Sample records for ice slurry cooling

  1. ICE SLURRY APPLICATIONS

    PubMed Central

    Kauffeld, M.; WANG, M. J.; Goldstein, V.; Kasza, K. E.

    2011-01-01

    The role of secondary refrigerants is expected to grow as the focus on the reduction of greenhouse gas emissions increases. The effectiveness of secondary refrigerants can be improved when phase changing media are introduced in place of single phase media. Operating at temperatures below the freezing point of water, ice slurry facilitates several efficiency improvements such as reductions in pumping energy consumption as well as lowering the required temperature difference in heat exchangers due to the beneficial thermo-physical properties of ice slurry. Research has shown that ice slurry can be engineered to have ideal ice particle characteristics so that it can be easily stored in tanks without agglomeration and then be extractable for pumping at very high ice fraction without plugging. In addition ice slurry can be used in many direct contact food and medical protective cooling applications. This paper provides an overview of the latest developments in ice slurry technology. PMID:21528014

  2. Medical ice slurry production device

    DOEpatents

    Kasza, Kenneth E [Palos Park, IL; Oras, John [Des Plaines, IL; Son, HyunJin [Naperville, IL

    2008-06-24

    The present invention relates to an apparatus for producing sterile ice slurries for medical cooling applications. The apparatus is capable of producing highly loaded slurries suitable for delivery to targeted internal organs of a patient, such as the brain, heart, lungs, stomach, kidneys, pancreas, and others, through medical size diameter tubing. The ice slurry production apparatus includes a slurry production reservoir adapted to contain a volume of a saline solution. A flexible membrane crystallization surface is provided within the slurry production reservoir. The crystallization surface is chilled to a temperature below a freezing point of the saline solution within the reservoir such that ice particles form on the crystallization surface. A deflector in the form of a reciprocating member is provided for periodically distorting the crystallization surface and dislodging the ice particles which form on the crystallization surface. Using reservoir mixing the slurry is conditioned for easy pumping directly out of the production reservoir via medical tubing or delivery through other means such as squeeze bottles, squeeze bags, hypodermic syringes, manual hand delivery, and the like.

  3. Ice slurry ingestion reduces both core and facial skin temperatures in a warm environment.

    PubMed

    Onitsuka, Sumire; Zheng, Xinyan; Hasegawa, Hiroshi

    2015-07-01

    Internal body cooling by ingesting ice slurry has recently attracted attention. Because ice slurries are ingested through the mouth, it is possible that this results in conductive cooling of the facial skin and brain. However, no studies have investigated this possibility. Thus, the aim of this study was to investigate the effects of ice slurry ingestion on forehead skin temperature at the point of conductive cooling between the forehead skin and brain. Eight male subjects ingested either 7.5g/kg of ice slurry (-1°C; ICE), a cold sports drink (4°C; COOL), or a warm sports drink (37°C; CON) for 15min in a warm environment (30°C, 80% relative humidity). Then, they remained at rest for 1h. As physiological indices, rectal temperature (Tre), mean skin temperature, forehead skin temperature (Thead), heart rate, nude body mass, and urine specific gravity were measured. Subjective thermal sensation (TS) was measured at 5-min intervals throughout the experiment. With ICE, Tre and Thead were significantly reduced compared with CON and COOL conditions (p<0.05). The results of the other physiological indices were not significantly different. TS with ICE was significantly lower than that with CON and COOL (p<0.05) and was correlated with Tre or Thead (p<0.05). These results indicate that ice slurry ingestion may induce conductive cooling between forehead skin and brain, and reduction in core and forehead skin temperature reduced thermal sensation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Pre-cooling with ice slurry ingestion leads to similar run times to exhaustion in the heat as cold water immersion.

    PubMed

    Siegel, Rodney; Maté, Joseph; Watson, Greig; Nosaka, Kazunori; Laursen, Paul B

    2012-01-01

    The purpose of this study was to compare the effects of pre-exercise ice slurry ingestion and cold water immersion on submaximal running time in the heat. On three separate occasions, eight males ran to exhaustion at their first ventilatory threshold in the heat (34.0 ± 0.1 ° C, 52 ± 3% relative humidity) following one of three 30 min pre-exercise manoeuvres: (1) ice slurry ingestion; (2) cold water immersion; or (3) warm fluid ingestion (control). Running time was longer following cold water immersion (56.8 ± 5.6 min; P = 0.008) and ice slurry ingestion (52.7 ± 8.4 min; P = 0.005) compared with control (46.7 ± 7.2 min), but not significantly different between cold water immersion and ice slurry ingestion (P = 0.335). During exercise, rectal temperature was lower with cold water immersion from 15 and 20 min into exercise compared with control and ice slurry ingestion, respectively, and remained lower until 40 min (P = 0.001). At exhaustion rectal temperature was significantly higher following ice slurry ingestion (39.76 ± 0.36 ° C) compared with control (39.48 ± 0.36 ° C; P = 0.042) and tended to be higher than cold water immersion (39.48 ± 0.34 ° C; P = 0.065). As run times were similar between conditions, ice slurry ingestion may be a comparable form of pre-cooling to cold water immersion.

  5. Numerical Investigation of Ice Slurry Flow in a Horizontal Pipe

    NASA Astrophysics Data System (ADS)

    Rawat, K. S.; Pratihar, A. K.

    2018-02-01

    In the last decade, phase changing material slurry (PCMS) gained much attention as a cooling medium due to its high energy storage capacity and transportability. However the flow of PCM slurry is a complex phenomenon as it affected by various parameters, i.e. fluid properties, velocity, particle size and concentration etc.. In the present work ice is used as a PCM and numerical investigation of heterogeneous slurry flow has been carried out using Eulerian KTGF model in a horizontal pipe. Firstly the present model is validated with existing experiment results available in the literature, and then model is applied to the present problem. Results show that, flow is almost homogeneous for ethanol based ice slurry with particle diameter of 0.1 mm at the velocity of 1 m/s. It is also found that ice particle distribution is more uniform at higher velocity, concentration of ice and ethanol in slurry. Results also show that ice concentration increases on the top of the pipe, and the effect of particle wall collision is more significant at higher particle diameter.

  6. Ice Slurry Ingestion and Physiological Strain During Exercise in Non-Compensable Heat Stress.

    PubMed

    Ng, Jason; Wingo, Jonathan E; Bishop, Phillip A; Casey, Jason C; Aldrich, Elizabeth K

    2018-05-01

    Precooling with ice slurry ingestion attenuates the increase in rectal temperature (Tre) during subsequent running and cycling. It remains unclear how this cooling method affects physiological strain during work while wearing protective garments. This study investigated the effect of ice slurry ingestion on physiological strain during work in hot conditions while wearing firefighter protective clothing. In three counterbalanced trials, eight men (mean ± SD; age = 21 ± 2 yr, height = 179.5 ± 3.5 cm, mass = 79.1 ± 4.1 kg, body fat = 11.4 ± 3.7%) wore firefighter protective clothing and walked (4 km · h-1, 12% incline, ∼7 METs) for 30 min in hot conditions (35°C, 40% RH). Every 2.5 min, subjects ingested 1.25 g · kg-1 (relative total: 15 g · kg-1, absolute total: 1186.7 ± 61.3 g) of a tepid (22.4 ± 1.7°C), cold (7.1 ± 1.5°C), or ice slurry (-1.3 ± 0.2°C) beverage. Heart rates (HR) were lower with ice slurry ingestion compared to both fluid trials starting 5 min into exercise (tepid = 158 ± 14, cold = 157 ± 11, ice slurry = 146 ± 13 bpm) and persisting for the remainder of the bout (min 30: tepid = 196 ± 10, cold = 192 ± 10, ice slurry = 181 ± 13 bpm). Tre was lower with ice slurry ingestion compared to cold and tepid trials (min 5: tepid = 37.17 ± 0.38, cold = 37.17 ± 0.39, ice slurry = 37.05 ± 0.43°C; min 30: tepid = 38.15 ± 0.29, cold = 38.31 ± 0.36, ice slurry = 37.95 ± 0.32°C). The physiological strain index (PSI) was lower with ice slurry ingestion compared to fluid trials starting at min 5 (tepid = 3.8 ± 0.7, cold = 3.8 ± 0.6, ice slurry = 3.0 ± 0.5) and remained lower throughout exercise (min 30: tepid = 8.2 ± 0.6, cold = 8.3 ± 0.9, ice slurry = 6.9 ± 1.2). A large quantity of ice slurry ingested under non-compensable heat stress conditions mitigated physiological strain during exercise by blunting the rise in heart rate and rectal temperature.Ng J, Wingo JE, Bishop PA, Casey JC, Aldrich EK. Ice slurry ingestion and

  7. Ice/water slurry blocking phenomenon at a tube orifice.

    PubMed

    Hirochi, Takero; Yamada, Shuichi; Shintate, Tuyoshi; Shirakashi, Masataka

    2002-10-01

    The phenomenon of ice-particle/water mixture blocking flow through a pipeline is a problem that needs to be solved before mixture flow can be applied for practical use in cold energy transportation in a district cooling system. In this work, the blocking mechanism of ice-particle slurry at a tube orifice is investigated and a criterion for blocking is presented. The cohesive nature of ice particles is shown to cause compressed plug type blocking and the compressive yield stress of a particle cluster is presented as a measure for the cohesion strength of ice particles.

  8. Effect of slurry ice on the functional properties of proteins related to quality loss during skipjack tuna (Katsuwonus pelamis) chilled storage.

    PubMed

    Zhang, Bin; Deng, Shang-gui; Gao, Meng; Chen, Jing

    2015-04-01

    The effect of slurry ice on the quality of Skipjack tuna (Katsuwonus pelamis) during chilling storage was investigated and compared to flake ice. Slurry ice-treated samples showed significantly higher springiness and chewiness variables than the blank and flake ice-treated samples (P < 0.05). The growth of microorganisms in tuna muscle treated with slurry ice was also down significantly (P < 0.05), and the total aerobic counts didn't reach higher scores than 5.0 log CFU/g during the whole chilling storage. Additionally, the myofibrillar protein, Ca(2+)-ATPase activity, and total sulfydryl (SH) content in muscle treated with slurry ice were all significantly higher than the blank and flake-iced samples (P < 0.05). This was probably due to the faster cooling, subzero final-temperature, and larger heat exchange derived from slurry ice. Standard error of mean and sodium dodecyl sulfate-polyacrylamide gel electrophoresis results also confirmed that slurry ice treatment could effectively retard the degradation of myofibrillar proteins and showed a positive effect on the stability of tissue structures. © 2015 Institute of Food Technologists®

  9. Evaluation of Ice Slurries as a Control for Postharvest Growth of Vibrio spp. in Oysters and Potential for Filth Contamination.

    PubMed

    Lydon, Keri Ann; Farrell-Evans, Melissa; Jones, Jessica L

    2015-07-01

    Raw oyster consumption is the most common route of exposure for Vibrio spp. infections in humans. Vibriosis has been increasing steadily in the United States despite efforts to reduce the incidence of the disease. Research has demonstrated that ice is effective in reducing postharvest Vibrio spp. growth in oysters but has raised concerns of possible contamination of oyster meat by filth (as indicated by the presence of fecal coliform bacteria or Clostridium perfringens). This study examined the use of ice slurries (<4.5°C) to reduce Vibrio growth. Ice slurries showed rapid internal cooling of oysters, from 23.9°C (75°F) to 10°C (50°F) within 12 min. The initial bacterial loads in the ice slurry waters were near the limits of detection. Following repeated dipping of oysters into ice slurries, water samples exhibited significant (P < 0.05) increases in median levels of fecal coliforms (9.5 most probable number [MPN]/100 ml), C. perfringens (280 MPN/100 ml), Vibrio vulnificus (11,250 MPN/ml), and total Vibrio parahaemolyticus (3,900 MPN/ml). The microbial load in oyster meat, however, was unchanged after 15 min of submergence, with no significant differences (P < 0.05) in levels of filth indicator (range, 250 to 720 MPN/100 g) or Vibrio spp. (range, 9,000 to 20,000 MPN/g) bacteria. These results support the use of ice slurries as a postharvest application for rapid cooling of oysters to minimize Vibrio growth.

  10. Effects of storage in ozonised slurry ice on the sensory and microbial quality of sardine (Sardina pilchardus).

    PubMed

    Campos, Carmen A; Rodríguez, Oscar; Losada, Vanesa; Aubourg, Santiago P; Barros-Velázquez, Jorge

    2005-08-25

    The use of slurry ice, both alone and in combination with ozone, as compared with traditional flake ice was investigated as a new refrigeration system for the storage of sardine (Sardina pilchardus). Microbiological, chemical and sensory analyses were carried out throughout a storage period of 22 days. According to sensory analyses, sardine specimens stored in ozonised slurry ice had a shelf life of 19 days, while counterpart batches stored in slurry ice or flake ice had shelf lives of 15 and 8 days, respectively. Storage in ozonised slurry ice led to significantly lower counts of aerobic mesophiles, psychrotrophic bacteria, anaerobes, coliforms, and both lipolytic and proteolytic microorganisms in sardine muscle, and of surface counts of mesophiles and psychrotrophic bacteria in sardine skin as compared with the slurry ice and the flake ice batches. In all cases, the slurry ice batch also exhibited significantly lower microbial counts, both in muscle and skin, than the flake ice batch. Chemical parameters revealed that the use of slurry ice slowed down the formation of TVB-N and TMA-N to a significant extent in comparison with storage in flake ice. A combination of slurry ice with ozone also allowed a better control of pH and TMA-N formation as compared with slurry ice alone. This work demonstrates that the combined use of slurry ice and ozone for the storage of sardine can be recommended to improve the quality and extend the shelf life of this fish species.

  11. Rested and stressed farmed Atlantic cod (Gadus morhua) chilled in ice or slurry and effects on quality.

    PubMed

    Digre, Hanne; Erikson, Ulf; Aursand, Ida G; Gallart-Jornet, Lorena; Misimi, Ekrem; Rustad, Turid

    2011-01-01

    The main objectives of this study were to investigate (1) whether rested harvest of farmed cod was better maintained by chilling with slurry rather than by traditional ice storage, (2) whether chilling with slurry would be a feasible chilling method to assure low core temperatures (≤0 °C) at packing of gutted fish, and (3) the effects of superchilling compared with traditional ice on selected quality parameters of cod during storage. In the experiment, seawater slurry at -2.0 ± 0.3 °C was used. Anesthetized (AQUI-S™), percussion stunned, and stressed cod chilled in slurry were compared. Cod stored on ice were used as reference group. The fish were evaluated at the day of slaughter, and after 7 and 14 d of storage according to handling stress (initial muscle pH, muscle twitches, rigor mortis), core temperatures, quality index method, microbial counts, weight changes, salt and water content, water distribution, pH, adenosine triphosphate-degradation products, K-value, water-holding capacity, fillet color, and texture. Chilling cod in slurry was more rapid than chilling in ice. Prechilling (1 d) of cod in slurry before subsequent ice storage resulted in lower quality 7 d postmortem compared with both ice and continuous slurry storage. The potential advantages of superchilling became more prominent after 14 d with lower microbiological activity, better maintenance of freshness (lower total quality index scores and lower K-values) compared with fish stored on ice. A drawback with slurry-stored fish was that cloudy eyes developed earlier, in addition to weight gain and salt uptake compared to ice-stored fish. Practical Application: Chilling is an essential operation in any fish-processing plant. This manuscript addresses different applications of slurry ice in the processing and storage of Atlantic cod. Cod quality was assessed after 7 and 14 d of iced and superchilled storage.

  12. Remarkable antiagglomeration effect of a yeast biosurfactant, diacylmannosylerythritol, on ice-water slurry for cold thermal storage.

    PubMed

    Kitamoto, D; Yanagishita, H; Endo, A; Nakaiwa, M; Nakane, T; Akiya, T

    2001-01-01

    Antiagglomeration effects of different surfactants on ice slurry formation were examined to improve the efficiency of an ice-water slurry system to be used for cold thermal storage. Among the chemical surfactants tested, a nonionic surfactant, poly(oxyethylene) sorbitan dioleate, was found to show a greater antiagglomeration effect on the slurry than anionic, cationic, or amphoteric surfactants. More interestingly, diacylmannosylerythritol, a glycolipid biosurfactant produced by a yeast strain of Candida antarctica, exhibited a remarkable effect on the slurry, attaining a high ice packing factor (35%) for 8 h at a biosurfactant concentration of 10 mg/L. These nonionic glycolipid surfactants are likely to effectively adsorb on the ice surface in a highly regulated manner to suppress the agglomeration or growth of the ice particles. This is the first report on the utilization of biosurfactant for thermal energy storage, which may significantly expand the commercial applications of the highly environmentally friendly slurry system.

  13. Experimental investigation of ice slurry flow pressure drop in horizontal tubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grozdek, Marino; Khodabandeh, Rahmatollah; Lundqvist, Per

    2009-01-15

    Pressure drop behaviour of ice slurry based on ethanol-water mixture in circular horizontal tubes has been experimentally investigated. The secondary fluid was prepared by mixing ethyl alcohol and water to obtain initial alcohol concentration of 10.3% (initial freezing temperature -4.4 C). The pressure drop tests were conducted to cover laminar and slightly turbulent flow with ice mass fraction varying from 0% to 30% depending on test conditions. Results from flow tests reveal much higher pressure drop for higher ice concentrations and higher velocities in comparison to the single phase flow. However for ice concentrations of 15% and higher, certain velocitymore » exists at which ice slurry pressure drop is same or even lower than for single phase flow. It seems that higher ice concentration delay flow pattern transition moment (from laminar to turbulent) toward higher velocities. In addition experimental results for pressure drop were compared to the analytical results, based on Poiseulle and Buckingham-Reiner models for laminar flow, Blasius, Darby and Melson, Dodge and Metzner, Steffe and Tomita for turbulent region and general correlation of Kitanovski which is valid for both flow regimes. For laminar flow and low buoyancy numbers Buckingham-Reiner method gives good agreement with experimental results while for turbulent flow best fit is provided with Dodge-Metzner and Tomita methods. Furthermore, for transport purposes it has been shown that ice mass fraction of 20% offers best ratio of ice slurry transport capability and required pumping power. (author)« less

  14. Study of Cold Heat Energy Release Characteristics of Flowing Ice Water Slurry in a Pipe

    NASA Astrophysics Data System (ADS)

    Inaba, Hideo; Horibe, Akihiko; Ozaki, Koichi; Yokota, Maki

    This paper has dealt with melting heat transfer characteristics of ice water slurry in an inside tube of horizontal double tube heat exchanger in which a hot water circulated in an annular gap between the inside and outside tubes. Two kinds of heat exchangers were used; one is made of acrylic resin tube for flow visualization and the other is made of stainless steel tube for melting heat transfer measurement. The result of flow visualization revealed that ice particles flowed along the top of inside tube in the ranges of small ice packing factor and low ice water slurry velocity, while ice particles diffused into the whole of tube and flowed like a plug built up by ice particles for large ice packing factor and high velocity. Moreover, it was found that the flowing ice plug was separated into numbers of small ice clusters by melting phenomenon. Experiments of melting heat transfer were carried out under some parameters of ice packing factor, ice water slurry flow rate and hot water temperature. Consequently, the correlation equation of melting heat transfer was derived as a function of those experimental parameters.

  15. Effect of the timing of ice slurry ingestion for precooling on endurance exercise capacity in a warm environment.

    PubMed

    Takeshima, Keisuke; Onitsuka, Sumire; Xinyan, Zheng; Hasegawa, Hiroshi

    2017-04-01

    It has been demonstrated that precooling with ice slurry ingestion enhances endurance exercise capacity in the heat. However, no studies have yet evaluated the optimal timing of ice slurry ingestion for precooling. This study aimed to investigate the effects of varying the timing of ice slurry ingestion for precooling on endurance exercise capacity in a warm environment. Ten active male participants completed 3 experimental cycling trials to exhaustion at 55% peak power output (PPO) after 15min of warm-up at 30% PPO at 30°C and 80% relative humidity. Three experimental conditions were set: no ice slurry ingestion (CON), pre-warm-up ice slurry ingestion (-1°C; 7.5gkg -1 ) (PRE), and post-warm-up ice slurry ingestion (POST). Rectal and mean skin temperatures at the beginning of exercise in the POST condition (37.1±0.2°C, 33.8±0.9°C, respectively) were lower than those in the CON (37.5±0.3°C; P<0.001, 34.8±0.8°C; P<0.01, respectively) and PRE (37.4±0.2°C; P<0.01, 34.6±0.7°C; P<0.01, respectively) conditions. These reductions increased heat storage capacity and resulted in improved exercise capacity in the POST condition (60.2±8.7min) compared to that in the CON (52.0±11.9min; effect size [ES]=0.78) and PRE (56.9±10.4min; ES=0.34) conditions. Ice slurry ingestion after warm-up effectively reduced both rectal and skin temperatures and increased cycling time to exhaustion in a warm environment. Timing ice slurry ingestion to occur after warm-up may be effective for precooling in a warm environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Novel Cooling Strategies for Military Training and Operations.

    PubMed

    Lee, Jason K W; Kenefick, Robert W; Cheuvront, Samuel N

    2015-11-01

    The deleterious effects of environmental heat stress, combined with high metabolic loads and protective clothing and equipment of the modern Warfighter, impose severe heat strain, impair task performance, and increase risk of heat illness, thereby reducing the chance for mission success. Despite the implementation of heat-risk mitigation procedures over the past decades, task performance still suffers and exertional heat illness remains a major military problem. We review 3 novel heat mitigation strategies that may be implemented in the training or operational environment to reduce heat strain and the risk of exertional heat illness. These strategies include ingestion of ice slurry, arm immersion cooling, and microclimate cooling. Each of these strategies is suitable for use in different scenarios and the choice of cooling strategy is contingent on the requirements, circumstances, and constraints of the training and operational scenario. Ingestion of ice slurry and arm immersion cooling are practical strategies that may be implemented during training scenarios; ice slurry can be ingested before and during exercise, whereas arm immersion cooling can be administered after exercise-heat exposure. In the operational environment, existing microclimate cooling can be implemented with retrofitted vehicles and as an unmounted system, and it has the potential for use in many military occupational scenarios. This review will discuss the efficacy, limitations, and practical considerations for field implementation of each strategy.

  17. Running performance and thermal sensation in the heat are improved with menthol mouth rinse but not ice slurry ingestion.

    PubMed

    Stevens, C J; Thoseby, B; Sculley, D V; Callister, R; Taylor, L; Dascombe, B J

    2016-10-01

    The purpose of this study was to compare the effects of a cooling strategy designed to predominately lower thermal state with a strategy designed to lower thermal sensation on endurance running performance and physiology in the heat. Eleven moderately trained male runners completed familiarization and three randomized, crossover 5-km running time trials on a non-motorized treadmill in hot conditions (33 °C). The trials included ice slurry ingestion before exercise (ICE), menthol mouth rinse during exercise (MEN), and no intervention (CON). Running performance was significantly improved with MEN (25.3 ± 3.5 min; P = 0.01), but not ICE (26.3 ± 3.2 min; P = 0.45) when compared with CON (26.0 ± 3.4 min). Rectal temperature was significantly decreased with ICE (by 0.3 ± 0.2 °C; P < 0.01), which persisted for 2 km of the run and MEN significantly decreased perceived thermal sensation (between 4 and 5 km) and ventilation (between 1 and 2 km) during the time trial. End-exercise blood prolactin concentration was elevated with MEN compared with CON (by 25.1 ± 24.4 ng/mL; P = 0.02). The data demonstrate that a change in the perception of thermal sensation during exercise from menthol mouth rinse was associated with improved endurance running performance in the heat. Ice slurry ingestion reduced core temperature but did not decrease thermal sensation during exercise or improve running performance. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Experimental study on the application of paraffin slurry to high density electronic package cooling

    NASA Astrophysics Data System (ADS)

    Cho, K.; Choi, M.

    Experiments were performed by using water and paraffin slurry to investigate thermal characteristics from a test multichip module. The parameters were the mass fraction of paraffin slurry (0, 2.5, 5, 7.5%), heat flux (10, 20, 30, 40W/cm2) and channel Reynolds numbers. The size of paraffin slurry particles was within 10-40μm. The local heat transfer coefficients for the paraffin slurry were larger than those for water. Thermally fully developed conditions were observed after the third or fourth row. The paraffin slurry with a mass fraction of 5% showed the most efficient cooling performance when the heat transfer and the pressure drop in the test section were considered simultaneously. A new correlation for the water and the paraffin slurry with a mass fraction of 5% was obtained for a channel Reynolds number over 5300.

  19. Understanding anisotropy and architecture in ice-templated biopolymer scaffolds.

    PubMed

    Pawelec, K M; Husmann, A; Best, S M; Cameron, R E

    2014-04-01

    Biopolymer scaffolds have great therapeutic potential within tissue engineering due to their large interconnected porosity and biocompatibility. Using an ice-templated technique, where collagen is concentrated into a porous network by ice nucleation and growth, scaffolds with anisotropic pore architecture can be created, mimicking natural tissues like cardiac muscle and bone. This paper describes a systematic set of experiments undertaken to understand the effect of local temperatures on architecture in ice-templated biopolymer scaffolds. The scaffolds within this study were at least 10mm in all dimensions, making them applicable to critical sized defects for biomedical applications. It was found that monitoring the local freezing behavior within the slurry was critical to predicting scaffold structure. Aligned porosity was produced only in parts of the slurry volume which were above the equilibrium freezing temperature (0°C) at the time when nucleation first occurs in the sample as a whole. Thus, to create anisotropic scaffolds, local slurry cooling rates must be sufficiently different to ensure that the equilibrium freezing temperature is not reached throughout the slurry at nucleation. This principal was valid over a range of collagen slurries, demonstrating that by monitoring the temperature within slurry during freezing, scaffold anisotropy with ice-templated scaffolds can be predicted. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Ice slurry ingestion does not enhance self-paced intermittent exercise in the heat.

    PubMed

    Gerrett, N; Jackson, S; Yates, J; Thomas, G

    2017-11-01

    This study aimed to determine if ice slurry ingestion improved self-paced intermittent exercise in the heat. After a familiarisation session, 12 moderately trained males (30.4 ± 3.4 year, 1.8 ± 0.1 cm, 73.5 ± 14.3 kg, V˙O 2max 58.5 ± 8.1 mL/kg/min) completed two separate 31 min self-paced intermittent protocols on a non-motorised treadmill in 30.9 ± 0.9 °C, 41.1 ± 4.0% RH. Thirty minutes prior to exercise, participants consumed either 7.5 g/kg ice slurry (0.1 ± 0.1 °C) (ICE) or 7.5 g/kg water (23.4 ± 0.9 °C) (CONTROL). Despite reductions in T c (ΔT c : -0.51 ± 0.3 °C, P < 0.05) and thermal sensation prior to exercise, ICE did not enhance self-paced intermittent exercise compared to CONTROL. The average speed during the walk (CONTROL: 5.90 ± 1.0 km, ICE: 5.90 ± 1.0 km), jog (CONTROL: 8.89 ± 1.7 km, ICE: 9.11 ± 1.5 km), run (CONTROL: 12.15 ± 1.7 km, ICE: 12.54 ± 1.5 km) and sprint (CONTROL: 17.32 ± 1.3 km, ICE: 17.18 ± 1.4 km) was similar between conditions (P > 0.05). Mean T sk , T b , blood lactate, heart rate and RPE were similar between conditions (P > 0.05). The findings suggest that lowering T c prior to self-paced intermittent exercise does not translate into an improved performance. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Effects of using slurry ice during transportation on the microbiological, chemical, and sensory assessments of aquacultured sea bass (Dicentrarchus labrax) stored at 4 degrees C.

    PubMed

    Cakli, Sukran; Kilinc, Berna; Dincer, Tolga; Tolasa, Sebnem

    2006-01-01

    Slurry ice, a biphasic system consisting of small spherical ice crystals surrounded by seawater at subzero temperature, was evaluated as a new chilled storage method for whole sea bass (Dicentrarchus labrax) a sparidae fish species of remarkable commercial interests. In this study two different group of chilling methods were used during transportation; in slurry ice packaged (Group A), and flake ice packaged (Group B). The effect of this advanced system during transportation on quality losses and the shelf life of aquacultured sea bass was evaluated. Mesophilic counts for sea bass exceeded 7 log cfu/g, which is considered the maximum level for acceptability for freshwater and marine fish after 13 days for groups A and B. On day 13 TVB-N values of groups A and B, reached the legal limits (35 mg/100 g set for TVB-N) for consumption. According to the results of sensory analyses, up to day 9 all the groups were determined as "acceptable" but on day 13 the groups A and B were no longer acceptable. The main negative aspect related to quality loss in slurry ice group corresponded to the appearance of eyes and gills. Using slurry ice during transportation did not extend the shelf life of sea bass stored at 4 degrees C.

  2. Using Ice-Cooled Condensers in Chemistry Laboratory

    NASA Astrophysics Data System (ADS)

    Solomon, Sally; Brook, Bryan; Rutkowsky, Susan; Bennet, Joseph

    2003-03-01

    An ice-cooled condenser, consisting of a jacket built around a tube open to the atmosphere with an outlet for removal of melting ice, is designed for use in academic laboratory classes. The apparatus can be used in place of standard water cooled condensers in setups where refluxing or distillation is performed. With this simple, inexpensive device there is no need for access to running water. Potential flooding due to insecure tubing is no longer a problem. The ice-cooled accessory, produced with standard glass tubing and either 14/10 or 14/20 ground glass joints, is compatible with most commercially available microscale or small scale kits. The device may even be used with an Erlenmeyer flask and a stopper or cork. Two experiments using ordinary household chemicals are suggested, one requiring refluxing and the other distillation.

  3. Ice-cooled vest for work in hot mines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-04-01

    A specially designed ice-cooled vest is worn while working in hot environments where cooling the mine air is not possible. The vest holds a total of 44 individual ice cells in packets that are firmly held near the wearer's skin. These ice cells remove heat from the wearer, reducing heat stress and increasing comfort. Laboratory testing at Pennsylvania State University showed that the cooling vest greatly prolongs the time that men can work in hot environments. Rescue men, wearing breathing apparatus and working in very humid air at 96/sup 0/F were able to work about 40% longer when using themore » vest. The vest has also been tested for several months in a chemical plant.« less

  4. Multiphase Model of Semisolid Slurry Generation and Isothermal Holding During Cooling Slope Rheoprocessing of A356 Al Alloy

    NASA Astrophysics Data System (ADS)

    Das, Prosenjit; Samanta, Sudip K.; Mondal, Biswanath; Dutta, Pradip

    2018-04-01

    In the present paper, we present an experimentally validated 3D multiphase and multiscale solidification model to understand the transport processes involved during slurry generation with a cooling slope. In this process, superheated liquid alloy is poured at the top of the cooling slope and allowed to flow along the slope under the influence of gravity. As the melt flows down the slope, it progressively loses its superheat, starts solidifying at the melt/slope interface with formation of solid crystals, and eventually exits the slope as semisolid slurry. In the present simulation, the three phases considered are the parent melt as the primary phase, and the solid grains and air as secondary phases. The air phase forms a definable air/liquid melt interface as the free surface. After exiting the slope, the slurry fills an isothermal holding bath maintained at the slope exit temperature, which promotes further globularization of microstructure. The outcomes of the present model include prediction of volume fractions of the three different phases considered, grain evolution, grain growth, size, sphericity and distribution of solid grains, temperature field, velocity field, macrosegregation and microsegregation. In addition, the model is found to be capable of making predictions of morphological evolution of primary grains at the onset of isothermal coarsening. The results obtained from the present simulations are validated by performing quantitative image analysis of micrographs of the rapidly oil-quenched semisolid slurry samples, collected from strategic locations along the slope and from the isothermal slurry holding bath.

  5. Air conditioning system with supplemental ice storing and cooling capacity

    DOEpatents

    Weng, Kuo-Lianq; Weng, Kuo-Liang

    1998-01-01

    The present air conditioning system with ice storing and cooling capacity can generate and store ice in its pipe assembly or in an ice storage tank particularly equipped for the system, depending on the type of the air conditioning system. The system is characterized in particular in that ice can be produced and stored in the air conditioning system whereby the time of supplying cooled air can be effectively extended with the merit that the operation cycle of the on and off of the compressor can be prolonged, extending the operation lifespan of the compressor in one aspect. In another aspect, ice production and storage in great amount can be performed in an off-peak period of the electrical power consumption and the stored ice can be utilized in the peak period of the power consumption so as to provide supplemental cooling capacity for the compressor of the air conditioning system whereby the shift of peak and off-peak power consumption can be effected with ease. The present air conditioning system can lower the installation expense for an ice-storing air conditioning system and can also be applied to an old conventional air conditioning system.

  6. Using gait parameters to detect fatigue and responses to ice slurry during prolonged load carriage.

    PubMed

    Tay, Cheryl S; Lee, Jason K W; Teo, Ya S; Foo, Phildia Q Z; Tan, Pearl M S; Kong, Pui W

    2016-01-01

    This study examined (1) if changes in gait characteristics could indicate the exertional heat stress experienced during prolonged load carriage, and (2) if gait characteristics were responsive to a heat mitigation strategy. In an environmental chamber replicating tropical climatic conditions (ambient temperature 32°C, 70% relative humidity), 16 males aged 21.8 (1.2) years performed two trials of a work-rest cycle protocol consisting two bouts of 4-km treadmill walks with 30-kg load at 5.3km/h separated by a 15-min rest period. Ice slurry (ICE) or room temperature water (29°C) as a control (CON) was provided in 200-ml aliquots. The fluids were given 10min before the start, at the 15(th) and 30(th) min of each work cycle, and during each rest period. Spatio-temporal gait characteristics were obtained at the start and end of each work-rest cycle using a floor-based photocell system (OptoGait) and a high-speed video camera at 120Hz. Repeated-measure analysis of variance (trial×time) showed that with time, step width decreased (p=.024) while percent crossover steps increased (p=.008) from the 40(th) min onwards. Reduced stance time variability (-11.1%, p=.029) step width variability (-8.2%, p=.001), and percent crossover step (-18.5%, p=.010) were observed in ICE compared with CON. No differences in step length and most temporal variables were found. In conclusion, changes in frontal plane gait characteristics may indicate exertional heat stress during prolonged load carriage, and some of these changes may be mitigated with ice slurry ingestion. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Reducing Pumping Power in Hydronic Heating and Cooling Systems with Microencapsulated Phase Change Material Slurries

    NASA Astrophysics Data System (ADS)

    Karas, Kristoffer Jason

    Phase change materials (PCMs) are being used increasingly in a variety of thermal transfer and thermal storage applications. This thesis presents the results of a laboratory study into the feasibility of improving the performance of hydronic heating and cooling systems by adding microcapsules filled with a PCM to the water used as heat transport media in these systems. Microencapsulated PCMs (MPCMs) increase the heat carrying capacity of heat transport liquids by absorbing or releasing heat at a constant temperature through a change of phase. Three sequences of tests and their results are presented: 1) Thermal cycling tests conducted to determine the melting temperatures and extent of supercooling associated with the MPCMs tested. 2) Hydronic performance tests in which MPCM slurries were pumped through a fin-and-tube, air-to-liquid heat exchanger and their thermal transfer performance compared against that of ordinary water. 3) Mechanical stability tests in which MPCM slurries were pumped in a continuous loop in order to gauge the extent of rupture due to pumping. It is shown that slurries consisting of water and MPCMs ˜ 14-24 mum in diameter improve thermal performance and offer the potential for power savings in the form of reduced pumping requirements. In addition, it is shown that while slurries of MPCMs 2-5 mum in diameter appear to exhibit better mechanical stability than slurries of larger diameter MPCMs, the smaller MPCMs appear to reduce the thermal performance of air-to-liquid heat exchangers.

  8. The missing Northern European winter cooling response to Arctic sea ice loss

    PubMed Central

    Screen, James A.

    2017-01-01

    Reductions in Arctic sea ice may promote the negative phase of the North Atlantic Oscillation (NAO−). It has been argued that NAO-related variability can be used an as analogue to predict the effects of Arctic sea ice loss on mid-latitude weather. As NAO− events are associated with colder winters over Northern Europe, a negatively shifted NAO has been proposed as a dynamical pathway for Arctic sea ice loss to cause Northern European cooling. This study uses large-ensemble atmospheric simulations with prescribed ocean surface conditions to examine how seasonal-scale NAO− events are affected by Arctic sea ice loss. Despite an intensification of NAO− events, reflected by more prevalent easterly flow, sea ice loss does not lead to Northern European winter cooling and daily cold extremes actually decrease. The dynamical cooling from the changed NAO is ‘missing', because it is offset (or exceeded) by a thermodynamical effect owing to advection of warmer air masses. PMID:28262679

  9. Ice Thermal Storage Systems for LWR Supplemental Cooling and Peak Power Shifting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haihua Zhao; Hongbin Zhang; Phil Sharpe

    2010-06-01

    Availability of enough cooling water has been one of the major issues for the nuclear power plant site selection. Cooling water issues have frequently disrupted the normal operation at some nuclear power plants during heat waves and long draught. The issues become more severe due to the new round of nuclear power expansion and global warming. During hot summer days, cooling water leaving a power plant may become too hot to threaten aquatic life so that environmental regulations may force the plant to reduce power output or even temporarily to be shutdown. For new nuclear power plants to be builtmore » at areas without enough cooling water, dry cooling can be used to remove waste heat directly into the atmosphere. However, dry cooling will result in much lower thermal efficiency when the weather is hot. One potential solution for the above mentioned issues is to use ice thermal storage systems (ITS) that reduce cooling water requirements and boost the plant’s thermal efficiency in hot hours. ITS uses cheap off-peak electricity to make ice and uses those ice for supplemental cooling during peak demand time. ITS is suitable for supplemental cooling storage due to its very high energy storage density. ITS also provides a way to shift large amount of electricity from off peak time to peak time. Some gas turbine plants already use ITS to increase thermal efficiency during peak hours in summer. ITSs have also been widely used for building cooling to save energy cost. Among three cooling methods for LWR applications: once-through, wet cooling tower, and dry cooling tower, once-through cooling plants near a large water body like an ocean or a large lake and wet cooling plants can maintain the designed turbine backpressure (or condensation temperature) during 99% of the time; therefore, adding ITS to those plants will not generate large benefits. For once-through cooling plants near a limited water body like a river or a small lake, adding ITS can bring significant

  10. The 8.2 ka cooling event caused by Laurentide ice saddle collapse

    NASA Astrophysics Data System (ADS)

    Matero, I. S. O.; Gregoire, L. J.; Ivanovic, R. F.; Tindall, J. C.; Haywood, A. M.

    2017-09-01

    The 8.2 ka event was a period of abrupt cooling of 1-3 °C across large parts of the Northern Hemisphere, which lasted for about 160 yr. The original hypothesis for the cause of this event has been the outburst of the proglacial Lakes Agassiz and Ojibway. These drained into the Labrador Sea in ∼0.5-5 yr and slowed the Atlantic Meridional Overturning Circulation, thus cooling the North Atlantic region. However, climate models have not been able to reproduce the duration and magnitude of the cooling with this forcing without including additional centennial-length freshwater forcings, such as rerouting of continental runoff and ice sheet melt in combination with the lake release. Here, we show that instead of being caused by the lake outburst, the event could have been caused by accelerated melt from the collapsing ice saddle that linked domes over Hudson Bay in North America. We forced a General Circulation Model with time varying meltwater pulses (100-300 yr) that match observed sea level change, designed to represent the Hudson Bay ice saddle collapse. A 100 yr long pulse with a peak of 0.6 Sv produces a cooling in central Greenland that matches the 160 yr duration and 3 °C amplitude of the event recorded in ice cores. The simulation also reproduces the cooling pattern, amplitude and duration recorded in European Lake and North Atlantic sediment records. Such abrupt acceleration in ice melt would have been caused by surface melt feedbacks and marine ice sheet instability. These new realistic forcing scenarios provide a means to reconcile longstanding mismatches between proxy data and models, allowing for a better understanding of both the sensitivity of the climate models and processes and feedbacks in motion during the disintegration of continental ice sheets.

  11. Acceleration of Cooling of Ice Giants by Condensation in Early Atmospheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurosaki, Kenji; Ikoma, Masahiro, E-mail: kurosaki.k@nagoya-u.jp, E-mail: ikoma@eps.s.u-tokyo.ac.jp

    The present infrared brightness of a planet originates partly from the accretion energy that the planet gained during its formation and hence provides important constraints to the planet formation process. A planet cools down from a hot initial state to the present state by losing energy through radiative emission from its atmosphere. Thus, the atmospheric properties affect the planetary cooling rate. Previous theories of giant planet cooling assume that the atmospheric composition is unchanged throughout the evolution. Planet formation theories, however, suggest that the atmospheres especially of ice giants are rich in heavy elements in the early stages. These heavy elementsmore » include condensable species such as H{sub 2}O, NH{sub 3}, and CH{sub 4}, which are expected to have a great impact on atmospheric temperature and thus on radiative emission through latent heat release. In this study we investigate the effect of such condensation on the planetary emission flux and quantify the impact on the cooling timescale. We then demonstrate that the latent heat of these species keeps the atmosphere hot and thus the emission flux high for billions of years, resulting in an acceleration of the cooling of ice giants. This sheds light on the long-standing problem that Uranus is much less bright than theoretically predicted and is different in brightness from Neptune in spite of the similarity in mass and radius. We also find that young ice giants with highly enriched atmospheres are much brighter in the mid-infrared than ice giants with non-enriched atmospheres. This provides important implications for future direct imaging of extrasolar ice giants.« less

  12. Super cool X-1000 and Super cool Z-1000, two ice blockers, and their effect on vitrification/warming of mouse embryos.

    PubMed

    Badrzadeh, H; Najmabadi, S; Paymani, R; Macaso, T; Azadbadi, Z; Ahmady, A

    2010-07-01

    To evaluate the survival and blastocyst formation rates of mouse embryos after vitrification/thaw process with different ice blocker media. We used X-1000 and Z-1000 separately and mixed using V-Kim, a closed vitrification system. Mouse embryos were vitrified using ethylene glycol based medium supplemented with Super cool X-1000 and/or Super cool Z-1000. Survival rates for the control, Super cool X-1000, Super cool Z-1000, and Super cool X-1000/Z-1000 groups were 74%, 72%, 68%, and 85% respectively, with no significant difference among experimental and control groups; however, a significantly higher survival rate was noticed in the Super cool X-1000/Z-1000 group when compared with the Super cool Z-1000 group. Blastocyst formation rates for the control, Super cool X-1000, Super cool Z-1000, and Super cool X-1000/Z-1000 groups were 71%, 66%, 65%, and 72% respectively. There was no significant difference in this rate among control and experimental groups. In a closed vitrification system, addition of ice blocker Super cool X-1000 to the vitrification solution containing Super cool Z-1000 may improve the embryo survival rate. We recommend combined ice blocker usage to optimize the vitrification outcome. Copyright (c) 2010 Elsevier Ireland Ltd. All rights reserved.

  13. Ice pack heat sink subsystem, phase 2. [astronaut life support cooling system

    NASA Technical Reports Server (NTRS)

    Roebelen, G. J., Jr.; Kellner, J. D.

    1975-01-01

    The report describes the design, development, fabrication, and test at one gravity of a prototype ice pack heat sink subsystem to be used eventually for astronaut cooling during manned space missions; the investigation of thermal storage material with the objective of uncovering materials with heats of fusion and/or solution in the range of 300 Btu/lb (700 kilojoules/kilogram); and the planned procedure for implementing an ice pack heat sink subsystem flight experiment. In normal use, excess heat in the liquid cooling garment (LCG) coolant is transferred to a reusable/regenerable ice pack heat sink. For emergency operation, or for extension of extravehicular activity mission time after all the ice has melted, water from the ice pack is boiled to vacuum, thereby continuing to remove heat from the LCG coolant. This subsystem incorporates a quick disconnect thermal interface between the ice pack heat sink and the subsystem heat exchanger.

  14. Ice nucleation in the upper troposphere: Sensitivity to aerosol number density, temperature, and cooling rate

    NASA Technical Reports Server (NTRS)

    Jensen, E. J.; Toon, O. B.

    1994-01-01

    We have investigated the processes that control ice crystal nucleation in the upper troposphere using a numerical model. Nucleation of ice resulting from cooling was simulated for a range of aerosol number densities, initial temperatures, and cooling rates. In contrast to observations of stratus clouds, we find that the number of ice crystals that nucleate in cirrus is relatively insensitive to the number of aerosols present. The ice crystal size distribution at the end of the nucleation process is unaffected by the assumed initial aerosol number density. Essentially, nucleation continues until enough ice crystals are present such that their deposition growth rapidly depletes the vapor and shuts off any further nucleation. However, the number of ice crystals nucleated increases rapidly with decreasing initial temperature and increasing cooling rate. This temperature dependence alone could explain the large ice crystal number density observed in very cold tropical cirrus.

  15. Suppression of Ice Fog from Cooling Ponds

    DTIC Science & Technology

    1976-11-01

    Data evaporation . rnge of spad (gmn2 day") (mm day) C ) meas. (mm day’) Ohtake (1970) 5040 5.0 4 -15 10 0.9- 5.9 Behlke and McDougall (1973) 4464 4.5...plant cooling pond at -23* C . On the left side of the pond ice fog has been nearly eliminated by the formation of an ice cover. (Photograph by Terry...unlimited. 17. cISTRISUTION STATEMIENT (of S. absauat eod Sm BerS8. If 4fforIon vRepot) t. KEY WORDS ( C €t an o rewoosi .e* I eo~ra md identJ by Week

  16. Method for inducing hypothermia

    DOEpatents

    Becker, Lance B.; Hoek, Terry Vanden; Kasza, Kenneth E.

    2003-04-15

    Systems for phase-change particulate slurry cooling equipment and methods to induce hypothermia in a patient through internal and external cooling are provided. Subcutaneous, intravascular, intraperitoneal, gastrointestinal, and lung methods of cooling are carried out using saline ice slurries or other phase-change slurries compatible with human tissue. Perfluorocarbon slurries or other slurry types compatible with human tissue are used for pulmonary cooling. And traditional external cooling methods are improved by utilizing phase-change slurry materials in cooling caps and torso blankets.

  17. Method for inducing hypothermia

    DOEpatents

    Becker, Lance B [Chicago, IL; Hoek, Terry Vanden [Chicago, IL; Kasza, Kenneth E [Palos Park, IL

    2008-09-09

    Systems for phase-change particulate slurry cooling equipment and methods to induce hypothermia in a patient through internal and external cooling are provided. Subcutaneous, intravascular, intraperitoneal, gastrointestinal, and lung methods of cooling are carried out using saline ice slurries or other phase-change slurries compatible with human tissue. Perfluorocarbon slurries or other slurry types compatible with human tissue are used for pulmonary cooling. And traditional external cooling methods are improved by utilizing phase-change slurry materials in cooling caps and torso blankets.

  18. Method for inducing hypothermia

    DOEpatents

    Becker, Lance B.; Hoek, Terry Vanden; Kasza, Kenneth E.

    2005-11-08

    Systems for phase-change particulate slurry cooling equipment and methods to induce hypothermia in a patient through internal and external cooling are provided. Subcutaneous, intravascular, intraperitoneal, gastrointestinal, and lung methods of cooling are carried out using saline ice slurries or other phase-change slurries compatible with human tissue. Perfluorocarbon slurries or other slurry types compatible with human tissue are used for pulmonary cooling. And traditional external cooling methods are improved by utilizing phase-change slurry materials in cooling caps and torso blankets.

  19. Ice Pack Heat Sink Subsystem - Phase I. [astronaut liquid cooling garment design and testing

    NASA Technical Reports Server (NTRS)

    Roebelen, G. J., Jr.

    1973-01-01

    This paper describes the design and test at one-g of a functional laboratory model (non-flight) Ice Pack Heat Sink Subsystem to be used eventually for astronaut cooling during manned space missions. In normal use, excess heat in the liquid cooling garment (LCG) coolant is transferred to a reusable/regenerable ice pack heat sink. For emergency operation, or for extension of extravehicular activity mission time after all the ice has melted, water from the ice pack is boiled to vacuum, thereby continuing to remove heat from the LCG coolant. This subsystem incorporates a quick connect/disconnect thermal interface between the ice pack heat sink and the subsystem heat exchanger.

  20. Pre-cooling for endurance exercise performance in the heat: a systematic review

    PubMed Central

    2012-01-01

    Background Endurance exercise capacity diminishes under hot environmental conditions. Time to exhaustion can be increased by lowering body temperature prior to exercise (pre-cooling). This systematic literature review synthesizes the current findings of the effects of pre-cooling on endurance exercise performance, providing guidance for clinical practice and further research. Methods The MEDLINE, EMBASE, CINAHL, Web of Science and SPORTDiscus databases were searched in May 2012 for studies evaluating the effectiveness of pre-cooling to enhance endurance exercise performance in hot environmental conditions (≥ 28°C). Studies involving participants with increased susceptibility to heat strain, cooling during or between bouts of exercise, and protocols where aerobic endurance was not the principle performance outcome were excluded. Potential publications were assessed by two independent reviewers for inclusion and quality. Means and standard deviations of exercise performance variables were extracted or sought from original authors to enable effect size calculations. Results In all, 13 studies were identified. The majority of studies contained low participant numbers and/or absence of sample size calculations. Six studies used cold water immersion, four crushed ice ingestion and three cooling garments. The remaining study utilized mixed methods. Large heterogeneity in methodological design and exercise protocols was identified. Effect size calculations indicated moderate evidence that cold water immersion effectively improved endurance performance, and limited evidence that ice slurry ingestion improved performance. Cooling garments were ineffective. Most studies failed to document or report adverse events. Low participant numbers in each study limited the statistical power of certain reported trends and lack of blinding could potentially have introduced either participant or researcher bias in some studies. Conclusions Current evidence indicates cold water

  1. Nonlinear dynamics of ice-wedge networks and resulting sensitivity to severe cooling events.

    PubMed

    Plug, L J; Werner, B T

    2002-06-27

    Patterns of subsurface wedges of ice that form along cooling-induced tension fractures, expressed at the ground surface by ridges or troughs spaced 10 30 m apart, are ubiquitous in polar lowlands. Fossilized ice wedges, which are widespread at lower latitudes, have been used to infer the duration and mean temperature of cold periods within Proterozoic and Quaternary climates, and recent climate trends have been inferred from fracture frequency in active ice wedges. Here we present simulations from a numerical model for the evolution of ice-wedge networks over a range of climate scenarios, based on the interactions between thermal tensile stress, fracture and ice wedges. We find that short-lived periods of severe cooling permanently alter the spacing between ice wedges as well as their fracture frequency. This affects the rate at which the widths of ice wedges increase as well as the network's response to subsequent climate change. We conclude that wedge spacing and width in ice-wedge networks mainly reflect infrequent episodes of rapidly falling ground temperatures rather than mean conditions.

  2. Ice Slurry Ingestion Leads to a Lower Net Heat Loss during Exercise in the Heat.

    PubMed

    Morris, Nathan B; Coombs, Geoff; Jay, Ollie

    2016-01-01

    To compare the reductions in evaporative heat loss from the skin (Esk) to internal heat loss (Hfluid) induced by ice slurry (ICE) ingestion relative to 37 °C fluid and the accompanying body temperature and local thermoeffector responses during exercise in warm, dry conditions (33.5 °C ± 1.4 °C; 23.7% ± 2.6% relative humidity [RH]). Nine men cycled at approximately 55% VO2peak for 75 min and ingested 3.2 mL · kg(-1) aliquots of 37 °C fluid or ICE after 15, 30, and 45 min of exercise. Metabolic heat production (M-W), rectal temperature (Tre), mean skin temperature (Tsk), whole-body sweat loss (WBSL), local sweat rate (LSR), and skin blood flow (SkBF) were measured throughout. Net heat loss (HLnet) and heat storage (S) were estimated using partitional calorimetry. Relative to the 37 °C trial, M-W was similar (P = 0.81) with ICE ingestion; however, the 200 ± 20 kJ greater Hfluid (P < 0.001) with ICE ingestion was overcompensated by a 381 ± 199-kJ lower Esk (P < 0.001). Net heat loss (HLnet) was consequently 131 ± 120 kJ lower (P = 0.01) and S was greater (P = 0.05) with ICE ingestion compared with 37 °C fluid ingestion. Concurrently, LSR and WBSL were lower by 0.16 ± 0.14 mg · min(-1) · cm(-2) (P < 0.01) and 191 ± 122 g (P < 0.001), respectively, and SkBF tended to be lower (P = 0.06) by 5.4%maxAU ± 13.4%maxAU in the ICE trial. Changes in Tre and Tsk were similar throughout exercise with ICE compared to 37 °C fluid ingestion. Relative to 37 °C, ICE ingestion caused disproportionately greater reductions in Esk relative to Hfluid, resulting in a lower HLnet and greater S. Mechanistically, LSR and possibly SkBF were suppressed independently of Tre or Tsk, reaffirming the concept of human abdominal thermoreception. From a heat balance perspective, recommendations for ICE ingestion during exercise in warm, dry conditions should be reconsidered.

  3. Slurry erosion induced surface nanocrystallization of bulk metallic glass

    NASA Astrophysics Data System (ADS)

    Ji, Xiulin; Wu, Jili; Pi, Jinghong; Cheng, Jiangbo; Shan, Yiping; Zhang, Yingtao

    2018-05-01

    Microstructure evolution and phase transformation of metallic glasses (MGs) could occur under heating condition or mechanical deformation. The cross-section of as-cast Zr55Cu30Ni5Al10 MG rod was impacted by the solid particles when subjected to erosion in slurry flow. The surface microstructure was observed by XRD before and after slurry erosion. And the stress-driven de-vitrification increases with the increase of erosion time. A microstructure evolution layer with 1-2 μm thickness was formed on the topmost eroded surface. And a short range atomic ordering prevails in the microstructure evolution layer with crystalline size around 2-3 nm embedded in the amorphous matrix. The XPS analysis reveals that most of the metal elements in the MG surface, except for Cu, were oxidized. And a composite layer with ZrO2 and Al2O3 phases were formed in the topmost surface after slurry erosion. The cooling rate during solidification of MG has a strong influence on the slurry erosion induced nanocrystallization. And a lower cooling rate favors the surface nanocrystallization because of lower activation energy and thermo-stability. Finally, the slurry erosion induced surface nanocrystallization and microstructure evolution result in surface hardening and strengthening. Moreover, the microstructure evolution mechanisms were discussed and it is related to the cooling rate of solidification and the impact-induced temperature rise, as well as the combined effects of the impact-induced plastic flow, inter-diffusion and oxidation of the metal elements.

  4. Numerical investigation on super-cooled large droplet icing of fan rotor blade in jet engine

    NASA Astrophysics Data System (ADS)

    Isobe, Keisuke; Suzuki, Masaya; Yamamoto, Makoto

    2014-10-01

    Icing (or ice accretion) is a phenomenon in which super-cooled water droplets impinge and accrete on a body. It is well known that ice accretion on blades and vanes leads to performance degradation and has caused severe accidents. Although various anti-icing and deicing systems have been developed, such accidents still occur. Therefore, it is important to clarify the phenomenon of ice accretion on an aircraft and in a jet engine. However, flight tests for ice accretion are very expensive, and in the wind tunnel it is difficult to reproduce all climate conditions where ice accretion can occur. Therefore, it is expected that computational fluid dynamics (CFD), which can estimate ice accretion in various climate conditions, will be a useful way to predict and understand the ice accretion phenomenon. On the other hand, although the icing caused by super-cooled large droplets (SLD) is very dangerous, the numerical method has not been established yet. This is why SLD icing is characterized by splash and bounce phenomena of droplets and they are very complex in nature. In the present study, we develop an ice accretion code considering the splash and bounce phenomena to predict SLD icing, and the code is applied to a fan rotor blade. The numerical results with and without the SLD icing model are compared. Through this study, the influence of the SLD icing model is numerically clarified.

  5. Drivers of Antarctic sea-ice expansion and Southern Ocean surface cooling over the past four decades

    NASA Astrophysics Data System (ADS)

    Purich, Ariaan; England, Matthew

    2017-04-01

    Despite global warming, total Antarctic sea-ice coverage has increased overall during the past four decades. In contrast, the majority of CMIP5 models simulate a decline. In addition, Southern Ocean surface waters have largely cooled, in stark contrast to almost all historical CMIP5 simulations. Subantarctic Surface Waters have cooled and freshened while waters to the north of the Antarctic Circumpolar Current have warmed and increased in salinity. It remains unclear as to what extent the cooling and Antarctic sea-ice expansion is due to natural variability versus anthropogenic forcing; due for example to changes in the Southern Annular Mode (SAM). It is also unclear what the respective role of surface buoyancy fluxes is compared to internal ocean circulation changes, and what the implications are for longer-term climate change in the region. In this presentation we will outline three distinct drivers of recent Southern Ocean surface trends that have each made a significant contribution to regional cooling: (1) wind-driven surface cooling and sea-ice expansion due to shifted westerly winds, (2) teleconnections of decadal variability from the tropical Pacific, and (3) surface cooling and ice expansion due to large-scale Southern Ocean freshening, most likely driven by SAM-related precipitation trends over the open ocean. We will also outline the main reasons why climate models for the most part miss these Southern Ocean cooling trends, despite capturing overall trends in the SAM.

  6. Effect of local cooling on excitation-contraction coupling in myasthenic muscle: Another mechanism of ice-pack test in myasthenia gravis.

    PubMed

    Yamamoto, Daisuke; Imai, Tomihiro; Tsuda, Emiko; Hozuki, Takayoshi; Yamauchi, Rika; Hisahara, Shin; Kawamata, Jun; Shimohama, Shun

    2017-11-01

    The ice-pack test is a convenient diagnostic testing procedure for myasthenia gravis (MG). We investigated the underlying mechanism of the ice-pack test performed on bilateral masseters. We performed trigeminal repetitive nerve stimulation (RNS), excitation-contraction (E-C) coupling assessment (Imai's method) and bite force measurement before and after cooling of the masseters in MG patients and normal controls. After placing the ice-pack on the masseters for 3min, serial recordings of the three tests were performed at various time intervals during 10min after cooling. The bite force increased significantly after cooling in ice-pack-positive MG patients. The acceleration and acceleration ratio (acceleration at a given time to baseline acceleration) of jaw movement increased significantly after cooling of the masseters in ice-pack-positive MG patients compared to ice-pack-negative patients and normal controls. The prolonged effect of cooling continued until the end of recording even though decremental response to RNS had returned to baseline value. Cooling of myasthenic muscle may induce two effects. One is relatively short effect on electrical synaptic transmission at the endplate, and another is prolonged effect on E-C coupling in the muscle. The ice-pack test induces a prolonged effect of ameliorating impaired E-C coupling in MG. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  7. Fuel injection of coal slurry using vortex nozzles and valves

    DOEpatents

    Holmes, Allen B.

    1989-01-01

    Injection of atomized coal slurry fuel into an engine combustion chamber is achieved at relatively low pressures by means of a vortex swirl nozzle. The outlet opening of the vortex nozzle is considerably larger than conventional nozzle outlets, thereby eliminating major sources of failure due to clogging by contaminants in the fuel. Control fluid, such as air, may be used to impart vorticity to the slurry and/or purge the nozzle of contaminants during the times between measured slurry charges. The measured slurry charges may be produced by a diaphragm pump or by vortex valves controlled by a separate control fluid. Fluidic circuitry, employing vortex valves to alternatively block and pass cool slurry fuel flow, is disclosed.

  8. HybridICE® filter: ice separation in freeze desalination of mine waste waters.

    PubMed

    Adeniyi, A; Maree, J P; Mbaya, R K K; Popoola, A P I; Mtombeni, T; Zvinowanda, C M

    2014-01-01

    Freeze desalination is an alternative method for the treatment of mine waste waters. HybridICE(®) technology is a freeze desalination process which generates ice slurry in surface scraper heat exchangers that use R404a as the primary refrigerant. Ice separation from the slurry takes place in the HybridICE filter, a cylindrical unit with a centrally mounted filter element. Principally, the filter module achieves separation of the ice through buoyancy force in a continuous process. The HybridICE filter is a new and economical means of separating ice from the slurry and requires no washing of ice with water. The performance of the filter at a flow-rate of 25 L/min was evaluated over time and with varied evaporating temperature of the refrigerant. Behaviours of the ice fraction and residence time were also investigated. The objective was to find ways to improve the performance of the filter. Results showed that filter performance can be improved by controlling the refrigerant evaporating temperature and eliminating overflow.

  9. Foraminiferal faunal estimates of paleotemperature: Circumventing the no-analog problem yields cool ice age tropics

    USGS Publications Warehouse

    Mix, A.C.; Morey, A.E.; Pisias, N.G.; Hostetler, S.W.

    1999-01-01

    The sensitivity of the tropics to climate change, particularly the amplitude of glacial-to-interglacial changes in sea surface temperature (SST), is one of the great controversies in paleoclimatology. Here we reassess faunal estimates of ice age SSTs, focusing on the problem of no-analog planktonic foraminiferal assemblages in the equatorial oceans that confounds both classical transfer function and modern analog methods. A new calibration strategy developed here, which uses past variability of species to define robust faunal assemblages, solves the no-analog problem and reveals ice age cooling of 5??to 6??C in the equatorial current systems of the Atlantic and eastern Pacific Oceans. Classical transfer functions underestimated temperature changes in some areas of the tropical oceans because core-top assemblages misrepresented the ice age faunal assemblages. Our finding is consistent with some geochemical estimates and model predictions of greater ice age cooling in the tropics than was inferred by Climate: Long-Range Investigation, Mapping, and Prediction (CLIMAP) [1981] and thus may help to resolve a long-standing controversy. Our new foraminiferal transfer function suggests that such cooling was limited to the equatorial current systems, however, and supports CLIMAP's inference of stability of the subtropical gyre centers.

  10. Did accelerated North American ice sheet melt contribute to the 8.2 ka cooling event ?

    NASA Astrophysics Data System (ADS)

    Matero, Ilkka S. O.; Gregoire, Lauren J.; Ivanović, Ruža F.; Tindall, Julia C.; Haywood, Alan M.

    2016-04-01

    The 8.2 ka event was an abrupt cooling of the Northern Hemisphere 8,200 years ago. It is an almost ideal case study to benchmark the sensitivity of climate models to freshening of the North Atlantic by ice sheet melt (Schmidt and LeGrande, 2005). The event is attributed to the outburst of North American proglacial lakes into the Labrador Sea, causing a slow-down in Atlantic overturning circulation and cooling of 1-2.5 °C around the N. Atlantic (Alley and Ágústsdóttir,2005). Climate models fail to simulate the ~150 year duration of the event when forced with a sudden (0.5 to 5 years) drainage of the lakes (Morrill et al., 2013a). This could be because of missing forcings. For example, the separation of ice sheet domes around the Hudson Bay is thought to have produced a pronounced acceleration in ice sheet melt through a saddle collapse mechanism around the time of the event (Gregoire et al., 2012). Here we investigate whether this century scale acceleration of melt contributed to the observed climatic perturbation, using the coupled Ocean-Atmosphere climate model HadCM3. We designed and ran a set of simulations with temporally variable ice melt scenarios based on a model of the North American ice sheet. The simulated magnitude and duration of the cold period is controlled by the duration and amount of freshwater introduced to the ocean. With a 100-200 year-long acceleration of ice melt up to a maximum of 0.61 Sv, we simulate 1-3 °C cooling in the North Atlantic and ~0.5-1 °C cooling in Continental Europe; which are similar in magnitude to the ~1-2 °C cooling estimated from records for these areas (Morrill et al., 2013b). Some of the observed features are however not reproduced in our experiments, such as the most pronounced cooling of ~6 °C observed in central Greenland (Alley and Ágústsdóttir, 2005). The results suggest that the ~150 year North Atlantic and European cooling could be caused by ~200 years of accelerated North American ice sheet melt. This

  11. The effect of cooling on coagulation and haemostasis: should "Ice" be part of treatment of acute haemarthrosis in haemophilia?

    PubMed

    Forsyth, A L; Zourikian, N; Valentino, L A; Rivard, G E

    2012-11-01

    Repeated haemarthroses and the consequences of blood in the joint contribute to blood induced joint disease (BIJD) in people with haemophilia (PWH). Prevention of bleeding, through medical management, is the standard of care in developed countries, but is not universally available due to financial and other barriers. Ice application, as part of R.I.C.E. (Rest, Ice, Compression, Elevation) or alone, is commonly recommended as an adjunct treatment to decrease bleeding, pain, tissue metabolism, oedema, and inflammation. This article will review evidence regarding local cooling by commonly used ice application methods, to decrease the temperature of the skin and intra-articular (IA) joint space and the resultant effects on haemostasis and coagulation. The general literature was reviewed for articles in English describing temperatures achievable in the skin and IA space using clinically relevant ice protocols, and the effect of cooling on haemostasis and coagulation. The literature demonstrates that typical methods of ice application can cool both the skin and IA space. Published, general literature studies have also consistently demonstrated that experimental cooling of blood and/or tissue, both in vitro and in vivo in humans and in animal models, can significantly impair coagulation and prolong bleeding. In PWH with acute haemarthrosis, ice application has potential to increase haemorrhage morbidity by further impairing coagulation and haemostasis. Ice has not been shown to improve overall outcome, stop bleeding nor swelling from haemarthrosis. Although ice can help manage acute, haemarthrosis-related pain, there are other available interventions that will not impair coagulation and haemostasis. © 2012 Blackwell Publishing Ltd.

  12. Experimental determination of surface heat transfer coefficient in a dry ice-ethanol cooling bath using a numerical approach.

    PubMed

    Santos, M V; Sansinena, M; Zaritzky, N; Chirife, J

    BACKGROUND: Dry ice-ethanol bath (-78 degree C) have been widely used in low temperature biological research to attain rapid cooling of samples below freezing temperature. The prediction of cooling rates of biological samples immersed in dry ice-ethanol bath is of practical interest in cryopreservation. The cooling rate can be obtained using mathematical models representing the heat conduction equation in transient state. Additionally, at the solid cryogenic-fluid interface, the knowledge of the surface heat transfer coefficient (h) is necessary for the convective boundary condition in order to correctly establish the mathematical problem. The study was to apply numerical modeling to obtain the surface heat transfer coefficient of a dry ice-ethanol bath. A numerical finite element solution of heat conduction equation was used to obtain surface heat transfer coefficients from measured temperatures at the center of polytetrafluoroethylene and polymethylmetacrylate cylinders immersed in a dry ice-ethanol cooling bath. The numerical model considered the temperature dependence of thermophysical properties of plastic materials used. A negative linear relationship is observed between cylinder diameter and heat transfer coefficient in the liquid bath, the calculated h values were 308, 135 and 62.5 W/(m 2 K) for PMMA 1.3, PTFE 2.59 and 3.14 cm in diameter, respectively. The calculated heat transfer coefficients were consistent among several replicates; h in dry ice-ethanol showed an inverse relationship with cylinder diameter.

  13. Ice-Water Immersion and Cold-Water Immersion Provide Similar Cooling Rates in Runners With Exercise-Induced Hyperthermia

    PubMed Central

    Clements, Julie M.; Casa, Douglas J.; Knight, J. Chad; McClung, Joseph M.; Blake, Alan S.; Meenen, Paula M.; Gilmer, Allison M.; Caldwell, Kellie A.

    2002-01-01

    Objective: To assess whether ice-water immersion or cold-water immersion is the more effective treatment for rapidly cooling hyperthermic runners. Design and Setting: 17 heat-acclimated highly trained distance runners (age = 28 ± 2 years, height = 180 ± 2 cm, weight = 68.5 ± 2.1 kg, body fat = 11.2 ± 1.3%, training volume = 89 ± 10 km/wk) completed a hilly trail run (approximately 19 km and 86 minutes) in the heat (wet-bulb globe temperature = 27 ± 1°C) at an individually selected “comfortable” pace on 3 occasions 1 week apart. The random, crossover design included (1) distance run, then 12 minutes of ice-water immersion (5.15 ± 0.20°C), (2) distance run, then 12 minutes of cold-water immersion (14.03 ± 0.28°C), or (3) distance run, then 12 minutes of mock immersion (no water, air temperature = 28.88 ± 0.76°C). Measurements: Each subject was immersed from the shoulders to the hip joints for 12 minutes in a tub. Three minutes elapsed between the distance run and the start of immersion. Rectal temperature was recorded at the start of immersion, at each minute of immersion, and 3, 6, 10, and 15 minutes postimmersion. No rehydration occurred during any trial. Results: Length of distance run, time to complete distance run, rectal temperature, and percentage of dehydration after distance run were similar (P > .05) among all trials, as was the wet-bulb globe temperature. No differences (P > .05) for cooling rates were found when comparing ice-water immersion, cold-water immersion, and mock immersion at the start of immersion to 4 minutes, 4 to 8 minutes, and the start of immersion to 8 minutes. Ice-water immersion and cold-water immersion cooling rates were similar (P > .05) to each other and greater (P < .05) than mock immersion at 8 to 12 minutes, the start of immersion to 10 minutes, and the start of immersion to every other time point thereafter. Rectal temperatures were similar (P > .05) between ice-water immersion and cold-water immersion at the

  14. Reassessment of ice-age cooling of the tropical ocean and atmosphere

    USGS Publications Warehouse

    Hostetler, S.W.; Mix, A.C.

    1999-01-01

    The CLIMAP project's reconstruction of past sea surface temperature inferred limited ice-age cooling in the tropical oceans. This conclusion has been controversial, however, because of the greater cooling indicated by other terrestrial and ocean proxy data. A new faunal sea surface temperature reconstruction, calibrated using the variation of foraminiferal species through time, better represents ice-age faunal assemblages and so reveals greater cooling than CLIMAP in the equatorial current systems of the eastern Pacific and tropical Atlantic oceans. Here we explore the climatic implications of this revised sea surface temperature field for the Last Glacial Maximum using an atmospheric general circulation model. Relative to model results obtained using CLIMAP sea surface temperatures, the cooler equatorial oceans modify seasonal air temperatures by 1-2??C or more across parts of South America, Africa and southeast Asia and cause attendant changes in regional moisture patterns. In our simulation of the Last Glacial Maximum, the Amazon lowlands, for example, are cooler and drier, whereas the Andean highlands are cooler and wetter than the control simulation. Our results may help to resolve some of the apparent disagreements between oceanic and continental proxy climate data. Moreover, they suggest a wind-related mechanism for enhancing the export of water vapour from the Atlantic to the Indo-Pacific oceans, which may link variations in deep-water production and high-latitude climate changes to equatorial sea surface temperatures.

  15. Regionally coherent Little Ice Age cooling in the Atlantic Warm Pool

    USGS Publications Warehouse

    Richey, J.N.; Poore, R.Z.; Flower, B.P.; Quinn, T.M.; Hollander, D.J.

    2009-01-01

    We present 2 new decadal-resolution foraminiferal Mg/Ca-SST records covering the past 6-8 centuries from the northern Gulf of Mexico (GOM). These records provide evidence for a Little Ice Age (LIA) cooling of 2??C, consistent with a published Mg/Ca record from Pigmy Basin. Comparison of these 3 records with existing SST proxy records from the GOM-Caribbean region show that the magnitude of LIA cooling in the Atlantic Warm Pool (AWP) was significantly larger than the mean hemispheric cooling of <1??C. We propose that a reduction in the intensity and spatial extent of the AWP during the LIA, combined with associated changes in atmospheric circulation may account for the regional SST patterns observed in the GOM-Caribbean region during the LIA. Copyright 2009 by the American Geophysical Union.

  16. Ice cooling vest on tolerance for exercise under uncompensable heat stress.

    PubMed

    Kenny, Glen P; Schissler, Andrew R; Stapleton, Jill; Piamonte, Matthew; Binder, Konrad; Lynn, Aaron; Lan, Christopher Q; Hardcastle, Stephen G

    2011-08-01

    This study was conducted to evaluate the effectiveness of a commercial, personal ice cooling vest on tolerance for exercise in hot (35°C), wet (65% relative humidity) conditions with a nuclear biological chemical suit (NBC). On three separate occasions, 10 male volunteers walked on a treadmill at 3 miles per hour and 2% incline while (a) seminude (denoted CON), (b) dressed with a nuclear, biological, chemical (NBC) suit with an ice vest (V) worn under the suit (denoted NBCwV); or (c) dressed with an NBC suit but without an ice vest (V) (denoted NBCwoV). Participants exercised for 120 min or until volitional fatigue, or esophageal temperature reached 39.5°C. Esophageal temperature (T(es)), heart rate (HR), thermal sensation, and ratings of perceived exertion were measured. Exercise time was significantly greater in CON compared with both NBCwoV and NBCwV (p < 0.05), whereas T(es), thermal sensation, heart rate, and rate of perceived exertion were lower (p < 0.05). Wearing the ice vest increased exercise time (NBCwoV, 103.6 ± 7.0 min; NBCwV, 115.9 ± 4.1 min) and reduced the level of thermal strain, as evidenced by a lower T(es) at end-exercise (NBCwoV, 39.03 ± 0.13°C; NBCwV, 38.74 ± 0.13°C) and reduced thermal sensation (NBCwoV, 6.4 ± 0.4; NBCwV, 4.8 ± 0.6). This was paralleled by a decrease in rate of perceived exertion (NBCwoV, 14.7 ± 1.6; NBCwV, 12.4 ± 1.6) (p < 0.05) and heat rate (NBCwoV, 169 ± 6; NBCwV, 159 ± 7) (p < 0.05). We show that a commercially available cooling vest can significantly reduce the level of thermal strain during work performed in hot environments.

  17. Variations of the earth's magnetic field and rapid climatic cooling: A possible link through changes in global ice volume

    NASA Technical Reports Server (NTRS)

    Rampino, M. R.

    1979-01-01

    A possible relationship between large scale changes in global ice volume, variations in the earth's magnetic field, and short term climatic cooling is investigated through a study of the geomagnetic and climatic records of the past 300,000 years. The calculations suggest that redistribution of the Earth's water mass can cause rotational instabilities which lead to geomagnetic excursions; these magnetic variations in turn may lead to short-term coolings through upper atmosphere effects. Such double coincidences of magnetic excursions and sudden coolings at times of ice volume changes have occurred at 13,500, 30,000, 110,000, and 135,000 YBP.

  18. An effect of surface properties on detachment of adhered solid to cooling surface for formation of clathrate hydrate slurry

    NASA Astrophysics Data System (ADS)

    Daitoku, Tadafumi; Utaka, Yoshio

    In air-conditioning systems, it is desirable that the liquid-solid phase change temperature of a cool energy storage material is approximately 10 °C from the perspective of improving coefficient of performance (COP). Moreover, a thermal storage material that forms slurry can realize large heat capacity of working fluids. Since the solid that adheres to the heat transfer surface forms a thermal resistance layer and remarkably reduces the rate of cold storage, it is important to avoid the adhesion of a thick solid layer on the surface so as to realize efficient energy storage. Considering a harvest type cooling unit, the force required for removing the solid phase from the heat transfer surface was studied. Tetra-n-butylammonium Bromide (TBAB) clathrate hydrate was used as a cold storage material. The effect of the heat transfer surface properties on the scraping force for detachment of adhered solid of TBAB hydrate to the heat transfer surface was examined experimentally.

  19. Fracture patterns at lava-ice contacts on Kokostick Butte, OR, and Mazama Ridge, Mount Rainier, WA: Implications for flow emplacement and cooling histories

    NASA Astrophysics Data System (ADS)

    Lodge, Robert W. D.; Lescinsky, David T.

    2009-09-01

    Cooling lava commonly develop polygonal joints that form equant hexagonal columns. Such fractures are formed by thermal contraction resulting in an isotropic tensional stress regime. However, certain linear cooling fracture patterns observed at some lava-ice contacts do not appear to fit the model for formation of cooling fractures and columns because of their preferred orientations. These fracture types include sheet-like (ladder-like rectangular fracture pattern), intermediate (pseudo-aligned individual column-bounding fractures), and pseudopillow (straight to arcuate fractures with perpendicular secondary fractures caused by water infiltration) fractures that form the edges of multiple columns along a single linear fracture. Despite the relatively common occurrence of these types of fractures at lava-ice contacts, their significance and mode of formation have not been fully explored. This study investigates the stress regimes responsible for producing these unique fractures and their significance for interpreting cooling histories at lava-ice contacts. Data was collected at Kokostick Butte dacite flow at South Sister, OR, and Mazama Ridge andesite flow at Mount Rainier, WA. Both of these lava flows have been interpreted as being emplaced into contact with ice and linear fracture types have been observed on their ice-contacted margins. Two different mechanisms are proposed for the formation of linear fracture networks. One possible mechanism for the formation of linear fracture patterns is marginal bulging. Melting of confining ice walls will create voids into which flowing lava can deform resulting in margin-parallel tension causing margin-perpendicular fractures. If viewed from the ice-wall, these fractures would be steeply dipping, linear fractures. Another possible mechanism for the formation of linear fracture types is gravitational settling. Pure shear during compression and settling can result in a tensional environment with similar consequences as

  20. Countering Ice Ages: Re-directing Public Concern from Global Warming (GW) to Global Cooling (GC)

    NASA Astrophysics Data System (ADS)

    Singer, S. F.

    2016-02-01

    I present here three arguments in favor of such a drastic shift - which involves also a shift in current policies, such as mitigation of the greenhouse (GH) gas carbon dioxide. 1. Historical evidence shows that cooling, even on a regional or local scale, is much more damaging than warming. The key threat is to agriculture, leading to failure of harvests, followed by famine, starvation, disease, and mass deaths. 2. Also, GC is reasonably sure, while GW is iffy. The evidence from deep-sea sediment cores and ice cores shows some 17 (Milankovitch-style) glaciations in the past 2 million years, each typically lasting 100,000 years, interrupted by warm inter-glacials, typically around 10,000-yr duration. The most recent glaciation ended rather suddenly about 12,000 years ago. We are now in the warm Holocene, which is expected to end soon. Most of humanity may not survive the next, inevitable glaciation. We need to consider also the warming-cooling (Dansgaard-Oeschger-Bond - DOB) cycles, which seem solar-controlled and have a period of approx 1000-1500 years; its most recent cooling phase, the "Little Ice Age" (LIA), ended about 200 years ago. For details, see Unstoppable Global Warming: Every 1500 years by Singer &Avery [2007]. 3. Available technology seems adequate to assure human survival - at least in industrialized nations. The main threat is warfare, driven by competition for food and other essential resources. With nuclear weapons and delivery systems widely dispersed, the outcome of future wars is difficult to predict. Using geo-engineering to overcome a future cooling looks promising for both types of ice ages - with relatively low cost and low risk to the physical and biological environment. I will describe how to neutralize the "trigger" of major glaciations, and propose a particular greenhouse scheme that may counter the cooling phase of DOB cycles.

  1. Slurried solid media for simultaneous water purification and carbon dioxide removal from gas mixtures

    DOEpatents

    Aines, Roger D.; Bourcier, William L.; Viani, Brian

    2013-01-29

    A slurried solid media for simultaneous water purification and carbon dioxide removal from gas mixtures includes the steps of dissolving the gas mixture and carbon dioxide in water providing a gas, carbon dioxide, water mixture; adding a porous solid media to the gas, carbon dioxide, water mixture forming a slurry of gas, carbon dioxide, water, and porous solid media; heating the slurry of gas, carbon dioxide, water, and porous solid media producing steam; and cooling the steam to produce purified water and carbon dioxide.

  2. Survival of plant tissue at super-low temperatures v. An electron microscope study of ice in cortical cells cooled rapidly.

    PubMed

    Sakai, A; Otsuka, K

    1967-12-01

    Experiments were carried out with cortical cells in twig bark of mulberry trees in winter in order to clarify the mechanism of survival at super-low temperatures with rapid cooling and rewarming. Attention was given to the relation between the existence of intracellular ice crystals and survival.Cortical cells were cooled rapidly by direct immersion into liquid nitrogen or isopentane cooled at various temperatures. After immersion, they were freeze-substituted with absolute ethanol at -78 degrees . They were then embedded, sectioned and examined under the electron microscope for the presence and distribution of cavities left after ice removal.Cells were found to remain alive and contain no ice cavities when immersed rapidly into isopentane baths kept below -60 degrees . Those cells at intermediate temperatures from -20 degrees to -45 degrees , were almost all destroyed. It was also observed that many ice cavities were contained in the cells immersed rapidly into isopentane baths at -30 degrees . The data seem to indicate that no ice crystals were formed when cooled rapidly by direct immersion into isopentane baths below -60 degrees or into liquid nitrogen.The tissue sections immersed in liquid nitrogen were rapidly transferred to isopentane baths at temperatures ranging from -70 degrees to -10 degrees before rapid rewarming. There was little damage when samples were held at temperatures below -50 degrees for 10 minutes or below -60 degrees for 16 hours. No cavities were found in these cells. Above -45 degrees , and especially at -30 degrees , however, all cells were completely destroyed even when exposed only for 1 minute. Many ice cavities were observed throughout these cells. The results obtained may be explained in terms of the growth rate of intracellular ice crystals.

  3. Upland and wetland vegetation establishment on coal slurry in northern Missouri

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skeel, V.A.; Nawrot, J.R.

    Since the Cooperative Wildlife Research Laboratory`s (CWRL) Mined Land Reclamation Program`s first establishment of a wetland on slurry in 1976, industry, state, and federal agency interest in reclamation alternatives for inactive slurry has increased. CWRL has been involved in pre-reclamation site characterization and monitoring for inactive slurry impoundments throughout Illinois, Indiana, Kansas, Kentucky, Missouri, and Washington. Geochemical site characterization of three slurry impoundments at the AECI Bee Veer Mine located near Macon, Missouri began in April 1990. A substrate sampling grid was established for all slurry impoundments with a centerline orientated parallel to the discharge to decant flow pattern. Surfacemore » (0--6 in.) and subsurface (30--36 in.) slurry samples were collected annually and analyzed for acid-base balance, immediate acidity macro- and micro-nutrients, potential phytotoxic metallic ions and salts, and texture. Water table elevations and water quality were monitored quarterly from shallow ({le}12 ft.) piezometers. General reclamation plans included annual (3 years) incremental limestone amendments (35--50 tons/acre) and direct vegetation establishment. Cool and warm season grasses dominate vegetation cover in upland habitats (slurry cell RDA1) while wetland habitats (palustrine emergent seasonally-permanently inundated) have been established in slurry cells (RDA2 and RDA3). Isolated hot spots continue to be amended with limestone and supplemental vegetation establishment is scheduled.« less

  4. [The ice water test and bladder cooling reflex. Physiology, pathophysiology and clinical importance].

    PubMed

    Hüsch, T; Neuerburg, T; Reitz, A; Haferkamp, A

    2016-04-01

    Urodynamic studies are utilised for identification and follow-up of functional disorders of the lower urinary tract. Provocation tests are used to determine disorders which could not be revealed in standard cystometry. The ice water test is a simple test to identify neurogenic bladder dysfunction and to screen the integrity of the upper motor neuron in neurogenic bladder dysfunction. Development and significance of the ice water test is presented in this review against the background of physiology and pathophysiology of the lower urinary tract. A systematic review of PubMed and ScienceDirect databases was performed in April 2015. No language or time limitation was applied. The following key words and Medical Subject Heading terms were used to identify relevant studies: "ice water test", "bladder cooling reflex", "micturition" and "neuronal control". Review articles and bibliographies of other relevant studies identified were hand searched to find additional studies. The ice water test is performed by rapid instillation of 4-8 °C cold fluid into the urinary bladder. Hereby, afferent C fibers are activated by cold receptors in the bladder leading to the bladder cooling reflex. It is a spinal reflex which causes an involuntarily contraction of the urinary bladder. The test is normally positive in young infants during the first 4 years of life and become negative with maturation of the central nervous system afterwards by inhibition of the reflex. The damage of the upper motor neuron causes the recurrence of the reflex in the adulthood and indicates spinal and cerebral lesions. The ice water test is utilised to identify lesions of the upper motor neuron. However, in the case of detrusor acontractility the test will always be negative and can not be utilized to distinguish between neurogenic or muscular causes. Furthermore, the test is also positive in a small percentage of cases of non-neurogenic diseases, e.g. in prostate-related bladder outlet obstruction or

  5. Effect of Salted Ice Bags on Surface and Intramuscular Tissue Cooling and Rewarming Rates.

    PubMed

    Hunter, Eric J; Ostrowski, Jennifer; Donahue, Matthew; Crowley, Caitlyn; Herzog, Valerie

    2016-02-01

    Many researchers have investigated the effectiveness of different cryotherapy agents at decreasing intramuscular tissue temperatures. However, no one has looked at the effectiveness of adding salt to an ice bag. To compare the cooling effectiveness of different ice bags (wetted, salted cubed, and salted crushed) on cutaneous and intramuscular temperatures. Repeated-measures counterbalanced design. University research laboratory. 24 healthy participants (13 men, 11 women; age 22.46 ± 2.33 y, height 173.25 ± 9.78 cm, mass 74.51 ± 17.32 kg, subcutaneous thickness 0.63 ± 0.27 cm) with no lower-leg injuries, vascular diseases, sensitivity to cold, compromised circulation, or chronic use of NSAIDs. Ice bags made of wetted ice (2000 mL ice and 300 mL water), salted cubed ice (intervention A; 2000 mL of cubed ice and 1/2 tablespoon of salt), and salted crushed ice (intervention B; 2000 mL of crushed ice and 1/2 tablespoon of salt) were applied to the posterior gastrocnemius for 30 min. Each participant received all conditions with at least 4 d between treatments. Cutaneous and intramuscular (2 cm plus adipose thickness) temperatures of nondominant gastrocnemius were measured during a 10-min baseline period, a 30-min treatment period, and a 45-min rewarming period. Differences from baseline were observed for all treatments. The wetted-ice and salted-cubed-ice bags produced significantly lower intramuscular temperatures than the salted-crushed-ice bag. Wetted-ice bags produced the greatest temperature change for cutaneous tissues. Wetted- and salted-cubed-ice bags were equally effective at decreasing intramuscular temperature at 2 cm subadipose. Clinical practicality may favor salted-ice bags over wetted-ice bags.

  6. Slurry Coating System Statement of Work and Specification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, S. M.

    2017-02-06

    The Slurry Coating System will be used to coat crystals with a polymer to support Lawrence Livermore National Security, LLC (LLNS) research and development at Lawrence Livermore National Laboratory (LLNL). The crystals will be suspended in water in a kettle. A polymer solution is added, temperature of the kettle is raised and aggregates of the crystals and polymer form. The slurry is heated under vacuum to drive off the solvents and slowly cooled while mixing to room temperature. The resulting aggregates are then filtered and dried. The performance characteristics and fielding constraints define a unique set of requirements for amore » new system. This document presents the specifications and requirements for the system.« less

  7. Can Thermal Bending Fracture Ice Shelves?

    NASA Astrophysics Data System (ADS)

    MacAyeal, D. R.; Sergienko, O. V.; Banwell, A. F.; Willis, I.; Macdonald, G. J.; Lin, J.

    2017-12-01

    Visco-elastic plates will bend if the temperature on one side is cooled. If the plate is constrained to float, as for sea ice floes, this bending will lead to tensile stresses that can fracture the ice. The hydroacoustic regime below sea ice displays increased fracture-sourced noise when air temperatures above the ice cools with the diurnal cycle. The McMurdo Ice Shelf, Antarctica, also displays a massive increase in seismicity during the cooling phase of the diurnal cycle, and this motivates the question: Can surface cooling (or other forcing with thermal consequences) drive through-thickness fracture leading to iceberg calving? Past study of this question for sea ice gives an upper limit of ice-plate thickness (order meters) for which diurnal-scale thermal bending fracture can occur; but could cooling with longer time scales induce fracture of thicker ice plates? Given the seismic evidence of thermal bending fracture on the McMurdo Ice Shelf, the authors examine this question further.

  8. Microscopic observation of intracellular ice formation in unfertilized mouse ova as a function of cooling rate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leibo, S.P.; McGrath, J.J.; Cravalho, E.G.

    A physical-chemical analysis of water loss from cells at subzero temperatures has shown that the likelihood of intracellular ice formation increased with increasing cooling rate. We have now used a modified version of a unique conduction-cooled cryomicroscope stage to observe the freezing of unfertilized mouse ova suspended in dimethyl sulfoxide. Survival measurements showed that the respective survivals of ova were about 65, 56, and 0% when they were cooled at rates of 0.2 to 1.5, 2.5, and 5.4/sup 0/C/min. Direct microscopic observation of mouse ova during freezing showed that the respective fractions of cells that foze intracellularly were 13, 72,more » and 100% when they were cooled at rates of 1.3, 2.9, and 4.8/sup 0/C/min or faster. These values agree with those predicted from the physical-chemical analysis for cells the size of mouse ova. The microscopic observations have also shown that intracellular freezing generally occurred at about -40 to -45/sup 0/C. We had previously observed that mouse embryos must be cooled slowly to -50/sup 0/C or below if they are to survive subsequent rapid cooling to -196/sup 0/C. The observation of intracellular ice formation at -45/sup 0/C supports the interpretation that at temperatures above -50/sup 0/C the embryos still contain water capable of freezing intracellulary.« less

  9. Demonstration of Super Cooled Ice as a Phase Change Material Heat Sink for Portable Life Support Systems

    NASA Technical Reports Server (NTRS)

    Leimkuehler, Thomas O.; Bue, Grant C.

    2009-01-01

    A phase change material (PCM) heat sink using super cooled ice as a nontoxic, nonflammable PCM is being developed. The latent heat of fusion for water is approximately 70% larger than most paraffin waxes, which can provide significant mass savings. Further mass reduction is accomplished by super cooling the ice significantly below its freezing temperature for additional sensible heat storage. Expansion and contraction of the water as it freezes and melts is accommodated with the use of flexible bag and foam materials. A demonstrator unit has been designed, built, and tested to demonstrate proof of concept. Both testing and modeling results are presented along with recommendations for further development of this technology.

  10. A novel optical freezing array for the examination of cooling rate dependence in heterogeneous ice nucleation

    NASA Astrophysics Data System (ADS)

    Budke, Carsten; Dreischmeier, Katharina; Koop, Thomas

    2014-05-01

    Homogeneous ice nucleation is a stochastic process, implying that it is not only temperature but also time dependent. For heterogeneous ice nucleation it is still under debate whether there is a significant time dependence or not. In case of minor time dependence it is probably sufficient to use a singular or slightly modified singular approach, which mainly supposes temperature dependence and just small stochastic variations. We contribute to this discussion using a novel optical freezing array termed BINARY (Bielefeld Ice Nucleation ARraY). The setup consists of an array of microliter-sized droplets on a Peltier cooling stage. The droplets are separated from each other with a polydimethylsiloxane (PDMS) spacer to prevent a Bergeron-Findeisen process, in which the first freezing droplets grow at the expense of the remaining liquid ones due to their vapor pressure differences. An automatic detection of nucleation events is realized optically by the change in brightness during freezing. Different types of ice nucleating agents were tested with the presented setup, e. g. pollen and clay mineral dust. Exemplarily, cooling rate dependent measurements are shown for the heterogeneous ice nucleation induced by Snomax®. The authors gratefully acknowledge funding by the German Research Foundation (DFG) through the project BIOCLOUDS (KO 2944/1-1) and through the research unit INUIT (FOR 1525) under KO 2944/2-1. We particularly thank our INUIT partners for fruitful collaboration and sharing of ideas and IN samples.

  11. Reduction of Methane Emission during Slurry Storage by the Addition of Effective Microorganisms and Excessive Carbon Source from Brewing Sugar.

    PubMed

    Bastami, Mohd Saufi B; Jones, Davey L; Chadwick, David R

    2016-11-01

    Storing livestock manure is the primary stage of manure management where microbial processes and chemical reactions result in the release of methane (CH), nitrous oxide (NO), ammonia (NH), and carbon dioxide (CO). This study examined the reduction of CH emissions from slurry storage under two temperatures (cool [10°C] and warm [30°C]) when a glucose-rich substrate (brewing sugar) and activated effective microorganisms were applied at 10% (w/w) and 5% (v/w), respectively. Brewing sugar addition influenced microbial anaerobic respiration, resulting in a reduction of slurry pH to <5.0, through "self-acidification" caused by lactic acid production. Subsequently, CH emissions were significantly reduced by 87 and 99% in the cool and warm environments, respectively. The effective microorganism treatment did not change the chemical characteristics of the slurry but reduced CH emissions by 17 and 27% ( < 0.05) in the cool and warm environments, respectively. These results suggest that self-acidification after addition of a carbon source may be a promising alternative to slurry acidification using concentrated acids. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  12. Optimal design variable considerations in the use of phase change materials in indirect evaporative cooling

    NASA Astrophysics Data System (ADS)

    Chilakapaty, Ankit Paul

    The demand for sustainable, energy efficient and cost effective heating and cooling solutions is exponentially increasing with the rapid advancement of computation and information technology. Use of latent heat storage materials also known as phase change materials (PCMs) for load leveling is an innovative solution to the data center cooling demands. These materials are commercially available in the form of microcapsules dispersed in water, referred to as the microencapsulated phase change slurries and have higher heat capacity than water. The composition and physical properties of phase change slurries play significant role in energy efficiency of the cooling systems designed implementing these PCM slurries. Objective of this project is to study the effect of PCM particle size, shape and volumetric concentration on overall heat transfer potential of the cooling systems designed with PCM slurries as the heat transfer fluid (HTF). In this study uniform volume heat source model is developed for the simulation of heat transfer potential using phase change materials in the form of bulk temperature difference in a fully developed flow through a circular duct. Results indicate the heat transfer potential increases with PCM volumetric concentration with gradually diminishing returns. Also, spherical PCM particles offer greater heat transfer potential when compared to cylindrical particles. Results of this project will aid in efficient design of cooling systems based on PCM slurries.

  13. Cooling During Exercise: An Overlooked Strategy for Enhancing Endurance Performance in the Heat.

    PubMed

    Stevens, Christopher J; Taylor, Lee; Dascombe, Ben J

    2017-05-01

    It is well established that endurance performance is negatively affected by environmental heat stress due to a complex interaction of physical, physiological and psychological alterations. Numerous scientific investigations have attempted to improve performance in the heat with pre-cooling (cooling prior to an exercise test), and as such this has become a well-established ergogenic practice for endurance athletes. However, the use of mid-cooling (cooling during an exercise test) has received considerably less research attention in comparison, despite recent evidence to suggest that the advantage gained from mid-cooling may outweigh that of pre-cooling. A range of mid-cooling strategies are beneficial for endurance performance in the heat, including the ingestion of cold fluids and ice slurry, both with and without menthol, as well as cooling of the neck and face region via a cooling collar or water poured on the head and face. The combination of pre-cooling and mid-cooling has also been effective, but few comparisons exist between the timing and type of such interventions. Therefore, athletes should experiment with a range of suitable mid-cooling strategies for their event during mock competition scenarios, with the aim to determine their individual tolerable limits and performance benefits. Based on current evidence, the effect of mid-cooling on core temperature appears largely irrelevant to any subsequent performance improvements, while cardiovascular, skin temperature, central nervous system function and psychophysiological factors are likely involved. Research is lacking on elite athletes, and as such it is currently unclear how this population may benefit from mid-cooling.

  14. Analysis of isothermal and cooling-rate-dependent immersion freezing by a unifying stochastic ice nucleation model

    NASA Astrophysics Data System (ADS)

    Alpert, Peter A.; Knopf, Daniel A.

    2016-02-01

    Immersion freezing is an important ice nucleation pathway involved in the formation of cirrus and mixed-phase clouds. Laboratory immersion freezing experiments are necessary to determine the range in temperature, T, and relative humidity, RH, at which ice nucleation occurs and to quantify the associated nucleation kinetics. Typically, isothermal (applying a constant temperature) and cooling-rate-dependent immersion freezing experiments are conducted. In these experiments it is usually assumed that the droplets containing ice nucleating particles (INPs) all have the same INP surface area (ISA); however, the validity of this assumption or the impact it may have on analysis and interpretation of the experimental data is rarely questioned. Descriptions of ice active sites and variability of contact angles have been successfully formulated to describe ice nucleation experimental data in previous research; however, we consider the ability of a stochastic freezing model founded on classical nucleation theory to reproduce previous results and to explain experimental uncertainties and data scatter. A stochastic immersion freezing model based on first principles of statistics is presented, which accounts for variable ISA per droplet and uses parameters including the total number of droplets, Ntot, and the heterogeneous ice nucleation rate coefficient, Jhet(T). This model is applied to address if (i) a time and ISA-dependent stochastic immersion freezing process can explain laboratory immersion freezing data for different experimental methods and (ii) the assumption that all droplets contain identical ISA is a valid conjecture with subsequent consequences for analysis and interpretation of immersion freezing. The simple stochastic model can reproduce the observed time and surface area dependence in immersion freezing experiments for a variety of methods such as: droplets on a cold-stage exposed to air or surrounded by an oil matrix, wind and acoustically levitated droplets

  15. Analysis of isothermal and cooling rate dependent immersion freezing by a unifying stochastic ice nucleation model

    NASA Astrophysics Data System (ADS)

    Alpert, P. A.; Knopf, D. A.

    2015-05-01

    Immersion freezing is an important ice nucleation pathway involved in the formation of cirrus and mixed-phase clouds. Laboratory immersion freezing experiments are necessary to determine the range in temperature (T) and relative humidity (RH) at which ice nucleation occurs and to quantify the associated nucleation kinetics. Typically, isothermal (applying a constant temperature) and cooling rate dependent immersion freezing experiments are conducted. In these experiments it is usually assumed that the droplets containing ice nuclei (IN) all have the same IN surface area (ISA), however the validity of this assumption or the impact it may have on analysis and interpretation of the experimental data is rarely questioned. A stochastic immersion freezing model based on first principles of statistics is presented, which accounts for variable ISA per droplet and uses physically observable parameters including the total number of droplets (Ntot) and the heterogeneous ice nucleation rate coefficient, Jhet(T). This model is applied to address if (i) a time and ISA dependent stochastic immersion freezing process can explain laboratory immersion freezing data for different experimental methods and (ii) the assumption that all droplets contain identical ISA is a valid conjecture with subsequent consequences for analysis and interpretation of immersion freezing. The simple stochastic model can reproduce the observed time and surface area dependence in immersion freezing experiments for a variety of methods such as: droplets on a cold-stage exposed to air or surrounded by an oil matrix, wind and acoustically levitated droplets, droplets in a continuous flow diffusion chamber (CFDC), the Leipzig aerosol cloud interaction simulator (LACIS), and the aerosol interaction and dynamics in the atmosphere (AIDA) cloud chamber. Observed time dependent isothermal frozen fractions exhibiting non-exponential behavior with time can be readily explained by this model considering varying ISA. An

  16. Ice Waves

    NASA Image and Video Library

    2017-12-08

    Ice Waves - May 21st, 2001 Description: Along the southeastern coast of Greenland, an intricate network of fjords funnels glacial ice to the Atlantic Ocean. During the summer melting season, newly calved icebergs join slabs of sea ice and older, weathered bergs in an offshore slurry that the southward-flowing East Greenland Current sometimes swirls into stunning shapes. Exposed rock of mountain peaks, tinted red in this image, hints at a hidden landscape. Credit: USGS/NASA/Landsat 7 To learn more about the Landsat satellite go to: landsat.gsfc.nasa.gov/ NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook

  17. Lapping slurry

    DOEpatents

    Simandl, R.F.; Upchurch, V.S.; Leitten, M.E.

    1999-01-05

    Improved lapping slurries provide for easier and more thorough cleaning of alumina work pieces, as well as inhibit corrosion of the lapping table and provide for easier cleaning of the lapping equipment. The unthickened lapping slurry comprises abrasive grains such as diamond abrasive dispersed in a carrier comprising water, glycerine, and triethanolamine. The thickened lapping slurry comprises abrasive grains such as diamond abrasive dispersed in a carrier comprising water, glycerine, triethanolamine, a water soluble silicate, and acid. 1 fig.

  18. Lapping slurry

    DOEpatents

    Simandl, Ronald F.; Upchurch, Victor S.; Leitten, Michael E.

    1999-01-01

    Improved lapping slurries provide for easier and more thorough cleaning of alumina workpieces, as well as inhibit corrosion of the lapping table and provide for easier cleaning of the lapping equipment. The unthickened lapping slurry comprises abrasive grains such as diamond abrasive dispersed in a carrier comprising water, glycerine, and triethanolamine. The thickened lapping slurry comprises abrasive grains such as diamond abrasive dispersed in a carrier comprising water, glycerine, triethanolamine, a water soluble silicate, and acid.

  19. Three-dimensional numerical study of laminar confined slot jet impingement cooling using slurry of nano-encapsulated phase change material

    NASA Astrophysics Data System (ADS)

    Mohib Ur Rehman, M.; Qu, Z. G.; Fu, R. P.

    2016-10-01

    This Article presents a three dimensional numerical model investigating thermal performance and hydrodynamics features of the confined slot jet impingement using slurry of Nano Encapsulated Phase Change Material (NEPCM) as a coolant. The slurry is composed of water as a base fluid and n-octadecane NEPCM particles with mean diameter of 100nm suspended in it. A single phase fluid approach is employed to model the NEPCM slurry.The thermo physical properties of the NEPCM slurry are computed using modern approaches being proposed recently and governing equations are solved with a commercial Finite Volume based code. The effects of jet Reynolds number varying from 100 to 600 and particle volume fraction ranging from 0% to 28% are considered. The computed results are validated by comparing Nusselt number values at stagnation point with the previously published results with water as working fluid. It was found that adding NEPCM to the base fluid results with considerable amount of heat transfer enhancement.The highest values of heat transfer coefficients are observed at H/W=4 and Cm=0.28. However, due to the higher viscosity of slurry compared with the base fluid, the slurry can produce drastic increase in pressure drop of the system that increases with NEPCM particle loading and jet Reynolds number.

  20. Enhanced ice sheet growth in Eurasia owing to adjacent ice-dammed lakes.

    PubMed

    Krinner, G; Mangerud, J; Jakobsson, M; Crucifix, M; Ritz, C; Svendsen, J I

    2004-01-29

    Large proglacial lakes cool regional summer climate because of their large heat capacity, and have been shown to modify precipitation through mesoscale atmospheric feedbacks, as in the case of Lake Agassiz. Several large ice-dammed lakes, with a combined area twice that of the Caspian Sea, were formed in northern Eurasia about 90,000 years ago, during the last glacial period when an ice sheet centred over the Barents and Kara seas blocked the large northbound Russian rivers. Here we present high-resolution simulations with an atmospheric general circulation model that explicitly simulates the surface mass balance of the ice sheet. We show that the main influence of the Eurasian proglacial lakes was a significant reduction of ice sheet melting at the southern margin of the Barents-Kara ice sheet through strong regional summer cooling over large parts of Russia. In our simulations, the summer melt reduction clearly outweighs lake-induced decreases in moisture and hence snowfall, such as has been reported earlier for Lake Agassiz. We conclude that the summer cooling mechanism from proglacial lakes accelerated ice sheet growth and delayed ice sheet decay in Eurasia and probably also in North America.

  1. Analysis of isothermal and cooling-rate-dependent immersion freezing by a unifying stochastic ice nucleation model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alpert, Peter A.; Knopf, Daniel A.

    Immersion freezing is an important ice nucleation pathway involved in the formation of cirrus and mixed-phase clouds. Laboratory immersion freezing experiments are necessary to determine the range in temperature, T, and relative humidity, RH, at which ice nucleation occurs and to quantify the associated nucleation kinetics. Typically, isothermal (applying a constant temperature) and cooling-rate-dependent immersion freezing experiments are conducted. In these experiments it is usually assumed that the droplets containing ice nucleating particles (INPs) all have the same INP surface area (ISA); however, the validity of this assumption or the impact it may have on analysis and interpretation of the experimentalmore » data is rarely questioned. Descriptions of ice active sites and variability of contact angles have been successfully formulated to describe ice nucleation experimental data in previous research; however, we consider the ability of a stochastic freezing model founded on classical nucleation theory to reproduce previous results and to explain experimental uncertainties and data scatter. A stochastic immersion freezing model based on first principles of statistics is presented, which accounts for variable ISA per droplet and uses parameters including the total number of droplets, N tot, and the heterogeneous ice nucleation rate coefficient, J het( T). This model is applied to address if (i) a time and ISA-dependent stochastic immersion freezing process can explain laboratory immersion freezing data for different experimental methods and (ii) the assumption that all droplets contain identical ISA is a valid conjecture with subsequent consequences for analysis and interpretation of immersion freezing. The simple stochastic model can reproduce the observed time and surface area dependence in immersion freezing experiments for a variety of methods such as: droplets on a cold-stage exposed to air or surrounded by an oil matrix, wind and acoustically

  2. Analysis of isothermal and cooling-rate-dependent immersion freezing by a unifying stochastic ice nucleation model

    DOE PAGES

    Alpert, Peter A.; Knopf, Daniel A.

    2016-02-24

    Immersion freezing is an important ice nucleation pathway involved in the formation of cirrus and mixed-phase clouds. Laboratory immersion freezing experiments are necessary to determine the range in temperature, T, and relative humidity, RH, at which ice nucleation occurs and to quantify the associated nucleation kinetics. Typically, isothermal (applying a constant temperature) and cooling-rate-dependent immersion freezing experiments are conducted. In these experiments it is usually assumed that the droplets containing ice nucleating particles (INPs) all have the same INP surface area (ISA); however, the validity of this assumption or the impact it may have on analysis and interpretation of the experimentalmore » data is rarely questioned. Descriptions of ice active sites and variability of contact angles have been successfully formulated to describe ice nucleation experimental data in previous research; however, we consider the ability of a stochastic freezing model founded on classical nucleation theory to reproduce previous results and to explain experimental uncertainties and data scatter. A stochastic immersion freezing model based on first principles of statistics is presented, which accounts for variable ISA per droplet and uses parameters including the total number of droplets, N tot, and the heterogeneous ice nucleation rate coefficient, J het( T). This model is applied to address if (i) a time and ISA-dependent stochastic immersion freezing process can explain laboratory immersion freezing data for different experimental methods and (ii) the assumption that all droplets contain identical ISA is a valid conjecture with subsequent consequences for analysis and interpretation of immersion freezing. The simple stochastic model can reproduce the observed time and surface area dependence in immersion freezing experiments for a variety of methods such as: droplets on a cold-stage exposed to air or surrounded by an oil matrix, wind and acoustically

  3. Process for gasifying carbonaceous material from a recycled condensate slurry

    DOEpatents

    Forney, Albert J.; Haynes, William P.

    1981-01-01

    Coal or other carbonaceous material is gasified by reaction with steam and oxygen in a manner to minimize the problems of effluent water stream disposal. The condensate water from the product gas is recycled to slurry the coal feed and the amount of additional water or steam added for cooling or heating is minimized and preferably kept to a level of about that required to react with the carbonaceous material in the gasification reaction. The gasification is performed in a pressurized fluidized bed with the coal fed in a water slurry and preheated or vaporized by indirect heat exchange contact with product gas and recycled steam. The carbonaceous material is conveyed in a gas-solid mixture from bottom to top of the pressurized fluidized bed gasifier with the solids removed from the product gas and recycled steam in a supported moving bed filter of the resulting carbonaceous char. Steam is condensed from the product gas and the condensate recycled to form a slurry with the feed coal carbonaceous particles.

  4. Effects of micro electric current load during cooling of plant tissues on intracellular ice crystal formation behavior and pH.

    PubMed

    Ninagawa, Takako; Kawamura, Yukio; Konishi, Tadashi; Narumi, Akira

    2016-08-01

    Cryopreservation techniques are expected to evolve further to preserve biomaterials and foods in a fresh state for extended periods of time. Long-term cryopreservation of living materials such as food and biological tissue is generally achieved by freezing; thus, intracellular freezing occurs. Intracellular freezing injures the cells and leads to cell death. Therefore, a dream cryopreservation technique would preserve the living materials without internal ice crystal formation at a temperature low enough to prevent bacterial activity. This study was performed to investigate the effect of micro electrical current loading during cooling as a new cryopreservation technique. The behavior of intracellular ice crystal formation in plant tissues with or without an electric current load was evaluated using the degree of supercooling, degree of cell deformation, and grain size and growing rate of intracellular ice crystal. Moreover, the transition of intracellular pH during plant tissue cooling with or without electric current loading was also examined using the fluorescence intensity ratio to comprehend cell activity at lower temperatures. The results indicated that micro electric current load did not only decrease the degree of cell deformation and grain size of intracellular ice crystal but also reduced the decline in intracellular pH due to temperature lowering, compared with tissues subjected to the same cooling rate without an electric current load. Thus, the effect of electric current load on cryopreservation and the potential of a new cryopreservation technique using electric current load were discussed based on these results. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. The differences between soil grouting with cement slurry and cement-water glass slurry

    NASA Astrophysics Data System (ADS)

    Zhu, Mingting; Sui, Haitong; Yang, Honglu

    2018-01-01

    Cement slurry and cement-water glass slurry are the most widely applied for soil grouting reinforcement project. The viscosity change of cement slurry is negligible during grouting period and presumed to be time-independent while the viscosity of cement-water glass slurry increases with time quickly and is presumed to be time-dependent. Due to the significantly rheology differences between them, the grouting quality and the increasing characteristics of grouting parameters may be different, such as grouting pressure, grouting surrounding rock pressure, i.e., the change of surrounding rock pressure deduced by grouting pressure. Those are main factors for grouting design. In this paper, a large-scale 3D grouting simulation device was developed to simulate the surrounding curtain grouting for a tunnel. Two series of surrounding curtain grouting experiments under different geo-stress of 100 kPa, 150 kPa and 200 kPa were performed. The overload test on tunnel was performed to evaluate grouting effect of all surrounding curtain grouting experiments. In the present results, before 240 seconds, the grouting pressure increases slowly for both slurries; after 240 seconds the increase rate of grouting pressure for cement-water glass slurry increases quickly while that for cement slurry remains roughly constant. The increasing trend of grouting pressure for cement-water glass is similar to its viscosity. The setting time of cement-water glass slurry obtained from laboratory test is less than that in practical grouting where grout slurry solidifies in soil. The grouting effect of cement-water glass slurry is better than that of cement slurry and the grouting quality decreases with initial pressure.

  6. An Analysis of the System Installation Costs of Diurnal Ice Storage Cooling Systems for Army Facilities

    DTIC Science & Technology

    1991-07-01

    integrate -into the existing -structure and HVAC system. Costs-for a eutectic salt system are shown in Table 5 to compare with the DIS cooling systems. The... eutectic salt system is not an ice storage system, but is a phase change system that stores energy iniits heat of fusion and changes phase at 47 ’F

  7. Ergogenic effects of precooling with cold water immersion and ice ingestion: A meta-analysis.

    PubMed

    Choo, Hui C; Nosaka, Kazunori; Peiffer, Jeremiah J; Ihsan, Mohammed; Abbiss, Chris R

    2018-03-01

    This review evaluated the effects of precooling via cold water immersion (CWI) and ingestion of ice slurry/slushy or crushed ice (ICE) on endurance performance measures (e.g. time-to-exhaustion and time trials) and psychophysiological parameters (core [T core ] and skin [T skin ] temperatures, whole body sweat [WBS] response, heart rate [HR], thermal sensation [TS], and perceived exertion [RPE]). Twenty-two studies were included in the meta-analysis based on the following criteria: (i) cooling was performed before exercise with ICE or CWI; (ii) exercise longer than 6 min was performed in ambient temperature ≥26°C; and (iii) crossover study design with a non-cooling passive control condition. CWI improved performance measures (weighted average effect size in Hedges' g [95% confidence interval] + 0.53 [0.28; 0.77]) and resulted in greater increase (ΔEX) in T skin (+4.15 [3.1; 5.21]) during exercise, while lower peak T core (-0.93 [-1.18; -0.67]), WBS (-0.74 [-1.18; -0.3]), and TS (-0.5 [-0.8; -0.19]) were observed without concomitant changes in ΔEX-T core (+0.19 [-0.22; 0.6]), peak T skin (-0.67 [-1.52; 0.18]), peak HR (-0.14 [-0.38; 0.11]), and RPE (-0.14 [-0.39; 0.12]). ICE had no clear effect on performance measures (+0.2 [-0.07; 0.46]) but resulted in greater ΔEX-T core (+1.02 [0.59; 1.45]) and ΔEX-T skin (+0.34 [0.02; 0.67]) without concomitant changes in peak T core (-0.1 [-0.48; 0.28]), peak T skin (+0.1 [-0.22; 0.41]), peak HR (+0.08 [-0.19; 0.35]), WBS (-0.12 [-0.42; 0.18]), TS (-0.2 [-0.49; 0.1]), and RPE (-0.01 [-0.33; 0.31]). From both ergogenic and thermoregulatory perspectives, CWI may be more effective than ICE as a precooling treatment prior to exercise in the heat.

  8. A Preliminary Study of the Preparation of Slurry Fuels from Vaporized Magnesium

    NASA Technical Reports Server (NTRS)

    Witzke, Walter R; Prok, George M; Walsh, Thomas J

    1954-01-01

    Slurry fuels containing extremely small particles of magnesium were prepared by concentrating the dilute slurry product resulting from the shock-cooling of magnesium metal vapors with a liquid hydrocarbon spray. A complete description of the equipment and procedure used in preparing the fuel is given. Ninety-five percent by weight of the solid particles formed by this process passed through a 100-mesh screen. The particle-size distribution of the screened fraction of one run, as determined by sedimentation analysis, indicated that 73 percent by weight of the metal particles were finer than 2 microns in equivalent spherical diameter. The purity of the solid particles ranged as high as 98.9 percent by weight of free magnesium. The screened product was concentrated by means of a bowl-type centrifuge from 0.5 to more than 50 percent by weight solids content to form an extremely viscous, clay-like mass. By addition of a surface active agent, this viscous material was converted into a pumpable slurry fuel.

  9. Ultrasound Analysis of Slurries

    DOEpatents

    Soong, Yee and Blackwell, Arthur G.

    2005-11-01

    An autoclave reactor allows for the ultrasonic analysis of slurry concentration and particle size distribution at elevated temperatures and pressures while maintaining the temperature- and pressure-sensitive ultrasonic transducers under ambient conditions. The reactor vessel is a hollow stainless steel cylinder containing the slurry which includes a stirrer and a N, gas source for directing gas bubbles through the slurry. Input and output transducers are connected to opposed lateral portions of the hollow cylinder for respectively directing sound waves through the slurry and receiving these sound waves after transmission through the slurry, where changes in sound wave velocity and amplitude can be used to measure slurry parameters. Ultrasonic adapters connect the transducers to the reactor vessel in a sealed manner and isolate the transducers from the hostile conditions within the vessel without ultrasonic signal distortion or losses.

  10. Ultrasound Analysis Of Slurries

    DOEpatents

    Soong, Yee; Blackwell, Arthur G.

    2005-11-01

    An autoclave reactor allows for the ultrasonic analysis of slurry concentration and particle size distribution at elevated temperatures and pressures while maintaining the temperature- and pressure-sensitive ultrasonic transducers under ambient conditions. The reactor vessel is a hollow stainless steel cylinder containing the slurry which includes a stirrer and a N.sub.2 gas source for directing gas bubbles through the slurry. Input and output transducers are connected to opposed lateral portions of the hollow cylinder for respectively directing sound waves through the slurry and receiving these sound waves after transmission through the slurry, where changes in sound wave velocity and amplitude can be used to measure slurry parameters. Ultrasonic adapters connect the transducers to the reactor vessel in a sealed manner and isolate the transducers from the hostile conditions within the vessel without ultrasonic signal distortion or losses.

  11. Manifold Coal-Slurry Transport System

    NASA Technical Reports Server (NTRS)

    Liddle, S. G.; Estus, J. M.; Lavin, M. L.

    1986-01-01

    Feeding several slurry pipes into main pipeline reduces congestion in coal mines. System based on manifold concept: feeder pipelines from each working entry joined to main pipeline that carries coal slurry out of panel and onto surface. Manifold concept makes coal-slurry haulage much simpler than existing slurry systems.

  12. The effectiveness of cooling conditions on temperature of canine EDTA whole blood samples

    PubMed Central

    Sun, Xiaocun; Flatland, Bente

    2016-01-01

    Background Preanalytic factors such as time and temperature can have significant effects on laboratory test results. For example, ammonium concentration will increase 31% in blood samples stored at room temperature for 30 min before centrifugation. To reduce preanalytic error, blood samples may be placed in precooled tubes and chilled on ice or in ice water baths; however, the effectiveness of these modalities in cooling blood samples has not been formally evaluated. The purpose of this study was to evaluate the effectiveness of various cooling modalities on reducing temperature of EDTA whole blood samples. Methods Pooled samples of canine EDTA whole blood were divided into two aliquots. Saline was added to one aliquot to produce a packed cell volume (PCV) of 40% and to the second aliquot to produce a PCV of 20% (simulated anemia). Thirty samples from each aliquot were warmed to 37.7 °C and cooled in 2 ml allotments under one of three conditions: in ice, in ice after transfer to a precooled tube, or in an ice water bath. Temperature of each sample was recorded at one minute intervals for 15 min. Results Within treatment conditions, sample PCV had no significant effect on cooling. Cooling in ice water was significantly faster than cooling in ice only or transferring the sample to a precooled tube and cooling it on ice. Mean temperature of samples cooled in ice water was significantly lower at 15 min than mean temperatures of those cooled in ice, whether or not the tube was precooled. By 4 min, samples cooled in an ice water bath had reached mean temperatures less than 4 °C (refrigeration temperature), while samples cooled in other conditions remained above 4.0 °C for at least 11 min. For samples with a PCV of 40%, precooling the tube had no significant effect on rate of cooling on ice. For samples with a PCV of 20%, transfer to a precooled tube resulted in a significantly faster rate of cooling than direct placement of the warmed tube onto ice. Discussion Canine

  13. Conductivity and electrochemical performance of LiFePO4 slurry in the lithium slurry battery

    NASA Astrophysics Data System (ADS)

    Feng, Caimei; Chen, Yongchong; Liu, Dandan; Zhang, Ping

    2017-06-01

    Lithium slurry battery is a new type of energy storage technique which uses the slurry of solid active materials, conductive additions and liquid electrolyte as the electrode. The proportion of conductive addition and the active material has significant influence on the conductivity and electrochemical performance of the slurry electrode. In the present work, slurries with different volume ratios of LiFePO4 (LFP) and Ketjenblack (KB) were investigated by the electrochemical workstation and charge-discharge testing system (vs. Li/Li+). Results show that the conductivity of the slurry increases linearly with the addition of KB, and the measured specific capacity of the slurry reaches its theoretical value when the volume ratio of KB to LFP is around 0.2. Based on this ratio, a slurry battery with higher loading of LFP (19.1 wt.% in the slurry) was tested, and a specific capacity of 165 mAh/g at 0.2 mA/cm2 and 102 mAh/g at 5 mA/cm2 was obtained for LFP.

  14. Non-equilibrium freezing of water-ice in sandy basaltic regoliths and implications for fluidized debris flows on Mars

    NASA Technical Reports Server (NTRS)

    Gooding, J. L.

    1987-01-01

    Many geomorphic features on Mars were attributed to Earth-analogous, cold-climate processes involving movement of water or ice lubricated debris. Clearly, knowledge of the behavior of water in regolith materials under Martian conditions is essential to understanding the postulated geomorphic processes. Experiments were performed with sand-sized samples of natural basaltic regoliths in order to further elucidate how water/regolith interactions depend upon grain size and mineralogy. The data reveal important contrasts with data for clay-mineral substrates and suggest that the microphysics of water/mineral interactions might affect Martian geomorphic processes in ways that are not fully appreciated. Sand and silt sized fractions of two soils from the summit of Mauna Kea were used as Mars-analogous regolith materials. Temperatures were measured for water/ice phase transitions as wet slurries of individual soil fractions which were cooled or heated at controlled rates under a carbon dioxide atmosphere. Freezing and melting of ice was studied as a function of water/soil mass ratio, soil particle size, and thermal-cycle rate. Comparison tests were done under the same conditions with U.S. Geological Survey standard rock powders.

  15. System and method for slurry handling

    DOEpatents

    Steele, Raymond Douglas; Oppenheim, Judith Pauline

    2015-12-29

    A system includes a slurry depressurizing system that includes a liquid expansion system configured to continuously receive a slurry at a first pressure and continuously discharge the slurry at a second pressure. For example, the slurry depressurizing system may include an expansion turbine to expand the slurry from the first pressure to the second pressure.

  16. A coupled dynamic-thermodynamic model of an ice-ocean system in the marginal ice zone

    NASA Technical Reports Server (NTRS)

    Hakkinen, Sirpa

    1987-01-01

    Thermodynamics are incorporated into a coupled ice-ocean model in order to investigate wind-driven ice-ocean processes in the marginal zone. Upswelling at the ice edge which is generated by the difference in the ice-air and air-water surface stresses is found to give rise to a strong entrainment by drawing the pycnocline closer to the surface. Entrainment is shown to be negligible outside the areas affected by the ice edge upswelling. If cooling at the top is included in the model, the heat and salt exchanges are further enhanced in the upswelling areas. It is noted that new ice formation occurs in the region not affected by ice edge upswelling, and it is suggested that the high-salinity mixed layer regions (with a scale of a few Rossby radii of deformation) will overturn due to cooling, possibly contributing to the formation of deep water.

  17. Comparison and analysis of organic components of biogas slurry from eichhornia crassipes solms and corn straw biogas slurry

    NASA Astrophysics Data System (ADS)

    Li, Q.; Li, Y. B.; Liu, Z. H.; Min, J.; Cui, Y.; Gao, X. H.

    2017-11-01

    Biogas slurry is one of anaerobic fermentations, and biomass fermentation biogas slurries with different compositions are different. This paper mainly presents through the anaerobic fermentation of Eichhornia crassipes solms biogas slurry and biogas slurry of corn straw, the organic components of two kinds of biogas slurry after extraction were compared by TLC, HPLC and spectrophotometric determination of nucleic acid and protein of two kinds of biogas slurry organic components, and analyzes the result of comparison.

  18. An investigation of the effect of rapid slurry chilling on blown pack spoilage of vacuum-packaged beef primals.

    PubMed

    Reid, R; Fanning, S; Whyte, P; Kerry, J; Bolton, D

    2017-02-01

    The aim of this study was to investigate if rapid slurry chilling would retard or prevent blown pack spoilage (BPS) of vacuum-packaged beef primals. Beef primals were inoculated with Clostridium estertheticum subspp. estertheticum (DSMZ 8809), C. estertheticum subspp. laramenise (DSMZ 14864) and C. gasigenes (DSMZ 12272), and vacuum-packaged with and without heat shrinkage (90°C for 3 s). These packs were then subjected to immediate chilling in an ice slurry or using conventional blast chilling systems and stored at 2°C for up to 100 days. The onset and progress of BPS was monitored using the following scale; 0-no gas bubbles in drip; 1-gas bubbles in drip; 2-loss of vacuum; 3-'blown'; 4-presence of sufficient gas inside the packs to produce pack distension and 5-tightly stretched, 'overblown' packs/packs leaking. Rapid slurry chilling (as compared to conventional chilling) did not significantly affect (P > 0.05) the time to the onset or progress of BPS. It was therefore concluded that rapid chilling of vacuum-packaged beef primals, using an ice slurry system, may not be used as a control intervention to prevent or retard blown pack spoilage. This study adds to our growing understanding of blown pack spoilage of vacuum-packaged beef primals and suggests that rapid chilling of vacuum-packaged beef primals is not a control option for the beef industry. The results suggest that neither eliminating the heat shrinkage step nor rapid chilling of vacuum-packaged beef retard the time to blown pack spoilage. © 2016 The Society for Applied Microbiology.

  19. Rheometry of natural sediment slurries

    USGS Publications Warehouse

    Major, Jon J.; ,

    1993-01-01

    Recent experimental analyses of natural sediment slurries yield diverse results yet exhibit broad commonality of rheological responses under a range of conditions and shear rates. Results show that the relation between shear stress and shear rate is primarily nonlinear, that the relation can display marked hysteresis, that minimum shear stress can occur following yield, that physical properties of slurries are extremely sensitive to sediment concentration, and the concept of slurry yield strength is still debated. New rheometric analyses have probed viscoelastic behavior of sediment slurries. Results show that slurries composed of particles ??? 125 ?? m exhibit viscoelastic responses, and that shear stresses are relaxed over a range of time scales rather than by a single response time.

  20. DEHYDRATION OF DEUTERIUM OXIDE SLURRIES

    DOEpatents

    Hiskey, C.F.

    1959-03-10

    A method is presented for recovering heavy water from uranium oxide-- heavy water slurries. The method consists in saturating such slurries with a potassium nitrate-sodium nitrate salt mixture and then allowing the self-heat of the slurry to raise its temperature to a point slightly in excess of 100 deg C, thus effecting complete evaporation of the free heavy water from the slurry. The temperature of the slurry is then allowed to reach 300 to 900 deg C causing fusion of the salt mixture and expulsion of the water of hydration. The uranium may be recovered from the fused salt mixture by treatment with water to leach the soluble salts away from the uranium-containing residue.

  1. Coal slurry fuel supply and purge system

    DOEpatents

    McDowell, Robert E.; Basic, Steven L.; Smith, Russel M.

    1994-01-01

    A coal slurry fuel supply and purge system for a locomotive engines is disclosed which includes a slurry recirculation path, a stand-by path for circulating slurry during idle or states of the engine when slurry fuel in not required by the engine, and an engine header fluid path connected to the stand-by path, for supplying and purging slurry fuel to and from fuel injectors. A controller controls the actuation of valves to facilitate supply and purge of slurry to and from the fuel injectors. A method for supplying and purging coal slurry in a compression ignition engine is disclosed which includes controlling fluid flow devices and valves in a plurality of fluid paths to facilitate continuous slurry recirculation and supply and purge of or slurry based on the operating state of the engine.

  2. Understanding Poly(vinyl alcohol)-Mediated Ice Recrystallization Inhibition through Ice Adsorption Measurement and pH Effects.

    PubMed

    Burkey, Aaron A; Riley, Christopher L; Wang, Lyndsey K; Hatridge, Taylor A; Lynd, Nathaniel A

    2018-01-08

    The development of improved cryopreservative materials is necessary to enable complete recovery of living cells and tissue after frozen storage. Remarkably, poly(vinyl alcohol) (PVA) displays some of the same cryoprotective properties as many antifreeze proteins found in cold tolerant organisms. In particular, PVA is very effective at halting the Ostwald ripening of ice, a process that mechanically damages cells and tissue. Despite the large practical importance of such a property, the mechanism by which PVA interacts with ice is poorly understood, hindering the development of improved cryoprotective materials. Herein, we quantitatively evaluated ice growth kinetics in the presence of PVA at different pH conditions and in the presence of a range of neutral salts. We demonstrated that pH, but not salt identity, alters the ability of PVA to halt ice grain coarsening. These observations are consistent with hydrogen-bonding playing a crucial role in PVA-mediated ice recrystallization inhibition. The evolution of the size distribution of ice crystals with annealing was consistent with incomplete surface coverage of ice with PVA. Binding assay measurements of dissolved fluorescently labeled PVA in an ice slurry showed that PVA interacts with ice through weak adsorption (<9%) to the ice crystal surface, which stands in contrast to fluorescently tagged type III antifreeze peptide, which binds strongly (ca. 64%) under the same conditions.

  3. Microchannel Heat Sink with Micro Encapsulated Phase Change Material (MEPCM) Slurry

    DTIC Science & Technology

    2009-05-31

    inlet temperature of the fluid, melting range of PCM and base heat flux. 15. SUBJECT TERMS Phase Change Materials; microchannel cooling; slurry...such as particle concentration, inlet temperature of the fluid, melting range of PCM , base heat flux and base fluid. Nomenclature A Aspect ratio Ab...of fluid, J/kg.K cp,p Specific heat of MEPCM particle, J/kg.K Cp, pcm Specific heat of PCM , J/kg.K D Hydraulic diameter, m d, dp Particle diameter

  4. Evaluation of hybrid slurry resulting from the introduction of additives to mineral slurry.

    DOT National Transportation Integrated Search

    2011-09-01

    Drilled shaft construction often requires the use of drill slurry to maintain borehole stability during excavation : and concreting. Florida Department of Transportation (FDOT) specifications require the use of mineral slurry : for all primary struct...

  5. Simulating Extraterrestrial Ices in the Laboratory

    NASA Astrophysics Data System (ADS)

    Berisford, D. F.; Carey, E. M.; Hand, K. P.; Choukroun, M.

    2017-12-01

    Several ongoing experiments at JPL attempt to simulate the ice environment for various regimes associated with icy moons. The Europa Penitent Ice Experiment (EPIX) simulates the surface environment of an icy moon, to investigate the physics of ice surface morphology growth. This experiment features half-meter-scale cryogenic ice samples, cryogenic radiative sink environment, vacuum conditions, and diurnal cycling solar simulation. The experiment also includes several smaller fixed-geometry vacuum chambers for ice simulation at Earth-like and intermediate temperature and vacuum conditions for development of surface morphology growth scaling relations. Additionally, an ice cutting facility built on a similar platform provides qualitative data on the mechanical behavior of cryogenic ice with impurities under vacuum, and allows testing of ice cutting/sampling tools relevant for landing spacecraft. A larger cutting facility is under construction at JPL, which will provide more quantitative data and allow full-scale sampling tool tests. Another facility, the JPL Ice Physics Laboratory, features icy analog simulant preparation abilities that range icy solar system objects such as Mars, Ceres and the icy satellites of Saturn and Jupiter. In addition, the Ice Physics Lab has unique facilities for Icy Analog Tidal Simulation and Rheological Studies of Cryogenic Icy Slurries, as well as equipment to perform thermal and mechanical properties testing on icy analog materials and their response to sinusoidal tidal stresses.

  6. Onset and localisation of convection during transient growth of mushy sea ice

    NASA Astrophysics Data System (ADS)

    Wells, Andrew; Hitchen, Joe

    2017-11-01

    More than 20 million square kilometres of the polar oceans freeze over each year to form sea ice. Sea ice is a mushy layer: a reactive, porous, multiphase material consisting of ice crystals bathed in liquid brine. Atmospheric cooling generates a density gradient in the interstitial brine, which can drive convection and rejection of brine from the sea ice to force ocean circulation and mixing. We use linear stability analysis and nonlinear numerical simulations to consider the convection in a transiently growing mushy layer. An initial salt water layer is cooled from above via a linearised thermal exchange with the atmosphere, and generates a growing mushy layer with the porosity varying in space and time. We determine how the critical porous-medium Rayleigh number for the onset of convection varies with the surface cooling rate, and the initial temperature and salinity of the solidifying salt water. Differences in the cooling conditions modify the structure of the ice and the resulting convection cells. Weak cooling leads to full-depth convection through ice with slowly varying porosity, whilst stronger cooling leads to localised convection confined to a highly permeable basal layer. These results provide insight into the onset of convective brine drainage from growing sea ice.

  7. Acute whole-body cooling for exercise-induced hyperthermia: a systematic review.

    PubMed

    McDermott, Brendon P; Casa, Douglas J; Ganio, Matthew S; Lopez, Rebecca M; Yeargin, Susan W; Armstrong, Lawrence E; Maresh, Carl M

    2009-01-01

    To assess existing original research addressing the efficiency of whole-body cooling modalities in the treatment of exertional hyperthermia. During April 2007, we searched MEDLINE, EMBASE, Scopus, SportDiscus, CINAHL, and Cochrane Reviews databases as well as ProQuest for theses and dissertations to identify research studies evaluating whole-body cooling treatments without limits. Key words were cooling, cryotherapy, water immersion, cold-water immersion, ice-water immersion, icing, fanning, bath, baths, cooling modality, heat illness, heat illnesses, exertional heatstroke, exertional heat stroke, heat exhaustion, hyperthermia, hyperthermic, hyperpyrexia, exercise, exertion, running, football, military, runners, marathoner, physical activity, marathoning, soccer, and tennis. Two independent reviewers graded each study on the Physiotherapy Evidence Database (PEDro) scale. Seven of 89 research articles met all inclusion criteria and a minimum score of 4 out of 10 on the PEDro scale. After an extensive and critical review of the available research on whole-body cooling for the treatment of exertional hyperthermia, we concluded that ice-water immersion provides the most efficient cooling. Further research comparing whole-body cooling modalities is needed to identify other acceptable means. When ice-water immersion is not possible, continual dousing with water combined with fanning the patient is an alternative method until more advanced cooling means can be used. Until future investigators identify other acceptable whole-body cooling modalities for exercise-induced hyperthermia, ice-water immersion and cold-water immersion are the methods proven to have the fastest cooling rates.

  8. Modified starch containing liquid fuel slurry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Metzger, G.W.

    1978-04-04

    A substantially water-free, high solids content, stably dispersed combustible fuel slurry is provided, with a method of preparing the slurry. The slurry contains a minor amount of a solid particulate carbonaceous material such as powdered coal, with substantially the entire balance of the slurry being comprised of a liquid hydrocarbon fuel, particularly a heavy fuel oil. In extremely minor amounts are anionic surfactants, particularly soaps, and a stabilizing amount of a starch modified with an anionic polymer.

  9. Ice electrode electrolytic cell

    DOEpatents

    Glenn, D.F.; Suciu, D.F.; Harris, T.L.; Ingram, J.C.

    1993-04-06

    This invention relates to a method and apparatus for removing heavy metals from waste water, soils, or process streams by electrolytic cell means. The method includes cooling a cell cathode to form an ice layer over the cathode and then applying an electric current to deposit a layer of the heavy metal over the ice. The metal is then easily removed after melting the ice. In a second embodiment, the same ice-covered electrode can be employed to form powdered metals.

  10. Ice electrode electrolytic cell

    DOEpatents

    Glenn, David F.; Suciu, Dan F.; Harris, Taryl L.; Ingram, Jani C.

    1993-01-01

    This invention relates to a method and apparatus for removing heavy metals from waste water, soils, or process streams by electrolytic cell means. The method includes cooling a cell cathode to form an ice layer over the cathode and then applying an electric current to deposit a layer of the heavy metal over the ice. The metal is then easily removed after melting the ice. In a second embodiment, the same ice-covered electrode can be employed to form powdered metals.

  11. Effect of fermentation temperature on hydrogen production from cow waste slurry by using anaerobic microflora within the slurry.

    PubMed

    Yokoyama, Hiroshi; Waki, Miyoko; Moriya, Naoko; Yasuda, Tomoko; Tanaka, Yasuo; Haga, Kiyonori

    2007-02-01

    We examined hydrogen production from a dairy cow waste slurry (13.4 g of volatile solids per liter) by batch cultures in a temperature range from 37 to 85 degrees C, using microflora naturally present within the slurry. Without the addition of seed bacteria, hydrogen was produced by simply incubating the slurry, using the microflora within the slurry. Interestingly, two peaks of fermentation temperatures for hydrogen production from the slurry were observed at 60 and 75 degrees C (392 and 248 ml H2 per liter of slurry, respectively). After the termination of the hydrogen evolution, the microflora cultured at 60 degrees C displayed hydrogen-consuming activity, but hydrogen-consuming activity of the microflora cultured at 75 degrees C was not detected, at least for 24 days. At both 60 and 75 degrees C, the main by-product was acetate, and the optimum pH of the slurry for hydrogen production was around neutral. Bacteria related to hydrogen-producing moderate and extreme thermophiles, Clostridium thermocellum and Caldanaerobacter subterraneus, were detected in the slurries cultured at 60 and 75 degrees C, respectively, by denaturing gradient gel electrophoresis analyses, using the V3 region of 16S rDNA.

  12. A design protocol for tailoring ice-templated scaffold structure

    PubMed Central

    Pawelec, K. M.; Husmann, A.; Best, S. M.; Cameron, R. E.

    2014-01-01

    In this paper, we show, for the first time, the key link between scaffold architecture and latent heat evolution during the production of porous biomedical collagen structures using freeze-drying. Collagen scaffolds are used widely in the biomedical industry for the repair and reconstruction of skeletal tissues and organs. Freeze-drying of collagen slurries is a standard industrial process, and, until now, the literature has sought to characterize the influence of set processing parameters including the freezing protocol and weight percentage of collagen. However, we are able to demonstrate, by monitoring the local thermal events within the slurry during solidification, that nucleation, growth and annealing processes can be controlled, and therefore we are able to control the resulting scaffold architecture. Based on our correlation of thermal profile measurements with scaffold architecture, we hypothesize that there is a link between the fundamental freezing of ice and the structure of scaffolds, which suggests that this concept is applicable not only for collagen but also for ceramics and pharmaceuticals. We present a design protocol of strategies for tailoring the ice-templated scaffold structure. PMID:24402916

  13. Generation of live offspring from vitrified embryos with synthetic polymers SuperCool X-1000 and SuperCool Z-1000.

    PubMed

    Marco-Jimenez, F; Jimenez-Trigos, E; Lavara, R; Vicente, J S

    2014-01-01

    Ice growth and recrystallisation are considered important factors in determining vitrification outcomes. Synthetic polymers inhibit ice formation during cooling or warming of the vitrification process. The aim of this study was to assess the effect of adding commercially available synthetic polymers SuperCool X-1000 and SuperCool Z-1000 to vitrification media on in vivo development competence of rabbit embryos. Four hundred and thirty morphologically normal embryos recovered at 72 h of gestation were used. The vitrification media contained 20% dimethyl sulphoxide and 20% ethylene glycol, either alone or in combination with 1% of SuperCool X-1000 and 1% SuperCool. Our results show that embryos can be successfully vitrified using SuperCool X-1000 and SuperCool Z-1000 and when embryos are transferred, live offspring can be successfully produced. In conclusion, our results demonstrated that we succeeded for the first time in obtaining live offspring after vitrification of embryos using SuperCool X-1000 and SuperCool Z-1000 polymers.

  14. Multi-stage slurry system used for grinding and polishing materials

    DOEpatents

    Hed, P. Paul; Fuchs, Baruch A.

    2001-01-01

    A slurry system draws slurry from a slurry tank via one of several intake pipes, where each pipe has an intake opening at a different depth in the slurry. The slurry is returned to the slurry tank via a bypass pipe in order to continue the agitation of the slurry. The slurry is then diverted to a delivery pipe, which supplies slurry to a polisher. The flow of slurry in the bypass pipe is stopped in order for the slurry in the slurry tank to begin to settle. As the polishing continues, slurry is removed from shallower depths in order to pull finer grit from the slurry. When the polishing is complete, the flow in the delivery pipe is ceased. The flow of slurry in the bypass pipe is resumed to start agitating the slurry. In another embodiment, the multiple intake pipes are replaced by a single adjustable pipe. As the slurry is settling, the pipe is moved upward to remove the finer grit near the top of the slurry tank as the polishing process continues.

  15. Improved coal-slurry pipeline

    NASA Technical Reports Server (NTRS)

    Dowler, W. L.

    1979-01-01

    High strength steel pipeline carries hot mixture of powdered coal and coal derived oil to electric-power-generating station. Slurry is processed along way to remove sulfur, ash, and nitrogen and to recycle part of oil. System eliminates hazards and limitations associated with anticipated coal/water-slurry pipelines.

  16. Everyday Engineering: Should Ice Be Cubed?

    ERIC Educational Resources Information Center

    Moyer, Richard H.; Everett, Susan A.

    2012-01-01

    While ice is usually referred to as ice cubes, indeed, most are not really cubes at all. In this 5E learning-cycle lesson, students will investigate different shapes of ice and how shape affects the speed of melting and the rate of cooling a glass of water. Students will compare three different shapes of ice with the same volume but different…

  17. Slurry-pressing consolidation of silicon nitride

    NASA Technical Reports Server (NTRS)

    Sanders, William A.; Kiser, James D.; Freedman, Marc R.

    1988-01-01

    A baseline slurry-pressing method for a silicon nitride material is developed. The Si3N4 composition contained 5.8 wt percent SiO2 and 6.4 wt percent Y2O3. Slurry-pressing variables included volume percent solids, application of ultrasonic energy, and pH. Twenty vol percent slurry-pressed material was approximately 11 percent stronger than both 30 vol percent slurry-pressed and dry-pressed materials. The Student's t-test showed the difference to be significant at the 99 percent confidence level. Twenty volume percent (300 h) slurry-pressed test bars exhibited strengths as high as 980 MPa. Large, columnar beta-Si3N4 grains caused failure in the highest strength specimens. The improved strength correlated with better structural uniformity as determined by radiography, optical microscopy, and image analysis.

  18. On the Ice Nucleation Spectrum

    NASA Technical Reports Server (NTRS)

    Barahona, D.

    2012-01-01

    This work presents a novel formulation of the ice nucleation spectrum, i.e. the function relating the ice crystal concentration to cloud formation conditions and aerosol properties. The new formulation is physically-based and explicitly accounts for the dependency of the ice crystal concentration on temperature, supersaturation, cooling rate, and particle size, surface area and composition. This is achieved by introducing the concepts of ice nucleation coefficient (the number of ice germs present in a particle) and nucleation probability dispersion function (the distribution of ice nucleation coefficients within the aerosol population). The new formulation is used to generate ice nucleation parameterizations for the homogeneous freezing of cloud droplets and the heterogeneous deposition ice nucleation on dust and soot ice nuclei. For homogeneous freezing, it was found that by increasing the dispersion in the droplet volume distribution the fraction of supercooled droplets in the population increases. For heterogeneous ice nucleation the new formulation consistently describes singular and stochastic behavior within a single framework. Using a fundamentally stochastic approach, both cooling rate independence and constancy of the ice nucleation fraction over time, features typically associated with singular behavior, were reproduced. Analysis of the temporal dependency of the ice nucleation spectrum suggested that experimental methods that measure the ice nucleation fraction over few seconds would tend to underestimate the ice nuclei concentration. It is shown that inferring the aerosol heterogeneous ice nucleation properties from measurements of the onset supersaturation and temperature may carry significant error as the variability in ice nucleation properties within the aerosol population is not accounted for. This work provides a simple and rigorous ice nucleation framework where theoretical predictions, laboratory measurements and field campaign data can be

  19. Ice pack heat sink subsystem - Phase 1, Volume 1

    NASA Technical Reports Server (NTRS)

    Roebelen, G. J., Jr.

    1973-01-01

    The design, development, fabrication, and test at one-g of a functional laboratory model (non-flight) ice pack heat sink subsystem to be used eventually for astronaut cooling during manned space missions are discussed. In normal use, excess heat in the liquid cooling garment (LCG) coolant is transferred to a reusable/regenerable ice pack heat sink. For emergency operation, or for extension of extravehicular activity mission time after all the ice has melted, water from the ice pack is boiled to vacuum, thereby continuing to remove heat from the LCG coolant. This subsystem incorporates a quick connect/disconnect thermal interface between the ice pack heat sink and the subsystem heat exchanger.

  20. To cool, but not too cool: that is the question--immersion cooling for hyperthermia.

    PubMed

    Taylor, Nigel A S; Caldwell, Joanne N; Van den Heuvel, Anne M J; Patterson, Mark J

    2008-11-01

    Patient cooling time can impact upon the prognosis of heat illness. Although ice-cold-water immersion will rapidly extract heat, access to ice or cold water may be limited in hot climates. Indeed, some have concerns regarding the sudden cold-water immersion of hyperthermic individuals, whereas others believe that cutaneous vasoconstriction may reduce convective heat transfer from the core. It was hypothesized that warmer immersion temperatures, which induce less powerful vasoconstriction, may still facilitate rapid cooling in hyperthermic individuals. Eight males participated in three trials and were heated to an esophageal temperature of 39.5 degrees C by exercising in the heat (36 degrees C, 50% relative humidity) while wearing a water-perfusion garment (40 degrees C). Subjects were cooled using each of the following methods: air (20-22 degrees C), cold-water immersion (14 degrees C), and temperate-water immersion (26 degrees C). The time to reach an esophageal temperature of 37.5 degrees C averaged 22.81 min (air), 2.16 min (cold), and 2.91 min (temperate). Whereas each of the between-trial comparisons was statistically significant (P < 0.05), cooling in temperate water took only marginally longer than that in cold water, and one cannot imagine that the 45-s cooling time difference would have any meaningful physiological or clinical implications. It is assumed that this rapid heat loss was due to a less powerful peripheral vasoconstrictor response, with central heat being more rapidly transported to the skin surface for dissipation. Although the core-to-water thermal gradient was much smaller with temperate-water cooling, greater skin and deeper tissue blood flows would support a superior convective heat delivery. Thus, a sustained physiological mechanism (blood flow) appears to have countered a less powerful thermal gradient, resulting in clinically insignificant differences in heat extraction between the cold and temperate cooling trials.

  1. Tribological Properties Of Coal Slurries

    NASA Technical Reports Server (NTRS)

    Fusaro, Robert L.; Schrubens, Dale L.

    1988-01-01

    Report describes study of tribological properties of coal/methanol slurries with pin-on-disk tribometer. Coefficients of friction, rates of wear of steel pin, and morphological studies of worn surfaces conducted on pins and disks of AISI 440C HT stainless steel and M-50 tool steel, both used as bearing steels. Coal slurries considered as replacement fuels in terrestrial oil-burning facilities and possible fuels for future aircraft turbine engines. Rates of wear of metallic components through which slurries flow limit such practical applications.

  2. Technical Development of Slurry Three-Dimensional Printer

    NASA Astrophysics Data System (ADS)

    Jiang, Cho-Pei; Hsu, Huang-Jan; Lee, Shyh-Yuan

    2017-09-01

    The aim of this paper is to review the technical development of slurry three-dimensional printer (3DP) which based on photo-polymerization and constrained surface method. Basically, slurry consists of ceramic powder, resin and photo-initiator. The light engines for solidifying the photo-curable slurry can be classified as laser, liquid crystal panel (LCD), digital light processing (DLP). The slurry can be reacted and solidified by selective ray according to the reaction spectrum of photo-initiator. Ceramic powder used in this study is zirconia oxide. Experimental results show that ceramic particle size affects the viscosity of slurry severely resulting in low accuracy and the occurrence of micro crack in the layer casting procedure. Therefore, the effect of particle size on the curability and accuracy of built green part is discussed. A single dental crown is proposed to be fabricated by these three light engines as a benchmark for comparison. In addition, the cost and the limitation are compared in the aspect of dental crown fabrication. Consequently, the lowest cost is LCD-type slurry 3DP system. DLP-type slurry 3DP can produce green body with the fastest fabrication time. The volumetric error of sintered part that made by these three fabrication methods is similar because the composition of slurry is the same.

  3. Supersonic coal water slurry fuel atomizer

    DOEpatents

    Becker, Frederick E.; Smolensky, Leo A.; Balsavich, John

    1991-01-01

    A supersonic coal water slurry atomizer utilizing supersonic gas velocities to atomize coal water slurry is provided wherein atomization occurs externally of the atomizer. The atomizer has a central tube defining a coal water slurry passageway surrounded by an annular sleeve defining an annular passageway for gas. A converging/diverging section is provided for accelerating gas in the annular passageway to supersonic velocities.

  4. Nitrogen fertilizer replacement value of cattle slurry in grassland as affected by method and timing of application.

    PubMed

    Lalor, S T J; Schröder, J J; Lantinga, E A; Oenema, O; Kirwan, L; Schulte, R P O

    2011-01-01

    Slurry application with methods such as trailing shoe (TS) results in reduced emissions of ammonia (NH3) compared with broadcast application using splashplate (SP). Timing the application during cool and wet weather conditions also contributes to low NH3 emissions. From this perspective, we investigated whether reduced NH3 emissions due to improved slurry application method and timing results in an increase in the nitrogen (N) fertilizer replacement value (NFRV). The effects of application timing (June vs. April) and application method (TS vs. SP) on the apparent N recovery (ANR) and NFRV from cattle slurry applied to grassland were examined on three sites over 3 yr in randomized block experiments. The NFRV was calculated using two methods: (i) NFRV(N) based on the ANR of slurry N relative to mineral N fertilizer; and (ii) NFRV(DM) based on DM yield. The TS method increased the ANR, NFRV(N), and NFRV(DM) compared with SP in the 40- to 50-d period following slurry application by 0.09, 0.10, and 0.10 kg kg(-1), respectively. These values were reduced to 0.07, 0.06, and 0.05 kg kg(-1), respectively, when residual harvests during the rest of the year were included. The highest NFRV(DM) for the first harvest period was with application in April using STS (0.30 kg kg(-1)), while application in June with SP had the Slowest (0.12 kg kg(-1)). The highest NFRV(DM) for the cumulative harvest period was with application in April using TS (0.38 kg kg(-1)), while application in June with SP had the lowest (0.17 kg kg(-1)). Improved management of application method, by using TS instead of SP, and timing, by applying slurry in April rather than June, offer potential to increase the NFRV(DM) of cattle slurry applied to grassland.

  5. Effect of Common Cryoprotectants on Critical Warming Rates and Ice Formation in Aqueous Solutions

    PubMed Central

    Hopkins, Jesse B.; Badeau, Ryan; Warkentin, Matthew; Thorne, Robert E.

    2012-01-01

    Ice formation on warming is of comparable or greater importance to ice formation on cooling in determining survival of cryopreserved samples. Critical warming rates required for ice-free warming of vitrified aqueous solutions of glycerol, dimethyl sulfoxide, ethylene glycol, polyethylene glycol 200 and sucrose have been measured for warming rates of order 10 to 104 K/s. Critical warming rates are typically one to three orders of magnitude larger than critical cooling rates. Warming rates vary strongly with cooling rates, perhaps due to the presence of small ice fractions in nominally vitrified samples. Critical warming and cooling rate data spanning orders of magnitude in rates provide rigorous tests of ice nucleation and growth models and their assumed input parameters. Current models with current best estimates for input parameters provide a reasonable account of critical warming rates for glycerol solutions at high concentrations/low rates, but overestimate both critical warming and cooling rates by orders of magnitude at lower concentrations and larger rates. In vitrification protocols, minimizing concentrations of potentially damaging cryoprotectants while minimizing ice formation will require ultrafast warming rates, as well as fast cooling rates to minimize the required warming rates. PMID:22728046

  6. DEMONSTRATION BULLETIN: SLURRY BIODEGRADATION, International Technology Corporation

    EPA Science Inventory

    This technology uses a slurry-phase bioreactor in which the soil is mixed with water to form a slurry. Microorganisms and nutrients are added to the slurry to enhance the biodegradation process, which converts organic wastes into relatively harmless byproducts of microbial metabo...

  7. Apparatus and method for transferring slurries

    DOEpatents

    Horton, J.R.

    1982-08-13

    Slurry is transferred to a high pressure region by pushing the slurry from the bottom of a transfer vessel with a pressurizing liquid admitted into the top of the vessel. While the pressurizing liquid is being introduced into the transfer vessel, pressurizing liquid which has mixed with slurry is drawn off from the transfer vessel at a point between its upper and lower ends.

  8. Apparatus and method for transferring slurries

    DOEpatents

    Horton, Joel R.

    1984-01-01

    Slurry is transferred to a high pressure region by pushing the slurry from the bottom of a transfer vessel with a pressurizing liquid admitted into the top of the vessel. While the pressurizing liquid is being introduced into the transfer vessel, pressurizing liquid which has mixed with slurry is drawn off from the transfer vessel at a point between its upper and lower ends.

  9. Factors Affecting the Changes of Ice Crystal Form in Ice Cream

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Watanabe, Manabu; Suzuki, Toru

    In this study, the shape of ice crystals in ice cream was quantitatively evaluated by introducing fractal analysis. A small droplet of commercial ice cream mix was quickly cooled to about -30°C on the cold stage of microscope. Subsequently, it was heated to -5°C or -10°C and then held for various holding time. Based on the captured images at each holding time, the cross-sectional area and the length of circumference for each ice crystal were measured to calculate fractal dimension using image analysis software. The results showed that the ice crystals were categorized into two groups, e.g. simple-shape and complicated-shape, according to their fractal dimensions. The fractal dimension of ice crystals became lower with increasing holding time and holding temperature. It was also indicated that the growing rate of complicated-shape ice crystals was relatively higher because of aggregation.

  10. Evaporation of ice in planetary atmospheres - Ice-covered rivers on Mars

    NASA Technical Reports Server (NTRS)

    Wallace, D.; Sagan, C.

    1979-01-01

    The existence of ice covered rivers on Mars is considered. It is noted that the evaporation rate of water ice on the surface of a planet with an atmosphere involves an equilibrium between solar heating and radiative and evaporative cooling of the ice layer. It is determined that even with a mean Martian insolation rate above the ice of approximately 10 to the -8th g per sq cm/sec, a flowing channel of liquid water will be covered by ice which evaporates sufficiently slowly that the water below can flow for hundreds of kilometers even with modest discharges. Evaporation rates are calculated for a range of frictional velocities, atmospheric pressures, and insolations and it is suggested that some subset of observed Martian channels may have formed as ice-choked rivers. Finally, the exobiological implications of ice covered channels or lakes on Mars are discussed.

  11. Process for heating coal-oil slurries

    DOEpatents

    Braunlin, Walter A.; Gorski, Alan; Jaehnig, Leo J.; Moskal, Clifford J.; Naylor, Joseph D.; Parimi, Krishnia; Ward, John V.

    1984-01-03

    Controlling gas to slurry volume ratio to achieve a gas holdup of about 0.4 when heating a flowing coal-oil slurry and a hydrogen containing gas stream allows operation with virtually any coal to solvent ratio and permits operation with efficient heat transfer and satisfactory pressure drops. The critical minimum gas flow rate for any given coal-oil slurry will depend on numerous factors such as coal concentration, coal particle size distribution, composition of the solvent (including recycle slurries), and type of coal. Further system efficiency can be achieved by operating with multiple heating zones to provide a high heat flux when the apparent viscosity of the gas saturated slurry is highest. Operation with gas flow rates below the critical minimum results in system instability indicated by temperature excursions in the fluid and at the tube wall, by a rapid increase and then decrease in overall pressure drop with decreasing gas flow rate, and by increased temperature differences between the temperature of the bulk fluid and the tube wall. At the temperatures and pressures used in coal liquefaction preheaters the coal-oil slurry and hydrogen containing gas stream behaves essentially as a Newtonian fluid at shear rates in excess of 150 sec.sup. -1. The gas to slurry volume ratio should also be controlled to assure that the flow regime does not shift from homogeneous flow to non-homogeneous flow. Stable operations have been observed with a maximum gas holdup as high as 0.72.

  12. Pre-cooling with intermittent ice ingestion lowers the core temperature in a hot environment as compared with the ingestion of a single bolus.

    PubMed

    Naito, Takashi; Ogaki, Tetsuro

    2016-07-01

    The timing in which ice is ingested may be important for optimizing its success. However, the effects of differences in the timing of ice ingestion has not been studied in resting participants. Therefore, the purpose of this study was to investigate the effects of differences in the timing of ice ingestion on rectal temperature (Tre) and rating of perceptual sensation in a hot environment. Seven males ingested 1.25gkg(-1) of crushed ice (ICE1.25: 0.5°C) or cold water (CON: 4°C) every 5min for 30min, or were given 7.5gkgBM(-1) of crushed ice (ICE7.5) to consume for 30min in a hot environment (35°C, 30% relative humidity). The participants then remained at rest for 1h. As physiological indices, Tre, body mass and urine specific gravity were measured. Rating of thermal sensation was measured at 5-min intervals throughout the experiment. ICE1.25 continued to decrease Tre until approximately 50min, and resulted in a greater reduction in Tre (-0.56±0.20°C) than ICE7.5 (-0.41±0.14°C). Tre was reduced from 40 to 75min by ICE1.25, which is a significant reduction in comparison to ICE7.5 (p<.05). Mean RTS with ICE1.25 at 50-65min was significantly lower than that with ICE7.5 (p<.05). These results suggest that pre-cooling with intermittent ice ingestion is a more effective strategy both for lowering the Tre and for the rating of thermal sensation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Antarctic and Southern Ocean influences on Late Pliocene global cooling

    USGS Publications Warehouse

    McKay, Robert; Naish, Tim; Carter, Lionel; Riesselman, Christina; Dunbar, Robert; Sjunneskog, Charlotte; Winter, Diane; Sangiorgi, Francesca; Warren, Courtney; Pagani, Mark; Schouten, Stefan; Willmott, Veronica; Levy, Richard; DeConto, Robert; Powell, Ross D.

    2012-01-01

    The influence of Antarctica and the Southern Ocean on Late Pliocene global climate reconstructions has remained ambiguous due to a lack of well-dated Antarctic-proximal, paleoenvironmental records. Here we present ice sheet, sea-surface temperature, and sea ice reconstructions from the ANDRILL AND-1B sediment core recovered from beneath the Ross Ice Shelf. We provide evidence for a major expansion of an ice sheet in the Ross Sea that began at ~3.3 Ma, followed by a coastal sea surface temperature cooling of ~2.5 °C, a stepwise expansion of sea ice, and polynya-style deep mixing in the Ross Sea between 3.3 and 2.5 Ma. The intensification of Antarctic cooling resulted in strengthened westerly winds and invigorated ocean circulation. The associated northward migration of Southern Ocean fronts has been linked with reduced Atlantic Meridional Overturning Circulation by restricting surface water connectivity between the ocean basins, with implications for heat transport to the high latitudes of the North Atlantic. While our results do not exclude low-latitude mechanisms as drivers for Pliocene cooling, they indicate an additional role played by southern high-latitude cooling during development of the bipolar world.

  14. A Study on Generation Ice Containing Ozone

    NASA Astrophysics Data System (ADS)

    Yoshimura, Kenji; Koyama, Shigeru; Yamamoto, Hiromi

    Ozone has the capability of sterilization and deodorization due to high oxidation power. It is also effective for the conservation of perishable foods and purification of water. However, ozone has a disadvantage, that is, conservation of ozone is difficult because it changes back into oxygen. Recently, ice containing ozone is taken attention for the purpose of its conservation. The use of ice containing ozone seems to keep food fresher when we conserve and transport perishable foods due to effects of cooling and sterilization of ice containing ozone. In the present study, we investigated the influence of temperatures of water dissolving ozone on the timewise attenuations of ozone concentration in water. We also investigated the influence of cooling temperature, ice diameter, initial temperatures of water dissolving ozone and container internal pressure of the water dissolving ozone on ozone concentration in the ice. In addition, we investigated the influence of the ice diameter on the timewise attenuations of ozone concentration in the ice. It was confirmed that the solidification experimental data can be adjusted by a correlation between ozone concentration in the ice and solidification time.

  15. Fundamental Research on Heat Transfer Characteristics in Shell & Tube Type Ice Forming Cold Energy Storage

    NASA Astrophysics Data System (ADS)

    Saito, Akio; Utaka, Yoshio; Okawa, Seiji; Ishibashi, Hiroaki

    Investigation of heat transfer characteristics in an ice making cold energy storage using a set of horizontal cooling pipes was carried out experimentally. Cooling pipe arrangement, number of pipes used and initial water temperature were varied, and temperature distribution in the tank and the volume of ice formed around the pipe were measured. Natural convection was also observed visually. During the experiment, two kinds of layers were observed. One is the layer where ice forming is interfered by natural convection and its temperature decreases rapidly with an almost uniform temperature distribution, and the other is the layer where ice forms steadily under a stagnant water condition. The former was called that the layer is under a cooling process and the latter that the layer is under an ice forming process. The effect of the experimental parameters, such as the arrangement of the cooling pipes, the number of pipes, the initial water temperature and the flow rate of the cooling medium, on the cooling process and the ice forming process were discussed. Approximate analysis was also carried out and compared with the experimental results. Finally, the relationship between the ice packing factor, which is significant in preventing the blockade, and experimental parameters was discussed.

  16. Heterogeneous ice nucleation of α-pinene SOA particles before and after ice cloud processing

    NASA Astrophysics Data System (ADS)

    Wagner, Robert; Höhler, Kristina; Huang, Wei; Kiselev, Alexei; Möhler, Ottmar; Mohr, Claudia; Pajunoja, Aki; Saathoff, Harald; Schiebel, Thea; Shen, Xiaoli; Virtanen, Annele

    2017-05-01

    The ice nucleation ability of α-pinene secondary organic aerosol (SOA) particles was investigated at temperatures between 253 and 205 K in the Aerosol Interaction and Dynamics in the Atmosphere cloud simulation chamber. Pristine SOA particles were nucleated and grown from pure gas precursors and then subjected to repeated expansion cooling cycles to compare their intrinsic ice nucleation ability during the first nucleation event with that observed after ice cloud processing. The unprocessed α-pinene SOA particles were found to be inefficient ice-nucleating particles at cirrus temperatures, with nucleation onsets (for an activated fraction of 0.1%) as high as for the homogeneous freezing of aqueous solution droplets. Ice cloud processing at temperatures below 235 K only marginally improved the particles' ice nucleation ability and did not significantly alter their morphology. In contrast, the particles' morphology and ice nucleation ability was substantially modified upon ice cloud processing in a simulated convective cloud system, where the α-pinene SOA particles were first activated to supercooled cloud droplets and then froze homogeneously at about 235 K. As evidenced by electron microscopy, the α-pinene SOA particles adopted a highly porous morphology during such a freeze-drying cycle. When probing the freeze-dried particles in succeeding expansion cooling runs in the mixed-phase cloud regime up to 253 K, the increase in relative humidity led to a collapse of the porous structure. Heterogeneous ice formation was observed after the droplet activation of the collapsed, freeze-dried SOA particles, presumably caused by ice remnants in the highly viscous material or the larger surface area of the particles.

  17. Process for heating coal-oil slurries

    DOEpatents

    Braunlin, W.A.; Gorski, A.; Jaehnig, L.J.; Moskal, C.J.; Naylor, J.D.; Parimi, K.; Ward, J.V.

    1984-01-03

    Controlling gas to slurry volume ratio to achieve a gas holdup of about 0.4 when heating a flowing coal-oil slurry and a hydrogen containing gas stream allows operation with virtually any coal to solvent ratio and permits operation with efficient heat transfer and satisfactory pressure drops. The critical minimum gas flow rate for any given coal-oil slurry will depend on numerous factors such as coal concentration, coal particle size distribution, composition of the solvent (including recycle slurries), and type of coal. Further system efficiency can be achieved by operating with multiple heating zones to provide a high heat flux when the apparent viscosity of the gas saturated slurry is highest. Operation with gas flow rates below the critical minimum results in system instability indicated by temperature excursions in the fluid and at the tube wall, by a rapid increase and then decrease in overall pressure drop with decreasing gas flow rate, and by increased temperature differences between the temperature of the bulk fluid and the tube wall. At the temperatures and pressures used in coal liquefaction preheaters the coal-oil slurry and hydrogen containing gas stream behaves essentially as a Newtonian fluid at shear rates in excess of 150 sec[sup [minus]1]. The gas to slurry volume ratio should also be controlled to assure that the flow regime does not shift from homogeneous flow to non-homogeneous flow. Stable operations have been observed with a maximum gas holdup as high as 0.72. 29 figs.

  18. Biogas slurry pricing method based on nutrient content

    NASA Astrophysics Data System (ADS)

    Zhang, Chang-ai; Guo, Honghai; Yang, Zhengtao; Xin, Shurong

    2017-11-01

    In order to promote biogas-slurry commercialization, A method was put forward to valuate biogas slurry based on its nutrient contents. Firstly, element contents of biogas slurry was measured; Secondly, each element was valuated based on its market price, and then traffic cost, using cost and market effect were taken into account, the pricing method of biogas slurry were obtained lastly. This method could be useful in practical production. Taking cattle manure raw meterial biogas slurry and con stalk raw material biogas slurry for example, their price were 38.50 yuan RMB per ton and 28.80 yuan RMB per ton. This paper will be useful for recognizing the value of biogas projects, ensuring biogas project running, and instructing the cyclic utilization of biomass resources in China.

  19. INEZ, KENTUCKY COAL SLURRY SPILL

    EPA Science Inventory

    On October 11th, 2000, a breach of a coal slurry impoundment released approximately 210 million gallons of coal slurry ( a mixture of fine coal particles, silt, clay, sand and water) into the Big Andy Branch, Wolf Creek, and Coldwater Fork. Approximately 75 river miles were affec...

  20. Tribological properties of coal slurries

    NASA Technical Reports Server (NTRS)

    Fusaro, Robert L.; Schrubens, Dale L.

    1987-01-01

    A pin-on-disk tribometer was used to study the tribological properties of methyl alcohol-coal slurries. Friction coefficients, steel pin wear rates and wear surface morphological studies were conducted on AISI 440C HT and M-50 bearing steels which were slid dry and in solutions of methyl alcohol, methyl alcohol-fine coal particles, and methyl alcohol-fine coal particles-flocking additive. The latter was an oil derived from coal and originally intended to be added to the coal slurry to improve the sedimentation and rheology properties. The results of this study indicated that the addition of the flocking additive to the coal slurry markedly improved the tribological properties, especially wear. In addition, the type of steel was found to be very important in determining the type of wear that took place. Cracks and pits were found on the M-50 steel pin wear surfaces that slid in the coal slurries while 440C HT steel pins showed none.

  1. The surface of the ice-age Earth.

    PubMed

    1976-03-19

    In the Northern Hemisphere the 18,000 B.P. world differed strikingly from the present in the huge land-based ice sheets, reaching approximately 3 km in thickness, and in a dramatic increase in the extent of pack ice and marine-based ice sheets. In the Southern Hemisphere the most striking contrast was the greater extent of sea ice. On land, grasslands, steppes, and deserts spread at the expense of forests. This change in vegetation, together with extensive areas of permanent ice and sandy outwash plains, caused an increase in global surface albedo over modern values. Sea level was lower by at least 85 m. The 18,000 B.P. oceans were characterized by: (i) marked steepening of thermal gradients along polar frontal systems, particularly in the North Atlantic and Antarctic; (ii) an equatorward displacement of polar frontal systems; (iii) general cooling of most surface waters, with a global average of -2.3 degrees C; (iv) increased cooling and up-welling along equatorial divergences in the Pacific and Atlantic; (v) low temperatures extending equatorward along the western coast of Africa, Australia, and South America, indicating increased upwelling and advection of cool waters; and (vi) nearly stable positions and temperatures of the central gyres in the subtropical Atlantic, Pacific, and Indian oceans.

  2. A "Last Word" on Ice Spikes.

    ERIC Educational Resources Information Center

    Perry, Helene F.

    1995-01-01

    Attempts an explanation of how "ice spikes" are formed. The spikes are upward protrusions of ice that occur when water expands as it cools in a rigid container of low thermal conductivity. Describes the results of an investigation and includes color photos. (LZ)

  3. Method and apparatus for improved wire saw slurry

    DOEpatents

    Costantini, Michael A.; Talbott, Jonathan A.; Chandra, Mohan; Prasad, Vishwanath; Caster, Allison; Gupta, Kedar P.; Leyvraz, Philippe

    2000-09-05

    A slurry recycle process for use in free-abrasive machining operations such as for wire saws used in wafer slicing of ingots, where the used slurry is separated into kerf-rich and abrasive-rich components, and the abrasive-rich component is reconstituted into a makeup slurry. During the process, the average particle size of the makeup slurry is controlled by monitoring the condition of the kerf and abrasive components and making necessary adjustments to the separating force and dwell time of the separator apparatus. Related pre-separator and post separator treatments, and feedback of one or the other separator slurry output components for mixing with incoming used slurry and recirculation through the separator, provide further effectiveness and additional control points in the process. The kerf-rich component is eventually or continually removed; the abrasive-rich component is reconstituted into a makeup slurry with a controlled, average particle size such that the products of the free-abrasive machining method using the recycled slurry process of the invention are of consistent high quality with less TTV deviation from cycle to cycle for a prolonged period or series of machining operations.

  4. Is it worth packing the head with ice in patients undergoing deep hypothermic circulatory arrest?

    PubMed

    O'Neill, Bridie; Bilal, Haris; Mahmood, Sarah; Waterworth, Paul

    2012-10-01

    A best evidence topic in cardiac surgery was written according to a structured protocol. The question addressed was: Is it worth packing the head with ice in patients undergoing deep hypothermic circulatory arrest (DHCA)? Altogether more than 34 papers were found using the reported search, of which 7 represented the best evidence to answer the clinical question, 5 of which were animal studies, 1 was a theoretical laboratory study and 1 study looked at the ability to cool using circulating water 'jackets' in humans. There were no available human studies looking at the neurological outcome with or without topical head cooling with ice without further adjunct methods of cerebral protection. The authors, journal, date and country of publication, patient group studied, study type, relevant outcomes and results of these papers are tabulated. Four papers studied animals undergoing DHCA for 45 min-2 h depending on the study design, with or without packing the head with ice. The studies all demonstrated improved cerebral cooling when the head was packed with ice during DHCA. They also illustrated an improved neurological outcome, with better behavioural scores (P < 0.05), and in some, survival, when compared with animals whose heads were not packed in ice. One study examined selective head cooling with the use of packing the head with ice during rewarming after DHCA. However, they demonstrated worse neurological outcomes in these animals, possibly due to the loss of cerebral vasoregulation and cerebral oedema. One study involved a laboratory experiment showing improved cooling using circulating cool water in cryotherapy braces than by using packed ice. They extrapolated that newer devices to cool the head may improve cerebral cooling during DHCA. The final study discussed here demonstrated the use of circulating water to the head in humans undergoing pulmonary endarterectomy. They found that tympanic membrane temperatures could be maintained significantly lower than bladder

  5. Local cooling for relieving pain from perineal trauma sustained during childbirth.

    PubMed

    East, C E; Begg, L; Henshall, N E; Marchant, P; Wallace, K

    2007-10-17

    Perineal trauma is common during childbirth and may be painful. Contemporary maternity practice includes offering women numerous forms of pain relief, including the local application of cooling treatments. To evaluate the effectiveness and side effects of localised cooling treatments compared with no treatment, other forms of cooling treatments and non-cooling treatments. We searched the Cochrane Pregnancy and Childbirth Group's Trials Register (January 2007), CINAHL (1982 to January 2007) and contacted experts in the field. Published and unpublished randomised and quasi-randomised trials (RCTs) that compared localised cooling treatment applied to the perineum with no treatment or other treatments applied to relieve pain related to perineal trauma sustained during childbirth. At least two independent authors performed data extraction for each study. Analyses were performed on an intention-to-treat basis where data allowed. We sought additional information from the authors of three trials. Seven published RCTs were included, comparing local cooling treatments (ice packs, cold gel pads or cold/iced baths) with no treatment, hamamelis water (witch hazel), pulsed electromagnetic energy (PET), hydrocortisone/pramoxine foam [Epifoam] or warm baths. The RCTs reported on a total of 859 women. Ice packs provided improved pain relief 24 to 72 hours after birth compared with no treatment (risk ratio (RR) 0.61, 95% confidence interval (CI) 0.41 to 0.91). Women preferred the utility of the gel pads compared with ice packs or no treatment, although no differences in pain relief were detected between the treatments. None of our comparisons of treatments resulted in differences detected in perineal oedema or bruising. Women reported more pain (RR 5.60, 95% CI 2.35 to 13.33) and used more additional analgesia (RR 4.00, 95% CI 1.44 to 11.13) following the application of ice packs compared with PET. There is only limited evidence to support the effectiveness of local cooling

  6. NACA Research on Slurry Fuels

    NASA Technical Reports Server (NTRS)

    Pinns, M L; Olson, W T; Barnett, H C; Breitwieser, R

    1958-01-01

    An extensive program was conducted to investigate the use of concentrated slurries of boron and magnesium in liquid hydrocarbon as fuels for afterburners and ramjet engines. Analytical calculations indicated that magnesium fuel would give greater thrust and that boron fuel would give greater range than are obtainable from jet hydrocarbon fuel alone. It was hoped that the use of these solid elements in slurry form would permit the improvement to be obtained without requiring unconventional fuel systems or combustors. Small ramjet vehicles fueled with magnesium slurry were flown successfully, but the test flights indicated that further improvement of combustors and fuel systems was needed.

  7. Cryopreservation: Vitrification and Controlled Rate Cooling.

    PubMed

    Hunt, Charles J

    2017-01-01

    Cryopreservation is the application of low temperatures to preserve the structural and functional integrity of cells and tissues. Conventional cooling protocols allow ice to form and solute concentrations to rise during the cryopreservation process. The damage caused by the rise in solute concentration can be mitigated by the use of compounds known as cryoprotectants. Such compounds protect cells from the consequences of slow cooling injury, allowing them to be cooled at cooling rates which avoid the lethal effects of intracellular ice. An alternative to conventional cooling is vitrification. Vitrification methods incorporate cryoprotectants at sufficiently high concentrations to prevent ice crystallization so that the system forms an amorphous glass thus avoiding the damaging effects caused by conventional slow cooling. However, vitrification too can impose damaging consequences on cells as the cryoprotectant concentrations required to vitrify cells at lower cooling rates are potentially, and often, harmful. While these concentrations can be lowered to nontoxic levels, if the cells are ultra-rapidly cooled, the resulting metastable system can lead to damage through devitrification and growth of ice during subsequent storage and rewarming if not appropriately handled.The commercial and clinical application of stem cells requires robust and reproducible cryopreservation protocols and appropriate long-term, low-temperature storage conditions to provide reliable master and working cell banks. Though current Good Manufacturing Practice (cGMP) compliant methods for the derivation and banking of clinical grade pluripotent stem cells exist and stem cell lines suitable for clinical applications are available, current cryopreservation protocols, whether for vitrification or conventional slow freezing, remain suboptimal. Apart from the resultant loss of valuable product that suboptimal cryopreservation engenders, there is a danger that such processes will impose a selective

  8. Comparisons of Cubed Ice, Crushed Ice, and Wetted Ice on Intramuscular and Surface Temperature Changes

    PubMed Central

    Dykstra, Joseph H; Hill, Holly M; Miller, Michael G; Cheatham, Christopher C; Michael, Timothy J; Baker, Robert J

    2009-01-01

    Context: Many researchers have investigated the effectiveness of different types of cold application, including cold whirlpools, ice packs, and chemical packs. However, few have investigated the effectiveness of different types of ice used in ice packs, even though ice is one of the most common forms of cold application. Objective: To evaluate and compare the cooling effectiveness of ice packs made with cubed, crushed, and wetted ice on intramuscular and skin surface temperatures. Design: Repeated-measures counterbalanced design. Setting: Human performance research laboratory. Patients or Other Participants: Twelve healthy participants (6 men, 6 women) with no history of musculoskeletal disease and no known preexisting inflammatory conditions or recent orthopaedic injuries to the lower extremities. Intervention(s): Ice packs made with cubed, crushed, or wetted ice were applied to a standardized area on the posterior aspect of the right gastrocnemius for 20 minutes. Each participant was given separate ice pack treatments, with at least 4 days between treatment sessions. Main Outcome Measure(s): Cutaneous and intramuscular (2 cm plus one-half skinfold measurement) temperatures of the right gastrocnemius were measured every 30 seconds during a 20-minute baseline period, a 20-minute treatment period, and a 120-minute recovery period. Results: Differences were observed among all treatments. Compared with the crushed-ice treatment, the cubed-ice and wetted-ice treatments produced lower surface and intramuscular temperatures. Wetted ice produced the greatest overall temperature change during treatment and recovery, and crushed ice produced the smallest change. Conclusions: As administered in our protocol, wetted ice was superior to cubed or crushed ice at reducing surface temperatures, whereas both cubed ice and wetted ice were superior to crushed ice at reducing intramuscular temperatures. PMID:19295957

  9. Coal-oil slurry preparation

    DOEpatents

    Tao, John C.

    1983-01-01

    A pumpable slurry of pulverized coal in a coal-derived hydrocarbon oil carrier which slurry is useful as a low-ash, low-sulfur clean fuel, is produced from a high sulfur-containing coal. The initial pulverized coal is separated by gravity differentiation into (1) a high density refuse fraction containing the major portion of non-coal mineral products and sulfur, (2) a lowest density fraction of low sulfur content and (3) a middlings fraction of intermediate sulfur and ash content. The refuse fraction (1) is gasified by partial combustion producing a crude gas product from which a hydrogen stream is separated for use in hydrogenative liquefaction of the middlings fraction (3). The lowest density fraction (2) is mixed with the liquefied coal product to provide the desired fuel slurry. Preferably there is also separately recovered from the coal liquefaction LPG and pipeline gas.

  10. Late Pliocene cooling, sea ice and the establishment of a Ross Sea polynya: Geochemical and diatom assemblage constraints from McMurdo Sound, Antarctica

    NASA Astrophysics Data System (ADS)

    Riesselman, C.; Dunbar, R. B.; Sjunneskog, C. M.; Mucciarone, D. A.; Winter, D.; Olney, M.; Tuzzi, E.; McKay, R. M.; Scherer, R. P.

    2010-12-01

    The marine sediment cores collected by the Antarctic Geological Drilling (ANDRILL) Program from sites beneath the McMurdo Ice Shelf (MIS; Core AND-1B) and in Southern McMurdo Sound (SMS; Core AND-2A) represent the most complete record to date of Neogene climate evolution proximal to the Antarctic continent. Diatom-rich lithologic units alternate with glacial sediments throughout the Pliocene and early Pleistocene of AND-1B; each diatom-rich unit within this oscillating record has distinctive geochemical and diatom assemblage characteristics and most are interpreted to preserve single interglacial intervals of 40-thousand-year glacial/interglacial cycles. Though the dramatic Pliocene glacial/interglacial oscillations recorded at the MIS site are absent in the shallower SMS record, AND-2A preserves a single diverse late Pliocene diatom assemblage, providing an additional constraint on Ross Sea Pliocene climate. Here, we focus on the reconstruction of sea surface conditions from four discrete AND-1B interglacial units deposited ~3.2, 3.0, 2.9, and 2.6 Ma. Diatom assemblages record the onset of Plio-Pleistocene cooling in the Ross Sea at 3.2 Ma, intensifying at 3.0 Ma, and suggest spring blooms in a surface ocean seasonally stratified by sea ice melt. Following the initial cooling, an increase in warm-water species at 2.9 and 2.6 Ma records a temporary late Pliocene reversal in the cooling trend. The Pliocene diatom-bearing interval in AND-2A is equivalent to the 2.6 Ma diatomite, providing further evidence for late Pliocene reversion to warmer open ocean conditions. Cooling resumes in the early Pleistocene, but sea-ice related diatoms, which dominate late Pleistocene and recent Antarctic sediments, are present only as minor components throughout the ANDRILL records. Sedimentary δ13C and δ15N in the AND-1B diatomite units provide additional insights into Pliocene evolution of sea ice, stratification, and primary productivity. For AND-1B diatomite units younger than 3

  11. Antarctic and Southern Ocean influences on Late Pliocene global cooling

    PubMed Central

    McKay, Robert; Naish, Tim; Carter, Lionel; Riesselman, Christina; Dunbar, Robert; Sjunneskog, Charlotte; Winter, Diane; Sangiorgi, Francesca; Warren, Courtney; Pagani, Mark; Schouten, Stefan; Willmott, Veronica; Levy, Richard; DeConto, Robert; Powell, Ross D.

    2012-01-01

    The influence of Antarctica and the Southern Ocean on Late Pliocene global climate reconstructions has remained ambiguous due to a lack of well-dated Antarctic-proximal, paleoenvironmental records. Here we present ice sheet, sea-surface temperature, and sea ice reconstructions from the ANDRILL AND-1B sediment core recovered from beneath the Ross Ice Shelf. We provide evidence for a major expansion of an ice sheet in the Ross Sea that began at ∼3.3 Ma, followed by a coastal sea surface temperature cooling of ∼2.5 °C, a stepwise expansion of sea ice, and polynya-style deep mixing in the Ross Sea between 3.3 and 2.5 Ma. The intensification of Antarctic cooling resulted in strengthened westerly winds and invigorated ocean circulation. The associated northward migration of Southern Ocean fronts has been linked with reduced Atlantic Meridional Overturning Circulation by restricting surface water connectivity between the ocean basins, with implications for heat transport to the high latitudes of the North Atlantic. While our results do not exclude low-latitude mechanisms as drivers for Pliocene cooling, they indicate an additional role played by southern high-latitude cooling during development of the bipolar world. PMID:22496594

  12. Chemical Hydride Slurry for Hydrogen Production and Storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McClaine, Andrew W

    2008-09-30

    The purpose of this project was to investigate and evaluate the attractiveness of using a magnesium chemical hydride slurry as a hydrogen storage, delivery, and production medium for automobiles. To fully evaluate the potential for magnesium hydride slurry to act as a carrier of hydrogen, potential slurry compositions, potential hydrogen release techniques, and the processes (and their costs) that will be used to recycle the byproducts back to a high hydrogen content slurry were evaluated. A 75% MgH 2 slurry was demonstrated, which was just short of the 76% goal. This slurry is pumpable and storable for months at amore » time at room temperature and pressure conditions and it has the consistency of paint. Two techniques were demonstrated for reacting the slurry with water to release hydrogen. The first technique was a continuous mixing process that was tested for several hours at a time and demonstrated operation without external heat addition. Further work will be required to reduce this design to a reliable, robust system. The second technique was a semi-continuous process. It was demonstrated on a 2 kWh scale. This system operated continuously and reliably for hours at a time, including starts and stops. This process could be readily reduced to practice for commercial applications. The processes and costs associated with recycling the byproducts of the water/slurry reaction were also evaluated. This included recovering and recycling the oils of the slurry, reforming the magnesium hydroxide and magnesium oxide byproduct to magnesium metal, hydriding the magnesium metal with hydrogen to form magnesium hydride, and preparing the slurry. We found that the SOM process, under development by Boston University, offers the lowest cost alternative for producing and recycling the slurry. Using the H2A framework, a total cost of production, delivery, and distribution of $4.50/kg of hydrogen delivered or $4.50/gge was determined. Experiments performed at Boston University

  13. Cool Vest

    NASA Technical Reports Server (NTRS)

    1982-01-01

    ILC, Dover Division's lightweight cooling garment, called Cool Vest was designed to eliminate the harmful effects of heat stress; increases tolerance time in hot environments by almost 300 percent. Made of urethane-coated nylon used in Apollo, it works to keep the body cool, circulating chilled water throughout the lining by means of a small battery-powered pump. A pocket houses the pump, battery and the coolant which can be ice or a frozen gel, a valve control allows temperature regulation. One version is self-contained and portable for unrestrained movement, another has an umbilical line attached to an external source of coolant, such as standard tap water, when extended mobility is not required. It is reported from customers that the Cool Vest pays for itself in increased productivity in very high temperatures.

  14. Passive ice freezing-releasing heat pipe

    DOEpatents

    Gorski, Anthony J.; Schertz, William W.

    1982-01-01

    A heat pipe device has been developed which permits completely passive ice formation and periodic release of ice without requiring the ambient temperature to rise above the melting point of water. This passive design enables the maximum amount of cooling capacity to be stored in the tank.

  15. Should athletes return to sport after applying ice? A systematic review of the effect of local cooling on functional performance.

    PubMed

    Bleakley, Chris M; Costello, Joseph T; Glasgow, Philip D

    2012-01-01

    Applying ice or other forms of topical cooling is a popular method of treating sports injuries. It is commonplace for athletes to return to competitive activity, shortly or immediately after the application of a cold treatment. In this article, we examine the effect of local tissue cooling on outcomes relating to functional performance and to discuss their relevance to the sporting environment. A computerized literature search, citation tracking and hand search was performed up to April, 2011. Eligible studies were trials involving healthy human participants, describing the effects of cooling on outcomes relating to functional performance. Two reviewers independently assessed the validity of included trials and calculated effect sizes. Thirty five trials met the inclusion criteria; all had a high risk of bias. The mean sample size was 19. Meta-analyses were not undertaken due to clinical heterogeneity. The majority of studies used cooling durations > 20 minutes. Strength (peak torque/force) was reported by 25 studies with approximately 75% recording a decrease in strength immediately following cooling. There was evidence from six studies that cooling adversely affected speed, power and agility-based running tasks; two studies found this was negated with a short rewarming period. There was conflicting evidence on the effect of cooling on isolated muscular endurance. A small number of studies found that cooling decreased upper limb dexterity and accuracy. The current evidence base suggests that athletes will probably be at a performance disadvantage if they return to activity immediately after cooling. This is based on cooling for longer than 20 minutes, which may exceed the durations employed in some sporting environments. In addition, some of the reported changes were clinically small and may only be relevant in elite sport. Until better evidence is available, practitioners should use short cooling applications and/or undertake a progressive warm up prior to

  16. Measured performance of the heat exchanger in the NASA icing research tunnel under severe icing and dry-air conditions

    NASA Technical Reports Server (NTRS)

    Olsen, W.; Vanfossen, J.; Nussle, R.

    1987-01-01

    Measurements were made of the pressure drop and thermal perfomance of the unique refrigeration heat exchanger in the NASA Lewis Icing Research Tunnel (IRT) under severe icing and frosting conditions and also with dry air. This data will be useful to those planning to use or extend the capability of the IRT and other icing facilities (e.g., the Altitude Wind Tunnel-AWT). The IRT heat exchanger and refrigeration system is able to cool air passing through the test section down to at least a total temperature of -30 C (well below icing requirements), and usually up to -2 C. The system maintains a uniform temperature across the test section at all airspeeds, which is more difficult and time consuming at low airspeeds, at high temperatures, and on hot, humid days when the cooling towers are less efficient. The very small surfaces of the heat exchanger prevent any icing cloud droplets from passing through it and going through the tests section again. The IRT heat exchanger was originally designed not to be adversely affected by severe icing. During a worst-case icing test the heat exchanger iced up enough so that the temperature uniformaity was no worse than about +/- 1 deg C. The conclusion is that the heat exchanger design performs well.

  17. BOILING SLURRY REACTOR AND METHOD FO CONTROL

    DOEpatents

    Petrick, M.; Marchaterre, J.F.

    1963-05-01

    The control of a boiling slurry nuclear reactor is described. The reactor consists of a vertical tube having an enlarged portion, a steam drum at the top of the vertical tube, and at least one downcomer connecting the steam drum and the bottom of the vertical tube, the reactor being filled with a slurry of fissionabie material in water of such concentration that the enlarged portion of the vertical tube contains a critical mass. The slurry boils in the vertical tube and circulates upwardly therein and downwardly in the downcomer. To control the reactor by controlling the circulation of the slurry, a gas is introduced into the downcomer. (AEC)

  18. The physics of ice cream

    NASA Astrophysics Data System (ADS)

    Clarke, Chris

    2003-05-01

    Almost everybody likes ice cream, so it can provide an excellent vehicle for discussing and demonstrating a variety of physical phenomena, such as Newton's law of cooling, Boyle's law and the relationship between microstructure and macroscopic properties (e.g. Young's modulus). Furthermore, a demonstration of freezing point depression can be used to make ice cream in the classroom!

  19. A comparison of radiation budgets in the Fram Strait marginal ice zone

    NASA Technical Reports Server (NTRS)

    Francis, Jennifer A.; Katsaros, Kristina B.; Ackerman, Thomas P.; Lind, Richard J.; Davidson, Kenneth L.

    1991-01-01

    Results are presented from calculations of radiation budgets for the sea-ice and the open-water regimes in the marginal ice zone (MIZ) of the Fram Strait, from measurements of surface irradiances and meteorological conditions made during the 1984 Marginal Ice Zone Experiment. Simultaneous measurements on either side of the ice edge allowed a comparison of the open-water and the sea-ice environments. The results show significant differences between the radiation budgets of the two regimes in the MIZ. The open water absorbed twice as much radiation as did the ice, and the mean cooling rate of the atmosphere over water was approximately 15 percent larger than that over ice. Calculated fluxes and atmospheric cooling rates were found to compare well with available literature data.

  20. Planetary Ice-Oceans: Numerical Modeling Study of Ice-Shell Growth in Convecting Two-Phase Systems

    NASA Astrophysics Data System (ADS)

    Allu Peddinti, Divya; McNamara, Allen

    2017-04-01

    Several icy bodies in the Solar system such as the icy moons Europa and Enceladus exhibit signs of subsurface oceans underneath an ice-shell. For Europa, the geologically young surface, the presence of surface features and the aligned surface chemistry pose interesting questions about formation of the ice-shell and its interaction with the ocean below. This also ties in with its astrobiological potential and implications for similar ice-ocean systems elsewhere in the cosmos. The overall thickness of the H2O layer on Europa is estimated to be 100-150 km while the thickness of the ice-shell is debated. Additionally, Europa is subject to tidal heating due to interaction with Jupiter's immense gravity field. It is of interest to understand how the ice-shell thickness varies in the presence of tidal internal heating and the localization of heating in different regions of the ice-shell. Thus this study aims to determine the effect of tidal internal heating on the growth rate of the ice-shell over time. We perform geodynamic modeling of the ice-ocean system in order to understand how the ice-shell thickness changes with time. The convection code employs the ice Ih-water phase diagram in order to model the two-phase convecting ice-ocean system. All the models begin from an initial warm thick ocean that cools from the top. The numerical experiments analyze three cases: case 1 with no tidal internal heating in the system, case 2 with constant tidal internal heating in the ice and case 3 with viscosity-dependent tidal internal heating in the ice. We track the ice-shell thickness as a function of time as the system cools. Modeling results so far have identified that the shell growth rate changes substantially at a point in time that coincides with a change in the planform of ice-convection cells. Additionally, the velocity vs depth plots indicate a shift from a conduction dominant to a convection dominant ice regime. We compare the three different cases to provide a

  1. Evaporation of ice in planetary atmospheres: Ice-covered rivers on Mars

    NASA Technical Reports Server (NTRS)

    Wallace, D.; Sagan, C.

    1978-01-01

    The evaporation rate of water ice on the surface of a planet with an atmosphere involves an equilibrium between solar heating and radiative and evaporative cooling of the ice layer. The thickness of the ice is governed principally by the solar flux which penetrates the ice layer and then is conducted back to the surface. Evaporation from the surface is governed by wind and free convection. In the absence of wind, eddy diffusion is caused by the lower density of water vapor in comparison to the density of the Martian atmosphere. For mean martian insolations, the evaporation rate above the ice is approximately 10 to the minus 8th power gm/sq cm/s. Evaporation rates are calculated for a wide range of frictional velocities, atmospheric pressures, and insolations and it seems clear that at least some subset of observed Martian channels may have formed as ice-chocked rivers. Typical equilibrium thicknesses of such ice covers are approximately 10m to 30 m; typical surface temperatures are 210 to 235 K.

  2. Overview of Icing Research at NASA Glenn

    NASA Technical Reports Server (NTRS)

    Kreeger, Richard E.

    2013-01-01

    The aviation industry continues to deal with icing-related incidents and accidents on a regular basis. Air traffic continues to increase, placing more aircraft in adverse icing conditions more frequently and for longer periods. Icing conditions once considered rare or of little consequence, such as super-cooled large droplet icing or high altitude ice crystals, have emerged as major concerns for modern aviation. Because of this, there is a need to better understand the atmospheric environment, the fundamental mechanisms and characteristics of ice growth, and the aerodynamic effects due to icing, as well as how best to protect these aircraft. The icing branch at NASA Glenn continues to develop icing simulation methods and engineering tools to address current aviation safety issues in airframe, engine and rotorcraft icing.

  3. Electric Power from Cryo (Nano) Ice

    NASA Astrophysics Data System (ADS)

    Kandasamy, A.; Chandran, M.

    2017-05-01

    In this paper, the authors have studied experimentally the performance of cryocooler which is a mechanical device for producing very low temperature with significant cooling capacity. Nano particles were administrated to enhance the faster rate of cooling. Electric power (energy) was produced from cryogenic (nano) ice with help of thermoelectric effect. The governing equations for energy conversions, cooling capacity, amount of electric power was also discussed.

  4. Intracellular ice and cell survival in cryo-exposed embryonic axes of recalcitrant seeds of Acer saccharinum: an ultrastructural study of factors affecting cell and ice structures.

    PubMed

    Wesley-Smith, James; Berjak, Patricia; Pammenter, N W; Walters, Christina

    2014-03-01

    Cryopreservation is the only long-term conservation strategy available for germplasm of recalcitrant-seeded species. Efforts to cryopreserve this form of germplasm are hampered by potentially lethal intracellular freezing events; thus, it is important to understand the relationships among cryo-exposure techniques, water content, structure and survival. Undried embryonic axes of Acer saccharinum and those rapidly dried to two different water contents were cooled at three rates and re-warmed at two rates. Ultrastructural observations were carried out on radicle and shoot tips prepared by freeze-fracture and freeze-substitution to assess immediate (i.e. pre-thaw) responses to cooling treatments. Survival of axes was assessed in vitro. Intracellular ice formation was not necessarily lethal. Embryo cells survived when crystal diameter was between 0·2 and 0·4 µm and fewer than 20 crystals were distributed per μm(2) in the cytoplasm. Ice was not uniformly distributed within the cells. In fully hydrated axes cooled at an intermediate rate, the interiors of many organelles were apparently ice-free; this may have prevented the disruption of vital intracellular machinery. Intracytoplasmic ice formation did not apparently impact the integrity of the plasmalemma. The maximum number of ice crystals was far greater in shoot apices, which were more sensitive than radicles to cryo-exposure. The findings challenge the accepted paradigm that intracellular ice formation is always lethal, as the results show that cells can survive intracellular ice if crystals are small and localized in the cytoplasm. Further understanding of the interactions among water content, cooling rate, cell structure and ice structure is required to optimize cryopreservation treatments without undue reliance on empirical approaches.

  5. Rheological characterisation of concentrated domestic slurry.

    PubMed

    Thota Radhakrishnan, A K; van Lier, J B; Clemens, F H L R

    2018-05-03

    The much over-looked element in new sanitation, the transport systems which bridge the source and treatment facilities, is the focus of this study. The knowledge of rheological properties of concentrated domestic slurry is essential for the design of the waste collection and transport systems. To investigate these properties, samples were collected from a pilot sanitation system in the Netherlands. Two types of slurries were examined: black water (consisting of human faecal waste, urine, and flushed water from vacuum toilets) and black water with ground kitchen waste. Rheograms of these slurries were obtained using a narrow gap rotating rheometer and modelled using a Herschel-Bulkley model. The effect of concentration on the slurry are described through the changes in the parameters of the Herschel-Bulkley model. A detailed method is proposed on estimating the parameters for the rheological models. For the black water, yield stress and consistency index follow an increasing power law with the concentration and the behaviour index follows a decreasing power law. The influence of temperature on the viscosity of the slurry is described using an Arrhenius type relation. The viscosity of black water decreases with temperature. As for the black water mixed with ground kitchen waste, it is found that the viscosity increases with concentration and decreases with temperature. The viscosity of black-water with ground kitchen waste is found to be higher than that of black water, which can be attributed to the presence of larger particles in the slurry. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Ammonia volatilization from farm tanks containing anaerobically digested animal slurry

    NASA Astrophysics Data System (ADS)

    Sommer, S. G.

    Ammonia (NH 3) volatilization from three full-scale tanks containing anaerobically digested animal slurry from one biogas plant was determined with a meteorological mass balance technique. No surface crust developed on the slurry. This provided an ideal system for analysing loss patterns from slurries without cover and to study the effect of a cover of straw and air-filled clay granules. Ammonia volatilization from uncovered slurry ranged from zero at subzero temperatures to 30 g N m -2 d -1 during summer. The high volatilization rate was attributed to a lack of surface cover, high slurry pH and high TAN (NH 3 + NH 4+) concentration. Ammonia volatilization from the covered slurry was insignificant. From the uncovered slurry the annual loss of NH3 was 3.3 kg N m -2 There was a significant effect of incident global radiation (ICR), air temperature at 20 cm (T_20) and rain on NH3 volatilization from the uncovered slurry. The straw covered slurry was significantly affected by T_20.

  7. The impact of a phase-change cooling vest on heat strain and the effect of different cooling pack melting temperatures.

    PubMed

    House, James R; Lunt, Heather C; Taylor, Rowan; Milligan, Gemma; Lyons, Jason A; House, Carol M

    2013-05-01

    Cooling vests (CV) are often used to reduce heat strain. CVs have traditionally used ice as the coolant, although other phase-change materials (PCM) that melt at warmer temperatures have been used in an attempt to enhance cooling by avoiding vasoconstriction, which supposedly occurs when ice CVs are used. This study assessed the effectiveness of four CVs that melted at 0, 10, 20 and 30 °C (CV₀, CV₁₀, CV₂₀, and CV₃₀) when worn by 10 male volunteers exercising and then recovering in 40 °C air whilst wearing fire-fighting clothing. When compared with a non-cooling control condition (CON), only the CV₀ and CV₁₀ vests provided cooling during exercise (40 and 29 W, respectively), whereas all CVs provided cooling during resting recovery (CV₀ 69 W, CV₁₀ 66 W, CV₂₀ 55 W and CV₃₀ 29 W) (P < 0.05). In all conditions, skin blood flow increased when exercising and reduced during recovery, but was lower in the CV₀ and CV₁₀ conditions compared with control during exercise (observed power 0.709) (P < 0.05), but not during resting recovery (observed power only 0.55). The participants preferred the CV₁₀ to the CV₀, which caused temporary erythema to underlying skin, although this resolved overnight after each occurrence. Consequently, a cooling vest melting at 10 °C would seem to be the most appropriate choice for cooling during combined work and rest periods, although possibly an ice-vest (CV₀) may also be appropriate if more insulation was worn between the cooling packs and the skin than used in this study.

  8. Streamline coal slurry letdown valve

    DOEpatents

    Platt, Robert J.; Shadbolt, Edward A.

    1983-01-01

    A streamlined coal slurry letdown valve is featured which has a two-piece throat comprised of a seat and seat retainer. The two-piece design allows for easy assembly and disassembly of the valve. A novel cage holds the two-piece throat together during the high pressure letdown. The coal slurry letdown valve has long operating life as a result of its streamlined and erosion-resistance surfaces.

  9. Study on Latent Heat of Fusion of Ice in Aqueous Solutions

    NASA Astrophysics Data System (ADS)

    Kumano, Hiroyuki; Asaoka, Tatsunori; Saito, Akio; Okawa, Seiji

    In this study, latent heat of fusion of ice in aqueous solutions was measured to understand latent heat of fusion of ice slurries. Propylene glycol, ethylene glycol, ethanol, NaCl and NaNO3 solutions were examined as the aqueous solutions. In the measurement, pure ice was put into the solution, and the temperature variation of the solution due to the melting of the ice was measured. Then, the effective latent heat of fusion was calculated from energy balance equation. When ice melts in solution, the concentration of the solution varies due to the melting of the ice, and dilution heat must be considered. Therefore, the latent heat of fusion of ice in aqueous solutions was predicted by considering the effects of dilution and freezing-point depression. The latent heat of fusion was also measured by differential scanning calorimetry(DSC) to compare the results obtained from the experiments with that obtained by DSC. As the result, it was found that the effective latent heat of fusion of ice decreased with the increase of the concentration of solution, and the effective latent heat of fusion was calculated from latent heat of fusion of pure ice and the effects of freezing-point depression and the dilution heat.

  10. Tropospheric characteristics over sea ice during N-ICE2015

    NASA Astrophysics Data System (ADS)

    Kayser, Markus; Maturilli, Marion; Graham, Robert; Hudson, Stephen; Cohen, Lana; Rinke, Annette; Kim, Joo-Hong; Park, Sang-Jong; Moon, Woosok; Granskog, Mats

    2017-04-01

    Over recent years, the Arctic Ocean region has shifted towards a younger and thinner sea-ice regime. The Norwegian young sea ICE (N-ICE2015) expedition was designed to investigate the atmosphere-snow-ice-ocean interactions in this new ice regime north of Svalbard. Here we analyze upper-air measurements made by radiosondes launched twice daily together with surface meteorology observations during N-ICE2015 from January to June 2015. We study the multiple cyclonic events observed during N-ICE2015 with respect to changes in the vertical thermodynamic structure, sudden increases in moisture content and temperature, temperature inversions and boundary layer dynamics. The influence of synoptic cyclones is strongest under polar night conditions, when radiative cooling is most effective and the moisture content is low. We find that transitions between the radiatively clear and opaque state are the largest drivers of changes to temperature inversion and stability characteristics in the boundary layer during winter. In spring radiative fluxes warm the surface leading to lifted temperature inversions and a statically unstable boundary layer. The unique N-ICE2015 dataset is used for case studies investigating changes in the vertical structure of the atmosphere under varying synoptic conditions. The goal is to deepen our understanding of synoptic interactions within the Arctic climate system, to improve model performance, as well as to identify gaps in instrumentation, which precludes further investigations.

  11. Artificial Bone and Teeth through Controlled Ice Growth in Colloidal Suspensions

    NASA Astrophysics Data System (ADS)

    Tomsia, Antoni P.; Saiz, Eduardo; Deville, Sylvain

    2007-06-01

    The formation of regular patterns is a common feature of many solidification processes involving cast materials. We describe here how regular patterns can be obtained in porous alumina and hydroxyapatite (HAP) by controlling the freezing of ceramic slurries followed by subsequent ice sublimation and sintering, leading to multilayered porous ceramic structures with homogeneous and well-defined architecture. These porous materials can be infiltrated with a second phase of choice to yield biomimetic nacre-like composites with improved mechanical properties, which could be used for artificial bone and teeth applications. Proper control of the solidification patterns provides powerful means of control over the final functional properties. We discuss the relationships between the experimental results, ice growth fundamentals, the physics of ice and the interaction between inert particles and the solidification front during directional freezing.

  12. Inception of the Laurentide Ice Sheet using asynchronous coupling of a regional atmospheric model and an ice model

    NASA Astrophysics Data System (ADS)

    Birch, L.; Cronin, T.; Tziperman, E.

    2017-12-01

    The climate over the past 0.8 million years has been dominated by ice ages. Ice sheets have grown about every 100 kyrs, starting from warm interglacials, until they spanned continents. State-of-the-art global climate models (GCMs) have difficulty simulating glacial inception, or the transition of Earth's climate from an interglacial to a glacial state. It has been suggested that this failure may be related to their poorly resolved local mountain topography, due to their coarse spatial resolution. We examine this idea as well as the possible role of ice flow dynamics missing in GCMs. We investigate the growth of the Laurentide Ice Sheet at 115 kya by focusing on the mountain glaciers of Canada's Baffin Island, where geologic evidence indicates the last inception occurred. We use the Weather Research and Forecasting model (WRF) in a regional, cloud-resolving configuration with resolved mountain terrain to explore how quickly Baffin Island could become glaciated with the favorable yet realizable conditions of 115 kya insolation, cool summers, and wet winters. Using the model-derived mountain glacier mass balance, we force an ice sheet model based on the shallow-ice approximation, capturing the ice flow that may be critical to the spread of ice sheets away from mountain ice caps. The ice sheet model calculates the surface area newly covered by ice and the change in the ice surface elevation, which we then use to run WRF again. Through this type of iterated asynchronous coupling, we investigate how the regional climate responds to both larger areas of ice cover and changes in ice surface elevation. In addition, we use the NOAH-MP Land model to characterize the importance of land processes, like refreezing. We find that initial ice growth on the Penny Ice Cap causes regional cooling that increases the accumulation on the Barnes Ice Cap. We investigate how ice and topography changes on Baffin Island may impact both the regional climate and the large-scale circulation.

  13. Low frequency aeration of pig slurry affects slurry characteristics and emissions of greenhouse gases and ammonia.

    PubMed

    Calvet, Salvador; Hunt, John; Misselbrook, Tom H

    2017-07-01

    Low frequency aeration of slurries may reduce ammonia (NH 3 ) and methane (CH 4 ) emissions without increasing nitrous oxide (N 2 O) emissions. The aim of this study was to quantify this potential reduction and to establish the underlying mechanisms. A batch experiment was designed with 6 tanks with 1 m 3 of pig slurry each. After an initial phase of 7 days when none of the tanks were aerated, a second phase of 4 weeks subjected three of the tanks to aeration (2 min every 6 h, airflow 10 m 3  h -1 ), whereas the other three tanks remained as a control. A final phase of 9 days was established with no aeration in any tank. Emissions of NH 3 , CH 4 , carbon dioxide (CO 2 ) and N 2 O were measured. In the initial phase no differences in emissions were detected, but during the second phase aeration increased NH 3 emissions by 20% with respect to the controls (8.48 vs. 7.07 g m -3  [slurry] d -1 , P < 0.05). A higher pH was found in the aerated tanks at the end of this phase (7.7 vs. 7.0 in the aerated and control tanks, respectively, P < 0.05). CH 4 emissions were 40% lower in the aerated tanks (2.04 vs. 3.39 g m -3  [slurry] d -1 , P < 0.05). These differences in NH 3 and CH 4 emissions remained after the aeration phase had finished. No effect was detected for CO 2 , and no relevant N 2 O emissions were detected during the experiment. Our results demonstrate that low frequency aeration of stored pig slurry increases slurry pH and increases NH 3 emissions.

  14. Sliding temperatures of ice skates

    NASA Astrophysics Data System (ADS)

    Colbeck, S. C.; Najarian, L.; Smith, H. B.

    1997-06-01

    The two theories developed to explain the low friction of ice, pressure melting and frictional heating, require opposite temperature shifts at the ice-skate interface. The arguments against pressure melting are strong, but only theoretical. A set of direct temperature measurements shows that frictional heating is the dominant mechanism because temperature behaves in the manner predicted by the theory of frictional heating. Like snow skis, ice skates are warmed by sliding and then cool when the sliding stops. The temperature increases with speed and with thermal insulation. The sliding leaves a warm track on the ice surface behind the skate and the skate sprays warm ejecta.

  15. Electrode Slurry Particle Density Mapping Using X-ray Radiography

    DOE PAGES

    Higa, Kenneth; Zhao, Hui; Parkinson, Dilworth Y.; ...

    2017-01-05

    The internal structure of a porous electrode strongly influences battery performance. Understanding the dynamics of electrode slurry drying could aid in engineering electrodes with desired properties. For instance, one might monitor the dynamic, spatially-varying thickness near the edge of a slurry coating, as it should lead to non-uniform thickness of the dried film. This work examines the dynamic behavior of drying slurry drops consisting of SiO x and carbon black particles in a solution of carboxymethylcellulose and deionized water, as an experimental model of drying behavior near the edge of a slurry coating. An X-ray radiography-based procedure is developed tomore » calculate the evolving spatial distribution of active material particles from images of the drying slurry drops. To the authors’ knowledge, this study is the first to use radiography to investigate battery slurry drying, as well as the first to determine particle distributions from radiography images of drying suspensions. The dynamic results are consistent with tomography reconstructions of the static, fully-dried films. It is found that active material particles can rapidly become non-uniformly distributed within the drops. Heating can promote distribution uniformity, but seemingly must be applied very soon after slurry deposition. Higher slurry viscosity is found to strongly restrain particle redistribution.« less

  16. On the Importance of High Frequency Gravity Waves for Ice Nucleation in the Tropical Tropopause Layer

    NASA Technical Reports Server (NTRS)

    Jensen, Eric J.

    2016-01-01

    Recent investigations of the influence of atmospheric waves on ice nucleation in cirrus have identified a number of key processes and sensitivities: (1) ice concentrations produced by homogeneous freezing are strongly dependent on cooling rates, with gravity waves dominating upper tropospheric cooling rates; (2) rapid cooling driven by high-frequency waves are likely responsible for the rare occurrences of very high ice concentrations in cirrus; (3) sedimentation and entrainment tend to decrease ice concentrations as cirrus age; and (4) in some situations, changes in temperature tendency driven by high-frequency waves can quench ice nucleation events and limit ice concentrations. Here we use parcel-model simulations of ice nucleation driven by long-duration, constant-pressure balloon temperature time series, along with an extensive dataset of cold cirrus microphysical properties from the recent ATTREX high-altitude aircraft campaign, to statistically examine the importance of high-frequency waves as well as the consistency between our theoretical understanding of ice nucleation and observed ice concentrations. The parcel-model simulations indicate common occurrence of peak ice concentrations exceeding several hundred per liter. Sedimentation and entrainment would reduce ice concentrations as clouds age, but 1-D simulations using a wave parameterization (which underestimates rapid cooling events) still produce ice concentrations higher than indicated by observations. We find that quenching of nucleation events by high-frequency waves occurs infrequently and does not prevent occurrences of large ice concentrations in parcel simulations of homogeneous freezing. In fact, the high-frequency variability in the balloon temperature data is entirely responsible for production of these high ice concentrations in the simulations.

  17. Streamline coal slurry letdown valve

    DOEpatents

    Platt, R.J.; Shadbolt, E.A.

    1983-11-08

    A streamlined coal slurry letdown valve is featured which has a two-piece throat comprised of a seat and seat retainer. The two-piece design allows for easy assembly and disassembly of the valve. A novel cage holds the two-piece throat together during the high pressure letdown. The coal slurry letdown valve has long operating life as a result of its streamlined and erosion-resistance surfaces. 5 figs.

  18. Method and apparatus for transporting liquid slurries

    DOEpatents

    Berry, Gregory F.; Lyczkowski, Robert W.; Wang, Chi-Sheng

    1993-01-01

    An improved method and device to prevent erosion of slurry transport devices is disclosed which uses liquid injection to prevent contact by the slurry composition with the inner surface of the walls of the transport system. A non-abrasive liquid is injected into the slurry transport system and maintains intimate contact with the entire inner surface of the transport system, thereby creating a fluid barrier between the non-abrasive liquid and the inner surface of the transport system which thereby prevents erosion.

  19. Method and apparatus for transporting liquid slurries

    DOEpatents

    Berry, G.F.; Lyczkowski, R.W.; Chisheng Wang.

    1993-03-16

    An improved method and device to prevent erosion of slurry transport devices is disclosed which uses liquid injection to prevent contact by the slurry composition with the inner surface of the walls of the transport system. A non-abrasive liquid is injected into the slurry transport system and maintains intimate contact with the entire inner surface of the transport system, thereby creating a fluid barrier between the non-abrasive liquid and the inner surface of the transport system which thereby prevents erosion.

  20. Intracellular ice and cell survival in cryo-exposed embryonic axes of recalcitrant seeds of Acer saccharinum: an ultrastructural study of factors affecting cell and ice structures

    PubMed Central

    Wesley-Smith, James; Berjak, Patricia; Pammenter, N. W.; Walters, Christina

    2014-01-01

    Background and Aims Cryopreservation is the only long-term conservation strategy available for germplasm of recalcitrant-seeded species. Efforts to cryopreserve this form of germplasm are hampered by potentially lethal intracellular freezing events; thus, it is important to understand the relationships among cryo-exposure techniques, water content, structure and survival. Methods Undried embryonic axes of Acer saccharinum and those rapidly dried to two different water contents were cooled at three rates and re-warmed at two rates. Ultrastructural observations were carried out on radicle and shoot tips prepared by freeze-fracture and freeze-substitution to assess immediate (i.e. pre-thaw) responses to cooling treatments. Survival of axes was assessed in vitro. Key Results Intracellular ice formation was not necessarily lethal. Embryo cells survived when crystal diameter was between 0·2 and 0·4 µm and fewer than 20 crystals were distributed per μm2 in the cytoplasm. Ice was not uniformly distributed within the cells. In fully hydrated axes cooled at an intermediate rate, the interiors of many organelles were apparently ice-free; this may have prevented the disruption of vital intracellular machinery. Intracytoplasmic ice formation did not apparently impact the integrity of the plasmalemma. The maximum number of ice crystals was far greater in shoot apices, which were more sensitive than radicles to cryo-exposure. Conclusions The findings challenge the accepted paradigm that intracellular ice formation is always lethal, as the results show that cells can survive intracellular ice if crystals are small and localized in the cytoplasm. Further understanding of the interactions among water content, cooling rate, cell structure and ice structure is required to optimize cryopreservation treatments without undue reliance on empirical approaches. PMID:24368198

  1. Technical Report on NETL's Non Newtonian Multiphase Slurry Workshop: A path forward to understanding non-Newtonian multiphase slurry flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guenther, Chris; Garg, Rahul

    2013-08-19

    The Department of Energy’s (DOE) National Energy Technology Laboratory (NETL) sponsored a workshop on non-Newtonian multiphase slurry at NETL’s Morgantown campus August 19 and 20, 2013. The objective of this special two-day meeting of 20-30 invited experts from industry, National Labs and academia was to identify and address technical issues associated with handling non-Newtonian multiphase slurries across various facilities managed by DOE. Particular emphasis during this workshop was placed on applications managed by the Office of Environmental Management (EM). The workshop was preceded by two webinars wherein personnel from ORP and NETL provided background information on the Hanford WTP projectmore » and discussed the critical design challenges facing this project. In non-Newtonian fluids, viscosity is not constant and exhibits a complex dependence on applied shear stress or deformation. Many applications under EM’s tank farm mission involve non-Newtonian slurries that are multiphase in nature; tank farm storage and handling, slurry transport, and mixing all involve multiphase flow dynamics, which require an improved understanding of the mechanisms responsible for rheological changes in non-Newtonian multiphase slurries (NNMS). To discuss the issues in predicting the behavior of NNMS, the workshop focused on two topic areas: (1) State-of-the-art in non-Newtonian Multiphase Slurry Flow, and (2) Scaling up with Confidence and Ensuring Safe and Reliable Long-Term Operation.« less

  2. SEPARATING LIQUID MODERATOR FROM A SLURRY TYPE REACTOR

    DOEpatents

    Vernon, H.C.

    1961-07-01

    A system for evaporating moderator such as D/sub 2/O from an irradiated slurry or sloution characterized by two successive evaproators is described. In the first of these the most troublesome radioactivity dissipates before the slurry becomes too thick to be pumped out; in the second the slurry, now easier to handle, can be safely reduced to a sludge.

  3. We Scream for Nano Ice Cream

    ERIC Educational Resources Information Center

    Jones, M. Gail; Krebs, Denise L.; Banks, Alton J.

    2011-01-01

    There is a wide range of new products emerging from nanotechnology, and "nano ice cream" is an easy one that you can use to teach topics from surface area to volume applications. In this activity, students learn how ice cream can be made smoother and creamier tasting through nanoscience. By using liquid nitrogen to cool the cream mixture, students…

  4. Modest Little Ice Age cooling of the Western Tropical Atlantic inferred from Sr-U Coral Paleothermometry

    NASA Astrophysics Data System (ADS)

    Alpert, A.; Cohen, A. L.; Oppo, D.; Gaetani, G. A.

    2016-12-01

    Proxy records of the Little Ice Age (LIA; 1450-1850CE) at high latitude Northern Hemisphere indicate temperatures 1-2°C cooler relative to the mid-20th century. However, estimates of sea surface temperatures (SSTs) from the western tropical Atlantic (WTA) range widely, indicating SSTs from 0- 4°C cooler than the mid-20th century. The largest of these cooling estimates indicate that the LIA tropics were more sensitive than the high latitudes, inconsistent with model predictions. Here we apply a novel coral thermometer, Sr-U, that has been demonstrated to accurately capture spatial and temporal variability across coral genera in both the Pacific and Atlantic Oceans. A continuous section of reconstructed SSTs in the WTA (Puerto Rico) during the LIA (1465-1560CE) reveals a modest cooling relative to the late 20th century but no significant difference from the early 20th century prior. At this site sensitive to the modern Atlantic Multidecadal Oscillation (AMO) multidecadal variability was present during the LIA with amplitude comparable to the 20th century. Our record is consistent with weaker tropical sensitivity to external forcing than at higher latitudes during the LIA.

  5. Oxidation of coal-water slurry feed to hydrogasifier

    DOEpatents

    Lee, Bernard S.

    1976-01-01

    An aqueous coal slurry is preheated, subjected to partial oxidation and vaporization by injection of high pressure oxygen and is introduced into a top section of a hydrogasifier in direct contact with hot methane-containing effluent gases where vaporization of the slurry is completed. The resulting solids are reacted in the hydrogasifier and the combined gases and vapors are withdrawn and subjected to purification and methanation to provide pipeline gas. The amount of oxygen injected into the slurry is controlled to provide the proper thermal balance whereby all of the water in the slurry can be evaporated in contact with the hot effluent gases from the hydrogasifier.

  6. Intracellular ice formation in mouse zygotes and early morulae vs. cooling rate and temperature-experimental vs. theory.

    PubMed

    Jin, Bo; Seki, Shinsuke; Paredes, Estefania; Qiu, Juan; Shi, Yanbin; Zhang, Zhenqiang; Ma, Chao; Jiang, Shuyan; Li, Jiaqi; Yuan, Feng; Wang, Shu; Shao, Xiaoguang; Mazur, Peter

    2016-10-01

    In this study, mature female mice of the ICR strain were induced to superovultate, mated, and collected at either zygote or early morula stages. Embryos suspended in 1 M ethylene glycol in PBS containing 10 mg/L Snomax for 15 min, then transferred in sample holder to Linkam cryostage, cooled to and seeded at 7 °C, and then observed and photographed while being cooled to -70 °C at 0.5-20 °C/min. Intracellular ice formation (IIF) was observed as abrupt ''flashing''. Two types of flashing or IIF were observed in this study. Extracellular freezing occurred at a mean of -7.7 °C. In morulae, about 25% turned dark within ±1 °C of extracellular ice formation (EIF). These we refer to as "high temperature'' flashers. In zygotes, there were no high temperature flashers. All the zygotes flashed at temperatures well below the temperature for EIF. Presumably high temperature flashers were a consequence of membrane damage prior to EIF or damage from EIF. We shall not discuss them further. In the majority of cases, IIF occurred well below -7.7 °C; these we call ''low temperature'' flashers. None flashed with cooling rate (CR) of 0.5 °C/min in either zygotes or morulae. Nearly all flashed with CR of 4 °C/min or higher, but the distribution of temperatures is much broader with morulae than with zygotes. Also, the mean flashing temperature is much higher with morulae (-20.9 °C) than with zygotes (-40.3 °C). We computed the kinetics of water loss with respect to CR and temperature in both mouse zygotes and in morulae based on published estimates of Lp and it is Ea. The resulting dehydration curves combined with knowledge of the embryo nucleation temperature permits an estimate of the likelihood of IIF as a function of CR and subzero temperature. The agreement between these computed probabilities and the observed values are good. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Suppressing Ice Nucleation of Supercooled Condensate with Biphilic Topography

    NASA Astrophysics Data System (ADS)

    Hou, Youmin; Yu, Miao; Shang, Yuhe; Zhou, Peng; Song, Ruyuan; Xu, Xiaonan; Chen, Xuemei; Wang, Zuankai; Yao, Shuhuai

    2018-02-01

    Preventing or minimizing ice formation in supercooled water is of prominent importance in many infrastructures, transportation, and cooling systems. The overall phase change heat transfer on icephobic surfaces, in general, is intentionally sacrificed to suppress the nucleation of water and ice. However, in a condensation frosting process, inhibiting freezing without compromising the water condensation has been an unsolved challenge. Here we show that this conflict between anti-icing and efficient condensation cooling can be resolved by utilizing biphilic topography with patterned high-contrast wettability. By creating a varying interfacial thermal barrier underneath the supercooled condensate, the biphilic structures tune the nucleation rates of water and ice in the sequential condensation-to-freezing process. Our experimental and theoretical investigation of condensate freezing dynamics further unravels the correlation between the onset of droplet freezing and its characteristic radius, offering a new insight for controlling the multiphase transitions among vapor, water, and ice in supercooled conditions.

  8. Suppressing Ice Nucleation of Supercooled Condensate with Biphilic Topography.

    PubMed

    Hou, Youmin; Yu, Miao; Shang, Yuhe; Zhou, Peng; Song, Ruyuan; Xu, Xiaonan; Chen, Xuemei; Wang, Zuankai; Yao, Shuhuai

    2018-02-16

    Preventing or minimizing ice formation in supercooled water is of prominent importance in many infrastructures, transportation, and cooling systems. The overall phase change heat transfer on icephobic surfaces, in general, is intentionally sacrificed to suppress the nucleation of water and ice. However, in a condensation frosting process, inhibiting freezing without compromising the water condensation has been an unsolved challenge. Here we show that this conflict between anti-icing and efficient condensation cooling can be resolved by utilizing biphilic topography with patterned high-contrast wettability. By creating a varying interfacial thermal barrier underneath the supercooled condensate, the biphilic structures tune the nucleation rates of water and ice in the sequential condensation-to-freezing process. Our experimental and theoretical investigation of condensate freezing dynamics further unravels the correlation between the onset of droplet freezing and its characteristic radius, offering a new insight for controlling the multiphase transitions among vapor, water, and ice in supercooled conditions.

  9. Alternating current breakdown voltage of ice electret

    NASA Astrophysics Data System (ADS)

    Oshika, Y.; Tsuchiya, Y.; Okumura, T.; Muramoto, Y.

    2017-09-01

    Ice has low environmental impact. Our research objectives are to study the availability of ice as a dielectric insulating material at cryogenic temperatures. We focus on ferroelectric ice (iceXI) at cryogenic temperatures. The properties of iceXI, including its formation, are not clear. We attempted to obtain the polarized ice that was similar to iceXI under the applied voltage and cooling to 77 K. The polarized ice have a wide range of engineering applications as electronic materials at cryogenic temperatures. This polarized ice is called ice electret. The structural difference between ice electret and normal ice is only the positions of protons. The effects of the proton arrangement on the breakdown voltage of ice electret were shown because electrical properties are influenced by the structure of ice. We observed an alternating current (ac) breakdown voltage of ice electret and normal ice at 77 K. The mean and minimum ac breakdown voltage values of ice electret were higher than those of normal ice. We considered that the electrically weak part of the normal ice was improved by applied a direct electric field.

  10. Comparison of Whole-Body Cooling Techniques for Athletes and Military Personnel.

    PubMed

    Nye, Emma A; Eberman, Lindsey E; Games, Kenneth E; Carriker, Colin

    2017-01-01

    The purpose of this study was to evaluate cooling rates of The Polar Life Pod ® , a military protocol and cold water immersion. A randomized, repeated measures design was used to compare three treatment options. Participants exercised in an environmental chamber, where they followed a military march protocol on a treadmill, followed by the application of one of three treatments: Cold water immersion tub (5 - 10 °C), Polar Life Pod® (5 - 10 °C), Ice sheets at onset (5 - 10 °C). Mean cooling rate for CWI was 0.072 ºC/min, 0.046ºC/min for ice sheets, and 0.040ºC/min for The Polar Life Pod ® . There was a significant difference between conditions (F2,26=13.564, p=0.001, ES=0.511, 1-β=0.969). There was a significant difference in cooling rate among The Polar Life Pod ® and CWI (p = 0.006), and no significant difference among The Polar Life Pod ® and Ice Sheets (p = 0.103). There was a significant difference of time to cool among the three conditions F 2,26 = 13.564, p = 0.001, ES = 0.401, 1-β = 0.950. Our results support multiple organizations that deem CWI as the only acceptable treatment, when compared to the cooling rates of The Polar Life Pod ® and ice sheets.

  11. Influence of hydrophobicity on ice accumulation process under sleet and wind conditions

    NASA Astrophysics Data System (ADS)

    Xu, Ke; Hu, Jianlin; Shu, Lichun; Jiang, Xingliang; Huang, Zhengyong

    2018-03-01

    Glaze, the most dangerous ice type in natural environment, forms during sleet weather, which is usually accompanied with wind. The icing performance of hydrophobic coatings under the impact of wind needs further research. This paper studies the influence of hydrophobicity on ice accumulation process under sleet and wind conditions by computer simulations and icing tests. The results indicate that the heat dissipation process of droplets on samples with various hydrophobicity will be accelerated by wind significantly and that a higher hydrophobicity cannot reduce the cooling rate effectively. However, on different hydrophobic surfaces, the ice accumulation process has different characteristics. On a hydrophilic surface, the falling droplets form continuously water film, which will be cooled fast. On superhydrophobic surface, the frozen droplets form ice bulges, which can shield from wind and slow down the heat dissipation process. These ice accumulation characteristics lead to the difference in ice morphology and make a higher hydrophobic surface to have a lower ice mass growth rate in long period icing tests. As a conclusion, superhydrophobic coating remain icephobic under wind and sleet conditions.

  12. Ice-surface adsorption enhanced colligative effect of antifreeze proteins in ice growth inhibition

    NASA Astrophysics Data System (ADS)

    Mao, Yougang; Ba, Yong

    2006-09-01

    This Communication describes a mechanism to explain antifreeze protein's function to inhibit the growth of ice crystals. We propose that the adsorption of antifreeze protein (AFP) molecules on an ice surface induces a dense AFP-water layer, which can significantly decrease the mole fraction of the interfacial water and, thus, lower the temperature for a seed ice crystal to grow in a super-cooled AFP solution. This mechanism can also explain the nearly unchanged melting point for the ice crystal due to the AFP's ice-surface adsorption. A mathematical model combining the Langmuir theory of adsorption and the colligative effect of thermodynamics has been proposed to find the equilibrium constants of the ice-surface adsorptions, and the interfacial concentrations of AFPs through fitting the theoretical curves to the experimental thermal hysteresis data. This model has been demonstrated by using the experimental data of serial size-mutated beetle Tenebrio molitor (Tm) AFPs. It was found that the AFP's ice-surface adsorptions could increase the interfacial AFP's concentrations by 3 to 4 orders compared with those in the bulk AFP solutions.

  13. Astrobiology of Antarctic ice Covered Lakes

    NASA Astrophysics Data System (ADS)

    Doran, P. T.; Fritsen, C. H.

    2005-12-01

    Antarctica contains a number of permanently ice-covered lakes which have often been used as analogs of purported lakes on Mars in the past. Antarctic subglacial lakes, such as Lake Vostok, have also been viewed as excellent analogs for an ice covered ocean on the Jovian moon Europa, and to a lesser extend on Mars. Lakes in the McMurdo Dry Valleys of East Antarctica have ice covers that range from 3 to 20 meters thick. Water salinities range from fresh to hypersaline. The thinner ice-covered lakes have a well-documented ecology that relies on the limited available nutrients and the small amount of light energy that penetrates the ice covers. The thickest ice-covered lake (Lake Vida in Victoria Valley) has a brine beneath 20 m of ice that is 7 times sea water and maintains a temperature below -10 degrees Celsius. This lake is vastly different from the thinner ice-covered lakes in that there is no communication with the atmosphere. The permanent ice cover is so thick, that summer melt waters can not access the sub-ice brine and so the ice grows from the top up, as well as from the bottom down. Brine trapped beneath the ice is believed to be ancient, stranded thousands of years ago when the ice grew thick enough to isolate it from the surface. We view Lake Vida as an excellent analog for the last aquatic ecosystem to have existed on Mars under a planetary cooling. If, as evidence is now increasingly supporting, standing bodies of water existed on Mars in the past, their fate under a cooling would be to go through a stage of permanent ice cover establishment, followed by a thickening of that ice cover until the final stage just prior to a cold extinction would be a Lake Vida-like lake. If dust storms or mass movements covered these ancient lakes, remnants may well be in existence in the subsurface today. A NASA Astrobiology Science and Technology for Exploring Planets (ASTEP) project will drill the Lake Vida ice cover and access the brine and sediments beneath in

  14. Artificial Bone and Teeth through Controlled Ice Growth in Colloidal Suspensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomsia, Antoni P.; Saiz, Eduardo; Deville, Sylvain

    2007-06-14

    The formation of regular patterns is a common feature of many solidification processes involving cast materials. We describe here how regular patterns can be obtained in porous alumina and hydroxyapatite (HAP) by controlling the freezing of ceramic slurries followed by subsequent ice sublimation and sintering, leading to multilayered porous ceramic structures with homogeneous and well-defined architecture. These porous materials can be infiltrated with a second phase of choice to yield biomimetic nacre-like composites with improved mechanical properties, which could be used for artificial bone and teeth applications. Proper control of the solidification patterns provides powerful means of control over themore » final functional properties. We discuss the relationships between the experimental results, ice growth fundamentals, the physics of ice and the interaction between inert particles and the solidification front during directional freezing.« less

  15. DWPF DECON FRIT: SUMP AND SLURRY SOLIDS ANALYSIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, C.; Peeler, D.; Click, D.

    The Savannah River National Laboratory (SRNL) has been requested to perform analyses on samples of the Defense Waste Processing Facility (DWPF) decon frit slurry (i.e., supernate samples and sump solid samples). Four 1-L liquid slurry samples were provided to SRNL by Savannah River Remediation (SRR) from the 'front-end' decon activities. Additionally, two 1-L sump solids samples were provided to SRNL for compositional and physical analysis. In this report, the physical and chemical characterization results of the slurry solids and sump solids are reported. Crawford et al. (2010) provide the results of the supernate analysis. The results of the sump solidsmore » are reported on a mass basis given the samples were essentially dry upon receipt. The results of the slurry solids were converted to a volume basis given approximately 2.4 grams of slurry solids were obtained from the {approx}4 liters of liquid slurry sample. Although there were slight differences in the analytical results between the sump solids and slurry solids the following general summary statements can be made. Slight differences in the results are also captured for specific analysis. (1) Physical characterization - (a) SEM/EDS analysis suggested that the samples were enriched in Li and Si (B and Na not detectable using the current EDS system) which is consistent with two of the four principle oxides of Frit 418 (B{sub 2}O{sub 3}, Na{sub 2}O, Li{sub 2}O and SiO{sub 2}). (b) SEM/EDS analysis also identified impurities which were elementally consistent with stainless steel (i.e., Fe, Ni, Cr contamination). (c) XRD results indicated that the sump solids samples were amorphous which is consistent with XRD results expected for a Frit 418 based sample. (d) For the sump solids, SEM/EDS analysis indicated that the particle size of the sump solids were consistent with that of an as received Frit 418 sample from a current DWPF vendor. (e) For the slurry solids, SEM/EDS analysis indicated that the particle size

  16. Numerical simulation of formation and preservation of Ningwu ice cave, Shanxi, China

    NASA Astrophysics Data System (ADS)

    Yang, S.; Shi, Y.

    2015-10-01

    Ice caves exist in locations where annual average air temperature is higher than 0 °C. An example is Ningwu ice cave, Shanxi Province, the largest ice cave in China. In order to quantitatively investigate the mechanism of formation and preservation of the ice cave, we use the finite-element method to simulate the heat transfer process at this ice cave. There are two major control factors. First, there is the seasonal asymmetric heat transfer. Heat is transferred into the ice cave from outside very inefficiently by conduction in spring, summer and fall. In winter, thermal convection occurs that transfers heat very efficiently out of the ice cave, thus cooling it down. Secondly, ice-water phase change provides a heat barrier for heat transfer into the cave in summer. The calculation also helps to evaluate effects of global warming, tourists, colored lights, climatic conditions, etc. for sustainable development of the ice cave as a tourism resource. In some other ice caves in China, managers have installed airtight doors at these ice caves' entrances with the intention of "protecting" these caves, but this in fact prevents cooling in winter and these cave ices will entirely melt within tens of years.

  17. Numerical simulation of formation and preservation of Ningwu ice cave, Shanxi, China

    NASA Astrophysics Data System (ADS)

    Yang, S.; Shi, Y.

    2015-04-01

    Ice caves exist in locations where annual average temperature in higher than 0 °C. An example is Ningwu ice cave, Shanxi Province, the largest ice cave in China. In order to quantitatively explain the mechanism of formation and preservation of the ice cave, we use Finite Element Method to simulate the heat transfer process at this ice cave. There are two major control factors. First, there is the seasonal asymmetric heat transfer. Heat is transferred into the ice cave from outside, very inefficiently by conduction in spring, summer and fall. In winter, thermal convection occurs that transfers heat very efficiently out of the ice cave, thus cooling it down. Secondly, ice-water phase change provides a heat barrier for heat transfer into the cave in summer. The calculation also helps to evaluate effects of global warming, tourists, etc. for sustainable development of ice cave as tourism resource. In some other ice caves in China, managers installed air-tight doors at these ice caves entrance intending to "protect" these caves, but this prevent cooling down these caves in winters and these cave ices will entirely melt within tens of years.

  18. System and method for continuous solids slurry depressurization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leininger, Thomas Frederick; Steele, Raymond Douglas; Cordes, Stephen Michael

    A system includes a first pump having a first outlet and a first inlet, and a controller. The first pump is configured to continuously receive a flow of a slurry into the first outlet at a first pressure and to continuously discharge the flow of the slurry from the first inlet at a second pressure less than the first pressure. The controller is configured to control a first speed of the first pump against the flow of the slurry based at least in part on the first pressure, wherein the first speed of the first pump is configured to resistmore » a backflow of the slurry from the first outlet to the first inlet.« less

  19. Ice damage to concrete

    DOT National Transportation Integrated Search

    1998-04-01

    Concrete is a porous material. When saturated with water and then cooled to below 00C, it cracks internally. Upon repeated freezing and thawing, the cracks grow, interact, and lead eventually to macroscopic degradation, termed ice damage. This report...

  20. Internal and external cooling methods and their effect on body temperature, thermal perception and dexterity.

    PubMed

    Maley, Matthew J; Minett, Geoffrey M; Bach, Aaron J E; Zietek, Stephanie A; Stewart, Kelly L; Stewart, Ian B

    2018-01-01

    The present study aimed to compare a range of cooling methods possibly utilised by occupational workers, focusing on their effect on body temperature, perception and manual dexterity. Ten male participants completed eight trials involving 30 min of seated rest followed by 30 min of cooling or control of no cooling (CON) (34°C, 58% relative humidity). The cooling methods utilised were: ice cooling vest (CV0), phase change cooling vest melting at 14°C (CV14), evaporative cooling vest (CVEV), arm immersion in 10°C water (AI), portable water-perfused suit (WPS), heliox inhalation (HE) and ice slushy ingestion (SL). Immediately before and after cooling, participants were assessed for fine (Purdue pegboard task) and gross (grip and pinch strength) manual dexterity. Rectal and skin temperature, as well as thermal sensation and comfort, were monitored throughout. Compared with CON, SL was the only method to reduce rectal temperature (P = 0.012). All externally applied cooling methods reduced skin temperature (P<0.05), though CV0 resulted in the lowest skin temperature versus other cooling methods. Participants felt cooler with CV0, CV14, WPS, AI and SL (P<0.05). AI significantly impaired Purdue pegboard performance (P = 0.001), but did not affect grip or pinch strength (P>0.05). The present study observed that ice ingestion or ice applied to the skin produced the greatest effect on rectal and skin temperature, respectively. AI should not be utilised if workers require subsequent fine manual dexterity. These results will help inform future studies investigating appropriate pre-cooling methods for the occupational worker.

  1. Passive ice freezing-releasing heat pipe. [Patent application

    DOEpatents

    Gorski, A.J.; Schertz, W.W.

    1980-09-29

    A heat pipe device has been developed which permits completely passive ice formation and periodic release of ice without requiring the ambient temperature to rise above the melting point of water. This passive design enables the maximum amount of cooling capacity to be stored in the tank.

  2. Effect of ice-quenching on the change in hardness of a Pd-Au-Zn alloy during porcelain firing simulation.

    PubMed

    Shin, Hye-Jeong; Kim, Min-Jung; Kim, Hyung-Il; Kwon, Yong Hoon; Seol, Hyo-Joung

    2017-03-31

    This study examined the effect of ice-quenching after degassing on the change in hardness of a Pd-Au-Zn alloy during porcelain firing simulations. By ice-quenching after degassing, the specimens were softened due to homogenization without the need for an additional softening heat treatment. The lowered hardness by ice-quenching after degassing was recovered greatly from the first stage of porcelain firing process by controlling the cooling rate. The increase in hardness during cooling after porcelain firing was attributed to the precipitation of the f.c.t. PdZn phase containing Au, which caused severe lattice strain in the interphase boundary between the precipitates and matrix of the f.c.c. structure. The final hardness was slightly higher in the ice-quenched specimen than in the specimen cooled at stage 0 (the most effective cooling rate for alloy hardening) after degassing. This was attributed to the more active grain interior precipitation during cooling in the ice-quenched specimen after degassing.

  3. CATALYTIC RECOMBINATION OF RADIOLYTIC GASES IN THORIUM OXIDE SLURRIES

    DOEpatents

    Morse, L.E.

    1962-08-01

    A method for the coinbination of hydrogen and oxygen in aqueous thorium oxide-uranium oxide slurries is described. A small amount of molybdenum oxide catalyst is provided in the slurry. This catalyst is applicable to the recombination of hydrogen and/or deuterium and oxygen produced by irradiation of the slurries in nuclear reactors. (AEC)

  4. Additional Results of Glaze Icing Scaling in SLD Conditions

    NASA Technical Reports Server (NTRS)

    Tsao, Jen-Ching

    2016-01-01

    New guidance of acceptable means of compliance with the super-cooled large drops (SLD) conditions has been issued by the U.S. Department of Transportation's Federal Aviation Administration (FAA) in its Advisory Circular AC 25-28 in November 2014. The Part 25, Appendix O is developed to define a representative icing environment for super-cooled large drops. Super-cooled large drops, which include freezing drizzle and freezing rain conditions, are not included in Appendix C. This paper reports results from recent glaze icing scaling tests conducted in NASA Glenn Icing Research Tunnel (IRT) to evaluate how well the scaling methods recommended for Appendix C conditions might apply to SLD conditions. The models were straight NACA 0012 wing sections. The reference model had a chord of 72 inches and the scale model had a chord of 21 inches. Reference tests were run with airspeeds of 100 and 130.3 knots and with MVD's of 85 and 170 microns. Two scaling methods were considered. One was based on the modified Ruff method with scale velocity found by matching the Weber number W (sub eL). The other was proposed and developed by Feo specifically for strong glaze icing conditions, in which the scale liquid water content and velocity were found by matching reference and scale values of the non-dimensional water-film thickness expression and the film Weber number W (sub ef). All tests were conducted at 0 degrees angle of arrival. Results will be presented for stagnation freezing fractions of 0.2 and 0.3. For non-dimensional reference and scale ice shape comparison, a new post-scanning ice shape digitization procedure was developed for extracting 2-dimensional ice shape profiles at any selected span-wise location from the high fidelity 3-dimensional scanned ice shapes obtained in the IRT.

  5. Additional Results of Glaze Icing Scaling in SLD Conditions

    NASA Technical Reports Server (NTRS)

    Tsao, Jen-Ching

    2016-01-01

    New guidance of acceptable means of compliance with the super-cooled large drops (SLD) conditions has been issued by the U.S. Department of Transportation's Federal Aviation Administration (FAA) in its Advisory Circular AC 25-28 in November 2014. The Part 25, Appendix O is developed to define a representative icing environment for super-cooled large drops. Super-cooled large drops, which include freezing drizzle and freezing rain conditions, are not included in Appendix C. This paper reports results from recent glaze icing scaling tests conducted in NASA Glenn Icing Research Tunnel (IRT) to evaluate how well the scaling methods recommended for Appendix C conditions might apply to SLD conditions. The models were straight NACA 0012 wing sections. The reference model had a chord of 72 in. and the scale model had a chord of 21 in. Reference tests were run with airspeeds of 100 and 130.3 kn and with MVD's of 85 and 170 micron. Two scaling methods were considered. One was based on the modified Ruff method with scale velocity found by matching the Weber number WeL. The other was proposed and developed by Feo specifically for strong glaze icing conditions, in which the scale liquid water content and velocity were found by matching reference and scale values of the nondimensional water-film thickness expression and the film Weber number Wef. All tests were conducted at 0 deg AOA. Results will be presented for stagnation freezing fractions of 0.2 and 0.3. For nondimensional reference and scale ice shape comparison, a new post-scanning ice shape digitization procedure was developed for extracting 2-D ice shape profiles at any selected span-wise location from the high fidelity 3-D scanned ice shapes obtained in the IRT.

  6. The practicality of defensive ice walls: How would the great ice wall in Game of Thrones hold up?

    NASA Astrophysics Data System (ADS)

    Truffer, M.

    2017-12-01

    The Game of Thrones great ice wall is a colossal feature stretching several hundred miles and over 200 m high. Its purpose is to defend the realm from the wildlings. It is generally pictured as a near vertical wall. An ice wall of these proportions poses interesting challenges, mainly because ice acts as a non-linear shear-thinning fluid. A 200 m high vertical wall would create a large effective stress near its base of almost 1.8 MPa. Typical stresses responsible for ice flow in glaciers and ice sheets are more than a magnitude lower (0.1 MPa). Extrapolating a commonly used flow law for temperate ice to such high stresses would lead to strain rates at the bottom of the wall in excess of 1/day, meaning the wall would rapidly collapse and spread laterally under its own weight. To keep the wall stable, it would help to cool it significantly, as the flow of ice is also very temperature dependent. Cooling to a chilly -40 C would reduce strain rates by two orders of magnitude, but this still leads to significant slumping of the wall within just a few weeks. A time-dependent similarity solution for simplified ice flow equations that describe the evolving shape of the ice wall was provided by Halfar (1981), and demonstrates the rapid decay of the wall. A simple estimate can be derived by assuming that ice is a perfectly plastic fluid, able to maintain a basal shear stress of about 0.1 MPa. A stable ice wall would then spread laterally to about 4 km width. The resulting slope would only be steep at the very margin and the ice wall would loose much of its defensive capabilities. I conclude that the ice wall as proposed would not be a practicable defense under typical Earth conditions, and special magical powers would be necessary to maintain its shape, even for just a few days.

  7. The influence of additives on rheological properties of limestone slurry

    NASA Astrophysics Data System (ADS)

    Jaworska, B.; Bartosik, A.

    2014-08-01

    Limestone slurry appears in the lime production process as the result of rinsing the processed material. It consists of particles with diameter smaller than 2 mm and the water that is a carrier of solid fraction. Slurry is directed to the settling tank, where the solid phase sediments and the excess water through the transfer system is recovered for re-circulation. Collected at the bottom of the tank sludge is deposited in a landfill located on the premises. Rheological properties of limestone slurry hinder its further free transport in the pipeline due to generated flow resistance. To improve this state of affairs, chemical treatment of drilling fluid, could be applied, of which the main task is to give the slurry properties suitable for the conditions encountered in hydrotransport. This treatment consists of applying chemical additives to slurry in sufficient quantity. Such additives are called as deflocculants or thinners or dispersants, and are chemical compounds which added to aqueous solution are intended to push away suspended particles from each other. The paper presents the results of research allowing reduction of shear stress in limestone slurry. Results demonstrate rheological properties of limestone slurry with and without the addition of modified substances which causes decrease of slurry viscosity, and as a consequence slurry shear stress for adopted shear rate. Achieving the desired effects increases the degree of dispersion of the solid phase suspended in the carrier liquid and improving its ability to smooth flow with decreased friction.

  8. Low Cost Dewatering of Waste Slurries

    NASA Technical Reports Server (NTRS)

    Peterson, J. B.; Sharma, S. K.; Church, R. H.; Scheiner, B. J.

    1993-01-01

    The U.S. Bureau of Mines has developed a technique for dewatering mineral waste slurries which utilizes polymer and a static screen. A variety of waste slurries from placer gold mines and crushed stone operations have been successfully treated using the system. Depending on the waste, a number of polymers have been used successfully with polymer costs ranging from $0.05 to $0.15 per 1,000 gal treated. The dewatering is accomplished using screens made from either ordinary window screen or wedge wire. The screens used are 8 ft wide and 8 ft long. The capacity of the screens varies from 3 to 7 gpm/sq. ft. The water produced is acceptable for recycling to the plant or for discharge to the environment. For example, a fine grain dolomite waste slurry produced from a crushed stone operation was dewatered from a nominal 2.5 pct solids to greater than 50 pct solids using $0.10 to $0.15 worth of polymer per 1,000 gal of slurry. The resulting waste water had a turbidity of less than 50 NTU and could be discharged or recycled. The paper describes field tests conducted using the polymer-screen dewatering system.

  9. Slurry burner for mixture of carbonaceous material and water

    DOEpatents

    Nodd, Dennis G.; Walker, Richard J.

    1987-01-01

    A carbonaceous material-water slurry burner includes a high pressure tip-emulsion atomizer for directing a carbonaceous material-water slurry into a combustion chamber for burning therein without requiring a support fuel or oxygen enrichment of the combustion air. Introduction of the carbonaceous material-water slurry under pressure forces it through a fixed atomizer wherein the slurry is reduced to small droplets by mixing with an atomizing air flow and directed into the combustion chamber. The atomizer includes a swirler located immediately adjacent to where the fuel slurry is introduced into the combustion chamber and which has a single center channel through which the carbonaceous material-water slurry flows into a plurality of diverging channels continuous with the center channel from which the slurry exits the swirler immediately adjacent to an aperture in the combustion chamber. The swirler includes a plurality of slots around its periphery extending the length thereof through which the atomizing air flows and by means of which the atomizing air is deflected so as to exert a maximum shear force upon the carbonaceous material-water slurry as it exits the swirler and enters the combustion chamber. A circulating coolant system or boiler feed water is provided around the periphery of the burner along the length thereof to regulate burner operating temperature, eliminate atomizer plugging, and inhibit the generation of sparklers, thus increasing combustion efficiency. A secondary air source directs heated air into the combustion chamber to promote recirculation of the hot combustion gases within the combustion chamber.

  10. Kinetic boundaries and phase transformations of ice i at high pressure.

    PubMed

    Wang, Yu; Zhang, Huichao; Yang, Xue; Jiang, Shuqing; Goncharov, Alexander F

    2018-01-28

    Raman spectroscopy in diamond anvil cells has been employed to study phase boundaries and transformation kinetics of H 2 O ice at high pressures up to 16 GPa and temperatures down to 15 K. Ice i formed at nearly isobaric cooling of liquid water transforms on compression to high-density amorphous (HDA) ice at 1.1-3 GPa at 15-100 K and then crystallizes in ice vii with the frozen-in disorder (ice vii') which remains stable up to 14.1 GPa at 80 K and 15.9 GPa at 100 K. Unexpectedly, on decompression of ice vii', it transforms to ice viii in its domain of metastability, and then it relaxes into low-density amorphous (LDA) ice on a subsequent pressure release and warming up. On compression of ice i at 150-170 K, ice ix is crystallized and no HDA ice is found; further compression of ice ix results in the sequential phase transitions to stable ices vi and viii. Cooling ice i to 210 K at 0.3 GPa transforms it to a stable ice ii. Our extensive investigations provide previously missing information on the phase diagram of water, especially on the kinetic paths that result in formation of phases which otherwise are not accessible; these results are keys for understanding the phase relations including the formation of metastable phases. Our observations inform on the ice modifications that can occur naturally in planetary environments and are not accessible for direct observations.

  11. Kinetic boundaries and phase transformations of ice i at high pressure

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Zhang, Huichao; Yang, Xue; Jiang, Shuqing; Goncharov, Alexander F.

    2018-01-01

    Raman spectroscopy in diamond anvil cells has been employed to study phase boundaries and transformation kinetics of H2O ice at high pressures up to 16 GPa and temperatures down to 15 K. Ice i formed at nearly isobaric cooling of liquid water transforms on compression to high-density amorphous (HDA) ice at 1.1-3 GPa at 15-100 K and then crystallizes in ice vii with the frozen-in disorder (ice vii') which remains stable up to 14.1 GPa at 80 K and 15.9 GPa at 100 K. Unexpectedly, on decompression of ice vii', it transforms to ice viii in its domain of metastability, and then it relaxes into low-density amorphous (LDA) ice on a subsequent pressure release and warming up. On compression of ice i at 150-170 K, ice ix is crystallized and no HDA ice is found; further compression of ice ix results in the sequential phase transitions to stable ices vi and viii. Cooling ice i to 210 K at 0.3 GPa transforms it to a stable ice ii. Our extensive investigations provide previously missing information on the phase diagram of water, especially on the kinetic paths that result in formation of phases which otherwise are not accessible; these results are keys for understanding the phase relations including the formation of metastable phases. Our observations inform on the ice modifications that can occur naturally in planetary environments and are not accessible for direct observations.

  12. Towards evidence-based emergency medicine: best BETs from the Manchester Royal Infirmary. BET 3: In patients with heatstroke is whole-body ice-water immersion the best cooling method?

    PubMed

    Newport, Matthew; Grayson, Alan

    2012-10-01

    A short cut review was carried out to establish whether whole body ice immersion was an effective way of cooling in patients presenting with heat stroke. One systematic review and three studies were directly relevant to the question. The author, date and country of publication, patient group studied, study type, relevant outcomes, results and study weaknesses of these papers are tabulated. The clinical bottom line was that immersion in ice-water was the most effective modality of lowering core body temperature in exertional heatstroke and shivering and vasoconstriction concerns were unfounded.

  13. Effects of pre-cooling procedures on intermittent-sprint exercise performance in warm conditions.

    PubMed

    Duffield, Rob; Marino, Frank E

    2007-08-01

    The aim of this study was to determine whether pre-cooling procedures improve both maximal sprint and sub-maximal work during intermittent-sprint exercise. Nine male rugby players performed a familiarisation session and three testing sessions of a 2 x 30-min intermittent sprint protocol, which consisted of a 15-m sprint every min separated by free-paced hard-running, jogging and walking in 32 degrees C and 30% humidity. The three sessions included a control condition, Ice-vest condition and Ice-bath/Ice-vest condition, with respective cooling interventions imposed for 15-min pre-exercise and 10-min at half-time. Performance measures of sprint time and % decline and distance covered during sub-maximal exercise were recorded, while physiological measures of core temperature (T (core)), mean skin temperature (T (skin)), heart rate, heat storage, nude mass, rate of perceived exertion, rate of thermal comfort and capillary blood measures of lactate [La(-)], pH, Sodium (Na(+)) and Potassium (K(+)) were recorded. Results for exercise performance indicated no significant differences between conditions for the time or % decline in 15-m sprint efforts or the distance covered during sub-maximal work bouts; however, large effect size data indicated a greater distance covered during hard running following Ice-bath cooling. Further, lowered T (core), T (skin), heart rate, sweat loss and thermal comfort following Ice-bath cooling than Ice-vest or Control conditions were present, with no differences present in capillary blood measures of [La(-)], pH, K(+) or Na(+). As such, the ergogenic benefits of effective pre-cooling procedures in warm conditions for team-sports may be predominantly evident during sub-maximal bouts of exercise.

  14. Sticking properties of ice grains

    NASA Astrophysics Data System (ADS)

    Jongmanns, M.; Kumm, M.; Wurm, G.; Wolf, D. E.; Teiser, J.

    2017-06-01

    We study the size dependence of pull-off forces of water ice in laboratory experiments and numerical simulations. To determine the pull-off force in our laboratory experiments, we use a liquid nitrogen cooled centrifuge. Depending on its rotation frequency, spherical ice grains detach due to the centrifugal force which is related to the adhesive properties. Numerical simulations are conducted by means of molecular dynamics simulations of hexagonal ice using a standard coarse-grained water potential. The pull-off force of a single contact between two spherical ice grains is measured due to strain controlled simulations. Both, the experimental study and the simulations reveal a dependence between the pull-off force and the (reduced) particle radii, which differ significantly from the linear dependence of common contact theories.

  15. Globally synchronous ice core volcanic tracers and abrupt cooling during the last glacial period

    USGS Publications Warehouse

    Bay, R.C.; Bramall, N.E.; Price, P.B.; Clow, G.D.; Hawley, R.L.; Udisti, R.; Castellano, E.

    2006-01-01

    We perform a Monte Carlo pattern recognition analysis of the coincidence between three regional volcanic histories from ice coring of Greenland and Antarctica over the period 2 to 45 ka, using SO4 anomalies in Greenland and East Antarctica determined by continuous core chemistry, together with West Antarctic volcanic ash layers determined by remote optical borehole logging and core assays. We find that the Antarctic record of volcanism correlates with Glacial abrupt climate change at a 95% to >99.8% (???3??) significance level and that volcanic depositions at the three locations match at levels exceeding 3??, likely indicating that many common horizons represent single eruptive events which dispersed material world wide. These globally coincident volcanics were associated with abrupt cooling, often simultaneous with onsets or sudden intensifications of millennial cold periods. The striking agreement between sites implies that the consistency of current timescales obtained by isotopic and glaciological dating methods is better than estimated. Copyright 2006 by the American Geogphysical Union.

  16. Gaseous emissions and modification of slurry composition during storage and after field application: Effect of slurry additives and mechanical separation.

    PubMed

    Owusu-Twum, Maxwell Yeboah; Polastre, Adele; Subedi, Raghunath; Santos, Ana Sofia; Mendes Ferreira, Luis Miguel; Coutinho, João; Trindade, Henrique

    2017-09-15

    The aim of the study was to evaluate the impact of slurry treatment by additives (EU200 ® (EU200), Bio-buster ® (BB), JASS ® and sulphuric acid (H 2 SO 4 )) and mechanical separation on the physical-chemical characteristics, gaseous emissions (NH 3 , CH 4 , CO 2 and N 2 O) during anaerobic storage at ∼20 °C (experiment 1) and NH 3 losses after field application (experiment 2). The treatments studied in experiment 1 were: whole slurry (WS), WS+H 2 SO 4 to a pH of 6.0, WS+EU200 and WS+BB. Treatments for experiment 2 were: WS, slurry liquid fraction (LF), composted solid fraction (CSF), LFs treated with BB (LFB), JASS ® (LFJ), H 2 SO 4 to a pH of 5.5 (LFA) and soil only (control). The results showed an inhibition of the degradation of organic materials (cellulose, hemicellulose, dry matter organic matter and total carbon) in the WS+H 2 SO 4 relative to the WS. When compared to the WS, the WS+H 2 SO 4 increased electrical conductivity, ammonium (NH 4 + ) and sulphur (S) concentrations whilst reducing slurry pH after storage. The WS+H 2 SO 4 reduced NH 3 volatilization by 69% relative to the WS but had no effect on emissions of CH 4 , CO 2 and N 2 O during storage. Biological additive treatments (WS+EU200 and WS+BB) had no impact on slurry characteristics and gaseous emissions relative to the WS during storage. After field application, the cumulative NH 3 lost in the LF was almost 50% lower than the WS. The losses in the LFA were reduced by 92% relative to the LF. The LFB and LFJ had no impact on NH 3 losses relative to the LF. A significant effect of treatment on NH 4 + concentration was found at the top soil layer (0-5 cm) after NH 3 measurements with higher concentrations in the LF treatments relative to the WS. Overall, the use of the above biological additives to decrease pollutant gases and to modify slurry characteristics are questionable. Reducing slurry dry matter through mechanical separation can mitigate NH 3 losses after field application. Slurry

  17. Method of producing a colloidal fuel from coal and a heavy petroleum fraction. [partial liquefaction of coal in slurry, filtration and gasification of residue

    DOEpatents

    Longanbach, J.R.

    1981-11-13

    A method is provided for combining coal as a colloidal suspension within a heavy petroleum fraction. The coal is broken to a medium particle size and is formed into a slurry with a heavy petroleum fraction such as a decanted oil having a boiling point of about 300 to 550/sup 0/C. The slurry is heated to a temperature of 400 to 500/sup 0/C for a limited time of only about 1 to 5 minutes before cooling to a temperature of less than 300/sup 0/C. During this limited contact time at elevated temperature the slurry can be contacted with hydrogen gas to promote conversion. The liquid phase containing dispersed coal solids is filtered from the residual solids and recovered for use as a fuel or feed stock for other processes. The residual solids containing some carbonaceous material are further processed to provide hydrogen gas and heat for use as required in this process.

  18. Solving the energy dilemma at Seven Bridges Ice Arena

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Louria, D.

    1996-08-01

    Seven Bridges Ice Arena with three ice skating rinks is among the largest ice skating facilities in the US. A complete fitness center, pro shop, second level observation gallery, restaurant, aerobics room, dance studio and children`s play room round out the 120,000 ft{sup 2} (11,215 m{sup 2}) world class facility. The Olympic Hockey League ice rink has seating for 800 spectators; and the National Hockey League ice rink has 1,200 spectator seats. The collegiate ice sheet has participant seating only. When building the one-year-old facility, the management initially solicited HVAC design/build system plans based on the usual Package Roof Topmore » (RTU) heat/cool units or split system parameters. Such a plan could have been a disaster because high energy costs have contributed directly to the closing of 20 rinks in the Chicago area. This article describes a HVAC system that would take advantage of every Energy Conservation Opportunities (ECO) possible to ensure the economic well being of this property. This included a plan that uses the refrigeration for both cooling and heating, which eliminated the need for commercial packaged units.« less

  19. Delicious ice cream, why does salt thaw ice?

    NASA Astrophysics Data System (ADS)

    Bagnoli, Franco

    2016-03-01

    Plain Awful is an imaginary valley on the Andes populated by a highly-imitative, cubical people for which the most criminal offence is to exhibit round objects. The duck family (Scrooge, Donald and nephews) are teaming against Scrooge's worst enemy, Flintheart Glomgold, trying to buy the famous Plain Awful square eggs. Inadvertently, Scrooge violates the taboo, showing his Number One Dime, and is imprisoned in the stone quarries. He can be released only after the presentation of an ice cream soda to the President of Plain Awful. Donald and his nephews fly with Flintheart to deliver it, but Scrooge's enemy, of course, betrays the previous agreement after getting the ice cream, forcing the ducks into making an emergence replacement on the spot. Using dried milk, sugar and chocolate from their ration packs, plus some snow and salt for cooling they are able make the ice cream, and after dressing it with the carbonated water from a fire extinguisher they finally manage to produce the desired dessert. This comic may serve as an introduction to the "mysterious" phenomenon that added salt melts the ice and, even more surprising, does it by lowering the temperature of the mixture.

  20. Internal and external cooling methods and their effect on body temperature, thermal perception and dexterity

    PubMed Central

    Minett, Geoffrey M.; Bach, Aaron J. E.; Zietek, Stephanie A.; Stewart, Kelly L.; Stewart, Ian B.

    2018-01-01

    Objective The present study aimed to compare a range of cooling methods possibly utilised by occupational workers, focusing on their effect on body temperature, perception and manual dexterity. Methods Ten male participants completed eight trials involving 30 min of seated rest followed by 30 min of cooling or control of no cooling (CON) (34°C, 58% relative humidity). The cooling methods utilised were: ice cooling vest (CV0), phase change cooling vest melting at 14°C (CV14), evaporative cooling vest (CVEV), arm immersion in 10°C water (AI), portable water-perfused suit (WPS), heliox inhalation (HE) and ice slushy ingestion (SL). Immediately before and after cooling, participants were assessed for fine (Purdue pegboard task) and gross (grip and pinch strength) manual dexterity. Rectal and skin temperature, as well as thermal sensation and comfort, were monitored throughout. Results Compared with CON, SL was the only method to reduce rectal temperature (P = 0.012). All externally applied cooling methods reduced skin temperature (P<0.05), though CV0 resulted in the lowest skin temperature versus other cooling methods. Participants felt cooler with CV0, CV14, WPS, AI and SL (P<0.05). AI significantly impaired Purdue pegboard performance (P = 0.001), but did not affect grip or pinch strength (P>0.05). Conclusion The present study observed that ice ingestion or ice applied to the skin produced the greatest effect on rectal and skin temperature, respectively. AI should not be utilised if workers require subsequent fine manual dexterity. These results will help inform future studies investigating appropriate pre-cooling methods for the occupational worker. PMID:29357373

  1. Improvement in the properties of plasma-sprayed metallic, alloy and ceramic coatings using dry-ice blasting

    NASA Astrophysics Data System (ADS)

    Dong, Shujuan; Song, Bo; Hansz, Bernard; Liao, Hanlin; Coddet, Christian

    2011-10-01

    Dry-ice blasting, as an environmental-friendly method, was introduced into atmospheric plasma spraying for improving properties of metallic, alloy and ceramic coatings. The deposited coatings were then compared with coatings plasma-sprayed using conventional air cooling in terms of microstructure, temperature, oxidation, porosity, residual stress and adhesion. It was found that a denser steel or CoNiCrAlY alloy coating with a lower content of oxide can be achieved with the application of dry-ice blasting during the plasma spraying. In addition, the adhesive strength of Al 2O 3 coating deposited with dry-ice blasting exceeded 60 MPa, which was nearly increased by 30% compared with that of the coating deposited with conventional air cooling. The improvement in properties of plasma-sprayed metallic, alloy and ceramic coatings caused by dry-ice blasting was attributed to the decrease of annulus-ringed disk like splats, the better cooling efficiency of dry-ice pellets and even the mechanical effect of dry-ice impact.

  2. What's Cooler Than Being Cool? Icefin: Robotic Exploration Beneath Antarctic Ice Shelves

    NASA Astrophysics Data System (ADS)

    Lawrence, J.; Schmidt, B. E.; Meister, M. R.; Glass, J. B.; Bowman, J. S.; Stockton, A. M.; Dichek, D.; Hurwitz, B.; Ramey, C.; Spears, A.; Walker, C. C.

    2017-12-01

    The 2017-18 Antarctic field season marks the first of three under the RISEUP project (Ross Ice Shelf & Europa Underwater Probe, NASA PSTAR program grant NNX16AL07G, PI B. E. Schmidt). RISEUP expands our efforts to understand the physical processes governing ice-ocean interactions from beneath the McMurdo Ice Shelf (MIS) to the Ross Ice Shelf (RIS), utilizing the modular autonomous or remotely operable submersible vehicle (AUV/ROV) Icefin. The remote, aphotic regions below Antarctic shelves present a unique opportunity- they are both poorly understood terrestrial environments and analogs for similar systems hypothesized to be present on other bodies in our solar system, such as Europa and Enceladus. By developing new robotic technologies to access and explore ice shelf cavities we are advancing our understanding of how temperature, pressure, and salinity influence the ice-ocean interface, the limits of habitable environments on Earth, and what biological processes and adaptations enable the life discovered by the RISP and WISSARD programs during initial exploration beneath the RIS. These investigations further our understanding of ocean world habitability and support planned and proposed planetary missions (e.g. Europa Clipper, Europa Lander) via improved constraint of marine ice accretion processes, organic entrainment, and interface habitability. Custom built at Georgia Tech and first deployed during the 2014/15 Antarctic season, Icefin is 3.5 m, 125 kg modular vehicle that now carries a full suite of oceanographic sensors (including conductivity, temperature, depth, dissolved O2, dissolved organic matter, turbidity, pH, eH, and sonar) that can be deployed through boreholes as small as 25 cm in diameter. Here we present continued analysis of basal ice and oceanographic observations in the McMurdo Sound region from 2012-2015 with, pending anticipated field work, comparisons to preliminary data from the 2017/18 field season beneath both the McMurdo and Ross Ice

  3. Ice in Volcanic Clouds

    NASA Astrophysics Data System (ADS)

    Few, A. A.

    2010-12-01

    It is widely recognized that lightning activity in thunderstorm clouds is associated with ice in the clouds. In volcanic plumes the lower electrical discharges near the vent are clearly not associated with ice; however, the electrical discharges from the upper volcanic clouds very likely are associated with ice. There is ample water in volcanic plumes and clouds. The explosive volcanic eruption is produced by volatile components in the rising magma. Researchers estimate that the water content of the volatiles is up to 99% by mole; other gases are mainly sulfur and chlorine species. These volatiles carry with them a wide range of hot magma melts and solids, importantly silicate particles and tephra. The more massive components fall out near the vent carrying with them much of the heat from the plume; these large components are not in thermodynamic equilibrium with the gases, ash, and lapilli; thus the heat removed does not lower the temperature of the materials carried aloft in the plume. Upward motion is initially provided by the thrust from the volcanic eruption, then by buoyancy of the hot plume. The rising plume is cooled by entrainment of environmental air, which contains water, and by adiabatic expansion; the plume transitions into a volcanic cloud. Further lifting and cooling produces supercooled water droplets (T ~ -5 C) in a limited zone (z ~ 9 km) before the fast updraft (~ 60 m/s) rapidly transforms them into ice. Computer models of volcanic clouds that include water and ice microphysics indicate that the latent heat of condensation is not significant in cloud dynamics because it occurs in a region where buoyancy is provided by the original hot plume material. The latent heat of ice formation occurs at higher and colder levels and seems to contribute to the final lifting of the cloud top by ~1.5km. Laboratory results indicate that the fine silicate ash particles, which are abundant, are good ice nuclei, IN. Because of the abundance of the silicate ash

  4. Turbulent heat exchange between water and ice at an evolving ice-water interface

    NASA Astrophysics Data System (ADS)

    Ramudu, Eshwan; Hirsh, Benjamin Henry; Olson, Peter; Gnanadesikan, Anand

    2016-07-01

    We conduct laboratory experiments on the time evolution of an ice layer cooled from below and subjected to a turbulent shear flow of warm water from above. Our study is motivated by observations of warm water intrusion into the ocean cavity under Antarctic ice shelves, accelerating the melting of their basal surfaces. The strength of the applied turbulent shear flow in our experiments is represented in terms of its Reynolds number $\\textit{Re}$, which is varied over the range $2.0\\times10^3 \\le \\textit{Re} \\le 1.0\\times10^4$. Depending on the water temperature, partial transient melting of the ice occurs at the lower end of this range of $\\textit{Re}$ and complete transient melting of the ice occurs at the higher end. Following these episodes of transient melting, the ice reforms at a rate that is independent of $\\textit{Re}$. We fit our experimental measurements of ice thickness and temperature to a one-dimensional model for the evolution of the ice thickness in which the turbulent heat transfer is parameterized in terms of the friction velocity of the shear flow. The melting mechanism we investigate in our experiments can easily account for the basal melting rate of Pine Island Glacier ice shelf inferred from observations.

  5. A Modified Cooling Method and Its Application in "Drosophila" Experiments

    ERIC Educational Resources Information Center

    Qu, Wen-hui; Zhu, Tong-bo; Yang, Da-Xiang

    2015-01-01

    Chilling is a cost-effective and safe method of immobilising flies in "Drosophila" experiments. However, should condensation form on the plate, it would be fatal to the flies. Here we describe a modified cooling method using reusable commercial ice pack(s) (ca. 400 ml, 2-3 cm tall) rather than crushed ice. The ice pack is covered with a…

  6. Study of Cycling Air-Cooling System with a Cold Accumulator for Micro Gas-Turbine Installations

    NASA Astrophysics Data System (ADS)

    Ochkov, V. F.; Stepanova, T. A.; Katenev, G. M.; Tumanovskii, V. A.; Borisova, P. N.

    2018-05-01

    Using the cycling air-cooling systems of the CTIC type (Combustion Turbine Inlet Cooling) with a cold accumulator in a micro gas-turbine installation (micro-GTI) to preserve its capacity under the seasonal temperature rise of outside air is described. Water ice is used as the body-storage in the accumulators, and ice water (water at 0.5-1.0°C) is used as the body that cools air. The ice water circulates between the accumulator and the air-water heat exchanger. The cold accumulator model with renewable ice resources is considered. The model contains the heat-exchanging tube lattice-evaporator covered with ice. The lattice is cross-flowed with water. The criterion heat exchange equation that describes the process in the cold accumulator under consideration is presented. The calculations of duration of its active operation were performed. The dependence of cold accumulator service life on water circulation rate was evaluated. The adequacy of the design model was confirmed experimentally in the mock-up of the cold accumulator with a refrigerating machine periodically creating a 200 kg ice reserve in the reservoir-storage. The design model makes it possible to determine the weight of ice reserve of the discharged cold accumulator for cooling the cycle air in the operation of a C-30 type micro- GTI produced by the Capstone Company or micro-GTIs of other capacities. Recommendations for increasing the working capacity of cold accumulators of CTIC-systems of a micro-GTI were made.

  7. Microencapsulated PCM slurries for heat transfer and energy storage in spacecraft systems

    NASA Astrophysics Data System (ADS)

    Colvin, David P.; Mulligan, James C.; Bryant, Yvonne G.; Duncan, John L.; Gravely, Benjamin T.

    The technical feasibility for providing significantly enhanced heat transport and storage as well as improved thermal control has been investigated during several Small Business Innovative Research (SBIR) programs for NASA, the United States Air Force (USAF), and the Strategic Defense Initiative Organization (SDIO) using microencapsulated phase change materials (PCMs) in both aqueous and nonaqueous two-component slurries. In the program for SDIO, novel two-component coolant fluids were prepared and successfully tested at both low (300 K) and intermediate temperatures (460 to 700 K). The two-component fluid slurries of microencapsulated PCMs included organic particles in aqueous and nonaqueous liquids, as well as microencapsulated metals that potentially could be carried by liquid metals or used as powdered heat sinks. Simulation and experimental studies showed that such active cooling systems could be designed and operated with enhancements of heat capacity that exceeded 10 times or 1000 percent that for the base fluid along with significant enhancement in the fluid's heat capacity. Furthermore, this enhancement provided essentially isothermal conditions throughout the pumped primary coolant fluid loop. The results suggest that together with much higher fluid thermal capacity, greater uniformity of temperature is achievable with such fluids, and that significant reductions in pumping power, system size, and system mass are also possible.

  8. Cloudy with a Chance of Ice: The Stratification of Titan's Vernal Ponds and Formation of Ethane Ice

    NASA Astrophysics Data System (ADS)

    Soderblom, J. M.; Steckloff, J. K.

    2017-12-01

    Cassini ISS observations revealed regions on Saturn's moon Titan that become significantly darker (lower albedo) following storm events [1]. These regions are observed to be topographically low [2], indicating that liquid (predominantly methane-ethane-nitrogen) is pooling on Titan after these storm events. These dark ponds, however, are then observed to significantly brighten (higher albedo relative to pre-storm albedo), before fading to their pre-storm albedos [2-3]. We interpret these data to indicate ethane ice formation, which cools from evaporation of methane. The formation of ethane ices results from a unique sequence of thermophysical and thermochemical phenomena. Initially, the methane in the mixture evaporates, cooling the pond. Nitrogen, dissolved primarily in the methane, exsolves, further cooling the liquid. However, because nitrogen is significantly more soluble in cooler methane-hydrocarbon mixtures, relatively more methane than nitrogen leaves the fluid, increasing the relative fraction of nitrogen. This increased nitrogen fraction increases the density of the liquid, as nitrogen is significantly denser than methane or ethane (pure ethane's density is intermediate to that of methane and nitrogen). At around 85 K the mixture is as dense as pure liquid ethane. Thus, further evaporative methane loss and cooling at the pond's surface leads to a chemical stratification, with an increasingly ethane rich epilimnion (surface layer) overlying a methane rich hypolimnion (subsurface layer). Further evaporation of methane from the ethane-rich epilimnion drives its temperature and composition toward the methane-ethane-nitrogen liquidus curve, causing pure ethane ice to precipitate out of solution and settle to the bottom of the pool. This settling would obscure the ethane ice from Cassini VIMS and ISS, which would instead continue to appear as a dark pond on the surface. As the ethane precipitates out completely, a binary methane-nitrogen liquid mixture remains

  9. Comparison of Aircraft Icing Growth Assessment Software

    NASA Technical Reports Server (NTRS)

    Wright, William; Potapczuk, Mark G.; Levinson, Laurie H.

    2011-01-01

    A research project is underway to produce computer software that can accurately predict ice growth under any meteorological conditions for any aircraft surface. An extensive comparison of the results in a quantifiable manner against the database of ice shapes that have been generated in the NASA Glenn Icing Research Tunnel (IRT) has been performed, including additional data taken to extend the database in the Super-cooled Large Drop (SLD) regime. The project shows the differences in ice shape between LEWICE 3.2.2, GlennICE, and experimental data. The project addresses the validation of the software against a recent set of ice-shape data in the SLD regime. This validation effort mirrors a similar effort undertaken for previous validations of LEWICE. Those reports quantified the ice accretion prediction capabilities of the LEWICE software. Several ice geometry features were proposed for comparing ice shapes in a quantitative manner. The resulting analysis showed that LEWICE compared well to the available experimental data.

  10. Dynamical excitation of the tropical Pacific Ocean and ENSO variability by Little Ice Age cooling.

    PubMed

    Rustic, Gerald T; Koutavas, Athanasios; Marchitto, Thomas M; Linsley, Braddock K

    2015-12-18

    Tropical Pacific Ocean dynamics during the Medieval Climate Anomaly (MCA) and the Little Ice Age (LIA) are poorly characterized due to a lack of evidence from the eastern equatorial Pacific. We reconstructed sea surface temperature, El Niño-Southern Oscillation (ENSO) activity, and the tropical Pacific zonal gradient for the past millennium from Galápagos ocean sediments. We document a mid-millennium shift (MMS) in ocean-atmosphere circulation around 1500-1650 CE, from a state with dampened ENSO and strong zonal gradient to one with amplified ENSO and weak gradient. The MMS coincided with the deepest LIA cooling and was probably caused by a southward shift of the intertropical convergence zone. The peak of the MCA (900-1150 CE) was a warm period in the eastern Pacific, contradicting the paradigm of a persistent La Niña pattern. Copyright © 2015, American Association for the Advancement of Science.

  11. Quantitative data analysis to determine best food cooling practices in U.S. restaurants.

    PubMed

    Schaffner, Donald W; Brown, Laura Green; Ripley, Danny; Reimann, Dave; Koktavy, Nicole; Blade, Henry; Nicholas, David

    2015-04-01

    Data collected by the Centers for Disease Control and Prevention (CDC) show that improper cooling practices contributed to more than 500 foodborne illness outbreaks associated with restaurants or delis in the United States between 1998 and 2008. CDC's Environmental Health Specialists Network (EHS-Net) personnel collected data in approximately 50 randomly selected restaurants in nine EHS-Net sites in 2009 to 2010 and measured the temperatures of cooling food at the beginning and the end of the observation period. Those beginning and ending points were used to estimate cooling rates. The most common cooling method was refrigeration, used in 48% of cooling steps. Other cooling methods included ice baths (19%), room-temperature cooling (17%), ice-wand cooling (7%), and adding ice or frozen food to the cooling food as an ingredient (2%). Sixty-five percent of cooling observations had an estimated cooling rate that was compliant with the 2009 Food and Drug Administration Food Code guideline (cooling to 41 °F [5 °C] in 6 h). Large cuts of meat and stews had the slowest overall estimated cooling rate, approximately equal to that specified in the Food Code guideline. Pasta and noodles were the fastest cooling foods, with a cooling time of just over 2 h. Foods not being actively monitored by food workers were more than twice as likely to cool more slowly than recommended in the Food Code guideline. Food stored at a depth greater than 7.6 cm (3 in.) was twice as likely to cool more slowly than specified in the Food Code guideline. Unventilated cooling foods were almost twice as likely to cool more slowly than specified in the Food Code guideline. Our data suggest that several best cooling practices can contribute to a proper cooling process. Inspectors unable to assess the full cooling process should consider assessing specific cooling practices as an alternative. Future research could validate our estimation method and study the effect of specific practices on the full

  12. Quantitative Data Analysis To Determine Best Food Cooling Practices in U.S. Restaurants†

    PubMed Central

    Schaffner, Donald W.; Brown, Laura Green; Ripley, Danny; Reimann, Dave; Koktavy, Nicole; Blade, Henry; Nicholas, David

    2017-01-01

    Data collected by the Centers for Disease Control and Prevention (CDC) show that improper cooling practices contributed to more than 500 foodborne illness outbreaks associated with restaurants or delis in the United States between 1998 and 2008. CDC's Environmental Health Specialists Network (EHS-Net) personnel collected data in approximately 50 randomly selected restaurants in nine EHS-Net sites in 2009 to 2010 and measured the temperatures of cooling food at the beginning and the end of the observation period. Those beginning and ending points were used to estimate cooling rates. The most common cooling method was refrigeration, used in 48% of cooling steps. Other cooling methods included ice baths (19%), room-temperature cooling (17%), ice-wand cooling (7%), and adding ice or frozen food to the cooling food as an ingredient (2%). Sixty-five percent of cooling observations had an estimated cooling rate that was compliant with the 2009 Food and Drug Administration Food Code guideline (cooling to 41°F [5°C] in 6 h). Large cuts of meat and stews had the slowest overall estimated cooling rate, approximately equal to that specified in the Food Code guideline. Pasta and noodles were the fastest cooling foods, with a cooling time of just over 2 h. Foods not being actively monitored by food workers were more than twice as likely to cool more slowly than recommended in the Food Code guideline. Food stored at a depth greater than 7.6 cm (3 in.) was twice as likely to cool more slowly than specified in the Food Code guideline. Unventilated cooling foods were almost twice as likely to cool more slowly than specified in the Food Code guideline. Our data suggest that several best cooling practices can contribute to a proper cooling process. Inspectors unable to assess the full cooling process should consider assessing specific cooling practices as an alternative. Future research could validate our estimation method and study the effect of specific practices on the full

  13. Cooling and societal change during the Late Antique Little Ice Age from 536 to around 660 AD

    NASA Astrophysics Data System (ADS)

    Büntgen, Ulf; Myglan, Vladimir S.; Ljungqvist, Fredrik Charpentier; McCormick, Michael; di Cosmo, Nicola; Sigl, Michael; Jungclaus, Johann; Wagner, Sebastian; Krusic, Paul J.; Esper, Jan; Kaplan, Jed O.; de Vaan, Michiel A. C.; Luterbacher, Jürg; Wacker, Lukas; Tegel, Willy; Kirdyanov, Alexander V.

    2016-03-01

    Climatic changes during the first half of the Common Era have been suggested to play a role in societal reorganizations in Europe and Asia. In particular, the sixth century coincides with rising and falling civilizations, pandemics, human migration and political turmoil. Our understanding of the magnitude and spatial extent as well as the possible causes and concurrences of climate change during this period is, however, still limited. Here we use tree-ring chronologies from the Russian Altai and European Alps to reconstruct summer temperatures over the past two millennia. We find an unprecedented, long-lasting and spatially synchronized cooling following a cluster of large volcanic eruptions in 536, 540 and 547 AD (ref. ), which was probably sustained by ocean and sea-ice feedbacks, as well as a solar minimum. We thus identify the interval from 536 to about 660 AD as the Late Antique Little Ice Age. Spanning most of the Northern Hemisphere, we suggest that this cold phase be considered as an additional environmental factor contributing to the establishment of the Justinian plague, transformation of the eastern Roman Empire and collapse of the Sasanian Empire, movements out of the Asian steppe and Arabian Peninsula, spread of Slavic-speaking peoples and political upheavals in China.

  14. Effective use of fly ash slurry as fill material.

    PubMed

    Horiuchi, S; Kawaguchi, M; Yasuhara, K

    2000-09-15

    A lot of effort has been put into increasing coal ash utilization; however, 50% of total amount is disposed of on land and in the sea. Several attempts have been reported recently concerning slurried coal fly ash use for civil engineering materials, such as for structural fill and backfill. The authors have studied this issue for more than 15 years and reported its potential for (1) underwater fills, (2) light weight backfills, and (3) light weight structural fills, through both laboratory tests and construction works. This paper is an overview of the results obtained for slurry, focusing on the following. (1) Coal fly ash reclaimed by slurry placement shows lower compressibility, higher ground density, and higher strength than by the other methods. This higher strength increases stability against liquefaction during earthquake. (2) Higher stability of the fly ash ground formed by slurry placement is caused by higher density and its self-hardening property. (3) Stability of fly ash reclaimed ground can be increased by increasing density and also by strength enhancement by cement addition. (4) Technical data obtained through a man-made island construction project shows the advantages of fly ash slurry in terms of mechanical properties such as higher stability against sliding failure, sufficient ground strength, and also in terms of cost saving. (5) Concentration in leachates from the placed slurry is lower than the Japanese environmental law. (6) In order to enlarge the fly ash slurry application toward a lightweight fill, mixtures of air foam, cement and fly ash were examined. Test results shows sufficient durability of this material against creep failure. This material was then used as lightweight structural fill around a high-rise building, and showed sufficient quality. From the above data, it can be concluded that coal fly ash slurry can be effectively utilized in civil engineering projects.

  15. Ice Cloud Properties And Their Radiative Effects: Global Observations And Modeling

    NASA Astrophysics Data System (ADS)

    Hong, Yulan

    Ice clouds are crucial to the Earth's radiation balance. They cool the Earth-atmosphere system by reflecting solar radiation back to space and warm it by blocking outgoing thermal radiation. However, there is a lack of an observation-based climatology of ice cloud properties and their radiative effects. Two active sensors, the CloudSat radar and the CALIPSO lidar, for the first time provide vertically resolved ice cloud data on a global scale. Using synergistic signals of these two sensors, it is possible to obtain both optically thin and thick ice clouds as the radar excels in probing thick clouds while the lidar is better to detect the thin ones. First, based on the CloudSat radar and CALIPSO lidar measurements, we have derived a climatology of ice cloud properties. Ice clouds cover around 50% of the Earth surface, and their global-mean optical depth, ice water path, and effective radius are approximately 2 (unitless), 109 g m. {-2} and 48 \\mum, respectively. Ice cloud occurrence frequency not only depends on regions and seasons, but also on the types of ice clouds as defined by optical depth (tau) values. Optically thin ice clouds (tau < 3) are most frequently observed in the tropics around 15 km and in the midlatitudes below 5 km, while the thicker clouds (tau > 3) occur frequently in the tropical convective areas and along the midlatitude storm tracks. Using ice retrievals derived from combined radar-lidar measurements, we conducted radiative transfer modeling to study ice cloud radiative effects. The combined effects of ice clouds warm the earth-atmosphere system by approximately 5 W m-2, contributed by a longwave warming effect of about 21.8 W m-2 and a shortwave cooling effect of approximately -16.7 W m-2. Seasonal variations of ice cloud radiative effects are evident in the midlatitudes where the net effect changes from warming during winter to cooling during summer, and the net warming effect occurs year-round in the tropics (˜ 10 W m-2). Ice cloud

  16. Using Firn Air for Facility Cooling at the WAIS Divide Site

    DTIC Science & Technology

    2014-09-17

    reduce logistics costs at remote field camps where it is critical to maintain proper temperatures to preserve sensitive deep ice cores. We assessed the...feasibility of using firn air for cooling at the West Antarc- tic Ice Sheet (WAIS) Divide ice core drilling site as a means to adequately and...efficiently refrigerate ice cores during storage and processing. We used estimates of mean annual temperature, temperature variations, and firn

  17. Design and Construction of an Ice-in-Tank Diurnal Ice Storage for the PX Building at Fort Stewart, GA

    DTIC Science & Technology

    1988-07-01

    of a Eutectic Salt System 16 0 11 Energy Characteristics of Fort Stewart PX on a Hot Day 21 12 Peak Day Load Profile for Fort Stewart 21 13 Chiller...at Yuma Proving Ground, AZ in FY 88. An ice-shucking and a eutectic salt DIS cooling system are scheduled to be installed in the coming years. The...water, ice, or freezing eutectic salt . Ice and salt systems can be grouped • together as phase-change systems. In a recent survey of over a hundred

  18. Rheological Characterization of Unusual DWPF Slurry Samples (U)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koopman, D. C.

    2005-09-01

    A study was undertaken to identify and clarify examples of unusual rheological behavior in Defense Waste Processing Facility (DWPF) simulant slurry samples. Identification was accomplished by reviewing sludge, Sludge Receipt and Adjustment Tank (SRAT) product, and Slurry Mix Evaporator (SME) product simulant rheological results from the prior year. Clarification of unusual rheological behavior was achieved by developing and implementing new measurement techniques. Development of these new methods is covered in a separate report, WSRC-TR-2004-00334. This report includes a review of recent literature on unusual rheological behavior, followed by a summary of the rheological measurement results obtained on a set ofmore » unusual simulant samples. Shifts in rheological behavior of slurries as the wt. % total solids changed have been observed in numerous systems. The main finding of the experimental work was that the various unusual DWPF simulant slurry samples exhibit some degree of time dependent behavior. When a given shear rate is applied to a sample, the apparent viscosity of the slurry changes with time rather than remaining constant. These unusual simulant samples are more rheologically complex than Newtonian liquids or more simple slurries, neither of which shows significant time dependence. The study concludes that the unusual rheological behavior that has been observed is being caused by time dependent rheological properties in the slurries being measured. Most of the changes are due to the effect of time under shear, but SB3 SME products were also changing properties while stored in sample bottles. The most likely source of this shear-related time dependence for sludge is in the simulant preparation. More than a single source of time dependence was inferred for the simulant SME product slurries based on the range of phenomena observed. Rheological property changes were observed on the time-scale of a single measurement (minutes) as well as on a time scale of

  19. Little Ice Age Fluctuations of Quelccaya Ice Cap, Peru

    NASA Astrophysics Data System (ADS)

    Stroup, J. S.; Kelly, M. A.; Lowell, T.

    2009-12-01

    A record of the past extents of Quelccaya Ice Cap (QIC) provides valuable information about tropical climate change from late glacial to recent time. Here, we examine the timing and regional significance of fluctuations of QIC during the Little Ice Age (LIA; ~1300-1850 AD). One prominent set of moraines, known as the Huancane I moraines, is located ~1 km from the present-day western ice cap margin and provides a near-continuous outline of the most recent advance of QIC. This moraine set was radiocarbon dated (~298 ± 134 and 831 ± 87 yr BP) by Mercer and Palacios (1977) and presented as some of the first evidence for cooling in the tropics during the Little Ice Age. Recent field investigations in the QIC region focused on refining the chronology of the Huancane I moraines. In 2008, new stratigraphic sections exposed by local lake-flooding events revealed multiple layers of peat within the Huancane I moraines. In both 2008 and 2009, samples were obtained for 10Be dating of boulders on Huancane I moraines. A combination of radiocarbon and 10Be ages indicate that the Huancane I moraines were deposited by ice cap expansion after ~3800 yr BP and likely by multiple advances at approximately 1000, 600, 400, and 200 yr BP. Radiocarbon and 10Be chronologies of the Huancane I moraines are compared with the Quelccaya ice core records (Thompson et al., 1985; 1986; 2006). Accumulation data from the ice core records are interpreted to indicate a significant wet period at ~1500-1700 AD followed by a significant drought at ~1720-1860 AD. We examine ice marginal fluctuations during these times to determine influence of such events on the ice cap extent.

  20. Ice Accretion with Varying Surface Tension

    NASA Technical Reports Server (NTRS)

    Bilanin, Alan J.; Anderson, David N.

    1995-01-01

    During an icing encounter of an aircraft in flight, super-cooled water droplets impinging on an airfoil may splash before freezing. This paper reports tests performed to determine if this effect is significant and uses the results to develop an improved scaling method for use in icing test facilities. Simple laboratory tests showed that drops splash on impact at the Reynolds and Weber numbers typical of icing encounters. Further confirmation of droplet splash came from icing tests performed in the NaSA Lewis Icing Research Tunnel (IRT) with a surfactant added to the spray water to reduce the surface tension. The resulting ice shapes were significantly different from those formed when no surfactant was added to the water. These results suggested that the droplet Weber number must be kept constant to properly scale icing test conditions. Finally, the paper presents a Weber-number-based scaling method and reports results from scaling tests in the IRT in which model size was reduced up to a factor of 3. Scale and reference ice shapes are shown which confirm the effectiveness of this new scaling method.

  1. Pseudoplasticity of Propellant Slurry with Varied Aluminium Content for Castability Development

    NASA Astrophysics Data System (ADS)

    Restasari, A.; Budi, R. S.; Hartaya, K.

    2018-04-01

    The modification of the percentage of aluminium is necessary to obtain certain specific impulse. But, it affects the pseudoplasticity of propellant in elapsed time that is important in casting. Therefore, this research attempts to investigate the pseudoplasticity of propellant slurry with varied aluminium contents and as time elapsed, the range of percentage of aluminium and time that allows propellant slurry to be well processed. The methods include measuring the viscosity of propellant slurries that contain 6, 8, 10, 12, 14, 16 and 18% of aluminium at varied shear rates until 40 minutes after mixing by using Brookfield viscometer. The graphs of viscosity versus shear rate were made to determine pseudoplasticity index. After that, the graph volume fraction versus pseudoplasticity index were made to be investigated. It is concluded that the more aluminium contents, the slurries with 6 to 12% aluminium contents exhibit more pseudoplastic behaviour, but the slurries with 12 to 16% aluminium exhibit less pseudoplastic. While, slurry of 18% aluminium exhibit high pseudoplasticity. In the correlation with the time, the slurry compositions of 6, 8, 14, 16% aluminium become more pseudoplastic as time elapsed. While, for compositions of 10, 12 and 18% aluminium, the trend becomes contrary. Based on the pseudoplasticity index, propellant slurries that contain 10 and 14% of aluminium are suitable for pressure casting. While for slurries with 6, 8 and 16% of aluminium are also suitable for vacuum casting. All of those suitability are possesed until 40 minutes after mixing. While, the composition of slurries that contain 12 and 18% of aluminium need to be modified to enhanced its castability.

  2. New-Generation Sealing Slurries For Borehole Injection Purposes

    NASA Astrophysics Data System (ADS)

    Stryczek, Stanisław; Gonet, Andrzej; Wiśniowski, Rafał; Złotkowski, Albert

    2015-12-01

    The development of techniques and technologies thanks to which parameters of the ground medium can be modified makes specialists look for new recipes of geopolymers - binders for the reinforcing and sealing of unstable and permeable grounds. The sealing slurries are expected to meet a number of strict requirements, therefore it is important to find new admixtures and additives which could modify the fresh and hardened slurry. Special attention has been recently paid to the fluid ash - a by-product of the combustion of hard coals. However, the use of this additive is associated with the application of appropriate superplastifier. Laboratory analyses of rheological parameters of fresh sealing slurries and the ways of improving their liquidity by a properly selected third-generation superplastifier are presented in the paper. The slurries were based on Portland cement CEM I, milled granulated large-furnace slag and fly ash from fluidized-bed combustion of hard coal.

  3. Pyroelectricity of water ice.

    PubMed

    Wang, Hanfu; Bell, Richard C; Iedema, Martin J; Schenter, Gregory K; Wu, Kai; Cowin, James P

    2008-05-22

    Water ice usually is thought to have zero pyroelectricity by symmetry. However, biasing it with ions breaks the symmetry because of the induced partial dipole alignment. This unmasks a large pyroelectricity. Ions were soft-landed upon 1 mum films of water ice at temperatures greater than 160 K. When cooled below 140-150 K, the dipole alignment locks in. Work function measurements of these films then show high and reversible pyroelectric activity from 30 to 150 K. For an initial approximately 10 V induced by the deposited ions at 160 K, the observed bias below 150 K varies approximately as 10 Vx(T/150 K)2. This implies that water has pyroelectric coefficients as large as that of many commercial pyroelectrics, such as lead zirconate titanate (PZT). The pyroelectricity of water ice, not previously reported, is in reasonable agreement with that predicted using harmonic analysis of a model system of SPC ice. The pyroelectricity is observed in crystalline and compact amorphous ice, deuterated or not. This implies that for water ice between 0 and 150 K (such as astrophysical ices), temperature changes can induce strong electric fields (approximately 10 MV/m) that can influence their chemistry, ion trajectories, or binding.

  4. Single stage high pressure centrifugal slurry pump

    DOEpatents

    Meyer, John W.; Bonin, John H.; Daniel, Arnold D.

    1984-03-27

    Apparatus is shown for feeding a slurry to a pressurized housing. An impeller that includes radial passages is mounted in the loose fitting housing. The impeller hub is connected to a drive means and a slurry supply means which extends through the housing. Pressured gas is fed into the housing for substantially enveloping the impeller in a bubble of gas.

  5. Effects of cattle slurry acidification on ammonia and methane evolution during storage.

    PubMed

    Petersen, Søren O; Andersen, Astrid J; Eriksen, Jørgen

    2012-01-01

    Slurry acidification before storage is known to reduce NH(3) emissions, but recent observations have indicated that CH(4) emissions are also reduced. We investigated the evolution of CH(4) from fresh and aged cattle slurry during 3 mo of storage as influenced by pH adjustment to 5.5 with sulfuric acid. In a third storage experiment, cattle slurry acidified with commercial equipment on two farms was incubated. In the manipulation experiments, effects of acid and sulfate were distinguished by adding hydrochloric acid and potassium sulfate separately or in combination, rather than sulfuric acid. In one experiment sulfur was also added to slurry as the amino acid methionine in separate treatments. In each treatment 20-kg portions of slurry (n = 4) were stored for 95 d. All samples were subsampled nine to 10 times for determination of NH(3) and CH(4) evolution rates using a 2-L flow-through system. In all experiments, the pH of acidified cattle slurry increased gradually to between 6.5 and 7. Acidification of slurry reduced the evolution of CH(4) by 67 to 87%. The greatest reduction was observed with aged cattle slurry, which had a much higher potential for CH(4) production than fresh slurry. Sulfate and methionine amendment to cattle slurry without pH adjustment also significantly inhibited methanogenesis, probably as a result of sulfide production. The study suggests that complex microbial interactions involving sulfur transformations and pH determine the potential for CH(4) emission during storage of cattle slurry, and that slurry acidification may be a cost-effective greenhouse gas mitigation option. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  6. Toxicity Evaluation of Pig Slurry Using Luminescent Bacteria and Zebrafish

    PubMed Central

    Chen, Wenyan; Cai, Qiang; Zhao, Yuan; Zheng, Guojuan; Liang, Yuting

    2014-01-01

    Biogas slurry has become a serious pollution problem and anaerobic digestion is widely applied to pig manure treatment for environmental protection and energy recovery. To evaluate environmental risk of the emission of biogas slurry, luminescent bacteria (Vibrio fischeri), larvae and embryos of zebrafish (Danio rerio) were used to detect the acute and development toxicity of digested and post-treated slurry. Then the ability of treatment process was evaluated. The results showed that digested slurry displayed strong toxicity to both zebrafish and luminescent bacteria, while the EC50 for luminescent bacteria and the LC50 for larvae were only 6.81% (v/v) and 1.95% (v/v) respectively, and embryonic development was inhibited at just 1% (v/v). Slurry still maintained a high level of toxicity although it had been treated by membrane bioreactor (MBR), while the LC50 of larvae was 75.23% (v/v) and there was a little effect on the development of embryos and V. fischeri; the results also revealed that the zebrafish larvae are more sensitive than embryos and luminescent bacteria to pig slurry. Finally, we also found the toxicity removal rate was higher than 90% after the treatment of MBR according to toxicity tests. In conclusion, further treatment should be used in pig slurry disposal or reused of final effluent. PMID:24995598

  7. Long-term ice storage for cooling applications

    DOEpatents

    Schertz, William W.

    1981-01-01

    A device is providing for cooling a stored material and then for later use of the cold thus stored. The device includes a tank containing a liquid such as water which is frozen by means of a reflux condenser heat pipe.

  8. Long-term ice storage for cooling applications

    DOEpatents

    Schertz, W.W.

    A device is described for cooling a stored material and then for later use of the cold thus stored. The device includes a tank containing a liquid such as water which is frozen by means of a reflux condenser heat pipe.

  9. Validation of cooling effect of insulated containers for the shipment of corneal tissue and recommendations for transport.

    PubMed

    Miller, Thomas D; Maxwell, Andrew J; Lindquist, Thomas D; Requard, Jake

    2013-01-01

    To determine the cooling effect of generic insulated shipping containers in ambient and high-temperature environments. Twenty-seven shipping containers were packed with wet ice according to industry standards. The ice in each container was weighed. Ambient temperatures were recorded by data loggers affixed to the exterior. Internal temperatures were recorded by data loggers packed inside the containers, for as long as the data loggers remained at ≤8°C. The cooling effect, or minutes per gram of ice a data logger maintained a temperature of ≤8°C, was calculated using linear regression; 8 similar containers were subjected to elevated summer temperatures. Small, medium, and large containers held mean masses of wet ice of 685, 1929, and 4439 g, respectively. The linear regression equation for grams of ice to duration of time at ≤8°C was y = 0.1994x + 385.13 for small containers, y = 0.1854x + 1273.3 for medium, and y = 0.5892x + 1410.3 for large containers, resulting in a cooling effect of 25.1 hours for small, 58.9 hours for medium, and 85.7 hours for large containers at ambient temperature. The duration of cooling effect in the summer profile group was consistent with that of the ambient temperature group. All of the container sizes successfully maintained proper cooling when packed with the appropriate grams of wet ice for the needed time interval. This study validates current practice for the shipment of corneal tissue in inexpensive, generic containers that can maintain effective cooling for the duration required for local, national, and international shipment.

  10. Modeling Commercial Turbofan Engine Icing Risk With Ice Crystal Ingestion

    NASA Technical Reports Server (NTRS)

    Jorgenson, Philip C. E.; Veres, Joseph P.

    2013-01-01

    The occurrence of ice accretion within commercial high bypass aircraft turbine engines has been reported under certain atmospheric conditions. Engine anomalies have taken place at high altitudes that have been attributed to ice crystal ingestion, partially melting, and ice accretion on the compression system components. The result was degraded engine performance, and one or more of the following: loss of thrust control (roll back), compressor surge or stall, and flameout of the combustor. As ice crystals are ingested into the fan and low pressure compression system, the increase in air temperature causes a portion of the ice crystals to melt. It is hypothesized that this allows the ice-water mixture to cover the metal surfaces of the compressor stationary components which leads to ice accretion through evaporative cooling. Ice accretion causes a blockage which subsequently results in the deterioration in performance of the compressor and engine. The focus of this research is to apply an engine icing computational tool to simulate the flow through a turbofan engine and assess the risk of ice accretion. The tool is comprised of an engine system thermodynamic cycle code, a compressor flow analysis code, and an ice particle melt code that has the capability of determining the rate of sublimation, melting, and evaporation through the compressor flow path, without modeling the actual ice accretion. A commercial turbofan engine which has previously experienced icing events during operation in a high altitude ice crystal environment has been tested in the Propulsion Systems Laboratory (PSL) altitude test facility at NASA Glenn Research Center. The PSL has the capability to produce a continuous ice cloud which are ingested by the engine during operation over a range of altitude conditions. The PSL test results confirmed that there was ice accretion in the engine due to ice crystal ingestion, at the same simulated altitude operating conditions as experienced previously in

  11. Atmospheric boundary layer modification in the marginal ice zone

    NASA Technical Reports Server (NTRS)

    Bennett, Theodore J., Jr.; Hunkins, Kenneth

    1986-01-01

    A case study of the Andreas et al. (1984) data on atmospheric boundary layer modification in the marginal ice zone is made. The model is a two-dimensional, multilevel, linear model with turbulence, lateral and vertical advection, and radiation. Good agreement between observed and modeled temperature cross sections is obtained. In contrast to the hypothesis of Andreas et al., the air flow is found to be stable to secondary circulations. Adiabatic lifting and, at long fetches, cloud top longwave cooling, not an air-to-surface heat flux, dominate the cooling of the boundary layer. The accumulation with fetch over the ice of changes in the surface wind field is shown to have a large effect on estimates of the surface wind stress. It is speculated that the Andreas et al. estimates of the drag coefficient over the compact sea ice are too high.

  12. Environmental consequences of future biogas technologies based on separated slurry.

    PubMed

    Hamelin, Lorie; Wesnæs, Marianne; Wenzel, Henrik; Petersen, Bjørn M

    2011-07-01

    This consequential life cycle assessment study highlights the key environmental aspects of producing biogas from separated pig and cow slurry, a relatively new but probable scenario for future biogas production, as it avoids the reliance on constrained carbon cosubstrates. Three scenarios involving different slurry separation technologies have been assessed and compared to a business-as-usual reference slurry management scenario. The results show that the environmental benefits of such biogas production are highly dependent upon the efficiency of the separation technology used to concentrate the volatile solids in the solid fraction. The biogas scenario involving the most efficient separation technology resulted in a dry matter separation efficiency of 87% and allowed a net reduction of the global warming potential of 40%, compared to the reference slurry management. This figure comprises the whole slurry life cycle, including the flows bypassing the biogas plant. This study includes soil carbon balances and a method for quantifying the changes in yield resulting from increased nitrogen availability as well as for quantifying mineral fertilizers displacement. Soil carbon balances showed that between 13 and 50% less carbon ends up in the soil pool with the different biogas alternatives, as opposed to the reference slurry management.

  13. Method and apparatus for in-situ drying investigation and optimization of slurry drying methodology

    DOEpatents

    Armstrong, Beth L.; Daniel, Claus; Howe, Jane Y.; Kiggans, Jr, James O.; Sabau, Adrian S.; Wood, III, David L.; Kalnaus, Sergiy

    2016-05-10

    A method of drying casted slurries that includes calculating drying conditions from an experimental model for a cast slurry and forming a cast film. An infrared heating probe is positioned on one side of the casted slurry and a thermal probe is positioned on an opposing side of the casted slurry. The infrared heating probe may control the temperature of the casted slurry during drying. The casted slurry may be observed with an optical microscope, while applying the drying conditions from the experimental model. Observing the casted slurry includes detecting the incidence of micro-structural changes in the casted slurry during drying to determine if the drying conditions from the experimental model are optimal.

  14. A calorimetric study on the low temperature dynamics of doped ice V and its reversible phase transition to hydrogen ordered ice XIII.

    PubMed

    Salzmann, Christoph G; Radaelli, Paolo G; Finney, John L; Mayer, Erwin

    2008-11-07

    Doped ice V samples made from solutions containing 0.01 M HCl (DCl), HF (DF), or KOH (KOD) in H(2)O (D(2)O) were slow-cooled from 250 to 77 K at 0.5 GPa. The effect of the dopant on the hydrogen disorder --> order transition and formation of hydrogen ordered ice XIII was studied by differential scanning calorimetry (DSC) with samples recovered at 77 K. DSC scans of acid-doped samples are consistent with a reversible ice XIII <--> ice V phase transition at ambient pressure, showing an endothermic peak on heating due to the hydrogen ordered ice XIII --> disordered ice V phase transition, and an exothermic peak on subsequent cooling due to the ice V --> ice XIII phase transition. The equilibrium temperature (T(o)) for the ice V <--> ice XIII phase transition is 112 K for both HCl doped H(2)O and DCl doped D(2)O. From the maximal enthalpy change of 250 J mol(-1) on the ice XIII --> ice V phase transition and T(o) of 112 K, the change in configurational entropy for the ice XIII --> ice V transition is calculated as 2.23 J mol(-1) K(-1) which is 66% of the Pauling entropy. For HCl, the most effective dopant, the influence of HCl concentration on the formation of ice XIII was determined: on decreasing the concentration of HCl from 0.01 to 0.001 M, its effectiveness is only slightly lowered. However, further HCl decrease to 0.0001 M drastically lowered its effectiveness. HF (DF) doping is less effective in inducing formation of ice XIII than HCl (DCl) doping. On heating at a rate of 5 K min(-1), kinetic unfreezing starts in pure ice V at approximately 132 K, whereas in acid doped ice XIII it starts at about 105 K due to acceleration of reorientation of water molecules. KOH doping does not lead to formation of hydrogen ordered ice XIII, a result which is consistent with our powder neutron diffraction study (C. G. Salzmann, P. G. Radaelli, A. Hallbrucker, E. Mayer, J. L. Finney, Science, 2006, 311, 1758). We further conjecture whether or not ice XIII has a stable region in

  15. Frazil-ice growth rate and dynamics in mixed layers and sub-ice-shelf plumes

    NASA Astrophysics Data System (ADS)

    Rees Jones, David W.; Wells, Andrew J.

    2018-01-01

    The growth of frazil or granular ice is an important mode of ice formation in the cryosphere. Recent advances have improved our understanding of the microphysical processes that control the rate of ice-crystal growth when water is cooled beneath its freezing temperature. These advances suggest that crystals grow much faster than previously thought. In this paper, we consider models of a population of ice crystals with different sizes to provide insight into the treatment of frazil ice in large-scale models. We consider the role of crystal growth alongside the other physical processes that determine the dynamics of frazil ice. We apply our model to a simple mixed layer (such as at the surface of the ocean) and to a buoyant plume under a floating ice shelf. We provide numerical calculations and scaling arguments to predict the occurrence of frazil-ice explosions, which we show are controlled by crystal growth, nucleation, and gravitational removal. Faster crystal growth, higher secondary nucleation, and slower gravitational removal make frazil-ice explosions more likely. We identify steady-state crystal size distributions, which are largely insensitive to crystal growth rate but are affected by the relative importance of secondary nucleation to gravitational removal. Finally, we show that the fate of plumes underneath ice shelves is dramatically affected by frazil-ice dynamics. Differences in the parameterization of crystal growth and nucleation give rise to radically different predictions of basal accretion and plume dynamics, and can even impact whether a plume reaches the end of the ice shelf or intrudes at depth.

  16. Methods to enhance the characteristics of hydrothermally prepared slurry fuels

    DOEpatents

    Anderson, Chris M.; Musich, Mark A.; Mann, Michael D.; DeWall, Raymond A.; Richter, John J.; Potas, Todd A.; Willson, Warrack G.

    2000-01-01

    Methods for enhancing the flow behavior and stability of hydrothermally treated slurry fuels. A mechanical high-shear dispersion and homogenization device is used to shear the slurry fuel. Other improvements include blending the carbonaceous material with a form of coal to reduce or eliminate the flocculation of the slurry, and maintaining the temperature of the hydrothermal treatment between approximately 300.degree. to 350.degree. C.

  17. Thermodynamic and Dynamic Aspects of Ice Nucleation

    NASA Technical Reports Server (NTRS)

    Barahona, Donifan

    2018-01-01

    It is known that ice nucleating particles (INP) immersed within supercooled droplets promote the formation of ice. Common theoretical models used to represent this process assume that the immersed particle lowers the work of ice nucleation without significantly affecting the dynamics of water in the vicinity of the particle. This is contrary to evidence showing that immersed surfaces significantly affect the viscosity and diffusivity of vicinal water. To study how this may affect ice formation this work introduces a model linking the ice nucleation rate to the modification of the dynamics and thermodynamics of vicinal water by immersed particles. It is shown that INP that significantly reduce the work of ice nucleation also pose strong limitations to the growth of the nascent ice germs. This leads to the onset of a new ice nucleation regime, called spinodal ice nucleation, where the dynamics of ice germ growth instead of the ice germ size determines the nucleation rate. Nucleation in this regime is characterized by an enhanced sensitivity to particle area and cooling rate. Comparison of the predicted ice nucleation rate against experimental measurements for a diverse set of species relevant to cloud formation suggests that spinodal ice nucleation may be common in nature.

  18. Roles of additives and surface control in slurry atomization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsai, S.C.

    1992-01-01

    This project studies the rheology and airblast atomization of micronized coal slurries. Its major objectives are (1) to promote further understanding of the mechanisms and the roles of additives in airblast atomization of coal water slurry (CWS), and (2) to investigate the impacts of coal particle surface properties and interparticle forces on CWS rheology. We have found that the flow behavior index (n) of a suspension (or slurry) is determined by the relative importance of the interparticle van der Waals attraction and the interparticle electrostatic repulsion. The interparticle attraction, measured by the Hamaker constant scaled to the thermal energy atmore » 25[degrees]C (A/kT), causes particle aggregation, which breaks down at high shear rates, and thus leads to slurry pseudoplastic behavior (n< 1). At a constant particle volume fraction and surface charge density (qualitatively measured by the zeta potential in deionized water), n decreases linearly as A/kT increases. The relative viscosity of the pseudoplastic suspension with respect to that of the suspending liquid is found to be independent of particle density and correlate well with the particle Peclet number which equals the particle diffusional relaxation time multiplied by shear rate. Specifically, the relative viscosities of the pseudoplastic glycerol/water coal slurry and the ethylene glycol/glycerol sand slurry, at same volume fractions as well as similar particle size distributions and liquid viscosities, as functions of the particle Peclet number fall along the same line.« less

  19. Roles of additives and surface control in slurry atomization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsai, S.C.

    1990-01-01

    This report focuses on the effects of interparticle forces on the rheology and airblast atomization of micronized coal water slurry (CWS). We found that the CWS flow behavior index is determined by the relative importance of the interparticle van der Waals attraction and the interparticle electrostatic repulsion. The former intensifies as the Hamaker constant increases and the interparticle distance reduces while the latter increases as the particle surface charge density increases. The interparticle attraction causes particle aggregation, which breaks down at high shear rates, and thus leads to slurry pseudoplastic behavior. In contrast, the interparticle repulsion prevents particle aggregation andmore » thus leads to Newtonian behavior. Both atomized at low atomizing air pressures (less than 270 kPa) using twin-fluid jet atomizers of various distributor designs. We found that the atomized drop sizes of micronized coal water slurries substantially decrease as the atomizing air pressure exceeds a threshold value. The effects of coal volume fraction, coal particle surface charge, liquid composition and liquid viscosity on slurry atomization can be accounted for by their effects on slurry rheology. 26 refs.« less

  20. Plans and Preliminary Results of Fundamental Studies of Ice Crystal Icing Physics in the NASA Propulsion Systems Laboratory

    NASA Technical Reports Server (NTRS)

    Struk, Peter; Tsao, Jen-Ching; Bartkus, Tadas

    2017-01-01

    This paper describes plans and preliminary results for using the NASA Propulsion Systems Lab (PSL) to experimentally study the fundamental physics of ice-crystal ice accretion. NASA is evaluating whether this facility, in addition to full-engine and motor-driven-rig tests, can be used for more fundamental ice-accretion studies that simulate the different mixed-phase icing conditions along the core flow passage of a turbo-fan engine compressor. The data from such fundamental accretion tests will be used to help develop and validate models of the accretion process. This paper presents data from some preliminary testing performed in May 2015 which examined how a mixed-phase cloud could be generated at PSL using evaporative cooling in a warmer-than-freezing environment.

  1. Plans and Preliminary Results of Fundamental Studies of Ice Crystal Icing Physics in the NASA Propulsion Systems Laboratory

    NASA Technical Reports Server (NTRS)

    Struk, Peter; Tsao, Jen-Ching; Bartkus, Tadas

    2016-01-01

    This presentation accompanies the paper titled Plans and Preliminary Results of Fundamental Studies of Ice Crystal Icing Physics in the NASA Propulsion Systems Laboratory. NASA is evaluating whether PSL, in addition to full-engine and motor-driven-rig tests, can be used for more fundamental ice-accretion studies that simulate the different mixed-phase icing conditions along the core flow passage of a turbo-fan engine compressor. The data from such fundamental accretion tests will be used to help develop and validate models of the accretion process. This presentation (and accompanying paper) presents data from some preliminary testing performed in May 2015 which examined how a mixed-phase cloud could be generated at PSL using evaporative cooling in a warmer-than-freezing environment.

  2. The role of feedbacks in Antarctic sea ice change

    NASA Astrophysics Data System (ADS)

    Feltham, D. L.; Frew, R. C.; Holland, P.

    2017-12-01

    The changes in Antarctic sea ice over the last thirty years have a strong seasonal dependence, and the way these changes grow in spring and decay in autumn suggests that feedbacks are strongly involved. The changes may ultimately be caused by atmospheric warming, the winds, snowfall changes, etc., but we cannot understand these forcings without first untangling the feedbacks. A highly simplified coupled sea ice -mixed layer model has been developed to investigate the importance of feedbacks on the evolution of sea ice in two contrasting regions in the Southern Ocean; the Amundsen Sea where sea ice extent has been decreasing, and the Weddell Sea where it has been expanding. The change in mixed layer depth in response to changes in the atmosphere to ocean energy flux is implicit in a strong negative feedback on ice cover changes in the Amundsen Sea, with atmospheric cooling leading to a deeper mixed layer resulting in greater entrainment of warm Circumpolar Deep Water, causing increased basal melting of sea ice. This strong negative feedback produces counter intuitive responses to changes in forcings in the Amundsen Sea. This feedback is absent in the Weddell due to the complete destratification and strong water column cooling that occurs each winter in simulations. The impact of other feedbacks, including the albedo feedback, changes in insulation due to ice thickness and changes in the freezing temperature of the mixed layer, were found to be of secondary importance compared to changes in the mixed layer depth.

  3. Caltech water-ice dusty plasma: preliminary results

    NASA Astrophysics Data System (ADS)

    Bellan, Paul; Chai, Kilbyoung

    2013-10-01

    A water-ice dusty plasma laboratory experiment has begun operation at Caltech. As in Ref., a 1-5 watt parallel-plate 13.56 MHz rf discharge plasma has LN2-cooled electrodes that cool the neutral background gas to cryogenic temperatures. However, instead of creating water vapor by in-situ deuterium-oxygen bonding, here the neutral gas is argon and water vapor is added in a controlled fashion. Ice grains spontaneously form after a few seconds. Photography with a HeNe line filter of a sheet of HeNe laser light sheet illuminating a cross section of dust grains shows a large scale whorl pattern composed of concentric sub-whorls having wave-like spatially varying intensity. Each sub-whorl is composed of very evenly separated fine-scale stream-lines indicating that the ice grains move in self-organized lanes like automobiles on a multi-line highway. HeNe laser extinction together with an estimate of dust density from the intergrain spacing in photographs indicates a 5 micron nominal dust grain radius. HeNe laser diffraction patterns indicate the ice dust grains are large and ellipsoidal at low pressure (200 mT) but small and spheroidal at high pressure (>600 mT). Supported by USDOE.

  4. Fischer-Tropsch Slurry Reactor modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soong, Y.; Gamwo, I.K.; Harke, F.W.

    1995-12-31

    This paper reports experimental and theoretical results on hydrodynamic studies. The experiments were conducted in a hot-pressurized Slurry-Bubble Column Reactor (SBCR). It includes experimental results of Drakeol-10 oil/nitrogen/glass beads hydrodynamic study and the development of an ultrasonic technique for measuring solids concentration. A model to describe the flow behavior in reactors was developed. The hydrodynamic properties in a 10.16 cm diameter bubble column with a perforated-plate gas distributor were studied at pressures ranging from 0.1 to 1.36 MPa, and at temperatures from 20 to 200{degrees}C, using a dual hot-wire probe with nitrogen, glass beads, and Drakeol-10 oil as the gas,more » solid, and liquid phase, respectively. It was found that the addition of 20 oil wt% glass beads in the system has a slight effect on the average gas holdup and bubble size. A well-posed three-dimensional model for bed dynamics was developed from an ill-posed model. The new model has computed solid holdup distributions consistent with experimental observations with no artificial {open_quotes}fountain{close_quotes} as predicted by the earlier model. The model can be applied to a variety of multiphase flows of practical interest. An ultrasonic technique is being developed to measure solids concentration in a three-phase slurry reactor. Preliminary measurements have been made on slurries consisting of molten paraffin wax, glass beads, and nitrogen bubbles at 180 {degrees}C and 0.1 MPa. The data show that both the sound speed and attenuation are well-defined functions of both the solid and gas concentrations in the slurries. The results suggest possibilities to directly measure solids concentration during the operation of an autoclave reactor containing molten wax.« less

  5. Preparing polymeric matrix composites using an aqueous slurry technique

    NASA Technical Reports Server (NTRS)

    Johnston, Norman J. (Inventor); Towell, Timothy W. (Inventor)

    1993-01-01

    An aqueous process was developed to prepare a consolidated composite laminate from an aqueous slurry. An aqueous poly(amic acid) surfactant solution was prepared by dissolving a poly(amic acid) powder in an aqueous ammonia solution. A polymeric powder was added to this solution to form a slurry. The slurry was deposited on carbon fiber to form a prepreg which was dried and stacked to form a composite laminate. The composite laminate was consolidated using pressure and was heated to form the polymeric matrix. The resulting composite laminate exhibited high fracture toughness and excellent consolidation.

  6. Seasonal variation in methane emission from stored slurry and solid manures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Husted, S.

    1994-05-01

    Methane (CH{sub 4}) is an important greenhouse gas and recent inventories have suggested that livestock manure makes a significant contribution to global CH{sub 4} emissions. The emission of CH{sub 4} from stored pig slurry, cattle slurry, pig solid manure, and cattle solid manure was followed during a 1-yr period. Methane emission was determined by dynamic chambers. Emission rates followed a ln-normal distribution for all four manures, Indicating large spatial and seasonal variation& Monthly geometric means for pig slurry, cattle slurry, pig solid manure, and cattle solid manure varied from 0.4 to 35.8, 0.0 to 34.5, 0.4 to 142.1, and 0.1more » to 42.7 g CH{sub 4} m{sup -3} d{sup -1}, respectively. For slurries CH{sub 4} emission rates increased significantly with storage temperatures, the Q{sub 10} value ranging from 14 to 5.7 depending on slurry type. The presence of a natural surface crust reduced CH{sub 4} emission from slurry by a factor of 11 to 12. Surface crust effects declined with increasing slurry temperature. Solid manures stored in dungheaps showed significant heat production. Pig solid manure temperatures were maintained at 30 to 60{degrees}C throughout most of the year, while cattle solid manure temperatures were close to ambient levels until late spring, when heat production was initiated. Methanogenesis in solid manure also increased with increasing temperatures. For pig solid manure, CH{sub 4} emission rates peaked at 35 to 45{degrees}C. No distinct temperature optimum could be detected for cattle solid manure, however, temperatures rarely exceeded 45{degrees}C. The Q{sub 10} values for dungheaps ranged from 2.7 to 10.3 depending on-manure type and Q{sub 10} temperature interval. Annual CH{sub 4} emissions from pig slurry, cattle slurry, pig solid manure, and cattle solid manure were estimated at 8.9, 15.5, 27.3, and 5.3 kg animal{sup -1} yr{sup -1}, respectively. 27 refs., 6 figs., 2 tabs.« less

  7. Is ice right? Does cryotherapy improve outcome for acute soft tissue injury?

    PubMed

    Collins, N C

    2008-02-01

    The use of ice or cryotherapy in the management of acute soft tissue injuries is widely accepted and widely practised. This review was conducted to examine the medical literature to investigate if there is evidence to support an improvement in clinical outcome following the use of ice or cryotherapy. A comprehensive literature search was performed and all human and animal trials or systematic reviews pertaining to soft tissue trauma, ice or cryotherapy were assessed. The clinically relevant outcome measures were (1) a reduction in pain; (2) a reduction in swelling or oedema; (3) improved function; or (4) return to participation in normal activity. Six relevant trials in humans were identified, four of which lacked randomisation and blinding. There were two well conducted randomised controlled trials, one showing supportive evidence for the use of a cooling gel and the other not reaching statistical significance. Four animal studies showed that modest cooling reduced oedema but excessive or prolonged cooling is damaging. There were two systematic reviews, one of which was inconclusive and the other suggested that ice may hasten return to participation. There is insufficient evidence to suggest that cryotherapy improves clinical outcome in the management of soft tissue injuries.

  8. Effect of pre-cooling, with and without thigh cooling, on strain and endurance exercise performance in the heat.

    PubMed

    Cotter, J D; Sleivert, G G; Roberts, W S; Febbraio, M A

    2001-04-01

    Body cooling before exercise (i.e. pre-cooling) reduces physiological strain in humans during endurance exercise in temperate and warm environments, usually improving performance. This study examined the effectiveness of pre-cooling humans by ice-vest and cold (3 degrees C) air, with (LC) and without (LW) leg cooling, in reducing heat strain and improving endurance performance in the heat (35 degrees C, 60% RH). Nine habitually-active males completed three trials, involving pre-cooling (LC and LW) or no pre-cooling (CON: 34 degrees C air) before 35-min cycle exercise: 20 min at approximately 65% VO2peak then a 15-min work-performance trial. At exercise onset, mean core (Tc, from oesophagus and rectum) and skin temperatures, forearm blood flow (FBF), heart rate (HR), and ratings of exertion, body temperature and thermal discomfort were lower in LW and LC than CON (P<0.05). They remained lower at 20 min [e.g. Tc: CON 38.4+/-0.2 (+/-S.E.), LW 37.9+/-0.1, and LC 37.8+/-0.1 degrees C; HR: 177+/-3, 163+/-3 and 167+/-3 b.p.m.), except that FBF was equivalent (P=0.10) between CON (15.5+/-1.6) and LW (13.6+/-1.0 ml.100 ml tissue(-1) x min(-1)). Subsequent power output was higher in LW (2.95+/-0.24) and LC (2.91+/-0.25) than in CON (2.52+/-0.28 W kg(-1), P=0.00, N=8), yet final Tc remained lower. Pre-cooling by ice-vest and cold air effectively reduced physiological and psychophysical strain and improved endurance performance in the heat, irrespective of whether thighs were warmed or cooled.

  9. Back to the Basics: Cooling with Ice.

    ERIC Educational Resources Information Center

    Estes, R. C.

    1979-01-01

    A new high school shifts an electrical demand charge load by using an icemaker during nonoperating hours to provide chilled water for producing cool air. A review resulted in a computer being placed in the design to control the electrical demand charge load in addition to spreading the load. (Author/MLF)

  10. Ice sheets play important role in climate change

    NASA Astrophysics Data System (ADS)

    Clark, Peter U.; MacAyeal, Douglas R.; Andrews, John T.; Bartlein, Patrick J.

    Ice sheets once were viewed as passive elements in the climate system enslaved to orbitally generated variations in solar radiation. Today, modeling results and new geologic records suggest that ice sheets actively participated in late-Pleistocene climate change, amplifying or driving significant variability at millennial as well as orbital timescales. Although large changes in global ice volume were ultimately caused by orbital variations (the Milankovitch hypothesis), once in existence, the former ice sheets behaved dynamically and strongly influenced regional and perhaps even global climate by altering atmospheric and oceanic circulation and temperature.Experiments with General Circulation Models (GCMs) yielded the first inklings of ice sheets' climatic significance. Manabe and Broccoli [1985], for example, found that the topographic and albedo effects of ice sheets alone explain much of the Northern Hemisphere cooling identified in paleoclimatic records of the last glacial maximum (˜21 ka).

  11. EVALUATION OF CARBON BLACK SLURRIES AS CLEAN BURNING FUELS

    EPA Science Inventory

    Experiments were performed to examine the pumpability, atomization and combustion characteristics of slurries made of mixtures of carbon black with No. 2 fuel oil and methanol. Carbon black-No. 2 fuel oil and carbon black-methanol slurries, with carbon black contents of up to 50 ...

  12. Physio-Microstructural Properties of Aerated Cement Slurry for Lightweight Structures

    PubMed Central

    Salem, Talal; Hamadna, Sameer; Darsanasiri, A. G. N. D.; Soroushian, Parviz; Balchandra, Anagi; Al-Chaar, Ghassan

    2018-01-01

    Cementitious composites, including ferrocement and continuous fiber reinforced cement, are increasingly considered for building construction and repair. One alternative in processing of these composites is to infiltrate the reinforcement (continuous fibers or chicken mesh) with a flowable cementitious slurry. The relatively high density of cementitious binders, when compared with polymeric binders, are a setback in efforts to introduce cementitious composites as lower-cost, fire-resistant, and durable alternatives to polymer composites. Aeration of the slurry is an effective means of reducing the density of cementitious composites. This approach, however, compromises the mechanical properties of cementitious binders. An experimental program was undertaken in order to assess the potential for production of aerated slurry with a desired balance of density, mechanical performance, and barrier qualities. The potential for nondestructive monitoring of strength development in aerated cementitious slurry was also investigated. This research produced aerated slurries with densities as low as 0.9 g/cm3 with viable mechanical and barrier qualities for production of composites. The microstructure of these composites was also investigated. PMID:29649163

  13. Physio-Microstructural Properties of Aerated Cement Slurry for Lightweight Structures.

    PubMed

    Almalkawi, Areej T; Salem, Talal; Hamadna, Sameer; Darsanasiri, A G N D; Soroushian, Parviz; Balchandra, Anagi; Al-Chaar, Ghassan

    2018-04-12

    Cementitious composites, including ferrocement and continuous fiber reinforced cement, are increasingly considered for building construction and repair. One alternative in processing of these composites is to infiltrate the reinforcement (continuous fibers or chicken mesh) with a flowable cementitious slurry. The relatively high density of cementitious binders, when compared with polymeric binders, are a setback in efforts to introduce cementitious composites as lower-cost, fire-resistant, and durable alternatives to polymer composites. Aeration of the slurry is an effective means of reducing the density of cementitious composites. This approach, however, compromises the mechanical properties of cementitious binders. An experimental program was undertaken in order to assess the potential for production of aerated slurry with a desired balance of density, mechanical performance, and barrier qualities. The potential for nondestructive monitoring of strength development in aerated cementitious slurry was also investigated. This research produced aerated slurries with densities as low as 0.9 g/cm³ with viable mechanical and barrier qualities for production of composites. The microstructure of these composites was also investigated.

  14. Upper tropospheric ice sensitivity to sulfate geoengineering

    NASA Astrophysics Data System (ADS)

    Visioni, Daniele; Pitari, Giovanni; Mancini, Eva

    2017-04-01

    In light of the Paris Agreement which aims to keep global warming under 2 °C in the next century and considering the emission scenarios produced by the IPCC for the same time span, it is likely that to remain below that threshold some kind of geoengineering technique will have to be deployed. Amongst the different methods, the injection of sulfur into the stratosphere has received much attention considering its effectiveness and affordability. Aside from the rather well established surface cooling sulfate geoengineering (SG) would produce, the investigation on possible side-effects of this method is still ongoing. For instance, some recent studies have investigated the effect SG would have on upper tropospheric cirrus clouds, expecially on the homogenous freezing mechanisms that produces the ice particles (Kuebbeler et al., 2012). The goal of the present study is to better understand the effect of thermal and dynamical anomalies caused by SG on the formation of ice crystals via homogeneous freezing by comparing a complete SG simulation with a RCP4.5 reference case and with a number of sensitivity studies where atmospheric temperature changes in the upper tropospheric region are specified in a schematic way as a function of the aerosol driven stratospheric warming and mid-lower tropospheric cooling. These changes in the temperature profile tend to increase atmospheric stabilization, thus decreasing updraft and with it the amount of water vapor available for homogeneous freezing in the upper troposphere. However, what still needs to be assessed is the interaction between this dynamical effect and the thermal effects of tropospheric cooling (which would increase ice nucleation rates) and stratospheric warming (which would probably extend to the uppermost troposphere via SG aerosol gravitational settling, thus reducing ice nucleation rates), in order to understand how they combine together. Changes in ice clouds coverage could be important for SG, because cirrus ice

  15. A novel kind of TSV slurry with guanidine hydrochloride

    NASA Astrophysics Data System (ADS)

    Jiao, Hong; Yuling, Liu; Baoguo, Zhang; Xinhuan, Niu; Liying, Han

    2015-10-01

    The effect of a novel alkaline TSV (through-silicon-via) slurry with guanidine hydrochloride (GH) on CMP (chemical mechanical polishing) was investigated. The novel alkaline TSV slurry was free of any inhibitors. During the polishing process, the guanidine hydrochloride serves as an effective surface-complexing agent for TSV CMP applications, the removal rate of barrier (Ti) can be chemically controlled through tuned selectivity with respect to the removal rate of copper and dielectric, which is helpful to modifying the dishing and gaining an excellent topography performance in TSV manufacturing. In this paper, we mainly studied the working mechanism of the components of slurry and the skillful application guanidine hydrochloride in the TSV slurry. Project supported by the Major National Science and Technology Special Projects (No. 2009ZX02308), the Fund Project of Hebei Provincial Department of Education, China (No. QN2014208), the Natural Science Foundation of Hebei Province, China (No. E2013202247), and Colleges and Universities Scientific research project of Hebei Province, China (No. Z2014088).

  16. Evidence for link between modelled trends in Antarctic sea ice and underestimated westerly wind changes

    PubMed Central

    Purich, Ariaan; Cai, Wenju; England, Matthew H.; Cowan, Tim

    2016-01-01

    Despite global warming, total Antarctic sea ice coverage increased over 1979–2013. However, the majority of Coupled Model Intercomparison Project phase 5 models simulate a decline. Mechanisms causing this discrepancy have so far remained elusive. Here we show that weaker trends in the intensification of the Southern Hemisphere westerly wind jet simulated by the models may contribute to this disparity. During austral summer, a strengthened jet leads to increased upwelling of cooler subsurface water and strengthened equatorward transport, conducive to increased sea ice. As the majority of models underestimate summer jet trends, this cooling process is underestimated compared with observations and is insufficient to offset warming in the models. Through the sea ice-albedo feedback, models produce a high-latitude surface ocean warming and sea ice decline, contrasting the observed net cooling and sea ice increase. A realistic simulation of observed wind changes may be crucial for reproducing the recent observed sea ice increase. PMID:26842498

  17. Evidence for link between modelled trends in Antarctic sea ice and underestimated westerly wind changes.

    PubMed

    Purich, Ariaan; Cai, Wenju; England, Matthew H; Cowan, Tim

    2016-02-04

    Despite global warming, total Antarctic sea ice coverage increased over 1979-2013. However, the majority of Coupled Model Intercomparison Project phase 5 models simulate a decline. Mechanisms causing this discrepancy have so far remained elusive. Here we show that weaker trends in the intensification of the Southern Hemisphere westerly wind jet simulated by the models may contribute to this disparity. During austral summer, a strengthened jet leads to increased upwelling of cooler subsurface water and strengthened equatorward transport, conducive to increased sea ice. As the majority of models underestimate summer jet trends, this cooling process is underestimated compared with observations and is insufficient to offset warming in the models. Through the sea ice-albedo feedback, models produce a high-latitude surface ocean warming and sea ice decline, contrasting the observed net cooling and sea ice increase. A realistic simulation of observed wind changes may be crucial for reproducing the recent observed sea ice increase.

  18. Quantification of unsteady heat transfer and phase changing process inside small icing water droplets.

    PubMed

    Jin, Zheyan; Hu, Hui

    2009-05-01

    We report progress made in our recent effort to develop and implement a novel, lifetime-based molecular tagging thermometry (MTT) technique to quantify unsteady heat transfer and phase changing process inside small icing water droplets pertinent to wind turbine icing phenomena. The lifetime-based MTT technique was used to achieve temporally and spatially resolved temperature distribution measurements within small, convectively cooled water droplets to quantify unsteady heat transfer within the small water droplets in the course of convective cooling process. The transient behavior of phase changing process within small icing water droplets was also revealed clearly by using the MTT technique. Such measurements are highly desirable to elucidate underlying physics to improve our understanding about important microphysical phenomena pertinent to ice formation and accreting process as water droplets impinging onto wind turbine blades.

  19. Immersion freezing of supermicron mineral dust particles: freezing results, testing different schemes for describing ice nucleation, and ice nucleation active site densities.

    PubMed

    Wheeler, M J; Mason, R H; Steunenberg, K; Wagstaff, M; Chou, C; Bertram, A K

    2015-05-14

    Ice nucleation on mineral dust particles is known to be an important process in the atmosphere. To accurately implement ice nucleation on mineral dust particles in atmospheric simulations, a suitable theory or scheme is desirable to describe laboratory freezing data in atmospheric models. In the following, we investigated ice nucleation by supermicron mineral dust particles [kaolinite and Arizona Test Dust (ATD)] in the immersion mode. The median freezing temperature for ATD was measured to be approximately -30 °C compared with approximately -36 °C for kaolinite. The freezing results were then used to test four different schemes previously used to describe ice nucleation in atmospheric models. In terms of ability to fit the data (quantified by calculating the reduced chi-squared values), the following order was found for ATD (from best to worst): active site, pdf-α, deterministic, single-α. For kaolinite, the following order was found (from best to worst): active site, deterministic, pdf-α, single-α. The variation in the predicted median freezing temperature per decade change in the cooling rate for each of the schemes was also compared with experimental results from other studies. The deterministic model predicts the median freezing temperature to be independent of cooling rate, while experimental results show a weak dependence on cooling rate. The single-α, pdf-α, and active site schemes all agree with the experimental results within roughly a factor of 2. On the basis of our results and previous results where different schemes were tested, the active site scheme is recommended for describing the freezing of ATD and kaolinite particles. We also used our ice nucleation results to determine the ice nucleation active site (INAS) density for the supermicron dust particles tested. Using the data, we show that the INAS densities of supermicron kaolinite and ATD particles studied here are smaller than the INAS densities of submicron kaolinite and ATD particles

  20. Modelled Growth and Decay of the Cordilleran Ice Sheet Through the Last Glacial Cycle

    NASA Astrophysics Data System (ADS)

    Marshall, S. J.; Banwell, A.

    2015-12-01

    The Cordilleran Ice Sheet in western North America had an enigmatic evolution during the last glacial cycle, developing out of sync with the larger Laurentide and global glaciation. The geological record suggests that the ice sheet emerged late, ca. 45 ka, growing to be a fully-established ice sheet in isotope stages 3 and 2 and deglaciating late in the glacial cycle. This has been a challenge to model, and is a paleoclimatic curiosity, because the western Cordillera of North America is heavily glacierized today, and one would intuitively expect it to act as an inception centre for the Pleistocene ice sheets. The region receives heavy precipitation, and modest cooling should induce large-scale glacier expansion. Indeed, a Cordilleran Ice Sheet quickly nucleates in isotope substage 5d in most ice sheet modeling studies to date, and is a resilient feature throughout the glaciation. The fact that a full-scale Cordilleran Ice Sheet did not develop until relatively late argues for either: (a) ice sheet models that have been inadequate in resolving the process of alpine-style glaciation, i.e., the coalescence of alpine icefields, or (b) a climatic history in western North America that deviated strongly from the hemispheric-scale cooling which drove the growth of the Laurentide and Scandinavian Ice Sheets, as recorded in Greenland. We argue that reasonable reconstructions of Cordilleran Ice Sheet growth and decay implicate a combination of these two considerations. Sufficient model resolution is required to capture the valley-bottom melt that suppresses icefield coalescence, while early-glacial cooling must have been modest in the Pacific sector of North America. We argue for a persistent warm, dry climate relative to that in eastern North America and the Atlantic sector, likely associated with positive feedbacks between atmospheric circulation and the nascent Laurentide Ice Sheet (i.e., peristent circulation patterns similar to those of 2014-2015). This must have been

  1. Modelling ammonia volatilization from animal slurry applied with trail hoses to cereals

    NASA Astrophysics Data System (ADS)

    Sommer, S. G.; Olesen, J. E.

    In Europe ammonia (NH 3), volatilization from animal manure is the major source of NH 3 in the atmosphere. From March to July 1997, NH 3 volatilization from trail hose applied slurry was measured for seven days after application in six experiments. A statistical analysis of data showed that NH 3 volatilization rate during the first 4-5 h after slurry application increased significantly ( P<5%) with wind speed and soil slurry surface water content. NH 3 volatilization in the six measuring periods during the experiments increased significantly ( P<5%) with relative water content of the soil slurry surface, global radiation, pH, and decreased with increasing rainfall during each measuring period and rainfall accumulated from onset of each experiment. A mechanistic model of NH 3 volatilization was developed. Model inputs are climate variables, soil characteristics and total ammoniacal nitrogen (TAN=ammonium+ammonia) in the soil surface layer. A pH submodel for predicting pH at the surface of the soil slurry liquid was developed. The measured NH 3 volatilization was compared with model simulations. The simulated results explained 27% of the variation in measured NH 3 volatilization rates during all seven days, but 48% of measured volatilization rates during the first 24 h. Calculations with the model showed that applying slurry in the morning or in the afternoon reduced volatilization by 50% compared with a noon application. Spreading the slurry with trail hoses to a 60 cm high crop reduced losses by 75% compared with a spreading onto bare soil. Ammonia volatilization was 50% lower when the soil had dried out after slurry application compared with a wet slurry surface.

  2. Facility for testing ice drills

    NASA Astrophysics Data System (ADS)

    Nielson, Dennis L.; Delahunty, Chris; Goodge, John W.; Severinghaus, Jeffery P.

    2017-05-01

    The Rapid Access Ice Drill (RAID) is designed for subsurface scientific investigations in Antarctica. Its objectives are to drill rapidly through ice, to core samples of the transition zone and bedrock, and to leave behind a borehole observatory. These objectives required the engineering and fabrication of an entirely new drilling system that included a modified mining-style coring rig, a unique fluid circulation system, a rod skid, a power unit, and a workshop with areas for the storage of supplies and consumables. An important milestone in fabrication of the RAID was the construction of a North American Test (NAT) facility where we were able to test drilling and fluid processing functions in an environment that is as close as possible to that expected in Antarctica. Our criteria for site selection was that the area should be cold during the winter months, be located in an area of low heat flow, and be at relatively high elevation. We selected a site for the facility near Bear Lake, Utah, USA. The general design of the NAT well (NAT-1) started with a 27.3 cm (10.75 in.) outer casing cemented in a 152 m deep hole. Within that casing, we hung a 14 cm (5.5 in.) casing string, and, within that casing, a column of ice was formed. The annulus between the 14 and 27.3 cm casings provided the path for circulation of a refrigerant. After in-depth study, we chose to use liquid CO2 to cool the hole. In order to minimize the likelihood of the casing splitting due to the volume increase associated with freezing water, the hole was first cooled and then ice was formed in increments from the bottom upward. First, ice cubes were placed in the inner liner and then water was added. Using this method, a column of ice was incrementally prepared for drilling tests. The drilling tests successfully demonstrated the functioning of the RAID system. Reproducing such a facility for testing of other ice drilling systems could be advantageous to other research programs in the future.

  3. Skin Cooling and Force Replication at the Ankle in Healthy Individuals: A Crossover Randomized Controlled Trial

    PubMed Central

    Haupenthal, Daniela Pacheco dos Santos; de Noronha, Marcos; Haupenthal, Alessandro; Ruschel, Caroline; Nunes, Guilherme S.

    2015-01-01

    Context Proprioception of the ankle is determined by the ability to perceive the sense of position of the ankle structures, as well as the speed and direction of movement. Few researchers have investigated proprioception by force-replication ability and particularly after skin cooling. Objective To analyze the ability of the ankle-dorsiflexor muscles to replicate isometric force after a period of skin cooling. Design Randomized controlled clinical trial. Setting Laboratory. Patients or Other Participants Twenty healthy individuals (10 men, 10 women; age = 26.8 ± 5.2 years, height = 171 ± 7 cm, mass = 66.8 ± 10.5 kg). Intervention(s) Skin cooling was carried out using 2 ice applications: (1) after maximal voluntary isometric contraction (MVIC) performance and before data collection for the first target force, maintained for 20 minutes; and (2) before data collection for the second target force, maintained for 10 minutes. We measured skin temperature before and after ice applications to ensure skin cooling. Main Outcome Measure(s) A load cell was placed under an inclined board for data collection, and 10 attempts of force replication were carried out for 2 values of MVIC (20%, 50%) in each condition (ice, no ice). We assessed force sense with absolute and root mean square errors (the difference between the force developed by the dorsiflexors and the target force measured with the raw data and after root mean square analysis, respectively) and variable error (the variance around the mean absolute error score). A repeated-measures multivariate analysis of variance was used for statistical analysis. Results The absolute error was greater for the ice than for the no-ice condition (F1,19 = 9.05, P = .007) and for the target force at 50% of MVIC than at 20% of MVIC (F1,19 = 26.01, P < .001). Conclusions The error was greater in the ice condition and at 50% of MVIC. Skin cooling reduced the proprioceptive ability of the ankle-dorsiflexor muscles to replicate isometric

  4. Cold pleasure. Why we like ice drinks, ice-lollies and ice cream.

    PubMed

    Eccles, R; Du-Plessis, L; Dommels, Y; Wilkinson, J E

    2013-12-01

    This review discusses how the ingestion of cold foods and drinks may be perceived as pleasant because of the effects of cooling of the mouth. The case is made that man has originated from a tropical environment and that cold stimuli applied to the external skin may initiate thermal discomfort and reflexes such as shivering and vasoconstriction that defend body temperature, whereas cold stimuli applied to the mouth are perceived as pleasant because of pleasure associated with satiation of thirst and a refreshing effect. Cold water is preferred to warm water as a thirst quencher and cold products such as ice cream may also be perceived as pleasant because oral cooling satiates thirst. The case is made that cold stimuli may be perceived differently in the skin and oral mucosa, leading to different effects on temperature regulation, and perception of pleasure or displeasure, depending on the body temperature and the temperature of the external environment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Rapid onset of Little Ice Age summer cold in the northern North Atlantic derived from precisely dated ice cap records (Invited)

    NASA Astrophysics Data System (ADS)

    Miller, G. H.; Larsen, D.; Geirsdottir, A.; Refsnider, K. A.; Anderson, C.

    2009-12-01

    Precise radiocarbon dates on dead vegetation emerging beneath retreating non-erosive ice caps in NE Arctic Canada define the onset of ice cap growth, and provide a Holocene context for 20th Century warming. Although most plateau ice caps melted during the Medieval Warm Period, a few that are now disappearing remained intact since at least 350 AD. Little Ice Age ice cap inception occurred in two pulses, centered on 1250-1300 AD and around 1450 AD, with ice caps remaining in an expanded state until the warming of the past few decades. Ice cap inception occurred simultaneously (±10 years) over a 200 m elevational range, suggesting an abrupt onset of Little Ice Age cold, rather than a slow cooling over many decades. Similarly, a 3000 year annually resolved lacustrine record of glacier power and a complementary independent proxy for landscape instability in the highlands of central Iceland show an initial jump in both glacier power and landscape instability between 1250 and 1300 AD, with a second step-increase around 1450 AD, and dramatic increases in both proxies around 1800 AD, retracting in the 20th Century. A sub-decadal record of hillslope stability and within-lake primary productivity in sediments from a low-elevation lake in northern Iceland shows parallel changes at similar times. Sea ice proxies and historical records document the first appearance of sea ice around Iceland following Medieval time about 1250 AD. The similarity in the onset and intensification of Little Ice Age cold-weather proxies across a wide region of the northern North Atlantic suggests at least a regional driver of abrupt climate change. The time intervals for which these abrupt changes occur coincide with the three most intense episodes of multiple explosive volcanic eruptions that introduced large volumes of sulfate aerosols into the stratosphere during the past millennium. Although the direct impacts of volcanic aerosols have a duration of only a few years, the memory stored by the

  6. Numerical simulation of ice accretion phenomena on rotor blade of axial blower

    NASA Astrophysics Data System (ADS)

    Matsuura, Taiki; Suzuki, Masaya; Yamamoto, Makoto; Shishido, Shinichiro; Murooka, Takeshi; Miyagawa, Hiroshi

    2012-08-01

    Ice accretion is the phenomenon that super-cooled water droplets impinge and accrete on a body. It is well known that ice accretion on blades and airfoils leads to performance degradation and severe accidents. For this reason, experimental investigations have been carried out using flight tests or icing tunnels. However, it is too expensive, dangerous, and difficult to set actual icing conditions. Hence, computational fluid dynamics is useful to predict ice accretion. A rotor blade is one of jet engine components where ice accretes. Therefore, the authors focus on the ice accretion on a rotor blade in this study. Three-dimensional icing phenomena on the rotor blade of a commercial axial blower are computed here, and ice accretion on the rotor blade is numerically investigated.

  7. Ice ages and the thermal equilibrium of the earth, II

    USGS Publications Warehouse

    Adam, D.P.

    1975-01-01

    The energy required to sustain midlatitude continental glaciations comes from solar radiation absorbed by the oceans. It is made available through changes in relative amounts of energy lost from the sea surface as net outgoing infrared radiation, sensible heat loss, and latent heat loss. Ice sheets form in response to the initial occurrence of a large perennial snowfield in the subarctic. When such a snowfield forms, it undergoes a drastic reduction in absorbed solar energy because of its high albedo. When the absorbed solar energy cannot supply local infrared radiation losses, the snowfield cools, thus increasing the energy gradient between itself and external, warmer areas that can act as energy sources. Cooling of the snowfield progresses until the energy gradients between the snowfield and external heat sources are sufficient to bring in enough (latent plus sensible) energy to balance the energy budget over the snowfield. Much of the energy is imported as latent heat. The snow that falls and nourishes the ice sheet is a by-product of the process used to satisfy the energy balance requirements of the snowfield. The oceans are the primary energy source for the ice sheet because only the ocean can supply large amounts of latent heat. At first, some of the energy extracted by the ice sheet from the ocean is stored heat, so the ocean cools. As it cools, less energy is lost as net outgoing infrared radiation, and the energy thus saved is then available to augment evaporation. The ratio between sensible and latent heat lost by the ocean is the Bowen ratio; it depends in part on the sea surface temperature. As the sea surface temperature falls during a glaciation, the Bowen ratio increases, until most of the available energy leaves the oceans as sensible, rather than latent heat. The ice sheet starves, and an interglacial period begins. The oscillations between stadial and interstadial intervals within a glaciation are caused by the effects of varying amounts of

  8. Saving Humanity from Catastrophic Cooling with Geo-Engineering

    NASA Astrophysics Data System (ADS)

    Haapala, K.; Singer, S. F.

    2016-02-01

    There are two kinds of ice ages; they are fundamentally different and therefore require different methods of mitigation: (i) Major (Milankovitch-style) glaciations occur on a 100,000-year time-scale and are controlled astronomically. (ii) "Little" ice ages were discovered in ice cores; they have been occurring on an approx. 1000-1500-yr cycle and are likely controlled by the Sun [Ref: Singer & Avery 2007. Unstoppable Global Warming: Every 1500 years]. The current cycle's cooling phase may be imminent - hence there may be urgent need for action. To stop onset of a major (Milankovitch) glaciation 1. Locate a "trigger" - a growing perennial snow/ice field - using satellites 2. Spread soot, to lower the albedo, and use Sun to melt 3. How much soot? How to apply soot? Learn by experimentation To lessen (regional, intermittent) cooling of DOB (Dansgaard-Oeschger-Bond) cycles1. Use greenhouse effect of manmade cirrus (ice particles) [Ref: Singer 1988. Meteorology and Atmospheric Physics 38:228 - 239]2. Inject water droplets (mist) near tropopause 3. Trace dispersion of cirrus cloud by satellite and observe warming at surface 4. How much water; over what area? How often to inject? Learn by experimentation Many scientific questions remain. While certainly interesting and important, there is really no need to delay the crucial and urgent tests of geo-engineering, designed to validate schemes of mitigation. Such proposed tests involve only minor costs and present negligible risks to the environment.

  9. Glacioclimatological study of Perennial Ice in the Fuji Ice Cave, Japan. Part I. Seasonal variation and mechanism of maintenance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohata, Tetsuo; Furukawa, Teruo; Higuchi, Keiji

    1994-08-01

    Perennial cave ice in a cave located at Mt. Fuji in central Japan was studied to investigate the basic characteristics and the cause for existence of such ice under warm ground-level climate considering the ice cave as a thermal and hydrological system. Fuji Ice Cave is a lava tube cave 150 m in length with a collapsed part at the entrance. Measurements from 1984 to 1986 showed that the surface-level change of floor ice occurred due to freezing and melting at the surface and that melting at the bottom of the ice was negligible. The annual amplitude of change inmore » surface level was larger near the entrance. Meterological data showed that the cold air inflow to the cave was strong in winter, but in summer the cave was maintained near 0[degrees]C with only weak inflow of warm air. The predominant wind system was from the entrance to the interior in both winter and summer, but the spatial scale of the wind system was different. Heat budget consideration of the cave showed that the largest component was the strong inflow of subzero dry air mass in winter. Cooling in winter was compensated for by summer inflow of warm air, heat transport from the surrounding ground layer, and loss of sensible heat due to cooling of the cave for the observed year. Strong inflow of cold air and weak inflow of warm air, which is extremely low compared to the ground level air, seemed to be the most important condition. Thus the thermal condition of the cave is quasi-balanced at the presence condition below 0[degrees]C with ice. It can be said that the interrelated result of the climatological and special structural conditions makes this cave very cold, and allows perennial ice to exist in the cave. Other climatological factors such as precipitation seem to be minor factors. 17 refs., 3 figs., 3 tabs.« less

  10. Mouse Embryo Cryopreservation by Rapid Cooling.

    PubMed

    Shaw, Jillian

    2018-05-01

    Embryo cryopreservation has been used to archive mouse strains. Protocols have evolved over this time and now vary considerably in terms of cryoprotectant solution, cooling and warming rates, methods to add and remove cryoprotectant, container or carrier type, volume of cryoprotectant, the stage of preimplantation development, and the use of additional treatments such as blastocyst puncture and microinjection. The rapid cooling methods use concentrated solutions of cryoprotectants to reduce the water content of the cell before cooling commences, thus preventing the formation of ice crystals. Embryos are equilibrated with the cryoprotectants, loaded into a carrier, and then rapidly cooled (e.g., by being plunged directly into LN 2 or onto a surface cooled in LN 2 ). The rapid cooling methods eliminate the need for controlled-rate freezers and seeding procedures. However, they are much more sensitive to minor variations when performing the steps. The rapid-cooling protocol described here is suitable for use with plastic insemination straws. Because it uses relatively large volumes, it is less technically demanding than some other methods that use minivolume devices. © 2018 Cold Spring Harbor Laboratory Press.

  11. Minimalist Model of Ice Microphysics in Mixed-phase Stratiform Clouds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, F.; Ovchinnikov, Mikhail; Shaw, Raymond A.

    The question of whether persistent ice crystal precipitation from super cooled layer clouds can be explained by time-dependent, stochastic ice nucleation is explored using an approximate, analytical model, and a large-eddy simulation (LES) cloud model. The updraft velocity in the cloud defines an accumulation zone, where small ice particles cannot fall out until they are large enough, which will increase the residence time of ice particles in the cloud. Ice particles reach a quasi-steady state between growth by vapor deposition and fall speed at cloud base. The analytical model predicts that ice water content (wi) has a 2.5 power lawmore » relationship with ice number concentration ni. wi and ni from a LES cloud model with stochastic ice nucleation also confirm the 2.5 power law relationship. The prefactor of the power law is proportional to the ice nucleation rate, and therefore provides a quantitative link to observations of ice microphysical properties.« less

  12. Enhancing protein to extremely high content in photosynthetic bacteria during biogas slurry treatment.

    PubMed

    Yang, Anqi; Zhang, Guangming; Meng, Fan; Lu, Pei; Wang, Xintian; Peng, Meng

    2017-12-01

    This work proposed a novel approach to achieve an extremely high protein content in photosynthetic bacteria (PSB) using biogas slurry as a culturing medium. The results showed the protein content of PSB could be enhanced strongly to 90% in the biogas slurry, which was much higher than reported microbial protein contents. The slurry was partially purified at the same time. Dark-aerobic was more beneficial than light-anaerobic condition for protein accumulation. High salinity and high ammonia of the biogas slurry were the main causes for protein enhancement. In addition, the biogas slurry provided a good buffer system for PSB to grow. The biosynthesis mechanism of protein in PSB was explored according to theoretical analysis. During biogas slurry treatment, the activities of glutamate synthase and glutamine synthetase were increased by 26.55%, 46.95% respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Coal liquefaction process utilizing coal/CO.sub.2 slurry feedstream

    DOEpatents

    Comolli, Alfred G.; McLean, Joseph B.

    1989-01-01

    A coal hydrogenation and liquefaction process in which particulate coal feed is pressurized to an intermediate pressure of at least 500 psig and slurried with CO.sub.2 liquid to provide a flowable coal/CO.sub.2 slurry feedstream, which is further pressurized to at least 1000 psig and fed into a catalytic reactor. The coal particle size is 50-375 mesh (U.S. Sieve Series) and provides 50-80 W % coal in the coal/CO.sub.2 slurry feedstream. Catalytic reaction conditions are maintained at 650.degree.-850.degree. F. temperature, 1000-4000 psig hydrogen partial pressure and coal feed rate of 10-100 lb coal/hr ft.sup.3 reactor volume to produce hydrocarbon gas and liquid products. The hydrogen and CO.sub.2 are recovered from the reactor effluent gaseous fraction, hydrogen is recycled to the catalytic reactor, and CO.sub.2 is liquefied and recycled to the coal slurrying step. If desired, two catalytic reaction stages close coupled together in series relation can be used. The process advantageously minimizes the recycle and processing of excess hydrocarbon liquid previously needed for slurrying the coal feed to the reactor(s).

  14. Laboratory estimates of trace gas emissions following surface application and injection of cattle slurry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flessa, H.; Beese, F.

    2000-02-01

    Applying cattle slurry to soil may induce emissions of the greenhouse gases N{sub 2}O and CH{sub 4}. Their objective was to determine the effects of different application techniques (surface application and slit injection) of cattle (Bostaurus) slurry on the decomposition of slurry organic matter and the emissions of N{sub 2}O and CH{sub 4}. The effects of slurry application (43.6 m{sup 3} ha{sup {minus}1}) were studied for 9 wk under controlled laboratory conditions using a soil microcosm system with automated monitoring of the CO{sub 2}, N{sub 2}O, and CH{sub 4} fluxes. The soil used was a silty loam (Ap horizon ofmore » a cambisol) with a constant water-filled pore space of 67% during the experiment. About 38% of the organic matter applied with the slurry was decomposed within 9 wk. Production of CO{sub 2} was not affected by the application technique. Emissions of N{sub 2}O and CH{sub 4} from the injected slurry were significantly higher than from the surface-applied slurry, probably because of restricted aeration at the injected-slurry treatment. Total N{sub 2}O-N emissions were 0.2% (surface application) and 3.3% (slit injection) of the slurry N added. Methane emission occurred only during the first few days following application. The total net flux of CH{sub 4}-C for 2 wk was {minus}12 g ha{sup {minus}1} for the control (CH{sub 4} uptake), 2 g ha{sup {minus}1} for the surface-applied slurry, and 39 g ha{sup {minus}1} for the injected slurry. Slurry injection, which is recommended to reduce NH{sub 3} volatilization, appears to increase emissions of the greenhouse gases N{sub 2}O and CH{sub 4} from the fertilized fields.« less

  15. Numerical investigations of transient heat transfer characteristics and vitrification tendencies in ultra-fast cell cooling processes.

    PubMed

    Jiao, Anjun; Han, Xu; Critser, John K; Ma, Hongbin

    2006-06-01

    During freezing, cells are often damaged directly or indirectly by ice formation. Vitrification is an alternative approach to cryopreservation that avoids ice formation. The common method to achieve vitrification is to use relatively high concentrations of cryoprotectant agents (CPA) in combination with a relatively slow cooling rate. However, high concentrations of CPAs have potentially damaging toxic and/or osmotic effects on cells. Therefore, establishing methods to achieve vitrification with lower concentrations of CPAs through ultra-fast cooling rates would be advantageous in these aspects. These ultra-fast cooling rates can be realized by a cooling system with an ultra-high heat transfer coefficient (h) between the sample and coolant. The oscillating motion heat pipe (OHP), a novel cooling device utilizing the pressure change to excite the oscillation motion of the liquid plugs and vapor bubbles, can significantly increase h and may fulfill this aim. The current investigation was designed to numerically study the effects of different values of h on the transient heat transfer characteristics and vitrification tendencies of the cell suspension during the cooling processes in an ultra-thin straw (100 microm in diameter). The transient temperature distribution, the cooling rate and the volume ratio (x) of the ice quantity to the maximum crystallizable ice of the suspension were calculated. From these numerical results, it is concluded that the ultra-high h (>10(4) W/m2 K) obtained by OHPs could facilitate vitrification by efficiently decreasing x as well as the time to pass through the dangerous temperature region where the maximum ice formation happens. For comparison, OHPs can decrease both of the parameters to less than 20% of those from the widely used open pulled straw methods. Therefore, the OHP method will be a promising approach to improving vitrification tendencies of CPA solutions and could also decrease the required concentration of CPAs for

  16. Slurry atomizer for a coal-feeder and dryer used to provide coal at gasifier pressure

    DOEpatents

    Loth, John L.; Smith, William C.; Friggens, Gary R.

    1982-01-01

    The present invention is directed to a coal-water slurry atomizer for use a high-pressure dryer employed in a pumping system utilized to feed coal into a pressurized coal gasifier. The slurry atomizer is provided with a venturi, constant area slurry injection conduit, and a plurality of tangentially disposed steam injection ports. Superheated steam is injected into the atomizer through these ports to provide a vortical flow of the steam, which, in turn, shears slurry emerging from the slurry injection conduit. The droplets of slurry are rapidly dispersed in the dryer through the venturi where the water is vaporized from the slurry by the steam prior to deleterious heating of the coal.

  17. Ice nucleation active bacteria in precipitation are genetically diverse and nucleate ice by employing different mechanisms.

    PubMed

    Failor, K C; Schmale, D G; Vinatzer, B A; Monteil, C L

    2017-12-01

    A growing body of circumstantial evidence suggests that ice nucleation active (Ice + ) bacteria contribute to the initiation of precipitation by heterologous freezing of super-cooled water in clouds. However, little is known about the concentration of Ice + bacteria in precipitation, their genetic and phenotypic diversity, and their relationship to air mass trajectories and precipitation chemistry. In this study, 23 precipitation events were collected over 15 months in Virginia, USA. Air mass trajectories and water chemistry were determined and 33 134 isolates were screened for ice nucleation activity (INA) at -8 °C. Of 1144 isolates that tested positive during initial screening, 593 had confirmed INA at -8 °C in repeated tests. Concentrations of Ice + strains in precipitation were found to range from 0 to 13 219 colony forming units per liter, with a mean of 384±147. Most Ice + bacteria were identified as members of known and unknown Ice + species in the Pseudomonadaceae, Enterobacteriaceae and Xanthomonadaceae families, which nucleate ice employing the well-characterized membrane-bound INA protein. Two Ice + strains, however, were identified as Lysinibacillus, a Gram-positive genus not previously known to include Ice + bacteria. INA of the Lysinibacillus strains is due to a nanometer-sized molecule that is heat resistant, lysozyme and proteinase resistant, and secreted. Ice + bacteria and the INA mechanisms they employ are thus more diverse than expected. We discuss to what extent the concentration of culturable Ice + bacteria in precipitation and the identification of a new heat-resistant biological INA mechanism support a role for Ice + bacteria in the initiation of precipitation.

  18. An investigation on the rheological behavior of metallic semi-solid slurries of Al-6.5 pct Si and semi-solid composite slurries of SiC particulates in an Al-6.5 pct Si alloy matrix

    NASA Technical Reports Server (NTRS)

    Moon, H.-K.; Ito, Y.; Cornie, J. A.; Flemings, M. C.

    1993-01-01

    The rheology of SiC particulate/Al-6.5 pct Si composite slurries was explored. The rheological behavior of the composite slurries shows both thixotropic and pseudoplastic behaviors. Isostructural experiments on the composite slurries revealed a Newtonian behavior beyond a high shear rate limit. The rheology of fully molten composite slurries over the low to high shear rate range indicates the existence of a low shear rate Newtonian region, an intermediate pseudoplastic region and a high shear rate Newtonian region. The isostructural studies indicate that the viscosity of a composite slurry depends upon the shearing history of a given volume of material. An unexpected shear thinning was noted for SiC particulate + alpha slurries as compared to semi-solid metallic slurries at the same fraction solid. The implications of these findings for the processing of slurries into cast components is discussed.

  19. Role of ice sheet dynamics in the collapse of the early-Holocene Laurentide Ice Sheet

    NASA Astrophysics Data System (ADS)

    Matero, I. S. O.; Gregoire, L. J.; Cornford, S. L.; Ivanovic, R. F.

    2017-12-01

    The last stage of the deglaciation of the Laurentide Ice Sheet (LIS) during the early Holocene Thermal Maximum ( 9000 to 7000 years ago) provides an analogy and insight to the possible responses of contemporary ice sheets in a warming climate. What makes LIS particularly interesting is that meltwater from the collapse of an ice saddle over Hudson Bay was recently shown to be the primary forcing for the period of abrupt northern hemisphere cooling known as the 8.2 ka event. The evolution of the LIS during this period was likely influenced by its interaction with marginal lakes and the ocean, and its major ice stream, which exported ice towards Hudson Strait. Accurately simulating the early Holocene LIS evolution thus requires a model such as BISICLES, capable of accurately and efficiently resolving ice stream dynamics and grounding line migration thanks to the combined use of higher order physics and adaptive mesh refinement. We drive the BISICLES model using a positive degree day mass balance scheme with monthly precipitation and temperature from the HadCM3 climate model under climatic conditions from 10,000 to 8,000 years ago. We test the effect of varying the initial topographies and ice thicknesses from different timeslices in the ICE-6Gc reconstruction. We also test different parameterisations for the basal friction based on the thicknesses of the underlying sediments. These simulations evaluate the role of the Hudson Strait ice stream, ice sheet dynamics and interactions with the adjacent proglacial Lake Agassiz and North Atlantic Ocean in the collapse of the LIS. Our results highlight that the choice of parameterisation for basal friction has major effects on ice sheet dynamics and evolution.

  20. Effects of dairy slurry on silage fermentation characteristics and nutritive value of alfalfa.

    PubMed

    Coblentz, W K; Muck, R E; Borchardt, M A; Spencer, S K; Jokela, W E; Bertram, M G; Coffey, K P

    2014-11-01

    Dairy producers frequently ask questions about the risks associated with applying dairy slurry to growing alfalfa (Medicago sativa L.). Our objectives were to determine the effects of applying dairy slurry on the subsequent nutritive value and fermentation characteristics of alfalfa balage. Dairy slurry was applied to 0.17-ha plots of alfalfa; applications were made to the second (HARV1) and third (HARV2) cuttings during June and July of 2012, respectively, at mean rates of 42,400 ± 5271 and 41,700 ± 2397 L/ha, respectively. Application strategies included (1) no slurry, (2) slurry applied directly to stubble immediately after the preceding harvest, (3) slurry applied after 1 wk of post-ensiled regrowth, or (4) slurry applied after 2 wk of regrowth. All harvested forage was packaged in large, rectangular bales that were ensiled as wrapped balage. Yields of DM harvested from HARV1 (2,477 kg/ha) and HARV2 (781 kg/ha) were not affected by slurry application treatment. By May 2013, all silages appeared to be well preserved, with no indication of undesirable odors characteristic of clostridial fermentations. Clostridium tyrobutyricum, which is known to negatively affect cheese production, was not detected in any forage on either a pre- or post-ensiled basis. On a pre-ensiled basis, counts for Clostridium cluster 1 were greater for slurry-applied plots than for those receiving no slurry, and this response was consistent for HARV1 (4.44 vs. 3.29 log10 genomic copies/g) and HARV2 (4.99 vs. 3.88 log10 genomic copies/g). Similar responses were observed on a post-ensiled basis; however, post-ensiled counts also were greater for HARV1 (5.51 vs. 5.17 log10 genomic copies/g) and HARV2 (5.84 vs. 5.28 log10 genomic copies/g) when slurry was applied to regrowth compared with stubble. For HARV2, counts also were greater following a 2-wk application delay compared with a 1-wk delay (6.23 vs. 5.45 log10 genomic copies/g). These results suggest that the risk of clostridial

  1. Clouds enhance Greenland ice sheet mass loss

    NASA Astrophysics Data System (ADS)

    Van Tricht, Kristof; Gorodetskaya, Irina V.; L'Ecuyer, Tristan; Lenaerts, Jan T. M.; Lhermitte, Stef; Noel, Brice; Turner, David D.; van den Broeke, Michiel R.; van Lipzig, Nicole P. M.

    2015-04-01

    Clouds have a profound influence on both the Arctic and global climate, while they still represent one of the key uncertainties in climate models, limiting the fidelity of future climate projections. The potentially important role of thin liquid-containing clouds over Greenland in enhancing ice sheet melt has recently gained interest, yet current research is spatially and temporally limited, focusing on particular events, and their large scale impact on the surface mass balance remains unknown. We used a combination of satellite remote sensing (CloudSat - CALIPSO), ground-based observations and climate model (RACMO) data to show that liquid-containing clouds warm the Greenland ice sheet 94% of the time. High surface reflectivity (albedo) for shortwave radiation reduces the cloud shortwave cooling effect on the absorbed fluxes, while not influencing the absorption of longwave radiation. Cloud warming over the ice sheet therefore dominates year-round. Only when albedo values drop below ~0.6 in the coastal areas during summer, the cooling effect starts to overcome the warming effect. The year-round excess of energy due to the presence of liquid-containing clouds has an extensive influence on the mass balance of the ice sheet. Simulations using the SNOWPACK snow model showed not only a strong influence of these liquid-containing clouds on melt increase, but also on the increased sublimation mass loss. Simulations with the Community Earth System Climate Model for the end of the 21st century (2080-2099) show that Greenland clouds contain more liquid water path and less ice water path. This implies that cloud radiative forcing will be further enhanced in the future. Our results therefore urge the need for improving cloud microphysics in climate models, to improve future projections of ice sheet mass balance and global sea level rise.

  2. Three separate classes of bacterial ice nucleation structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turner, M.A.; Arellano, F.; Kozloff, L.M.

    1990-05-01

    Studies of the properties of the ice nucleation structure exposed on the surfaces of various bacteria such as Pseudomonas syringae, Erwinia herbicola, or various strains of Ice+ recombinant Escherichia coli have shown that there are clearly three major related but chemically distinct types of structures on these cells. First, the ability of Ice+ cells to nucleate super-cooled D2O has been examined, and it has been found that this ability (relative to the ability of the same cells to nucleate super-cooled H2O) exhibited three characteristic nucleating patterns. The rarest structure, called class A, is found on only a small fraction ofmore » cells in a culture, nucleates H2O at temperatures above -4.4 degrees C, and is an effective nucleator of super-cooled D2O. A second class of structure, called class B, is found on a larger portion of the cells, nucleates H2O between -4.8 and -5.7 degrees C, and is a relatively poor nucleator of super-cooled D2O. The class C structure is found on almost all cells and nucleates at -7.6 degrees C or colder. These three classes of structures were also differentiated by their sensitivities to low concentrations of water-miscible organic solvents such as dioxane or dimethyl sulfoxide. Depending on the specific bacterial strain, the addition of these solvents to bacterial suspensions lowered the nucleation activity of the class A structure by 1,000-fold or more. The nucleation activities of class B structures in the same culture were highly resistant to these compounds and were lowered only by 20 to 40%.« less

  3. X-Ray spectroscopy of cooling flows

    NASA Technical Reports Server (NTRS)

    Prestwich, Andrea

    1996-01-01

    Cooling flows in clusters of galaxies occur when the cooling time of the gas is shorter than the age of the cluster; material cools and falls to the center of the cluster potential. Evidence for short X-ray cooling times comes from imaging studies of clusters and X-ray spectroscopy of a few bright clusters. Because the mass accretion rate can be high (a few 100 solar mass units/year) the mass of material accumulated over the lifetime of a cluster can be as high as 10(exp 12) solar mass units. However, there is little evidence for this material at other wavelengths, and the final fate of the accretion material is unknown. X-ray spectra obtained with the Einstein SSS show evidence for absorption; if confirmed this result would imply that the accretion material is in the form of cool dense clouds. However ice on the SSS make these data difficult to interpret. We obtained ASCA spectra of the cooling flow cluster Abell 85. Our primary goals were to search for multi-temperature components that may be indicative of cool gas; search for temperature gradients across the cluster; and look for excess absorption in the cooling region.

  4. Slurry burner for mixture of carbonaceous material and water

    DOEpatents

    Nodd, D.G.; Walker, R.J.

    1985-11-05

    The present invention is intended to overcome the limitations of the prior art by providing a fuel burner particularly adapted for the combustion of carbonaceous material-water slurries which includes a stationary high pressure tip-emulsion atomizer which directs a uniform fuel into a shearing air flow as the carbonaceous material-water slurry is directed into a combustion chamber, inhibits the collection of unburned fuel upon and within the atomizer, reduces the slurry to a collection of fine particles upon discharge into the combustion chamber, and regulates the operating temperature of the burner as well as primary air flow about the burner and into the combustion chamber for improved combustion efficiency, no atomizer plugging and enhanced flame stability.

  5. Prospects for coal slurry pipelines in California

    NASA Technical Reports Server (NTRS)

    Lynch, J. F.

    1978-01-01

    The coal slurry pipeline segment of the transport industry is emerging in the United States. If accepted it will play a vital role in meeting America's urgent energy requirements without public subsidy, tax relief, or federal grants. It is proven technology, ideally suited for transport of an abundant energy resource over thousands of miles to energy short industrial centers and at more than competitive costs. Briefly discussed are the following: (1) history of pipelines; (2) California market potential; (3) slurry technology; (4) environmental benefits; (5) market competition; and (6) a proposed pipeline.

  6. ICE CONTROL - Towards optimizing wind energy production during icing events

    NASA Astrophysics Data System (ADS)

    Dorninger, Manfred; Strauss, Lukas; Serafin, Stefano; Beck, Alexander; Wittmann, Christoph; Weidle, Florian; Meier, Florian; Bourgeois, Saskia; Cattin, René; Burchhart, Thomas; Fink, Martin

    2017-04-01

    Forecasts of wind power production loss caused by icing weather conditions are produced by a chain of physical models. The model chain consists of a numerical weather prediction model, an icing model and a production loss model. Each element of the model chain is affected by significant uncertainty, which can be quantified using targeted observations and a probabilistic forecasting approach. In this contribution, we present preliminary results from the recently launched project ICE CONTROL, an Austrian research initiative on measurements, probabilistic forecasting, and verification of icing on wind turbine blades. ICE CONTROL includes an experimental field phase, consisting of measurement campaigns in a wind park in Rhineland-Palatinate, Germany, in the winters 2016/17 and 2017/18. Instruments deployed during the campaigns consist of a conventional icing detector on the turbine hub and newly devised ice sensors (eologix Sensor System) on the turbine blades, as well as meteorological sensors for wind, temperature, humidity, visibility, and precipitation type and spectra. Liquid water content and spectral characteristics of super-cooled water droplets are measured using a Fog Monitor FM-120. Three cameras document the icing conditions on the instruments and on the blades. Different modelling approaches are used to quantify the components of the model-chain uncertainties. The uncertainty related to the initial conditions of the weather prediction is evaluated using the existing global ensemble prediction system (EPS) of the European Centre for Medium-Range Weather Forecasts (ECMWF). Furthermore, observation system experiments are conducted with the AROME model and its 3D-Var data assimilation to investigate the impact of additional observations (such as Mode-S aircraft data, SCADA data and MSG cloud mask initialization) on the numerical icing forecast. The uncertainty related to model formulation is estimated from multi-physics ensembles based on the Weather Research

  7. Is Ice-Rafted Sediment in a North Pole Marine Record Evidence for Perennial Sea-ice Cover?

    NASA Technical Reports Server (NTRS)

    Tremblay, L.B.; Schmidt, G.A.; Pfirman, S.; Newton, R.; DeRepentigny, P.

    2015-01-01

    Ice-rafted sediments of Eurasian and North American origin are found consistently in the upper part (13 Ma BP to present) of the Arctic Coring Expedition (ACEX) ocean core from the Lomonosov Ridge, near the North Pole (approximately 88 degrees N). Based on modern sea-ice drift trajectories and speeds, this has been taken as evidence of the presence of a perennial sea-ice cover in the Arctic Ocean from the middle Miocene onwards. However, other high latitude land and marine records indicate a long-term trend towards cooling broken by periods of extensive warming suggestive of a seasonally ice-free Arctic between the Miocene and the present. We use a coupled sea-ice slab-ocean model including sediment transport tracers to map the spatial distribution of ice-rafted deposits in the Arctic Ocean. We use 6 hourly wind forcing and surface heat fluxes for two different climates: one with a perennial sea-ice cover similar to that of the present day and one with seasonally ice-free conditions, similar to that simulated in future projections. Model results confirm that in the present-day climate, sea ice takes more than 1 year to transport sediment from all its peripheral seas to the North Pole. However, in a warmer climate, sea-ice speeds are significantly faster (for the same wind forcing) and can deposit sediments of Laptev, East Siberian and perhaps also Beaufort Sea origin at the North Pole. This is primarily because of the fact that sea-ice interactions are much weaker with a thinner ice cover and there is less resistance to drift. We conclude that the presence of ice-rafted sediment of Eurasian and North American origin at the North Pole does not imply a perennial sea-ice cover in the Arctic Ocean, reconciling the ACEX ocean core data with other land and marine records.

  8. A Comparison of Mixed-Method Cooling Interventions on Preloaded Running Performance in the Heat.

    PubMed

    Stevens, Christopher J; Bennett, Kyle J M; Sculley, Dean V; Callister, Robin; Taylor, Lee; Dascombe, Ben J

    2017-03-01

    Stevens, CJ, Bennett, KJM, Sculley, DV, Callister, R, Taylor, L, and Dascombe, BJ. A comparison of mixed-method cooling interventions on preloaded running performance in the heat. J Strength Cond Res 31(3): 620-629, 2017-The purpose of this investigation was to assess the effect of combining practical methods to cool the body on endurance running performance and physiology in the heat. Eleven trained male runners completed 4 randomized, preloaded running time trials (20 minutes at 70% V[Combining Dot Above]O2max and a 3 km time trial) on a nonmotorized treadmill in the heat (33° C). Trials consisted of precooling by combined cold-water immersion and ice slurry ingestion (PRE), midcooling by combined facial water spray and menthol mouth rinse (MID), a combination of all methods (ALL), and control (CON). Performance time was significantly faster in MID (13.7 ± 1.2 minutes; p < 0.01) and ALL (13.7 ± 1.4 minutes; p = 0.04) but not PRE (13.9 ± 1.4 minutes; p = 0.24) when compared with CON (14.2 ± 1.2 minutes). Precooling significantly reduced rectal temperature (initially by 0.5 ± 0.2° C), mean skin temperature, heart rate and sweat rate, and increased iEMG activity, whereas midcooling significantly increased expired air volume and respiratory exchange ratio compared with control. Significant decreases in forehead temperature, thermal sensation, and postexercise blood prolactin concentration were observed in all conditions compared with control. Performance was improved with midcooling, whereas precooling had little or no influence. Midcooling may have improved performance through an attenuated inhibitory psychophysiological and endocrine response to the heat.

  9. Geodynamic Modeling of Planetary Ice-Oceans: Evolution of Ice-Shell Thickness in Convecting Two-Phase Systems

    NASA Astrophysics Data System (ADS)

    Allu Peddinti, D.; McNamara, A. K.

    2016-12-01

    Along with the newly unveiled icy surface of Pluto, several icy planetary bodies show indications of an active surface perhaps underlain by liquid oceans of some size. This augments the interest to explore the evolution of an ice-ocean system and its surface implications. The geologically young surface of the Jovian moon Europa lends much speculation to variations in ice-shell thickness over time. Along with the observed surface features, it suggests the possibility of episodic convection and conduction within the ice-shell as it evolved. What factors would control the growth of the ice-shell as it forms? If and how would those factors determine the thickness of the ice-shell and consequently the heat transfer? Would parameters such as tidal heating or initial temperature affect how the ice-shell grows and to what significance? We perform numerical experiments using geodynamical models of the two-phase ice-water system to study the evolution of planetary ice-oceans such as that of Europa. The models evolve self-consistently from an initial liquid ocean as it cools with time. The effects of presence, absence and magnitude of tidal heating on ice-shell thickness are studied in different models. The vigor of convection changes as the ice-shell continues to thicken. Initial modeling results track changes in the growth rate of the ice-shell as the vigor of the convection changes. The magnitude and temporal location of the rate change varies with different properties of tidal heating and values of initial temperature. A comparative study of models is presented to demonstrate how as the ice-shell is forming, its growth rate and convection are affected by processes such as tidal heating.

  10. Ocean interactions with the base of Amery Ice Shelf, Antarctica

    NASA Technical Reports Server (NTRS)

    Hellmer, Hartmut H.; Jacobs, Stanley S.

    1992-01-01

    Using a two-dimensional ocean themohaline circulation model, we varied the cavity shape beneath Amery Ice Shelf in an attempt to reproduce the 150-m-thick marine ice layer observed at the 'G1' ice core site. Most simulations caused melting rates which decrease the ice thickness by as much as 400 m between grounding line and G1, but produce only minor accumulation at the ice core site and closer to the ice front. Changes in the sea floor and ice topographies revealed a high sensitivity of the basal mass balance to water column thickness near the grounding line, to submarine sills, and to discontinuities in ice thickness. Model results showed temperature/salinity gradients similar to observations from beneath other ice shelves where ice is melting into seawater. Modeled outflow characteristics at the ice front are in general agreement with oceanographic data from Prydz Bay. We concur with Morgan's inference that the G1 core may have been taken in a basal crevasse filled with marine ice. This ice is formed from water cooled by ocean/ice shelf interactions along the interior ice shelf base.

  11. Fluid mechanics of slurry flow through the grinding media in ball mills

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Songfack, P.K.; Rajamani, R.K.

    1995-12-31

    The slurry transport within the ball mill greatly influences the mill holdup, residence time, breakage rate, and hence the power draw and the particle size distribution of the mill product. However, residence-time distribution and holdup in industrial mills could not be predicted a priori. Indeed, it is impossible to determine the slurry loading in continuously operating mills by direct measurement, especially in industrial mills. In this paper, the slurry transport problem is solved using the principles of fluid mechanics. First, the motion of the ball charge and its expansion are predicted by a technique called discrete element method. Then themore » slurry flow through the porous ball charge is tackled with a fluid-flow technique called the marker and cell method. This may be the only numerical technique capable of tracking the slurry free surface as it fluctuates with the motion of the ball charge. The result is a prediction of the slurry profile in both the radial and axial directions. Hence, it leads to the detailed description of slurry mass and ball charge within the mill. The model predictions are verified with pilot-scale experimental work. This novel approach based on the physics of fluid flow is devoid of any empiricism. It is shown that the holdup of industrial mills at a given feed percent solids can be predicted successfully.« less

  12. Influence of coal slurry particle composition on pipeline hydraulic transportation behavior

    NASA Astrophysics Data System (ADS)

    Li-an, Zhao; Ronghuan, Cai; Tieli, Wang

    2018-02-01

    Acting as a new type of energy transportation mode, the coal pipeline hydraulic transmission can reduce the energy transportation cost and the fly ash pollution of the conventional coal transportation. In this study, the effect of average velocity, particle size and pumping time on particle composition of coal particles during hydraulic conveying was investigated by ring tube test. Meanwhile, the effects of particle composition change on slurry viscosity, transmission resistance and critical sedimentation velocity were studied based on the experimental data. The experimental and theoretical analysis indicate that the alter of slurry particle composition can lead to the change of viscosity, resistance and critical velocity of slurry. Moreover, based on the previous studies, the critical velocity calculation model of coal slurry is proposed.

  13. Sea Ice and Ice Temperature Variability as Observed by Microwave and Infrared Satellite Data

    NASA Technical Reports Server (NTRS)

    Comiso, Josefino C.; Koblinsky, Chester J. (Technical Monitor)

    2001-01-01

    Recent reports of a retreating and thinning sea ice cover in the Arctic have pointed to a strong suggestion of significant warming in the polar regions. It is especially important to understand what these reports mean in light of the observed global warning and because the polar regions are expected to be most sensitive to changes in climate. To gain insight into this phenomenon, co-registered ice concentrations and surface temperatures derived from two decades of satellite microwave and infrared data have been processed and analyzed. While observations from meteorological stations indicate consistent surface warming in both regions during the last fifty years, the last 20 years of the same data set show warming in the Arctic but a slight cooling in the Antarctic. These results are consistent with the retreat in the Arctic ice cover and the advance in the Antarctic ice cover as revealed by historical satellite passive microwave data. Surface temperatures derived from satellite infrared data are shown to be consistent within 3 K with surface temperature data from the limited number of stations. While not as accurate, the former provides spatially detailed changes over the twenty year period. In the Arctic, for example, much of the warming occurred in the Beaufort Sea and the North American region in 1998 while slight cooling actually happened in parts of the Laptev Sea and Northern Siberia during the same time period. Big warming anomalies are also observed during the last five years but a periodic cycle of about ten years is apparent suggesting a possible influence of the North Atlantic Oscillation. In the Antarctic, large interannual and seasonal changes are also observed in the circumpolar ice cover with regional changes showing good coherence with surface temperature anomalies. However, a mode 3 is observed to be more dominant than the mode 2 wave reported in the literature. Some of these spatial and temporal changes appear to be influenced by the Antarctic

  14. Particle agglomeration and fuel decomposition in burning slurry droplets

    NASA Astrophysics Data System (ADS)

    Choudhury, P. Roy; Gerstein, Melvin

    In a burning slurry droplet the particles tend to agglomerate and produce large clusters which are difficult to burn. As a consequence, the combustion efficiency is drastically reduced. For such a droplet the nonlinear D2- t behavior associated with the formation of hard to burn agglomerates can be explained if the fuel decomposes on the surface of the particles. This paper deals with analysis and experiments with JP-10 and Diesel #2 slurries prepared with inert SiC and Al 2O 3 particles. It provides direct evidence of decomposed fuel residue on the surface of the particles heated by flame radiation. These decomposed fuel residues act as bonding agents and appear to be responsible for the observed agglomeration of particles in a slurry. Chemical analysis, scanning electron microscope photographs and finally micro-analysis by electron scattering clearly show the presence of decomposed fuel residue on the surface of the particles. Diesel #2 is decomposed relatively easily and therefore leaves a thicker deposit on SiC and forms larger agglomerates than the more stable JP-10. A surface reaction model with particles heated by flame radiation is able to describe the observed trend of the diameter history of the slurry fuel. Additional experiments with particles of lower emissivity (Al 2O 3) and radiation absorbing dye validate the theoretical model of the role of flame radiation in fuel decomposition and the formation of agglomerates in burning slurry droplets.

  15. Passive-solar directional-radiating cooling system

    DOEpatents

    Hull, J.R.; Schertz, W.W.

    1985-06-27

    A radiative cooling system for use with an ice-making system having a radiating surface aimed at the sky for radiating energy at one or more wavelength bands for which the atmosphere is transparent and a cover thermally isolated from the radiating surface and transparent at least to the selected wavelength or wavelengths, the thermal isolation reducing the formation of condensation on the radiating surface and/or cover and permitting the radiation to continue when the radiating surface is below the dewpoint of the atmosphere, and a housing supporting the radiating surface, cover and heat transfer means to an ice storage reservoir.

  16. Passive-solar directional-radiating cooling system

    DOEpatents

    Hull, John R.; Schertz, William W.

    1986-01-01

    A radiative cooling system for use with an ice-making system having a radiating surface aimed at the sky for radiating energy at one or more wavelength bands for which the atmosphere is transparent and a cover thermally isolated from the radiating surface and transparent at least to the selected wavelength or wavelengths, the thermal isolation reducing the formation of condensation on the radiating surface and/or cover and permitting the radiation to continue when the radiating surface is below the dewpoint of the atmosphere, and a housing supporting the radiating surface, cover and heat transfer means to an ice storage reservoir.

  17. On the non-detection of Glashow resonance in IceCube

    NASA Astrophysics Data System (ADS)

    Sahu, Sarira; Zhang, Bing

    2018-06-01

    Electron anti-neutrinos at the Glashow resonance (GR, at Eνbare ∼ 6.3 PeV) have an enhanced probability to be detected. With three neutrinos detected by IceCube in the (1-2) PeV energy range at present, one would expect that about 1 to 4 GR νbare should have been detected. The high-energy ∼8.7 PeV muon neutrino detected by IceCube may not be a GR event. If so, we expect to detect 50 to 70 GR νbare, then one would have a "missing Glashow-resonance problem". This would suggest (1) that pγ interaction rather than pp interaction is the dominant channel to produce the observed IceCube high-energy neutrinos; (2) that multi-pion pγ interactions are suppressed; and (3) that the magnetic field and photon energy density in the pγ emission region is such that significant μ+ cooling occurs before decaying, yet π+'s essentially do not cool before decaying.

  18. A low-cost solid–liquid separation process for enzymatically hydrolyzed corn stover slurries

    DOE PAGES

    Sievers, David A.; Lischeske, James J.; Biddy, Mary J.; ...

    2015-07-01

    Solid-liquid separation of intermediate process slurries is required in some process configurations for the conversion of lignocellulosic biomass to transportation fuels. Thermochemically pretreated and enzymatically hydrolyzed corn stover slurries have proven difficult to filter due to formation of very low permeability cakes that are rich in lignin. Treatment of two different slurries with polyelectrolyte flocculant was demonstrated to increase mean particle size and filterability. Filtration flux was greatly improved, and thus scaled filter unit capacity was increased approximately 40-fold compared with unflocculated slurry. Although additional costs were accrued using polyelectrolyte, techno-economic analysis revealed that the increase in filter capacity significantlymore » reduced overall production costs. Fuel production cost at 95% sugar recovery was reduced by $1.35 US per gallon gasoline equivalent for dilute-acid pretreated and enzymatically hydrolyzed slurries and $3.40 for slurries produced using an additional alkaline de-acetylation preprocessing step that is even more difficult to natively filter.« less

  19. An Antarctic stratigraphic record of step-wise ice-sheet growth through the Eocene-Oligocene transition

    NASA Astrophysics Data System (ADS)

    Passchier, S.; Ciarletta, D. J.; Miriagos, T.; Bijl, P.; Bohaty, S. M.

    2016-12-01

    The Antarctic cryosphere plays a critical role in the ocean-atmosphere system, but its early evolution is still poorly known. With a near-field record from Prydz Bay, Antarctica, we conclude that Antarctic continental ice-sheet growth commenced with the EOT-1 "precursor" glaciation, during a time of Subantarctic surface ocean cooling and a decline in atmospheric pCO2. Prydz Bay lies downstream of a major East Antarctic ice-sheet drainage system and the Gamburtsev Mountains, a likely nucleation point for the first ice sheets. Its sedimentary records uniquely constrain the timing of ice-sheet advance onto the continental shelf. We investigate a detrital record extracted from three Ocean Drilling Program drill holes in Prydz Bay within a new depositional and chronological framework spanning the late Eocene to early Oligocene ( 36-33 Ma). The chemical index of alteration (CIA) and the S-index, calculated from the major element geochemistry of bulk samples, yield estimates of chemical weathering intensities and mean annual temperature (MAT) on the East Antarctic continent. We document evidence for late Eocene mountain glaciation along with transient warm events at 35.8-34.8 Ma. These data and our sedimentological analyses confirm the presence of ephemeral mountain glaciers on East Antarctica during the late Eocene between 35.9 and 34.4 Ma. Furthermore, we document the stepwise climate cooling of the Antarctic hinterland from 34.4 Ma as the ice sheet advanced towards the edges of the continent during EOT-1. The youngest part of our data set correlates to the time interval of the Oi-1 glaciation, when the ice-sheet in Prydz Bay extended to the outer shelf. Cooling and ice growth on Antarctica was spatially variable and ice sheets formed under declining pCO2. These results point to complex ice sheet - atmosphere - ocean - solid-earth feedbacks.

  20. Thermophilic aeration of cattle slurry with whey and/or jam wastes.

    PubMed

    Heinonen-Tanski, Helvi; Kiuru, Tapio; Ruuskanen, Juhani; Korhonen, Kari; Koivunen, Jari; Ruokojärvi, Arja

    2005-01-01

    Thermophilic aeration of cattle slurry and food industrial by-products was studied with the aim to improve hygienic qualities of the slurry so that it could be used as a safe fertiliser for berries to be eaten raw. We also wanted to study if the process would be energetically favourable in an arctic climate. Cattle slurry alone or with whey and/or jam waste was treated. The tests were done in a well heat-insulated reactor with a 10 m(3) volume. Temperature increases up to over 70 degrees C could be recorded in 19 days even though some processes were carried out in winter time when the ambient air temperature was less than 0 degrees C. The heat energy formed was higher than the electrical energy needed to carry out the aeration. The hygienic qualities of the aerated product were good with only minor nitrogen losses. The end product could be useful as a fertiliser and soil improving compound to increase the organic matter content of agricultural soil. Cattle slurry alone was well suited as the raw material if attaining a high temperature was the main goal. A part of slurry could be replaced with food-industrial side products. Whey waste suited better for co-composting than jam waste but the mixture of whey, jam waste, and slurry was optimal for composting.

  1. 30 CFR 77.216 - Water, sediment, or slurry impoundments and impounding structures; general.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Water, sediment, or slurry impoundments and... WORK AREAS OF UNDERGROUND COAL MINES Surface Installations § 77.216 Water, sediment, or slurry... structures which impound water, sediment, or slurry shall be required if such an existing or proposed...

  2. 30 CFR 77.216 - Water, sediment, or slurry impoundments and impounding structures; general.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Water, sediment, or slurry impoundments and... WORK AREAS OF UNDERGROUND COAL MINES Surface Installations § 77.216 Water, sediment, or slurry... structures which impound water, sediment, or slurry shall be required if such an existing or proposed...

  3. Effect of ice massage on lower extremity functional performance and weight discrimination ability in collegiate footballers.

    PubMed

    Sharma, Geeta; Noohu, Majumi Mohamad

    2014-09-01

    Cryotherapy, in the form of ice massge is used to reduce inflammation after acute musculoskeletal injury or trauma. The potential negative effects of ice massage on proprioception are unknown, despite equivocal evidence supporting its effectiveness. The purpose of the study was to test the influence of cooling on weight discrimination ability and hence the performance in footballers. The study was of same subject experimental design (pretest-posttest design). Thirty male collegiate football players, whose mean age was 21.07 years, participated in the study. The participants were assessed for two functional performance tests, single leg hop test and crossed over hop test and weight discrimination ability before and after ice massage for 5 minutes on hamstrings muscle tendon. Pre cooling scores of Single Leg Hop Test of the dominant leg in the subjects was 166.65 (± 10.16) cm and post cooling scores of the dominant leg was 167.25 (± 11.77) cm. Pre cooling scores of Crossed Over Hop Test of the dominant leg in the subjects was 174.14 (± 8.60) cm and post cooling scores of the dominant leg was 174.45 (± 9.28) cm. Pre cooling scores of Weight Discrimination Differential Threshold of the dominant leg in the subjects was 1.625 ± 1.179 kg compared with post cooling scores of the dominant leg 1.85 (± 1.91) kg. Pre cooling scores of single leg hop and crossed over hop test of the dominant leg in the subjects compared with post cooling scores of the dominant leg showed no significant differences and it was also noted that the weight discrimination ability (weight discrimination differential threshold) didn't show any significant difference. All the values are reported as mean ± SD. This study provides additional evidence that proprioceptive acuity in the hamstring muscles (biceps femoris) remains largely unaffected after ice application to the hamstrings tendon (biceps femoris).

  4. Numerical model of frazil ice and suspended sediment concentrations and formation of sediment laden ice in the Kara Sea

    USGS Publications Warehouse

    Sherwood, C.R.

    2000-01-01

    A one-dimensional (vertical) numerical model of currents, mixing, frazil ice concentration, and suspended sediment concentration has been developed and applied in the shallow southeastern Kara Sea. The objective of the calculations is to determine whether conditions suitable for turbid ice formation can occur during times of rapid cooling and wind- and wave-induced sediment resuspension. Although the model uses a simplistic approach to ice particles and neglects ice-sediment interactions, the results for low-stratification, shallow (∼20-m) freeze-up conditions indicate that the coconcentrations of frazil ice and suspended sediment in the water column are similar to observed concentrations of sediment in turbid ice. This suggests that wave-induced sediment resuspension is a viable mechanism for turbid ice formation, and enrichment mechanisms proposed to explain the high concentrations of sediment in turbid ice relative to sediment concentrations in underlying water may not be necessary in energetic conditions. However, salinity stratification found near the Ob' and Yenisey Rivers damps mixing between ice-laden surface water and sediment-laden bottom water and probably limits incorporation of resuspended sediment into turbid ice until prolonged or repeated wind events mix away the stratification. Sensitivity analyses indicate that shallow (≤20 m), unstratified waters with fine bottom sediment (settling speeds of ∼1 mm s−1 or less) and long open water fetches (>25 km) are ideal conditions for resuspension.

  5. Design, construction, testing and evaluation of a residential ice storage air conditioning system

    NASA Astrophysics Data System (ADS)

    Santos, J. J.; Ritz, T. A.

    1982-12-01

    The experimental system was used to supply cooling to a single wide trailer and performance data were compared to a conventional air conditioning system of the some capacity. Utility rate information was collected from over one hundred major utility companies and used to evaluate economic comparison of the two systems. The ice storage system utilized reduced rate time periods to accommodate ice while providing continuous cooling to the trailer. The economic evaluation resulted in finding that the ice storage system required over 50% more energy than the conventional system. Although a few of the utility companies offered rate structures which would result in savings of up to $200 per year, this would not be enough to offset higher initial costs over the life of the storage system. Recommendations include items that would have to be met in order for an ice storage system to be an economically viable alternative to the conventional system.

  6. Effectiveness of Rapid Cooling as a Method of Euthanasia for Young Zebrafish (Danio rerio).

    PubMed

    Wallace, Chelsea K; Bright, Lauren A; Marx, James O; Andersen, Robert P; Mullins, Mary C; Carty, Anthony J

    2018-01-01

    Despite increased use of zebrafish (Danio rerio) in biomedical research, consistent information regarding appropriate euthanasia methods, particularly for embryos, is sparse. Current literature indicates that rapid cooling is an effective method of euthanasia for adult zebrafish, yet consistent guidelines regarding zebrafish younger than 6 mo are unavailable. This study was performed to distinguish the age at which rapid cooling is an effective method of euthanasia for zebrafish and the exposure times necessary to reliably euthanize zebrafish using this method. Zebrafish at 3, 4, 7, 14, 16, 19, 21, 28, 60, and 90 d postfertilization (dpf) were placed into an ice water bath for 5, 10, 30, 45, or 60 min (n = 12 to 40 per group). In addition, zebrafish were placed in ice water for 12 h (age ≤14 dpf) or 30 s (age ≥14 dpf). After rapid cooling, fish were transferred to a recovery tank and the number of fish alive at 1, 4, and 12-24 h after removal from ice water was documented. Euthanasia was defined as a failure when evidence of recovery was observed at any point after removal from ice water. Results showed that younger fish required prolonged exposure to rapid cooling for effective euthanasia, with the required exposure time decreasing as fish age. Although younger fish required long exposure times, animals became immobilized immediately upon exposure to the cold water, and behavioral indicators of pain or distress rarely occurred. We conclude that zebrafish 14 dpf and younger require as long as 12 h, those 16 to 28 dpf of age require 5 min, and those older than 28 dpf require 30 s minimal exposure to rapid cooling for reliable euthanasia.

  7. Estimation of Methane Emissions from Slurry Pits below Pig and Cattle Confinements

    PubMed Central

    Petersen, Søren O.; Olsen, Anne B.; Elsgaard, Lars; Triolo, Jin Mi; Sommer, Sven G.

    2016-01-01

    Quantifying in-house emissions of methane (CH4) from liquid manure (slurry) is difficult due to high background emissions from enteric processes, yet of great importance for correct estimation of CH4 emissions from manure management and effects of treatment technologies such as anaerobic digestion. In this study CH4 production rates were determined in 20 pig slurry and 11 cattle slurry samples collected beneath slatted floors on six representative farms; rates were determined within 24 h at temperatures close to the temperature in slurry pits at the time of collection. Methane production rates in pig and cattle slurry differed significantly at 0.030 and 0.011 kg CH4 kg-1 VS (volatile solids). Current estimates of CH4 emissions from pig and cattle manure management correspond to 0.032 and 0.015 kg CH4 kg-1, respectively, indicating that slurry pits under animal confinements are a significant source. Fractions of degradable volatile solids (VSd, kg kg-1 VS) were estimated using an aerobic biodegradability assay and total organic C analyses. The VSd in pig and cattle slurry averaged 0.51 and 0.33 kg kg-1 VS, and it was estimated that on average 43 and 28% of VSd in fresh excreta from pigs and cattle, respectively, had been lost at the time of sampling. An empirical model of CH4 emissions from slurry was reparameterised based on experimental results. A sensitivity analysis indicated that predicted CH4 emissions were highly sensitive to uncertainties in the value of lnA of the Arrhenius equation, but much less sensitive to uncertainties in VSd or slurry temperature. A model application indicated that losses of carbon in VS as CO2 may be much greater than losses as CH4. Implications of these results for the correct estimation of CH4 emissions from manure management, and for the mitigation potential of treatments such as anaerobic digestion, are discussed. PMID:27529692

  8. Sea-level Change during Hothouse, Cool Greenhouse, and Icehouse Worlds

    NASA Astrophysics Data System (ADS)

    Miller, K. G.; Browning, J. V.; Wright, J. D.

    2015-12-01

    Comparison of sea level and climate proxies shows fundamentally different causes and responses (periods, amplitudes, rates) for Myr scale sea-level changes in Hothouse, Cool Greenhouse, and Icehouse worlds. Peak warmth of the past 100 million years was achieved in the Hothouse intervals of the Cenomanian-Santonian (ca. 100-80 Ma) and early Eocene (56-50 Ma). Hothouse global average sea level falls of ~15 m are associated with d18O increases that reflect primarily high latitude cooling and may reflect the growth of small ice sheets in elevated regions of Antarctica. However, these purported Hothouse ice sheets are at or below the detection level of the d18O proxy (15 m ≤ 0.15‰), and it is possible that changes in groundwater storage ('limnoeustasy') could have caused these falls. Cool greenhouse (Campanian to Paleocene, middle to late Eocene) sea-level changes of 15-25 m were caused by growth and decay of small (25-35% of modern) ice sheets, pacing sea-level change on an apparent 2.4 Myr long eccentricity cycle, likely modulating 405 and 100 kyr cycles. Icehouse (past 33.8 Myr) sea-level and ice-volume changes were paced by the 1.2 Myr tilt cycle, with alternating states of 41 and 100 kyr dominance. Warm periods in the Icehouse displayed different sea-level responses. During the largely unipolar Icehouse of the Oligocene to early Miocene, the East Antarctic Ice Sheet (EAIS) was not permanently developed, with intervals of large-scale (~40-55 m sea level equivalent) growth and collapse. During peak warmth of the Miocene Climate Optimum (MCO; ~17-15 Ma) ice volume changes were small (generally <20 m) and paced by the 100 kyr cycle. A permanent EAIS developed following 3 middle Miocene d18O increases (14.7, 13.8, and 13.2 Ma) that were largely cooling events associated with <40 m sea-level falls; the subsequent late Miocene EAIS displayed lower amplitude (~20-30 m) sea-level variations. Despite only moderate atmospheric CO2 levels (400±50 ppm), during the peak

  9. Precipitate hydrolysis process for the removal of organic compounds from nuclear waste slurries

    DOEpatents

    Doherty, Joseph P.; Marek, James C.

    1989-01-01

    A process for removing organic compounds from a nuclear waste slurry comprising reacting a mixture of radioactive waste precipitate slurry and an acid in the presence of a catalytically effective amount of a copper (II) catalyst whereby the organic compounds in the precipitate slurry are hydrolyzed to form volatile organic compounds which are separated from the reacting mixture. The resulting waste slurry, containing less than 10 percent of the orginal organic compounds, is subsequently blended with high level radioactive sludge and transferred to a virtrification facility for processing into borosilicate glass for long-term storage.

  10. Air blast type coal slurry fuel injector

    DOEpatents

    Phatak, Ramkrishna G.

    1986-01-01

    A device to atomize and inject a coal slurry in the combustion chamber of an internal combustion engine, and which eliminates the use of a conventional fuel injection pump/nozzle. The injector involves the use of compressed air to atomize and inject the coal slurry and like fuels. In one embodiment, the breaking and atomization of the fuel is achieved with the help of perforated discs and compressed air. In another embodiment, a cone shaped aspirator is used to achieve the breaking and atomization of the fuel. The compressed air protects critical bearing areas of the injector.

  11. Air blast type coal slurry fuel injector

    DOEpatents

    Phatak, R.G.

    1984-08-31

    A device to atomize and inject a coal slurry in the combustion chamber of an internal combustion engine is disclosed which eliminates the use of a conventional fuel injection pump/nozzle. The injector involves the use of compressed air to atomize and inject the coal slurry and like fuels. In one embodiment, the breaking and atomization of the fuel is achieved with the help of perforated discs and compressed air. In another embodiment, a cone shaped aspirator is used to achieve the breaking and atomization of the fuel. The compressed air protects critical bearing areas of the injector.

  12. Scaling Methods for Simulating Aircraft In-Flight Icing Encounters

    NASA Technical Reports Server (NTRS)

    Anderson, David N.; Ruff, Gary A.

    1997-01-01

    This paper discusses scaling methods which permit the use of subscale models in icing wind tunnels to simulate natural flight in icing. Natural icing conditions exist when air temperatures are below freezing but cloud water droplets are super-cooled liquid. Aircraft flying through such clouds are susceptible to the accretion of ice on the leading edges of unprotected components such as wings, tailplane and engine inlets. To establish the aerodynamic penalties of such ice accretion and to determine what parts need to be protected from ice accretion (by heating, for example), extensive flight and wind-tunnel testing is necessary for new aircraft and components. Testing in icing tunnels is less expensive than flight testing, is safer, and permits better control of the test conditions. However, because of limitations on both model size and operating conditions in wind tunnels, it is often necessary to perform tests with either size or test conditions scaled. This paper describes the theoretical background to the development of icing scaling methods, discusses four methods, and presents results of tests to validate them.

  13. Debris flow rheology: Experimental analysis of fine-grained slurries

    USGS Publications Warehouse

    Major, Jon J.; Pierson, Thomas C.

    1992-01-01

    The rheology of slurries consisting of ≤2-mm sediment from a natural debris flow deposit was measured using a wide-gap concentric-cylinder viscometer. The influence of sediment concentration and size and distribution of grains on the bulk rheological behavior of the slurries was evaluated at concentrations ranging from 0.44 to 0.66. The slurries exhibit diverse rheological behavior. At shear rates above 5 s−1 the behavior approaches that of a Bingham material; below 5 s−1, sand exerts more influence and slurry behavior deviates from the Bingham idealization. Sand grain interactions dominate the mechanical behavior when sand concentration exceeds 0.2; transient fluctuations in measured torque, time-dependent decay of torque, and hysteresis effects are observed. Grain rubbing, interlocking, and collision cause changes in packing density, particle distribution, grain orientation, and formation and destruction of grain clusters, which may explain the observed behavior. Yield strength and plastic viscosity exhibit order-of-magnitude variation when sediment concentration changes as little as 2–4%. Owing to these complexities, it is unlikely that debris flows can be characterized by a single rheological model.

  14. Physiological responses to incremental exercise in the heat following internal and external precooling.

    PubMed

    James, C A; Richardson, A J; Watt, P W; Gibson, O R; Maxwell, N S

    2015-06-01

    Twelve males completed three incremental, discontinuous treadmill tests in the heat [31.9(1.0) °C, 61.9(8.9)%] to determine speed at two fixed blood lactate concentrations (2 and 3.5 mmol/L), running economy (RE), and maximum oxygen uptake ( V ˙ O 2 m a x ). Trials involved 20 min of either internal cooling (ICE, 7.5 g/kg ice slurry ingestion) or mixed-methods external cooling (EXT, cold towels, forearm immersion, ice vest, and cooling shorts), alongside no intervention (CON). Following precooling, participants ran 0.3 km/h faster at 2 mmol/L and 0.2 km/h faster at 3.5 mmol/L (P = 0.04, partial η(2)  = 0.27). Statistical differences were observed vs CON for ICE (P = 0.03, d = 0.15), but not EXT (P = 0.12, d = 0.15). There was no effect of cooling on RE (P = 0.81, partial η(2)  = 0.02), nor on V ˙ O 2 m a x (P = 0.69, partial η(2)  = 0.04). An effect for cooling on physiological strain index was observed (P < 0.01, partial η(2)  = 0.41), with differences vs CON for EXT (P = 0.02, d = 0.36), but not ICE (P = 0.06, d = 0.36). Precooling reduced thermal sensation (P < 0.01, partial η(2)  = 0.66) in both cooling groups (P < 0.01). Results indicate ICE and EXT provide similar physiological responses for exercise up to 30 min duration in the heat. Differing thermoregulatory responses are suggestive of specific event characteristics determining the choice of cooling. Precooling appears to reduce blood lactate accumulation and reduce thermoregulatory and perceptual strain during incremental exercise. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. [The Effectiveness of Cooling Packaging Care in Relieving Chemotherapy-Induced Skin Toxicity Reactions in Cancer Patients Receiving Chemotherapy: A Systematic Review].

    PubMed

    Hsu, Ya-Hui; Hung, Hsing-Wei; Chen, Shu-Ching

    2017-08-01

    Anti-cancer chemotherapy may cause skin-toxicity reactions. Different types of cooling packages affect chemotherapy-induced skin toxicity reactions differently. To evaluate the effects of cooling packing care on chemotherapy-induced skin toxicity reactions in cancer patients receiving chemotherapy. A systematic review approach was used. Searches were conducted in databases including Cochrane Library, Embase, MEDLINE, PubMed and Airiti Library using the keywords "chemotherapy cutaneous toxicity", "chemotherapy skin reaction", "chemotherapy skin toxicity", "frozen glove", "frozen sock", "cooling packaging care", "ice gloves", "ice socks", "usual care", "severity", "comfort", "satisfaction", "severity", and "comfort". The search focused on articles published before December 2016. Based on the inclusion and exclusion criteria, 5 articles involving relevant randomized controlled trials were extracted for review. Elasto-Gel ice gloves or ice socks that were chilled to -25°C- -30°C and used for 15 mins during initial chemotherapy, for one hour during chemotherapy infusion, and for 15 mins after chemotherapy were shown to improve the frequency and severity of chemotherapy-induced skin toxicity reactions. Several studies were limited by small sample sizes and different types of cooling packing programs, temperature, timing, and frequency. Thus, further research is recommended to verify the effects of cooling packing care. Cancer patients who were treated with docetaxel or PLD and who used ice gloves or ice socks that were chilled to -25°C- -30°C for 15 mins during initial chemotherapy, for one hour during chemotherapy infusion, and for 15 mins after chemotherapy improved significantly in terms of the frequency and severity of their chemotherapy-induced skin toxicity reactions. Local cooling packing care is a non-pharmacotherapy approach that is low cost and free of side effects. This review is intended to provide a reference for clinical care.

  16. REDUCTIVE DEHALOGENATION OF A NITROGEN HETEROCYCLIC HERBICIDE IN ANOXIC AQUIFER SLURRIES

    EPA Science Inventory

    We studied the metabolic fate of bromacil in anaerobic aquifer slurries held under denitrifying, sulfate-reducing, or methanogenic conditions. Liquid chromatograhy-mass spectrometry of the slurries confirmed that bromacil was debrominated under methanogenic conditions but was not...

  17. Cubic ice and large humidity with respect to ice in cold cirrus clouds

    NASA Astrophysics Data System (ADS)

    Bogdan, A.; Loerting, T.

    2009-04-01

    -cloud water supersaturations" in the upper-tropospheric cold cirrus clouds. Using instead the value of Hc→h ? 50 J/mol (Handa et al., 1986; Mayer and Hallbrucker, 1987) the calculation gives that Pc is only ~3% larger than that of Ph. Recently it has been reported that emulsified water droplets freeze to cubic ice when being cooled at a rate of 10 K/min (Murray and Bertram, 2006,). We prepared emulsified droplets using the same emulsification technique and studied them with a differential scanning calorimeter (DSC) between 278 and 180 K using a scanning rate of 10 K/min. During the warming of the samples we observed a very broad, tiny exothermal peak approximately between 230 and 260 K. Kohl et al. (2000) observed exothermal peak at ~230 K during the warming at 30 K/min of several samples of hyperquenched glassy water (HGW) prepared at temperature between 130 and 190 K. They attributed this peak to the cubic-to-hexagonal ice transition and estimated Hc→h to be between ~33 and 75 J/mol. Johari (2005) used the value of Hc→h ? 37 J/mol. Assuming that in our case the broad peak between 230 and 260 K is also due to the cubic-to-hexagonal ice transition we obtained approximately between 10 and 25 J/mol for Hc→h. This low enthalpy of transformation suggests that cubic ice in the atmosphere contains many hexagonal stacking faults. Using these values of Hc→h for cubic ice as produced at atmospheric cooling rates, the above mentioned formula gives that Pc is larger than that of Ph only by ~1%. We, therefore, suggest that the difference in the water vapor pressures between ice Ic and ice Ih is small and does not play a significant role in the elevation of RHi in cold cirrus clouds. Murphy, D. M., and T. Koop (2005), Q. J. R. Meteorol. Soc. 131, 1539-1565. Shilling, J. E. et al. (2006). Geophys. Res. Lett. 33, L17801, doi:1029/2006GL026671. Handa, P. Y., D. D. Klug, and E. Whalley (1986). J. Chem. Phys. 84, 7009-7010. Mayer, E., and A. Hallbrucker (1987), Nature

  18. How might the North American ice sheet influence the northwestern Eurasian climate?

    NASA Astrophysics Data System (ADS)

    Beghin, P.; Charbit, S.; Dumas, C.; Kageyama, M.; Ritz, C.

    2015-10-01

    It is now widely acknowledged that past Northern Hemisphere ice sheets covering Canada and northern Europe at the Last Glacial Maximum (LGM) exerted a strong influence on climate by causing changes in atmospheric and oceanic circulations. In turn, these changes may have impacted the development of the ice sheets themselves through a combination of different feedback mechanisms. The present study is designed to investigate the potential impact of the North American ice sheet on the surface mass balance (SMB) of the Eurasian ice sheet driven by simulated changes in the past glacial atmospheric circulation. Using the LMDZ5 atmospheric circulation model, we carried out 12 experiments under constant LGM conditions for insolation, greenhouse gases and ocean. In these experiments, the Eurasian ice sheet is removed. The 12 experiments differ in the North American ice-sheet topography, ranging from a white and flat (present-day topography) ice sheet to a full-size LGM ice sheet. This experimental design allows the albedo and the topographic impacts of the North American ice sheet onto the climate to be disentangled. The results are compared to our baseline experiment where both the North American and the Eurasian ice sheets have been removed. In summer, the sole albedo effect of the American ice sheet modifies the pattern of planetary waves with respect to the no-ice-sheet case, resulting in a cooling of the northwestern Eurasian region. By contrast, the atmospheric circulation changes induced by the topography of the North American ice sheet lead to a strong decrease of this cooling. In winter, the Scandinavian and the Barents-Kara regions respond differently to the American ice-sheet albedo effect: in response to atmospheric circulation changes, Scandinavia becomes warmer and total precipitation is more abundant, whereas the Barents-Kara area becomes cooler with a decrease of convective processes, causing a decrease of total precipitation. The gradual increase of the

  19. Precise interpolar phasing of abrupt climate change during the last ice age.

    PubMed

    2015-04-30

    The last glacial period exhibited abrupt Dansgaard-Oeschger climatic oscillations, evidence of which is preserved in a variety of Northern Hemisphere palaeoclimate archives. Ice cores show that Antarctica cooled during the warm phases of the Greenland Dansgaard-Oeschger cycle and vice versa, suggesting an interhemispheric redistribution of heat through a mechanism called the bipolar seesaw. Variations in the Atlantic meridional overturning circulation (AMOC) strength are thought to have been important, but much uncertainty remains regarding the dynamics and trigger of these abrupt events. Key information is contained in the relative phasing of hemispheric climate variations, yet the large, poorly constrained difference between gas age and ice age and the relatively low resolution of methane records from Antarctic ice cores have so far precluded methane-based synchronization at the required sub-centennial precision. Here we use a recently drilled high-accumulation Antarctic ice core to show that, on average, abrupt Greenland warming leads the corresponding Antarctic cooling onset by 218 ± 92 years (2σ) for Dansgaard-Oeschger events, including the Bølling event; Greenland cooling leads the corresponding onset of Antarctic warming by 208 ± 96 years. Our results demonstrate a north-to-south directionality of the abrupt climatic signal, which is propagated to the Southern Hemisphere high latitudes by oceanic rather than atmospheric processes. The similar interpolar phasing of warming and cooling transitions suggests that the transfer time of the climatic signal is independent of the AMOC background state. Our findings confirm a central role for ocean circulation in the bipolar seesaw and provide clear criteria for assessing hypotheses and model simulations of Dansgaard-Oeschger dynamics.

  20. Dynamic NMR Study of Model CMP Slurry Containing Silica Particles as Abrasives

    NASA Astrophysics Data System (ADS)

    Odeh, F.; Al-Bawab, A.; Li, Y.

    2018-02-01

    Chemical mechanical planarization (CMP) should provide a good surface planarity with minimal surface defectivity. Since CMP slurries are multi-component systems, it is very important to understand the various processes and interactions taking place in such slurries. Several techniques have been employed for such task, however, most of them lack the molecular recognition to investigate molecular interactions without adding probes which in turn increase complexity and might alter the microenvironment of the slurry. Nuclear magnetic resonance (NMR) is a powerful technique that can be employed in such study. The longitudinal relaxation times (T1) of the different components of CMP slurries were measured using Spin Echo-NMR (SE-NMR) at a constant temperature. The fact that NMR is non-invasive and gives information on the molecular level gives more advantage to the technique. The model CMP slurry was prepared in D2O to enable monitoring of T1 for the various components' protons. SE-NMR provide a very powerful tool to study the various interactions and adsorption processes that take place in a model CMP silica based slurry which contains BTA and/or glycine and/or Cu+2 ions. It was found that BTA is very competitive towards complexation with Cu+2 ions and BTA-Cu complex adsorbs on silica surface.

  1. Effectiveness of ice-vest cooling in prolonging work tolerance time during heavy exercise in the heat for personnel wearing Canadian forces chemical defense ensembles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bain, B.

    Effectiveness of a portable, ice-pack cooling vest (Steelevest) in prolonging work tolerance time in chemical defense clothing in the heat (33 C dry bulb, 33% relative humidity or 25 C WBGT) was evaluated while subjects exercised at a metabolic rate of approx. 700 watts. Subjects were six male volunteers. The protocol consisted of a 20 minute treadmill walk at 1.33 m/s. and 7.5% grade, followed by 15 minutes of a lifting task, 5 minutes rest, then another 20 minutes of lifting task for a total of one hour. The lifting task consisted of lifting of 20 kg box, carrying itmore » 3 meters and setting it down. This was followed by a 6 m walk (3m back to the start point and 3 m back to the box) 15 sec after which the lifting cycle began again. The work was classified as heavy as previously defined. This protocol was repeated until the subjects were unable to continue or they reached a physiological endpoint. Time to voluntary cessation or physiological endpoint was called the work tolerance time. Physiological endpoints were rectal temperature of 39 C, heart rate exceeding 95% of maximum for two consecutive minutes or visible loss of motor control or nausea. The cooling vest had no effect on work tolerance time, rate of rise of rectal temperature or sweat loss. It was concluded that the Steelvest ice-vest is ineffective in prolonging work tolerance time and preventing increases in rectal temperature while wearing chemical protective clothing.« less

  2. Microalgal cultivation with biogas slurry for biofuel production.

    PubMed

    Zhu, Liandong; Yan, Cheng; Li, Zhaohua

    2016-11-01

    Microalgal growth requires a substantial amount of chemical fertilizers. An alternative to the utilization of fertilizer is to apply biogas slurry produced through anaerobic digestion to cultivate microalgae for the production of biofuels. Plenty of studies have suggested that anaerobic digestate containing high nutrient contents is a potentially feasible nutrient source to culture microalgae. However, current literature indicates a lack of review available regarding microalgal cultivation with biogas slurry for the production of biofuels. To help fill this gap, this review highlights the integration of digestate nutrient management with microalgal production. It first unveils the current status of microalgal production, providing basic background to the topic. Subsequently, microalgal cultivation technologies using biogas slurry are discussed in detail. A scale-up scheme for simultaneous biogas upgrade and digestate application through microalgal cultivation is then proposed. Afterwards, several uncertainties that might affect this practice are explored. Finally, concluding remarks are put forward. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Anti-icing properties of superhydrophobic ZnO/PDMS composite coating

    NASA Astrophysics Data System (ADS)

    Yang, Chao; Wang, Fajun; Li, Wen; Ou, Junfei; Li, Changquan; Amirfazli, Alidad

    2016-01-01

    We present the excellent anti-icing performance for a superhydrophobic coating surface based on ZnO/polydimethylsiloxane (ZnO/PDMS) composite. The superhydrophobic ZnO/PDMS coating surface was prepared by a facile solution mixing, drop coating, room-temperature curing and surface abrading procedure. The superhydrophobic ZnO/PDMS composite coating possesses a water contact angle of 159.5° and a water sliding angle of 8.3° at room temperature (5 °C). The anti-icing properties of the superhydrophobic coating were investigated by continuously dropping cold-water droplets (about 0 °C) onto the pre-cooled surface using a home-made apparatus. The sample was placed at different tilting angle (0° and 10°) and pre-cooled to various temperatures (-5, -10 and -15 °C) prior to measure. The pure Al surface was also studied for comparison. It was found that icing accretion on the surface could be reduced apparently because the water droplets merged together and slid away from the superhydrophobic surface at all of the measuring temperatures when the surface is horizontally placed. In addition, water droplet slid away completely from the superhydrophobic surface at -5 and -10 °C when the surface is tilted at 10°, which demonstrates its excellent anti-icing properties at these temperatures. When the temperature decreased to -15 °C, though ice accretion on the tilted superhydrophobic coating surface could not be avoided absolutely, the amount of ice formed on the surface is very small, which indicated that the coating surface with superhydrophobicity could significantly reduce ice accumulation on the surface at very low temperature (-15 °C). Importantly, the sample is also stable against repeated icing/deicing cycles. More meaningfully, once the superhydrophobic surface is damaged, it can be repaired easily and rapidly.

  4. Vertical thermodynamic structure of the troposphere during the Norwegian young sea ICE expedition (N-ICE2015)

    NASA Astrophysics Data System (ADS)

    Kayser, Markus; Maturilli, Marion; Graham, Robert M.; Hudson, Stephen R.; Rinke, Annette; Cohen, Lana; Kim, Joo-Hong; Park, Sang-Jong; Moon, Woosok; Granskog, Mats A.

    2017-10-01

    The Norwegian young sea ICE (N-ICE2015) expedition was designed to investigate the atmosphere-snow-ice-ocean interactions in the young and thin sea ice regime north of Svalbard. Radiosondes were launched twice daily during the expedition from January to June 2015. Here we use these upper air measurements to study the multiple cyclonic events observed during N-ICE2015 with respect to changes in the vertical thermodynamic structure, moisture content, and boundary layer characteristics. We provide statistics of temperature inversion characteristics, static stability, and boundary layer extent. During winter, when radiative cooling is most effective, we find the strongest impact of synoptic cyclones. Changes to thermodynamic characteristics of the boundary layer are associated with transitions between the radiatively "clear" and "opaque" atmospheric states. In spring, radiative fluxes warm the surface leading to lifted temperature inversions and a statically unstable boundary layer. Further, we compare the N-ICE2015 static stability distributions to corresponding profiles from ERA-Interim reanalysis, from the closest land station in the Arctic North Atlantic sector, Ny-Ålesund, and to soundings from the SHEBA expedition (1997/1998). We find similar stability characteristics for N-ICE2015 and SHEBA throughout the troposphere, despite differences in location, sea ice thickness, and snow cover. For Ny-Ålesund, we observe similar characteristics above 1000 m, while the topography and ice-free fjord surrounding Ny-Ålesund generate great differences below. The long-term radiosonde record (1993-2014) from Ny-Ålesund indicates that during the N-ICE2015 spring period, temperatures were close to the climatological mean, while the lowest 3000 m were 1-3°C warmer than the climatology during winter.

  5. Superheating of monolayer ice in graphene nanocapillaries

    NASA Astrophysics Data System (ADS)

    Zhu, YinBo; Wang, FengChao; Wu, HengAn

    2017-04-01

    The freezing and melting of low-dimensional materials, either via a first-order phase transition or without any discontinuity in thermodynamic, still remain a matter of debate. Melting (superheating) in two-dimensional (2D) ice is fundamentally different from that in bulk counterpart. Here, we perform comprehensive molecular dynamics simulations of the superheating of monolayer ice in graphene nanocapillaries to understand the nature of melting transition in 2D water/ice. We find four different superheating (melting) scenarios can happen in the superheating of monolayer square-like ice, which are closely related to the lateral pressure and the channel width. The anomalous two-stage melting transition with arisen coexistence phase is found, which reveals the unknown extraordinary characteristics of melting in 2D water/ice. Under ultrahigh lateral pressure, the intermediate monolayer triangular amorphous ice will be formed during the superheating of monolayer square-like ice with both continuous-like and first-order phase transitions. Whereas, under low lateral pressure, the melting in monolayer square-like ice manifests typical discontinuity with notable hysteresis-loop in potential energy during the heating/cooling process. Moreover, we also find that highly puckered monolayer square-like ice can transform into bilayer AB-stacked amorphous ice with square pattern in the superheating process. The superheating behavior under high lateral pressure can be partly regarded as the compression limit of superheated monolayer water. The intrinsic phenomena in our simulated superheating of monolayer ice may be significant for understanding the melting behavior in 2D water/ice.

  6. Superheating of monolayer ice in graphene nanocapillaries.

    PubMed

    Zhu, YinBo; Wang, FengChao; Wu, HengAn

    2017-04-07

    The freezing and melting of low-dimensional materials, either via a first-order phase transition or without any discontinuity in thermodynamic, still remain a matter of debate. Melting (superheating) in two-dimensional (2D) ice is fundamentally different from that in bulk counterpart. Here, we perform comprehensive molecular dynamics simulations of the superheating of monolayer ice in graphene nanocapillaries to understand the nature of melting transition in 2D water/ice. We find four different superheating (melting) scenarios can happen in the superheating of monolayer square-like ice, which are closely related to the lateral pressure and the channel width. The anomalous two-stage melting transition with arisen coexistence phase is found, which reveals the unknown extraordinary characteristics of melting in 2D water/ice. Under ultrahigh lateral pressure, the intermediate monolayer triangular amorphous ice will be formed during the superheating of monolayer square-like ice with both continuous-like and first-order phase transitions. Whereas, under low lateral pressure, the melting in monolayer square-like ice manifests typical discontinuity with notable hysteresis-loop in potential energy during the heating/cooling process. Moreover, we also find that highly puckered monolayer square-like ice can transform into bilayer AB-stacked amorphous ice with square pattern in the superheating process. The superheating behavior under high lateral pressure can be partly regarded as the compression limit of superheated monolayer water. The intrinsic phenomena in our simulated superheating of monolayer ice may be significant for understanding the melting behavior in 2D water/ice.

  7. Devon island ice cap: core stratigraphy and paleoclimate.

    PubMed

    Koerner, R M

    1977-04-01

    Valuable paleoclimatic information can be gained by studying the distribution of melt layers in deep ice cores. A profile representing the percentage of ice in melt layers in a core drilled from the Devon Island ice cap plotted against both time and depth shows that the ice cap has experienced a period of very warm summers since 1925, following a period of colder summers between about 1600 and 1925. The earlier period was coldest between 1680 and 1730. There is a high correlation between the melt-layer ice percentage and the mass balance of the ice cap. The relation between them suggests that the ice cap mass balance was zero (accumulation equaled ablation) during the colder period but is negative in the present warmer one. There is no firm evidence of a present cooling trend in the summer conditions on the ice cap. A comparison with the melt-layer ice percentage in cores from the other major Canadian Arctic ice caps shows that the variation of summer conditions found for the Devon Island ice cap is representative for all the large ice caps for about 90 percent of the time. There is also a good correlation between melt-layer percentage and summer sea-ice conditions in the archipelago. This suggests that the search for the northwest passage was influenced by changing climate, with the 19th-century peak of the often tragic exploration coinciding with a period of very cold summers.

  8. Biological treatment of soils contaminated with hydrophobic organics using slurry- and solid-phase techniques

    NASA Astrophysics Data System (ADS)

    Cassidy, Daniel H.; Irvine, Robert L.

    1995-10-01

    Both slurry-phase and solid-phase bioremediation are effective ex situ soil decontamination methods. Slurrying is energy intensive relative to solid-phase treatment, but provides homogenization and uniform nutrient distribution. Limited contaminant bioavailability at concentrations above the required cleanup level reduces biodegradation rates and renders solid phase bioremediation more cost effective than complete treatment in a bio-slurry reactor. Slurrying followed by solid-phase bioremediation combines the advantages and minimizes the weaknesses of each treatment method when used alone. A biological treatment system consisting of slurrying followed by aeration in solid phase bioreactors was developed and tested in the laboratory using a silty clay loam contaminated with diesel fuel. The first set of experiments was designed to determine the impact of the water content and mixing time during slurrying on the rate an extent of contaminant removal in continuously aerated solid phase bioreactors. The second set of experiments compared the volatile and total diesel fuel removal in solid phase bioreactors using periodic and continuous aeration strategies. Results showed that slurrying for 1.5 hours at a water content less than saturation markedly increased the rate and extent of contaminant biodegradation in the solid phase bioreactors compared with soil having no slurry pretreatment. Slurrying the soil at or above its saturation moisture content resulted in lengthy dewatering times which prohibited aeration, thereby delaying the onset of biological treatment in the solid phase bioreactors. Results also showed that properly operated periodic aeration can provide less volatile contaminant removal and a grater fraction of biological contaminant removal than continuous aeration.

  9. Precipitate hydrolysis process for the removal of organic compounds from nuclear waste slurries

    DOEpatents

    Doherty, J.P.; Marek, J.C.

    1987-02-25

    A process for removing organic compounds from a nuclear waste slurry comprising reacting a mixture of radioactive waste precipitate slurry and an acid in the presence of a catalytically effective amount of a copper(II) catalyst whereby the organic compounds in the precipitate slurry are hydrolyzed to form volatile organic compounds which are separated from the reacting mixture. The resulting waste slurry, containing less than 10 percent of the original organic compounds, is subsequently blended with high level radioactive sludge land transferred to a vitrification facility for processing into borosilicate glass for long-term storage. 2 figs., 3 tabs.

  10. Yield Stress Reduction of DWPF Melter Feed Slurries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stone, M.E.; Smith, M.E.

    2007-07-01

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site vitrifies High Level Waste for repository internment. The process consists of three major steps: waste pretreatment, vitrification, and canister decontamination/sealing. The HLW consists of insoluble metal hydroxides and soluble sodium salts. The pretreatment process acidifies the sludge with nitric and formic acids, adds the glass formers as glass frit, then concentrates the resulting slurry to approximately 50 weight percent (wt%) total solids. This slurry is fed to the joule-heated melter where the remaining water is evaporated followed by calcination of the solids and conversion to glass. The Savannah Rivermore » National Laboratory (SRNL) is currently assisting DWPF efforts to increase throughput of the melter. As part of this effort, SRNL has investigated methods to increase the solids content of the melter feed to reduce the heat load required to complete the evaporation of water and allow more of the energy available to calcine and vitrify the waste. The process equipment in the facility is fixed and cannot process materials with high yield stresses, therefore increasing the solids content will require that the yield stress of the melter feed slurries be reduced. Changing the glass former added during pretreatment from an irregularly shaped glass frit to nearly spherical beads was evaluated. The evaluation required a systems approach which included evaluations of the effectiveness of beads in reducing the melter feed yield stress as well as evaluations of the processing impacts of changing the frit morphology. Processing impacts of beads include changing the settling rate of the glass former (which effects mixing and sampling of the melter feed slurry and the frit addition equipment) as well as impacts on the melt behavior due to decreased surface area of the beads versus frit. Beads were produced from the DWPF process frit by fire polishing. The frit was allowed to free fall through

  11. Effect of controlled ice nucleation on primary drying stage and protein recovery in vials cooled in a modified freeze-dryer.

    PubMed

    Passot, Stéphanie; Tréléa, Ioan Cristian; Marin, Michèle; Galan, Miquel; Morris, G John; Fonseca, Fernanda

    2009-07-01

    The freezing step influences lyophilization efficiency and protein stability. The main objective of this work was to investigate the impact on the primary drying stage of an ultrasound controlled ice nucleation technology, compared with usual freezing protocols. Lyophilization cycles involving different freezing protocols (applying a constant shelf cooling rate of 1 degrees C/min or 0.2 degrees C/min, putting vials on a precooled shelf, and controlling nucleation by ultrasounds or by addition of a nucleating agent) were performed in a prototype freeze-dryer. Three protective media including sucrose or maltodextrin and differing by their thermal properties and their ability to preserve a model protein (catalase) were used. The visual aspect of the lyophilized cake, residual water content, and enzymatic activity recovery of catalase were assessed after each lyophilization cycle and after 1 month of storage of the lyophilized product at 4 degrees C and 25 degrees C. The freezing protocols allowing increasing nucleation temperature (precooled shelf and controlled nucleation by using ultrasounds or a nucleating agent) induced a faster sublimation step and higher sublimation rate homogeneity. Whatever the composition of the protective medium, applying the ultrasound technology made it possible to decrease the sublimation time by 14%, compared with the freezing method involving a constant shelf cooling rate of 1 degrees C/min. Concerning the enzyme activity recovery, the impact of the freezing protocol was observed only for the protective medium involving maltodextrin, a less effective protective agent than sucrose. Higher activity recovery results were obtained after storage when the ultrasound technology or the precooled shelf method was applied. Controlling ice nucleation during the freezing step of the lyophilization process improved the homogeneity of the sublimation rates, which will, in turn, reduce the intervial heterogeneity. The freeze-dryer prototype including

  12. Surface texture and composition of titanium brushed with toothpaste slurries of different pHs.

    PubMed

    Hossain, Awlad; Okawa, Seigo; Miyakawa, Osamu

    2007-02-01

    This in vitro study characterized the surface texture and composition of titanium brushed with toothpaste slurries of different pHs, and thereby elucidated mechanochemical interactions between the metal and abrasive material in dentifrice. Two fluoride-free toothpastes, which contained crystalline CaHPO(4).2H(2)O and amorphous SiO(2) particles as abrasive, were mixed with acidic buffers to provide slurries of pH 6.8 and 4.8. Specimens were cast from CP Ti, mirror-polished, and then toothbrushed at 120strokes/min for 350,400 strokes under a load of 2.45N. Specimen surfaces were characterized by means of SPM and EPMA. The obtained data were compared with the already reported results of water-diluted alkaline slurries. SPM data of each paste were analyzed using one-way ANOVA, followed by post hoc Tukey test. Irrespective of toothpaste, neutral slurries, as with alkaline slurries, yielded a chemically altered surface with rough texture, whereas acidic slurries formed a chemically clean surface with relatively smooth texture. Mechanochemical polishing effect might be mainly responsible for the cleanness and smoothness. Acidic slurry-induced smooth surface may minimize plaque formation. However, the augmentation of released titanium ions may be adverse to the human body. For evaluation of toothpaste abrasion effects on titanium, paste slurry pH should be taken into account.

  13. Transport of Cryptosporidium parvum Oocysts in Soil Columns following Applications of Raw and Separated Liquid Slurries

    PubMed Central

    Petersen, Heidi H.; Enemark, Heidi L.; Olsen, Annette; Amin, M. G. Mostofa

    2012-01-01

    The potential for the transport of viable Cryptosporidium parvum oocysts through soil to land drains and groundwater was studied using simulated rainfall and intact soil columns which were applied raw slurry or separated liquid slurry. Following irrigation and weekly samplings over a 4-week period, C. parvum oocysts were detected from all soil columns regardless of slurry type and application method, although recovery rates were low (<1%). Soil columns with injected liquid slurry leached 73 and 90% more oocysts compared to columns with injected and surface-applied raw slurries, respectively. Among leachate samples containing oocysts, 44/72 samples yielded viable oocysts as determined by a dye permeability assay (DAPI [4′,6′-diamidino-2-phenylindole]/propidium iodide) with the majority (41%) of viable oocysts found in leachate from soil columns with added liquid slurry. The number of viable oocysts was positively correlated (r = 0.63) with the total number of oocysts found. Destructively sampling of the soil columns showed that type of slurry and irrigation played a role in the vertical distribution of oocysts, with more oocysts recovered from soil columns added liquid slurry irrespective of the irrigation status. Further studies are needed to determine the effectiveness of different slurry separation technologies to remove oocysts and other pathogens, as well as whether the application of separated liquid slurry to agricultural land may represent higher risks for groundwater contamination compared to application of raw slurry. PMID:22706058

  14. Combined slurry and cavitation erosion resistance of surface modified SS410 stainless steel

    NASA Astrophysics Data System (ADS)

    Amarendra, H. J.; Pratap, M. S.; Karthik, S.; Punitha Kumara, M. S.; Rajath, H. C.; Ranjith, H.; Shubhatunga, S. V.

    2018-03-01

    Slurry erosion and combined slurry and cavitation erosion resistance of thermal spray coatings are studied and compared with the as-received martensitic stainless steel material. 70Ni-Cr coatings are deposited on SS 410 material through plasma thermal spray process. The synergy effect of the combined slurry and cavitation erosion resistance of plasma thermal spray coatings were investigated in a slurry pot tester in the presence of bluff bodies known as Cavitation Inducers. Results showed the combined slurry and cavitation erosion resistance of martensitic stainless steel - 410 can be improved by plasma thermal spray coating. It is observed that the plasma spray coated specimens are better erosion resistant than the as- received material, subjected to erosion test under similar conditions. As-received and the surface modified steels are mechanically characterized for its hardness, bending. Morphological studies are conducted through scanning electron microscope.

  15. Combined on-board hydride slurry storage and reactor system and process for hydrogen-powered vehicles and devices

    DOEpatents

    Brooks, Kriston P; Holladay, Jamelyn D; Simmons, Kevin L; Herling, Darrell R

    2014-11-18

    An on-board hydride storage system and process are described. The system includes a slurry storage system that includes a slurry reactor and a variable concentration slurry. In one preferred configuration, the storage system stores a slurry containing a hydride storage material in a carrier fluid at a first concentration of hydride solids. The slurry reactor receives the slurry containing a second concentration of the hydride storage material and releases hydrogen as a fuel to hydrogen-power devices and vehicles.

  16. Thermodynamic Analysis of a Rankine Cycle Powered Vapor Compression Ice Maker Using Solar Energy

    PubMed Central

    Hu, Bing; Bu, Xianbiao; Ma, Weibin

    2014-01-01

    To develop the organic Rankine-vapor compression ice maker driven by solar energy, a thermodynamic model was developed and the effects of generation temperature, condensation temperature, and working fluid types on the system performance were analyzed. The results show that the cooling power per square meter collector and ice production per square meter collector per day depend largely on generation temperature and condensation temperature and they increase firstly and then decrease with increasing generation temperature. For every working fluid there is an optimal generation temperature at which organic Rankine efficiency achieves the maximum value. The cooling power per square meter collector and ice production per square meter collector per day are, respectively, 126.44 W m−2 and 7.61 kg m−2 day−1 at the generation temperature of 140°C for working fluid of R245fa, which demonstrates the feasibility of organic Rankine cycle powered vapor compression ice maker. PMID:25202735

  17. Ice-atmosphere interactions in the Canadian High Arctic: Implications for the thermo-mechanical evolution of terrestrial ice masses

    NASA Astrophysics Data System (ADS)

    Wohlleben, Trudy M. H.

    Canadian High Arctic terrestrial ice masses and the polar atmosphere evolve codependently, and interactions between the two systems can lead to feedbacks, positive and negative. The two primary positive cryosphere-atmosphere feedbacks are: (1) The snow/ice-albedo feedback (where area changes in snow and/or ice cause changes in surface albedo and surface air temperatures, leading to further area changes in snow/ice); and (2) The elevation - mass balance feedback (where thickness changes in terrestrial ice masses cause changes to atmospheric circulation and precipitation patterns, leading to further ice thickness changes). In this thesis, numerical experiments are performed to: (1) quantify the magnitudes of the two feedbacks for chosen Canadian High Arctic terrestrial ice masses; and (2) to examine the direct and indirect consequences of surface air temperature changes upon englacial temperatures with implications for ice flow, mass flux divergence, and topographic evolution. Model results show that: (a) for John Evans Glacier, Ellesmere Island, the magnitude of the terrestrial snow/ice-albedo feedback can locally exceed that of sea ice on less than decadal timescales, with implications for glacier response times to climate perturbations; (b) although historical air temperature changes might be the direct cause of measured englacial temperature anomalies in various glacier and ice cap accumulation zones, they can also be the indirect cause of their enhanced diffusive loss; (c) while the direct result of past air temperature changes has been to cool the interior of John Evans Glacier, and its bed, the indirect result has been to create and maintain warm (pressure melting point) basal temperatures in the ablation zone; and (d) for Devon Ice Cap, observed mass gains in the northwest sector of the ice cap would be smaller without orographic precipitation and the mass balance---elevation feedback, supporting the hypothesis that this feedback is playing a role in the

  18. Observed increase in local cooling effect of deforestation at higher latitudes

    Treesearch

    Xuhui Lee; Michael L. Goulden; David Y. Hollinger; Alan Barr; T. Andrew Black; Gil Bohrer; Rosvel Bracho; Bert Drake; Allen Goldstein; Lianhong Gu; Gabriel Katul; Thomas Kolb; Beverly E. Law; Hank Margolis; Tilden Meyers; Russell Monson; William Munger; Ram Oren; Kyaw Tha Paw U; Andrew D. Richardson; Hans Peter Schmid; Ralf Staebler; Steven Wofsy; Lei Zhao

    2011-01-01

    Deforestation in mid- to high latitudes is hypothesized to have the potential to cool the Earth's surface by altering biophysical processes. In climate models of continental-scale land clearing, the cooling is triggered by increases in surface albedo and is reinforced by a land albedo–sea ice feedback. This feedback is crucial in the model predictions; without it...

  19. Enhanced ice sheet melting driven by volcanic eruptions during the last deglaciation.

    PubMed

    Muschitiello, Francesco; Pausata, Francesco S R; Lea, James M; Mair, Douglas W F; Wohlfarth, Barbara

    2017-10-24

    Volcanic eruptions can impact the mass balance of ice sheets through changes in climate and the radiative properties of the ice. Yet, empirical evidence highlighting the sensitivity of ancient ice sheets to volcanism is scarce. Here we present an exceptionally well-dated annual glacial varve chronology recording the melting history of the Fennoscandian Ice Sheet at the end of the last deglaciation (∼13,200-12,000 years ago). Our data indicate that abrupt ice melting events coincide with volcanogenic aerosol emissions recorded in Greenland ice cores. We suggest that enhanced ice sheet runoff is primarily associated with albedo effects due to deposition of ash sourced from high-latitude volcanic eruptions. Climate and snowpack mass-balance simulations show evidence for enhanced ice sheet runoff under volcanically forced conditions despite atmospheric cooling. The sensitivity of past ice sheets to volcanic ashfall highlights the need for an accurate coupling between atmosphere and ice sheet components in climate models.

  20. Evaluation of constant-Weber-number scaling for icing tests

    NASA Technical Reports Server (NTRS)

    Anderson, David N.

    1996-01-01

    Previous studies showed that for conditions simulating an aircraft encountering super-cooled water droplets the droplets may splash before freezing. Other surface effects dependent on the water surface tension may also influence the ice accretion process. Consequently, the Weber number appears to be important in accurately scaling ice accretion. A scaling method which uses a constant-Weber-number approach has been described previously; this study provides an evaluation of this scaling method. Tests are reported on cylinders of 2.5 to 15-cm diameter and NACA 0012 airfoils with chords of 18 to 53 cm in the NASA Lewis Icing Research Tunnel (IRT). The larger models were used to establish reference ice shapes, the scaling method was applied to determine appropriate scaled test conditions using the smaller models, and the ice shapes were compared. Icing conditions included warm glaze, horn glaze and mixed. The smallest size scaling attempted was 1/3, and scale and reference ice shapes for both cylinders and airfoils indicated that the constant-Weber-number scaling method was effective for the conditions tested.

  1. Long term fate of slurry derived nitrogen in soil: a case study with a macro-lysimeter experiment having received high loads of pig slurry (Solepur).

    PubMed

    Peu, P; Birgand, F; Martinez, J

    2007-12-01

    In intensive livestock production areas, land application remains the traditional management of manure and slurries for nutrient recycling. For sustainable agriculture there is fear, however, that this practice may have detrimental effects, particularly on the depletion of Soil Organic Matter associated with pig slurry applications. We investigated the long-term fate of nitrogen in a reconstituted soil having received high doses of pig slurry during 5 years (1991-1995). After 5 years of intensive application rates (nearly 1000 m(3)yr(-1)), the N and C content of the soil profile (0-20 cm) had increased by about 60% and 50%, respectively. These results confirm previous findings although it seems that the particularly high rates of application may explain, in part, the relatively important N incorporation in soil. Pig slurry applications ceased in 1995 and nitrogen content in soil and drainage water have been monitored. Apparent mineralization rates were calculated from the decrease in N content of the soil. This analysis indicated that more than 50% of the added N stored in the soil at the end of the applications would eventually be mineralized, leaving nearly 50% of the stored N to be immobilized in the soil. These results are the first published of their kinds, as most reports never examine the fate of applied pig slurry N after halting applications. In addition the few reports on long-term experiments suggest that Soil Organic Matter following pig slurry applications may be unstable. Our analysis tends to show the contrary. However, this conclusion must be tempered because data on nitrate leachate patterns suggest that soil management such as ploughing and sowing may actually trigger mineralization that could eventually deplete nitrogen stored following applications.

  2. Experimental investigation of static ice refrigeration air conditioning system driven by distributed photovoltaic energy system

    NASA Astrophysics Data System (ADS)

    Xu, Y. F.; Li, M.; Luo, X.; Wang, Y. F.; Yu, Q. F.; Hassanien, R. H. E.

    2016-08-01

    The static ice refrigeration air conditioning system (SIRACS) driven by distributed photovoltaic energy system (DPES) was proposed and the test experiment have been investigated in this paper. Results revealed that system energy utilization efficiency is low because energy losses were high in ice making process of ice slide maker. So the immersed evaporator and co-integrated exchanger were suggested in system structure optimization analysis and the system COP was improved nearly 40%. At the same time, we have researched that ice thickness and ice super-cooled temperature changed along with time and the relationship between system COP and ice thickness was obtained.

  3. An Investigation of Mineral Dynamics in Sea Ice by Solubility Measurements

    NASA Astrophysics Data System (ADS)

    Butler, B.; Kennedy, H.; Papadimitriou, S.

    2016-02-01

    Sea ice is a composite material with a sponge-like structure. The framework of the structure is composed of pure ice, and within the pores exists a concentrated seawater brine. When the temperature is reduced, the volume of this residual brine decreases, while its salinity increases. As a result of the paired changes to temperature and salinity, the brine becomes supersaturated with respect to a mineral at several points when cooling sea ice towards -30°C, creating a sequence of minerals that precipitate. The presence of countless microscopic salt crystals encapsulated within the ice, coupled with changes in brine volume associated with their precipitation/dissolution, results in changes to the optical and structural properties of the medium that contribute to the surface energy balance in sea ice environments. Furthermore, attainment of mineral equilibrium can result in abrupt changes in brine composition and osmotic conditions in the isolated brine pockets, imposing challenging conditions upon the biota that habitat the sea ice environment. Mirabilite (Na2SO4.10H2O), gypsum (CaSO4.2H2O) and hydrohalite (NaCl.2H2O) each represent minerals that are understood to exist within sea ice. Previous research has focused upon mineral extraction/detection, and the specific temperature for the onset of each minerals precipitation in sea ice; rather than the overarching dynamics. For this reason, solubility measurements of mirabilite, gypsum and hydrohalite in conditions representative of equilibrium sea ice brines were carried between 0 and -28°C, covering a range of undersaturated and supersaturated conditions for each mineral. Results provide accurate data for the onset of each minerals formation in sea ice, as well as important information on the way in which precipitation and dissolution reactions are affected when sea ice warms or cools. By incorporating the solubility data into a model that simluates the temperature-salinity profiles of first-year sea ice, the

  4. Cracks in a Crater Ice

    NASA Image and Video Library

    2016-12-07

    Many impact craters on Mars were filled with ice in past climates. Sometimes this ice flows or slumps down the crater walls into the center and acquires concentric wrinkles as a result. This image shows an example of this. There are other ways that scientists know the material in the crater is icy. Surface cracks that form polygonal shapes cover the material in the crater. They are easy to see in this spring-time image because seasonal frost hides inside the cracks, outlining them in bright white. These cracks form because ice within the ground expands and contracts a lot as it warms and cools. Scientists can see similar cracks in icy areas of the Earth and other icy locations on Mars. If you look closely, you'll see small polygons inside larger ones. The small polygons are younger and the cracks shallower while the large ones are outlined with cracks that penetrate more deeply. http://photojournal.jpl.nasa.gov/catalog/PIA21215

  5. Predictive model for ice formation on superhydrophobic surfaces.

    PubMed

    Bahadur, Vaibhav; Mishchenko, Lidiya; Hatton, Benjamin; Taylor, J Ashley; Aizenberg, Joanna; Krupenkin, Tom

    2011-12-06

    The prevention and control of ice accumulation has important applications in aviation, building construction, and energy conversion devices. One area of active research concerns the use of superhydrophobic surfaces for preventing ice formation. The present work develops a physics-based modeling framework to predict ice formation on cooled superhydrophobic surfaces resulting from the impact of supercooled water droplets. This modeling approach analyzes the multiple phenomena influencing ice formation on superhydrophobic surfaces through the development of submodels describing droplet impact dynamics, heat transfer, and heterogeneous ice nucleation. These models are then integrated together to achieve a comprehensive understanding of ice formation upon impact of liquid droplets at freezing conditions. The accuracy of this model is validated by its successful prediction of the experimental findings that demonstrate that superhydrophobic surfaces can fully prevent the freezing of impacting water droplets down to surface temperatures of as low as -20 to -25 °C. The model can be used to study the influence of surface morphology, surface chemistry, and fluid and thermal properties on dynamic ice formation and identify parameters critical to achieving icephobic surfaces. The framework of the present work is the first detailed modeling tool developed for the design and analysis of surfaces for various ice prevention/reduction strategies. © 2011 American Chemical Society

  6. The stability of a novel weakly alkaline slurry of copper interconnection CMPfor GLSI

    NASA Astrophysics Data System (ADS)

    Yao, Caihong; Wang, Chenwei; Niu, Xinhuan; Wang, Yan; Tian, Shengjun; Jiang, Zichao; Liu, Yuling

    2018-02-01

    Chemical mechanical polishing (CMP) is one of the important machining procedures of multilayered copper interconnection for GLSI, meanwhile polishing slurry is a critical factor for realizing the high polishing performance such as high planarization efficiency, low surface roughness. The effect of slurry components such as abrasive (colloidal silica), complexing agent (glycine), inhibitor (BTA) and oxidizing agent (H2O2) on the stability of the novel weakly alkaline slurry of copper interconnection CMP for GLSI was investigated in this paper. First, the synergistic and competitive relationship of them in a peroxide-based weakly alkaline slurry during the copper CMP process was studied and the stability mechanism was put forward. Then 1 wt% colloidal silica, 2.5 wt% glycine, 200 ppm BTA, 20 mL/L H2O2 had been selected as the appropriate concentration to prepare copper slurry, and using such slurry the copper blanket wafer was polished. From the variations of copper removal rate, root-mean square roughness (Sq) value with the setting time, it indicates that the working-life of the novel weakly alkaline slurry can reach more than 7 days, which satisfies the requirement of microelectronics further development. Project supported by the Major National Science and Technology Special Projects (No. 2016ZX02301003-004-007), the Professional Degree Teaching Case Foundation of Hebei Province, China (No. KCJSZ2017008), the Natural Science Foundation of Hebei Province, China (No. F2015202267), and the Natural Science Foundation of Tianjin, China (No. 16JCYBJC16100).

  7. Method of preparing a high solids content, low viscosity ceramic slurry

    DOEpatents

    Tiegs, Terry N.; Wittmer, Dale E.

    1995-01-01

    A method for producing a high solids content, low viscosity ceramic slurry composition comprises turbomilling a dispersion of a ceramic powder in a liquid to form a slurry having a viscosity less than 100 centipoise and a solids content equal to or greater than 48 volume percent.

  8. Method of preparing a high solids content, low viscosity ceramic slurry

    DOEpatents

    Tiegs, T.N.; Wittmer, D.E.

    1995-10-10

    A method for producing a high solids content, low viscosity ceramic slurry composition comprises turbomilling a dispersion of a ceramic powder in a liquid to form a slurry having a viscosity less than 100 centipoise and a solids content equal to or greater than 48 volume percent.

  9. Development of carbon slurry fuels for transportation (hybrid fuels, phase 2)

    NASA Technical Reports Server (NTRS)

    Ryan, T. W., III; Dodge, L. G.

    1984-01-01

    Slurry fuels of various forms of solids in diesel fuel are developed and evaluated for their relative potential as fuel for diesel engines. Thirteen test fuels with different solids concentrations are formulated using eight different materials. A variety of properties are examined including ash content, sulfur content, particle size distribution, and rheological properties. Attempts are made to determine the effects of these variations on these fuel properties on injection, atomization, and combustion processes. The slurries are also tested in a single cylinder CLR engine in both direct injection and prechamber configurations. The data includes the normal performance parameters as well as heat release rates and emissions. The slurries perform very much like the baseline fuel. The combustion data indicate that a large fraction (90 percent or more) of the solids are burning in the engine. It appears that the prechamber engine configuration is more tolerant of the slurries than the direct injection configuration.

  10. A new procedure for treatment of oily slurry using geotextile filters.

    PubMed

    Mendonça, M B; Cammarota, M C; Freire, D D C; Ehrlich, M

    2004-07-05

    A new procedure to mitigate the environmental impacts and reduce the cost of disposal of oil slurry is present in this paper. Waste from the petroleum industry has a high environmental impact. Systems for oil-water separation have been used to mitigate the contamination potential of these types of effluents. At the outlet of these systems, the oil is skimmed-off the surface, while the slurry is removed from the base. Due to the high concentration of contaminants, the disposal of this slurry is an environmentally hazardous practice. Usually this type of waste is disposed of in tanks or landfills after removal from the industrial plant. Basically, the proposed procedure utilizes drying beds with geotextile filters to both reduce the water content in the slurry and obtain a less contaminated effluent. Laboratory tests were carried out to simulate the drying system. Four types of filters were analyzed: two non-woven geotextiles, one woven geotextile, and a sand filter.

  11. Precise interpolar phasing of abrupt climate change during the last ice age

    USGS Publications Warehouse

    ,; Buizert, Christo; Adrian, Betty M.; Ahn, Jinho; Albert, Mary; Alley, Richard B.; Baggenstos, Daniel; Bauska, Thomas K.; Bay, Ryan C.; Bencivengo, Brian B.; Bentley, Charles R.; Brook, Edward J.; Chellman, Nathan J.; Clow, Gary D.; Cole-Dai, Jihong; Conway, Howard; Cravens, Eric; Cuffey, Kurt M.; Dunbar, Nelia W.; Edwards, Jon S.; Fegyveresi, John M.; Ferris, Dave G.; Fitzpatrick, Joan J.; Fudge, T. J.; Gibson, Chris J.; Gkinis, Vasileios; Goetz, Joshua J.; Gregory, Stephanie; Hargreaves, Geoffrey Mill; Iverson, Nels; Johnson, Jay A.; Jones, Tyler R.; Kalk, Michael L.; Kippenhan, Matthew J.; Koffman, Bess G.; Kreutz, Karl; Kuhl, Tanner W.; Lebar, Donald A.; Lee, James E.; Marcott, Shaun A.; Markle, Bradley R.; Maselli, Olivia J.; McConnell, Joseph R.; McGwire, Kenneth C.; Mitchell, Logan E.; Mortensen, Nicolai B.; Neff, Peter D.; Nishiizumi, Kunihiko; Nunn, Richard M.; Orsi, Anais J.; Pasteris, Daniel R.; Pedro, Joel B.; Pettit, Erin C.; Price, P. Buford; Priscu, John C.; Rhodes, Rachael H.; Rosen, Julia L.; Schauer, Andrew J.; Schoenemann, Spruce W.; Sendelbach, Paul J.; Severinghaus, Jeffrey P.; Shturmakov, Alexander J.; Sigl, Michael; Slawny, Kristina R.; Souney, Joseph M.; Sowers, Todd A.; Spencer, Matthew K.; Steig, Eric J.; Taylor, Kendrick C.; Twickler, Mark S.; Vaughn, Bruce H.; Voigt, Donald E.; Waddington, Edwin D.; Welten, Kees C.; Wendricks, Anthony W.; White, James W. C.; Winstrup, Mai; Wong, Gifford J.; Woodruff, Thomas E.

    2015-01-01

    The last glacial period exhibited abrupt Dansgaard–Oeschger climatic oscillations, evidence of which is preserved in a variety of Northern Hemisphere palaeoclimate archives1. Ice cores show that Antarctica cooled during the warm phases of the Greenland Dansgaard–Oeschger cycle and vice versa2, 3, suggesting an interhemispheric redistribution of heat through a mechanism called the bipolar seesaw4, 5, 6. Variations in the Atlantic meridional overturning circulation (AMOC) strength are thought to have been important, but much uncertainty remains regarding the dynamics and trigger of these abrupt events7, 8, 9. Key information is contained in the relative phasing of hemispheric climate variations, yet the large, poorly constrained difference between gas age and ice age and the relatively low resolution of methane records from Antarctic ice cores have so far precluded methane-based synchronization at the required sub-centennial precision2, 3,10. Here we use a recently drilled high-accumulation Antarctic ice core to show that, on average, abrupt Greenland warming leads the corresponding Antarctic cooling onset by 218 ± 92 years (2σ) for Dansgaard–Oeschger events, including the Bølling event; Greenland cooling leads the corresponding onset of Antarctic warming by 208 ± 96 years. Our results demonstrate a north-to-south directionality of the abrupt climatic signal, which is propagated to the Southern Hemisphere high latitudes by oceanic rather than atmospheric processes. The similar interpolar phasing of warming and cooling transitions suggests that the transfer time of the climatic signal is independent of the AMOC background state. Our findings confirm a central role for ocean circulation in the bipolar seesaw and provide clear criteria for assessing hypotheses and model simulations of Dansgaard–Oeschger dynamics.

  12. Characterization and Delivery of Hanford High-Level Radioactive Waste Slurry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thien, Michael G.; Denslow, Kayte M.; Lee, K. P.

    2014-11-15

    Two primary challenges to characterizing Hanford’s high-level radioactive waste slurry prior to transfer to a treatment facility are the ability to representatively sample million-gallon tanks and to estimate the critical velocity of the complex slurry. Washington River Protection Solutions has successfully demonstrated a sampling concept that minimizes sample errors by collecting multiple sample increments from a sample loop where the mixed tank contents are recirculated. Pacific Northwest National Laboratory has developed and demonstrated an ultrasonic-based Pulse-Echo detection device that is capable of detecting a stationary settled bed of solids in a pipe with flowing slurry. These two concepts are essentialmore » elements of a feed delivery strategy that drives the Hanford clean-up mission.« less

  13. Experimental insights into pyroclast-ice heat transfer in water-drained, low-pressure cavities during subglacial explosive eruptions

    NASA Astrophysics Data System (ADS)

    Woodcock, D. C.; Lane, S. J.; Gilbert, J. S.

    2017-07-01

    Subglacial explosive volcanism generates hazards that result from magma-ice interaction, including large flow rate meltwater flooding and fine-grained volcanic ash. We consider eruptions where subglacial cavities produced by ice melt during eruption establish a connection to the atmosphere along the base of the ice sheet that allows accumulated meltwater to drain. The resulting reduction of pressure initiates or enhances explosive phreatomagmatic volcanism within a steam-filled cavity with pyroclast impingement on the cavity roof. Heat transfer rates to melt ice in such a system have not, to our knowledge, been assessed previously. To study this system, we take an experimental approach to gain insight into the heat transfer processes and to quantify ice melt rates. We present the results of a series of analogue laboratory experiments in which a jet of steam, air, and sand at approximately 300°C impinged on the underside of an ice block. A key finding was that as the steam to sand ratio was increased, behavior ranged from predominantly horizontal ice melting to predominantly vertical melting by a mobile slurry of sand and water. For the steam to sand ratio that matches typical steam to pyroclast ratios during subglacial phreatomagmatic eruptions at 300°C, we observed predominantly vertical melting with upward ice melt rates of 1.5 mm s-1, which we argue is similar to that within the volcanic system. This makes pyroclast-ice heat transfer an important contributing ice melt mechanism under drained, low-pressure conditions that may precede subaerial explosive volcanism on sloping flanks of glaciated volcanoes.

  14. Design, construction, testing and evaluation of a residential ice storage air conditioning system. Doctoral thesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santos, J.J.; Ritz, T.A.

    1982-11-01

    The experimental system was used to supply cooling to a single wide trailer and performance data were compared to a conventional air conditioning system of the some capacity. Utility rate information was collected from over one hundred major utility companies and used to evaluate economic comparison of the two systems. The ice storage system utilized reduced rate time periods to accommodate ice while providing continuous cooling to the trailer. The economic evaluation resulted in finding that the ice storage system required over 50% more energy than the conventional system. Although a few of the utility companies offered rate structures whichmore » would result in savings of up to $200 per year, this would not be enough to offset higher initial costs over the life of the storage system. Recommendations include items that would have to be met in order for an ice storage system to be an economically viable alternative to the conventional system.« less

  15. Experiments indicating a second hydrogen ordered phase of ice VI

    PubMed Central

    Gasser, Tobias M.; Thoeny, Alexander V.; Plaga, Lucie J.; Köster, Karsten W.; Etter, Martin; Böhmer, Roland

    2018-01-01

    In the last twelve years five new ice phases were experimentally prepared. Two of them are empty clathrate hydrates and three of them represent hydrogen ordered counterparts of previously known disordered ice phases. Here, we report on hydrogen ordering in ice VI samples produced by cooling at pressures up to 2.00 GPa. Based on results from calorimetry, dielectric relaxation spectroscopy, Raman spectroscopy, and powder X-ray diffraction the existence of a second hydrogen ordered polymorph related to ice VI is suggested. Powder X-ray data show the oxygen network to be the one of ice VI. For the 1.80 GPa sample the activation energy from dielectric spectroscopy is 45 kJ mol–1, which is much larger than for the known hydrogen ordered proxy of ice VI, ice XV. Raman spectroscopy indicates the 1.80 GPa sample to be more ordered than ice XV. It is further distinct from ice XV in that it experiences hydrogen disordering above ≈103 K which is 26 K below the ice XV to ice VI disordering transition. Consequently, below 103 K it is thermodynamically more stable than ice XV, adding a stability region to the phase diagram of water. For the time being we suggest to call this new phase ice β-XV and to relabel it ice XVIII once its crystal structure is known. PMID:29780552

  16. Experiments indicating a second hydrogen ordered phase of ice VI.

    PubMed

    Gasser, Tobias M; Thoeny, Alexander V; Plaga, Lucie J; Köster, Karsten W; Etter, Martin; Böhmer, Roland; Loerting, Thomas

    2018-05-14

    In the last twelve years five new ice phases were experimentally prepared. Two of them are empty clathrate hydrates and three of them represent hydrogen ordered counterparts of previously known disordered ice phases. Here, we report on hydrogen ordering in ice VI samples produced by cooling at pressures up to 2.00 GPa. Based on results from calorimetry, dielectric relaxation spectroscopy, Raman spectroscopy, and powder X-ray diffraction the existence of a second hydrogen ordered polymorph related to ice VI is suggested. Powder X-ray data show the oxygen network to be the one of ice VI. For the 1.80 GPa sample the activation energy from dielectric spectroscopy is 45 kJ mol -1 , which is much larger than for the known hydrogen ordered proxy of ice VI, ice XV. Raman spectroscopy indicates the 1.80 GPa sample to be more ordered than ice XV. It is further distinct from ice XV in that it experiences hydrogen disordering above ≈103 K which is 26 K below the ice XV to ice VI disordering transition. Consequently, below 103 K it is thermodynamically more stable than ice XV, adding a stability region to the phase diagram of water. For the time being we suggest to call this new phase ice β-XV and to relabel it ice XVIII once its crystal structure is known.

  17. A dynamic early East Antarctic Ice Sheet suggested by ice-covered fjord landscapes.

    PubMed

    Young, Duncan A; Wright, Andrew P; Roberts, Jason L; Warner, Roland C; Young, Neal W; Greenbaum, Jamin S; Schroeder, Dustin M; Holt, John W; Sugden, David E; Blankenship, Donald D; van Ommen, Tas D; Siegert, Martin J

    2011-06-02

    The first Cenozoic ice sheets initiated in Antarctica from the Gamburtsev Subglacial Mountains and other highlands as a result of rapid global cooling ∼34 million years ago. In the subsequent 20 million years, at a time of declining atmospheric carbon dioxide concentrations and an evolving Antarctic circumpolar current, sedimentary sequence interpretation and numerical modelling suggest that cyclical periods of ice-sheet expansion to the continental margin, followed by retreat to the subglacial highlands, occurred up to thirty times. These fluctuations were paced by orbital changes and were a major influence on global sea levels. Ice-sheet models show that the nature of such oscillations is critically dependent on the pattern and extent of Antarctic topographic lowlands. Here we show that the basal topography of the Aurora Subglacial Basin of East Antarctica, at present overlain by 2-4.5 km of ice, is characterized by a series of well-defined topographic channels within a mountain block landscape. The identification of this fjord landscape, based on new data from ice-penetrating radar, provides an improved understanding of the topography of the Aurora Subglacial Basin and its surroundings, and reveals a complex surface sculpted by a succession of ice-sheet configurations substantially different from today's. At different stages during its fluctuations, the edge of the East Antarctic Ice Sheet lay pinned along the margins of the Aurora Subglacial Basin, the upland boundaries of which are currently above sea level and the deepest parts of which are more than 1 km below sea level. Although the timing of the channel incision remains uncertain, our results suggest that the fjord landscape was carved by at least two iceflow regimes of different scales and directions, each of which would have over-deepened existing topographic depressions, reversing valley floor slopes.

  18. The role of sea-ice albedo in the climate of slowly rotating aquaplanets

    NASA Astrophysics Data System (ADS)

    Salameh, Josiane; Popp, Max; Marotzke, Jochem

    2018-04-01

    We investigate the influence of the rotation period (P_{rot}) on the mean climate of an aquaplanet, with a focus on the role of sea-ice albedo. We perform aquaplanet simulations with the atmospheric general circulation model ECHAM6 for various rotation periods from one Earth-day to 365 Earth-days in which case the planet is synchronously rotating. The global-mean surface temperature decreases with increasing P_{rot} and sea ice expands equatorwards. The cooling of the mean climate with increasing P_{rot} is caused partly by the high surface albedo of sea ice on the dayside and partly by the high albedo of the deep convective clouds over the substellar region. The cooling caused by these deep convective clouds is weak for non-synchronous rotations compared to synchronous rotation. Sensitivity simulations with the sea-ice model switched off show that the global-mean surface temperature is up to 27 K higher than in our main simulations with sea ice and thus highlight the large influence of sea ice on the climate. We present the first estimates of the influence of the rotation period on the transition of an Earth-like climate to global glaciation. Our results suggest that global glaciation of planets with synchronous rotation occurs at substantially lower incoming solar irradiation than for planets with slow but non-synchronous rotation.

  19. Feasibility Studies on Pipeline Disposal of Concentrated Copper Tailings Slurry for Waste Minimization

    NASA Astrophysics Data System (ADS)

    Senapati, Pradipta Kumar; Mishra, Barada Kanta

    2017-06-01

    The conventional lean phase copper tailings slurry disposal systems create pollution all around the disposal area through seepage and flooding of waste slurry water. In order to reduce water consumption and minimize pollution, the pipeline disposal of these waste slurries at high solids concentrations may be considered as a viable option. The paper presents the rheological and pipeline flow characteristics of copper tailings samples in the solids concentration range of 65-72 % by weight. The tailings slurry indicated non-Newtonian behaviour at these solids concentrations and the rheological data were best fitted by Bingham plastic model. The influence of solids concentration on yield stress and plastic viscosity for the copper tailings samples were discussed. Using a high concentration test loop, pipeline experiments were conducted in a 50 mm nominal bore (NB) pipe by varying the pipe flow velocity from 1.5 to 3.5 m/s. A non-Newtonian Bingham plastic pressure drop model predicted the experimental data reasonably well for the concentrated tailings slurry. The pressure drop model was used for higher size pipes and the operating conditions for pipeline disposal of concentrated copper tailings slurry in a 200 mm NB pipe with respect to specific power consumption were discussed.

  20. Roles of additives and surface control in slurry atomization. Final project report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsai, S.C.

    1992-12-31

    This project studies the rheology and airblast atomization of micronized coal slurries. Its major objectives are (1) to promote further understanding of the mechanisms and the roles of additives in airblast atomization of coal water slurry (CWS), and (2) to investigate the impacts of coal particle surface properties and interparticle forces on CWS rheology. We have found that the flow behavior index (n) of a suspension (or slurry) is determined by the relative importance of the interparticle van der Waals attraction and the interparticle electrostatic repulsion. The interparticle attraction, measured by the Hamaker constant scaled to the thermal energy atmore » 25{degrees}C (A/kT), causes particle aggregation, which breaks down at high shear rates, and thus leads to slurry pseudoplastic behavior (n< 1). At a constant particle volume fraction and surface charge density (qualitatively measured by the zeta potential in deionized water), n decreases linearly as A/kT increases. The relative viscosity of the pseudoplastic suspension with respect to that of the suspending liquid is found to be independent of particle density and correlate well with the particle Peclet number which equals the particle diffusional relaxation time multiplied by shear rate. Specifically, the relative viscosities of the pseudoplastic glycerol/water coal slurry and the ethylene glycol/glycerol sand slurry, at same volume fractions as well as similar particle size distributions and liquid viscosities, as functions of the particle Peclet number fall along the same line.« less

  1. Holocene history of drift ice in the northern North Atlantic: Evidence for different spatial and temporal modes

    USGS Publications Warehouse

    Moros, M.; Andrews, John T.; Eberl, D.D.; Jansen, E.

    2006-01-01

    We present new high-resolution proxy data for the Holocene history of drift ice off Iceland based on the mineralogy of the <2-mm sediment fraction using quantitative X-ray diffraction. These new data, bolstered by a comparison with published proxy records, point to a long-term increasing trend in drift ice input into the North Atlantic from 6 to 5 ka toward the present day at sites influenced by the cold east Greenland Current. This feature reflects the late Holocene Neoglacial or cooling period recorded in ice cores and further terrestrial archives on Greenland. In contrast, a decrease in drift ice during the same period is recorded at sites underlying the North Atlantic Drift, which may reflect a warming of this region. The results document that Holocene changes in iceberg rafting and sea ice advection did not occur uniformly across the North Atlantic. Centennial-scale climate variability in the North Atlantic region over the last ???4 kyr is linked to the observed changes in drift ice input. Increased drift ice may have played a role in the increase of cold intervals during the late Holocene, e.g., the Little Ice Age cooling. Copyright 2006 by the American Geophysical Union.

  2. Winter Eurasian cooling linked with the Atlantic Multidecadal Oscillation

    NASA Astrophysics Data System (ADS)

    Luo, Dehai; Chen, Yanan; Dai, Aiguo; Mu, Mu; Zhang, Renhe; Ian, Simmonds

    2017-12-01

    In this paper, we analyze observational and reanalysis data to demonstrate that the Atlantic Multidecadal Oscillation (AMO) significantly modulates winter Eurasian surface air temperature through its impact on the shape, frequency and persistence of Ural blocking (UB) events that last for 10-20 d. This impact results from changes in mid-high latitude westerly winds over Eurasia associated with the warming in the Barents-Kara Seas (BKS) through the AMO-driven high sea surface temperature and sea-ice decline and resultant weakening in meridional temperature gradients. The BKS warming has a strongest positive correlation with the AMO at a time lag of about 14 years. During the recent positive AMO phase, more persistent northwest-southeast (NW-SE) oriented UB events are favored by weakened westerly winds in Eurasian mid-high latitudes. Through cold atmospheric advection and radiative cooling, such UB events produce a strong, persistent and widespread cooling over Eurasia and enhance BKS warming during 1999-2015. However, the positive AMO phase cannot directly produce the Eurasian cooling if the UB is absent. Thus, we conclude that the recent AMO phase change is a major cause of the recent winter cooling over Eurasia through its impact on BKS temperature and sea ice, which in turn affect the meridional temperature gradient, the westerly winds and the UB events.

  3. Narrow grass hedge effects on nutrient transport following swine slurry application

    USDA-ARS?s Scientific Manuscript database

    The effectiveness of a narrow grass hedge in reducing runoff nutrient loads following swine slurry application was examined in this study. Slurry was applied to 0.75-m wide by 4.0-m long plots established on an Aksarben silty clay loam soil located in southeast Nebraska. Manure treatments consisted ...

  4. Effect of Surface-active Additives on Physical Properties of Slurries of Vapor-process Magnesium

    NASA Technical Reports Server (NTRS)

    Pinns, Murray L

    1955-01-01

    The presence of 3 to 5 percent surface-active additive gave the lowest Brookfield apparent viscosity, plastic viscosity, and yield value that were obtained for slurry fuels containing approximately 50 percent vapor-process magnesium in JP-1 fuel. The slurries settled little and were easily remixed. A polyoxyethylene dodecyl alcohol was the most effective of 13 additives tested in reducing the Brookfield apparent viscosity and the yield value of the slurry. The seven most effective additives all had a hydroxyl group plus an ester or polyoxethylene group in the molecule. The densities of some of the slurries were measured.

  5. Fermentation of Anaerobic Cow Waste as Bio-Slurry Organic Fertilizer and Nitrogen Chemical Fertilizer on Soybean

    NASA Astrophysics Data System (ADS)

    Yafizham; Sutarno

    2018-02-01

    The study aimed was to evaluate the effect of bio-slurry organic fertilizer and urea chemical fertilizer combination on fresh material weight, phosphorus and potassium soybean straw, and seed weight per soybean plant plot. The experiment was conducted with a randomized block design with a single treatment repeated 5 times consisting of P0: control (without fertilizer), P1: bio-slurry 10 t/ha + 25 kg of N/ha, P2: bio-slurry 10 t/ha + 50 kg of N/ha, P3: bio-slurry 10 t/ha + 75 kg of N/ha, P4: bio-slurry 10 t/ha + 100 kg of N/ha and P5: bio-slurry 10 t/ha. The results showed that bio-slurry treatment of 10 t/ha + 25 kg of N/ha resulted in the highest fresh weight and dry weight of soybean plants, respectively of 240.7 g and 22.33 g, but not significantly different from the bio-slurry treatment of 10 t/ha + 50 kg of N/ha which yielded fresh weight of 197.7 g and a dry weight of 19.08 g. P production of 10.23 g per plant was significantly higher than other treatments but didn’t differ significantly between P2 and P4 treatments of 8.05 and 7.17 g per plant. The bio-slurry treatment of 10 t/ha + 25 kg of N/ha also yielded K of 6.46 g per plant butn’t unlike the bio-slurry treatment of 10 t/ha + 50 kg of N/ha. While the number of pods per plant and weight of 100 grains of the highest soybean seeds were also produced from bio-slurry treatment of 10 t/ha + 25 kg of N/ha.

  6. Atmospheric icing of structures: Observations and simulations

    NASA Astrophysics Data System (ADS)

    Ágústsson, H.; Elíasson, Á. J.; Thorsteins, E.; Rögnvaldsson, Ó.; Ólafsson, H.

    2012-04-01

    some of the icing may be due to freezing drizzle or wet snow instead of in-cloud icing of super-cooled droplets. In addition, the icing model (Makkonen) may not be accurate for the highest icing loads observed.

  7. Pollution attenuation by soils receiving cattle slurry after passage of a slurry-like feed solution. Column experiments.

    PubMed

    Núñez-Delgado, Avelino; López-Períago, Eugenio; Diaz-Fierros-Viqueira, Francisco

    2002-09-01

    Designing soil filtration systems or vegetated filter strips as a means of attenuating water pollution should take into account soil purging capacity. Here we report data on laboratory column trials used to investigate the capacity of a Hortic Anthrosol to attenuate contamination due to downward leaching from cattle slurry applied at the surface. The columns comprised 900 g of soil to a depth of about 20-25 cm, and had been used previously in an experiment involving passage of at least 5 pore volumes of an ion-containing cattle slurry-like feed solution. For the present experiments, the columns were first washed through with distilled water (simulating resting and rain falling after passage of the feed solution), and then received a single slurry dose equivalent to about 300 m3 ha(-1). The columns were then leached with distilled water, with monitoring of chemical oxygen demand (COD) and ion contents in outflow. The results indicated that the pollution-neutralising capacity of the soil was still high but clearly lower than in the earlier experiments with the feed solution. Furthermore, the time-course of COD showed that organic acids were leached through the column even more rapidly than chloride (often viewed as an inert tracer) enhancing the risk of heavy metals leaching and subsequent water pollution. Resting and alternate use of different soil-plant buffer zones would increase the lifespan of purging systems that use soil like the here studied one.

  8. Controlled ice nucleation in cryopreservation--a review.

    PubMed

    Morris, G John; Acton, Elizabeth

    2013-04-01

    We review here for the first time, the literature on control of ice nucleation in cryopreservation. Water and aqueous solutions have a tendency to undercool before ice nucleation occurs. Control of ice nucleation has been recognised as a critical step in the cryopreservation of embryos and oocytes but is largely ignored for other cell types. We review the processes of ice nucleation and crystal growth in the solution around cells and tissues during cryopreservation with an emphasis on non IVF applications. The extent of undercooling that is encountered during the cooling of various cryocontainers is defined and the methods that have been employed to control the nucleation of ice are examined. The effects of controlled ice nucleation on the structure of the sample and the outcome of cryopreservation of a range of cell types and tissues are presented and the physical events which define the cellular response are discussed. Nucleation of ice is the most significant uncontrolled variable in conventional cryopreservation leading to sample to sample variation in cell recovery, viability and function and should be controlled to allow standardisation of cryopreservation protocols for cells for biobanking, cell based assays or clinical application. This intervention allows a way of increasing viability of cells and reducing variability between samples and should be included as standard operating procedures are developed. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Interactions between phosphorus feeding strategies for pigs and dairy cows and separation efficiency of slurry.

    PubMed

    Sommer, S G; Maahn, M; Poulsen, H D; Hjorth, M; Sehested, J

    2008-01-01

    Phosphorus (P) in manure is a nutrient source for plants, but surplus P amended to fields represents a risk to the environment. This study examines the interactions between low-P diets for pigs and dairy cows and the separation of animal slurry into a solid P fraction and a liquid fraction. Replacing inorganic phosphates with phytase in pig feed reduced the concentration of P in slurry by 35%, but supplementing concentrates to dairy cows did not affect the P concentration in cattle slurry. Particle-size fractions of the slurry were not affected by these dietary changes. The amount of dry matter (DM) in the < 0.025 mm fraction was greater in pig slurry than in cattle slurry, but the relative amounts of P and nitrogen (N) were larger in the > 0.025 mm fraction. Replacing feed phosphate, in the form of mono-calcium phosphate, with phytase in the pig diet reduced the separation index (efficiency) of P from 80% to 60%.

  10. A study on ice crystal formation behavior at intracellular freezing of plant cells using a high-speed camera.

    PubMed

    Ninagawa, Takako; Eguchi, Akemi; Kawamura, Yukio; Konishi, Tadashi; Narumi, Akira

    2016-08-01

    Intracellular ice crystal formation (IIF) causes several problems to cryopreservation, and it is the key to developing improved cryopreservation techniques that can ensure the long-term preservation of living tissues. Therefore, the ability to capture clear intracellular freezing images is important for understanding both the occurrence and the IIF behavior. The authors developed a new cryomicroscopic system that was equipped with a high-speed camera for this study and successfully used this to capture clearer images of the IIF process in the epidermal tissues of strawberry geranium (Saxifraga stolonifera Curtis) leaves. This system was then used to examine patterns in the location and formation of intracellular ice crystals and to evaluate the degree of cell deformation because of ice crystals inside the cell and the growing rate and grain size of intracellular ice crystals at various cooling rates. The results showed that an increase in cooling rate influenced the formation pattern of intracellular ice crystals but had less of an effect on their location. Moreover, it reduced the degree of supercooling at the onset of intracellular freezing and the degree of cell deformation; the characteristic grain size of intracellular ice crystals was also reduced, but the growing rate of intracellular ice crystals was increased. Thus, the high-speed camera images could expose these changes in IIF behaviors with an increase in the cooling rate, and these are believed to have been caused by an increase in the degree of supercooling. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Extra- and intracellular ice formation in mouse oocytes.

    PubMed

    Mazur, Peter; Seki, Shinsuke; Pinn, Irina L; Kleinhans, F W; Edashige, Keisuke

    2005-08-01

    The occurrence of intracellular ice formation (IIF) during freezing, or the lack there of, is the single most important factor determining whether or not cells survive cryopreservation. One important determinant of IIF is the temperature at which a supercooled cell nucleates. To avoid intracellular ice formation, the cell must be cooled slowly enough so that osmotic dehydration eliminates nearly all cell supercooling before reaching that temperature. This report is concerned with factors that determine the nucleation temperature in mouse oocytes. Chief among these is the concentration of cryoprotective additive (here, glycerol or ethylene glycol). The temperature for IIF decreases from -14 degrees C in buffered isotonic saline (PBS) to -41 degrees C in 1M glycerol/PBS and 1.5M ethylene glycol/PBS. The latter rapidly permeates the oocyte; the former does not. The initial extracellular freezing at -3.9 to -7.8 degrees C, depending on the CPA concentration, deforms the cell. In PBS that deformation often leads to IIF; in CPA it does not. The oocytes are surrounded by a zona pellucida. That structure appears to impede the growth of external ice through it, but not to block it. In most cases, IIF is characterized by an abrupt blackening or flashing during cooling. But in some cases, especially with dezonated oocytes, a pale brown veil abruptly forms during cooling followed by slower blackening during warming. Above -30 degrees C, flashing occurs in a fraction of a second. Below -30 degrees C, it commonly occurs much more slowly. We have observed instances where flashing is accompanied by the abrupt ejection of cytoplasm. During freezing, cells lie in unfrozen channels between the growing external ice. From phase diagram data, we have computed the fraction of water and solution that remains unfrozen at the observed flash temperatures and the concentrations of salt and CPA in those channels. The results are somewhat ambiguous as to which of these characteristics best

  12. Sterilization by Cooling in Isochoric Conditions: The Case of Escherichia coli

    PubMed Central

    Salinas-Almaguer, Samuel; Angulo-Sherman, Abril; Sierra-Valdez, Francisco Javier; Mercado-Uribe, Hilda

    2015-01-01

    High hydrostatic pressure (HHP) affects the structure, metabolism and survival of micro-organisms including bacteria. For this reason HHP is a promising treatment in the food industry. The aim of this work is to evaluate the effect of high pressure, under isochoric cooling conditions, on Escherichia coli, where such high pressure develops due to the fact water cannot expand. We combine survival curves obtained by spectrophotometry and images of atomic force microscopy in this study. Our results show that cooling at -20 and -30°C leads to a partial destruction of a Escherichia coli population. However, cooling at -15°C causes a total extermination of bacteria. This intriguing result is explained by the phase diagram of water. In the first case, the simultaneous formation of ice III and ice Ih crystals provides a safe environment for bacteria. In the second case (-15°C) Escherichia coli remains in a metastable and amorphous free-of-crystals liquid subjected to high pressure. Our work is the first experimental study carried out to inactivate Escherichia coli under isochoric cooling conditions. Unlike HHP, which is based on the application of an external load to augment the pressure, this technique only requires cooling. The method could be used for annihilation of other Escherichia coli strains and perhaps other micro-organisms. PMID:26480032

  13. Suspended-slurry reactor

    DOEpatents

    None

    2016-03-22

    An apparatus for generating a large volume of gas from a liquid stream is disclosed. The apparatus includes a first channel through which the liquid stream passes. The apparatus also includes a layer of catalyst particles suspended in a solid slurry for generating gas from the liquid stream. The apparatus further includes a second channel through which a mixture of converted liquid and generated gas passes. A heat exchange channel heats the liquid stream. A wicking structure located in the second channel separates the gas generated from the converted liquid.

  14. Management factors affecting ammonia volatilization from land-applied cattle slurry in the Mid-Atlantic USA.

    PubMed

    Thompson, R B; Meisinger, J J

    2002-01-01

    Ammonia (NH3) volatilization commonly causes a substantial loss of crop-available N from surface-applied cattle slurry. Field studies were conducted with small wind tunnels to assess the effect of management factors on NH3 volatilization. Two studies compared NH3 volatilization from grass sward and bare soil. The average total NH3 loss was 1.5 times greater from slurry applied to grass sward. Two studies examined the effect of slurry dry matter (DM) content on NH3 loss under hot, summer conditions in Maryland, USA. Slurry DM contents were between 54 and 134 g kg(-1). Dry matter content did not affect total NH3 loss, but did influence the time course of NH3 loss. Higher DM content slurries had relatively higher rates of NH3 volatilization during the first 12 to 24 h, but lower rates thereafter. Under the hot conditions, the higher DM content slurries appeared to dry and crust more rapidly causing smaller rates of NH3 volatilization after 12 to 24 h, which offset the earlier positive effects of DM content on NH3 volatilization. Three studies compared immediate incorporation with different tillage implements. Total NH3 loss from unincorporated slurry was 45% of applied slurry NH4+-N, while losses following immediate incorporation with a moldboard plow, tandem-disk harrow, or chisel plow were, respectively, 0 to 3, 2 to 8, and 8 to 12%. These ground cover and DM content data can be used to improve predictions of NH3 loss under specific farming conditions. The immediate incorporation data demonstrate management practices that can reduce NH3 volatilization, which can improve slurry N utilization in crop-forage production.

  15. Water ice clouds observations with PFS on Mars Express

    NASA Astrophysics Data System (ADS)

    Moroz, V. I.; Zasova, L. V.; Formisano, V.; Grassi, D.; Ignatiev, N. I.; Giuranna, M.; Maturilli, A.; Pfs Team

    The water ice cloud observation is one of the scientific goals of PFS. Presence and properties of the ice particles are identified from absorption features, observed in both spectral ranges of PFS. Being in the near perihelion condition, the temperature of the Martian atmosphere is pretty high and ice clouds exist only in some places, for example, related to topography or at north high latitudes et etc. The ice clouds are observed often above the tops of the volcanoes. We have found the ice clouds above Olympus (orbit 37) and Ascraeus Mons (orbit 68). Effective radius of particles according to the thermal IR is preliminary estimated of 1 μ m, which leads to the visual opacity of 0.2 -0.3 above Olympus and of maximum of 0.6 above Ascraeus Mons. In the case of Ascraeus Mons the ice clouds are observed on the south slope near the top of the volcano. The maximum surface temperature, observed there, results in the upward flux of warm air, which, cooling, provides the condensation of H2O. We will present a detailed analysis of the ice clouds, observed over the planet in the IR spectral range.

  16. Relative impacts of insolation changes, meltwater fluxes and ice sheets on African and Asian monsoons during the Holocene

    NASA Astrophysics Data System (ADS)

    Marzin, Charline; Braconnot, Pascale; Kageyama, Masa

    2013-11-01

    In order to better understand the evolution of the Afro-Asian monsoon in the early Holocene, we investigate the impact on boreal summer monsoon characteristics of (1) a freshwater flux in the North Atlantic from the surrounding melting ice sheets and (2) a remnant ice sheet over North America and Europe. Sensitivity experiments run with the IPSL_CM4 model show that both the meltwater flux and the remnant ice sheets induce a cooling of similar amplitude of the North Atlantic leading to a southward shift of the Inter-Tropical Convergence Zone over the tropical Atlantic and to a reduction of the African monsoon. The two perturbations have different impacts in the Asian sector. The meltwater flux results in a weakening of the Indian monsoon and no change in the East Asian monsoon, whereas the remnant ice sheets induce a strengthening of the Indian monsoon and a strong weakening of the East Asian monsoon. Despite the similar coolings in the Atlantic Ocean, the ocean heat transport is reduced only in the meltwater flux experiment, which induces slight differences between the two experiments in the role of the surface latent heat flux in the tropical energetics. In the meltwater experiment, the southward shift of the subtropical jet acts to cool the upper atmosphere over the Tibetan Plateau and hence to weaken the Indian monsoon. In the ice sheet experiment this effect is overwhelmed by the changes in extratropical stationary waves induced by the ice sheets, which are associated with a larger cooling over the Eurasian continent than in the meltwater experiment. However these sensitivity experiments suggest that insolation is the dominant factor explaining the relative changes of the African, Indian and East Asian monsoons from the early to the mid-Holocene.

  17. Is ice-rafted sediment in a North Pole marine record evidence for perennial sea-ice cover?

    PubMed

    Tremblay, L B; Schmidt, G A; Pfirman, S; Newton, R; DeRepentigny, P

    2015-10-13

    Ice-rafted sediments of Eurasian and North American origin are found consistently in the upper part (13 Ma BP to present) of the Arctic Coring Expedition (ACEX) ocean core from the Lomonosov Ridge, near the North Pole (≈88° N). Based on modern sea-ice drift trajectories and speeds, this has been taken as evidence of the presence of a perennial sea-ice cover in the Arctic Ocean from the middle Miocene onwards (Krylov et al. 2008 Paleoceanography 23, PA1S06. (doi:10.1029/2007PA001497); Darby 2008 Paleoceanography 23, PA1S07. (doi:10.1029/2007PA001479)). However, other high latitude land and marine records indicate a long-term trend towards cooling broken by periods of extensive warming suggestive of a seasonally ice-free Arctic between the Miocene and the present (Polyak et al. 2010 Quaternary Science Reviews 29, 1757-1778. (doi:10.1016/j.quascirev.2010.02.010)). We use a coupled sea-ice slab-ocean model including sediment transport tracers to map the spatial distribution of ice-rafted deposits in the Arctic Ocean. We use 6 hourly wind forcing and surface heat fluxes for two different climates: one with a perennial sea-ice cover similar to that of the present day and one with seasonally ice-free conditions, similar to that simulated in future projections. Model results confirm that in the present-day climate, sea ice takes more than 1 year to transport sediment from all its peripheral seas to the North Pole. However, in a warmer climate, sea-ice speeds are significantly faster (for the same wind forcing) and can deposit sediments of Laptev, East Siberian and perhaps also Beaufort Sea origin at the North Pole. This is primarily because of the fact that sea-ice interactions are much weaker with a thinner ice cover and there is less resistance to drift. We conclude that the presence of ice-rafted sediment of Eurasian and North American origin at the North Pole does not imply a perennial sea-ice cover in the Arctic Ocean, reconciling the ACEX ocean core data with

  18. Coal-water slurry fuel internal combustion engine and method for operating same

    DOEpatents

    McMillian, Michael H.

    1992-01-01

    An internal combustion engine fueled with a coal-water slurry is described. About 90 percent of the coal-water slurry charge utilized in the power cycle of the engine is directly injected into the main combustion chamber where it is ignited by a hot stream of combustion gases discharged from a pilot combustion chamber of a size less than about 10 percent of the total clearance volume of main combustion chamber with the piston at top dead center. The stream of hot combustion gases is provided by injecting less than about 10 percent of the total coal-water slurry charge into the pilot combustion chamber and using a portion of the air from the main combustion chamber that has been heated by the walls defining the pilot combustion chamber as the ignition source for the coal-water slurry injected into the pilot combustion chamber.

  19. Concentration and Velocity Measurements of Both Phases in Liquid-Solid Slurries

    NASA Astrophysics Data System (ADS)

    Altobelli, Stephen; Hill, Kimberly; Caprihan, Arvind

    2007-03-01

    Natural and industrial slurry flows abound. They are difficult to calculate and to measure. We demonstrate a simple technique for studying steady slurries. We previously used time-of-flight techniques to study pressure driven slurry flow in pipes. Only the continuous phase velocity and concentration fields were measured. The discrete phase concentration was inferred. In slurries composed of spherical, oil-filled pills and poly-methyl-siloxane oils, we were able to use inversion nulling to measure the concentration and velocity fields of both phases. Pills are available in 1-5mm diameter and silicone oils are available in a wide range of viscosities, so a range of flows can be studied. We demonstrated the technique in horizontal, rotating cylinder flows. We combined two tried and true methods to do these experiments. The first used the difference in T1 to select between phases. The second used gradient waveforms with controlled first moments to produce velocity dependent phase shifts. One novel processing method was developed that allows us to use static continuous phase measurements to reference both the continuous and discrete phase velocity images. ?

  20. ESR/spin probe study of ice cream.

    PubMed

    Gillies, Duncan G; Greenley, Katherine R; Sutcliffe, Leslie H

    2006-07-12

    Spin probes based on the 1,1,3,3-tetramethylisoindolin-2-yl structure have been used, in conjunction with electron spin resonance spectroscopy (ESR), to study the physical changes occurring in ice cream during freezing and melting. The ESR measurements allowed the rotational correlation times, tau(B), of the spin probes to be determined. Two probes were used together in a given sample of ice cream, namely, 1,1,3,3-tetramethylisoindolin-2-yl (TMIO), which samples the fat phase, and the sodium salt of 1,1,3,3-tetramethylisoindolin-2-yloxyl-5-sulfonate (NaTMIOS), which samples the aqueous phase. Data from the TMIO probe showed that when ice cream is cooled, the fat phase is a mixture of solid and liquid fat until a temperature of approximately -60 degrees C is reached. The water-soluble probe NaTMIOS showed that the aqueous phase changes completely from liquid to solid within 1 degrees C of -18 degrees C. On cooling further to -24.7 degrees C and then allowing it to warm to +25.0 degrees C, the rotational correlation times of the NaTMIOS were slow to recover to their previous values. For the lipid phase, tau(B)(298) was found to be 65.7 +/- 2.0 ps and the corresponding activation enthalpy, DeltaH, was 32.5 +/- 0.9 kJ mol(-)(1): These values are typical of those expected to be found in the type of fat used to make ice cream. The water phase gave corresponding values of 32.2 +/- 0.5 ps and 24.5 +/- 0.4 kJ mol(-)(1) values, which are those expected for a sucrose concentration of 24%.

  1. Detrital zircon fission track analysis reveals the thermotectonic history of ice-covered rocks of the Chugach-St. Elias orogen, SE-Alaska

    NASA Astrophysics Data System (ADS)

    Enkelmann, E.; Garver, J. I.; Pavlis, T. L.; Bruhn, R. L.; Chapman, J. B.

    2007-12-01

    Investigating the exhumation history of the Chugach-St. Elias orogen (SE Alaska) using low-temperature thermochronometers is challenged by significant ice cover. Assuming exhumation drove cooling, cooling ages increase with elevation in an orogenic belt, and as such the youngest ages occur in valley bottoms. Cooling and exhumation rates are expected to be very high in the Chugach-St. Elias orogen due to efficient glacial erosion and the most intense erosion occurs under the major ice fields. To study the cooling history of rapidly exhuming rocks underneath this ice cover, we analyzed detrital zircon fission track (DZFT) ages of Recent sand samples from modern rivers that drain the central Bagley Ice field and smaller glaciers draining north (Chitina valley) and south (Pacific) of the mountain range. A distinct advantage of DZFT is that it allows one to sample a landscape regardless of accessibility. The youngest ZFT component populations of samples north and south of the Bagley Ice field record a Late Miocene (5-13 Ma) cooling of the orogen. The pattern of cooling ages shows symmetry across the orogen predates the earliest record of the collision of the Yakutat terrane with Alaska. This result contrasts with the asymmetric cooling pattern displayed by low- temperature thermochronological ages (AFT and AHe) of the exposed bedrock within the range. Apatite FT and U- Th/He ages of bedrock samples south of the Bagley Ice field record the syn-collisional (<5 Ma) fast exhumation whereas apatite ages to the north reveal more heterogeneous exhumation and vary widely from Miocene to Eocene. The bedrock samples from throughout the orogenic belt thus display predominantly the effects of the recent climatic situation of the mountain range with very high precipitation on the south, seaward side versus a more arid north side. Our ZFT results from the northern drainages highlight the relative sense and timing of two important fault zones, both accommodate south-side-up exhumation

  2. History of the Greenland Ice Sheet: paleoclimatic insights

    USGS Publications Warehouse

    Alley, Richard B.; Andrews, John T.; Brigham-Grette, J.; Clarke, G.K.C.; Cuffey, Kurt M.; Fitzpatrick, J.J.; Funder, S.; Marshall, S.J.; Miller, G.H.; Mitrovica, J.X.; Muhs, D.R.; Otto-Bliesner, B. L.; Polyak, L.; White, J.W.C.

    2010-01-01

    Paleoclimatic records show that the GreenlandIce Sheet consistently has lost mass in response to warming, and grown in response to cooling. Such changes have occurred even at times of slow or zero sea-level change, so changing sea level cannot have been the cause of at least some of the ice-sheet changes. In contrast, there are no documented major ice-sheet changes that occurred independent of temperature changes. Moreover, snowfall has increased when the climate warmed, but the ice sheet lost mass nonetheless; increased accumulation in the ice sheet's center has not been sufficient to counteract increased melting and flow near the edges. Most documented forcings and ice-sheet responses spanned periods of several thousand years, but limited data also show rapid response to rapid forcings. In particular, regions near the ice margin have responded within decades. However, major changes of central regions of the ice sheet are thought to require centuries to millennia. The paleoclimatic record does not yet strongly constrain how rapidly a major shrinkage or nearly complete loss of the ice sheet could occur. The evidence suggests nearly total ice-sheet loss may result from warming of more than a few degrees above mean 20th century values, but this threshold is poorly defined (perhaps as little as 2 °C or more than 7 °C). Paleoclimatic records are sufficiently sketchy that the ice sheet may have grown temporarily in response to warming, or changes may have been induced by factors other than temperature, without having been recorded.

  3. Evaluation of the Monroe Slurry Maker.

    DOT National Transportation Integrated Search

    2009-05-01

    In early February, 2009, the Maine Department of Transportation (MaineDOT) installed a Monroe Slurry : Maker on one of its 2009 Volvo Wheelers (see Photos 1 and 2). This truck was equipped with a : Henderson Utility Body. An 18 gallon per minute spoo...

  4. Experimental and numerical studies on laser-based powder deposition of slurry erosion resistant materials

    NASA Astrophysics Data System (ADS)

    Balu, Prabu

    Slurry erosion (the removal of material caused by the randomly moving high velocity liquid-solid particle mixture) is a serious issue in crude oil drilling, mining, turbines, rocket nozzles, pumps, and boiler tubes that causes excessive downtime and high operating costs as a result of premature part failure. The goal of this research is to enhance the service life of high-value components subjected to slurry erosion by utilizing the concept of functionally graded metal-ceramic composite material (FGMCCM) in which the favorable properties of metal (toughness, ductility, etc.) and ceramic (hardness) are tailored smoothly to improve erosion resistance. Among the potential manufacturing processes, such as the laser-based powder deposition (LBPD), the plasma transferred arc (PTA), and the thermal spray the LBPD process offers good composition and microstructure control with a high deposition rate in producing the FGMCCM. This research focuses on the development of nickel-tungsten carbide (Ni-WC) based FGMCCM using the LBPD process for applications the above mentioned. The LBPD of Ni-WC involves the introduction of Ni and WC powder particle by an inert gas into the laser-formed molten pool at the substrate via nozzles. The LBPD of Ni-WC includes complex multi-physical interactions between the laser beam, Ni-WC powder, substrate, and carrier and shielding gases that are governed by a number of process variables such as laser power, scanning speed, and powder flow rate. In order to develop the best Ni-WC based slurry erosion resistant material using the LBPD process, the following challenges associated with the fabrication and the performance evaluation need to be addressed: 1) flow behavior of the Ni-WC powder and its interaction with the laser, 2) the effect of the process variables, the material compositions, and the thermo-physical properties on thermal cycles, temperature gradient, cooling rate, and residual stress formation within the material and the subsequent

  5. Ice formation in isolated human hepatocytes and human liver tissue.

    PubMed

    Bischof, J C; Ryan, C M; Tompkins, R G; Yarmush, M L; Toner, M

    1997-01-01

    Cryopreservation of isolated cells and tissue slices of human liver is required to furnish extracorporeal bioartificial liver devices with a ready supply of hepatocytes, and to create in vitro drug metabolism and toxicity models. Although both the bioartificial liver and many current biotoxicity models are based on reconstructing organ functions from single isolated hepatocytes, tissue slices offer an in vitro system that may more closely resemble the in vivo situation of the cells because of cell-cell and cell-extracellular matrix interactions. However, successful cryopreservation of both cellular and tissue level systems requires an increased understanding of the fundamental mechanisms involved in the response of the liver and its cells to freezing stress. This study investigates the biophysical mechanisms of water transport and intracellular ice formation during freezing in both isolated human hepatocytes and whole liver tissue. The effects of cooling rate on individual cells were measured using a cryomicroscope. Biophysical parameters governing water transport (Lpg = 2.8 microns/min-atm and ELp = 79 kcal/mole) and intracellular heterogeneous ice nucleation (omega het = 1.08 x 10(9) m-2s-1 and kappa het = 1.04 x 10(9) K5) were determined. These parameters were then incorporated into a theoretical Krogh cylinder model developed to simulate water transport and ice formation in intact liver tissue. Model simulations indicated that the cellular compartment of the Krogh model maintained more water than isolated cells under the same freezing conditions. As a result, intracellular ice nucleation occurred at lower cooling rates in the Krogh model than in isolated cells. Furthermore, very rapid cooling rates (1000 degrees C/min) showed a depression of heterogeneous nucleation and a shift toward homogeneous nucleation. The results of this study are in qualitative agreement with the findings of a previous experimental study of the response to freezing of intact human liver.

  6. Development of High-Temperature Transport Technologies of Molten Salt Slurry in Pyrometallurgical Reprocessing

    NASA Astrophysics Data System (ADS)

    Hijikata, Takatoshi; Koyama, Tadafumi

    Pyrometallurgical-reprocessing is one of the most promising technologies for advanced fuel cycle with favorable economic potential and intrinsic proliferation resistance. The development of transport technology for molten salt is a key issue in the industrialization of pyro-reprocessing. As for pure molten LiCl-KCl eutectic salt at approximately 773 K, we have already reported the successful results of transport using gravity and a centrifugal pump. However, molten salt in an electrorefiner mixes with insoluble fines when spent fuel is dissolved in porous anode basket. The insoluble consists of noble metal fission products, such as Pd, Ru, Mo, and Zr. There have been very few transport studies of a molten salt slurry (metal fines-molten salt mixture). Hence, transport experiments on a molten salt slurry were carried out to investigate the behavior of the slurry in a tube. The apparatus used in the transport experiments on the molten salt slurry consisted of a supply tank, a 10° inclined transport tube (10 mm inner diameter), a valve, a filter, and a recovery tank. Stainless steel (SS) fines with diameters from 53 to 415 μm were used. To disperse these fines homogenously, the molten salt and fines were stirred in the supply tank by an impeller at speeds from 1200 to 2100 rpm. The molten salt slurry containing 0.04 to 0.4 vol.% SS fines was transported from the supply tank to the recovery tank through the transportation tube. In the recovery tank, the fines were separated from the molten salt by the filter to measure the transport behavior of molten salt and SS fines. When the velocity of the slurry was 0.02 m/s, only 1% of the fines were transported to the recovery tank. On the other hand, most of the fines were transported when the velocity of the slurry was more than 0.8 m/s. Consequently, the molten salt slurry can be transported when the velocity is more than 0.8 m/s.

  7. The role of heterotrophic microorganism Galactomyces sp. Z3 in improving pig slurry bioleaching.

    PubMed

    Zhou, Jun; Zheng, Guanyu; Zhou, Lixiang; Liu, Fenwu; Zheng, Chaocheng; Cui, Chunhong

    2013-01-01

    The feasibility of removing heavy metals and eliminating pathogens from pig slurry through bioleaching involving the fungus Galactomyces sp. Z3 and two acidophilic thiobacillus (A. ferrooxidans LX5 and A. thiooxidans TS6) was investigated. It was found that the isolated pig slurry dissolved organic matter (DOM) degrader Z3 was identified as Galactomyces sp. Z3, which could grow well at pH 2.5-7 and degrade pig slurry DOM from 1973 to 942 mg/l within 48 h. During the successive multi-batch bioleaching systems, the co-inoculation of pig slurry degrader Galactomyces sp. Z3 and the two Acidithiobacillus species could improve pig slurry bioleaching efficiency compared to the single system without Galactomyces sp. Z3. The removal efficiency of Zn and Cu exceeded 94% and 85%, respectively. In addition, the elimination efficiencies of pathogens, including both total coliform and faecal coliform counts, exceeded 99% after bioleaching treatment. However, the counts of Galactomyces sp. Z3 decreased with the fall of pH and did not restore to the initial level during successive multi-batch bioleaching systems, and it is necessary to re-inoculate Galactomyces sp. Z3 cells into the bioleaching system to maintain its role in degrading pig slurry DOM. Therefore, a bioleaching technique involving both Galactomyces sp. Z3 and Acidithiobacillus species is an efficient method for removing heavy metals and eliminating pathogens from pig slurry.

  8. The Effect of Volcanic Ash Composition on Ice Nucleation Affinity

    NASA Astrophysics Data System (ADS)

    Genareau, K. D.; Cloer, S.; Primm, K.; Woods, T.; Tolbert, M. A.

    2017-12-01

    Understanding the role that volcanic ash plays in ice nucleation is important for knowledge of lightning generation in both volcanic plumes and in clouds developing downwind from active volcanoes. Volcanic ash has long been suggested to influence heterogeneous ice nucleation following explosive eruptions, but determining precisely how composition and mineralogy affects ice nucleation affinity (INA) is poorly constrained. For the study presented here, volcanic ash samples with different compositions and mineral/glass contents were tested in both the deposition and immersion modes, following the methods presented in Schill et al. (2015). Bulk composition was determined with X-ray fluorescence (XRF), grain size distribution was determined with laser diffraction particle size analysis (LDPSA), and mineralogy was determined with X-ray diffraction (XRD) and scanning electron microscopy (SEM). Results of the deposition-mode experiments reveal that there is no relationship between ice saturation ratios (Sice) and either mineralogy or bulk ash composition, as all samples have similar Sice ratios. In the immersion-mode experiments, frozen fractions were determined from -20 °C to -50 °C using three different amounts of ash (0.5, 1.0, and 2.0 wt% of slurry). Results from the immersion freezing reveal that the rhyolitic samples (73 wt% SiO2) nucleate ice at higher temperatures compared to the basaltic samples (49 wt% SiO2). There is no observed correlation between frozen fractions and mineral content of ash samples, but the two most efficient ice nuclei are rhyolites that contain the greatest proportion of amorphous glass (> 90 %), and are enriched in K2O relative to transition metals (MnO and TiO2), the latter of which show a negative correlation with frozen fraction. Higher ash abundance in water droplets increases the frozen fraction at all temperatures, indicating that ash amount plays the biggest role in ice nucleation. If volcanic ash can reach sufficient abundance (

  9. Defining the upper viscosity limit for mineral slurries used in drilled shaft construction.

    DOT National Transportation Integrated Search

    2014-02-01

    Drilled shaft construction often requires the use of drill slurry to maintain borehole stability during : excavation and concreting. Florida Department of Transportation (FDOT) specifications require that the : mineral slurry used for all primary str...

  10. The Impact of Moisture Intrusions from Lower Latitudes on Arctic Net Surface Radiative Fluxes and Sea Ice Growth in Fall and Winter

    NASA Astrophysics Data System (ADS)

    Hegyi, B. M.; Taylor, P. C.

    2017-12-01

    The fall and winter seasons mark an important period in the evolution of Arctic sea ice, where energy is transferred away from the surface to facilitate the cooling of the surface and the growth of Arctic sea ice extent and thickness. Climatologically, these seasons are characterized by distinct periods of increased and reduced surface cooling and sea ice growth. Periods of reduced sea ice growth and surface cooling are associated with cloudy conditions and the transport of warm and moist air from lower latitudes, termed moisture intrusions. In the research presented, we explore the regional and Arctic-wide impact of moisture intrusions on the surface net radiative fluxes and sea ice growth for each fall and winter season from 2000/01-2015/16, utilizing MERRA2 reanalysis data, PIOMAS sea ice thickness data, and daily CERES radiative flux data. Consistent with previous studies, we find that positive anomalies in downwelling longwave surface flux are associated with increased temperature and water vapor content in the atmospheric column contained within the moisture intrusions. Interestingly, there are periods of increased downwelling LW flux anomalies that persist for one week or longer (i.e. longer than synoptic timescales) that are associated with persistent poleward flux of warm, moist air from lower latitudes. These persistent anomalies significantly reduce the regional growth of Arctic sea ice, and may in part explain the interannual variability of fall and winter Arctic sea ice growth.

  11. Dynamic Tensile Strength of Low Temperature Ice and Kuiper Belt Size Distributions

    NASA Astrophysics Data System (ADS)

    Ahrens, Thomas J.; Fat'yanov, O. V.; Engelhardt, H.; Fraser, W. C.

    2009-09-01

    We model mutual gravitationally driven impact interactions in a nearly gas-free environment of the Kuiper belt (KB) and use low-temperature (< 100 K) ice dynamic strength dependent collisional out-come (accretion vs. erosion and fragmentation) models. These lead to theoretically predictable distributions of object number density, vs. mass distributions. These derived mass distributions are comparable to the now rapidly growing KB survey data. Tensional failure of single and polycrystalline ice in the temperature range from 263 to 128 K was measured for high strain rate, c.a. 104 s-1, dynamic loading conditions. Experiments, similar to Lange and Ahrens(1991)(LA), were conducted using a gas gun launched Lexan projectile. The liquid nitrogen cooled ice target approaching KB-like temperatures was partially confined, rather than using the LA confined geometry. Another set of experiments used a drop tube projectile launcher within the 263 K Caltech Ice Laboratory and at 163 K in a liquid nitrogen cooled chamber. New experiments give tensile strengths of 7.6±1.5 MPa at 263 K and 9.1±1.5 MPa at 163 K for unconfined, free of visual initial defects and measurable imperfections ice samples. The new strengths are lower than the earlier LA data ( 17 MPa). The major differences arise from ice target assembly. LA used polycrystalline ice samples confined in annular stainless steel target rings. New measurements were partially confined, in not initially contacting concentric target rings. Later shots used unconfined configurations with ice pellets affixed to aluminum foil. Circumferential confinement is known to increase the material damage threshold upon both compression and tensile loading. Previous confinement in LA is the main cause of the above discrepancy. Present tensile strengths are only a few times higher than 0.7 - 3.0 MPa summarized in Petrovic (2003) for quasistatic tension at 10-7 to 10-3 s-1 strain rate.

  12. Kinetics of biotransformation of chlorpyrifos in aqueous and soil slurry environments.

    PubMed

    Tiwari, Manoj K; Guha, Saumyen

    2014-03-15

    The attenuation of chlorpyrifos (CPF) by the enriched indigenous soil microorganism was studied in 15 d aerobic and 60 d anaerobic batch experiments in aqueous and soil slurry (1:3 w/w) media. At the end of the batch experiments, 2.78 ± 0.11 μM of CPF was degraded by 82% in aerobic and 66% in anaerobic aqueous environments, while 12.4 ± 0.5 μM of CPF was degraded by 48% in aerobic and 31% in anaerobic soil slurries. The reduced degradation in the soil slurries was due to the significantly (2-10 times) slower rate of degradation of soil phase CPF compared with its degradation rate in water. The pathways of degradation of CPF were identified, including a partial anaerobic degradation pathway that is constructed for the first time. The simulation of the various conversions in the degradation pathways using first order kinetics was used to analyze relative persistence of metabolites. The common metabolite 3,5,6-trichloro-2-pyridinol (TCP) accumulated (increased monotonically during the period of experiments) in aerobic soil slurry and in anaerobic aqueous as well as soil slurry systems but did not accumulate in aerobic aqueous system. The most toxic compound in the pathway, chlorpyrifos oxon (CPFO) was not detected in anaerobic environment. In aerobic environment, CPFO was short lived in aqueous medium, but accumulated slowly in the soils. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Ice Melt, Sea Level Rise and Superstorms: Evidence from Paleoclimate Data, Climate Modeling, and Modern Observations that 2C Global Warming Could Be Dangerous

    NASA Technical Reports Server (NTRS)

    Hansen, J.; Sato, Makiko; Hearty, Paul; Ruedy, Reto; Kelley, Maxwell; Masson-Delmotte, Valerie; Russell, Gary; Tselioudis, George; Cao, Junji; Rignot, Eric; hide

    2016-01-01

    We use numerical climate simulations, paleoclimate data, and modern observations to study the effect of growing ice melt from Antarctica and Greenland. Meltwater tends to stabilize the ocean column, inducing amplifying feedbacks that increase subsurface ocean warming and ice shelf melting. Cold meltwater and induced dynamical effects cause ocean surface cooling in the Southern Ocean and North Atlantic, thus increasing Earth's energy imbalance and heat flux into most of the global ocean's surface. Southern Ocean surface cooling, while lower latitudes are warming, increases precipitation on the Southern Ocean, increasing ocean stratification, slowing deepwater formation, and increasing ice sheet mass loss. These feedbacks make ice sheets in contact with the ocean vulnerable to accelerating disintegration. We hypothesize that ice mass loss from the most vulnerable ice, sufficient to raise sea level several meters, is better approximated as exponential than by a more linear response. Doubling times of 10, 20 or 40 years yield multi-meter sea level rise in about 50, 100 or 200 years. Recent ice melt doubling times are near the lower end of the 10-40-year range, but the record is too short to confirm the nature of the response. The feedbacks, including subsurface ocean warming, help explain paleoclimate data and point to a dominant Southern Ocean role in controlling atmospheric CO2, which in turn exercised tight control on global temperature and sea level. The millennial (500-2000-year) timescale of deep-ocean ventilation affects the timescale for natural CO2 change and thus the timescale for paleo-global climate, ice sheet, and sea level changes, but this paleo-millennial timescale should not be misinterpreted as the timescale for ice sheet response to a rapid, large, human-made climate forcing. These climate feedbacks aid interpretation of events late in the prior interglacial, when sea level rose to C6-9m with evidence of extreme storms while Earth was less than 1 C

  14. Meteorological conditions in a thinner Arctic sea ice regime from winter to summer during the Norwegian Young Sea Ice expedition (N-ICE2015)

    NASA Astrophysics Data System (ADS)

    Cohen, Lana; Hudson, Stephen R.; Walden, Von P.; Graham, Robert M.; Granskog, Mats A.

    2017-07-01

    Atmospheric measurements were made over Arctic sea ice north of Svalbard from winter to early summer (January-June) 2015 during the Norwegian Young Sea Ice (N-ICE2015) expedition. These measurements, which are available publicly, represent a comprehensive meteorological data set covering the seasonal transition in the Arctic Basin over the new, thinner sea ice regime. Winter was characterized by a succession of storms that produced short-lived (less than 48 h) temperature increases of 20 to 30 K at the surface. These storms were driven by the hemispheric scale circulation pattern with a large meridional component of the polar jet stream steering North Atlantic storms into the high Arctic. Nonstorm periods during winter were characterized by strong surface temperature inversions due to strong radiative cooling ("radiatively clear state"). The strength and depth of these inversions were similar to those during the Surface Heat Budget of the Arctic Ocean (SHEBA) campaign. In contrast, atmospheric profiles during the "opaquely cloudy state" were different to those from SHEBA due to differences in the synoptic conditions and location within the ice pack. Storm events observed during spring/summer were the result of synoptic systems located in the Barents Sea and the Arctic Basin rather than passing directly over N-ICE2015. These synoptic systems were driven by a large-scale circulation pattern typical of recent years, with an Arctic Dipole pattern developing during June. Surface temperatures became near-constant 0°C on 1 June marking the beginning of summer. Atmospheric profiles during the spring and early summer show persistent lifted temperature and moisture inversions that are indicative of clouds and cloud processes.

  15. Recent Antarctic Peninsula warming relative to Holocene climate and ice-shelf history.

    PubMed

    Mulvaney, Robert; Abram, Nerilie J; Hindmarsh, Richard C A; Arrowsmith, Carol; Fleet, Louise; Triest, Jack; Sime, Louise C; Alemany, Olivier; Foord, Susan

    2012-09-06

    Rapid warming over the past 50 years on the Antarctic Peninsula is associated with the collapse of a number of ice shelves and accelerating glacier mass loss. In contrast, warming has been comparatively modest over West Antarctica and significant changes have not been observed over most of East Antarctica, suggesting that the ice-core palaeoclimate records available from these areas may not be representative of the climate history of the Antarctic Peninsula. Here we show that the Antarctic Peninsula experienced an early-Holocene warm period followed by stable temperatures, from about 9,200 to 2,500 years ago, that were similar to modern-day levels. Our temperature estimates are based on an ice-core record of deuterium variations from James Ross Island, off the northeastern tip of the Antarctic Peninsula. We find that the late-Holocene development of ice shelves near James Ross Island was coincident with pronounced cooling from 2,500 to 600 years ago. This cooling was part of a millennial-scale climate excursion with opposing anomalies on the eastern and western sides of the Antarctic Peninsula. Although warming of the northeastern Antarctic Peninsula began around 600 years ago, the high rate of warming over the past century is unusual (but not unprecedented) in the context of natural climate variability over the past two millennia. The connection shown here between past temperature and ice-shelf stability suggests that warming for several centuries rendered ice shelves on the northeastern Antarctic Peninsula vulnerable to collapse. Continued warming to temperatures that now exceed the stable conditions of most of the Holocene epoch is likely to cause ice-shelf instability to encroach farther southward along the Antarctic Peninsula.

  16. Enhanced acetone-butanol-ethanol production from lignocellulosic hydrolysates by using starchy slurry as supplement.

    PubMed

    Yang, Ming; Kuittinen, Suvi; Vepsäläinen, Jouko; Zhang, Junhua; Pappinen, Ari

    2017-11-01

    This study aims to improve acetone-butanol-ethanol production from the hydrolysates of lignocellulosic material by supplementing starchy slurry as nutrients. In the fermentations of glucose, xylose and the hydrolysates of Salix schwerinii, the normal supplements such as buffer, minerals, and vitamins solutions were replaced with the barley starchy slurry. The ABE production was increased from 0.86 to 14.7g/L by supplementation of starchy slurry in the fermentation of xylose and the utilization of xylose increased from 29% to 81%. In the fermentations of hemicellulosic and enzymatic hydrolysates from S. schwerinii, the ABE yields were increased from 0 and 0.26 to 0.35 and 0.33g/g sugars, respectively. The results suggested that the starchy slurry supplied the essential nutrients for ABE fermentation. The starchy slurry as supplement could improve the ABE production from both hemicellulosic and cellulosic hydrolysate of lignocelluloses, and it is particularly helpful for enhancing the utilization of xylose from hemicelluloses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Spontaneous abrupt climate change due to an atmospheric blocking-sea-ice-ocean feedback in an unforced climate model simulation.

    PubMed

    Drijfhout, Sybren; Gleeson, Emily; Dijkstra, Henk A; Livina, Valerie

    2013-12-03

    Abrupt climate change is abundant in geological records, but climate models rarely have been able to simulate such events in response to realistic forcing. Here we report on a spontaneous abrupt cooling event, lasting for more than a century, with a temperature anomaly similar to that of the Little Ice Age. The event was simulated in the preindustrial control run of a high-resolution climate model, without imposing external perturbations. Initial cooling started with a period of enhanced atmospheric blocking over the eastern subpolar gyre. In response, a southward progression of the sea-ice margin occurred, and the sea-level pressure anomaly was locked to the sea-ice margin through thermal forcing. The cold-core high steered more cold air to the area, reinforcing the sea-ice concentration anomaly east of Greenland. The sea-ice surplus was carried southward by ocean currents around the tip of Greenland. South of 70 °N, sea ice already started melting and the associated freshwater anomaly was carried to the Labrador Sea, shutting off deep convection. There, surface waters were exposed longer to atmospheric cooling and sea surface temperature dropped, causing an even larger thermally forced high above the Labrador Sea. In consequence, east of Greenland, anomalous winds changed from north to south, terminating the event with similar abruptness to its onset. Our results imply that only climate models that possess sufficient resolution to correctly represent atmospheric blocking, in combination with a sensitive sea-ice model, are able to simulate this kind of abrupt climate change.

  18. Research on numerical simulation and protection of transient process in long-distance slurry transportation pipelines

    NASA Astrophysics Data System (ADS)

    Lan, G.; Jiang, J.; Li, D. D.; Yi, W. S.; Zhao, Z.; Nie, L. N.

    2013-12-01

    The calculation of water-hammer pressure phenomenon of single-phase liquid is already more mature for a pipeline of uniform characteristics, but less research has addressed the calculation of slurry water hammer pressure in complex pipelines with slurry flows carrying solid particles. In this paper, based on the developments of slurry pipelines at home and abroad, the fundamental principle and method of numerical simulation of transient processes are presented, and several boundary conditions are given. Through the numerical simulation and analysis of transient processes of a practical engineering of long-distance slurry transportation pipeline system, effective protection measures and operating suggestions are presented. A model for calculating the water impact of solid and fluid phases is established based on a practical engineering of long-distance slurry pipeline transportation system. After performing a numerical simulation of the transient process, analyzing and comparing the results, effective protection measures and operating advice are recommended, which has guiding significance to the design and operating management of practical engineering of longdistance slurry pipeline transportation system.

  19. Turbulent convection driven by internal radiative heating of melt ponds on sea ice

    NASA Astrophysics Data System (ADS)

    Wells, Andrew; Langton, Tom; Rees Jones, David; Moon, Woosok

    2016-11-01

    The melting of Arctic sea ice is strongly influenced by heat transfer through melt ponds which form on the ice surface. Melt ponds are internally heated by the absorption of incoming radiation and cooled by surface heat fluxes, resulting in vigorous buoyancy-driven convection in the pond interior. Motivated by this setting, we conduct two-dimensional direct-numerical simulations of the turbulent convective flow of a Boussinesq fluid between two horizontal boundaries, with internal heating predicted from a two-stream radiation model. A linearised thermal boundary condition describes heat exchange with the overlying atmosphere, whilst the lower boundary is isothermal. Vertically asymmetric convective flow modifies the upper surface temperature, and hence controls the partitioning of the incoming heat flux between emission at the upper and lower boundaries. We determine how the downward heat flux into the ice varies with a Rayleigh number based on the internal heating rate, the flux ratio of background surface cooling compared to internal heating, and a Biot number characterising the sensitivity of surface fluxes to surface temperature. Thus we elucidate the physical controls on heat transfer through Arctic melt ponds which determine the fate of sea ice in the summer.

  20. Holocene temperature history at the west Greenland Ice Sheet margin reconstructed from lake sediments

    NASA Astrophysics Data System (ADS)

    Axford, Y.; Losee, S.; Briner, J. P.; Francis, D.; Langdon, P. G.; Walker, I.

    2011-12-01

    Paleoclimate proxy data can help reduce uncertainties regarding how the Greenland Ice Sheet, and thus global sea level, will respond to future climate change. Studies of terrestrial deposits along Greenland's margins offer opportunities to reconstruct both past temperature changes and the associated changes in Greenland Ice Sheet extent, thus empirically characterizing the ice sheet's response to temperature change. Here we present Holocene paleoclimate reconstructions developed from sediment records of five lakes along the western ice sheet margin, near Jakobshavn Isbræ and Disko Bugt. Insect (Chironomidae, or non-biting midge) remains from North Lake provide quantitative estimates of summer temperatures over the past ca. 7500 years at multi-centennial resolution, and changes in sediment composition at all five lakes offer evidence for glacier fluctuations, changes in lake productivity, and other environmental changes throughout the Holocene. Aims of this study include quantification of warmth in the early to mid Holocene, when summer solar insolation forcing exceeded present-day values at northern latitudes and the local Greenland Ice Sheet margin receded inboard of its present position, and the magnitude of subsequent Neoglacial and Little Ice Age cooling that drove ice sheet expansion. We find that the Jakobshavn Isbrae region experienced the warmest temperatures of the Holocene (with summers 2 to 3.5 degrees C warmer than present) between ~6000 and 4000 years ago. Neoglacial cooling began rather abruptly ~4000 years ago and intensified 3000 years ago. Our proxy data suggest that the coldest summers of the Holocene occurred during the 18th and 19th centuries in the Jakobshavn region. These results agree well with previous glacial geologic studies reconstructing local ice margin positions through the Holocene. Such reconstructions of paleoclimate and past ice sheet extent provide targets for testing and improving ice sheet models.

  1. Startup of air-cooled condensers and dry cooling towers at low temperatures of the cooling air

    NASA Astrophysics Data System (ADS)

    Milman, O. O.; Ptakhin, A. V.; Kondratev, A. V.; Shifrin, B. A.; Yankov, G. G.

    2016-05-01

    The problems of startup and performance of air-cooled condensers (ACC) and dry cooling towers (DCT) at low cooling air temperatures are considered. Effects of the startup of the ACC at sub-zero temperatures are described. Different options of the ACC heating up are analyzed, and examples of existing technologies are presented (electric heating, heating up with hot air or steam, and internal and external heating). The use of additional heat exchanging sections, steam tracers, in the DCT design is described. The need for high power in cases of electric heating and heating up with hot air is noted. An experimental stand for research and testing of the ACC startup at low temperatures is described. The design of the three-pass ACC unit is given, and its advantages over classical single-pass design at low temperatures are listed. The formation of ice plugs inside the heat exchanging tubes during the start-up of ACC and DCT at low cooling air temperatures is analyzed. Experimental data on the effect of the steam flow rate, steam nozzle distance from the heat-exchange surface, and their orientation in space on the metal temperature were collected, and test results are analyzed. It is noted that the surface temperature at the end of the heat up is almost independent from its initial temperature. Recommendations for the safe start-up of ACCs and DCTs are given. The heating flow necessary to sufficiently heat up heat-exchange surfaces of ACCs and DCTs for the safe startup is estimated. The technology and the process of the heat up of the ACC with the heating steam external supply are described by the example of the startup of the full-scale section of the ACC at sub-zero temperatures of the cooling air, and the advantages of the proposed start-up technology are confirmed.

  2. connecting the dots between Greenland ice sheet surface melting and ice flow dynamics (Invited)

    NASA Astrophysics Data System (ADS)

    Box, J. E.; Colgan, W. T.; Fettweis, X.; Phillips, T. P.; Stober, M.

    2013-12-01

    . Because water is 'heavier' than ice, water-filled cracks have unlimited capacity to hydraulically ';jack' open fractures, penetrating, fracturing and disaggregating a solid ice body. This process promotes iceberg calving at more than 150, 1km wide marine terminating Greenland glacier fronts. Resulting from a rising trend of surface melting and sea water temperature, meltwater ejection at the underwater front of marine glaciers drives a an increasing turbulent heat exchange between the glacier front and relatively warm sea water melting it faster. Underwater melting promotes an undercutting of the glacier front leading to ice berg calving. Calving through hydrofracture or marine undercutting provide a direct and immediate ice flow speed response mechanism for surface meltwater production. Ice flow speed reacts because calving reduces flow resistance. The above physical processes interact. Cooling shuts these processes down. Negative feedbacks dampen the warming impulse. Live 21 June, 2013 is a new Danish Web site1 that exploits total mass balance rate of decline as a function of albedo to predict GRACE mass rate of change with 80% explained variance. While surface mass balance explains the mass rate of change slightly higher, surface albedo is an observable quantity as is gravity change.

  3. Effect of organized assemblies. Part 4. Formulation of highly concentrated coal-water slurry using a natural surfactant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Debadutta Das; Sagarika Panigrahi; Pramila K. Misra

    2008-05-15

    Coal-water slurry has received considerable research nowadays due to its ability in substituting energy sources. The present work reports the formulation of highly concentrated coal-water slurry using a natural occurring surface active compound, saponin, extracted from the fruits of plant Sapindous laurifolia. The isolation of saponin from the plant and its surface activity has been discussed. The rheological characteristics of coal-water slurry have been investigated as a function of coal loading, ash content of coal, pH, temperature, and amount of saponin. The viscosity of the slurry and zeta potential are substantially decreased with concomitant shift of the isoelectric point ofmore » coal on adsorption of saponin to it. In the presence of 0.8% of saponin, coal-water slurry containing 64% weight fraction of coal could be achieved. The slurry is stable for a period of as long as 1 month in contrast to 4-5 h in the case of bare coal-water slurry. The results confirm the use of saponin as a suitable additive for coal-water slurry similar to the commercially available additive such as sodium dodecyl sulfate. Basing on the effect of pH on the zeta potential and viscosity of slurry, a suitable mechanism for saponin-coal interaction and orientation of saponin at the coal-water interface has been proposed. 47 refs., 12 figs., 5 tabs.« less

  4. Reductive Dehalogenation of a Nitrogen Heterocyclic Herbicide in Anoxic Aquifer Slurries

    PubMed Central

    Adrian, Neal R.; Suflita, Joseph M.

    1990-01-01

    We studied the metabolic fate of bromacil in anaerobic aquifer slurries held under denitrifying, sulfate-reducing, or methanogenic conditions. Liquid chromatograhy-mass spectrometry of the slurries confirmed that bromacil was debrominated under methanogenic conditions but was not degraded under the other incubation conditions. This finding extends the range of aryl reductive dehalogenation reactions to include nitrogen heterocyclic compounds. PMID:16348103

  5. Update on the NASA Glenn Propulsion Systems Lab Ice Crystal Cloud Characterization (2015)

    NASA Technical Reports Server (NTRS)

    Van Zante, Judith F.; Bencic, Timothy J.; Ratvasky, Thomas P.

    2016-01-01

    NASA Glenn's Propulsion Systems Lab (PSL), an altitude engine test facility, was outfitted with a spray system to generate ice crystals. The first ice crystal characterization test occurred in 2012. At PSL, turbine engines and driven rigs can experience ice crystal icing at flight altitudes, temperatures and Mach numbers. To support these tests, four ice crystal characterizations have been conducted in two different facility configurations. In addition, super-cooled liquid and mixed phase clouds have also been generated. This paper will discuss the recent learning from the previous two calibrations. It will describe some of the 12-parameter calibration space, and how those parameters interact with each other, the instrumentation used to characterize the cloud and present a sample of the cloud characterization results.

  6. Replacing process water and nitrogen sources with biogas slurry during cellulosic ethanol production.

    PubMed

    You, Yang; Wu, Bo; Yang, Yi-Wei; Wang, Yan-Wei; Liu, Song; Zhu, Qi-Li; Qin, Han; Tan, Fu-Rong; Ruan, Zhi-Yong; Ma, Ke-Dong; Dai, Li-Chun; Zhang, Min; Hu, Guo-Quan; He, Ming-Xiong

    2017-01-01

    Environmental issues, such as the fossil energy crisis, have resulted in increased public attention to use bioethanol as an alternative renewable energy. For ethanol production, water and nutrient consumption has become increasingly important factors being considered by the bioethanol industry as reducing the consumption of these resources would decrease the overall cost of ethanol production. Biogas slurry contains not only large amounts of wastewater, but also the nutrients required for microbial growth, e.g., nitrogen, ammonia, phosphate, and potassium. Therefore, biogas slurry is an attractive potential resource for bioethanol production that could serve as an alternative to process water and nitrogen sources. In this study, we propose a method that replaces the process water and nitrogen sources needed for cellulosic ethanol production by Zymomonas mobilis with biogas slurry. To test the efficacy of these methods, corn straw degradation following pretreatment with diluted NaOH and enzymatic hydrolysis in the absence of fresh water was evaluated. Then, ethanol fermentation using the ethanologenic bacterial strain Z. mobilis ZMT2 was conducted without supplementing with additional nitrogen sources. After pretreatment with 1.34% NaOH (w/v) diluted in 100% biogas slurry and continuous enzymatic hydrolysis for 144 h, 29.19 g/L glucose and 12.76 g/L xylose were generated from 30 g dry corn straw. The maximum ethanol concentration acquired was 13.75 g/L, which was a yield of 72.63% ethanol from the hydrolysate medium. Nearly 94.87% of the ammonia nitrogen was depleted and no nitrate nitrogen remained after ethanol fermentation. The use of biogas slurry as an alternative to process water and nitrogen sources may decrease the cost of cellulosic ethanol production by 10.0-20.0%. By combining pretreatment with NaOH diluted in biogas slurry, enzymatic hydrolysis, and ethanol fermentation, 56.3 kg of ethanol was produced by Z. mobilis ZMT-2 through fermentation of

  7. The effect on slurry water as a fresh water replacement in concrete properties

    NASA Astrophysics Data System (ADS)

    Kadir, Aeslina Abdul; Shahidan, Shahiron; Hai Yee, Lau; Ikhmal Haqeem Hassan, Mohd; Bakri Abdullah, Mohd Mustafa Al

    2016-06-01

    Concrete is the most widely used engineering material in the world and one of the largest water consuming industries. Consequently, the concrete manufacturer, ready mixed concrete plant is increased dramatically due to high demand from urban development project. At the same time, slurry water was generated and leading to environmental problems. Thus, this paper is to investigate the effect of using slurry water on concrete properties in term of mechanical properties. The basic wastewater characterization was investigated according to USEPA (Method 150.1 & 300.0) while the mechanical property of concrete with slurry water was compared according to ASTM C1602 and BS EN 1008 standards. In this research, the compressive strength, modulus of elasticity and tensile strength were studied. The percentage of wastewater replaced in concrete mixing was ranging from 0% up to 50%. In addition, the resulted also suggested that the concrete with 20% replacement of slurry water was achieved the highest compressive strength and modulus of elasticity compared to other percentages. Moreover, the results also recommended that concrete with slurry water mix have better compressive strength compared to control mix concrete.

  8. Cultivation of microalgae Chlorella zofingiensis on municipal wastewater and biogas slurry towards bioenergy.

    PubMed

    Zhou, Weizheng; Wang, Zhongming; Xu, Jingliang; Ma, Longlong

    2018-05-22

    The high cost of large-scale cultivation of microalgae has limited their industrial application. This study investigated the potential use of mixed biogas slurry and municipal wastewater to cultivate microalgae. Pig biogas slurry as the sole nutrient supplement, was assessed for the cultivation of Chlorella zofingiensis in municipal wastewater. Batch culture of various ratios of pig biogas slurry and municipal wastewater were compared. The characteristics of algal growth and lipid production were analyzed, and the removal rates of nitrogen and phosphate were examined. Results indicate that 8% pig bio-gas slurry in municipal wastewater, had a significant effect on microalgal growth. C. zofingiensis, with 2.5 g L -1 biomass, 93% total nitrogen and 90% total phosphorus removal. Lipid content was improved by 8% compared to BG11 medium. These findings show that mixing pig biogas slurry and municipal wastewater, without additional nutrition sources, allows efficient cultivation of C. zofingiensis. This is of high research and industrial significance, allowing cultivation of C. zofingiensis in mixed waste culture solution without additional nutrition sources. Copyright © 2018. Published by Elsevier B.V.

  9. Nitrogen and phosphorus removal coupled with carbohydrate production by five microalgae cultures cultivated in biogas slurry.

    PubMed

    Tan, Fen; Wang, Zhi; Zhouyang, Siyu; Li, Heng; Xie, Youping; Wang, Yuanpeng; Zheng, Yanmei; Li, Qingbiao

    2016-12-01

    In this study, five microalgae strains were cultured for their ability to survive in biogas slurry, remove nitrogen resources and accumulate carbohydrates. It was proved that five microalgae strains adapted in biogas slurry well without ammonia inhibition. Among them, Chlorella vulgaris ESP-6 showed the best performance on carbohydrate accumulation, giving the highest carbohydrate content of 61.5% in biogas slurry and the highest ammonia removal efficiency and rate of 96.3% and 91.7mg/L/d respectively in biogas slurry with phosphorus and magnesium added. Additionally, the absence of phosphorus and magnesium that can be adverse for biomass accumulation resulted in earlier timing of carbohydrate accumulation and magnesium was firstly recognized and proved as the influence factor for carbohydrate accumulation. Microalgae that cultured in biogas slurry accumulated more carbohydrate in cell, making biogas slurry more suitable medium for the improvement of carbohydrate content, thus can be regarded as a new strategy to accumulate carbohydrate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. NPK NMR Sensor: Online Monitoring of Nitrogen, Phosphorus, and Potassium in Animal Slurry.

    PubMed

    Sørensen, Morten K; Jensen, Ole; Bakharev, Oleg N; Nyord, Tavs; Nielsen, Niels Chr

    2015-07-07

    Knowledge of the actual content of nitrogen, phosphorus, and potassium (NPK) in animal slurry is highly important to optimize crop production and avoid environmental pollution when slurry is spread on agricultural fields. Here, we present a mobile, low-field nuclear magnetic resonance (NMR) sensor suitable for online monitoring of the NPK content in animal slurry as an alternative to crude estimates or tedious nonspecific, off-site laboratory analysis. The sensor is based on (14)N, (17)O, (31)P, and (39)K NMR in a digital NMR instrument equipped with a 1.5 T Halbach magnet for direct detection of ammonium N, total P, and K and indirect evaluation of the organic N content, covering all practical components of NPK in animal slurry. In correlation studies, the obtained NMR measurements show good agreement with reference measurements from commercial laboratories.

  11. Reconstructing lake ice cover in subarctic lakes using a diatom-based inference model

    NASA Astrophysics Data System (ADS)

    Weckström, Jan; Hanhijärvi, Sami; Forsström, Laura; Kuusisto, Esko; Korhola, Atte

    2014-03-01

    A new quantitative diatom-based lake ice cover inference model was developed to reconstruct past ice cover histories and applied to four subarctic lakes. The used ice cover model is based on a calculated melting degree day value of +130 and a freezing degree day value of -30 for each lake. The reconstructed Holocene ice cover duration histories show similar trends to the independently reconstructed regional air temperature history. The ice cover duration was around 7 days shorter than the average ice cover duration during the warmer early Holocene (approximately 10 to 6.5 calibrated kyr B.P.) and around 3-5 days longer during the cool Little Ice Age (approximately 500 to 100 calibrated yr B.P.). Although the recent climate warming is represented by only 2-3 samples in the sediment series, these show a rising trend in the prolonged ice-free periods of up to 2 days. Diatom-based ice cover inference models can provide a powerful tool to reconstruct past ice cover histories in remote and sensitive areas where no measured data are available.

  12. Ice melt, sea level rise and superstorms: evidence from paleoclimate data, climate modeling, and modern observations that 2 °C global warming could be dangerous

    NASA Astrophysics Data System (ADS)

    Hansen, James; Sato, Makiko; Hearty, Paul; Ruedy, Reto; Kelley, Maxwell; Masson-Delmotte, Valerie; Russell, Gary; Tselioudis, George; Cao, Junji; Rignot, Eric; Velicogna, Isabella; Tormey, Blair; Donovan, Bailey; Kandiano, Evgeniya; von Schuckmann, Karina; Kharecha, Pushker; Legrande, Allegra N.; Bauer, Michael; Lo, Kwok-Wai

    2016-03-01

    We use numerical climate simulations, paleoclimate data, and modern observations to study the effect of growing ice melt from Antarctica and Greenland. Meltwater tends to stabilize the ocean column, inducing amplifying feedbacks that increase subsurface ocean warming and ice shelf melting. Cold meltwater and induced dynamical effects cause ocean surface cooling in the Southern Ocean and North Atlantic, thus increasing Earth's energy imbalance and heat flux into most of the global ocean's surface. Southern Ocean surface cooling, while lower latitudes are warming, increases precipitation on the Southern Ocean, increasing ocean stratification, slowing deepwater formation, and increasing ice sheet mass loss. These feedbacks make ice sheets in contact with the ocean vulnerable to accelerating disintegration. We hypothesize that ice mass loss from the most vulnerable ice, sufficient to raise sea level several meters, is better approximated as exponential than by a more linear response. Doubling times of 10, 20 or 40 years yield multi-meter sea level rise in about 50, 100 or 200 years. Recent ice melt doubling times are near the lower end of the 10-40-year range, but the record is too short to confirm the nature of the response. The feedbacks, including subsurface ocean warming, help explain paleoclimate data and point to a dominant Southern Ocean role in controlling atmospheric CO2, which in turn exercised tight control on global temperature and sea level. The millennial (500-2000-year) timescale of deep-ocean ventilation affects the timescale for natural CO2 change and thus the timescale for paleo-global climate, ice sheet, and sea level changes, but this paleo-millennial timescale should not be misinterpreted as the timescale for ice sheet response to a rapid, large, human-made climate forcing. These climate feedbacks aid interpretation of events late in the prior interglacial, when sea level rose to +6-9 m with evidence of extreme storms while Earth was less than 1

  13. Fundamental Ice Crystal Accretion Physics Studies

    NASA Technical Reports Server (NTRS)

    Struk, Peter M.; Broeren, Andy P.; Tsao, Jen-Ching; Vargas, Mario; Wright, William B.; Currie, Tom; Knezevici, Danny; Fuleki, Dan

    2012-01-01

    Due to numerous engine power-loss events associated with high-altitude convective weather, ice accretion within an engine due to ice crystal ingestion is being investigated. The National Aeronautics and Space Administration (NASA) and the National Research Council (NRC) of Canada are starting to examine the physical mechanisms of ice accretion on surfaces exposed to ice-crystal and mixed-phase conditions. In November 2010, two weeks of testing occurred at the NRC Research Altitude Facility utilizing a single wedge-type airfoil designed to facilitate fundamental studies while retaining critical features of a compressor stator blade or guide vane. The airfoil was placed in the NRC cascade wind tunnel for both aerodynamic and icing tests. Aerodynamic testing showed excellent agreement compared with CFD data on the icing pressure surface and allowed calculation of heat transfer coefficients at various airfoil locations. Icing tests were performed at Mach numbers of 0.2 to 0.3, total pressures from 93 to 45 kPa, and total temperatures from 5 to 15 C. Ice and liquid water contents ranged up to 20 and 3 g/m3, respectively. The ice appeared well adhered to the surface in the lowest pressure tests (45 kPa) and, in a particular case, showed continuous leading-edge ice growth to a thickness greater than 15 mm in 3 min. Such widespread deposits were not observed in the highest pressure tests, where the accretions were limited to a small area around the leading edge. The suction surface was typically ice-free in the tests at high pressure, but not at low pressure. The icing behavior at high and low pressure appeared to be correlated with the wet-bulb temperature, which was estimated to be above 0 C in tests at 93 kPa and below 0 C in tests at lower pressure, the latter enhanced by more evaporative cooling of water. The authors believe that the large ice accretions observed in the low pressure tests would undoubtedly cause the aerodynamic performance of a compressor component

  14. Fundamental Ice Crystal Accretion Physics Studies

    NASA Technical Reports Server (NTRS)

    Currie, Tom; Knezevici, Danny; Fuleki, Dan; Struk, Peter M.; Broeren, Andy P.; Tsao, Jen-ching; Vargas, Mario; Wright, William

    2011-01-01

    Due to numerous engine power-loss events associated with high-altitude convective weather, ice accretion within an engine due to ice-crystal ingestion is being investigated. The National Aeronautics and Space Administration (NASA) and the National Research Council (NRC) of Canada are starting to examine the physical mechanisms of ice accretion on surfaces exposed to ice-crystal and mixed-phase conditions. In November 2010, two weeks of testing occurred at the NRC Research Altitude Facility utilizing a single wedge-type airfoil designed to facilitate fundamental studies while retaining critical features of a compressor stator blade or guide vane. The airfoil was placed in the NRC cascade wind tunnel for both aerodynamic and icing tests. Aerodynamic testing showed excellent agreement compared with CFD data on the icing pressure surface and allowed calculation of heat transfer coefficients at various airfoil locations. Icing tests were performed at Mach numbers of 0.2 to 0.3, total pressures from 93 to 45 kPa, and total temperatures from 5 to 15 C. Ice and liquid water contents ranged up to 20 and 3 grams per cubic meter, respectively. The ice appeared well adhered to the surface in the lowest pressure tests (45 kPa) and, in a particular case, showed continuous leading-edge ice growth to a thickness greater than 15 millimeters in 3 minutes. Such widespread deposits were not observed in the highest pressure tests, where the accretions were limited to a small area around the leading edge. The suction surface was typically ice-free in the tests at high pressure, but not at low pressure. The icing behavior at high and low pressure appeared to be correlated with the wet-bulb temperature, which was estimated to be above 0 C in tests at 93 kPa and below 0 C in tests at lower pressure, the latter enhanced by more evaporative cooling of water. The authors believe that the large ice accretions observed in the low pressure tests would undoubtedly cause the aerodynamic

  15. Numerical simulations of icing in turbomachinery

    NASA Astrophysics Data System (ADS)

    Das, Kaushik

    Safety concerns over aircraft icing and the high experimental cost of testing have spurred global interest in numerical simulations of the ice accretion process. Extensive experimental and computational studies have been carried out to understand the icing on external surfaces. No parallel initiatives were reported for icing on engine components. However, the supercooled water droplets in moist atmosphere that are ingested into the engine can impinge on the component surfaces and freeze to form ice deposits. Ice accretion could block the engine passage causing reduced airflow. It raises safety and performance concerns such as mechanical damage from ice shedding as well as slow acceleration leading to compressor stall. The current research aims at developing a computational methodology for prediction of icing phenomena on turbofan compression system. Numerical simulation of ice accretion in aircraft engines is highly challenging because of the complex 3-D unsteady turbomachinery flow and the effects of rotation on droplet trajectories. The aim of the present research focuses on (i) Developing a computational methodology for ice accretion in rotating turbomachinery components; (ii) Investigate the effect of inter-phase heat exchange; (iii) Characterize droplet impingement pattern and ice accretion at different operating conditions. The simulations of droplet trajectories are based on a Eulerian-Lagrangian approach for the continuous and discrete phases. The governing equations are solved in the rotating blade frame of reference. The flow field is computed by solving the 3-D solution of the compressible Reynolds Averaged Navier Stokes (RANS) equations. One-way interaction models simulate the effects of aerodynamic forces and the energy exchange between the flow and the droplets. The methodology is implemented in the cool, TURBODROP and applied to the flow field and droplet trajectories in NASA Roto-67r and NASA-GE E3 booster rotor. The results highlight the variation

  16. Investigation of Condensing Ice Heat Exchangers for MTSA Technology Development

    NASA Technical Reports Server (NTRS)

    Padilla, Sebastian; Powers, Aaron; Ball, Tyler; Iacomini, Christie; Paul, Heather, L.

    2008-01-01

    Metabolic heat regenerated Temperature Swing Adsorption (MTSA) technology is being developed for thermal, carbon dioxide (CO2) and humidity control for a Portable Life Support Subsystem (PLSS). Metabolically-produced CO2 present in the ventilation gas of a PLSS is collected using a CO2selective adsorbent via temperature swing adsorption. The temperature swing is initiated through cooling to well below metabolic temperatures. Cooling is achieved with a sublimation heat exchanger using water or liquid carbon dioxide (LCO2) expanded below sublimation temperature when exposed to low pressure or vacuum. Subsequent super heated vapor, as well as additional coolant, is used to further cool the astronaut. The temperature swing on the adsorbent is then completed by warming the adsorbent with a separate condensing ice heat exchanger (CIHX) using metabolic heat from moist ventilation gas. The condensed humidity in the ventilation gas is recycled at the habitat. The water condensation from the ventilation gas is a significant heat transfer mechanism for the warming of the adsorbent bed because it represents as much as half of the energy potential in the moist ventilation gas. Designing a heat exchanger to efficiently transfer this energy to the adsorbent bed and allow the collection of the water is a challenge since the CIHX will operate in a temperature range from 210K to 280K. The ventilation gas moisture will first freeze and then thaw, sometimes existing in three phases simultaneously. A NASA Small Business Innovative Research (SBIR) Phase 1 contract was performed to investigate condensing and icing as applied to MTSA to enable higher fidelity modeling and assess the impact of geometry variables on CIHX performance for future CIHX design optimization. Specifically, a design tool was created using analytical relations to explore the complex, interdependent design space of a condensing ice heat exchanger. Numerous variables were identified as having nontrivial contributions

  17. The effect of sudden ice sheet melt on ocean circulation and surface climate

    NASA Astrophysics Data System (ADS)

    Ivanovic, R. F.; Gregoire, L. J.; Wickert, A. D.; Valdes, P. J.; Burke, A.

    2017-12-01

    Collapse of ice sheets can cause significant sea-level rise and widespread climate change. Around 14.6 thousand years ago, global mean sea level rose by 15 m in less than 350 years during an event known as Meltwater Pulse 1a. Ice sheet modelling and sea-level fingerprinting has suggested that approximately half of this 50 mm yr-1 sea level rise may have come from a North American ice Saddle Collapse that drained into the Arctic and Atlantic Oceans. However, dating uncertainties make it difficult to determine the sequence of events and their drivers, leaving many fundamental questions. For example, was melting from the northern ice sheets responsible for the Older-Dryas or other global-scale cooling events, or did a contribution from Antarctica counteract the climatic effects? What was the role of the abrupt Bølling Warming? And how were all these signals linked to changes in Atlantic Ocean overturning circulation?To address these questions, we examined the effect of the North American ice Saddle Collapse using a high resolution network drainage model coupled to an atmosphere-ocean-vegetation General Circulation Model. Here, we present the quantitative routing estimates of the consequent meltwater discharge and its impact on climate. We also tested a suite of more idealised meltwater forcing scenarios to examine the global influence of Arctic versus Antarctic ice melt. The results show that 50% of the Saddle Collapse meltwater pulse was routed via the Mackenzie River into the Arctic Ocean, and 50% was discharged directly into the Atlantic/Gulf of Mexico. This meltwater flux, equivalent to a total of 7.3 m of sea-level rise, caused a strong (6 Sv) weakening of Atlantic Meridional Overturning Circulation (AMOC) and widespread Northern Hemisphere cooling of 1-5 °C. The greatest cooling is in the Arctic (5-10 °C in the winter), but there is also significant winter warming over eastern North America (1-3 °C). We propose that this robust submillennial mechanism was

  18. Expanding Antarctic Sea Ice: Anthropogenic or Natural Variability?

    NASA Astrophysics Data System (ADS)

    Bitz, C. M.

    2016-12-01

    Antarctic sea ice extent has increased over the last 36 years according to the satellite record. Concurrent with Antarctic sea-ice expansion has been broad cooling of the Southern Ocean sea-surface temperature. Not only are Southern Ocean sea ice and SST trends at odds with expectations from greenhouse gas-induced warming, the trend patterns are not reproduced in historical simulations with comprehensive global climate models. While a variety of different factors may have contributed to the observed trends in recent decades, we propose that it is atmospheric circulation changes - and the changes in ocean circulation they induce - that have emerged as the most likely cause of the observed Southern Ocean sea ice and SST trends. I will discuss deficiencies in models that could explain their incorrect response. In addition, I will present results from a series of experiments where the Antarctic sea ice and ocean are forced by atmospheric perturbations imposed within a coupled climate model. Figure caption: Linear trends of annual-mean SST (left) and annual-mean sea-ice concentration (right) over 1980-2014. SST is from NOAA's Optimum Interpolation SST dataset (version 2; Reynolds et al. 2002). Sea-ice concentration is from passive microwave observations using the NASA Team algorithm. Only the annual means are shown here for brevity and because the signal to noise is greater than in the seasonal means. Figure from Armour and Bitz (2015).

  19. BINARY: an optical freezing array for assessing temperature and time dependence of heterogeneous ice nucleation

    NASA Astrophysics Data System (ADS)

    Budke, C.; Koop, T.

    2015-02-01

    A new optical freezing array for the study of heterogeneous ice nucleation in microliter-sized droplets is introduced, tested and applied to the study of immersion freezing in aqueous Snomax® suspensions. In the Bielefeld Ice Nucleation ARraY (BINARY) ice nucleation can be studied simultaneously in 36 droplets at temperatures down to -40 °C (233 K) and at cooling rates between 0.1 and 10 K min-1. The droplets are separated from each other in individual compartments, thus preventing a Wegener-Bergeron-Findeisen type water vapor transfer between droplets as well as avoiding the seeding of neighboring droplets by formation and surface growth of frost halos. Analysis of freezing and melting occurs via an automated real-time image analysis of the optical brightness of each individual droplet. As an application ice nucleation in water droplets containing Snomax® at concentrations from 1 ng mL-1 to 1 mg mL-1 was investigated. Using different cooling rates, a small time dependence of ice nucleation induced by two different classes of ice nucleators (INs) contained in Snomax® was detected and the corresponding heterogeneous ice nucleation rate coefficient was quantified. The observed time dependence is smaller than those of other types of INs reported in the literature, suggesting that the BINARY setup is suitable for quantifying time dependence for most other INs of atmospheric interest, making it a useful tool for future investigations.

  20. Initial Results from Radiometer and Polarized Radar-Based Icing Algorithms Compared to In-Situ Data

    NASA Technical Reports Server (NTRS)

    Serke, David; Reehorst, Andrew L.; King, Michael

    2015-01-01

    In early 2015, a field campaign was conducted at the NASA Glenn Research Center in Cleveland, Ohio, USA. The purpose of the campaign is to test several prototype algorithms meant to detect the location and severity of in-flight icing (or icing aloft, as opposed to ground icing) within the terminal airspace. Terminal airspace for this project is currently defined as within 25 kilometers horizontal distance of the terminal, which in this instance is Hopkins International Airport in Cleveland. Two new and improved algorithms that utilize ground-based remote sensing instrumentation have been developed and were operated during the field campaign. The first is the 'NASA Icing Remote Sensing System', or NIRSS. The second algorithm is the 'Radar Icing Algorithm', or RadIA. In addition to these algorithms, which were derived from ground-based remote sensors, in-situ icing measurements of the profiles of super-cooled liquid water (SLW) collected with vibrating wire sondes attached to weather balloons produced a comprehensive database for comparison. Key fields from the SLW-sondes include air temperature, humidity and liquid water content, cataloged by time and 3-D location. This work gives an overview of the NIRSS and RadIA products and results are compared to in-situ SLW-sonde data from one icing case study. The location and quantity of super-cooled liquid as measured by the in-situ probes provide a measure of the utility of these prototype hazard-sensing algorithms.

  1. Dynamics and unsteady morphologies at ice interfaces driven by D2O–H2O exchange

    PubMed Central

    Holmes-Cerfon, Miranda; Kohn, Robert V.

    2017-01-01

    The growth dynamics of D2O ice in liquid H2O in a microfluidic device were investigated between the melting points of D2O ice (3.8 °C) and H2O ice (0 °C). As the temperature was decreased at rates between 0.002 °C/s and 0.1 °C/s, the ice front advanced but retreated immediately upon cessation of cooling, regardless of the temperature. This is a consequence of the competition between diffusion of H2O into the D2O ice, which favors melting of the interface, and the driving force for growth supplied by cooling. Raman microscopy tracked H/D exchange across the solid H2O–solid D2O interface, with diffusion coefficients consistent with transport of intact H2O molecules at the D2O ice interface. At fixed temperatures below 3 °C, the D2O ice front melted continuously, but at temperatures near 0 °C a scalloped interface morphology appeared with convex and concave sections that cycled between growth and retreat. This behavior, not observed for D2O ice in contact with D2O liquid or H2O ice in contact with H2O liquid, reflects a complex set of cooperative phenomena, including H/D exchange across the solid–liquid interface, latent heat exchange, local thermal gradients, and the Gibbs–Thomson effect on the melting points of the convex and concave features. PMID:29042511

  2. A new magnetic compound fluid slurry and its performance in magnetic field-assisted polishing of oxygen-free copper

    NASA Astrophysics Data System (ADS)

    Wang, Youliang; Wu, Yongbo; Guo, Huiru; Fujimoto, Masakazu; Nomura, Mitsuyoshi; Shimada, Kunio

    2015-05-01

    In nano-precision surface finishing of engineering materials using MCF (magnetic compound fluid) slurry, the water-based MCF slurry is preferable from the viewpoint of the environmental issue and the running cost of cleaning workpiece and equipment. However, the uncoated-CIPs (carbonyl-iron-powders) within the conventional MCF slurry have low ability against aqueous corrosion, leading to the performance deterioration and working life shortening of the conventional MCF slurry. This study proposed a new MCF slurry containing ZrO2-coated CIPs instead of the uncoated CIPs. Its performance in the polishing of oxygen-free copper was compared experimentally with that of the conventional one. The results showed that the work-surface finish polished with the new slurry was in the same level as that with the conventional one when the slurry was used soon after prepared, i.e., the settling time was 0 min; however, as the settling time increased the uncoated-CIPs got rusty, leading to a deterioration in the slurry performance. By contrast, no rust was observed on ZrO2-coated CIPs even the settling time reached several days, indicating the employment of ZrO2-coated CIPs prolonged the working-life of the MCF slurry greatly.

  3. Freeforming objects with low-binder slurry

    DOEpatents

    Cesarano, III, Joseph; Calvert, Paul D.

    2000-01-01

    In a rapid prototyping system, a part is formed by depositing a bead of slurry that has a sufficient high concentration of particles to be pseudoplastic and almost no organic binders. After deposition the bead is heated to drive off sufficient liquid to cause the bead to become dilatant.

  4. Effects of total solids concentrations of poultry, cattle, and piggery waste slurries on biogas yield

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Itodo, I.N.; Awulu, J.O.

    1999-12-01

    The effects of total solids concentrations of poultry, cattle and piggery waste slurries on biogas yield was investigated. Twelve laboratory-size anaerobic batch digesters with 25 L volume were constructed and used for the experiments. Three replicates of 5%, 10%, 15%, and 20% TS concentrations of poultry, cattle, and piggery waste slurries were anaerobically digested for a 30-day detention period and gas yield was measured by the method of water displacement. Temperature variation within the digesters was measured with a maximum and minimum thermometer. Anaerobic digestion of the slurries was undertaken in the mesophilic temperature range (20--40 C). The carbon:nitrogen ratiomore » of each of the slurries digested was determined. The carbon content was determined using the wackley-Black method, and nitrogen content was determined by the regular kjeldhal method. The pH was measured weekly during the period of digestion from a digital pH meter. Gas quality (% methane fraction) was also measured weekly from an analyzer. Coefficient of variation was computed to ascertain the status of the digestion process. Analysis of variance was used to determine the significant difference in gas yield at p < 0.05. Duncan's New Multiple Range Test at p < 0.05 was used to analyze the difference in gas yield among the various TS concentrations of the slurries investigated. The results indicate that biogas yield is of the order: 5% TS > 10% TS > 15% TS > 20% TS. This result shows that gas yield increases with decreasing TS concentration of the slurries. The ANOVA showed that the gas yield from the various TS % was significantly different (p < 0.05). DNMRT showed that there was significant difference in gas yield from the slurries and wastetypes investigated. Poultry waste slurries had the greatest gas yield (L CH4/kg TS) as the gas yield from the waste types was of the order: Poultry > Piggery > Cattle. The pH of the slurries was of the range 5.5 to 6.8 (weakly acidic). The C:N of

  5. Comparison of LEWICE and GlennICE in the SLD Regime

    NASA Technical Reports Server (NTRS)

    Wright, William B.; Potapczuk, Mark G.; Levinson, Laurie H.

    2008-01-01

    A research project is underway at the NASA Glenn Research Center (GRC) to produce computer software that can accurately predict ice growth under any meteorological conditions for any aircraft surface. This report will present results from two different computer programs. The first program, LEWICE version 3.2.2, has been reported on previously. The second program is GlennICE version 0.1. An extensive comparison of the results in a quantifiable manner against the database of ice shapes that have been generated in the GRC Icing Research Tunnel (IRT) has also been performed, including additional data taken to extend the database in the Super-cooled Large Drop (SLD) regime. This paper will show the differences in ice shape between LEWICE 3.2.2, GlennICE, and experimental data. This report will also provide a description of both programs. Comparisons are then made to recent additions to the SLD database and selected previous cases. Quantitative comparisons are shown for horn height, horn angle, icing limit, area, and leading edge thickness. The results show that the predicted results for both programs are within the accuracy limits of the experimental data for the majority of cases.

  6. Effect of plastic viscosity and yield value on spray characteristics of magnesium-slurry fuel

    NASA Technical Reports Server (NTRS)

    Prok, George M

    1957-01-01

    Magnesium slurries were sprayed onto a sheet of paper from an air-atomizing injector. Drop sizes and distributions were then determined from photomicrographs. Four different surface-active additives were used in preparing the slurries to give plastic viscosities between 0.22 and 0.51 poise and yield values between 150 and 810 dynes-cm(exp 2). It was found that there was no significant variation in the spray characteristics of these slurries when tested under the same conditions.

  7. Thermodynamical effects accompanied freezing of two water layers separated by sea ice sheet

    NASA Astrophysics Data System (ADS)

    Bogorodsky, Petr; Marchenko, Aleksey

    2014-05-01

    The process of melt pond freezing is very important for generation of sea ice cover thermodynamic and mass balance during winterperiod. However, due to significant difficulties of field measurements the available data of model estimations still have no instrumental confirmation. In May 2009 the authors carried out laboratory experiment on freezing of limited water volume in the University Centre in Svalbard ice tank. In the course of experiment fresh water layer of 27.5 cm thickness at freezing point poured on the 24 cm sea ice layer was cooled during 50 hours at the temperature -10º C and then once again during 60 hours at -20º C. For revealing process typical characteristics the data of continuous measurements of temperature and salinity in different phases were compared with data of numerical computations obtained with thermodynamic model which was formulated in the frames of 1-D equation system (infinite extension of water freezing layer) and adapted to laboratory conditions. The known surprise of the experiment became proximity of calculated and measured estimates of process dynamics that confirmed the adequacy of the problem mathematical statement (excluding probably process finale stage). This effect can be explained by formation of cracks on the upper layer of ice at sharp decreases of air temperature, which temporary compensated hydrostatic pressure growth during freezing of closed water volume. Another compensated mechanism can be migration of brine through the lower layer of ice under influence of vertical pressure gradient and also rejection of gas dissolved in water which increased its compressibility. During 110 hours cooling thickness of water layer between ice layers reduced approximately to 2 cm. According to computations this layer is not chilled completely but keeps as thin brine interlayer within ice body whose thickness (about units of mm) is determined by temperature fluctuations of cooled surface. Nevertheless, despite good coincidence of

  8. Application of ozonated dry ice (ALIGAL™ Blue Ice) for packaging and transport in the food industry.

    PubMed

    Fratamico, Pina M; Juneja, Vijay; Annous, Bassam A; Rasanayagam, Vasuhi; Sundar, M; Braithwaite, David; Fisher, Steven

    2012-05-01

    Dry ice is used by meat and poultry processors for temperature reduction during processing and for temperature maintenance during transportation. ALIGAL™ Blue Ice (ABI), which combines the antimicrobial effect of ozone (O(3)) along with the high cooling capacity of dry ice, was investigated for its effect on bacterial reduction in air, in liquid, and on food and glass surfaces. Through proprietary means, O(3) was introduced to produce dry ice pellets to a concentration of 20 parts per million (ppm) by total weight. The ABI sublimation rate was similar to that of dry ice pellets under identical conditions, and ABI was able to hold the O(3) concentration throughout the normal shelf life of the product. Challenge studies were performed using different microorganisms, including E. coli, Campylobacter jejuni, Salmonella, and Listeria, that are critical to food safety. ABI showed significant (P < 0.05) microbial reduction during bioaerosol contamination (up to 5-log reduction of E. coli and Listeria), on chicken breast (approximately 1.3-log reduction of C. jejuni), on contact surfaces (approximately 3.9 log reduction of C. jejuni), and in liquid (2-log reduction of C. jejuni). Considering the stability of O(3), ease of use, and antimicrobial efficacy against foodborne pathogens, our results suggest that ABI is a better alternative, especially for meat and poultry processors, as compared to dry ice. Further, ABI can potentially serve as an additional processing hurdle to guard against pathogens during processing, transportation, distribution, and/or storage. © 2012 Institute of Food Technologists®

  9. Nitrous oxide from aerated dairy manure slurries: Effects of aeration rates and oxic/anoxic phasing.

    PubMed

    Molodovskaya, Marina; Singurindy, Olga; Richards, Brian K; Steenhuis, Tammo S

    2008-12-01

    Small-scale laboratory research was conducted to compare the effects of different aeration rates and oxic/anoxic phasing on nitrous oxide (N(2)O) formation from dairy manure slurries. Manure slurry samples were incubated in triplicate for three-weeks under a range of continuous sweep gas flows (0.01-0.23L min(-1)kg(-1) slurry) with and without oxygen (air and dinitrogen gas). The net release of N(2)O-N was affected by both aeration rates and oxic/anoxic conditions, whereas ammonia volatilization depended mainly on gas flow rates. Maximum N(2)O-N losses after three-weeks incubation were 4.2% of total slurry N. Major N losses (up to 50% of total slurry N) were caused by ammonia volatilization that increased with increasing gas flow rates. The lowest nitrous oxide and ammonia production was observed from low flow phased oxic/anoxic treatment.

  10. Holocene lowering of the Laurentide ice sheet affects North Atlantic gyre circulation and climate

    NASA Astrophysics Data System (ADS)

    Ivanovic, R. F.; Gregoire, L. J.; Maycock, A.; Valdes, P. J.

    2017-12-01

    The Laurentide ice sheet, which covered Canada during glacial periods, had a major influence on atmospheric circulation and surface climate, but its role in climate during the early Holocene (9-7 ka), when it was thinner and confined around Hudson Bay, is unclear. It has been suggested that the demise of the ice sheet played a role in the 8.2 ka event (an abrupt 1-3 °C Northern Hemisphere cooling lasting 160 years) through the influence of changing topography on atmospheric circulation. To test this hypothesis, and to investigate the broader implications of changing ice sheet topography for climate, we analyse a set of equilibrium climate simulations with ice sheet topographies taken at 500 year intervals from 9.5 ka to 8.0 ka. Between 9.5 and 8.0 ka, our simulations show a 2 °C cooling south of Iceland and a 1 °C warming between 40-50° N in the North Atlantic. These surface temperature changes are associated with a weakening of the subtropical and subpolar gyres caused by a decreasing wind stress curl over the mid-North Atlantic as the ice sheet lowers. The climate response is strongest during the period of peak ice volume change (9.5 ka - 8.5 ka), but becomes negligible after 8.5 ka. The climatic effects of the Laurentide ice sheet lowering are restricted to the North Atlantic sector. Thus, topographic forcing did not play a significant role in the 8.2 ka event and had only a small effect on Holocene climate change compared to the effects of changes in greenhouse gases, insolation and ice sheet meltwater.

  11. Holocene lowering of the Laurentide ice sheet affects North Atlantic gyre circulation and climate

    NASA Astrophysics Data System (ADS)

    Gregoire, Lauren J.; Ivanovic, Ruza F.; Maycock, Amanda C.; Valdes, Paul J.; Stevenson, Samantha

    2018-02-01

    The Laurentide ice sheet, which covered Canada during glacial periods, had a major influence on atmospheric circulation and surface climate, but its role in climate during the early Holocene (9-7 ka), when it was thinner and confined around Hudson Bay, is unclear. It has been suggested that the demise of the ice sheet played a role in the 8.2 ka event (an abrupt 1-3 °C Northern Hemisphere cooling lasting 160 years) through the influence of changing topography on atmospheric circulation. To test this hypothesis, and to investigate the broader implications of changing ice sheet topography for climate, we analyse a set of equilibrium climate simulations with ice sheet topographies taken at 500 year intervals from 9.5 to 8.0 ka. Between 9.5 and 8.0 ka, our simulations show a 2 °C cooling south of Iceland and a 1 °C warming between 40° and 50°N in the North Atlantic. These surface temperature changes are associated with a weakening of the subtropical and subpolar gyres caused by a decreasing wind stress curl over the mid-North Atlantic as the ice sheet lowers. The climate response is strongest during the period of peak ice volume change (9.5-8.5 ka), but becomes negligible after 8.5 ka. The climatic effects of the Laurentide ice sheet lowering during the Holocene are restricted to the North Atlantic sector. Thus, topographic forcing is unlikely to have played a major role in the 8.2 ka event and had only a small effect on Holocene climate change compared to the effects of changes in greenhouse gases, insolation and ice sheet meltwater.

  12. A new temperature- and humidity-dependent surface site density approach for deposition ice nucleation

    NASA Astrophysics Data System (ADS)

    Steinke, I.; Hoose, C.; Möhler, O.; Connolly, P.; Leisner, T.

    2015-04-01

    Deposition nucleation experiments with Arizona Test Dust (ATD) as a surrogate for mineral dusts were conducted at the AIDA cloud chamber at temperatures between 220 and 250 K. The influence of the aerosol size distribution and the cooling rate on the ice nucleation efficiencies was investigated. Ice nucleation active surface site (INAS) densities were calculated to quantify the ice nucleation efficiency as a function of temperature, humidity and the aerosol surface area concentration. Additionally, a contact angle parameterization according to classical nucleation theory was fitted to the experimental data in order to relate the ice nucleation efficiencies to contact angle distributions. From this study it can be concluded that the INAS density formulation is a very useful tool to describe the temperature- and humidity-dependent ice nucleation efficiency of ATD particles. Deposition nucleation on ATD particles can be described by a temperature- and relative-humidity-dependent INAS density function ns(T, Sice) with ns(xtherm) = 1.88 ×105 · exp(0.2659 · xtherm) [m-2] , (1) where the temperature- and saturation-dependent function xtherm is defined as xtherm = -(T-273.2)+(Sice-1) ×100, (2) with the saturation ratio with respect to ice Sice >1 and within a temperature range between 226 and 250 K. For lower temperatures, xtherm deviates from a linear behavior with temperature and relative humidity over ice. Also, two different approaches for describing the time dependence of deposition nucleation initiated by ATD particles are proposed. Box model estimates suggest that the time-dependent contribution is only relevant for small cooling rates and low number fractions of ice-active particles.

  13. Whole slurry saccharification and fermentation of maleic acid-pretreated rice straw for ethanol production.

    PubMed

    Jung, Young Hoon; Park, Hyun Min; Kim, Kyoung Heon

    2015-09-01

    We evaluated the feasibility of whole slurry (pretreated lignocellulose) saccharification and fermentation for producing ethanol from maleic acid-pretreated rice straw. The optimized conditions for pretreatment were to treat rice straw at a high temperature (190 °C) with 1 % (w/v) maleic acid for a short duration (3 min ramping to 190 °C and 3 min holding at 190 °C). Enzymatic digestibility (based on theoretical glucose yield) of cellulose in the pretreated rice straw was 91.5 %. Whole slurry saccharification and fermentation of pretreated rice straw resulted in 83.2 % final yield of ethanol based on the initial quantity of glucan in untreated rice straw. These findings indicate that maleic acid pretreatment results in a high yield of ethanol from fermentation of whole slurry even without conditioning or detoxification of the slurry. Additionally, the separation of solids and liquid is not required; therefore, the economics of cellulosic ethanol fuel production are significantly improved. We also demonstrated whole slurry saccharification and fermentation of pretreated lignocellulose, which has rarely been reported.

  14. Ice-Active Substances from the Infective Juveniles of the Freeze Tolerant Entomopathogenic Nematode, Steinernema feltiae

    PubMed Central

    Ali, Farman; Wharton, David A.

    2016-01-01

    Steinernema feltiae is a moderately freezing tolerant nematode, that can withstand intracellular ice formation. We investigated recrystallization inhibition, thermal hysteresis and ice nucleation activities in the infective juveniles of S. feltiae. Both the splat cooling assay and optical recrystallometry indicate the presence of ice active substances that inhibit recrystallization in the nematode extract. The substance is relatively heat stable and largely retains the recrystallization inhibition activity after heating. No thermal hysteresis activity was detected but the extract had a typical hexagonal crystal shape when grown from a single seed crystal and weak ice nucleation activity. An ice active substance is present in a low concentration, which may be involved in the freezing survival of this species by inhibiting ice recrystallization. PMID:27227961

  15. Ice-Active Substances from the Infective Juveniles of the Freeze Tolerant Entomopathogenic Nematode, Steinernema feltiae.

    PubMed

    Ali, Farman; Wharton, David A

    2016-01-01

    Steinernema feltiae is a moderately freezing tolerant nematode, that can withstand intracellular ice formation. We investigated recrystallization inhibition, thermal hysteresis and ice nucleation activities in the infective juveniles of S. feltiae. Both the splat cooling assay and optical recrystallometry indicate the presence of ice active substances that inhibit recrystallization in the nematode extract. The substance is relatively heat stable and largely retains the recrystallization inhibition activity after heating. No thermal hysteresis activity was detected but the extract had a typical hexagonal crystal shape when grown from a single seed crystal and weak ice nucleation activity. An ice active substance is present in a low concentration, which may be involved in the freezing survival of this species by inhibiting ice recrystallization.

  16. A new temperature and humidity dependent surface site density approach for deposition ice nucleation

    NASA Astrophysics Data System (ADS)

    Steinke, I.; Hoose, C.; Möhler, O.; Connolly, P.; Leisner, T.

    2014-07-01

    Deposition nucleation experiments with Arizona Test Dust (ATD) as a surrogate for mineral dusts were conducted at the AIDA cloud chamber at temperatures between 220 and 250 K. The influence of the aerosol size distribution and the cooling rate on the ice nucleation efficiencies was investigated. Ice nucleation active surface site (INAS) densities were calculated to quantify the ice nucleation efficiency as a function of temperature, humidity and the aerosol surface area concentration. Additionally, a contact angle parameterization according to classical nucleation theory was fitted to the experimental data in order to relate the ice nucleation efficiencies to contact angle distributions. From this study it can be concluded that the INAS density formulation is a very useful tool to decribe the temperature and humidity dependent ice nucleation efficiency of ATD particles. Deposition nucleation on ATD particles can be described by a temperature and relative humidity dependent INAS density function ns(T, Sice) with ns(xtherm) = 1.88 × 105 \\centerdot exp(0.2659 \\centerdot xtherm) [m-2] (1) where the thermodynamic variable xtherm is defined as xtherm = -(T - 273.2) + (Sice-1) × 100 (2) with Sice>1 and within a temperature range between 226 and 250 K. For lower temperatures, xtherm deviates from a linear behavior with temperature and relative humidity over ice. Two different approaches for describing the time dependence of deposition nucleation initiated by ATD particles are proposed. Box model estimates suggest that the time dependent contribution is only relevant for small cooling rates and low number fractions of ice-active particles.

  17. Effect of en-glacial water on ice sheet temperatures in a warming climate - a model approach

    NASA Astrophysics Data System (ADS)

    Phillips, T. P.; Rajaram, H.; Steffen, K.

    2009-12-01

    Each summer, significant amount of melt is generated in the ablation zones of large glaciers and ice sheets. This melt does not run off on the surface of the glacier or ice sheet. In fact a significant fraction enters the glacier and flows through en-glacial and sub-glacial hydrologic systems. Correspondingly, the en-glacial and sub-glacial hydrologic systems are brought to a temperature close to the pressure melting point of ice. The thermal influence of these hydrologic processes is seldom incorporated in heat transfer models for glaciers and ice sheets. In a warming climate, as melt water generation is amplified, en-glacial and sub-glacial hydrologic processes can influence the thermal dynamics of an ice sheet significantly, a feedback which is missed in current models. Although the role of refreezing melt water in the firn of the accumulation zone is often accounted for to explain warmer near-surface temperatures, the role of melt water flow within a glacier is not considered in large ice sheet models. We propose a simple parameterization of the influence of en-glacial and sub-glacial hydrology on the thermal dynamics of ice sheets, in the form of a dual-column model. Our model basically modifies the classical Budd column model for temperature variations in ice sheets by introducing an interaction with an en-glacial column, where the temperature is brought to the melting point during the melt season, and winter-time refreezing is influenced by latent heat effects associated with water retained within the en-glacial and sub-glacial systems. A cryo-hydraulic heat exchange coefficient ς is defined, as a parameter that quantifies this interaction. The parameter ς is related to k/R^2, where R is the characteristic spacing between en-glacial passages. The general behavior of the dual-column model is influenced by the competition between cooling by horizontal advection and warming by cryo-hydraulic exchange. We present a dimensionless parameter to quantify this

  18. Liquid CO 2/Coal Slurry for Feeding Low Rank Coal to Gasifiers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marasigan, Jose; Goldstein, Harvey; Dooher, John

    2013-09-30

    This study investigates the practicality of using a liquid CO 2/coal slurry preparation and feed system for the E-Gas™ gasifier in an integrated gasification combined cycle (IGCC) electric power generation plant configuration. Liquid CO 2 has several property differences from water that make it attractive for the coal slurries used in coal gasification-based power plants. First, the viscosity of liquid CO 2 is much lower than water. This means it should take less energy to pump liquid CO 2 through a pipe compared to water. This also means that a higher solids concentration can be fed to the gasifier, whichmore » should decrease the heat requirement needed to vaporize the slurry. Second, the heat of vaporization of liquid CO 2 is about 80% lower than water. This means that less heat from the gasification reactions is needed to vaporize the slurry. This should result in less oxygen needed to achieve a given gasifier temperature. And third, the surface tension of liquid CO 2 is about 2 orders of magnitude lower than water, which should result in finer atomization of the liquid CO 2 slurry, faster reaction times between the oxygen and coal particles, and better carbon conversion at the same gasifier temperature. EPRI and others have recognized the potential that liquid CO 2 has in improving the performance of an IGCC plant and have previously conducted systemslevel analyses to evaluate this concept. These past studies have shown that a significant increase in IGCC performance can be achieved with liquid CO 2 over water with certain gasifiers. Although these previous analyses had produced some positive results, they were still based on various assumptions for liquid CO 2/coal slurry properties.« less

  19. Dioxin and trace metal emissions from combustion of carbonized RDF slurry fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klosky, M.; Fisher, M.; Singhania, A.

    1997-12-01

    In 1994, the U.S. generated approximately 209 million tons of Municipal Solid Waste (MSW), with 61% landfilled, 24% recycled, and 15% processed through Municipal Waste Combustion (MWC). In order to divert a larger portion of this generated MSW from landfills, MWC will have to play a growing role in MSW disposal. However, recently promulgated New Source Performance Standards (NSPS) for MWC will add an additional financial burden, through mandated emission reductions and air pollution control technologies, to an already financially pressured MWC marketplace. In the past, Refuse Derived Fuel (RDF), a solid fuel produced from MSW, has been fired inmore » industrial and coal boilers as an alternative means of MWC. While lower sulfur dioxide (SO{sub 2}) emissions provided the impetus, firing RDF in industrial and coal boilers frequently suffered from several disadvantages including increased solids handling, increased excess air requirements, increased air emissions, increased slag formation in the boiler, and higher fly ash resistivity. This paper summarizes the latest emissions and combustion tests with the carbonized RDF slurry fuel. With EnerTech`s SlurryCarb{trademark} process, a pumpable slurry of RDF is continuously pressurized with a pump to between 1200 and 2500 psi. The RDF slurry is pressurized above the saturated steam curve to maintain a liquid state when the slurry is heated to approximately 480-660{degrees}F. Slurry pressure and temperature then are maintained for less than 30 minutes in plug-flow reactors. At this temperature and pressure, oxygen functional groups in the molecular structure of the RDF are split off as carbon dioxide gas. This evolved carbon dioxide gas comprises a significant weight percentage of the feed RDF, but only a minimal percentage of the heating value.« less

  20. Eemian interglacial reconstructed from a Greenland folded ice core.

    PubMed

    2013-01-24

    Efforts to extract a Greenland ice core with a complete record of the Eemian interglacial (130,000 to 115,000 years ago) have until now been unsuccessful. The response of the Greenland ice sheet to the warmer-than-present climate of the Eemian has thus remained unclear. Here we present the new North Greenland Eemian Ice Drilling ('NEEM') ice core and show only a modest ice-sheet response to the strong warming in the early Eemian. We reconstructed the Eemian record from folded ice using globally homogeneous parameters known from dated Greenland and Antarctic ice-core records. On the basis of water stable isotopes, NEEM surface temperatures after the onset of the Eemian (126,000 years ago) peaked at 8 ± 4 degrees Celsius above the mean of the past millennium, followed by a gradual cooling that was probably driven by the decreasing summer insolation. Between 128,000 and 122,000 years ago, the thickness of the northwest Greenland ice sheet decreased by 400 ± 250 metres, reaching surface elevations 122,000 years ago of 130 ± 300 metres lower than the present. Extensive surface melt occurred at the NEEM site during the Eemian, a phenomenon witnessed when melt layers formed again at NEEM during the exceptional heat of July 2012. With additional warming, surface melt might become more common in the future.

  1. Pond Hockey on Whitmore Lacus: the Formation of Ponds and Ethane Ice Deposits Following Storm Events on Titan

    NASA Astrophysics Data System (ADS)

    Steckloff, Jordan; Soderblom, Jason M.

    2017-10-01

    Cassini ISS observations reveled regions, later identified as topographic low spots (Soderblom et al. 2014, DPS) on Saturn’s moon Titan become significantly darker (lower albedo) following storm events (Turtle et al. 2009, GRL; 2011, Science), suggesting pools of liquid hydrocarbon mixtures (predominantly methane-ethane-nitrogen). However, these dark ponds then significantly brighten (higher albedo relative to pre-storm albedo), before fading to their pre-storm albedos (Barnes et al. 2013 Planet. Sci; Soderblom et al. 2014, DPS). We interpret these data to be the result of ethane ice formation, which cools from evaporation of methane. The formation of ethane ices results from a unique sequence of thermophysical processes. Initially, the methane in the ternary mixture evaporates, cooling the pond. Nitrogen, dissolved primarily in the methane, exsolves, further cooling the liquid. However, because nitrogen is significantly more soluble in cooler methane-hydrocarbon mixtures, the relative concentration of nitrogen in the solution increases as it cools. This increased nitrogen fraction increases the density of the pond, as nitrogen is significantly more dense thane methane or ethane (pure ethane’s density is intermediate to that of methane and nitrogen). At around ~85 K the mixture is as dense as pure liquid ethane. Thus, further evaporative methane loss and cooling at the pond’s surface leads to a chemical stratification, with an increasingly ethane rich epilimnion (surface layer) overlying a methane rich hypolimnion (subsurface layer). Further evaporation of methane from the ethane-rich epilimnion drives its temperature and composition toward the methane-ethane-nitrogen liquidus curve, causing pure ethane ice to precipitate out of solution and settle to the bottom of the pool. This settling would obscure the ethane ice from Cassini VIMS and ISS, which would instead continue to appear as a dark pond on the surface. As the ethane precipitates out completely, a

  2. Survival studies of a temperate and lytic bacteriophage in bovine faeces and slurry.

    PubMed

    Nyambe, S; Burgess, C; Whyte, P; Bolton, D

    2016-10-01

    Cattle are the main reservoir of verocytotoxigenic Escherichia coli (VTEC), food-borne pathogens that express verocytotoxins (vtx) encoded by temperate bacteriophage. Bovine faeces and unturned manure heaps can support the survival of VTEC and may propagate and transmit VTEC. This study investigated the survival of a vtx2 bacteriophage, φ24B ::Kan, in bovine faeces and slurry. The survival of an anti-Escherichia coli O157:H7 lytic bacteriophage, e11/2, was examined in the same matrices, as a possible bio-control option for VTEC. Samples were inoculated with φ24B ::Kan and/or e11/2 bacteriophage at a concentration of 7-8 log10  PFU g(-1)  (faeces) or ml(-1) (slurry), stored at 4 and 14°C and examined every 2 days for 36 days. The ability of φ24B ::Kan to transduce E. coli cells was examined. Moreover, E. coli concentrations in the faeces and slurry were monitored throughout the experiment as were the pH and aw (faeces only). Both bacteriophages survived well in faeces and slurry. In addition, φ24B ::Kan was able to form lysogens. φ24B ::Kan and e11/2 phage can survive and remain infective in bovine faeces and slurry for at least 30 days under representative Irish temperatures. Bovine faeces and slurry may act as a reservoir for vtx bacteriophages. The survival of the anti-O157 phage suggests it may be a suitable bio-control option in these matrices. © 2016 The Society for Applied Microbiology.

  3. Update on the NASA Glenn Propulsion Systems Lab Ice Crystal Cloud Characterization (2015, 2016)

    NASA Technical Reports Server (NTRS)

    Van Zante, Judith; Bencic, Timothy; Ratvasky, Thomas

    2016-01-01

    NASA Glenn's Propulsion Systems Lab, an altitude engine test facility, was outfitted with a spray system to generate ice crystals in 2011. Turbine engines and driven rigs can experience ice crystal icing at flight altitudes, temperatures and Mach numbers. To support these tests, four ice crystal characterizations have been conducted in two different facility configurations. In addition, super-cooled liquid and mixed phase clouds have also been generated. This paper represents a work in progress. It will describe some of the 11-parameter calibration space, and how those parameters interact with each other, the instrumentation used to characterize the cloud and present a sample of the cloud characterization results.

  4. Aerosol-driven increase in Arctic sea ice over the middle of the twentieth century

    NASA Astrophysics Data System (ADS)

    Gagné, Marie-Ève; Fyfe, John C.; Gillett, Nathan P.; Polyakov, Igor V.; Flato, Gregory M.

    2017-07-01

    Updated observational data sets without climatological infilling show that there was an increase in sea ice concentration in the eastern Arctic between 1950 and 1975, contrary to earlier climatology infilled observational data sets that show weak interannual variations during that time period. We here present climate model simulations showing that this observed sea ice concentration increase was primarily a consequence of cooling induced by increasing anthropogenic aerosols and natural forcing. Indeed, sulphur dioxide emissions, which lead to the formation of sulphate aerosols, peaked around 1980 causing a sharp increase in the burden of sulphate between the 1950s and 1970s; but since 1980, the burden has dropped. Our climate model simulations show that the cooling contribution of aerosols offset the warming effect of increasing greenhouse gases over the midtwentieth century resulting in the expansion of the Arctic sea ice cover. These results challenge the perception that Arctic sea ice extent was unperturbed by human influence until the 1970s, suggesting instead that it exhibited earlier forced multidecadal variations, with implications for our understanding of impacts and adaptation in human and natural Arctic systems.

  5. Freezing Temperatures, Ice Nanotubes Structures, and Proton Ordering of TIP4P/ICE Water inside Single Wall Carbon Nanotubes.

    PubMed

    Pugliese, P; Conde, M M; Rovere, M; Gallo, P

    2017-11-16

    A very recent experimental paper importantly and unexpectedly showed that water in carbon nanotubes is already in the solid ordered phase at the temperature where bulk water boils. The water models used so far in literature for molecular dynamics simulations in carbon nanotubes show freezing temperatures lower than the experiments. We present here results from molecular dynamics simulations of water inside single walled carbon nanotubes using an extremely realistic model for both liquid and icy water, the TIP4P/ICE. The water behavior inside nanotubes of different diameters has been studied upon cooling along the isobars at ambient pressure starting from temperatures where water is in a liquid state. We studied the liquid/solid transition, and we observed freezing temperatures higher than in bulk water and that depend on the diameter of the nanotube. The maximum freezing temperature found is 390 K, which is in remarkable agreement with the recent experimental measurements. We have also analyzed the ice structure called "ice nanotube" that water forms inside the single walled carbon nanotubes when it freezes. The ice forms observed are in agreement with previous results obtained with different water models. A novel finding, a partial proton ordering, is evidenced in our ice nanotubes at finite temperature.

  6. Wind-driven Sea-Ice Changes Intensify Subsurface Warm Water Intrusion into the West Antarctic Land Ice Front

    NASA Astrophysics Data System (ADS)

    Li, X.; Gille, S. T.; shang-Ping, X.; Xie, S. P.; Holland, D. M.; Holland, M. M.

    2016-12-01

    The climate change observed around Antarctica in recent decades is characterized by distinct zonally asymmetric patterns, with the strongest changes over West Antarctica. These changes are marked by strong land ice melting and sea ice redistribution around West Antarctica. This is associated with temperature and circulation anomalies in the ocean and atmosphere around the same area. In this study, we comprehensively examine the coherency between these changes using a combination of observations and numerical simulations. Results show that the atmospheric circulation changes distinctly drive the changes in ocean circulation and sea ice distribution. In addition, the atmospheric circulation induced sea ice changes play an important role in lifting the subsurface ocean temperature and salinity around the West Antarctica. During recent decades, the Amundsen Sea Low (ASL) has deepened, especially in austral autumn and winter. This deepened ASL has intensified the offshore wind near the coastal regions of the Ross Sea. Driven by these atmospheric changes, more sea ice has formed near West Antarctica in winter. In contrast, more sea ice melts during the summer. This strengthened sea ice seasonality has been observed and successfully reproduced in the model simulation. The wind-driven sea ice changes causes a surface freshening over the Ross and Amundsen Seas, with a subsurface salinity increase over the Ross Sea. The additional fresh/salt water fluxes thus further change the vertical distribution of salinity and strengthen the stratification in the Ross and Amundsen Seas. As a result of the above ice-ocean process, the mixed-layer depth around the Ross and Amundsen Seas shallows. By weakening the vertical heat transport near the surface layer, and inducing an upward movement of the circumpolar deep water (CDW), this process freshened and cooled the surface layer, while the salinity and temperature in the sub-surface ocean are increased, extending from 150 meters to >700

  7. Neoglacial Antarctic sea-ice expansion driven by mid-Holocene retreat of the Ross Ice Shelf.

    NASA Astrophysics Data System (ADS)

    Bendle, J. A.; Newton, K.; Mckay, R. M.; Crosta, X.; Etourneau, J.; Anya, A. B.; Seki, O.; Golledge, N. R.; Bertler, N. A. N.; Willmott, V.; Schouten, S.; Riesselman, C. R.; Masse, G.; Dunbar, R. B.

    2017-12-01

    Recent decades have seen expanding Antarctic sea-ice coverage, coeval with thinning West Antarctic Ice Sheet (WAIS) ice shelves and the rapid freshening of surface and bottom waters along the Antarctic margin. The mid-Holocene Neoglacial transition represents the last comparable baseline shift in sea-ice behaviour. The drivers and feedbacks involved in both the recent and Holocene events are poorly understood and characterised by large proxy-model mismatches. We present new records of compound specific fatty acid isotope analyses (δ2H-FA), highly-branched isoprenoid alkenes (HBIs) TEX86L temperatures, grain-size, mass accumulations rates (MARs) and image analyses from a 171m Holocene sediment sequence from Site U1357 (IODP leg 318). In combination with published records we reconstruct Holocene changes in glacial meltwater, sedimentary inputs and sea-ice. The early Holocene (11 to 10 ka) is characterised by large fluctuations in inputs of deglacial meltwater and sediments and seismic evidence of downlapping material from the south, suggesting a dominating influence from glacial retreat of the local outlet glaciers. From 10 to 8 ka there is decreasing meltwater inputs, an onlapping drift and advection of material from the east. After ca. 8 ka positively correlated δ2H-FA and MARs infer that pulses of glacial melt correlate to stronger easterly currents, driving erosion of material from upstream banks and that the Ross Ice Shelf (RIS) becomes a major influence. A large mid-Holocene meltwater pulse (preceded by warming TEX86L temperatures) is evident between ca. 6 to 4.5 ka, culminating in a rapid and permanent increase in sea-ice from 4.5 ka. This is coeval with cosmogenic nuclide evidence for a rapid thinning of the Antarctic ice sheet during the mid-Holocene (Hein et al., 2016). We suggest this represents a final major pulse of deglaciation from the Ross Ice Shelf, which initiates the Neoglacial, driving cool surface waters along the coast and greater sea-ice

  8. Slurry Erosive Wear Evaluation of HVOF-Spray Cr2O3 Coating on Some Turbine Steels

    NASA Astrophysics Data System (ADS)

    Goyal, Deepak Kumar; Singh, Harpreet; Kumar, Harmesh; Sahni, Varinder

    2012-09-01

    In this study, Cr2O3 coatings were deposited on CF8M and CA6NM turbine steels by high-velocity oxy-fuel (HVOF)-spray process and analyzed with regard to their performance under slurry erosion conditions. High Speed Erosion Test Rig was used for slurry erosion tests, and the effects of three parameters, namely, average particle size, speed (rpm), and slurry concentration on slurry erosion of these materials were investigated. SEM micrographs on the surface of samples, before and after slurry erosion tests, were taken to study the erosion mechanism. For the uncoated steels, CA6NM steel showed better erosion resistance in comparison with CF8M steel. The HVOF-sprayed Cr2O3-coated CF8M and CA6NM steels showed better slurry erosion resistance in comparison with their uncoated counterparts. It may be due to the higher hardness as a result of HVOF-sprayed Cr2O3 coating in comparison with the uncoated CF8M and CA6NM steels.

  9. Recent Changes in High-Latitude Glaciers, Ice Caps, and Ice Sheets

    NASA Technical Reports Server (NTRS)

    Abdalati, Waleed

    2006-01-01

    The glaciers and ice sheets of the world contain enough ice to raise sea level by approximately 70 meters if they were to disappear entirely, and most of this ice is located in the climatically sensitive polar regions. Fortunately changes of this magnitude would probably take many thousands of years to occur, but recent discoveries indicate that these ice masses are responding to changes in today s climate more rapidly than previously thought. These responses are likely to be of great societal significance, primarily in terms of their implications for sea level, but also in terms of how their discharge of freshwater, through melting or calving, may impact ocean circulation. For millions of years, oceans have risen and fallen as the Earth has warmed and cooled, and ice on land has shrunk and grown. Today is no different in that respect, as sea levels have been rising at a rate of nearly 2 m per year during the last century (Miller and Douglas 2004), and 3 mm/yr in the last 12 years (Leuliette et al. 2004). What is different today, however, is that tens - perhaps hundreds - of millions of people live in coastal areas that are vulnerable to changes in sea level. Rising seas erode beaches, increase flood potential, and reduce the ability of barrier islands and coastal wetlands to mitigate the effects of major storms and hurricanes. The costs associated with a one-meter rise in sea level are estimated to be in the hundreds of billions of dollars in the United States alone. The worldwide costs in human terms would be far greater as some vulnerable low-lying coastal regions would become inundated, especially in poorer nations that do not have the resources to deal with such changes. Such considerations are particularly important in light of the fact that a one meter sea level rise is not significantly outside the 0.09 to 0.88 range of predictions for this century (IPCC 2001), and rises of this magnitude have occurred in the past in as little as 20 years (Fairbanks 1989

  10. Coal-water slurry spray characteristics of an electronically-controlled accumulator fuel injection system

    NASA Astrophysics Data System (ADS)

    Caton, J. A.; Payne, S. E.; Terracina, D. P.; Kihm, K. D.

    Experiments have been complete to characterize coal-water slurry sprays from a electronically-controlled accumulator fuel injection system of diesel engine. The sprays were injected into a pressurized chamber equipped with windows. High speed movies, fuel pressures and needle lifts were obtained as a function of time, orifice diameter, coal loading, gas density in the chamber, and accumulator fuel pressure. For the base conditions 50% (by mass) coal loading, 0.4 mm diameter nozzle hole, coal-water slurry pressure of 82 MPa (12,000 psi), and a chamber density of 25 kg/m(exp 3), the break-up time was 0.30 ms. An empirical correlation for both spray tip penetration and initial jet velocity was developed. For the conditions of this study, the spray tip penetration and initial jet velocity were 15% greater for coal-water slurry than for diesel fuel or water. Cone angles of the sprays were dependent on the operating conditions and fluid, as well as the time and locations of the measurement. The time-averaged cone angle for the base case conditions was 13.6 degrees. Results of this study and the correlation are specific to the tested coal-water slurry and are not general for other coal-water slurry fuels.

  11. The Leipzig Ice Nucleation chamber Comparison (LINC): An overview of ice nucleation measurements observed with four on-line ice nucleation devices

    NASA Astrophysics Data System (ADS)

    Kohn, Monika; Wex, Heike; Grawe, Sarah; Hartmann, Susan; Hellner, Lisa; Herenz, Paul; Welti, André; Stratmann, Frank; Lohmann, Ulrike; Kanji, Zamin A.

    2016-04-01

    Mixed-phase clouds (MPCs) are found to be the most relevant cloud type leading to precipitation in mid-latitudes. The formation of ice crystals in MPCs is not completely understood. To estimate the effect of aerosol particles on the radiative properties of clouds and to describe ice nucleation in models, the specific properties of aerosol particles acting as ice nucleating particles (INPs) still need to be identified. A number of devices are able to measure INPs in the lab and in the field. However, methods can be very different and need to be tested under controlled conditions with respect to aerosol generation and properties in order to standardize measurement and data analysis approaches for subsequent ambient measurements. Here, we present an overview of the LINC campaign hosted at TROPOS in September 2015. We compare four ice nucleation devices: PINC (Portable Ice Nucleation Chamber, Chou et al., 2011) and SPIN (SPectrometer for Ice Nuclei) are operated in deposition nucleation and condensation freezing mode. LACIS (Leipzig Aerosol Cloud Interaction Simulator, Hartmann et al., 2011) and PIMCA (Portable Immersion Mode Cooling chamber) measure in the immersion freezing mode. PIMCA is used as a vertical extension to PINC and allows activation and droplet growth prior to exposure to the investigated ice nucleation temperature. Size-resolved measurements of multiple aerosol types were performed including pure mineral dust (K-feldspar, kaolinite) and biological particles (Birch pollen washing waters) as well as some of them after treatment with sulfuric or nitric acid prior to experiments. LACIS and PIMCA-PINC operated in the immersion freezing mode showed very good agreement in the measured frozen fraction (FF). For the comparison between PINC and SPIN, which were scanning relative humidity from below to above water vapor saturation, an agreement was found for the obtained INP concentration. However, some differences were observed, which may result from ice

  12. Examining Differences in Arctic and Antarctic Sea Ice Change

    NASA Astrophysics Data System (ADS)

    Nghiem, S. V.; Rigor, I. G.; Clemente-Colon, P.; Neumann, G.; Li, P.

    2015-12-01

    The paradox of the rapid reduction of Arctic sea ice versus the stability (or slight increase) of Antarctic sea ice remains a challenge in the cryospheric science research community. Here we start by reviewing a number of explanations that have been suggested by different researchers and authors. One suggestion is that stratospheric ozone depletion may affect atmospheric circulation and wind patterns such as the Southern Annular Mode, and thereby sustaining the Antarctic sea ice cover. The reduction of salinity and density in the near-surface layer may weaken the convective mixing of cold and warmer waters, and thus maintaining regions of no warming around the Antarctic. A decrease in sea ice growth may reduce salt rejection and upper-ocean density to enhance thermohalocline stratification, and thus supporting Antarctic sea ice production. Melt water from Antarctic ice shelves collects in a cool and fresh surface layer to shield the surface ocean from the warmer deeper waters, and thus leading to an expansion of Antarctic sea ice. Also, wind effects may positively contribute to Antarctic sea ice growth. Moreover, Antarctica lacks of additional heat sources such as warm river discharge to melt sea ice as opposed to the case in the Arctic. Despite of these suggested explanations, factors that can consistently and persistently maintains the stability of sea ice still need to be identified for the Antarctic, which are opposed to factors that help accelerate sea ice loss in the Arctic. In this respect, using decadal observations from multiple satellite datasets, we examine differences in sea ice properties and distributions, together with dynamic and thermodynamic processes and interactions with land, ocean, and atmosphere, causing differences in Arctic and Antarctic sea ice change to contribute to resolving the Arctic-Antarctic sea ice paradox.

  13. Cooling of Water in a Flask: Convection Currents in a Fluid with a Density Maximum

    ERIC Educational Resources Information Center

    Velasco, S.; White, J. A.; Roman, F. L.

    2010-01-01

    The effect of density inversion on the convective flow of water in a spherical glass flask cooled with the help of an ice-water bath is shown. The experiment was carried out by temperature measurements (cooling curves) taken at three different heights along the vertical diameter of the flask. Flows inside the flask are visualized by seeding the…

  14. Geochronology and paleoclimatic implications of the last deglaciation of the Mauna Kea Ice Cap, Hawaii

    USGS Publications Warehouse

    Anslow, Faron S.; Clark, P.U.; Kurz, M.D.; Hostetler, S.W.

    2010-01-01

    We present new 3He surface exposure ages on moraines and bedrock near the summit of Mauna Kea, Hawaii, which refine the age of the Mauna Kea Ice Cap during the Local Last Glacial Maximum (LLGM) and identify a subsequent fluctuation of the ice margin. The 3He ages, when combined with those reported previously, indicate that the local ice-cap margin began to retreat from its LLGM extent at 20.5??2.5ka, in agreement with the age of deglaciation determined from LLGM moraines elsewhere in the tropics. The ice-cap margin receded to a position at least 3km upslope for ~4.5-5.0kyr before readvancing nearly to its LLGM extent. The timing of this readvance at ~15.4ka corresponds to a large reduction of the Atlantic meridional overturning circulation (AMOC) following Heinrich Event 1. Subsequent ice-margin retreat began at 14.6??1.9ka, corresponding to a rapid resumption of the AMOC and onset of the B??lling warm interval, with the ice cap melting rapidly to complete deglaciation. Additional 3He ages obtained from a flood deposit date the catastrophic outburst of a moraine-dammed lake roughly coeval with the Younger Dryas cold interval, suggesting a more active hydrological cycle on Mauna Kea at this time. A coupled mass balance and ice dynamics model is used to constrain the climate required to generate ice caps of LLGM and readvance sizes. The depression of the LLGM equilibrium line altitude requires atmospheric cooling of 4.5??1??C, whereas the mass balance modeling indicates an accompanying increase in precipitation of as much as three times that of present. We hypothesize (1) that the LLGM temperature depression was associated with global cooling, (2) that the temperature depression that contributed to the readvance occurred in response to an atmospheric teleconnection to the North Atlantic, and (3) that the precipitation enhancement associated with both events occurred in response to a southward shift in the position of the inter-tropical convergence zone (ITCZ). Such a

  15. Morphometric analysis of polygonal cracking patterns in desiccated starch slurries

    NASA Astrophysics Data System (ADS)

    Akiba, Yuri; Magome, Jun; Kobayashi, Hiroshi; Shima, Hiroyuki

    2017-08-01

    We investigate the geometry of two-dimensional polygonal cracking that forms on the air-exposed surface of dried starch slurries. Two different kinds of starches, made from potato and corn, exhibited distinguished crack evolution, and there were contrasting effects of slurry thickness on the probability distribution of the polygonal cell area. The experimental findings are believed to result from the difference in the shape and size of starch grains, which strongly influence the capillary transport of water and tensile stress field that drives the polygonal cracking.

  16. Leipzig Ice Nucleation chamber Comparison (LINC): intercomparison of four online ice nucleation counters

    NASA Astrophysics Data System (ADS)

    Burkert-Kohn, Monika; Wex, Heike; Welti, André; Hartmann, Susan; Grawe, Sarah; Hellner, Lisa; Herenz, Paul; Atkinson, James D.; Stratmann, Frank; Kanji, Zamin A.

    2017-09-01

    Ice crystal formation in atmospheric clouds has a strong effect on precipitation, cloud lifetime, cloud radiative properties, and thus the global energy budget. Primary ice formation above 235 K is initiated by nucleation on seed aerosol particles called ice-nucleating particles (INPs). Instruments that measure the ice-nucleating potential of aerosol particles in the atmosphere need to be able to accurately quantify ambient INP concentrations. In the last decade several instruments have been developed to investigate the ice-nucleating properties of aerosol particles and to measure ambient INP concentrations. Therefore, there is a need for intercomparisons to ensure instrument differences are not interpreted as scientific findings.In this study, we intercompare the results from parallel measurements using four online ice nucleation chambers. Seven different aerosol types are tested including untreated and acid-treated mineral dusts (microcline, which is a K-feldspar, and kaolinite), as well as birch pollen washing waters. Experiments exploring heterogeneous ice nucleation above and below water saturation are performed to cover the whole range of atmospherically relevant thermodynamic conditions that can be investigated with the intercompared chambers. The Leipzig Aerosol Cloud Interaction Simulator (LACIS) and the Portable Immersion Mode Cooling chAmber coupled to the Portable Ice Nucleation Chamber (PIMCA-PINC) performed measurements in the immersion freezing mode. Additionally, two continuous-flow diffusion chambers (CFDCs) PINC and the Spectrometer for Ice Nuclei (SPIN) are used to perform measurements below and just above water saturation, nominally presenting deposition nucleation and condensation freezing.The results of LACIS and PIMCA-PINC agree well over the whole range of measured frozen fractions (FFs) and temperature. In general PINC and SPIN compare well and the observed differences are explained by the ice crystal growth and different residence times in

  17. Response of Antarctic sea surface temperature and sea ice to ozone depletion

    NASA Astrophysics Data System (ADS)

    Ferreira, D.; Gnanadesikan, A.; Kostov, Y.; Marshall, J.; Seviour, W.; Waugh, D.

    2017-12-01

    The influence of the Antarctic ozone hole extends all the way from the stratosphere through the troposphere down to the surface, with clear signatures on surface winds, and SST during summer. In this talk we discuss the impact of these changes on the ocean circulation and sea ice state. We are notably motivated by the observed cooling of the surface Southern Ocean and associated increase in Antarctic sea ice extent since the 1970s. These trends are not reproduced by CMIP5 climate models, and the underlying mechanism at work in nature and the models remain unexplained. Did the ozone hole contribute to the observed trends?Here, we review recent advances toward answering these issues using "abrupt ozone depletion" experiments. The ocean and sea ice response is rather complex, comprising two timescales: a fast ( 1-2y) cooling of the surface ocean and sea ice cover increase, followed by a slower warming trend, which, depending on models, flip the sign of the SST and sea ice responses on decadal timescale. Although the basic mechanism seems robust, comparison across climate models reveal large uncertainties in the timescales and amplitude of the response to the extent that even the sign of the ocean and sea ice response to ozone hole and recovery remains unconstrained. After briefly describing the dynamics and thermodynamics behind the two-timescale response, we will discuss the main sources of uncertainties in the modeled response, namely cloud effects and air-sea heat exchanges, surface wind stress response and ocean eddy transports. Finally, we will consider the implications of our results on the ability of coupled climate models to reproduce observed Southern Ocean changes.

  18. Neck Cooling Improves Table Tennis Performance amongst Young National Level Players

    PubMed Central

    Desai, Terun; Bottoms, Lindsay

    2017-01-01

    This study aimed to examine the effects of neck cooling on table tennis performance. Eight young, National level, male table tennis players (age 16 ± 2 years, height 1.77 ± 0.08 m, body mass 67.54 ± 10.66 kg) were recruited. Participants attended four testing sessions separated by a week. Session one determined fitness levels, and session two was a familiarisation trial. The final two sessions involved completing the table tennis-specific protocol either with (ICE) or without (CON) neck cooling for 1 min before each exercise period (bout: 80–90 shots), which represented an individual game. The exercise protocol required completing three bouts to represent a match, each simulating a different skill (forehand, backhand, alternate forehand and backhand), against a mechanical ball thrower. Performance was measured by the number of balls hitting two pre-determined targets. Heart rate, ratings of perceived exertion (RPE), and thermal sensation (TS) were measured. Total performance scores (shots on target) were significantly greater during ICE (136 ± 26), compared to CON (120 ± 25; p = 0.006) with a 15 (±12)% improvement. Effects for time (p < 0.05) but not condition (p > 0.05) were found for RPE and all other physiological variables. TS significantly decreased with cooling throughout the protocol (p = 0.03). Neck cooling appears to be beneficial for table tennis performance by lowering thermal sensation. PMID:29910379

  19. Rapid sea level rise and ice sheet response to 8,200-year climate event

    USGS Publications Warehouse

    Cronin, T. M.; Vogt, P.R.; Willard, D.A.; Thunell, R.; Halka, J.; Berke, M.; Pohlman, J.

    2007-01-01

    The largest abrupt climatic reversal of the Holocene interglacial, the cooling event 8.6–8.2 thousand years ago (ka), was probably caused by catastrophic release of glacial Lake Agassiz-Ojibway, which slowed Atlantic meridional overturning circulation (AMOC) and cooled global climate. Geophysical surveys and sediment cores from Chesapeake Bay reveal the pattern of sea level rise during this event. Sea level rose ∼14 m between 9.5 to 7.5 ka, a pattern consistent with coral records and the ICE-5G glacio-isostatic adjustment model. There were two distinct periods at ∼8.9–8.8 and ∼8.2–7.6 ka when Chesapeake marshes were drown as sea level rose rapidly at least ∼12 mm yr−1. The latter event occurred after the 8.6–8.2 ka cooling event, coincided with extreme warming and vigorous AMOC centered on 7.9 ka, and may have been due to Antarctic Ice Sheet decay.

  20. Hemodynamic and Thermal Responses to Head and Neck Cooling in Men and Women

    NASA Technical Reports Server (NTRS)

    Ku, Yu-Tsuan E.; Montgomery, Leslie D.; Carbo, Jorge E.; Webbon, Bruce W.

    1995-01-01

    Personal cooling systems are used to alleviate symptoms of multiple sclerosis and to prevent increased core temperature during daily activities. Configurations of these systems include passive ice vests and circulating liquid cooling garments (LCGs) in the forms of vests, cooling caps and combined head and neck cooling systems. However, little information is available oil the amount or heat that can be extracted from the body with these systems or the physiologic changes produced by routine operation of these systems. The objective of this study was to determine the operating characteristics and the physiologic change, produced by short term use of one commercially available thermal control system.

  1. Personal cooling in hot workings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tuck, M.A.

    1999-07-01

    The number of mines experiencing climatic difficulties worldwide is increasing. In a large number of cases these climatic difficulties are confined to working areas only or to specific locations within working areas. Thus the problem in these mines can be described as highly localized, due to a large extent not to high rock temperatures but due to machine heat loads and low airflow rates. Under such situations conventional means of controlling the climate can be inapplicable and/or uneconomic. One possible means of achieving the required level of climatic control, to ensure worker health and safety whilst achieving economic gains, ismore » to adopt a system of active man cooling. This is the reverse of normal control techniques where the cooling power of the ventilating air is enhanced in some way. Current methods of active man cooling include ice jackets and various umbilical cord type systems. These have numerous drawbacks, such as limited useful exposure times and limitations to worker mobility. The paper suggests an alternative method of active man cooling than those currently available and reviews the design criteria for such a garment. The range of application of such a garment is discussed, under both normal and emergency situations.« less

  2. Influence of Pig Slurry on Microbial and Biochemical Characteristics of Soil in Albacete Region, SE Spain

    NASA Astrophysics Data System (ADS)

    Halil Yanardaǧ, Ibrahim

    2013-04-01

    Soil quality is very important in terms of agricultural sustainability, ecosystem and terrestrial carbon (C) cycle. In turn, soil microbial and biochemical characteristics are indicative of nutrient cycling and soil organic matter dynamics. We investigated the effects of the pig slurries (raw pig slurry (RPS) and treated pig slurry (TPS) from liquid and solid feeding diets) on microbial and biochemical characteristics of soil under barley cropping system. Application doses of slurries are identified with legal doses of Castilla La Mancha Region, which is 210 kg N ha-1 year-1. Microbial biomass C, soluble C, black C and three soil enzymes (β-Glucosidase, β-galactosidase and Arylesterase enzymes) are studied to determine effect slurry on soil biochemical characteristics, which are very important in terms of C cycle in soil. Black carbon content and β-Glucosidase enzyme activities are increased with all pig slurry applications from liquid and traditional feeding diet, as well as microbial biomass and organic carbon content and β-galactosidase enzyme activities are increased with slurry from liquid feeding diet doses. However, pig slurry application from liquid feeding diet doses have increased yield, quality, length and total biomass content of barley. Bioavailable metal contents are increased with all slurry application and with using high doses of slurry can be caused soil pollution. Pig slurries from liquid feeding diet had positive impacts on microbial and biochemical characteristics in terms of soil quality in comparison to the different feeding diets. PS addition to soil had a very significant stimulating effect on the enzyme activities, microbial biomass, soluble and black C compared with different kind of PS and control plots on Mediterranean soil in barley monoculture. This effect may originate from the organic C, N, P and S compounds added with PS. The highest enzyme activity and microbial biomass were observed on the soil samples from the RPS treatment

  3. 3D-printed conductive static mixers enable all-vanadium redox flow battery using slurry electrodes

    NASA Astrophysics Data System (ADS)

    Percin, Korcan; Rommerskirchen, Alexandra; Sengpiel, Robert; Gendel, Youri; Wessling, Matthias

    2018-03-01

    State-of-the-art all-vanadium redox flow batteries employ porous carbonaceous materials as electrodes. The battery cells possess non-scalable fixed electrodes inserted into a cell stack. In contrast, a conductive particle network dispersed in the electrolyte, known as slurry electrode, may be beneficial for a scalable redox flow battery. In this work, slurry electrodes are successfully introduced to an all-vanadium redox flow battery. Activated carbon and graphite powder particles are dispersed up to 20 wt% in the vanadium electrolyte and charge-discharge behavior is inspected via polarization studies. Graphite powder slurry is superior over activated carbon with a polarization behavior closer to the standard graphite felt electrodes. 3D-printed conductive static mixers introduced to the slurry channel improve the charge transfer via intensified slurry mixing and increased surface area. Consequently, a significant increase in the coulombic efficiency up to 95% and energy efficiency up to 65% is obtained. Our results show that slurry electrodes supported by conductive static mixers can be competitive to state-of-the-art electrodes yielding an additional degree of freedom in battery design. Research into carbon properties (particle size, internal surface area, pore size distribution) tailored to the electrolyte system and optimization of the mixer geometry may yield even better battery properties.

  4. Denitrification of aging biogas slurry from livestock farm by photosynthetic bacteria.

    PubMed

    Yang, Anqi; Zhang, Guangming; Yang, Guang; Wang, Hangyao; Meng, Fan; Wang, Hongchen; Peng, Meng

    2017-05-01

    Huge amount of aging biogas slurry is in urgent need to be treated properly. However, due to high NH 3 -N concentration and low C/N ratio, this aging biogas slurry is refractory for traditional methods. Its denitrification has become a big challenge. In this paper, photosynthetic bacteria (PSB) were employed to handle this problem. The results showed denitrification of aging biogas slurry by PSB treatment was promising. The highest removal efficiency of NH 3 -N reached 99.75%, much higher than all other treatments. The removal of NH 3 -N followed pseudo zero order reaction under dark-aerobic condition. The better inoculation rate for NH 3 -N removal was 30%; and aerobic condition was more beneficial for NH 3 -N removal than anaerobic condition because of different metabolic pathways. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Superheated fuel injection for combustion of liquid-solid slurries

    DOEpatents

    Robben, F.A.

    1984-10-19

    A method and device are claimed for obtaining, upon injection, flash evaporation of a liquid in a slurry fuel to aid in ignition and combustion. The device is particularly beneficial for use of coal-water slurry fuels in internal combustion engines such as diesel engines and gas turbines, and in external combustion devices such as boilers and furnaces. The slurry fuel is heated under pressure to near critical temperature in an injector accumulator, where the pressure is sufficiently high to prevent boiling. After injection into a combustion chamber, the water temperature will be well above boiling point at a reduced pressure in the combustion chamber, and flash boiling will preferentially take place at solid-liquid surfaces, resulting in the shattering of water droplets and the subsequent separation of the water from coal particles. This prevents the agglomeration of the coal particles during the subsequent ignition and combustion process, and reduces the energy required to evaporate the water and to heat the coal particles to ignition temperature. The overall effect will be to accelerate the ignition and combustion rates, and to reduce the size of the ash particles formed from the coal. 2 figs., 2 tabs.

  6. Superheated fuel injection for combustion of liquid-solid slurries

    DOEpatents

    Robben, Franklin A.

    1985-01-01

    A method and device for obtaining, upon injection, flash evaporation of a liquid in a slurry fuel to aid in ignition and combustion. The device is particularly beneficial for use of coal-water slurry fuels in internal combustion engines such as diesel engines and gas turbines, and in external combustion devices such as boilers and furnaces. The slurry fuel is heated under pressure to near critical temperature in an injector accumulator, where the pressure is sufficiently high to prevent boiling. After injection into a combustion chamber, the water temperature will be well above boiling point at a reduced pressure in the combustion chamber, and flash boiling will preferentially take place at solid-liquid surfaces, resulting in the shattering of water droplets and the subsequent separation of the water from coal particles. This prevents the agglomeration of the coal particles during the subsequent ignition and combustion process, and reduces the energy required to evaporate the water and to heat the coal particles to ignition temperature. The overall effect will be to accelerate the ignition and combustion rates, and to reduce the size of the ash particles formed from the coal.

  7. Centaur boost pump turbine icing investigation

    NASA Technical Reports Server (NTRS)

    Rollbuhler, R. J.

    1976-01-01

    An investigation was conducted to determine if ice formation in the Centaur vehicle liquid oxygen boost pump turbine could prevent rotation of the pump and whether or not this phenomenon could have been the failure mechanism for the Titan/Centaur vehicle TC-1. The investigation consisted of a series of tests done in the LeRC Space Power Chamber Facility to evaluate evaporative cooling behavior patterns in a turbine as a function of the quantity of water trapped in the turbine and as a function of the vehicle ascent pressure profile. It was found that evaporative freezing of water in the turbine housing, due to rapid depressurization within the turbine during vehicle ascent, could result in the formation of ice that would block the turbine and prevent rotation of the boost pump. But for such icing conditions to exist it would be necessary to have significant quantities of water in the turbine and/or its components, and the turbine housing temperature would have to be colder than 40 F at vehicle liftoff.

  8. Interactions between soil texture and placement of dairy slurry application: II. Leaching of phosphorus forms.

    PubMed

    Glaesner, Nadia; Kjaergaard, Charlotte; Rubaek, Gitte H; Magid, Jakob

    2011-01-01

    Managing phosphorus (P) losses in soil leachate folllowing land application of manure is key to curbing eutrophication in many regions. We compared P leaching from columns of variably textured, intact soils (20 cm diam., 20 cm high) subjected to surface application or injection of dairy cattle (Bos taurus L.) manure slurry. Surface application of slurry increased P leaching losses relative to baseline losses, but losses declined with increasing active flow volume. After elution of one pore volume, leaching averaged 0.54 kg P ha(-1) from the loam, 0.38 kg P ha(-1) from the sandy loam, and 0.22 kg P ha(-1) from the loamy sand following surface application. Injection decreased leaching of all P forms compared with surface application by an average of 0.26 kg P ha(-1) in loam and 0.23 kg P ha(-1) in sandy loam, but only by 0.03 kg P ha(-1) in loamy sand. Lower leaching losses were attributed to physical retention of particulate P and dissolved organic P, caused by placing slurry away from active flow paths in the fine-textured soil columns, as well as to chemical retention of dissolved inorganic P, caused by better contact between slurry P and soil adsorption sites. Dissolved organic P was less retained in soil after slurry application than other P forms. On these soils with low to intermediate P status, slurry injection lowered P leaching losses from clay-rich soil, but not from the sandy soils, highlighting the importance of soil texture in manageing P losses following slurry application.

  9. An investigation on characterizing dense coal-water slurry with ultrasound: theoretical and experimental method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xue, M.H.; Su, M.X.; Dong, L.L.

    2010-07-01

    Particle size distribution and concentration in particulate two-phase flow are important parameters in a wide variety of industrial areas. For the purpose of online characterization in dense coal-water slurries, ultrasonic methods have many advantages such as avoiding dilution, the capability for being used in real time, and noninvasive testing, while light-based techniques are not capable of providing information because optical methods often require the slurry to be diluted. In this article, the modified Urick equation including temperature modification, which can be used to determine the concentration by means of the measurement of ultrasonic velocity in a coal-water slurry, is evaluatedmore » on the basis of theoretical analysis and experimental study. A combination of the coupled-phase model and the Bouguer-Lambert-Beer law is employed in this work, and the attenuation spectrum is measured within the frequency region from 3 to 12 MHz. Particle size distributions of the coal-water slurry at different volume fractions are obtained with the optimum regularization technique. Therefore, the ultrasonic technique presented in this work brings the possibility of using ultrasound for online measurements of dense slurries.« less

  10. Apparatus and method for pumping hot, erosive slurry of coal solids in coal derived, water immiscible liquid

    DOEpatents

    Ackerman, Carl D.

    1983-03-29

    An apparatus for and method of pumping hot, erosive slurry of coal solids in a coal derived, water immiscible liquid to higher pressure involves the use of a motive fluid which is miscible with the liquid of the slurry. The apparatus includes a pump 12, a remote check valve 14 and a chamber 16 between and in fluid communication with the pump 12 and check valve 14 through conduits 18,20. Pump 12 exerts pressure on the motive fluid and thereby on the slurry through a concentration gradient of coal solids within chamber 16 to alternately discharge slurry under pressure from the outlet port of check valve 14 and draw slurry in through the inlet port of check valve 14.

  11. Interactions between soil texture and placement of dairy slurry application: I. Flow characteristics and leaching of nonreactive components.

    PubMed

    Glaesner, Nadia; Kjaergaard, Charlotte; Rubaek, Gitte H; Magid, Jakob

    2011-01-01

    Land application of manure can exacerbate nutrient and contaminant transfers to the aquatic environment. This study examined the effect of injecting a dairy cattle (Bostaurus L.) manure slurry on mobilization and leaching of dissolved, nonreactive slurry components across a range of agricultural soils. We compared leaching of slurry-applied bromide through intact soil columns (20 cm diam., 20 cm high) of differing textures following surface application or injection of slurry. The volumetric fraction of soil pores >30 microm ranged from 43% in a loamy sand to 28% in a sandy loam and 15% in a loam-textured soil. Smaller active flow volumes and higher proportions of preferential flow were observed with increasing soil clay content. Injection of slurry in the loam soil significantly enhanced diffusion of applied bromide into the large fraction of small pores compared with surface application. The resulting physical protection against leaching of bromide was reflected by 60.2% of the bromide tracer was recovered in the effluent after injection, compared with 80.6% recovery after surface application. No effect of slurry injection was observed in the loamy sand and sandy loam soils. Our findings point to soil texture as an important factor influencing leaching of dissolved, nonreactive slurry components in soils amended with manure slurry.

  12. Field device to measure viscosity, density, and other slurry properties in drilled shafts [summary].

    DOT National Transportation Integrated Search

    2016-08-01

    Proper performance of the mineral slurries used to stabilize drilled shaft excavations is : maintained by assuring that the density, viscosity, pH, and sand content of the slurry stay : within limits set by the Florida Department of Transportation (F...

  13. Examination of Icing Induced Loss of Control and Its Mitigations

    NASA Technical Reports Server (NTRS)

    Reehorst, Andrew L.; Addy, Harold E., Jr.; Colantonio, Renato O.

    2010-01-01

    Factors external to the aircraft are often a significant causal factor in loss of control (LOC) accidents. In today s aviation world, very few accidents stem from a single cause and typically have a number of causal factors that culminate in a LOC accident. Very often the "trigger" that initiates an accident sequence is an external environment factor. In a recent NASA statistical analysis of LOC accidents, aircraft icing was shown to be the most common external environmental LOC causal factor for scheduled operations. When investigating LOC accident or incidents aircraft icing causal factors can be categorized into groups of 1) in-flight encounter with super-cooled liquid water clouds, 2) take-off with ice contamination, or 3) in-flight encounter with high concentrations of ice crystals. As with other flight hazards, icing induced LOC accidents can be prevented through avoidance, detection, and recovery mitigations. For icing hazards, avoidance can take the form of avoiding flight into icing conditions or avoiding the hazard of icing by making the aircraft tolerant to icing conditions. Icing detection mitigations can take the form of detecting icing conditions or detecting early performance degradation caused by icing. Recovery from icing induced LOC requires flight crew or automated systems capable of accounting for reduced aircraft performance and degraded control authority during the recovery maneuvers. In this report we review the icing induced LOC accident mitigations defined in a recent LOC study and for each mitigation describe a research topic required to enable or strengthen the mitigation. Many of these research topics are already included in ongoing or planned NASA icing research activities or are being addressed by members of the icing research community. These research activities are described and the status of the ongoing or planned research to address the technology needs is discussed

  14. Quantum Spin Ice under a [111] Magnetic Field: From Pyrochlore to Kagome

    NASA Astrophysics Data System (ADS)

    Bojesen, Troels Arnfred; Onoda, Shigeki

    2017-12-01

    Quantum spin ice, modeled for magnetic rare-earth pyrochlores, has attracted great interest for hosting a U(1) quantum spin liquid, which involves spin-ice monopoles as gapped deconfined spinons, as well as gapless excitations analogous to photons. However, the global phase diagram under a [111] magnetic field remains open. Here we uncover by means of unbiased quantum Monte Carlo simulations that a supersolid of monopoles, showing both a superfluidity and a partial ionization, intervenes the kagome spin ice and a fully ionized monopole insulator, in contrast to classical spin ice where a direct discontinuous phase transition takes place. We also show that on cooling, kagome spin ice evolves towards a valence-bond solid similar to what appears in the associated kagome lattice model [S. V. Isakov et al., Phys. Rev. Lett. 97, 147202 (2006), 10.1103/PhysRevLett.97.147202]. Possible relevance to experiments is discussed.

  15. Microbial oxidation of elemental selenium in soil slurries and bacterial cultures

    USGS Publications Warehouse

    Dowdle, P.R.; Oremland, R.S.

    1998-01-01

    The microbial oxidation of elemental selenium [Se(O)] was studied by employing 75Se(O) as a tracer. Live, oxic soil slurries demonstrated a linear production of mostly Se(IV), with the formation of smaller quantities of Se(VI). Production of both Se(IV) and Se(VI) was inhibited by autoclaving, formalin, antibiotics, azide, and 2,4-dinitrophenol, thereby indicating the involvement of microbes. Oxidation of Se(O) in slurries was enhanced by addition of acetate, glucose, or sulfide, which implied involvement of chemoheterotrophs as well as chemoautotrophic thiobacilli. Cultures of Thiobacillus ASN-1, Leptothrix MnB1, and a heterotrophic soil enrichment all oxidized Se(O) with Se(VI) observed as the major product rather than Se(IV). This indicated that microbial oxidation in soils is partly constrained by the adsorption of Se(IV) onto soil surfaces. Rate constants for unamended soil slurry Se(O) oxidation ranged from 0.0009 to 0.0117 day-1 which were 3-4 orders of magnitude lower than those reported for dissimilatory Se(VI) reduction in organic-rich, anoxic sediments.The microbial oxidation of elemental selenium [Se(0)] was studied by employing 75Se(0) as a tracer. Live, oxic soil slurries demonstrated a linear production of mostly Se(IV), with the formation of smaller quantities of Se(VI). Production of both Se(IV) and Se(VI) was inhibited by autoclaving, formalin, antibiotics, azide, and 2,4-dinitrophenol, thereby indicating the involvement of microbes. Oxidation of Se(O) in slurries was enhanced by addition of acetate, glucose, or sulfide, which implied involvement of chemoheterotrophs as well as chemoautotrophic thiobacilli. Cultures of Thiobacillus ASN-1, Leptothrix MnB1, and a heterotrophic soil enrichment all oxidized Se(O) with Se(VI) observed as the major product rather than Se(IV). This indicated that microbial oxidation in soils is partly constrained by the adsorption of Se(IV) onto soil surfaces. Rate constants for unamended soil slurry Se(O) oxidation

  16. Comparative assessment of water use and environmental implications of coal slurry pipelines

    USGS Publications Warehouse

    Palmer, Richard N.; James II, I. C.; Hirsch, R.M.

    1977-01-01

    With other studies conducted by the U.S. Geological Survey of water use in the conversion and transportation of the West 's coal, an analysis of water use and environmental implications of coal-slurry pipeline transport is presented. Simulations of a hypothetical slurry pipeline of 1000-mile length transporting 12.5 million tons per year indicate that pipeline costs and energy requirements are quite sensitive to the coal-to-water ratio. For realistic water prices, the optimal ratio will not vary far from the 50/50 ratio by weight. In comparison to other methods of energy conversion and transport, coal-slurry pipeline utilize about 1/3 the amount of water required for coal gasification, and about 1/5 the amount required for on-site electrical generation. An analysis of net energy output from operating alternative energy transportation systems for the assumed conditions indicates that both slurry pipeline and rail shipment require approximately 4.5 percent of the potential electrical energy output of the coal transported, and high-voltage, direct-current transportation requires approximately 6.5 percent. The environmental impacts of the different transports options are so substantially different that a common basis for comparison does not exist. (Woodard-USGS)

  17. Arctic spring ozone reduction associated with projected sea ice loss

    NASA Astrophysics Data System (ADS)

    Deser, C.; Sun, L.; Tomas, R. A.; Polvani, L. M.

    2013-12-01

    The impact of Arctic sea ice loss on the stratosphere is investigated using the Whole-Atmosphere Community Climate Model (WACCM), by prescribing the sea ice in the late 20th century and late 21st century, respectively. The localized Sea Surface Temperature (SST) change associated with sea ice melt is also included in the future run. Overall, the model simulates a negative annular-mode response in the winter and spring. In the stratosphere, polar vortex strengthens from February to April, peaking in March. Consistent with it, there is an anomalous cooling in the high-latitude stratosphere, and polar cap ozone reduction is up to 20 DU. Since the difference between these two runs lies only in the sea ice and localized SST in the Arctic, the stratospheric circulation and ozone changes can be attributed to the surface forcing. Eliassen-Palm analysis reveals that the upward propagation of planetary waves is suppressed in the spring as a consequence of sea ice loss. The reduction in propagation causes less wave dissipation and thus less zonal wind deceleration in the extratropical stratosphere.

  18. [Culture medium based on biogas slurry and breeding of oil Chlorella].

    PubMed

    Zhao, Feng-Min; Mei, Shuai; Cao, You-Fu; Ding, Jin-Feng; Xu, Jia-Jie; Li, Shu-Jun

    2014-06-01

    The oil chlorella cultivation and biogas slurry treatment were combined. The biogas slurry provided water and nutrient for growing chlorella, at the same time, harmless treatment of biogas slurry was realized. This paper cultivated 4 species of oil chlorella in the mixed medium of biogas slurry and green algae medium (the volume ratios were 1 : 9, 1 : 3, 1 : 1 and 3 : 1, respectively), and compared their oil productivity to select the best oil chlorella species and the optimal culture medium. The results showed that, the combination of medium and chlorella species to reach the highest oil productivity was a volume ratio of 1 : 3 and the chlorella species BJ05, and the oil productivity of chlorella BJ05 was 9.20 mg x (L x d)(-1), higher than that in green algae medium [8.66 mg x (L x d)(-1)]. In mixed medium with a volume ratio of 1:3, the effect of adding different nutrients into the green algae medium on the oil productivity was examined, and the results showed that, sodium carbonate and citric acid had no negative effect on the oil productivity of chlorella BJ05. in the absence of sodium carbonate and citric acid, the oil productivity of chlorella BJ05 was 9.36 mg x (L x d)(-1), and the removal of COD (chemical oxygen demand), total nitrogen, total phosphorus and ammonia nitrogen rates were 59%, 75%, 61% and 100%, respectively. Deficiency in other nutrients had negative effect on the oil productivity. Therefore, the culture medium was further optimized to the mixed medium of biogas slurry and green algae medium with a volume ratio of 1 : 3 and without addition of sodium carbonate and citric acid.

  19. Temporal dynamics of ikaite in experimental sea ice

    NASA Astrophysics Data System (ADS)

    Rysgaard, S.; Wang, F.; Galley, R. J.; Grimm, R.; Notz, D.; Lemes, M.; Geilfus, N.-X.; Chaulk, A.; Hare, A. A.; Crabeck, O.; Else, B. G. T.; Campbell, K.; Sørensen, L. L.; Sievers, J.; Papakyriakou, T.

    2014-08-01

    Ikaite (CaCO3 · 6H2O) is a metastable phase of calcium carbonate that normally forms in a cold environment and/or under high pressure. Recently, ikaite crystals have been found in sea ice, and it has been suggested that their precipitation may play an important role in air-sea CO2 exchange in ice-covered seas. Little is known, however, of the spatial and temporal dynamics of ikaite in sea ice. Here we present evidence for highly dynamic ikaite precipitation and dissolution in sea ice grown at an outdoor pool of the Sea-ice Environmental Research Facility (SERF) in Manitoba, Canada. During the experiment, ikaite precipitated in sea ice when temperatures were below -4 °C, creating three distinct zones of ikaite concentrations: (1) a millimeter-to-centimeter-thin surface layer containing frost flowers and brine skim with bulk ikaite concentrations of >2000 μmol kg-1, (2) an internal layer with ikaite concentrations of 200-400 μmol kg-1, and (3) a bottom layer with ikaite concentrations of <100 μmol kg-1. Snowfall events caused the sea ice to warm and ikaite crystals to dissolve. Manual removal of the snow cover allowed the sea ice to cool and brine salinities to increase, resulting in rapid ikaite precipitation. The observed ikaite concentrations were on the same order of magnitude as modeled by FREZCHEM, which further supports the notion that ikaite concentration in sea ice increases with decreasing temperature. Thus, varying snow conditions may play a key role in ikaite precipitation and dissolution in sea ice. This could have a major implication for CO2 exchange with the atmosphere and ocean that has not been accounted for previously.

  20. Robotic partial nephrectomy with intracorporeal renal hypothermia using ice slush.

    PubMed

    Kaouk, Jihad H; Samarasekera, Dinesh; Krishnan, Jayram; Autorino, Riccardo; Acka, Oktay; Brando, Luis Felipe; Laydner, Humberto; Zargar, Homayoun

    2014-09-01

    To outline our technique for intracorporeal cooling with ice slush during robotic partial nephrectomy (RPN), with real-time parenchymal temperature monitoring. Eleven consecutive patients with enhancing solid renal masses suitable for treatment with RPN between September 2013 and January 2014 were included in the analysis. Institutional review board approval and informed consent were obtained. Preoperative patient characteristics, intraoperative surgical parameters including patient body temperature and ipsilateral kidney temperature with real-time monitoring, and short-term functional outcomes were analyzed. Median age was 55 years (range, 39-75 years) and American Society of Anesthesiologists score was 3 (range, 2-4). Median tumor size was 4 cm (range, 2.3-7.1) and RENAL nephrometry score was 9 (range, 5-11). One patient had a solitary kidney. During cooling, the lowest median renal parenchymal temperature was 17.05°C (range, 11°C-26°C) and cold ischemia time was 27.17 minutes (range, 18-49 minutes). Median time to latest postoperative estimated glomerular filtration rate was 12 days (range, 2-30 days). Median glomerular filtration rate preservation was 81% (range, 47.9%-126%). There was one positive margin. There were no postoperative complications, and no patients experienced a prolonged ileus. The limitations of this study include a small number of patients and short-term follow-up. RPN with renal hypothermia using intracorporeal ice slush is technically feasible. Our simplified method of introducing the ice slush was free of complications and highly reproducible. The use of a needle temperature probe allowed us to monitor in real time cooling of the renal parenchyma. Copyright © 2014 Elsevier Inc. All rights reserved.