate this suggestion, we have constructed an idealized, 2-dimensional model of a disintegrating ice shelf composed of a large number (N~100 to >1000) of initially well-packed icebergs of rectangular cross section. The model geometry consists of a longitudinal cross section of the idealized ice shelf from grounding line (or the upstream extent of ice-shelf fragmentation) to seaward ice front, and includes the region beyond the initial ice front to cover the open, ice-free water into which the collapsing ice shelf expands. The seawater in which the icebergs float is treated as a hydrostatic fluid in the computation of iceberg orientation (e.g., the evaluation of buoyancy forces and torques), thereby eliminating the complexities of free-surface waves, but net horizontal drift of the icebergs is resisted by a linear drag law designed to energy dissipation by viscous forces and surface-gravity-wave radiation. Icebergs interact via both elastic and inelastic contacts (typically a corner of one iceberg will scrape along the face of its neighbor). Ice-shelf collapse in the model is embodied by the mass capsize of a large proportion of the initially packed icebergs and the consequent advancement of the ice front (leading edge). Model simulations are conducted to examine (a) the threshold of stability (e.g., what density of initially capsizable icebergs is needed to allow a small perturbation to the system

  14. Ice detector

    NASA Technical Reports Server (NTRS)

    Weinstein, Leonard M. (Inventor)

    1988-01-01

    An ice detector is provided for the determination of the thickness of ice on the outer surface on an object (e.g., aircraft) independently of temperature or the composition of the ice. First capacitive gauge, second capacitive gauge, and temperature gauge are embedded in embedding material located within a hollowed out portion of the outer surface. This embedding material is flush with the outer surface to prevent undesirable drag. The first capacitive gauge, second capacitive gauge, and the temperature gauge are respectively connected to first capacitive measuring circuit, second capacitive measuring circuit, and temperature measuring circuit. The geometry of the first and second capacitive gauges is such that the ratio of the voltage outputs of the first and second capacitance measuring circuits is proportional to the thickness of ice, regardless of ice temperature or composition. This ratio is determined by offset and dividing circuit.

  15. Norwegian Young Sea Ice Experiment (N-ICE) Field Campaign Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walden, V. P.; Hudson, S. R.; Cohen, L.

    The Norwegian Young Sea Ice (N-ICE) experiment was conducted aboard the R/V Lance research vessel from January through June 2015. The primary purpose of the experiment was to better understand thin, first-year sea ice. This includes understanding of how different components of the Arctic system affect sea ice, but also how changing sea ice affects the system. A major part of this effort is to characterize the atmospheric conditions throughout the experiment. A micropulse lidar (MPL) (S/N: 108) was deployed from the U.S. Department of Energy’s (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility as part of the atmospheric suitemore » of instruments. The MPL operated successfully throughout the entire experiment, acquiring data from 21 January 2015 through 23 June 2015. The MPL was the essential instrument for determining the phase (water, ice or mixed) of the lower-level clouds over the sea ice. Data obtained from the MPL during the N-ICE experiment show large cloud fractions over young, thin Arctic sea ice from January through June 2015 (north of Svalbard). The winter season was characterized by frequent synoptic storms and large fluctuations in the near-surface temperature. There was much less synoptic activity in spring and summer as the near-surface temperature rose to 0 C. The cloud fraction was lower in winter (60%) than in the spring and summer (80%). Supercooled liquid clouds were observed for most of the deployment, appearing first in mid-February. Spring and summer clouds were characterized by low, thick, uniform clouds.« less

  16. Ice shelf structure and stability: Larsen C Ice Shelf, Antarctica

    NASA Astrophysics Data System (ADS)

    Hubbard, B. P.; Ashmore, D.; Bevan, S. L.; Booth, A. D.; Holland, P.; Jansen, D.; Kuipers Munneke, P.; Kulessa, B.; Luckman, A. J.; Sevestre, H.; O'Leary, M.

    2017-12-01

    We report on recent empirical investigations of the internal structure and stability (or otherwise) of Larsen C Ice Shelf (LCIS), Antarctica, focusing on research carried out for the MIDAS research project between 2014 and 2017. Borehole- and surface geophysics-based fieldwork carried out in austral springs 2014 and 2015 revealed that ephemeral surface ponds, preferentially located within the major inlets within the northern sector of the ice shelf, result in the formation of several tens of metres of (relatively dense) subsurface ice within what would otherwise have been a progressively densifying snow and firn column. Five boreholes were drilled throughout the sector and logged by optical televiewer, showing this refrozen ice to be extensive and of variable composition depending on its process of formation. Mapping the depth-distribution of the resulting ice types and associating each with a simple flow-line model of ice motion and accumulation indicates that this area of LCIS has experienced substantial melting for some centuries but that surface ponding has only occurred in recent decades, possibly restricted to the past 20 years. We also present near-surface temperature data that reveal surprising temporal patterns in foehn wind activity and intensity. Finally, we report on the geometrical extension and widening of a rift that was responsible for calving a 5,800 km^2 iceberg from the LCIS in July 2017. The nature of rift propagation through `suture' ice bands, widely considered to be composed of marine ice, is contrasted with that of its propagation through meteoric ice.

  17. Characterizing Arctic Sea Ice Topography Using High-Resolution IceBridge Data

    NASA Technical Reports Server (NTRS)

    Petty, Alek; Tsamados, Michel; Kurtz, Nathan; Farrell, Sinead; Newman, Thomas; Harbeck, Jeremy; Feltham, Daniel; Richter-Menge, Jackie

    2016-01-01

    We present an analysis of Arctic sea ice topography using high resolution, three-dimensional, surface elevation data from the Airborne Topographic Mapper, flown as part of NASA's Operation IceBridge mission. Surface features in the sea ice cover are detected using a newly developed surface feature picking algorithm. We derive information regarding the height, volume and geometry of surface features from 2009-2014 within the Beaufort/Chukchi and Central Arctic regions. The results are delineated by ice type to estimate the topographic variability across first-year and multi-year ice regimes.

  18. Microwave properties of sea ice in the marginal ice zone

    NASA Technical Reports Server (NTRS)

    Onstott, R. G.; Larson, R. W.

    1986-01-01

    Active microwave properties of summer sea ice were measured. Backscatter data were acquired at frequencies from 1 to 17 GHz, at angles from 0 to 70 deg from vertical, and with like and cross antenna polarizations. Results show that melt-water, snow thickness, snowpack morphology, snow surface roughness, ice surface roughness, and deformation characteristics are the fundamental scene parameters which govern the summer sea ice backscatter response. A thick, wet snow cover dominates the backscatter response and masks any ice sheet features below. However, snow and melt-water are not distributed uniformly and the stage of melt may also be quite variable. These nonuniformities related to ice type are not necessarily well understood and produce unique microwave signature characteristics.

  19. Capabilities and performance of the new generation ice-sheet model Elmer/Ice

    NASA Astrophysics Data System (ADS)

    Gagliardini, O.; Zwinger, T.; Durand, G.; Favier, L.; de Fleurian, B.; Gillet-chaulet, F.; Seddik, H.; Greve, R.; Mallinen, M.; Martin, C.; Raback, P.; Ruokolainen, J.; Schäfer, M.; Thies, J.

    2012-12-01

    Since the Fourth IPCC Assessment Report, and its conclusion about the inability of ice-sheet flow models to forecast the current increase of polar ice sheet discharge and associated contribution to sea-level rise, a huge development effort has been undertaken by the glaciological community. All around the world, models have been improved and, interestingly, a significant number of new ice-sheet models have emerged. Among them, the parallel finite-element model Elmer/Ice (based on the open-source multi-physics code Elmer) was one of the first full-Stokes models used to make projections of the future of the whole Greenland ice sheet for the coming two centuries. Originally developed to solve dedicated local ice flow problems of high mechanical and physical complexity, Elmer/Ice has today reached the maturity to solve larger scale problems, earning the status of an ice-sheet model. In this presentation, we summarise the almost 10 years of development performed by different groups. We present the components already included in Elmer/Ice, its numerical performance, selected applications, as well as developments planed for the future.

  20. Ice911 Research: Preserving and Rebuilding Multi-Year Ice

    NASA Astrophysics Data System (ADS)

    Field, L. A.; Chetty, S.; Manzara, A.

    2013-12-01

    A localized surface albedo modification technique is being developed that shows promise as a method to increase multi-year ice using reflective floating materials, chosen so as to have low subsidiary environmental impact. Multi-year ice has diminished rapidly in the Arctic over the past 3 decades (Riihela et al, Nature Climate Change, August 4, 2013) and this plays a part in the continuing rapid decrease of summer-time ice. As summer-time ice disappears, the Arctic is losing its ability to act as the earth's refrigeration system, and this has widespread climatic effects, as well as a direct effect on sea level rise, as oceans heat, and once-land-based ice melts into the sea. We have tested the albedo modification technique on a small scale over five Winter/Spring seasons at sites including California's Sierra Nevada Mountains, a Canadian lake, and a small man-made lake in Minnesota, using various materials and an evolving array of instrumentation. The materials can float and can be made to minimize effects on marine habitat and species. The instrumentation is designed to be deployed in harsh and remote locations. Localized snow and ice preservation, and reductions in water heating, have been quantified in small-scale testing. Climate modeling is underway to analyze the effects of this method of surface albedo modification in key areas on the rate of oceanic and atmospheric temperature rise. We are also evaluating the effects of snow and ice preservation for protection of infrastructure and habitat stabilization. This paper will also discuss a possible reduction of sea level rise with an eye to quantification of cost/benefit. The most recent season's experimentation on a man-made private lake in Minnesota saw further evolution in the material and deployment approach. The materials were successfully deployed to shield underlying snow and ice from melting; applications of granular materials remained stable in the face of local wind and storms. Localized albedo

  1. Modeling Wave-Ice Interactions in the Marginal Ice Zone

    NASA Astrophysics Data System (ADS)

    Orzech, Mark; Shi, Fengyan; Bateman, Sam; Veeramony, Jay; Calantoni, Joe

    2015-04-01

    The small-scale (O(m)) interactions between waves and ice floes in the marginal ice zone (MIZ) are investigated with a coupled model system. Waves are simulated with the non-hydrostatic finite-volume model NHWAVE (Ma et al., 2012) and ice floes are represented as bonded collections of smaller particles with the discrete element system LIGGGHTS (Kloss et al., 2012). The physics of fluid and ice are recreated as authentically as possible, to allow the coupled system to supplement and/or substitute for more costly and demanding field experiments. The presentation will first describe the development and validation of the coupled system, then discuss the results of a series of virtual experiments in which ice floe and wave characteristics are varied to examine their effects on energy dissipation, MIZ floe size distribution, and ice pack retreat rates. Although Wadhams et al. (1986) suggest that only a small portion (roughly 10%) of wave energy entering the MIZ is reflected, dissipation mechanisms for the remaining energy have yet to be delineated or measured. The virtual experiments are designed to focus on specific properties and processes - such as floe size and shape, collision and fracturing events, and variations in wave climate - and measure their relative roles the transfer of energy and momentum from waves to ice. Questions to be examined include: How is energy dissipated by ice floe collisions, fracturing, and drag, and how significant is the wave attenuation associated with each process? Do specific wave/floe length scale ratios cause greater wave attenuation? How does ice material strength affect the rate of wave energy loss? The coupled system will ultimately be used to test and improve upon wave-ice parameterizations for large-scale climate models. References: >Kloss, C., C. Goniva, A. Hager, S. Amberger, and S. Pirker (2012). Models, algorithms and validation for opensource DEM and CFD-DEM. Progress in Computational Fluid Dynamics 12(2/3), 140-152. >Ma, G

  2. A laser-based ice shape profilometer for use in icing wind tunnels

    NASA Technical Reports Server (NTRS)

    Hovenac, Edward A.; Vargas, Mario

    1995-01-01

    A laser-based profilometer was developed to measure the thickness and shape of ice accretions on the leading edge of airfoils and other models in icing wind tunnels. The instrument is a hand held device that is connected to a desk top computer with a 10 meter cable. It projects a laser line onto an ice shape and used solid state cameras to detect the light scattered by the ice. The instrument corrects the image for camera angle distortions, displays an outline of the ice shape on the computer screen, saves the data on a disk, and can print a full scale drawing of the ice shape. The profilometer has undergone extensive testing in the laboratory and in the NASA Lewis Icing Research Tunnel. Results of the tests show very good agreement between profilometer measurements and known simulated ice shapes and fair agreement between profilometer measurements and hand tracing techniques.

  3. Fracture propagation and stability of ice shelves governed by ice shelf heterogeneity

    NASA Astrophysics Data System (ADS)

    Borstad, Chris; McGrath, Daniel; Pope, Allen

    2017-05-01

    Tabular iceberg calving and ice shelf retreat occurs after full-thickness fractures, known as rifts, propagate across an ice shelf. A quickly evolving rift signals a threat to the stability of Larsen C, the Antarctic Peninsula's largest ice shelf. Here we reveal the influence of ice shelf heterogeneity on the growth of this rift, with implications that challenge existing notions of ice shelf stability. Most of the rift extension has occurred in bursts after overcoming the resistance of suture zones that bind together neighboring glacier inflows. We model the stresses in the ice shelf to determine potential rift trajectories. Calving perturbations to ice flow will likely reach the grounding line. The stability of Larsen C may hinge on a single suture zone that stabilizes numerous upstream rifts. Elevated fracture toughness of suture zones may be the most important property that allows ice shelves to modulate Antarctica's contribution to sea level rise.

  4. Stochastic ice stream dynamics

    PubMed Central

    Bertagni, Matteo Bernard; Ridolfi, Luca

    2016-01-01

    Ice streams are narrow corridors of fast-flowing ice that constitute the arterial drainage network of ice sheets. Therefore, changes in ice stream flow are key to understanding paleoclimate, sea level changes, and rapid disintegration of ice sheets during deglaciation. The dynamics of ice flow are tightly coupled to the climate system through atmospheric temperature and snow recharge, which are known exhibit stochastic variability. Here we focus on the interplay between stochastic climate forcing and ice stream temporal dynamics. Our work demonstrates that realistic climate fluctuations are able to (i) induce the coexistence of dynamic behaviors that would be incompatible in a purely deterministic system and (ii) drive ice stream flow away from the regime expected in a steady climate. We conclude that environmental noise appears to be crucial to interpreting the past behavior of ice sheets, as well as to predicting their future evolution. PMID:27457960

  5. [Tail Plane Icing

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Aviation Safety Program initiated by NASA in 1997 has put greater emphasis in safety related research activities. Ice-contaminated-tailplane stall (ICTS) has been identified by the NASA Lewis Icing Technology Branch as an important activity for aircraft safety related research. The ICTS phenomenon is characterized as a sudden, often uncontrollable aircraft nose- down pitching moment, which occurs due to increased angle-of-attack of the horizontal tailplane resulting in tailplane stall. Typically, this phenomenon occurs when lowering the flaps during final approach while operating in or recently departing from icing conditions. Ice formation on the tailplane leading edge can reduce tailplane angle-of-attack range and cause flow separation resulting in a significant reduction or complete loss of aircraft pitch control. In 1993, the Federal Aviation Authority (FAA) and NASA embarked upon a four-year research program to address the problem of tailplane stall and to quantify the effect of tailplane ice accretion on aircraft performance and handling characteristics. The goals of this program, which was completed in March 1998, were to collect aerodynamic data for an aircraft tail with and without ice contamination and to develop analytical methods for predicting the effects of tailplane ice contamination. Extensive dry air and icing tunnel tests which resulted in a database of the aerodynamic effects associated with tailplane ice contamination. Although the FAA/NASA tailplane icing program generated some answers regarding ice-contaminated-tailplane stall (ICTS) phenomena, NASA researchers have found many open questions that warrant further investigation into ICTS. In addition, several aircraft manufacturers have expressed interest in a second research program to expand the database to other tail configurations and to develop experimental and computational methodologies for evaluating the ICTS phenomenon. In 1998, the icing branch at NASA Lewis initiated a second

  6. Controls on Arctic sea ice from first-year and multi-year ice survival rates

    NASA Astrophysics Data System (ADS)

    Armour, K.; Bitz, C. M.; Hunke, E. C.; Thompson, L.

    2009-12-01

    The recent decrease in Arctic sea ice cover has transpired with a significant loss of multi-year (MY) ice. The transition to an Arctic that is populated by thinner first-year (FY) sea ice has important implications for future trends in area and volume. We develop a reduced model for Arctic sea ice with which we investigate how the survivability of FY and MY ice control various aspects of the sea-ice system. We demonstrate that Arctic sea-ice area and volume behave approximately as first-order autoregressive processes, which allows for a simple interpretation of September sea-ice in which its mean state, variability, and sensitivity to climate forcing can be described naturally in terms of the average survival rates of FY and MY ice. This model, used in concert with a sea-ice simulation that traces FY and MY ice areas to estimate the survival rates, reveals that small trends in the ice survival rates explain the decline in total Arctic ice area, and the relatively larger loss of MY ice area, over the period 1979-2006. Additionally, our model allows for a calculation of the persistence time scales of September area and volume anomalies. A relatively short memory time scale for ice area (~ 1 year) implies that Arctic ice area is nearly in equilibrium with long-term climate forcing at all times, and therefore observed trends in area are a clear indication of a changing climate. A longer memory time scale for ice volume (~ 5 years) suggests that volume can be out of equilibrium with climate forcing for long periods of time, and therefore trends in ice volume are difficult to distinguish from its natural variability. With our reduced model, we demonstrate the connection between memory time scale and sensitivity to climate forcing, and discuss the implications that a changing memory time scale has on the trajectory of ice area and volume in a warming climate. Our findings indicate that it is unlikely that a “tipping point” in September ice area and volume will be

  7. Bacterial ice crystal controlling proteins.

    PubMed

    Lorv, Janet S H; Rose, David R; Glick, Bernard R

    2014-01-01

    Across the world, many ice active bacteria utilize ice crystal controlling proteins for aid in freezing tolerance at subzero temperatures. Ice crystal controlling proteins include both antifreeze and ice nucleation proteins. Antifreeze proteins minimize freezing damage by inhibiting growth of large ice crystals, while ice nucleation proteins induce formation of embryonic ice crystals. Although both protein classes have differing functions, these proteins use the same ice binding mechanisms. Rather than direct binding, it is probable that these protein classes create an ice surface prior to ice crystal surface adsorption. Function is differentiated by molecular size of the protein. This paper reviews the similar and different aspects of bacterial antifreeze and ice nucleation proteins, the role of these proteins in freezing tolerance, prevalence of these proteins in psychrophiles, and current mechanisms of protein-ice interactions.

  8. Characteristics of basal ice and subglacial water at Dome Fuji, Antarctica ice sheet

    NASA Astrophysics Data System (ADS)

    Motoyama, H.; Uemura, R.; Hirabayashi, M.; Miyake, T.; Kuramoto, T.; Tanaka, Y.; Dome Fuji Ice Core Project, M.

    2008-12-01

    (Introduction): The second deep ice coring project at Dome Fuji, Antarctica reached a depth of 3035.22 m during the austral summer season in 2006/2007. The recovered ice cores contain records of global environmental changes going back about 720,000 years. (Estimation of basal ice melt): The borehole measurement was carried out on January 2nd in 2007 when the temperature disturbance in the borehole calmed down by the rest of drilling for 2 days. Temperature measurement was performed after 0 C thermometer test was done in the ground. The temperature sensor of pt100 installed in the skate-like anti-torque was used. We did not have the enough time until the temperature of thermometer was matched with the temperature of ice sheet. Some error was included in ice temperature data. The resistance of pt100 sensor was converted to temperature in the borehole measurement machine. But we used only two electrical lines for pt100 sensor. Rate of heat flow in the ice sheet was calculated using the vertical temperature gradient of the ice sheet and rate of heat conductivity of ice. The deepest part of heat flux using temperatures at 3000m and 3030m was about 45mW/m2. We assumed that this value was the heat flux from the bedrock in the ice sheet. Heat flux to the bedrock surface in the ground was assumed 54.6mW/m2 adopted by ice sheet model (P. Huybrechts, 2006). Then the heat flux for basal ice melt was about 10mW/m2. This value was equaled to melting of 1.1mm of ice thickness per year. On the other hand, the annual layer thickness under 2500m was not changed so much and its average was 1.3mm of ice thickness. So the annual layer thickness and melting rate of basal ice was the same in ordering way. Or ice equivalent in annual layer is melting every year. The age of the deepest part of ice core is guessed at 720,000 years old and the ice older than basal ice has melted away. (The state of basal ice): When the ice core drilling depth passed 3031.44m, amount of ice chip more abundant

  9. Eastern Ross Ice Sheet Deglacial History inferred from the Roosevelt Island Ice Core

    NASA Astrophysics Data System (ADS)

    Fudge, T. J.; Buizert, C.; Lee, J.; Waddington, E. D.; Bertler, N. A. N.; Conway, H.; Brook, E.; Severinghaus, J. P.

    2017-12-01

    The Ross Ice Sheet drains large portions of both West and East Antarctica. Understanding the retreat of the Ross Ice Sheet following the Last Glacial Maximum is particularly difficult in the eastern Ross area where there is no exposed rock and the Ross Ice Shelf prevents extensive bathymetric mapping. Coastal domes, by preserving old ice, can be used to infer the establishment of grounded ice and be used to infer past ice thickness. Here we focus on Roosevelt Island, in the eastern Ross Sea, where the Roosevelt Island Climate Evolution project recently completed an ice core to bedrock. Using ice-flow modeling constrained by the depth-age relationship and an independent estimate of accumulation rate from firn-densification measurements and modeling, we infer ice thickness histories for the LGM (20ka) to present. Preliminary results indicate thinning of 300m between 15ka and 12ka is required. This is similar to the amount and timing of thinning inferred at Siple Dome, in the central Ross Sea (Waddington et al., 2005; Price et al., 2007) and supports the presence of active ice streams throughout the Ross Ice Sheet advance during the LGM.

  10. The future of ice sheets and sea ice: between reversible retreat and unstoppable loss.

    PubMed

    Notz, Dirk

    2009-12-08

    We discuss the existence of cryospheric "tipping points" in the Earth's climate system. Such critical thresholds have been suggested to exist for the disappearance of Arctic sea ice and the retreat of ice sheets: Once these ice masses have shrunk below an anticipated critical extent, the ice-albedo feedback might lead to the irreversible and unstoppable loss of the remaining ice. We here give an overview of our current understanding of such threshold behavior. By using conceptual arguments, we review the recent findings that such a tipping point probably does not exist for the loss of Arctic summer sea ice. Hence, in a cooler climate, sea ice could recover rapidly from the loss it has experienced in recent years. In addition, we discuss why this recent rapid retreat of Arctic summer sea ice might largely be a consequence of a slow shift in ice-thickness distribution, which will lead to strongly increased year-to-year variability of the Arctic summer sea-ice extent. This variability will render seasonal forecasts of the Arctic summer sea-ice extent increasingly difficult. We also discuss why, in contrast to Arctic summer sea ice, a tipping point is more likely to exist for the loss of the Greenland ice sheet and the West Antarctic ice sheet.

  11. IceVal DatAssistant: An Interactive, Automated Icing Data Management System

    NASA Technical Reports Server (NTRS)

    Levinson, Laurie H.; Wright, William B.

    2008-01-01

    As with any scientific endeavor, the foundation of icing research at the NASA Glenn Research Center (GRC) is the data acquired during experimental testing. In the case of the GRC Icing Branch, an important part of this data consists of ice tracings taken following tests carried out in the GRC Icing Research Tunnel (IRT), as well as the associated operational and environmental conditions documented during these tests. Over the years, the large number of experimental runs completed has served to emphasize the need for a consistent strategy for managing this data. To address the situation, the Icing Branch has recently elected to implement the IceVal DatAssistant automated data management system. With the release of this system, all publicly available IRT-generated experimental ice shapes with complete and verifiable conditions have now been compiled into one electronically-searchable database. Simulation software results for the equivalent conditions, generated using the latest version of the LEWICE ice shape prediction code, are likewise included and are linked to the corresponding experimental runs. In addition to this comprehensive database, the IceVal system also includes a graphically-oriented database access utility, which provides reliable and easy access to all data contained in the database. In this paper, the issues surrounding historical icing data management practices are discussed, as well as the anticipated benefits to be achieved as a result of migrating to the new system. A detailed description of the software system features and database content is also provided; and, finally, known issues and plans for future work are presented.

  12. IceVal DatAssistant: An Interactive, Automated Icing Data Management System

    NASA Technical Reports Server (NTRS)

    Levinson, Laurie H.; Wright, William B.

    2008-01-01

    As with any scientific endeavor, the foundation of icing research at the NASA Glenn Research Center (GRC) is the data acquired during experimental testing. In the case of the GRC Icing Branch, an important part of this data consists of ice tracings taken following tests carried out in the GRC Icing Research Tunnel (IRT), as well as the associated operational and environmental conditions during those tests. Over the years, the large number of experimental runs completed has served to emphasize the need for a consistent strategy to manage the resulting data. To address this situation, the Icing Branch has recently elected to implement the IceVal DatAssistant automated data management system. With the release of this system, all publicly available IRT-generated experimental ice shapes with complete and verifiable conditions have now been compiled into one electronically-searchable database; and simulation software results for the equivalent conditions, generated using the latest version of the LEWICE ice shape prediction code, are likewise included and linked to the corresponding experimental runs. In addition to this comprehensive database, the IceVal system also includes a graphically-oriented database access utility, which provides reliable and easy access to all data contained in the database. In this paper, the issues surrounding historical icing data management practices are discussed, as well as the anticipated benefits to be achieved as a result of migrating to the new system. A detailed description of the software system features and database content is also provided; and, finally, known issues and plans for future work are presented.

  13. SmaggIce 2.0: Additional Capabilities for Interactive Grid Generation of Iced Airfoils

    NASA Technical Reports Server (NTRS)

    Kreeger, Richard E.; Baez, Marivell; Braun, Donald C.; Schilling, Herbert W.; Vickerman, Mary B.

    2008-01-01

    The Surface Modeling and Grid Generation for Iced Airfoils (SmaggIce) software toolkit has been extended to allow interactive grid generation for multi-element iced airfoils. The essential phases of an icing effects study include geometry preparation, block creation and grid generation. SmaggIce Version 2.0 now includes these main capabilities for both single and multi-element airfoils, plus an improved flow solver interface and a variety of additional tools to enhance the efficiency and accuracy of icing effects studies. An overview of these features is given, especially the new multi-element blocking strategy using the multiple wakes method. Examples are given which illustrate the capabilities of SmaggIce for conducting an icing effects study for both single and multi-element airfoils.

  14. Winter snow conditions on Arctic sea ice north of Svalbard during the Norwegian young sea ICE (N-ICE2015) expedition

    NASA Astrophysics Data System (ADS)

    Merkouriadi, Ioanna; Gallet, Jean-Charles; Graham, Robert M.; Liston, Glen E.; Polashenski, Chris; Rösel, Anja; Gerland, Sebastian

    2017-10-01

    Snow is a crucial component of the Arctic sea ice system. Its thickness and thermal properties control heat conduction and radiative fluxes across the ocean, ice, and atmosphere interfaces. Hence, observations of the evolution of snow depth, density, thermal conductivity, and stratigraphy are crucial for the development of detailed snow numerical models predicting energy transfer through the snow pack. Snow depth is also a major uncertainty in predicting ice thickness using remote sensing algorithms. Here we examine the winter spatial and temporal evolution of snow physical properties on first-year (FYI) and second-year ice (SYI) in the Atlantic sector of the Arctic Ocean, during the Norwegian young sea ICE (N-ICE2015) expedition (January to March 2015). During N-ICE2015, the snow pack consisted of faceted grains (47%), depth hoar (28%), and wind slab (13%), indicating very different snow stratigraphy compared to what was observed in the Pacific sector of the Arctic Ocean during the SHEBA campaign (1997-1998). Average snow bulk density was 345 kg m-3 and it varied with ice type. Snow depth was 41 ± 19 cm in January and 56 ± 17 cm in February, which is significantly greater than earlier suggestions for this region. The snow water equivalent was 14.5 ± 5.3 cm over first-year ice and 19 ± 5.4 cm over second-year ice.

  15. The role of ice shelves in the Holocene evolution of the Antarctic ice sheet

    NASA Astrophysics Data System (ADS)

    Bernales, Jorge; Rogozhina, Irina; Thomas, Maik

    2014-05-01

    Using the continental-scale ice sheet-shelf model SICOPOLIS (Greve, 1997 [1]; Sato and Greve, 2012 [2]), we assess the influence of ice shelves on the Holocene evolution and present-day geometry of the Antarctic ice sheet. We have designed a series of paleoclimate simulations driven by a time-evolved climate forcing that couples the surface temperature record from the Vostok ice core with precipitation pattern using an empirical relation of Dahl-Jensen et al., (1998) [3]. Our numerical experiments show that the geometry of ice shelves is determined by the evolution of climate and ocean conditions over time scales of 15 to 25 kyr. This implies that the initial configuration of ice shelves at the Last Glacial Maximum (LGM, about 21 kyr before present) has a significant effect on the modelled Early Holocene volume of ice shelves (up to 20%) that gradually diminishes to a negligible level for the present-day ice shelf configuration. Thus, the present-day geometry of the Antarctic ice shelves can be attained even if an ice-shelf-free initial condition is chosen at the LGM. However, the grounded ice volume, thickness and dynamic states are found to be sensitive to the ice shelf dynamics over a longer history spanning several tens of thousands of years. A presence of extensive marine ice at the LGM, supported by sediment core reconstructions (e.g. Naish et al., 2009 [4]), has a clear buttressing effect on the grounded ice that remains significant over a period of 30 to 50 kyr. If ice-shelf-free conditions are prescribed at the LGM, the modelled Early Holocene and present-day grounded ice volumes are underestimated by up to 10%, as opposed to simulations incorporating ice shelf dynamics over longer periods. The use of ice-shelf-free LGM conditions thus results in 50 to over 200 meters thinner ice sheet across much of East Antarctica. References [1] Greve, R. (1997). Application of a polythermal three-dimensional ice sheet model to the Greenland ice sheet: response to

  16. Ice core evidence for extensive melting of the greenland ice sheet in the last interglacial.

    PubMed

    Koerner, R M

    1989-05-26

    Evidence from ice at the bottom of ice cores from the Canadian Arctic Islands and Camp Century and Dye-3 in Greenland suggests that the Greenland ice sheet melted extensively or completely during the last interglacial period more than 100 ka (thousand years ago), in contrast to earlier interpretations. The presence of dirt particles in the basal ice has previously been thought to indicate that the base of the ice sheets had melted and that the evidence for the time of original growth of these ice masses had been destroyed. However, the particles most likely blew onto the ice when the dimensions of the ice caps and ice sheets were much smaller. Ice texture, gas content, and other evidence also suggest that the basal ice at each drill site is superimposed ice, a type of ice typical of the early growth stages of an ice cap or ice sheet. If the present-day ice masses began their growth during the last interglacial, the ice sheet from the earlier (Illinoian) glacial period must have competely or largely melted during the early part of the same interglacial period. If such melting did occur, the 6-meter higher-than-present sea level during the Sangamon cannot be attributed to disintegration of the West Antarctic ice sheet, as has been suggested.

  17. Bacterial Ice Crystal Controlling Proteins

    PubMed Central

    Lorv, Janet S. H.; Rose, David R.; Glick, Bernard R.

    2014-01-01

    Across the world, many ice active bacteria utilize ice crystal controlling proteins for aid in freezing tolerance at subzero temperatures. Ice crystal controlling proteins include both antifreeze and ice nucleation proteins. Antifreeze proteins minimize freezing damage by inhibiting growth of large ice crystals, while ice nucleation proteins induce formation of embryonic ice crystals. Although both protein classes have differing functions, these proteins use the same ice binding mechanisms. Rather than direct binding, it is probable that these protein classes create an ice surface prior to ice crystal surface adsorption. Function is differentiated by molecular size of the protein. This paper reviews the similar and different aspects of bacterial antifreeze and ice nucleation proteins, the role of these proteins in freezing tolerance, prevalence of these proteins in psychrophiles, and current mechanisms of protein-ice interactions. PMID:24579057

  18. Simulation of the Greenland Ice Sheet over two glacial-interglacial cycles: investigating a sub-ice-shelf melt parameterization and relative sea level forcing in an ice-sheet-ice-shelf model

    NASA Astrophysics Data System (ADS)

    Bradley, Sarah L.; Reerink, Thomas J.; van de Wal, Roderik S. W.; Helsen, Michiel M.

    2018-05-01

    Observational evidence, including offshore moraines and sediment cores, confirm that at the Last Glacial Maximum (LGM) the Greenland ice sheet (GrIS) expanded to a significantly larger spatial extent than seen at present, grounding into Baffin Bay and out onto the continental shelf break. Given this larger spatial extent and its close proximity to the neighbouring Laurentide Ice Sheet (LIS) and Innuitian Ice Sheet (IIS), it is likely these ice sheets will have had a strong non-local influence on the spatial and temporal behaviour of the GrIS. Most previous paleo ice-sheet modelling simulations recreated an ice sheet that either did not extend out onto the continental shelf or utilized a simplified marine ice parameterization which did not fully include the effect of ice shelves or neglected the sensitivity of the GrIS to this non-local bedrock signal from the surrounding ice sheets. In this paper, we investigated the evolution of the GrIS over the two most recent glacial-interglacial cycles (240 ka BP to the present day) using the ice-sheet-ice-shelf model IMAU-ICE. We investigated the solid earth influence of the LIS and IIS via an offline relative sea level (RSL) forcing generated by a glacial isostatic adjustment (GIA) model. The RSL forcing governed the spatial and temporal pattern of sub-ice-shelf melting via changes in the water depth below the ice shelves. In the ensemble of simulations, at the glacial maximums, the GrIS coalesced with the IIS to the north and expanded to the continental shelf break to the southwest but remained too restricted to the northeast. In terms of the global mean sea level contribution, at the Last Interglacial (LIG) and LGM the ice sheet added 1.46 and -2.59 m, respectively. This LGM contribution by the GrIS is considerably higher (˜ 1.26 m) than most previous studies whereas the contribution to the LIG highstand is lower (˜ 0.7 m). The spatial and temporal behaviour of the northern margin was highly variable in all simulations

  19. Astronomical Ice: The Effects of Treating Ice as a Porous Media on the Dynamics and Evolution of Extraterrestrial Ice-Ocean Environments

    NASA Astrophysics Data System (ADS)

    Buffo, J.; Schmidt, B. E.

    2015-12-01

    With the prevalence of water and ice rich environments in the solar system, and likely the universe, becoming more apparent, understanding the evolutionary dynamics and physical processes of such locales is of great importance. Piqued interest arises from the understanding that the persistence of all known life depends on the presence of liquid water. As in situ investigation is currently infeasible, accurate numerical modeling is the best technique to demystify these environments. We will discuss an evolving model of ice-ocean interaction aimed at realistically describing the behavior of the ice-ocean interface by treating basal ice as a porous media, and its possible implications on the formation of astrobiological niches. Treating ice as a porous media drastically affects the thermodynamic properties it exhibits. Thus inclusion of this phenomenon is critical in accurately representing the dynamics and evolution of all ice-ocean environments. This model utilizes equations that describe the dynamics of sea ice when it is treated as a porous media (Hunke et. al. 2011), coupled with a basal melt and accretion model (Holland and Jenkins 1999). Combined, these two models produce the most accurate description of the processes occurring at the base of terrestrial sea ice and ice shelves, capable of resolving variations within the ice due to environmental pressures. While these models were designed for application to terrestrial environments, the physics occurring at any ice-water interface is identical, and these models can be used to represent the evolution of a variety of icy astronomical bodies. As terrestrial ice shelves provide a close analog to planetary ice-ocean environments, we truth test the models validity against observations of ice shelves. We apply this model to the ice-ocean interface of the icy Galilean moon Europa. We include profiles of temperature, salinity, solid fraction, and Darcy velocity, as well as temporally and spatially varying melt and

  20. Canadian Arctic sea ice reconstructed from bromine in the Greenland NEEM ice core.

    PubMed

    Spolaor, Andrea; Vallelonga, Paul; Turetta, Clara; Maffezzoli, Niccolò; Cozzi, Giulio; Gabrieli, Jacopo; Barbante, Carlo; Goto-Azuma, Kumiko; Saiz-Lopez, Alfonso; Cuevas, Carlos A; Dahl-Jensen, Dorthe

    2016-09-21

    Reconstructing the past variability of Arctic sea ice provides an essential context for recent multi-year sea ice decline, although few quantitative reconstructions cover the Holocene period prior to the earliest historical records 1,200 years ago. Photochemical recycling of bromine is observed over first-year, or seasonal, sea ice in so-called "bromine explosions" and we employ a 1-D chemistry transport model to quantify processes of bromine enrichment over first-year sea ice and depositional transport over multi-year sea ice and land ice. We report bromine enrichment in the Northwest Greenland Eemian NEEM ice core since the end of the Eemian interglacial 120,000 years ago, finding the maximum extension of first-year sea ice occurred approximately 9,000 years ago during the Holocene climate optimum, when Greenland temperatures were 2 to 3 °C above present values. First-year sea ice extent was lowest during the glacial stadials suggesting complete coverage of the Arctic Ocean by multi-year sea ice. These findings demonstrate a clear relationship between temperature and first-year sea ice extent in the Arctic and suggest multi-year sea ice will continue to decline as polar amplification drives Arctic temperatures beyond the 2 °C global average warming target of the recent COP21 Paris climate agreement.

  1. Arctic Sea Ice Classification and Mapping for Surface Albedo Parameterization in Sea Ice Modeling

    NASA Astrophysics Data System (ADS)

    Nghiem, S. V.; Clemente-Colón, P.; Perovich, D. K.; Polashenski, C.; Simpson, W. R.; Rigor, I. G.; Woods, J. E.; Nguyen, D. T.; Neumann, G.

    2016-12-01

    A regime shift of Arctic sea ice from predominantly perennial sea ice (multi-year ice or MYI) to seasonal sea ice (first-year ice or FYI) has occurred in recent decades. This shift has profoundly altered the proportional composition of different sea ice classes and the surface albedo distribution pertaining to each sea ice class. Such changes impacts physical, chemical, and biological processes in the Arctic atmosphere-ice-ocean system. The drastic changes upset the traditional geophysical representation of surface albedo of the Arctic sea ice cover in current models. A critical science issue is that these profound changes must be rigorously and systematically observed and characterized to enable a transformative re-parameterization of key model inputs, such as ice surface albedo, to ice-ocean-atmosphere climate modeling in order to obtain re-analyses that accurately reproduce Arctic changes and also to improve sea ice and weather forecast models. Addressing this challenge is a strategy identified by the National Research Council study on "Seasonal to Decadal Predictions of Arctic Sea Ice - Challenges and Strategies" to replicate the new Arctic reality. We review results of albedo characteristics associated with different sea ice classes such as FYI and MYI. Then we demonstrate the capability for sea ice classification and mapping using algorithms developed by the Jet Propulsion Laboratory and by the U.S. National Ice Center for use with multi-sourced satellite radar data at L, C, and Ku bands. Results obtained with independent algorithms for different radar frequencies consistently identify sea ice classes and thereby cross-verify the sea ice classification methods. Moreover, field observations obtained from buoy webcams and along an extensive trek across Elson Lagoon and a sector of the Beaufort Sea during the BRomine, Ozone, and Mercury EXperiment (BROMEX) in March 2012 are used to validate satellite products of sea ice classes. This research enables the mapping

  2. Export of Ice-Cavity Water from Pine Island Ice Shelf, West Antarctica

    NASA Astrophysics Data System (ADS)

    Thurnherr, Andreas; Jacobs, Stanley; Dutrieux, Pierre

    2013-04-01

    Stability of the West Antarctic Ice Sheet is sensitive to changes in melting at the bottom of floating ice shelves that form the seaward extensions of Antarctic glaciers flowing into the ocean. Not least because observations in the cavities beneath ice shelves are difficult, heat fluxes and melt rates have been inferred from oceanographic measurements obtained near the ice edge (calving fronts). Here, we report on a set of hydrographic and velocity data collected in early 2009 near the calving front of the Amundsen Sea's fast-moving and (until recently) accelerating Pine Island Glacier and its associated ice shelf. CTD profiles collected along the southern half of the meridionally-trending ice front show clear evidence for export of ice-cavity water. That water was carried in the upper ocean along the ice front by a southward current that is possibly related to a striking clockwise gyre that dominated the (summertime) upper-ocean circulation in Pine Island Bay. Signatures of ice-cavity water appear unrelated to current direction along most of the ice front, suggesting that cross-frontal exchange is dominated by temporal variability. However, repeated hydrographic and velocity measurements in a small "ice cove" at the southern end of the calving front show a persistent strong (mean velocity peaking near 0.5 ms-1) outflow of ice-cavity water in the upper 500 m. While surface features (boils) suggested upwelling from deep below the ice shelf, vertical velocity measurements reveal 1) that the mean upwelling within the confines of the cove was too weak to feed the observed outflow, and 2) that large high-frequency internal waves dominated the vertical motion of water inside the cove. These observations indicate that water exchange between the Pine Island Ice Shelf cavity and the Amundsen sea is strongly asymmetric with weak broad inflow at depth and concentrated surface-intensified outflow of melt-laden deep water at the southern edge of the calving front. The lack of

  3. Turbulent heat exchange between water and ice at an evolving ice-water interface

    NASA Astrophysics Data System (ADS)

    Ramudu, E.; Hirsh, B.; Olson, P.; Gnanadesikan, A.

    2016-02-01

    Experimental results are presented on the time evolution of ice subject to a turbulent shear flow in a layer of water of uniform depth. Our study is motivated by observations in the ocean cavity beneath Antarctic ice shelves, where shoaling of Circumpolar Deep Water into the cavity has been implicated in the accelerated melting of the ice shelf base. Measurements of inflow and outflow at the ice shelf front have shown that not all of the heat entering the cavity is delivered to the ice shelf, suggesting that turbulent transfer to the ice represents an important bottleneck. Given that a range of turbulent transfer coefficients has been used in models it is important to better constrain this parameter. We measure as a function of time in our experiments the thickness of the ice, temperatures in the ice and water, and fluid velocity in the shear flow, starting from an initial condition in which the water is at rest and the ice has grown by conduction above a cold plate. The strength of the applied turbulent shear flow is represented in terms of a Reynolds number Re, which is varied over the range 3.5 × 103 ≤ Re ≤ 1.9 × 104. Transient partial melting of the ice occurs at the lower end of this range of Re and complete transient melting of the ice occurs at the higher end of the range. Following these melting transients, the ice reforms at a rate that is independent of Re. We fit to our experimental measurements of ice thickness and temperature a one-dimensional model for the evolution of the ice thickness in which the turbulent heat transfer is parameterized in terms of the friction velocity of the shear flow. Comparison with the Pine Island Glacier Ice Shelf yields qualitative agreement between the transient ice melting rates predicted by our model and the shelf melting rate inferred from the field observations.

  4. Ice, Ocean and Atmosphere Interactions in the Arctic Marginal Ice Zone

    DTIC Science & Technology

    2015-09-30

    the northward retreat of the ice edge. Through the long-term measurement of the key oceanic, atmospheric, and sea ice processes that...began to move southward towards the Alaskan coast. In 2104 the anomalous areas of ice retreat were the region north of Alaska...and Siberia. (see figures below). This is not uncommon as these regions have seen the greatest retreat in sea ice. See http://nsidc.org

  5. Overview of Sea-Ice Properties, Distribution and Temporal Variations, for Application to Ice-Atmosphere Chemical Processes.

    NASA Astrophysics Data System (ADS)

    Moritz, R. E.

    2005-12-01

    The properties, distribution and temporal variation of sea-ice are reviewed for application to problems of ice-atmosphere chemical processes. Typical vertical structure of sea-ice is presented for different ice types, including young ice, first-year ice and multi-year ice, emphasizing factors relevant to surface chemistry and gas exchange. Time average annual cycles of large scale variables are presented, including ice concentration, ice extent, ice thickness and ice age. Spatial and temporal variability of these large scale quantities is considered on time scales of 1-50 years, emphasizing recent and projected changes in the Arctic pack ice. The amount and time evolution of open water and thin ice are important factors that influence ocean-ice-atmosphere chemical processes. Observations and modeling of the sea-ice thickness distribution function are presented to characterize the range of variability in open water and thin ice.

  6. Short-term sea ice forecasting: An assessment of ice concentration and ice drift forecasts using the U.S. Navy's Arctic Cap Nowcast/Forecast System

    NASA Astrophysics Data System (ADS)

    Hebert, David A.; Allard, Richard A.; Metzger, E. Joseph; Posey, Pamela G.; Preller, Ruth H.; Wallcraft, Alan J.; Phelps, Michael W.; Smedstad, Ole Martin

    2015-12-01

    In this study the forecast skill of the U.S. Navy operational Arctic sea ice forecast system, the Arctic Cap Nowcast/Forecast System (ACNFS), is presented for the period February 2014 to June 2015. ACNFS is designed to provide short term, 1-7 day forecasts of Arctic sea ice and ocean conditions. Many quantities are forecast by ACNFS; the most commonly used include ice concentration, ice thickness, ice velocity, sea surface temperature, sea surface salinity, and sea surface velocities. Ice concentration forecast skill is compared to a persistent ice state and historical sea ice climatology. Skill scores are focused on areas where ice concentration changes by ±5% or more, and are therefore limited to primarily the marginal ice zone. We demonstrate that ACNFS forecasts are skilful compared to assuming a persistent ice state, especially beyond 24 h. ACNFS is also shown to be particularly skilful compared to a climatologic state for forecasts up to 102 h. Modeled ice drift velocity is compared to observed buoy data from the International Arctic Buoy Programme. A seasonal bias is shown where ACNFS is slower than IABP velocity in the summer months and faster in the winter months. In February 2015, ACNFS began to assimilate a blended ice concentration derived from Advanced Microwave Scanning Radiometer 2 (AMSR2) and the Interactive Multisensor Snow and Ice Mapping System (IMS). Preliminary results show that assimilating AMSR2 blended with IMS improves the short-term forecast skill and ice edge location compared to the independently derived National Ice Center Ice Edge product.

  7. Validation of Modelled Ice Dynamics of the Greenland Ice Sheet using Historical Forcing

    NASA Astrophysics Data System (ADS)

    Hoffman, M. J.; Price, S. F.; Howat, I. M.; Bonin, J. A.; Chambers, D. P.; Tezaur, I.; Kennedy, J. H.; Lenaerts, J.; Lipscomb, W. H.; Neumann, T.; Nowicki, S.; Perego, M.; Saba, J. L.; Salinger, A.; Guerber, J. R.

    2015-12-01

    Although ice sheet models are used for sea level rise projections, the degree to which these models have been validated by observations is fairly limited, due in part to the limited duration of the satellite observation era and the long adjustment time scales of ice sheets. Here we describe a validation framework for the Greenland Ice Sheet applied to the Community Ice Sheet Model by forcing the model annually with flux anomalies at the major outlet glaciers (Enderlin et al., 2014, observed from Landsat/ASTER/Operation IceBridge) and surface mass balance (van Angelen et al., 2013, calculated from RACMO2) for the period 1991-2012. The ice sheet model output is compared to ice surface elevation observations from ICESat and ice sheet mass change observations from GRACE. Early results show promise for assessing the performance of different model configurations. Additionally, we explore the effect of ice sheet model resolution on validation skill.

  8. The effect of ice-cream-scoop water on the hygiene of ice cream.

    PubMed Central

    Wilson, I. G.; Heaney, J. C.; Weatherup, S. T.

    1997-01-01

    A survey of unopened ice cream, ice cream in use, and ice-cream-scoop water (n = 91) was conducted to determine the effect of scoop water hygiene on the microbiological quality of ice cream. An aerobic plate count around 10(6) c.f.u. ml-1 was the modal value for scoop waters. Unopened ice creams generally had counts around 10(3)-10(4) c.f.u. ml-1 and this increased by one order of magnitude when in use. Many scoop waters had low coliform counts, but almost half contained > 100 c.f.u. ml-1. E. coli was isolated in 18% of ice creams in use, and in 10% of unopened ice creams. S. aureus was not detected in any sample. Statistical analysis showed strong associations between indicator organisms and increased counts in ice cream in use. EC guidelines for indicator organisms in ice cream were exceeded by up to 56% of samples. PMID:9287941

  9. The effect of ice-cream-scoop water on the hygiene of ice cream.

    PubMed

    Wilson, I G; Heaney, J C; Weatherup, S T

    1997-08-01

    A survey of unopened ice cream, ice cream in use, and ice-cream-scoop water (n = 91) was conducted to determine the effect of scoop water hygiene on the microbiological quality of ice cream. An aerobic plate count around 10(6) c.f.u. ml-1 was the modal value for scoop waters. Unopened ice creams generally had counts around 10(3)-10(4) c.f.u. ml-1 and this increased by one order of magnitude when in use. Many scoop waters had low coliform counts, but almost half contained > 100 c.f.u. ml-1. E. coli was isolated in 18% of ice creams in use, and in 10% of unopened ice creams. S. aureus was not detected in any sample. Statistical analysis showed strong associations between indicator organisms and increased counts in ice cream in use. EC guidelines for indicator organisms in ice cream were exceeded by up to 56% of samples.

  10. Sparse ice: Geophysical, biological and Indigenous knowledge perspectives on a habitat for ice-associated fauna

    NASA Astrophysics Data System (ADS)

    Lee, O. A.; Eicken, H.; Weyapuk, W., Jr.; Adams, B.; Mohoney, A. R.

    2015-12-01

    The significance of highly dispersed, remnant Arctic sea ice as a platform for marine mammals and indigenous hunters in spring and summer may have increased disproportionately with changes in the ice cover. As dispersed remnant ice becomes more common in the future it will be increasingly important to understand its ecological role for upper trophic levels such as marine mammals and its role for supporting primary productivity of ice-associated algae. Potential sparse ice habitat at sea ice concentrations below 15% is difficult to detect using remote sensing data alone. A combination of high resolution satellite imagery (including Synthetic Aperture Radar), data from the Barrow sea ice radar, and local observations from indigenous sea ice experts was used to detect sparse sea ice in the Alaska Arctic. Traditional knowledge on sea ice use by marine mammals was used to delimit the scales where sparse ice could still be used as habitat for seals and walrus. Potential sparse ice habitat was quantified with respect to overall spatial extent, size of ice floes, and density of floes. Sparse ice persistence offshore did not prevent the occurrence of large coastal walrus haul outs, but the lack of sparse ice and early sea ice retreat coincided with local observations of ringed seal pup mortality. Observations from indigenous hunters will continue to be an important source of information for validating remote sensing detections of sparse ice, and improving understanding of marine mammal adaptations to sea ice change.

  11. Primary spectrum and composition with IceCube/IceTop

    NASA Astrophysics Data System (ADS)

    Gaisser, Thomas K.; IceCube Collaboration

    2016-10-01

    IceCube, with its surface array IceTop, detects three different components of extensive air showers: the total signal at the surface, GeV muons in the periphery of the showers and TeV muons in the deep array of IceCube. The spectrum is measured with high resolution from the knee to the ankle with IceTop. Composition and spectrum are extracted from events seen in coincidence by the surface array and the deep array of IceCube. The muon lateral distribution at the surface is obtained from the data and used to provide a measurement of the muon density at 600 meters from the shower core up to 30 PeV. Results are compared to measurements from other experiments to obtain an overview of the spectrum and composition over an extended range of energy. Consistency of the surface muon measurements with hadronic interaction models and with measurements at higher energy is discussed.

  12. Leakage of the Greenland Ice Sheet through accelerated ice flow

    NASA Astrophysics Data System (ADS)

    Rignot, E.

    2005-12-01

    A map of coastal velocities of the Greenland ice sheet was produced from Radarsat-1 acquired during the background mission of 2000 and combined with radio echo sounding data to estimate the ice discharge from the ice sheet. On individual glaciers, ice discharge was compared with snow input from the interior and melt above the flux gate to determine the glacier mass balance. Time series of velocities on several glaciers at different latitudes reveal seasonal fluctuations of only 7-8 percent so that winter velocities are only 2 percent less than the yearly mean. The results show the northern Greenland glaciers to be close to balance yet losing mass. No change in ice flow is detected on Petermann, 79north and Zachariae Isstrom in 2000-2004. East Greenland glaciers are in balance and flowing steadily north of Kangerdlussuaq, but Kangerdlussuaq, Helheim and all the southeastern glaciers are thinning dramatically. All these glaciers accelerated, Kangerdlussuaq in 2000, Helheim prior to 2004, and southeast Greenland glaciers accelerated 10 to 50 percent in 2000-2004. Glacier acceleration is generally brutal, probably once the glacier reached a threshold, and sustained. In the northwest, most glaciers are largely out of balance. Jakobshavn accelerated significantly in 2002, and glaciers in its immediate vicinity accelerated more than 50 percent in 2000-2004. Less is known about southwest Greenland glaciers due to a lack of ice thickness data but the glaciers have accelerated there as well and are likely to be strongly out of balance despite thickening of the interior. Overall, I estimate the mass balance of the Greenland ice sheet to be about -80 +/-10 cubic km of ice per year in 2000 and -110 +/-15 cubic km of ice per year in 2004, i.e. more negative than based on partial altimetry surveys of the outlet glaciers. As climate continues to warm, more glaciers will accelerate, and the mass balance will become increasingly negative, regardless of the evolution of the ice sheet

  13. The future of ice sheets and sea ice: Between reversible retreat and unstoppable loss

    PubMed Central

    Notz, Dirk

    2009-01-01

    We discuss the existence of cryospheric “tipping points” in the Earth's climate system. Such critical thresholds have been suggested to exist for the disappearance of Arctic sea ice and the retreat of ice sheets: Once these ice masses have shrunk below an anticipated critical extent, the ice–albedo feedback might lead to the irreversible and unstoppable loss of the remaining ice. We here give an overview of our current understanding of such threshold behavior. By using conceptual arguments, we review the recent findings that such a tipping point probably does not exist for the loss of Arctic summer sea ice. Hence, in a cooler climate, sea ice could recover rapidly from the loss it has experienced in recent years. In addition, we discuss why this recent rapid retreat of Arctic summer sea ice might largely be a consequence of a slow shift in ice-thickness distribution, which will lead to strongly increased year-to-year variability of the Arctic summer sea-ice extent. This variability will render seasonal forecasts of the Arctic summer sea-ice extent increasingly difficult. We also discuss why, in contrast to Arctic summer sea ice, a tipping point is more likely to exist for the loss of the Greenland ice sheet and the West Antarctic ice sheet. PMID:19884496

  14. Evaporation of ice in planetary atmospheres: Ice-covered rivers on Mars

    NASA Technical Reports Server (NTRS)

    Wallace, D.; Sagan, C.

    1978-01-01

    The evaporation rate of water ice on the surface of a planet with an atmosphere involves an equilibrium between solar heating and radiative and evaporative cooling of the ice layer. The thickness of the ice is governed principally by the solar flux which penetrates the ice layer and then is conducted back to the surface. Evaporation from the surface is governed by wind and free convection. In the absence of wind, eddy diffusion is caused by the lower density of water vapor in comparison to the density of the Martian atmosphere. For mean martian insolations, the evaporation rate above the ice is approximately 10 to the minus 8th power gm/sq cm/s. Evaporation rates are calculated for a wide range of frictional velocities, atmospheric pressures, and insolations and it seems clear that at least some subset of observed Martian channels may have formed as ice-chocked rivers. Typical equilibrium thicknesses of such ice covers are approximately 10m to 30 m; typical surface temperatures are 210 to 235 K.

  15. Windows in Arctic sea ice: Light transmission and ice algae in a refrozen lead

    NASA Astrophysics Data System (ADS)

    Kauko, Hanna M.; Taskjelle, Torbjørn; Assmy, Philipp; Pavlov, Alexey K.; Mundy, C. J.; Duarte, Pedro; Fernández-Méndez, Mar; Olsen, Lasse M.; Hudson, Stephen R.; Johnsen, Geir; Elliott, Ashley; Wang, Feiyue; Granskog, Mats A.

    2017-06-01

    The Arctic Ocean is rapidly changing from thicker multiyear to thinner first-year ice cover, with significant consequences for radiative transfer through the ice pack and light availability for algal growth. A thinner, more dynamic ice cover will possibly result in more frequent leads, covered by newly formed ice with little snow cover. We studied a refrozen lead (≤0.27 m ice) in drifting pack ice north of Svalbard (80.5-81.8°N) in May-June 2015 during the Norwegian young sea ICE expedition (N-ICE2015). We measured downwelling incident and ice-transmitted spectral irradiance, and colored dissolved organic matter (CDOM), particle absorption, ultraviolet (UV)-protecting mycosporine-like amino acids (MAAs), and chlorophyll a (Chl a) in melted sea ice samples. We found occasionally very high MAA concentrations (up to 39 mg m-3, mean 4.5 ± 7.8 mg m-3) and MAA to Chl a ratios (up to 6.3, mean 1.2 ± 1.3). Disagreement in modeled and observed transmittance in the UV range let us conclude that MAA signatures in CDOM absorption spectra may be artifacts due to osmotic shock during ice melting. Although observed PAR (photosynthetically active radiation) transmittance through the thin ice was significantly higher than that of the adjacent thicker ice with deep snow cover, ice algal standing stocks were low (≤2.31 mg Chl a m-2) and similar to the adjacent ice. Ice algal accumulation in the lead was possibly delayed by the low inoculum and the time needed for photoacclimation to the high-light environment. However, leads are important for phytoplankton growth by acting like windows into the water column.

  16. The effects of weighted skates on ice-skating kinematics, kinetics and muscular activity.

    PubMed

    Mavor, Matthew P; Hay, Dean C; Graham, Ryan B

    2018-07-01

    Sport-specific resistance training, through limb loading, can be a complimentary training method to traditional resistance training by loading the working muscles during all phases of a specific movement. The purpose of this study was to examine the acute effects of skating with an additional load on the skate, using a skate weight prototype, on kinematics, kinetics, and muscle activation during the acceleration phase while skating on a synthetic ice surface. 10 male hockey skaters accelerated from rest (standing erect with knees slightly bent) under four non-randomized load conditions: baseline 1 (no weight), light (0.9 kg per skate), heavy (1.8 kg per skate), and baseline 2 (no weight). Skating with additional weight caused athletes to skate slower (p < 0.001; η 2  = 0.551), and led to few changes in kinematics: hip sagittal range of motion (ROM) decreased (2.2°; p = 0.032; η 2  = 0.274), hip transverse ROM decreased (3.4°; p < 0.001; η 2  = 0.494), ankle sagittal ROM decreased (2.3°; p = 0.022; η 2  = 0.295), and knee sagittal ROM increased (7.8°; p < 0.001, η 2  = 0.761). Overall, weighted skates decreased skating velocity, but athletes maintained similar muscle activation profiles (magnitude and trends) with minor changes to their skating kinematics.

  17. Ice Thickness, Melting Rates and Styles of Activity in Ice-Volcano Interaction

    NASA Astrophysics Data System (ADS)

    Gudmundsson, M. T.

    2005-12-01

    In most cases when eruptions occur within glaciers they lead to rapid ice melting, jokulhlaups and/or lahars. Many parameters influence the style of activity and its impact on the environment. These include ice thickness (size of glacier), bedrock geometry, magma flow rate and magma composition. The eruptions that have been observed can roughly be divided into: (1) eruptions under several hundred meters thick ice on a relatively flat bedrock, (2) eruptions on flat or sloping bed through relatively thin ice, and (3) volcanism where effects are limitied to confinement of lava flows or melting of ice by pyroclastic flows or surges. This last category (ice-contact volcanism) need not cause much ice melting. Many of the deposits formed by Pleistocene volcanism in Iceland, British Columbia and Antarctica belong to the first category. An important difference between this type of activity and submarine activity (where pressure is hydrostatic) is that pressure at vents may in many cases be much lower than glaciostatic due to partial support of ice cover over vents by the surrounding glacier. Reduced pressure favours explosive activity. Thus the effusive/explosive transition may occur several hundred metres underneath the ice surface. Explosive fragmentation of magma leads to much higher rates of heat transfer than does effusive eruption of pillow lavas, and hence much higher melting rates. This effect of reduced pressure at vents will be less pronounced in a large ice sheet than in a smaller glacier or ice cap, since the hydraulic gradient that drives water away from an eruption site will be lower in the large glacier. This may have implications for form and type of eruption deposits and their relationship with ice thickness and glacier size.

  18. Sea Ice Summer Camp: Bringing Together Arctic Sea Ice Modelers and Observers

    NASA Astrophysics Data System (ADS)

    Perovich, D. K.; Holland, M. M.

    2016-12-01

    The Arctic sea ice has undergone dramatic change and numerical models project this to continue for the foreseeable future. Understanding the mechanisms behind sea ice loss and its consequences for the larger Arctic and global systems is of critical importance if we are to anticipate and plan for the future. One impediment to progress is a disconnect between the observational and modeling communities. A sea ice summer camp was held in Barrow Alaska from 26 May to 1 June 2016 to overcome this impediment and better integrate the sea ice community. The 25 participants were a mix of modelers and observers from 13 different institutions at career stages from graduate student to senior scientist. The summer camp provided an accelerated program on sea ice observations and models and also fostered future collaborative interdisciplinary activities. Each morning was spent in the classroom with a daily lecture on an aspect of modeling or remote sensing followed by practical exercises. Topics included using models to assess sensitivity, to test hypotheses and to explore sources of uncertainty in future Arctic sea ice loss. The afternoons were spent on the ice making observations. There were four observational activities; albedo observations, ice thickness measurements, ice coring and physical properties, and ice morphology surveys. The last field day consisted of a grand challenge where the group formulated a hypothesis, developed an observational and modeling strategy to test the hypothesis, and then integrated the observations and model results. The impacts of changing sea ice are being felt today in Barrow Alaska. We opened a dialog with Barrow community members to further understand these changes. This included an evening discussion with two Barrow sea ice experts and a community presentation of our work in a public lecture at the Inupiat Heritage Center.

  19. Remote sensing of the marginal ice zone during Marginal Ice Zone Experiment (MIZEX) 83

    NASA Technical Reports Server (NTRS)

    Shuchman, R. A.; Campbell, W. J.; Burns, B. A.; Ellingsen, E.; Farrelly, B. A.; Gloersen, P.; Grenfell, T. C.; Hollinger, J.; Horn, D.; Johannessen, J. A.

    1984-01-01

    The remote sensing techniques utilized in the Marginal Ice Zone Experiment (MIZEX) to study the physical characteristics and geophysical processes of the Fram Strait Region of the Greenland Sea are described. The studies, which utilized satellites, aircraft, helicopters, and ship and ground-based remote sensors, focused on the use of microwave remote sensors. Results indicate that remote sensors can provide marginal ice zone characteristics which include ice edge and ice boundary locations, ice types and concentration, ice deformation, ice kinematics, gravity waves and swell (in the water and the ice), location of internal wave fields, location of eddies and current boundaries, surface currents and sea surface winds.

  20. Ice Shelves and Landfast Ice on the Antarctic Perimeter: Revised Scope of Work

    NASA Technical Reports Server (NTRS)

    Scambos, Ted

    2002-01-01

    Ice shelves respond quickly and profoundly to a warming climate. Within a decade after mean summertime temperature reaches approx. O C and persistent melt pending is observed, a rapid retreat and disintegration occurs. This link was documented for ice shelves in the Antarctic Peninsula region (the Larsen 'A', 'B' and Wilkins Ice shelves) by the results of a previous grant under ADRO-1. Modeling of ice flow and the effects of meltwater indicated that melt pending accelerates shelf breakup by increasing fracture penetration. SAR data supplemented an AVHRR- and SSM/I-based image analysis of extent and surface characteristic changes. This funded grant is a revised, scaled-down version of an earlier proposal under the ADRO-2 NRA. The overall objective remains the same: we propose to build on the previous study by examining other ice shelves of the Antarctic and incorporate an examination of the climate-related characteristics of landfast ice. The study now considers just a few shelf and fast ice areas for study, and is funded for two years. The study regions are the northeastern Ross Ice Shelf, the Larsen 'B' and 'C' shelves, fast ice and floating shelf ice in the Pine Island Glacier area, and fast ice along the Wilkes Land coast. Further, rather than investigating a host of shelf and fast ice processes, we will home in on developing a series of characteristics associated with climate change over shelf and fast ice areas. Melt pending and break-up are the end stages of a response to a warming climate that may begin with increased melt event frequency (which changes both albedo and emissivity temporarily), changing firn backscatter (due to percolation features), and possibly increased rifting of the shelf surface. Fast ice may show some of these same processes on a seasonal timescale, providing insight into shelf evolution.

  1. Ice, Ice, Baby: A Program for Sustained, Classroom-Based K-8 Teacher Professional Development

    NASA Astrophysics Data System (ADS)

    Hamilton, C.

    2009-12-01

    Ice, Ice, Baby is a K-8 science program created by the education team at the Center for the Remote Sensing of Ice Sheets (CReSIS), an NSF-funded science and technology center headquartered at the University of Kansas. The twenty-four hands-on activities, which constitute the Ice, Ice, Baby curriculum, were developed to help students understand the role of polar ice sheets in sea level rise. These activities, presented in classrooms by CReSIS' Educational Outreach Coordinator, demonstrate many of the scientific properties of ice, including displacement and density. Student journals are utilized with each lesson as a strategy for improving students' science process skills. Journals also help the instructor identify misconceptions, assess comprehension, and provide students with a year-long science reference log. Pre- and post- assessments are given to both teachers and students before and after the program, providing data for evaluation and improvement of the Ice, Ice, Baby program. While students are actively engaged in hands-on learning about the unusual topics of ice sheets, glaciers, icebergs and sea ice, the CReSIS' Educational Coordinator is able to model best practices in science education, such as questioning and inquiry-based methods of instruction. In this way, the Ice, Ice, Baby program also serves as ongoing, in-class, professional development for teachers. Teachers are also provided supplemental activities to do with their classes between CReSIS' visits to encourage additional science lessons, reinforce concepts taught in the Ice, Ice, Baby program, and to foster teachers' progression toward more reform-based science instruction.

  2. Ice sheet radar altimetry

    NASA Technical Reports Server (NTRS)

    Zwally, J.

    1988-01-01

    The surface topography of the Greenland and Antarctic ice sheets between 72 degrees north and south was mapped using radar altimetry data from the U.S. Navy GEOSAT. The glaciological objectives of this activity were to study the dynamics of the ice flow, changes in the position of floating ice-shelf fronts, and ultimately to measure temporal changes in ice surface elevation indicative of ice sheet mass balance.

  3. Ice on waterfowl markers

    USGS Publications Warehouse

    Greenwood, R.J.; Bair, W.C.

    1974-01-01

    Wild and captive giant Canada geese (Branta canadensis maxima) and captive mallards (Anas platyrhynchos) accumulated ice on neck collars and/or nasal saddles during winter storm periods in 1971 and 1972. Weather conditions associated with icing were documented, and characteristics of icing are discussed. Severe marker icing occurred during subfreezing weather when the windchill reached approximately -37 deg.C. Birds appeared able to de-ice nasal saddles in most instances.

  4. Ice-Shelf Flexure and Tidal Forcing of Bindschadler Ice Stream, West Antarctica

    NASA Technical Reports Server (NTRS)

    Walker, Ryan T.; Parizek, Bryron R.; Alley, Richard B.; Brunt, Kelly M.; Anandakrishnan, Sridhar

    2014-01-01

    Viscoelastic models of ice-shelf flexure and ice-stream velocity perturbations are combined into a single efficient flowline model to study tidal forcing of grounded ice. The magnitude and timing of icestream response to tidally driven changes in hydrostatic pressure and/or basal drag are found to depend significantly on bed rheology, with only a perfectly plastic bed allowing instantaneous velocity response at the grounding line. The model can reasonably reproduce GPS observations near the grounding zone of Bindschadler Ice Stream (formerly Ice Stream D) on semidiurnal time scales; however, other forcings such as tidally driven ice-shelf slope transverse to the flowline and flexurally driven till deformation must also be considered if diurnal motion is to be matched

  5. Help Kids Stay Safe on the Playground | DoDLive

    Science.gov Websites

    . One day, as I zoomed past another kid on this imaginary rink, I lost my balance, hit the ice face -first and shot like a hockey puck across its slippery surface before slamming into a chain link fence one else knows I have a fake front tooth, but I am reminded every day of that playground injury many

  6. Longwave radiative effects of Saharan dust during the ICE-D campaign

    NASA Astrophysics Data System (ADS)

    Brooke, Jennifer; Havemann, Stephan; Ryder, Claire; O'Sullivan, Debbie

    2017-04-01

    The Havemann-Taylor Fast Radiative Transfer Code (HT-FRTC) is a fast radiative transfer model based on Principal Components. Scattering has been incorporated into HT-FRTC which allows simulations of aerosol as well as clear-sky atmospheres. This work evaluates the scattering scheme in HT-FRTC and investigates dust-affected brightness temperatures using in-situ observations from Ice in Clouds Experiment - Dust (ICE-D) campaign. The ICE-D campaign occurred during August 2015 and was based from Cape Verde. The ICE-D campaign is a multidisciplinary project which achieved measurements of in-situ mineral dust properties of the dust advected from the Sahara, and on the aerosol-cloud interactions using the FAAM BAe-146 research aircraft. ICE-D encountered a range of low (0.3), intermediate (0.8) and high (1.3) aerosol optical depths, AODs, and therefore provides a range of atmospheric dust loadings in the assessment of dust scattering in HT-FRTC. Spectral radiances in the thermal infrared window region (800 - 1200 cm-1) are sensitive to the presence of mineral dust; mineral dust acts to reduce the upwelling infrared radiation caused by the absorption and re-emission of radiation by the dust layer. ARIES (Airborne Research Interferometer Evaluation System) is a nadir-facing interferometer, measuring infrared radiances between 550 and 3000 cm-1. The ARIES spectral radiances are converted to brightness temperatures by inversion of the Planck function. The mineral dust size distribution is important for radiative transfer applications as it provides a measure of aerosol scattering. The longwave spectral mineral dust optical properties including the mass extinction coefficients, single scattering albedos and the asymmetry parameter have been derived from the mean ICE-D size distribution. HT-FRTC scattering simulations are initialised with vertical mass fractions which can be derived from extinction profiles from the lidar along with the specific extinction coefficient, kext (m2

  7. Algae Drive Enhanced Darkening of Bare Ice on the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Stibal, Marek; Box, Jason E.; Cameron, Karen A.; Langen, Peter L.; Yallop, Marian L.; Mottram, Ruth H.; Khan, Alia L.; Molotch, Noah P.; Chrismas, Nathan A. M.; Calı Quaglia, Filippo; Remias, Daniel; Smeets, C. J. P. Paul; van den Broeke, Michiel R.; Ryan, Jonathan C.; Hubbard, Alun; Tranter, Martyn; van As, Dirk; Ahlstrøm, Andreas P.

    2017-11-01

    Surface ablation of the Greenland ice sheet is amplified by surface darkening caused by light-absorbing impurities such as mineral dust, black carbon, and pigmented microbial cells. We present the first quantitative assessment of the microbial contribution to the ice sheet surface darkening, based on field measurements of surface reflectance and concentrations of light-absorbing impurities, including pigmented algae, during the 2014 melt season in the southwestern part of the ice sheet. The impact of algae on bare ice darkening in the study area was greater than that of nonalgal impurities and yielded a net albedo reduction of 0.038 ± 0.0035 for each algal population doubling. We argue that algal growth is a crucial control of bare ice darkening, and incorporating the algal darkening effect will improve mass balance and sea level projections of the Greenland ice sheet and ice masses elsewhere.

  8. Improved method for sea ice age computation based on combination of sea ice drift and concentration

    NASA Astrophysics Data System (ADS)

    Korosov, Anton; Rampal, Pierre; Lavergne, Thomas; Aaboe, Signe

    2017-04-01

    Sea Ice Age is one of the components of the Sea Ice ECV as defined by the Global Climate Observing System (GCOS) [WMO, 2015]. It is an important climate indicator describing the sea ice state in addition to sea ice concentration (SIC) and thickness (SIT). The amount of old/thick ice in the Arctic Ocean has been decreasing dramatically [Perovich et al. 2015]. Kwok et al. [2009] reported significant decline in the MYI share and consequent loss of thickness and therefore volume. Today, there is only one acknowledged sea ice age climate data record [Tschudi, et al. 2015], based on Maslanik et al. [2011] provided by National Snow and Ice Data Center (NSIDC) [http://nsidc.org/data/docs/daac/nsidc0611-sea-ice-age/]. The sea ice age algorithm [Fowler et al., 2004] is using satellite-derived ice drift for Lagrangian tracking of individual ice parcels (12-km grid cells) defined by areas of sea ice concentration > 15% [Maslanik et al., 2011], i.e. sea ice extent, according to the NASA Team algorithm [Cavalieri et al., 1984]. This approach has several drawbacks. (1) Using sea ice extent instead of sea ice concentration leads to overestimation of the amount of older ice. (2) The individual ice parcels are not advected uniformly over (long) time. This leads to undersampling in areas of consistent ice divergence. (3) The end product grid cells are assigned the age of the oldest ice parcel within that cell, and the frequency distribution of the ice age is not taken into account. In addition, the base sea ice drift product (https://nsidc.org/data/docs/daac/nsidc0116_icemotion.gd.html) is known to exhibit greatly reduced accuracy during the summer season [Sumata et al 2014, Szanyi, 2016] as it only relies on a combination of sea ice drifter trajectories and wind-driven "free-drift" motion during summer. This results in a significant overestimate of old-ice content, incorrect shape of the old-ice pack, and lack of information about the ice age distribution within the grid cells. We

  9. Changes in ice dynamics and mass balance of the Antarctic ice sheet.

    PubMed

    Rignot, Eric

    2006-07-15

    The concept that the Antarctic ice sheet changes with eternal slowness has been challenged by recent observations from satellites. Pronounced regional warming in the Antarctic Peninsula triggered ice shelf collapse, which led to a 10-fold increase in glacier flow and rapid ice sheet retreat. This chain of events illustrated the vulnerability of ice shelves to climate warming and their buffering role on the mass balance of Antarctica. In West Antarctica, the Pine Island Bay sector is draining far more ice into the ocean than is stored upstream from snow accumulation. This sector could raise sea level by 1m and trigger widespread retreat of ice in West Antarctica. Pine Island Glacier accelerated 38% since 1975, and most of the speed up took place over the last decade. Its neighbour Thwaites Glacier is widening up and may double its width when its weakened eastern ice shelf breaks up. Widespread acceleration in this sector may be caused by glacier ungrounding from ice shelf melting by an ocean that has recently warmed by 0.3 degrees C. In contrast, glaciers buffered from oceanic change by large ice shelves have only small contributions to sea level. In East Antarctica, many glaciers are close to a state of mass balance, but sectors grounded well below sea level, such as Cook Ice Shelf, Ninnis/Mertz, Frost and Totten glaciers, are thinning and losing mass. Hence, East Antarctica is not immune to changes.

  10. Ice Accretion Formations on a NACA 0012 Swept Wing Tip in Natural Icing Conditions

    NASA Technical Reports Server (NTRS)

    Vargas, Mario; Giriunas, Julius A.; Ratvasky, Thomas P.

    2002-01-01

    An experiment was conducted in the DeHavilland DHC-6 Twin Otter Icing Research Aircraft at NASA Glenn Research Center to study the formation of ice accretions on swept wings in natural icing conditions. The experiment was designed to obtain ice accretion data to help determine if the mechanisms of ice accretion formation observed in the Icing Research Tunnel are present in natural icing conditions. The experiment in the Twin Otter was conducted using a NACA 0012 swept wing tip. The model enabled data acquisition at 0 deg, 15 deg, 25 deg, 30 deg, and 45 deg sweep angles. Casting data, ice shape tracings, and close-up photographic data were obtained. The results showed that the mechanisms of ice accretion formation observed in-flight agree well with the ones observed in the Icing Research Tunnel. Observations on the end cap of the airfoil showed the same strong effect of the local sweep angle on the formation of scallops as observed in the tunnel.

  11. Bioinspired Surfaces with Superwettability for Anti-Icing and Ice-Phobic Application: Concept, Mechanism, and Design.

    PubMed

    Zhang, Songnan; Huang, Jianying; Cheng, Yan; Yang, Hui; Chen, Zhong; Lai, Yuekun

    2017-12-01

    Ice accumulation poses a series of severe issues in daily life. Inspired by the nature, superwettability surfaces have attracted great interests from fundamental research to anti-icing and ice-phobic applications. Here, recently published literature about the mechanism of ice prevention is reviewed, with a focus on the anti-icing and ice-phobic mechanisms, encompassing the behavior of condensate microdrops on the surface, wetting, ice nucleation, and freezing. Then, a detailed account of the innovative fabrication and fundamental research of anti-icing materials with special wettability is summarized with a focus on recent progresses including low-surface energy coatings and liquid-infused layered coatings. Finally, special attention is paid to a discussion about advantages and disadvantages of the technologies, as well as factors that affect the anti-icing and ice-phobic efficiency. Outlooks and the challenges for future development of the anti-icing and ice-phobic technology are presented and discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. STS-48 ESC Earth observation of ice pack, Antarctic Ice Shelf

    NASA Technical Reports Server (NTRS)

    1991-01-01

    STS-48 Earth observation taken aboard Discovery, Orbiter Vehicle (OV) 103, is of the breakup of pack ice along the periphery of the Antarctic Ice Shelf. Strong offshore winds, probably associated with katabatic downdrafts from the interior of the continent, are seen peeling off the edges of the ice shelf into long filaments of sea ice, icebergs, bergy bits, and growlers to flow northward into the South Atlantic Ocean. These photos are used to study ocean wind, tide and current patterns. Similar views photographed during previous missions, when analyzed with these recent views may yield information about regional ice drift and breakup of ice packs. The image was captured using an electronic still camera (ESC), was stored on a removable hard disk or small optical disk, and was converted to a format suitable for downlink transmission. The ESC documentation was part of Development Test Objective (DTO) 648, Electronic Still Photography.

  13. National plans for aircraft icing and improved aircraft icing forecasts and associated warning services

    NASA Technical Reports Server (NTRS)

    Pass, Ralph P.

    1988-01-01

    Recently, the United States has increased its activities related to aircraft icing in numerous fields: ice phobics, revised characterization of icing conditions, instrument development/evaluation, de-ice/anti-ice devices, simulated supercooled clouds, computer simulation and flight tests. The Federal Coordinator for Meteorology is involved in two efforts, one a National Plan on Aircraft Icing and the other a plan for Improved Aircraft Icing Forecasts and Associated Warning Services. These two plans will provide an approved structure for future U.S. activities related to aircraft icing. The recommended activities will significantly improve the position of government agencies to perform mandated activities and to enable U.S. manufacturers to be competitive in the world market.

  14. Subsurface Ice Probe

    NASA Technical Reports Server (NTRS)

    Hecht, Michael; Carsey, Frank

    2005-01-01

    The subsurface ice probe (SIPR) is a proposed apparatus that would bore into ice to depths as great as hundreds of meters by melting the ice and pumping the samples of meltwater to the surface. Originally intended for use in exploration of subsurface ice on Mars and other remote planets, the SIPR could also be used on Earth as an alternative to coring, drilling, and melting apparatuses heretofore used to sample Arctic and Antarctic ice sheets. The SIPR would include an assembly of instrumentation and electronic control equipment at the surface, connected via a tether to a compact assembly of boring, sampling, and sensor equipment in the borehole (see figure). Placing as much equipment as possible at the surface would help to attain primary objectives of minimizing power consumption, sampling with high depth resolution, and unobstructed imaging of the borehole wall. To the degree to which these requirements would be satisfied, the SIPR would offer advantages over the aforementioned ice-probing systems.

  15. Microwave and physical properties of sea ice in the winter marginal ice zone

    NASA Technical Reports Server (NTRS)

    Tucker, W. B., III; Perovich, D. K.; Gow, A. J.; Grenfell, T. C.; Onstott, R. G.

    1991-01-01

    Surface-based active and passive microwave measurements were made in conjunction with ice property measurements for several distinct ice types in the Fram Strait during March and April 1987. Synthesis aperture radar imagery downlinked from an aircraft was used to select study sites. The surface-based radar scattering cross section and emissivity spectra generally support previously inferred qualitative relationships between ice types, exhibiting expected separation between young, first-year and multiyear ice. Gradient ratios, calculated for both active and passive data, appear to allow clear separation of ice types when used jointly. Surface flooding of multiyear floes, resulting from excessive loading and perhaps wave action, causes both active and passive signatures to resemble those of first-year ice. This effect could possibly cause estimates of ice type percentages in the marginal ice zone to be in error when derived from aircraft- or satellite-born sensors.

  16. Ice Sheet and Sea Ice Observations from Unmanned Aircraft Systems

    NASA Astrophysics Data System (ADS)

    Crocker, R. I.; Maslanik, J. A.

    2011-12-01

    A suite of sensors has been assembled to map ice sheet and sea ice surface topography with fine-resolution from small unmanned aircraft systems (UAS). This payload is optimized to provide coincident surface elevation and imagery data, and with its low cost and ease of reproduction, it has the potential to become a widely-distributed observational resource to complement polar manned-aircraft and satellite missions. To date, it has been deployed to map ice sheet elevations near Jakobshavn Isbræ in Greenland, and to measure sea ice freeboard and roughness in Fram Strait off the coast of Svalbard. Data collected during these campaigns have facilitate a detailed assessment of the system's surface elevation measurement accuracy, and provide a glimpse of the summer 2009 Fram Strait sea ice conditions. These findings are presented, along with a brief overview of our future Arctic UAS operations.

  17. Active volcanism beneath the West Antarctic ice sheet and implications for ice-sheet stability

    USGS Publications Warehouse

    Blankenship, D.D.; Bell, R.E.; Hodge, S.M.; Brozena, J.M.; Behrendt, John C.; Finn, C.A.

    1993-01-01

    IT is widely understood that the collapse of the West Antarctic ice sheet (WAIS) would cause a global sea level rise of 6 m, yet there continues to be considerable debate about the detailed response of this ice sheet to climate change1-3. Because its bed is grounded well below sea level, the stability of the WAIS may depend on geologically controlled conditions at the base which are independent of climate. In particular, heat supplied to the base of the ice sheet could increase basal melting and thereby trigger ice streaming, by providing the water for a lubricating basal layer of till on which ice streams are thought to slide4,5. Ice streams act to protect the reservoir of slowly moving inland ice from exposure to oceanic degradation, thus enhancing ice-sheet stability. Here we present aerogeophysical evidence for active volcanism and associated elevated heat flow beneath the WAIS near the critical region where ice streaming begins. If this heat flow is indeed controlling ice-stream formation, then penetration of ocean waters inland of the thin hot crust of the active portion of the West Antarctic rift system could lead to the disappearance of ice streams, and possibly trigger a collapse of the inland ice reservoir.

  18. The Relationship Between Arctic Sea Ice Albedo and the Geophysical Parameters of the Ice Cover

    NASA Astrophysics Data System (ADS)

    Riihelä, A.

    2015-12-01

    The Arctic sea ice cover is thinning and retreating. Remote sensing observations have also shown that the mean albedo of the remaining ice cover is decreasing on decadal time scales, albeit with significant annual variability (Riihelä et al., 2013, Pistone et al., 2014). Attribution of the albedo decrease between its different drivers, such as decreasing ice concentration and enhanced surface melt of the ice, remains an important research question for the forecasting of future conditions of the ice cover. A necessary step towards this goal is understanding the relationships between Arctic sea ice albedo and the geophysical parameters of the ice cover. Particularly the question of the relationship between sea ice albedo and ice age is both interesting and not widely studied. The recent changes in the Arctic sea ice zone have led to a substantial decrease of its multi-year sea ice, as old ice melts and is replaced by first-year ice during the next freezing season. It is generally known that younger sea ice tends to have a lower albedo than older ice because of several reasons, such as wetter snow cover and enhanced melt ponding. However, the quantitative correlation between sea ice age and sea ice albedo has not been extensively studied to date, excepting in-situ measurement based studies which are, by necessity, focused on a limited area of the Arctic Ocean (Perovich and Polashenski, 2012).In this study, I analyze the dependencies of Arctic sea ice albedo relative to the geophysical parameters of the ice field. I use remote sensing datasets such as the CM SAF CLARA-A1 (Karlsson et al., 2013) and the NASA MeaSUREs (Anderson et al., 2014) as data sources for the analysis. The studied period is 1982-2009. The datasets are spatiotemporally collocated and analysed. The changes in sea ice albedo as a function of sea ice age are presented for the whole Arctic Ocean and for potentially interesting marginal sea cases. This allows us to see if the the albedo of the older sea

  19. On the nature of the dirty ice at the bottom of the GISP2 ice core

    USGS Publications Warehouse

    Bender, Michael L.; Burgess, Edward; Alley, Richard B.; Barnett, Bruce; Clow, Gary D.

    2010-01-01

    We present data on the triple Ar isotope composition in trapped gas from clean, stratigraphically disturbed ice between 2800 and 3040m depth in the GISP2 ice core, and from basal dirty ice from 3040 to 3053m depth. We also present data for the abundance and isotopic composition of O2 and N2, and abundance of Ar, in the basal dirty ice. The Ar/N2 ratio of dirty basal ice, the heavy isotope enrichment (reflecting gravitational fractionation), and the total gas content all indicate that the gases in basal dirty ice originate from the assimilation of clean ice of the overlying glacier, which comprises most of the ice in the dirty bottom layer. O2 is partly to completely depleted in basal ice, reflecting active metabolism. The gravitationally corrected ratio of 40Ar/38Ar, which decreases with age in the global atmosphere, is compatible with an age of 100-250ka for clean disturbed ice. In basal ice, 40Ar is present in excess due to injection of radiogenic 40Ar produced in the underlying continental crust. The weak depth gradient of 40Ar in the dirty basal ice, and the distribution of dirt, indicate mixing within the basal ice, while various published lines of evidence indicate mixing within the overlying clean, disturbed ice. Excess CH4, which reaches thousands of ppm in basal dirty ice at GRIP, is virtually absent in overlying clean disturbed ice, demonstrating that mixing of dirty basal ice into the overlying clean ice, if it occurs at all, is very slow. Order-of-magnitude estimates indicate that the mixing rate of clean ice into dirty ice is sufficient to maintain a steady thickness of dirty ice against thinning from the mean ice flow. The dirty ice appears to consist of two or more basal components in addition to clean glacial ice. A small amount of soil or permafrost, plus preglacial snow, lake or ground ice could explain the observations.

  20. A Comparison of Sea Ice Type, Sea Ice Temperature, and Snow Thickness Distributions in the Arctic Seasonal Ice Zones with the DMSP SSM/I

    NASA Technical Reports Server (NTRS)

    St.Germain, Karen; Cavalieri, Donald J.; Markus, Thorsten

    1997-01-01

    Global climate studies have shown that sea ice is a critical component in the global climate system through its effect on the ocean and atmosphere, and on the earth's radiation balance. Polar energy studies have further shown that the distribution of thin ice and open water largely controls the distribution of surface heat exchange between the ocean and atmosphere within the winter Arctic ice pack. The thickness of the ice, the depth of snow on the ice, and the temperature profile of the snow/ice composite are all important parameters in calculating surface heat fluxes. In recent years, researchers have used various combinations of DMSP SSMI channels to independently estimate the thin ice type (which is related to ice thickness), the thin ice temperature, and the depth of snow on the ice. In each case validation efforts provided encouraging results, but taken individually each algorithm gives only one piece of the information necessary to compute the energy fluxes through the ice and snow. In this paper we present a comparison of the results from each of these algorithms to provide a more comprehensive picture of the seasonal ice zone using passive microwave observations.