Sample records for ice slurry generation

  1. ICE SLURRY APPLICATIONS

    PubMed Central

    Kauffeld, M.; WANG, M. J.; Goldstein, V.; Kasza, K. E.

    2011-01-01

    The role of secondary refrigerants is expected to grow as the focus on the reduction of greenhouse gas emissions increases. The effectiveness of secondary refrigerants can be improved when phase changing media are introduced in place of single phase media. Operating at temperatures below the freezing point of water, ice slurry facilitates several efficiency improvements such as reductions in pumping energy consumption as well as lowering the required temperature difference in heat exchangers due to the beneficial thermo-physical properties of ice slurry. Research has shown that ice slurry can be engineered to have ideal ice particle characteristics so that it can be easily stored in tanks without agglomeration and then be extractable for pumping at very high ice fraction without plugging. In addition ice slurry can be used in many direct contact food and medical protective cooling applications. This paper provides an overview of the latest developments in ice slurry technology. PMID:21528014

  2. Medical ice slurry production device

    DOEpatents

    Kasza, Kenneth E [Palos Park, IL; Oras, John [Des Plaines, IL; Son, HyunJin [Naperville, IL

    2008-06-24

    The present invention relates to an apparatus for producing sterile ice slurries for medical cooling applications. The apparatus is capable of producing highly loaded slurries suitable for delivery to targeted internal organs of a patient, such as the brain, heart, lungs, stomach, kidneys, pancreas, and others, through medical size diameter tubing. The ice slurry production apparatus includes a slurry production reservoir adapted to contain a volume of a saline solution. A flexible membrane crystallization surface is provided within the slurry production reservoir. The crystallization surface is chilled to a temperature below a freezing point of the saline solution within the reservoir such that ice particles form on the crystallization surface. A deflector in the form of a reciprocating member is provided for periodically distorting the crystallization surface and dislodging the ice particles which form on the crystallization surface. Using reservoir mixing the slurry is conditioned for easy pumping directly out of the production reservoir via medical tubing or delivery through other means such as squeeze bottles, squeeze bags, hypodermic syringes, manual hand delivery, and the like.

  3. Numerical Investigation of Ice Slurry Flow in a Horizontal Pipe

    NASA Astrophysics Data System (ADS)

    Rawat, K. S.; Pratihar, A. K.

    2018-02-01

    In the last decade, phase changing material slurry (PCMS) gained much attention as a cooling medium due to its high energy storage capacity and transportability. However the flow of PCM slurry is a complex phenomenon as it affected by various parameters, i.e. fluid properties, velocity, particle size and concentration etc.. In the present work ice is used as a PCM and numerical investigation of heterogeneous slurry flow has been carried out using Eulerian KTGF model in a horizontal pipe. Firstly the present model is validated with existing experiment results available in the literature, and then model is applied to the present problem. Results show that, flow is almost homogeneous for ethanol based ice slurry with particle diameter of 0.1 mm at the velocity of 1 m/s. It is also found that ice particle distribution is more uniform at higher velocity, concentration of ice and ethanol in slurry. Results also show that ice concentration increases on the top of the pipe, and the effect of particle wall collision is more significant at higher particle diameter.

  4. Ice Slurry Ingestion and Physiological Strain During Exercise in Non-Compensable Heat Stress.

    PubMed

    Ng, Jason; Wingo, Jonathan E; Bishop, Phillip A; Casey, Jason C; Aldrich, Elizabeth K

    2018-05-01

    Precooling with ice slurry ingestion attenuates the increase in rectal temperature (Tre) during subsequent running and cycling. It remains unclear how this cooling method affects physiological strain during work while wearing protective garments. This study investigated the effect of ice slurry ingestion on physiological strain during work in hot conditions while wearing firefighter protective clothing. In three counterbalanced trials, eight men (mean ± SD; age = 21 ± 2 yr, height = 179.5 ± 3.5 cm, mass = 79.1 ± 4.1 kg, body fat = 11.4 ± 3.7%) wore firefighter protective clothing and walked (4 km · h-1, 12% incline, ∼7 METs) for 30 min in hot conditions (35°C, 40% RH). Every 2.5 min, subjects ingested 1.25 g · kg-1 (relative total: 15 g · kg-1, absolute total: 1186.7 ± 61.3 g) of a tepid (22.4 ± 1.7°C), cold (7.1 ± 1.5°C), or ice slurry (-1.3 ± 0.2°C) beverage. Heart rates (HR) were lower with ice slurry ingestion compared to both fluid trials starting 5 min into exercise (tepid = 158 ± 14, cold = 157 ± 11, ice slurry = 146 ± 13 bpm) and persisting for the remainder of the bout (min 30: tepid = 196 ± 10, cold = 192 ± 10, ice slurry = 181 ± 13 bpm). Tre was lower with ice slurry ingestion compared to cold and tepid trials (min 5: tepid = 37.17 ± 0.38, cold = 37.17 ± 0.39, ice slurry = 37.05 ± 0.43°C; min 30: tepid = 38.15 ± 0.29, cold = 38.31 ± 0.36, ice slurry = 37.95 ± 0.32°C). The physiological strain index (PSI) was lower with ice slurry ingestion compared to fluid trials starting at min 5 (tepid = 3.8 ± 0.7, cold = 3.8 ± 0.6, ice slurry = 3.0 ± 0.5) and remained lower throughout exercise (min 30: tepid = 8.2 ± 0.6, cold = 8.3 ± 0.9, ice slurry = 6.9 ± 1.2). A large quantity of ice slurry ingested under non-compensable heat stress conditions mitigated physiological strain during exercise by blunting the rise in heart rate and rectal temperature.Ng J, Wingo JE, Bishop PA, Casey JC, Aldrich EK. Ice slurry ingestion and

  5. Effects of storage in ozonised slurry ice on the sensory and microbial quality of sardine (Sardina pilchardus).

    PubMed

    Campos, Carmen A; Rodríguez, Oscar; Losada, Vanesa; Aubourg, Santiago P; Barros-Velázquez, Jorge

    2005-08-25

    The use of slurry ice, both alone and in combination with ozone, as compared with traditional flake ice was investigated as a new refrigeration system for the storage of sardine (Sardina pilchardus). Microbiological, chemical and sensory analyses were carried out throughout a storage period of 22 days. According to sensory analyses, sardine specimens stored in ozonised slurry ice had a shelf life of 19 days, while counterpart batches stored in slurry ice or flake ice had shelf lives of 15 and 8 days, respectively. Storage in ozonised slurry ice led to significantly lower counts of aerobic mesophiles, psychrotrophic bacteria, anaerobes, coliforms, and both lipolytic and proteolytic microorganisms in sardine muscle, and of surface counts of mesophiles and psychrotrophic bacteria in sardine skin as compared with the slurry ice and the flake ice batches. In all cases, the slurry ice batch also exhibited significantly lower microbial counts, both in muscle and skin, than the flake ice batch. Chemical parameters revealed that the use of slurry ice slowed down the formation of TVB-N and TMA-N to a significant extent in comparison with storage in flake ice. A combination of slurry ice with ozone also allowed a better control of pH and TMA-N formation as compared with slurry ice alone. This work demonstrates that the combined use of slurry ice and ozone for the storage of sardine can be recommended to improve the quality and extend the shelf life of this fish species.

  6. Rested and stressed farmed Atlantic cod (Gadus morhua) chilled in ice or slurry and effects on quality.

    PubMed

    Digre, Hanne; Erikson, Ulf; Aursand, Ida G; Gallart-Jornet, Lorena; Misimi, Ekrem; Rustad, Turid

    2011-01-01

    The main objectives of this study were to investigate (1) whether rested harvest of farmed cod was better maintained by chilling with slurry rather than by traditional ice storage, (2) whether chilling with slurry would be a feasible chilling method to assure low core temperatures (≤0 °C) at packing of gutted fish, and (3) the effects of superchilling compared with traditional ice on selected quality parameters of cod during storage. In the experiment, seawater slurry at -2.0 ± 0.3 °C was used. Anesthetized (AQUI-S™), percussion stunned, and stressed cod chilled in slurry were compared. Cod stored on ice were used as reference group. The fish were evaluated at the day of slaughter, and after 7 and 14 d of storage according to handling stress (initial muscle pH, muscle twitches, rigor mortis), core temperatures, quality index method, microbial counts, weight changes, salt and water content, water distribution, pH, adenosine triphosphate-degradation products, K-value, water-holding capacity, fillet color, and texture. Chilling cod in slurry was more rapid than chilling in ice. Prechilling (1 d) of cod in slurry before subsequent ice storage resulted in lower quality 7 d postmortem compared with both ice and continuous slurry storage. The potential advantages of superchilling became more prominent after 14 d with lower microbiological activity, better maintenance of freshness (lower total quality index scores and lower K-values) compared with fish stored on ice. A drawback with slurry-stored fish was that cloudy eyes developed earlier, in addition to weight gain and salt uptake compared to ice-stored fish. Practical Application: Chilling is an essential operation in any fish-processing plant. This manuscript addresses different applications of slurry ice in the processing and storage of Atlantic cod. Cod quality was assessed after 7 and 14 d of iced and superchilled storage.

  7. Ice slurry ingestion reduces both core and facial skin temperatures in a warm environment.

    PubMed

    Onitsuka, Sumire; Zheng, Xinyan; Hasegawa, Hiroshi

    2015-07-01

    Internal body cooling by ingesting ice slurry has recently attracted attention. Because ice slurries are ingested through the mouth, it is possible that this results in conductive cooling of the facial skin and brain. However, no studies have investigated this possibility. Thus, the aim of this study was to investigate the effects of ice slurry ingestion on forehead skin temperature at the point of conductive cooling between the forehead skin and brain. Eight male subjects ingested either 7.5g/kg of ice slurry (-1°C; ICE), a cold sports drink (4°C; COOL), or a warm sports drink (37°C; CON) for 15min in a warm environment (30°C, 80% relative humidity). Then, they remained at rest for 1h. As physiological indices, rectal temperature (Tre), mean skin temperature, forehead skin temperature (Thead), heart rate, nude body mass, and urine specific gravity were measured. Subjective thermal sensation (TS) was measured at 5-min intervals throughout the experiment. With ICE, Tre and Thead were significantly reduced compared with CON and COOL conditions (p<0.05). The results of the other physiological indices were not significantly different. TS with ICE was significantly lower than that with CON and COOL (p<0.05) and was correlated with Tre or Thead (p<0.05). These results indicate that ice slurry ingestion may induce conductive cooling between forehead skin and brain, and reduction in core and forehead skin temperature reduced thermal sensation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Remarkable antiagglomeration effect of a yeast biosurfactant, diacylmannosylerythritol, on ice-water slurry for cold thermal storage.

    PubMed

    Kitamoto, D; Yanagishita, H; Endo, A; Nakaiwa, M; Nakane, T; Akiya, T

    2001-01-01

    Antiagglomeration effects of different surfactants on ice slurry formation were examined to improve the efficiency of an ice-water slurry system to be used for cold thermal storage. Among the chemical surfactants tested, a nonionic surfactant, poly(oxyethylene) sorbitan dioleate, was found to show a greater antiagglomeration effect on the slurry than anionic, cationic, or amphoteric surfactants. More interestingly, diacylmannosylerythritol, a glycolipid biosurfactant produced by a yeast strain of Candida antarctica, exhibited a remarkable effect on the slurry, attaining a high ice packing factor (35%) for 8 h at a biosurfactant concentration of 10 mg/L. These nonionic glycolipid surfactants are likely to effectively adsorb on the ice surface in a highly regulated manner to suppress the agglomeration or growth of the ice particles. This is the first report on the utilization of biosurfactant for thermal energy storage, which may significantly expand the commercial applications of the highly environmentally friendly slurry system.

  9. Experimental investigation of ice slurry flow pressure drop in horizontal tubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grozdek, Marino; Khodabandeh, Rahmatollah; Lundqvist, Per

    2009-01-15

    Pressure drop behaviour of ice slurry based on ethanol-water mixture in circular horizontal tubes has been experimentally investigated. The secondary fluid was prepared by mixing ethyl alcohol and water to obtain initial alcohol concentration of 10.3% (initial freezing temperature -4.4 C). The pressure drop tests were conducted to cover laminar and slightly turbulent flow with ice mass fraction varying from 0% to 30% depending on test conditions. Results from flow tests reveal much higher pressure drop for higher ice concentrations and higher velocities in comparison to the single phase flow. However for ice concentrations of 15% and higher, certain velocitymore » exists at which ice slurry pressure drop is same or even lower than for single phase flow. It seems that higher ice concentration delay flow pattern transition moment (from laminar to turbulent) toward higher velocities. In addition experimental results for pressure drop were compared to the analytical results, based on Poiseulle and Buckingham-Reiner models for laminar flow, Blasius, Darby and Melson, Dodge and Metzner, Steffe and Tomita for turbulent region and general correlation of Kitanovski which is valid for both flow regimes. For laminar flow and low buoyancy numbers Buckingham-Reiner method gives good agreement with experimental results while for turbulent flow best fit is provided with Dodge-Metzner and Tomita methods. Furthermore, for transport purposes it has been shown that ice mass fraction of 20% offers best ratio of ice slurry transport capability and required pumping power. (author)« less

  10. Study of Cold Heat Energy Release Characteristics of Flowing Ice Water Slurry in a Pipe

    NASA Astrophysics Data System (ADS)

    Inaba, Hideo; Horibe, Akihiko; Ozaki, Koichi; Yokota, Maki

    This paper has dealt with melting heat transfer characteristics of ice water slurry in an inside tube of horizontal double tube heat exchanger in which a hot water circulated in an annular gap between the inside and outside tubes. Two kinds of heat exchangers were used; one is made of acrylic resin tube for flow visualization and the other is made of stainless steel tube for melting heat transfer measurement. The result of flow visualization revealed that ice particles flowed along the top of inside tube in the ranges of small ice packing factor and low ice water slurry velocity, while ice particles diffused into the whole of tube and flowed like a plug built up by ice particles for large ice packing factor and high velocity. Moreover, it was found that the flowing ice plug was separated into numbers of small ice clusters by melting phenomenon. Experiments of melting heat transfer were carried out under some parameters of ice packing factor, ice water slurry flow rate and hot water temperature. Consequently, the correlation equation of melting heat transfer was derived as a function of those experimental parameters.

  11. Ice/water slurry blocking phenomenon at a tube orifice.

    PubMed

    Hirochi, Takero; Yamada, Shuichi; Shintate, Tuyoshi; Shirakashi, Masataka

    2002-10-01

    The phenomenon of ice-particle/water mixture blocking flow through a pipeline is a problem that needs to be solved before mixture flow can be applied for practical use in cold energy transportation in a district cooling system. In this work, the blocking mechanism of ice-particle slurry at a tube orifice is investigated and a criterion for blocking is presented. The cohesive nature of ice particles is shown to cause compressed plug type blocking and the compressive yield stress of a particle cluster is presented as a measure for the cohesion strength of ice particles.

  12. Effect of the timing of ice slurry ingestion for precooling on endurance exercise capacity in a warm environment.

    PubMed

    Takeshima, Keisuke; Onitsuka, Sumire; Xinyan, Zheng; Hasegawa, Hiroshi

    2017-04-01

    It has been demonstrated that precooling with ice slurry ingestion enhances endurance exercise capacity in the heat. However, no studies have yet evaluated the optimal timing of ice slurry ingestion for precooling. This study aimed to investigate the effects of varying the timing of ice slurry ingestion for precooling on endurance exercise capacity in a warm environment. Ten active male participants completed 3 experimental cycling trials to exhaustion at 55% peak power output (PPO) after 15min of warm-up at 30% PPO at 30°C and 80% relative humidity. Three experimental conditions were set: no ice slurry ingestion (CON), pre-warm-up ice slurry ingestion (-1°C; 7.5gkg -1 ) (PRE), and post-warm-up ice slurry ingestion (POST). Rectal and mean skin temperatures at the beginning of exercise in the POST condition (37.1±0.2°C, 33.8±0.9°C, respectively) were lower than those in the CON (37.5±0.3°C; P<0.001, 34.8±0.8°C; P<0.01, respectively) and PRE (37.4±0.2°C; P<0.01, 34.6±0.7°C; P<0.01, respectively) conditions. These reductions increased heat storage capacity and resulted in improved exercise capacity in the POST condition (60.2±8.7min) compared to that in the CON (52.0±11.9min; effect size [ES]=0.78) and PRE (56.9±10.4min; ES=0.34) conditions. Ice slurry ingestion after warm-up effectively reduced both rectal and skin temperatures and increased cycling time to exhaustion in a warm environment. Timing ice slurry ingestion to occur after warm-up may be effective for precooling in a warm environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Effect of slurry ice on the functional properties of proteins related to quality loss during skipjack tuna (Katsuwonus pelamis) chilled storage.

    PubMed

    Zhang, Bin; Deng, Shang-gui; Gao, Meng; Chen, Jing

    2015-04-01

    The effect of slurry ice on the quality of Skipjack tuna (Katsuwonus pelamis) during chilling storage was investigated and compared to flake ice. Slurry ice-treated samples showed significantly higher springiness and chewiness variables than the blank and flake ice-treated samples (P < 0.05). The growth of microorganisms in tuna muscle treated with slurry ice was also down significantly (P < 0.05), and the total aerobic counts didn't reach higher scores than 5.0 log CFU/g during the whole chilling storage. Additionally, the myofibrillar protein, Ca(2+)-ATPase activity, and total sulfydryl (SH) content in muscle treated with slurry ice were all significantly higher than the blank and flake-iced samples (P < 0.05). This was probably due to the faster cooling, subzero final-temperature, and larger heat exchange derived from slurry ice. Standard error of mean and sodium dodecyl sulfate-polyacrylamide gel electrophoresis results also confirmed that slurry ice treatment could effectively retard the degradation of myofibrillar proteins and showed a positive effect on the stability of tissue structures. © 2015 Institute of Food Technologists®

  14. Pre-cooling with ice slurry ingestion leads to similar run times to exhaustion in the heat as cold water immersion.

    PubMed

    Siegel, Rodney; Maté, Joseph; Watson, Greig; Nosaka, Kazunori; Laursen, Paul B

    2012-01-01

    The purpose of this study was to compare the effects of pre-exercise ice slurry ingestion and cold water immersion on submaximal running time in the heat. On three separate occasions, eight males ran to exhaustion at their first ventilatory threshold in the heat (34.0 ± 0.1 ° C, 52 ± 3% relative humidity) following one of three 30 min pre-exercise manoeuvres: (1) ice slurry ingestion; (2) cold water immersion; or (3) warm fluid ingestion (control). Running time was longer following cold water immersion (56.8 ± 5.6 min; P = 0.008) and ice slurry ingestion (52.7 ± 8.4 min; P = 0.005) compared with control (46.7 ± 7.2 min), but not significantly different between cold water immersion and ice slurry ingestion (P = 0.335). During exercise, rectal temperature was lower with cold water immersion from 15 and 20 min into exercise compared with control and ice slurry ingestion, respectively, and remained lower until 40 min (P = 0.001). At exhaustion rectal temperature was significantly higher following ice slurry ingestion (39.76 ± 0.36 ° C) compared with control (39.48 ± 0.36 ° C; P = 0.042) and tended to be higher than cold water immersion (39.48 ± 0.34 ° C; P = 0.065). As run times were similar between conditions, ice slurry ingestion may be a comparable form of pre-cooling to cold water immersion.

  15. Evaluation of Ice Slurries as a Control for Postharvest Growth of Vibrio spp. in Oysters and Potential for Filth Contamination.

    PubMed

    Lydon, Keri Ann; Farrell-Evans, Melissa; Jones, Jessica L

    2015-07-01

    Raw oyster consumption is the most common route of exposure for Vibrio spp. infections in humans. Vibriosis has been increasing steadily in the United States despite efforts to reduce the incidence of the disease. Research has demonstrated that ice is effective in reducing postharvest Vibrio spp. growth in oysters but has raised concerns of possible contamination of oyster meat by filth (as indicated by the presence of fecal coliform bacteria or Clostridium perfringens). This study examined the use of ice slurries (<4.5°C) to reduce Vibrio growth. Ice slurries showed rapid internal cooling of oysters, from 23.9°C (75°F) to 10°C (50°F) within 12 min. The initial bacterial loads in the ice slurry waters were near the limits of detection. Following repeated dipping of oysters into ice slurries, water samples exhibited significant (P < 0.05) increases in median levels of fecal coliforms (9.5 most probable number [MPN]/100 ml), C. perfringens (280 MPN/100 ml), Vibrio vulnificus (11,250 MPN/ml), and total Vibrio parahaemolyticus (3,900 MPN/ml). The microbial load in oyster meat, however, was unchanged after 15 min of submergence, with no significant differences (P < 0.05) in levels of filth indicator (range, 250 to 720 MPN/100 g) or Vibrio spp. (range, 9,000 to 20,000 MPN/g) bacteria. These results support the use of ice slurries as a postharvest application for rapid cooling of oysters to minimize Vibrio growth.

  16. Ice slurry ingestion does not enhance self-paced intermittent exercise in the heat.

    PubMed

    Gerrett, N; Jackson, S; Yates, J; Thomas, G

    2017-11-01

    This study aimed to determine if ice slurry ingestion improved self-paced intermittent exercise in the heat. After a familiarisation session, 12 moderately trained males (30.4 ± 3.4 year, 1.8 ± 0.1 cm, 73.5 ± 14.3 kg, V˙O 2max 58.5 ± 8.1 mL/kg/min) completed two separate 31 min self-paced intermittent protocols on a non-motorised treadmill in 30.9 ± 0.9 °C, 41.1 ± 4.0% RH. Thirty minutes prior to exercise, participants consumed either 7.5 g/kg ice slurry (0.1 ± 0.1 °C) (ICE) or 7.5 g/kg water (23.4 ± 0.9 °C) (CONTROL). Despite reductions in T c (ΔT c : -0.51 ± 0.3 °C, P < 0.05) and thermal sensation prior to exercise, ICE did not enhance self-paced intermittent exercise compared to CONTROL. The average speed during the walk (CONTROL: 5.90 ± 1.0 km, ICE: 5.90 ± 1.0 km), jog (CONTROL: 8.89 ± 1.7 km, ICE: 9.11 ± 1.5 km), run (CONTROL: 12.15 ± 1.7 km, ICE: 12.54 ± 1.5 km) and sprint (CONTROL: 17.32 ± 1.3 km, ICE: 17.18 ± 1.4 km) was similar between conditions (P > 0.05). Mean T sk , T b , blood lactate, heart rate and RPE were similar between conditions (P > 0.05). The findings suggest that lowering T c prior to self-paced intermittent exercise does not translate into an improved performance. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Effects of using slurry ice during transportation on the microbiological, chemical, and sensory assessments of aquacultured sea bass (Dicentrarchus labrax) stored at 4 degrees C.

    PubMed

    Cakli, Sukran; Kilinc, Berna; Dincer, Tolga; Tolasa, Sebnem

    2006-01-01

    Slurry ice, a biphasic system consisting of small spherical ice crystals surrounded by seawater at subzero temperature, was evaluated as a new chilled storage method for whole sea bass (Dicentrarchus labrax) a sparidae fish species of remarkable commercial interests. In this study two different group of chilling methods were used during transportation; in slurry ice packaged (Group A), and flake ice packaged (Group B). The effect of this advanced system during transportation on quality losses and the shelf life of aquacultured sea bass was evaluated. Mesophilic counts for sea bass exceeded 7 log cfu/g, which is considered the maximum level for acceptability for freshwater and marine fish after 13 days for groups A and B. On day 13 TVB-N values of groups A and B, reached the legal limits (35 mg/100 g set for TVB-N) for consumption. According to the results of sensory analyses, up to day 9 all the groups were determined as "acceptable" but on day 13 the groups A and B were no longer acceptable. The main negative aspect related to quality loss in slurry ice group corresponded to the appearance of eyes and gills. Using slurry ice during transportation did not extend the shelf life of sea bass stored at 4 degrees C.

  18. New-Generation Sealing Slurries For Borehole Injection Purposes

    NASA Astrophysics Data System (ADS)

    Stryczek, Stanisław; Gonet, Andrzej; Wiśniowski, Rafał; Złotkowski, Albert

    2015-12-01

    The development of techniques and technologies thanks to which parameters of the ground medium can be modified makes specialists look for new recipes of geopolymers - binders for the reinforcing and sealing of unstable and permeable grounds. The sealing slurries are expected to meet a number of strict requirements, therefore it is important to find new admixtures and additives which could modify the fresh and hardened slurry. Special attention has been recently paid to the fluid ash - a by-product of the combustion of hard coals. However, the use of this additive is associated with the application of appropriate superplastifier. Laboratory analyses of rheological parameters of fresh sealing slurries and the ways of improving their liquidity by a properly selected third-generation superplastifier are presented in the paper. The slurries were based on Portland cement CEM I, milled granulated large-furnace slag and fly ash from fluidized-bed combustion of hard coal.

  19. Design of a new abrasive slurry jet generator

    NASA Astrophysics Data System (ADS)

    Wang, F. C.; Shi, L. L.; Guo, C. W.

    2017-12-01

    With the advantages of a low system working pressure, good jet convergence and high cutting quality, abrasive slurry jet (ASJ) has broad application prospects in material cutting and equipment cleaning. Considering that the generator plays a crucial role in ASJ system, the paper designed a new type ASJ generator using an electric oil pump, a separate plunger cylinder, and a spring energized seal. According to the determining of structure shape, size and seal type, a new ASJ generator has been manufactured out and tested by a series of experiments. The new generator separates the abrasive slurry from the dynamic hydraulic oil, which can improve the service life of the ASJ system. And the new ASJ system can reach 40 MPa and has good performance in jet convergence, which deserves to popularization and application in materials machining.

  20. HybridICE® filter: ice separation in freeze desalination of mine waste waters.

    PubMed

    Adeniyi, A; Maree, J P; Mbaya, R K K; Popoola, A P I; Mtombeni, T; Zvinowanda, C M

    2014-01-01

    Freeze desalination is an alternative method for the treatment of mine waste waters. HybridICE(®) technology is a freeze desalination process which generates ice slurry in surface scraper heat exchangers that use R404a as the primary refrigerant. Ice separation from the slurry takes place in the HybridICE filter, a cylindrical unit with a centrally mounted filter element. Principally, the filter module achieves separation of the ice through buoyancy force in a continuous process. The HybridICE filter is a new and economical means of separating ice from the slurry and requires no washing of ice with water. The performance of the filter at a flow-rate of 25 L/min was evaluated over time and with varied evaporating temperature of the refrigerant. Behaviours of the ice fraction and residence time were also investigated. The objective was to find ways to improve the performance of the filter. Results showed that filter performance can be improved by controlling the refrigerant evaporating temperature and eliminating overflow.

  1. Using gait parameters to detect fatigue and responses to ice slurry during prolonged load carriage.

    PubMed

    Tay, Cheryl S; Lee, Jason K W; Teo, Ya S; Foo, Phildia Q Z; Tan, Pearl M S; Kong, Pui W

    2016-01-01

    This study examined (1) if changes in gait characteristics could indicate the exertional heat stress experienced during prolonged load carriage, and (2) if gait characteristics were responsive to a heat mitigation strategy. In an environmental chamber replicating tropical climatic conditions (ambient temperature 32°C, 70% relative humidity), 16 males aged 21.8 (1.2) years performed two trials of a work-rest cycle protocol consisting two bouts of 4-km treadmill walks with 30-kg load at 5.3km/h separated by a 15-min rest period. Ice slurry (ICE) or room temperature water (29°C) as a control (CON) was provided in 200-ml aliquots. The fluids were given 10min before the start, at the 15(th) and 30(th) min of each work cycle, and during each rest period. Spatio-temporal gait characteristics were obtained at the start and end of each work-rest cycle using a floor-based photocell system (OptoGait) and a high-speed video camera at 120Hz. Repeated-measure analysis of variance (trial×time) showed that with time, step width decreased (p=.024) while percent crossover steps increased (p=.008) from the 40(th) min onwards. Reduced stance time variability (-11.1%, p=.029) step width variability (-8.2%, p=.001), and percent crossover step (-18.5%, p=.010) were observed in ICE compared with CON. No differences in step length and most temporal variables were found. In conclusion, changes in frontal plane gait characteristics may indicate exertional heat stress during prolonged load carriage, and some of these changes may be mitigated with ice slurry ingestion. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. GenIce: Hydrogen-Disordered Ice Generator.

    PubMed

    Matsumoto, Masakazu; Yagasaki, Takuma; Tanaka, Hideki

    2018-01-05

    GenIce is an efficient and user-friendly tool to generate hydrogen-disordered ice structures. It makes ice and clathrate hydrate structures in various file formats. More than 100 kinds of structures are preset. Users can install their own crystal structures, guest molecules, and file formats as plugins. The algorithm certifies that the generated structures are completely randomized hydrogen-disordered networks obeying the ice rule with zero net polarization. © 2017 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc. © 2017 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc.

  3. Running performance and thermal sensation in the heat are improved with menthol mouth rinse but not ice slurry ingestion.

    PubMed

    Stevens, C J; Thoseby, B; Sculley, D V; Callister, R; Taylor, L; Dascombe, B J

    2016-10-01

    The purpose of this study was to compare the effects of a cooling strategy designed to predominately lower thermal state with a strategy designed to lower thermal sensation on endurance running performance and physiology in the heat. Eleven moderately trained male runners completed familiarization and three randomized, crossover 5-km running time trials on a non-motorized treadmill in hot conditions (33 °C). The trials included ice slurry ingestion before exercise (ICE), menthol mouth rinse during exercise (MEN), and no intervention (CON). Running performance was significantly improved with MEN (25.3 ± 3.5 min; P = 0.01), but not ICE (26.3 ± 3.2 min; P = 0.45) when compared with CON (26.0 ± 3.4 min). Rectal temperature was significantly decreased with ICE (by 0.3 ± 0.2 °C; P < 0.01), which persisted for 2 km of the run and MEN significantly decreased perceived thermal sensation (between 4 and 5 km) and ventilation (between 1 and 2 km) during the time trial. End-exercise blood prolactin concentration was elevated with MEN compared with CON (by 25.1 ± 24.4 ng/mL; P = 0.02). The data demonstrate that a change in the perception of thermal sensation during exercise from menthol mouth rinse was associated with improved endurance running performance in the heat. Ice slurry ingestion reduced core temperature but did not decrease thermal sensation during exercise or improve running performance. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Ice Slurry Ingestion Leads to a Lower Net Heat Loss during Exercise in the Heat.

    PubMed

    Morris, Nathan B; Coombs, Geoff; Jay, Ollie

    2016-01-01

    To compare the reductions in evaporative heat loss from the skin (Esk) to internal heat loss (Hfluid) induced by ice slurry (ICE) ingestion relative to 37 °C fluid and the accompanying body temperature and local thermoeffector responses during exercise in warm, dry conditions (33.5 °C ± 1.4 °C; 23.7% ± 2.6% relative humidity [RH]). Nine men cycled at approximately 55% VO2peak for 75 min and ingested 3.2 mL · kg(-1) aliquots of 37 °C fluid or ICE after 15, 30, and 45 min of exercise. Metabolic heat production (M-W), rectal temperature (Tre), mean skin temperature (Tsk), whole-body sweat loss (WBSL), local sweat rate (LSR), and skin blood flow (SkBF) were measured throughout. Net heat loss (HLnet) and heat storage (S) were estimated using partitional calorimetry. Relative to the 37 °C trial, M-W was similar (P = 0.81) with ICE ingestion; however, the 200 ± 20 kJ greater Hfluid (P < 0.001) with ICE ingestion was overcompensated by a 381 ± 199-kJ lower Esk (P < 0.001). Net heat loss (HLnet) was consequently 131 ± 120 kJ lower (P = 0.01) and S was greater (P = 0.05) with ICE ingestion compared with 37 °C fluid ingestion. Concurrently, LSR and WBSL were lower by 0.16 ± 0.14 mg · min(-1) · cm(-2) (P < 0.01) and 191 ± 122 g (P < 0.001), respectively, and SkBF tended to be lower (P = 0.06) by 5.4%maxAU ± 13.4%maxAU in the ICE trial. Changes in Tre and Tsk were similar throughout exercise with ICE compared to 37 °C fluid ingestion. Relative to 37 °C, ICE ingestion caused disproportionately greater reductions in Esk relative to Hfluid, resulting in a lower HLnet and greater S. Mechanistically, LSR and possibly SkBF were suppressed independently of Tre or Tsk, reaffirming the concept of human abdominal thermoreception. From a heat balance perspective, recommendations for ICE ingestion during exercise in warm, dry conditions should be reconsidered.

  5. Modeling and Grid Generation of Iced Airfoils

    NASA Technical Reports Server (NTRS)

    Vickerman, Mary B.; Baez, Marivell; Braun, Donald C.; Hackenberg, Anthony W.; Pennline, James A.; Schilling, Herbert W.

    2007-01-01

    SmaggIce Version 2.0 is a software toolkit for geometric modeling and grid generation for two-dimensional, singleand multi-element, clean and iced airfoils. A previous version of SmaggIce was described in Preparing and Analyzing Iced Airfoils, NASA Tech Briefs, Vol. 28, No. 8 (August 2004), page 32. To recapitulate: Ice shapes make it difficult to generate quality grids around airfoils, yet these grids are essential for predicting ice-induced complex flow. This software efficiently creates high-quality structured grids with tools that are uniquely tailored for various ice shapes. SmaggIce Version 2.0 significantly enhances the previous version primarily by adding the capability to generate grids for multi-element airfoils. This version of the software is an important step in streamlining the aeronautical analysis of ice airfoils using computational fluid dynamics (CFD) tools. The user may prepare the ice shape, define the flow domain, decompose it into blocks, generate grids, modify/divide/merge blocks, and control grid density and smoothness. All these steps may be performed efficiently even for the difficult glaze and rime ice shapes. Providing the means to generate highly controlled grids near rough ice, the software includes the creation of a wrap-around block (called the "viscous sublayer block"), which is a thin, C-type block around the wake line and iced airfoil. For multi-element airfoils, the software makes use of grids that wrap around and fill in the areas between the viscous sub-layer blocks for all elements that make up the airfoil. A scripting feature records the history of interactive steps, which can be edited and replayed later to produce other grids. Using this version of SmaggIce, ice shape handling and grid generation can become a practical engineering process, rather than a laborious research effort.

  6. SmaggIce 2.0: Additional Capabilities for Interactive Grid Generation of Iced Airfoils

    NASA Technical Reports Server (NTRS)

    Kreeger, Richard E.; Baez, Marivell; Braun, Donald C.; Schilling, Herbert W.; Vickerman, Mary B.

    2008-01-01

    The Surface Modeling and Grid Generation for Iced Airfoils (SmaggIce) software toolkit has been extended to allow interactive grid generation for multi-element iced airfoils. The essential phases of an icing effects study include geometry preparation, block creation and grid generation. SmaggIce Version 2.0 now includes these main capabilities for both single and multi-element airfoils, plus an improved flow solver interface and a variety of additional tools to enhance the efficiency and accuracy of icing effects studies. An overview of these features is given, especially the new multi-element blocking strategy using the multiple wakes method. Examples are given which illustrate the capabilities of SmaggIce for conducting an icing effects study for both single and multi-element airfoils.

  7. Understanding anisotropy and architecture in ice-templated biopolymer scaffolds.

    PubMed

    Pawelec, K M; Husmann, A; Best, S M; Cameron, R E

    2014-04-01

    Biopolymer scaffolds have great therapeutic potential within tissue engineering due to their large interconnected porosity and biocompatibility. Using an ice-templated technique, where collagen is concentrated into a porous network by ice nucleation and growth, scaffolds with anisotropic pore architecture can be created, mimicking natural tissues like cardiac muscle and bone. This paper describes a systematic set of experiments undertaken to understand the effect of local temperatures on architecture in ice-templated biopolymer scaffolds. The scaffolds within this study were at least 10mm in all dimensions, making them applicable to critical sized defects for biomedical applications. It was found that monitoring the local freezing behavior within the slurry was critical to predicting scaffold structure. Aligned porosity was produced only in parts of the slurry volume which were above the equilibrium freezing temperature (0°C) at the time when nucleation first occurs in the sample as a whole. Thus, to create anisotropic scaffolds, local slurry cooling rates must be sufficiently different to ensure that the equilibrium freezing temperature is not reached throughout the slurry at nucleation. This principal was valid over a range of collagen slurries, demonstrating that by monitoring the temperature within slurry during freezing, scaffold anisotropy with ice-templated scaffolds can be predicted. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Improved coal-slurry pipeline

    NASA Technical Reports Server (NTRS)

    Dowler, W. L.

    1979-01-01

    High strength steel pipeline carries hot mixture of powdered coal and coal derived oil to electric-power-generating station. Slurry is processed along way to remove sulfur, ash, and nitrogen and to recycle part of oil. System eliminates hazards and limitations associated with anticipated coal/water-slurry pipelines.

  9. Method to Generate Full-Span Ice Shape on Swept Wing Using Icing Tunnel Data

    NASA Technical Reports Server (NTRS)

    Lee, Sam; Camello, Stephanie

    2015-01-01

    There is a collaborative research program by NASA, FAA, ONERA, and university partners to improve the fidelity of experimental and computational simulation methods for swept-wing ice accretion formulations and resultant aerodynamic effects on large transport aircraft. This research utilizes a 65 scale Common Research Model as the baseline configuration. In order to generate the ice shapes for the aerodynamic testing, ice-accretion testing will be conducted in the NASA Icing Research Tunnel utilizing hybrid model from the 20, 64, and 83 spanwise locations. The models will have full-scale leading edges with truncated chord in order to fit the IRT test section. The ice shapes from the IRT tests will be digitized using a commercially available articulated-arm 3D laser scanning system. The methodology to acquire 3D ice shapes using a laser scanner was developed and validated in a previous research effort. Each of these models will yield a 1.5ft span of ice than can be used. However, a full-span ice accretion will require 75 ft span of ice. This means there will be large gaps between these spanwise ice sections that must be filled, while maintaining all of the important aerodynamic features. A method was developed to generate a full-span ice shape from the three 1.5 ft span ice shapes from the three models.

  10. Capabilities and performance of Elmer/Ice, a new generation ice-sheet model

    NASA Astrophysics Data System (ADS)

    Gagliardini, O.; Zwinger, T.; Gillet-Chaulet, F.; Durand, G.; Favier, L.; de Fleurian, B.; Greve, R.; Malinen, M.; Martín, C.; Råback, P.; Ruokolainen, J.; Sacchettini, M.; Schäfer, M.; Seddik, H.; Thies, J.

    2013-03-01

    The Fourth IPCC Assessment Report concluded that ice-sheet flow models are unable to forecast the current increase of polar ice sheet discharge and the associated contribution to sea-level rise. Since then, the glaciological community has undertaken a huge effort to develop and improve a new generation of ice-flow models, and as a result, a significant number of new ice-sheet models have emerged. Among them is the parallel finite-element model Elmer/Ice, based on the open-source multi-physics code Elmer. It was one of the first full-Stokes models used to make projections for the evolution of the whole Greenland ice sheet for the coming two centuries. Originally developed to solve local ice flow problems of high mechanical and physical complexity, Elmer/Ice has today reached the maturity to solve larger scale problems, earning the status of an ice-sheet model. Here, we summarise almost 10 yr of development performed by different groups. We present the components already included in Elmer/Ice, its numerical performance, selected applications, as well as developments planned for the future.

  11. Ocean wave generation by collapsing ice shelves

    NASA Astrophysics Data System (ADS)

    Macayeal, D. R.; Bassis, J. N.; Okal, E. A.; Aster, R. C.; Cathles, L. M.

    2008-12-01

    The 28-29 February, 2008, break-up of the Wilkins Ice Shelf, Antarctica, exemplifies the now-familiar, yet largely unexplained pattern of explosive ice-shelf break-up. While environmental warming is a likely ultimate cause of explosive break-up, several key aspects of their short-term behavior need to be explained: (1) The abrupt, near-simultaneous onset of iceberg calving across long spans of the ice front margin; (2) High outward drift velocity (about 0.3 m/s) of a leading phalanx of tabular icebergs that originate from the seaward edge of the intact ice shelf prior to break-up; (3) Rapid coverage of the ocean surface in the wake of this leading phalanx by small, capsized and dismembered tabular icebergs; (4) Extremely large gravitational potential energy release rates, e.g., up to 3 × 1010 W; (5) Lack of proximal iceberg-calving triggers that control the timing of break-up onset and that maintain the high break-up calving rates through to the conclusion of the event. Motivated by seismic records obtained from icebergs and the Ross Ice Shelf that show hundreds of micro- tsunamis emanating from near the ice shelf front, we re-examine the basic dynamic features of ice- shelf/ocean-wave interaction and, in particular, examine the possibility that collapsing ice shelves themselves are a source of waves that stimulate the disintegration process. We propose that ice-shelf generated surface-gravity waves associated with initial calving at an arbitrary seed location produce stress perturbations capable of triggering the onset of calving on the entire ice front. Waves generated by parting detachment rifts, iceberg capsize and break-up act next to stimulate an inverted submarine landslide (ice- slide) process, where gravitational potential energy released by upward movement of buoyant ice is radiated as surface gravity waves in the wake of the advancing phalanx of tabular icebergs. We conclude by describing how field research and remote sensing can be used to test the

  12. Cirrus cloud model parameterizations: Incorporating realistic ice particle generation

    NASA Technical Reports Server (NTRS)

    Sassen, Kenneth; Dodd, G. C.; Starr, David OC.

    1990-01-01

    Recent cirrus cloud modeling studies have involved the application of a time-dependent, two dimensional Eulerian model, with generalized cloud microphysical parameterizations drawn from experimental findings. For computing the ice versus vapor phase changes, the ice mass content is linked to the maintenance of a relative humidity with respect to ice (RHI) of 105 percent; ice growth occurs both with regard to the introduction of new particles and the growth of existing particles. In a simplified cloud model designed to investigate the basic role of various physical processes in the growth and maintenance of cirrus clouds, these parametric relations are justifiable. In comparison, the one dimensional cloud microphysical model recently applied to evaluating the nucleation and growth of ice crystals in cirrus clouds explicitly treated populations of haze and cloud droplets, and ice crystals. Although these two modeling approaches are clearly incompatible, the goal of the present numerical study is to develop a parametric treatment of new ice particle generation, on the basis of detailed microphysical model findings, for incorporation into improved cirrus growth models. For example, the relation between temperature and the relative humidity required to generate ice crystals from ammonium sulfate haze droplets, whose probability of freezing through the homogeneous nucleation mode are a combined function of time and droplet molality, volume, and temperature. As an example of this approach, the results of cloud microphysical simulations are presented showing the rather narrow domain in the temperature/humidity field where new ice crystals can be generated. The microphysical simulations point out the need for detailed CCN studies at cirrus altitudes and haze droplet measurements within cirrus clouds, but also suggest that a relatively simple treatment of ice particle generation, which includes cloud chemistry, can be incorporated into cirrus cloud growth.

  13. Surface Modeling and Grid Generation for Iced Airfoils (SmaggIce)

    NASA Technical Reports Server (NTRS)

    Hammond, Brandy M.

    2004-01-01

    Many of the troubles associated with problem solving are alleviated when there is a model that can be used to represent the problem. Through the Advanced Graphics and Visualization (G-VIS) Laboratory and other facilities located within the Research Analysis Center, the Computer Services Division (CSD) is able to develop and maintain programs and software that allow for the modeling of various situations. For example, the Icing Research Branch is devoted to investigating the effect of ice that forms on the wings and other airfoils of airplanes while in flight. While running tests that physically generate ice and wind on airfoils within the laboratories and wind tunnels on site are done, it would be beneficial if most of the preliminary work could be done outside of the lab. Therefore, individuals from within CSD have collaborated with Icing Research in order to create SmaggIce. This software allows users to create ice patterns on clean airfoils or open files containing a variety of icing situations, manipulate and measure these forms, generate, divide, and merge grids around these elements for more explicit analysis, and specify and rediscretize subcurves. With the projected completion date of Summer 2005, the majority of the focus of the Smagglce team is user-functionality and error handling. My primary responsibility is to test the Graphical User Interface (GUI) in SmaggIce in order to ensure the usability and verify the expected results of the events (buttons, menus, etc.) within the program. However, there is no standardized, systematic way in which to test all the possible combinations or permutations of events, not to mention unsolicited events such as errors. Moreover, scripting tests, if not done properly and with a view towards inevitable revision, can result in more apparent errors within the software and in effect become useless whenever the developers of the program make a slight change in the way a specific process is executed. My task therefore

  14. Suspended-slurry reactor

    DOEpatents

    None

    2016-03-22

    An apparatus for generating a large volume of gas from a liquid stream is disclosed. The apparatus includes a first channel through which the liquid stream passes. The apparatus also includes a layer of catalyst particles suspended in a solid slurry for generating gas from the liquid stream. The apparatus further includes a second channel through which a mixture of converted liquid and generated gas passes. A heat exchange channel heats the liquid stream. A wicking structure located in the second channel separates the gas generated from the converted liquid.

  15. Multiphase Model of Semisolid Slurry Generation and Isothermal Holding During Cooling Slope Rheoprocessing of A356 Al Alloy

    NASA Astrophysics Data System (ADS)

    Das, Prosenjit; Samanta, Sudip K.; Mondal, Biswanath; Dutta, Pradip

    2018-04-01

    In the present paper, we present an experimentally validated 3D multiphase and multiscale solidification model to understand the transport processes involved during slurry generation with a cooling slope. In this process, superheated liquid alloy is poured at the top of the cooling slope and allowed to flow along the slope under the influence of gravity. As the melt flows down the slope, it progressively loses its superheat, starts solidifying at the melt/slope interface with formation of solid crystals, and eventually exits the slope as semisolid slurry. In the present simulation, the three phases considered are the parent melt as the primary phase, and the solid grains and air as secondary phases. The air phase forms a definable air/liquid melt interface as the free surface. After exiting the slope, the slurry fills an isothermal holding bath maintained at the slope exit temperature, which promotes further globularization of microstructure. The outcomes of the present model include prediction of volume fractions of the three different phases considered, grain evolution, grain growth, size, sphericity and distribution of solid grains, temperature field, velocity field, macrosegregation and microsegregation. In addition, the model is found to be capable of making predictions of morphological evolution of primary grains at the onset of isothermal coarsening. The results obtained from the present simulations are validated by performing quantitative image analysis of micrographs of the rapidly oil-quenched semisolid slurry samples, collected from strategic locations along the slope and from the isothermal slurry holding bath.

  16. Capabilities and performance of Elmer/Ice, a new-generation ice sheet model

    NASA Astrophysics Data System (ADS)

    Gagliardini, O.; Zwinger, T.; Gillet-Chaulet, F.; Durand, G.; Favier, L.; de Fleurian, B.; Greve, R.; Malinen, M.; Martín, C.; Råback, P.; Ruokolainen, J.; Sacchettini, M.; Schäfer, M.; Seddik, H.; Thies, J.

    2013-08-01

    The Fourth IPCC Assessment Report concluded that ice sheet flow models, in their current state, were unable to provide accurate forecast for the increase of polar ice sheet discharge and the associated contribution to sea level rise. Since then, the glaciological community has undertaken a huge effort to develop and improve a new generation of ice flow models, and as a result a significant number of new ice sheet models have emerged. Among them is the parallel finite-element model Elmer/Ice, based on the open-source multi-physics code Elmer. It was one of the first full-Stokes models used to make projections for the evolution of the whole Greenland ice sheet for the coming two centuries. Originally developed to solve local ice flow problems of high mechanical and physical complexity, Elmer/Ice has today reached the maturity to solve larger-scale problems, earning the status of an ice sheet model. Here, we summarise almost 10 yr of development performed by different groups. Elmer/Ice solves the full-Stokes equations, for isotropic but also anisotropic ice rheology, resolves the grounding line dynamics as a contact problem, and contains various basal friction laws. Derived fields, like the age of the ice, the strain rate or stress, can also be computed. Elmer/Ice includes two recently proposed inverse methods to infer badly known parameters. Elmer is a highly parallelised code thanks to recent developments and the implementation of a block preconditioned solver for the Stokes system. In this paper, all these components are presented in detail, as well as the numerical performance of the Stokes solver and developments planned for the future.

  17. Coupled ice-ocean dynamics in the marginal ice zones Upwelling/downwelling and eddy generation

    NASA Technical Reports Server (NTRS)

    Hakkinen, S.

    1986-01-01

    This study is aimed at modeling mesoscale processes such as upwelling/downwelling and ice edge eddies in the marginal ice zones. A two-dimensional coupled ice-ocean model is used for the study. The ice model is coupled to the reduced gravity ocean model through interfacial stresses. The parameters of the ocean model were chosen so that the dynamics would be nonlinear. The model was tested by studying the dynamics of upwelling. Wings parallel to the ice edge with the ice on the right produce upwelling because the air-ice momentum flux is much greater than air-ocean momentum flux; thus the Ekman transport is greater than the ice than in the open water. The stability of the upwelling and downwelling jets is discussed. The downwelling jet is found to be far more unstable than the upwelling jet because the upwelling jet is stabilized by the divergence. The constant wind field exerted on a varying ice cover will generate vorticity leading to enhanced upwelling/downwelling regions, i.e., wind-forced vortices. Steepening and strengthening of vortices are provided by the nonlinear terms. When forcing is time-varying, the advection terms will also redistribute the vorticity. The wind reversals will separate the vortices from the ice edge, so that the upwelling enhancements are pushed to the open ocean and the downwelling enhancements are pushed underneath the ice.

  18. Forces Generated by High Velocity Impact of Ice on a Rigid Structure

    NASA Technical Reports Server (NTRS)

    Pereira, J. Michael; Padula, Santo A., II; Revilock, Duane M.; Melis, Matthew E.

    2006-01-01

    Tests were conducted to measure the impact forces generated by cylindrical ice projectiles striking a relatively rigid target. Two types of ice projectiles were used, solid clear ice and lower density fabricated ice. Three forms of solid clear ice were tested: single crystal, poly-crystal, and "rejected" poly-crystal (poly-crystal ice in which defects were detected during inspection.) The solid ice had a density of approximately 56 lb/cu ft (0.9 gm/cu cm). A second set of test specimens, termed "low density ice" was manufactured by molding shaved ice into a cylindrical die to produce ice with a density of approximately 40 lb/cu ft (0.65 gm/cu cm). Both the static mechanical characteristics and the crystalline structure of the ice were found to have little effect on the observed transient response. The impact forces generated by low density ice projectiles, which had very low mechanical strength, were comparable to those of full density solid ice. This supports the hypothesis that at a velocity significantly greater than that required to produce fracture in the ice, the mechanical properties become relatively insignificant, and the impact forces are governed by the shape and mass of the projectile.

  19. Ice Waves

    NASA Image and Video Library

    2017-12-08

    Ice Waves - May 21st, 2001 Description: Along the southeastern coast of Greenland, an intricate network of fjords funnels glacial ice to the Atlantic Ocean. During the summer melting season, newly calved icebergs join slabs of sea ice and older, weathered bergs in an offshore slurry that the southward-flowing East Greenland Current sometimes swirls into stunning shapes. Exposed rock of mountain peaks, tinted red in this image, hints at a hidden landscape. Credit: USGS/NASA/Landsat 7 To learn more about the Landsat satellite go to: landsat.gsfc.nasa.gov/ NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook

  20. Smagglce: Surface Modeling and Grid Generation for Iced Airfoils: Phase 1 Results

    NASA Technical Reports Server (NTRS)

    Vickerman, Mary B.; Choo, Yung K.; Braun, Donald C.; Baez, Marivell; Gnepp, Steven

    1999-01-01

    SmaggIce (Surface Modeling and Grid Generation for Iced Airfoils) is a software toolkit used in the process of aerodynamic performance prediction of iced airfoils with grid-based Computational Fluid Dynamics (CFD). It includes tools for data probing, boundary smoothing, domain decomposition, and structured grid generation and refinement. SmaggIce provides the underlying computations to perform these functions, a GUI (Graphical User Interface) to control and interact with those functions, and graphical displays of results, it is being developed at NASA Glenn Research Center. This paper discusses the overall design of SmaggIce as well as what has been implemented in Phase 1. Phase 1 results provide two types of software tools: interactive ice shape probing and interactive ice shape control. The ice shape probing tools will provide aircraft icing engineers and scientists with an interactive means to measure the physical characteristics of ice shapes. On the other hand, the ice shape control features of SmaggIce will allow engineers to examine input geometry data, correct or modify any deficiencies in the geometry, and perform controlled systematic smoothing to a level that will make the CFD process manageable.

  1. IceProd 2: A Next Generation Data Analysis Framework for the IceCube Neutrino Observatory

    NASA Astrophysics Data System (ADS)

    Schultz, D.

    2015-12-01

    We describe the overall structure and new features of the second generation of IceProd, a data processing and management framework. IceProd was developed by the IceCube Neutrino Observatory for processing of Monte Carlo simulations, detector data, and analysis levels. It runs as a separate layer on top of grid and batch systems. This is accomplished by a set of daemons which process job workflow, maintaining configuration and status information on the job before, during, and after processing. IceProd can also manage complex workflow DAGs across distributed computing grids in order to optimize usage of resources. IceProd is designed to be very light-weight; it runs as a python application fully in user space and can be set up easily. For the initial completion of this second version of IceProd, improvements have been made to increase security, reliability, scalability, and ease of use.

  2. Lapping slurry

    DOEpatents

    Simandl, R.F.; Upchurch, V.S.; Leitten, M.E.

    1999-01-05

    Improved lapping slurries provide for easier and more thorough cleaning of alumina work pieces, as well as inhibit corrosion of the lapping table and provide for easier cleaning of the lapping equipment. The unthickened lapping slurry comprises abrasive grains such as diamond abrasive dispersed in a carrier comprising water, glycerine, and triethanolamine. The thickened lapping slurry comprises abrasive grains such as diamond abrasive dispersed in a carrier comprising water, glycerine, triethanolamine, a water soluble silicate, and acid. 1 fig.

  3. Lapping slurry

    DOEpatents

    Simandl, Ronald F.; Upchurch, Victor S.; Leitten, Michael E.

    1999-01-01

    Improved lapping slurries provide for easier and more thorough cleaning of alumina workpieces, as well as inhibit corrosion of the lapping table and provide for easier cleaning of the lapping equipment. The unthickened lapping slurry comprises abrasive grains such as diamond abrasive dispersed in a carrier comprising water, glycerine, and triethanolamine. The thickened lapping slurry comprises abrasive grains such as diamond abrasive dispersed in a carrier comprising water, glycerine, triethanolamine, a water soluble silicate, and acid.

  4. The differences between soil grouting with cement slurry and cement-water glass slurry

    NASA Astrophysics Data System (ADS)

    Zhu, Mingting; Sui, Haitong; Yang, Honglu

    2018-01-01

    Cement slurry and cement-water glass slurry are the most widely applied for soil grouting reinforcement project. The viscosity change of cement slurry is negligible during grouting period and presumed to be time-independent while the viscosity of cement-water glass slurry increases with time quickly and is presumed to be time-dependent. Due to the significantly rheology differences between them, the grouting quality and the increasing characteristics of grouting parameters may be different, such as grouting pressure, grouting surrounding rock pressure, i.e., the change of surrounding rock pressure deduced by grouting pressure. Those are main factors for grouting design. In this paper, a large-scale 3D grouting simulation device was developed to simulate the surrounding curtain grouting for a tunnel. Two series of surrounding curtain grouting experiments under different geo-stress of 100 kPa, 150 kPa and 200 kPa were performed. The overload test on tunnel was performed to evaluate grouting effect of all surrounding curtain grouting experiments. In the present results, before 240 seconds, the grouting pressure increases slowly for both slurries; after 240 seconds the increase rate of grouting pressure for cement-water glass slurry increases quickly while that for cement slurry remains roughly constant. The increasing trend of grouting pressure for cement-water glass is similar to its viscosity. The setting time of cement-water glass slurry obtained from laboratory test is less than that in practical grouting where grout slurry solidifies in soil. The grouting effect of cement-water glass slurry is better than that of cement slurry and the grouting quality decreases with initial pressure.

  5. The influence of additives on rheological properties of limestone slurry

    NASA Astrophysics Data System (ADS)

    Jaworska, B.; Bartosik, A.

    2014-08-01

    Limestone slurry appears in the lime production process as the result of rinsing the processed material. It consists of particles with diameter smaller than 2 mm and the water that is a carrier of solid fraction. Slurry is directed to the settling tank, where the solid phase sediments and the excess water through the transfer system is recovered for re-circulation. Collected at the bottom of the tank sludge is deposited in a landfill located on the premises. Rheological properties of limestone slurry hinder its further free transport in the pipeline due to generated flow resistance. To improve this state of affairs, chemical treatment of drilling fluid, could be applied, of which the main task is to give the slurry properties suitable for the conditions encountered in hydrotransport. This treatment consists of applying chemical additives to slurry in sufficient quantity. Such additives are called as deflocculants or thinners or dispersants, and are chemical compounds which added to aqueous solution are intended to push away suspended particles from each other. The paper presents the results of research allowing reduction of shear stress in limestone slurry. Results demonstrate rheological properties of limestone slurry with and without the addition of modified substances which causes decrease of slurry viscosity, and as a consequence slurry shear stress for adopted shear rate. Achieving the desired effects increases the degree of dispersion of the solid phase suspended in the carrier liquid and improving its ability to smooth flow with decreased friction.

  6. Ultrasound Analysis of Slurries

    DOEpatents

    Soong, Yee and Blackwell, Arthur G.

    2005-11-01

    An autoclave reactor allows for the ultrasonic analysis of slurry concentration and particle size distribution at elevated temperatures and pressures while maintaining the temperature- and pressure-sensitive ultrasonic transducers under ambient conditions. The reactor vessel is a hollow stainless steel cylinder containing the slurry which includes a stirrer and a N, gas source for directing gas bubbles through the slurry. Input and output transducers are connected to opposed lateral portions of the hollow cylinder for respectively directing sound waves through the slurry and receiving these sound waves after transmission through the slurry, where changes in sound wave velocity and amplitude can be used to measure slurry parameters. Ultrasonic adapters connect the transducers to the reactor vessel in a sealed manner and isolate the transducers from the hostile conditions within the vessel without ultrasonic signal distortion or losses.

  7. Ultrasound Analysis Of Slurries

    DOEpatents

    Soong, Yee; Blackwell, Arthur G.

    2005-11-01

    An autoclave reactor allows for the ultrasonic analysis of slurry concentration and particle size distribution at elevated temperatures and pressures while maintaining the temperature- and pressure-sensitive ultrasonic transducers under ambient conditions. The reactor vessel is a hollow stainless steel cylinder containing the slurry which includes a stirrer and a N.sub.2 gas source for directing gas bubbles through the slurry. Input and output transducers are connected to opposed lateral portions of the hollow cylinder for respectively directing sound waves through the slurry and receiving these sound waves after transmission through the slurry, where changes in sound wave velocity and amplitude can be used to measure slurry parameters. Ultrasonic adapters connect the transducers to the reactor vessel in a sealed manner and isolate the transducers from the hostile conditions within the vessel without ultrasonic signal distortion or losses.

  8. An Explorative Study to Use DBD Plasma Generation for Aircraft Icing Mitigation

    NASA Astrophysics Data System (ADS)

    Hu, Hui; Zhou, Wenwu; Liu, Yang; Kolbakir, Cem

    2017-11-01

    An explorative investigation was performed to demonstrate the feasibility of utilizing thermal effect induced by Dielectric-Barrier-Discharge (DBD) plasma generation for aircraft icing mitigation. The experimental study was performed in an Icing Research Tunnel available at Iowa State University (i.e., ISU-IRT). A NACA0012 airfoil/wing model embedded with DBD plasma actuators was installed in ISU-IRT under typical glaze icing conditions pertinent to aircraft inflight icing phenomena. While a high-speed imaging system was used to record the dynamic ice accretion process over the airfoil surface for the test cases with and without switching on the DBD plasma actuators, an infrared (IR) thermal imaging system was utilized to map the corresponding temperature distributions to quantify the unsteady heat transfer and phase changing process over the airfoil surface. The thermal effect induced by DBD plasma generation was demonstrated to be able to keep the airfoil surface staying free of ice during the entire ice accretion experiment. The measured quantitative surface temperature distributions were correlated with the acquired images of the dynamic ice accretion and water runback processes to elucidate the underlying physics. National Science Foundation CBET-1064196 and CBET-1435590.

  9. Slurry burner for mixture of carbonaceous material and water

    DOEpatents

    Nodd, Dennis G.; Walker, Richard J.

    1987-01-01

    A carbonaceous material-water slurry burner includes a high pressure tip-emulsion atomizer for directing a carbonaceous material-water slurry into a combustion chamber for burning therein without requiring a support fuel or oxygen enrichment of the combustion air. Introduction of the carbonaceous material-water slurry under pressure forces it through a fixed atomizer wherein the slurry is reduced to small droplets by mixing with an atomizing air flow and directed into the combustion chamber. The atomizer includes a swirler located immediately adjacent to where the fuel slurry is introduced into the combustion chamber and which has a single center channel through which the carbonaceous material-water slurry flows into a plurality of diverging channels continuous with the center channel from which the slurry exits the swirler immediately adjacent to an aperture in the combustion chamber. The swirler includes a plurality of slots around its periphery extending the length thereof through which the atomizing air flows and by means of which the atomizing air is deflected so as to exert a maximum shear force upon the carbonaceous material-water slurry as it exits the swirler and enters the combustion chamber. A circulating coolant system or boiler feed water is provided around the periphery of the burner along the length thereof to regulate burner operating temperature, eliminate atomizer plugging, and inhibit the generation of sparklers, thus increasing combustion efficiency. A secondary air source directs heated air into the combustion chamber to promote recirculation of the hot combustion gases within the combustion chamber.

  10. Manifold Coal-Slurry Transport System

    NASA Technical Reports Server (NTRS)

    Liddle, S. G.; Estus, J. M.; Lavin, M. L.

    1986-01-01

    Feeding several slurry pipes into main pipeline reduces congestion in coal mines. System based on manifold concept: feeder pipelines from each working entry joined to main pipeline that carries coal slurry out of panel and onto surface. Manifold concept makes coal-slurry haulage much simpler than existing slurry systems.

  11. Acoustic Gravity Waves Generated by an Oscillating Ice Sheet in Arctic Zone

    NASA Astrophysics Data System (ADS)

    Abdolali, A.; Kadri, U.; Kirby, J. T., Jr.

    2016-12-01

    We investigate the formation of acoustic-gravity waves due to oscillations of large ice blocks, possibly triggered by atmospheric and ocean currents, ice block shrinkage or storms and ice-quakes.For the idealized case of a homogeneous weakly compressible water bounded at the surface by ice sheet and a rigid bed, the description of the infinite family of acoustic modes is characterized by the water depth h and angular frequency of oscillating ice sheet ω ; The acoustic wave field is governed by the leading mode given by: Nmax=\\floor {(ω h)/(π c)} where c is the sound speed in water and the special brackets represent the floor function (Fig1). Unlike the free-surface setting, the higher acoustic modes might exhibit a larger contribution and therefore all progressive acoustic modes have to be considered.This study focuses on the characteristics of acoustic-gravity waves generated by an oscillating elastic ice sheet in a weakly compressible fluid coupled with a free surface model [Abdolali et al. 2015] representing shrinking ice blocks in realistic sea state, where the randomly oriented ice sheets cause inter modal transition and multidirectional reflections. A theoretical solution and a 3D numerical model have been developed for the study purposes. The model is first validated against the theoretical solution [Kadri, 2016]. To overcome the computational difficulties of 3D models, we derive a depth-integrated equation valid for spatially varying ice sheet thickness and water depth. We show that the generated acoustic-gravity waves contribute significantly to deep ocean currents compared to other mechanisms. In addition, these waves travel at the sound speed in water carrying information on ice sheet motion, providing various implications for ocean monitoring and detection of ice-quakes. Fig1:Snapshots of dynamic pressure given by an oscillating ice sheet; h=4500m, c=1500m/s, semi-length b=10km, ζ =1m, omega=π rad/s. Abdolali, A., Kirby, J. T. and Bellotti, G

  12. Integrating expert- and algorithm-derived data to generate a hemispheric ice edge

    NASA Astrophysics Data System (ADS)

    Tsatsoulis, C.; Komp, E.

    The Arctic ice edge is the area of the Arctic where sea ice concentration is less than 15%, and is considered navigable by most vessels. Experts at the National Ice Center generate a daily ice edge product that is available to the public. Data of preference is that of active, high resolution satellite sensors such as RADARSAT which yields all-weather images of 100m resolution, and a second source is OLS data with 550m resolution. Unfortunately, RADARSAT does not provide full, daily coverage of the Arctic and OLS can be obscured by clouds. The SSM/I sensor provides complete coverage of the Arctic at 25km resolution and is independent of cloud cover and solar illumination during the Arctic winter. SSM/I data is analyzed by the NASA Team algorithm to establish ice concentration. Our work integrates the ice edge created by experts using high resolution data with the ice edge generated out of the coarser SSM/I microwave data. The result is a product that combines human and algorithmic outputs, deals with gross differences in resolution of the underlying data sets, and results in a useful, operational product.

  13. Conductivity and electrochemical performance of LiFePO4 slurry in the lithium slurry battery

    NASA Astrophysics Data System (ADS)

    Feng, Caimei; Chen, Yongchong; Liu, Dandan; Zhang, Ping

    2017-06-01

    Lithium slurry battery is a new type of energy storage technique which uses the slurry of solid active materials, conductive additions and liquid electrolyte as the electrode. The proportion of conductive addition and the active material has significant influence on the conductivity and electrochemical performance of the slurry electrode. In the present work, slurries with different volume ratios of LiFePO4 (LFP) and Ketjenblack (KB) were investigated by the electrochemical workstation and charge-discharge testing system (vs. Li/Li+). Results show that the conductivity of the slurry increases linearly with the addition of KB, and the measured specific capacity of the slurry reaches its theoretical value when the volume ratio of KB to LFP is around 0.2. Based on this ratio, a slurry battery with higher loading of LFP (19.1 wt.% in the slurry) was tested, and a specific capacity of 165 mAh/g at 0.2 mA/cm2 and 102 mAh/g at 5 mA/cm2 was obtained for LFP.

  14. Preliminary observations of voluminous ice-rich and water-rich lahars generated during the 2009 eruption of Redoubt, Alaska

    USGS Publications Warehouse

    Waythomas, Christopher F.; Pierson, Thomas C.; Major, Jon J.; Scott, William E.

    2012-01-01

    Redoubt Volcano in south-central Alaska began erupting on March 15, 2009, and by April 4, 2009, had produced at least 20 explosive events that generated plumes of ash and lahars. The 3,108-m high, snow- and -ice-clad stratovolcano has an ice-filled summit crater that is breached to the north. The volcano supports about 4 km3 of ice and snow and about 1 km3 of this makes up the Drift glacier on the northern side of the volcano. Explosive eruptions between March 22 and April 4, which included the destruction of at least two lava domes, triggered significant lahars in the Drift River valley on March 23 and April 4 and several smaller lahars between March 24 and March 31. High-flow marks, character of deposits, areas of inundation, and estimates of flow velocity revealed that the lahars on March 23 and April 4 were the largest of the eruption. In the 2-km-wide upper Drift River valley, average flow depths were about 3–5 m. Average peak-flow velocities were likely between 10 and 15 ms-1, and peak discharges were on the order of 104–105 m3s-1. The area inundated by lahars on March 23 was at least 100 km2 and on April 4 about 125 km2. The lahars emplaced on March 23 and April 4 had volumes on the order of 107–108 m3 and were similar in size to the largest lahar of the 1989–90 eruption. The March 23 lahars were primarily flowing slurries of snow and ice entrained from the Drift glacier and seasonal snow and tabular blocks of river ice from the Drift River valley. Only a single, undifferentiated deposit up to 5 m thick was found and contained about 80–95 percent of poorly sorted, massive to imbricate assemblages of snow and ice. The deposit was frozen soon after it was emplaced and later eroded and buried by the April 4 lahar. The lahar of April 4, in contrast, was primarily a hyperconcentrated flow, as interpreted from 1- to 6-m thick deposits of massive to horizontally stratified sand-to-fine-gravel. Rock material in the April 4 lahar deposit is predominantly

  15. System and method for slurry handling

    DOEpatents

    Steele, Raymond Douglas; Oppenheim, Judith Pauline

    2015-12-29

    A system includes a slurry depressurizing system that includes a liquid expansion system configured to continuously receive a slurry at a first pressure and continuously discharge the slurry at a second pressure. For example, the slurry depressurizing system may include an expansion turbine to expand the slurry from the first pressure to the second pressure.

  16. Computing Aerodynamic Performance of a 2D Iced Airfoil: Blocking Topology and Grid Generation

    NASA Technical Reports Server (NTRS)

    Chi, X.; Zhu, B.; Shih, T. I.-P.; Slater, J. W.; Addy, H. E.; Choo, Yung K.; Lee, Chi-Ming (Technical Monitor)

    2002-01-01

    The ice accrued on airfoils can have enormously complicated shapes with multiple protruded horns and feathers. In this paper, several blocking topologies are proposed and evaluated on their ability to produce high-quality structured multi-block grid systems. A transition layer grid is introduced to ensure that jaggedness on the ice-surface geometry do not to propagate into the domain. This is important for grid-generation methods based on hyperbolic PDEs (Partial Differential Equations) and algebraic transfinite interpolation. A 'thick' wrap-around grid is introduced to ensure that grid lines clustered next to solid walls do not propagate as streaks of tightly packed grid lines into the interior of the domain along block boundaries. For ice shapes that are not too complicated, a method is presented for generating high-quality single-block grids. To demonstrate the usefulness of the methods developed, grids and CFD solutions were generated for two iced airfoils: the NLF0414 airfoil with and without the 623-ice shape and the B575/767 airfoil with and without the 145m-ice shape. To validate the computations, the computed lift coefficients as a function of angle of attack were compared with available experimental data. The ice shapes and the blocking topologies were prepared by NASA Glenn's SmaggIce software. The grid systems were generated by using a four-boundary method based on Hermite interpolation with controls on clustering, orthogonality next to walls, and C continuity across block boundaries. The flow was modeled by the ensemble-averaged compressible Navier-Stokes equations, closed by the shear-stress transport turbulence model in which the integration is to the wall. All solutions were generated by using the NPARC WIND code.

  17. Ice Floe Breaking in Contemporary Third Generation Operational Wave Models

    NASA Astrophysics Data System (ADS)

    Sévigny, C.; Baudry, J.; Gauthier, J. C.; Dumont, D.

    2016-02-01

    The dynamical zone observed at the edge of the consolidated ice area where are found the wave-fractured floes (i.e. marginal ice zone or MIZ) has become an important topic in ocean modeling. As both operational and climate ocean models now seek to reproduce the complex atmosphere-ice-ocean system with realistic coupling processes, many theoretical and numerical studies have focused on understanding and modeling this zone. Few attempts have been made to embed wave-ice interactions specific to the MIZ within a two-dimensional model, giving the possibility to calculate both the attenuation of surface waves by sea ice and the concomitant breaking of the sea ice-cover into smaller floes. One of the first challenges consists in improving the parameterization of wave-ice dynamics in contemporary third generation operational wave models. A simple waves-in-ice model (WIM) similar to the one proposed by Williams et al. (2013a,b) was implemented in WAVEWATCH III. This WIM considers ice floes as floating elastic plates and predicts the dimensionless attenuation coefficient by the use of a lookup-table-based, wave scattering scheme. As in Dumont et al. (2011), the different frequencies are treated individually and floe breaking occurs for a particular frequency when the expected wave amplitude exceeds the allowed strain amplitude, which considers ice floes properties and wavelength in ice field. The model is here further refined and tested in idealized two-dimensional cases, giving preliminary results of the performance and sensitivity of the parameterization to initial wave and ice conditions. The effects of the wave-ice coupling over the incident wave spectrum are analyzed as well as the resulting floe size distribution. The model gives prognostic values of the lateral extent of the marginal ice zone with maximum ice floe diameter that progressively increases with distance from the ice edge.

  18. Comparison and analysis of organic components of biogas slurry from eichhornia crassipes solms and corn straw biogas slurry

    NASA Astrophysics Data System (ADS)

    Li, Q.; Li, Y. B.; Liu, Z. H.; Min, J.; Cui, Y.; Gao, X. H.

    2017-11-01

    Biogas slurry is one of anaerobic fermentations, and biomass fermentation biogas slurries with different compositions are different. This paper mainly presents through the anaerobic fermentation of Eichhornia crassipes solms biogas slurry and biogas slurry of corn straw, the organic components of two kinds of biogas slurry after extraction were compared by TLC, HPLC and spectrophotometric determination of nucleic acid and protein of two kinds of biogas slurry organic components, and analyzes the result of comparison.

  19. An investigation of the effect of rapid slurry chilling on blown pack spoilage of vacuum-packaged beef primals.

    PubMed

    Reid, R; Fanning, S; Whyte, P; Kerry, J; Bolton, D

    2017-02-01

    The aim of this study was to investigate if rapid slurry chilling would retard or prevent blown pack spoilage (BPS) of vacuum-packaged beef primals. Beef primals were inoculated with Clostridium estertheticum subspp. estertheticum (DSMZ 8809), C. estertheticum subspp. laramenise (DSMZ 14864) and C. gasigenes (DSMZ 12272), and vacuum-packaged with and without heat shrinkage (90°C for 3 s). These packs were then subjected to immediate chilling in an ice slurry or using conventional blast chilling systems and stored at 2°C for up to 100 days. The onset and progress of BPS was monitored using the following scale; 0-no gas bubbles in drip; 1-gas bubbles in drip; 2-loss of vacuum; 3-'blown'; 4-presence of sufficient gas inside the packs to produce pack distension and 5-tightly stretched, 'overblown' packs/packs leaking. Rapid slurry chilling (as compared to conventional chilling) did not significantly affect (P > 0.05) the time to the onset or progress of BPS. It was therefore concluded that rapid chilling of vacuum-packaged beef primals, using an ice slurry system, may not be used as a control intervention to prevent or retard blown pack spoilage. This study adds to our growing understanding of blown pack spoilage of vacuum-packaged beef primals and suggests that rapid chilling of vacuum-packaged beef primals is not a control option for the beef industry. The results suggest that neither eliminating the heat shrinkage step nor rapid chilling of vacuum-packaged beef retard the time to blown pack spoilage. © 2016 The Society for Applied Microbiology.

  20. Rheometry of natural sediment slurries

    USGS Publications Warehouse

    Major, Jon J.; ,

    1993-01-01

    Recent experimental analyses of natural sediment slurries yield diverse results yet exhibit broad commonality of rheological responses under a range of conditions and shear rates. Results show that the relation between shear stress and shear rate is primarily nonlinear, that the relation can display marked hysteresis, that minimum shear stress can occur following yield, that physical properties of slurries are extremely sensitive to sediment concentration, and the concept of slurry yield strength is still debated. New rheometric analyses have probed viscoelastic behavior of sediment slurries. Results show that slurries composed of particles ??? 125 ?? m exhibit viscoelastic responses, and that shear stresses are relaxed over a range of time scales rather than by a single response time.

  1. DEHYDRATION OF DEUTERIUM OXIDE SLURRIES

    DOEpatents

    Hiskey, C.F.

    1959-03-10

    A method is presented for recovering heavy water from uranium oxide-- heavy water slurries. The method consists in saturating such slurries with a potassium nitrate-sodium nitrate salt mixture and then allowing the self-heat of the slurry to raise its temperature to a point slightly in excess of 100 deg C, thus effecting complete evaporation of the free heavy water from the slurry. The temperature of the slurry is then allowed to reach 300 to 900 deg C causing fusion of the salt mixture and expulsion of the water of hydration. The uranium may be recovered from the fused salt mixture by treatment with water to leach the soluble salts away from the uranium-containing residue.

  2. Coal slurry fuel supply and purge system

    DOEpatents

    McDowell, Robert E.; Basic, Steven L.; Smith, Russel M.

    1994-01-01

    A coal slurry fuel supply and purge system for a locomotive engines is disclosed which includes a slurry recirculation path, a stand-by path for circulating slurry during idle or states of the engine when slurry fuel in not required by the engine, and an engine header fluid path connected to the stand-by path, for supplying and purging slurry fuel to and from fuel injectors. A controller controls the actuation of valves to facilitate supply and purge of slurry to and from the fuel injectors. A method for supplying and purging coal slurry in a compression ignition engine is disclosed which includes controlling fluid flow devices and valves in a plurality of fluid paths to facilitate continuous slurry recirculation and supply and purge of or slurry based on the operating state of the engine.

  3. Understanding Poly(vinyl alcohol)-Mediated Ice Recrystallization Inhibition through Ice Adsorption Measurement and pH Effects.

    PubMed

    Burkey, Aaron A; Riley, Christopher L; Wang, Lyndsey K; Hatridge, Taylor A; Lynd, Nathaniel A

    2018-01-08

    The development of improved cryopreservative materials is necessary to enable complete recovery of living cells and tissue after frozen storage. Remarkably, poly(vinyl alcohol) (PVA) displays some of the same cryoprotective properties as many antifreeze proteins found in cold tolerant organisms. In particular, PVA is very effective at halting the Ostwald ripening of ice, a process that mechanically damages cells and tissue. Despite the large practical importance of such a property, the mechanism by which PVA interacts with ice is poorly understood, hindering the development of improved cryoprotective materials. Herein, we quantitatively evaluated ice growth kinetics in the presence of PVA at different pH conditions and in the presence of a range of neutral salts. We demonstrated that pH, but not salt identity, alters the ability of PVA to halt ice grain coarsening. These observations are consistent with hydrogen-bonding playing a crucial role in PVA-mediated ice recrystallization inhibition. The evolution of the size distribution of ice crystals with annealing was consistent with incomplete surface coverage of ice with PVA. Binding assay measurements of dissolved fluorescently labeled PVA in an ice slurry showed that PVA interacts with ice through weak adsorption (<9%) to the ice crystal surface, which stands in contrast to fluorescently tagged type III antifreeze peptide, which binds strongly (ca. 64%) under the same conditions.

  4. Evaluation of hybrid slurry resulting from the introduction of additives to mineral slurry.

    DOT National Transportation Integrated Search

    2011-09-01

    Drilled shaft construction often requires the use of drill slurry to maintain borehole stability during excavation : and concreting. Florida Department of Transportation (FDOT) specifications require the use of mineral slurry : for all primary struct...

  5. Simulating Extraterrestrial Ices in the Laboratory

    NASA Astrophysics Data System (ADS)

    Berisford, D. F.; Carey, E. M.; Hand, K. P.; Choukroun, M.

    2017-12-01

    Several ongoing experiments at JPL attempt to simulate the ice environment for various regimes associated with icy moons. The Europa Penitent Ice Experiment (EPIX) simulates the surface environment of an icy moon, to investigate the physics of ice surface morphology growth. This experiment features half-meter-scale cryogenic ice samples, cryogenic radiative sink environment, vacuum conditions, and diurnal cycling solar simulation. The experiment also includes several smaller fixed-geometry vacuum chambers for ice simulation at Earth-like and intermediate temperature and vacuum conditions for development of surface morphology growth scaling relations. Additionally, an ice cutting facility built on a similar platform provides qualitative data on the mechanical behavior of cryogenic ice with impurities under vacuum, and allows testing of ice cutting/sampling tools relevant for landing spacecraft. A larger cutting facility is under construction at JPL, which will provide more quantitative data and allow full-scale sampling tool tests. Another facility, the JPL Ice Physics Laboratory, features icy analog simulant preparation abilities that range icy solar system objects such as Mars, Ceres and the icy satellites of Saturn and Jupiter. In addition, the Ice Physics Lab has unique facilities for Icy Analog Tidal Simulation and Rheological Studies of Cryogenic Icy Slurries, as well as equipment to perform thermal and mechanical properties testing on icy analog materials and their response to sinusoidal tidal stresses.

  6. Water generation and transport through the high-pressure ice layers of Titan and Ganymede

    NASA Astrophysics Data System (ADS)

    Kalousova, K.; Sotin, C.; Choblet, G.; Tobie, G.; Grasset, O.

    2017-09-01

    We investigate the generation and transport of water through the high-pressure (HP) ice layers of Ganymede and Titan using a numerical model of two-phase convection in 2D geometry. Our results suggest that water can be generated at the silicate/HP ice interface for small to intermediate values of Rayleigh number (Ra 1.e8-1.e10) while no melt is generated for the higher values (Ra 1.e11). If generated, water is transported through the layer by the upwelling plumes and, depending on the vigor of convection, it stays liquid (smaller Ra) or it may freeze (intermediate Ra) before melting again as the plume reaches the temperate layer at the interface with the ocean. The thickness of this layer as well as the amount of melt that is extracted from it is controlled by the HP ice permeability. This process may enable the transfer of volatiles and salts that might have been leached from silicates by the meltwater. Since the HP ice layer is much thinner on Titan than on Ganymede, it is probably more permeable for volatiles and salts leached from the silicate core.

  7. Modified starch containing liquid fuel slurry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Metzger, G.W.

    1978-04-04

    A substantially water-free, high solids content, stably dispersed combustible fuel slurry is provided, with a method of preparing the slurry. The slurry contains a minor amount of a solid particulate carbonaceous material such as powdered coal, with substantially the entire balance of the slurry being comprised of a liquid hydrocarbon fuel, particularly a heavy fuel oil. In extremely minor amounts are anionic surfactants, particularly soaps, and a stabilizing amount of a starch modified with an anionic polymer.

  8. Dioxin and trace metal emissions from combustion of carbonized RDF slurry fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klosky, M.; Fisher, M.; Singhania, A.

    1997-12-01

    In 1994, the U.S. generated approximately 209 million tons of Municipal Solid Waste (MSW), with 61% landfilled, 24% recycled, and 15% processed through Municipal Waste Combustion (MWC). In order to divert a larger portion of this generated MSW from landfills, MWC will have to play a growing role in MSW disposal. However, recently promulgated New Source Performance Standards (NSPS) for MWC will add an additional financial burden, through mandated emission reductions and air pollution control technologies, to an already financially pressured MWC marketplace. In the past, Refuse Derived Fuel (RDF), a solid fuel produced from MSW, has been fired inmore » industrial and coal boilers as an alternative means of MWC. While lower sulfur dioxide (SO{sub 2}) emissions provided the impetus, firing RDF in industrial and coal boilers frequently suffered from several disadvantages including increased solids handling, increased excess air requirements, increased air emissions, increased slag formation in the boiler, and higher fly ash resistivity. This paper summarizes the latest emissions and combustion tests with the carbonized RDF slurry fuel. With EnerTech`s SlurryCarb{trademark} process, a pumpable slurry of RDF is continuously pressurized with a pump to between 1200 and 2500 psi. The RDF slurry is pressurized above the saturated steam curve to maintain a liquid state when the slurry is heated to approximately 480-660{degrees}F. Slurry pressure and temperature then are maintained for less than 30 minutes in plug-flow reactors. At this temperature and pressure, oxygen functional groups in the molecular structure of the RDF are split off as carbon dioxide gas. This evolved carbon dioxide gas comprises a significant weight percentage of the feed RDF, but only a minimal percentage of the heating value.« less

  9. The IceBridge Portal - Automated Metadata Generation for Enhanced Data Access

    NASA Astrophysics Data System (ADS)

    Tanner, S.; Schwab, M.; Beam, K.; Deems, J. S.; Fitzgerrell, A.

    2016-12-01

    NASA's Operation IceBridge (OIB) mission, initiated in 2009, collects airborne remote sensing measurements over the polar regions to bridge the gap between NASA's Ice, Cloud and Land Elevation satellite (ICESat) mission and the upcoming ICESat-2 mission in 2017. OIB combines an evolving mix of instruments to gather data on topography, ice and snow thickness, high-resolution photography, and other properties that are more difficult or impossible to measure via satellite. Once collected, these data are stored and made available at the National Snow and Ice Data Center (NSIDC) in Boulder, Colorado. To date, there are nearly 200 terabytes of data available, and with several more campaigns to go. Initially, OIB data could be difficult to discover and access, due to a lack of consistent metadata. However, the Project Office made a decision to revamp the data delivery process. This has led to substantial data reformatting and better adherence to NASA standards as well as the generation of far more metadata associated with each data product. Because of this change, NSIDC has been able to develop a powerful map-based portal for search, discovery and access of these data products. The tools used for automated metadata generation, and the resulting new data portal will be presented.

  10. Field observations of slush ice generated during freeze-up in arctic coastal waters

    USGS Publications Warehouse

    Reimnitz, E.; Kempema, E.W.

    1987-01-01

    In some years, large volumes of slush ice charged with sediment are generated from frazil crystals in the shallow Beaufort Sea during strong storms at the time of freeze-up. Such events terminate the navigation season, and because of accompanying hostile conditions, little is known about the processes acting. The water-saturated slush ice, which may reach a thickness of 4 m, exists for only a few days before freezing from the surface downward arrests further wave motion or pancake ice forms. Movements of small vessels and divers in the slush ice occurs only in phase with passing waves, producing compression and rarefaction, and internal pressure pulses. Where in contact with the seafloor, the agitated slush ice moves cobble-size material, generates large sediment ripples, and may possibly produce a flat rampart observed on the arctic shoreface in some years. Processes charging the slush ice with as much as 1000 m3 km-2 of sediment remain uncertain, but our field observations rule out previously proposed filtration from turbid waters as a likely mechanism. Sedimentary particles apparently are only trapped in the interstices of the slush ice rather than being held by adhesion, since wave-related internal pressure oscillations result in downward particle movement and cleansing of the slush ice. This loss of sediment explains the typical downward increase in sediment concentration in that part of the fast-ice canopy composed largely of frazil ice. The congealing slush ice in coastal water does not become fast ice until grounded ridges are formed in the stamukhi zone, one to two months after freeze-up begins. During this period of new-ice mobility, long-range sediment transport occurs. The sediment load held by the fast-ice canopy in the area between the Colville and Sagavanirktok River deltas in the winter of 1978-1979 was 16 times larger than the yearly river input to the same area. This sediment most likely was rafted from Canada, more than 400 km to the east, during

  11. Effect of fermentation temperature on hydrogen production from cow waste slurry by using anaerobic microflora within the slurry.

    PubMed

    Yokoyama, Hiroshi; Waki, Miyoko; Moriya, Naoko; Yasuda, Tomoko; Tanaka, Yasuo; Haga, Kiyonori

    2007-02-01

    We examined hydrogen production from a dairy cow waste slurry (13.4 g of volatile solids per liter) by batch cultures in a temperature range from 37 to 85 degrees C, using microflora naturally present within the slurry. Without the addition of seed bacteria, hydrogen was produced by simply incubating the slurry, using the microflora within the slurry. Interestingly, two peaks of fermentation temperatures for hydrogen production from the slurry were observed at 60 and 75 degrees C (392 and 248 ml H2 per liter of slurry, respectively). After the termination of the hydrogen evolution, the microflora cultured at 60 degrees C displayed hydrogen-consuming activity, but hydrogen-consuming activity of the microflora cultured at 75 degrees C was not detected, at least for 24 days. At both 60 and 75 degrees C, the main by-product was acetate, and the optimum pH of the slurry for hydrogen production was around neutral. Bacteria related to hydrogen-producing moderate and extreme thermophiles, Clostridium thermocellum and Caldanaerobacter subterraneus, were detected in the slurries cultured at 60 and 75 degrees C, respectively, by denaturing gradient gel electrophoresis analyses, using the V3 region of 16S rDNA.

  12. A design protocol for tailoring ice-templated scaffold structure

    PubMed Central

    Pawelec, K. M.; Husmann, A.; Best, S. M.; Cameron, R. E.

    2014-01-01

    In this paper, we show, for the first time, the key link between scaffold architecture and latent heat evolution during the production of porous biomedical collagen structures using freeze-drying. Collagen scaffolds are used widely in the biomedical industry for the repair and reconstruction of skeletal tissues and organs. Freeze-drying of collagen slurries is a standard industrial process, and, until now, the literature has sought to characterize the influence of set processing parameters including the freezing protocol and weight percentage of collagen. However, we are able to demonstrate, by monitoring the local thermal events within the slurry during solidification, that nucleation, growth and annealing processes can be controlled, and therefore we are able to control the resulting scaffold architecture. Based on our correlation of thermal profile measurements with scaffold architecture, we hypothesize that there is a link between the fundamental freezing of ice and the structure of scaffolds, which suggests that this concept is applicable not only for collagen but also for ceramics and pharmaceuticals. We present a design protocol of strategies for tailoring the ice-templated scaffold structure. PMID:24402916

  13. Multi-stage slurry system used for grinding and polishing materials

    DOEpatents

    Hed, P. Paul; Fuchs, Baruch A.

    2001-01-01

    A slurry system draws slurry from a slurry tank via one of several intake pipes, where each pipe has an intake opening at a different depth in the slurry. The slurry is returned to the slurry tank via a bypass pipe in order to continue the agitation of the slurry. The slurry is then diverted to a delivery pipe, which supplies slurry to a polisher. The flow of slurry in the bypass pipe is stopped in order for the slurry in the slurry tank to begin to settle. As the polishing continues, slurry is removed from shallower depths in order to pull finer grit from the slurry. When the polishing is complete, the flow in the delivery pipe is ceased. The flow of slurry in the bypass pipe is resumed to start agitating the slurry. In another embodiment, the multiple intake pipes are replaced by a single adjustable pipe. As the slurry is settling, the pipe is moved upward to remove the finer grit near the top of the slurry tank as the polishing process continues.

  14. Identification of Inhibitors in Lignocellulosic Slurries and Determination of Their Effect on Hydrocarbon-Producing Microorganisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Shihui; Franden, Mary A; Yang, Qing

    The aim of this work was to identify inhibitors in pretreated lignocellulosic slurries, evaluate high-throughput screening strategies, and investigate the impact of inhibitors on potential hydrocarbon-producing microorganisms. Compounds present in slurries that could inhibit microbial growth were identified through a detailed analysis of saccharified slurries by applying a combination of approaches of high-performance liquid chromatography, GC-MS, LC-DAD-MS, and ICP-MS. Several high-throughput assays were then evaluated to generate toxicity profiles. Our results demonstrated that Bioscreen C was useful for analyzing bacterial toxicity but not for yeast. AlamarBlue reduction assay can be a useful high-throughput assay for both bacterial and yeast strainsmore » as long as medium components do not interfere with fluorescence measurements. In addition, this work identified two major inhibitors (furfural and ammonium acetate) for three potential hydrocarbon-producing bacterial species that include Escherichia coli, Cupriavidus necator, and Rhodococcus opacus PD630, which are also the primary inhibitors for ethanologens. Here, this study was strived to establish a pipeline to quantify inhibitory compounds in biomass slurries and high-throughput approaches to investigate the effect of inhibitors on microbial biocatalysts, which can be applied for various biomass slurries or hydrolyzates generated through different pretreatment and enzymatic hydrolysis processes or different microbial candidates.« less

  15. Identification of Inhibitors in Lignocellulosic Slurries and Determination of Their Effect on Hydrocarbon-Producing Microorganisms

    DOE PAGES

    Yang, Shihui; Franden, Mary A; Yang, Qing; ...

    2018-04-04

    The aim of this work was to identify inhibitors in pretreated lignocellulosic slurries, evaluate high-throughput screening strategies, and investigate the impact of inhibitors on potential hydrocarbon-producing microorganisms. Compounds present in slurries that could inhibit microbial growth were identified through a detailed analysis of saccharified slurries by applying a combination of approaches of high-performance liquid chromatography, GC-MS, LC-DAD-MS, and ICP-MS. Several high-throughput assays were then evaluated to generate toxicity profiles. Our results demonstrated that Bioscreen C was useful for analyzing bacterial toxicity but not for yeast. AlamarBlue reduction assay can be a useful high-throughput assay for both bacterial and yeast strainsmore » as long as medium components do not interfere with fluorescence measurements. In addition, this work identified two major inhibitors (furfural and ammonium acetate) for three potential hydrocarbon-producing bacterial species that include Escherichia coli, Cupriavidus necator, and Rhodococcus opacus PD630, which are also the primary inhibitors for ethanologens. Here, this study was strived to establish a pipeline to quantify inhibitory compounds in biomass slurries and high-throughput approaches to investigate the effect of inhibitors on microbial biocatalysts, which can be applied for various biomass slurries or hydrolyzates generated through different pretreatment and enzymatic hydrolysis processes or different microbial candidates.« less

  16. ESA's Ice Cloud Imager on Metop Second Generation

    NASA Astrophysics Data System (ADS)

    Klein, Ulf; Loiselet, Marc; Mason, Graeme; Gonzalez, Raquel; Brandt, Michael

    2016-04-01

    Since 2006, the European contribution to operational meteorological observations from polar orbit has been provided by the Meteorological Operational (MetOp) satellites, which is the space segment of the EUMETSAT Polar System (EPS). The first MetOp satellite was launched in 2006, 2nd 2012 and 3rd satellite is planned for launch in 2018. As part of the next generation EUMETSAT Polar System (EPS-SG), the MetOp Second Generation (MetOp-SG) satellites will provide continuity and enhancement of these observations in the 2021 - 2042 timeframe. The noel Ice Cloud Imager (ICI) is one of the instruments selected to be on-board the MetOp-SG satellite "B". The main objective of the ICI is to enable cloud ice retrieval, with emphasis on cirrus clouds. ICI will provide information on cloud ice mean altitude, cloud ice water path and cloud ice effective radius. In addition, it will provide water vapour profile measurement capability. ICI is a 13-channel microwave/sub-millimetre wave radiometer, covering the frequency range from 183 GHz up to 664 GHz. The instrument is composed of a rotating part and a fixed part. The rotating part includes the main antenna, the feed assembly and the receiver electronics. The fixed part contains the hot calibration target, the reflector for viewing the cold sky and the electronics for the instrument control and interface with the platform. Between the fixed and the rotating part is the scan mechanism. Scan mechanism is not only responsible of rotating the instrument and providing its angular position, but it will also have pass through the power and data lines. The Scan mechanism is controlled by the fully redundant Control and Drive Electronics ICI is calibrated using an internal hot target and a cold sky mirror, which are viewed once per rotation. The internal hot target is a traditional pyramidal target. The hot target is covered by an annular shield during rotation with only a small opening for the feed horns to guarantee a stable environment

  17. Thermooptical properties of gold nanoparticles embedded in ice: characterization of heat generation and melting.

    PubMed

    Richardson, Hugh H; Hickman, Zackary N; Govorov, Alexander O; Thomas, Alyssa C; Zhang, Wei; Kordesch, Martin E

    2006-04-01

    We investigate the system of optically excited gold NPs in an ice matrix aiming to understand heat generation and melting processes at the nanoscale level. Along with the traditional fluorescence method, we introduce thermooptical spectroscopy based on phase transformation of a matrix. With this, we can not only measure optical response but also thermal response, that is, heat generation. After several recrystallization cycles, the nanoparticles are embedded into the ice film where the optical and thermal properties of the nanoparticles are probed. Spatial fluorescence mapping shows the locations of Au nanoparticles, whereas the time-resolved Raman signal of ice reveals the melting process. From the time-dependent Raman signals, we determine the critical light intensities at which the laser beam is able to melt ice around the nanoparticles. The melting intensity depends strongly on temperature and position. The position-dependence is especially strong and reflects a mesoscopic character of heat generation. We think that it comes from the fact that nanoparticles form small complexes of different geometry and each complex has a unique thermal response. Theoretical calculations and experimental data are combined to make a quantitative measure of the amount of heat generated by optically excited Au nanoparticles and agglomerates. The information obtained in this study can be used to design nanoscale heaters and actuators.

  18. Geometry Modeling and Grid Generation for Computational Aerodynamic Simulations Around Iced Airfoils and Wings

    NASA Technical Reports Server (NTRS)

    Choo, Yung K.; Slater, John W.; Vickerman, Mary B.; VanZante, Judith F.; Wadel, Mary F. (Technical Monitor)

    2002-01-01

    Issues associated with analysis of 'icing effects' on airfoil and wing performances are discussed, along with accomplishments and efforts to overcome difficulties with ice. Because of infinite variations of ice shapes and their high degree of complexity, computational 'icing effects' studies using available software tools must address many difficulties in geometry acquisition and modeling, grid generation, and flow simulation. The value of each technology component needs to be weighed from the perspective of the entire analysis process, from geometry to flow simulation. Even though CFD codes are yet to be validated for flows over iced airfoils and wings, numerical simulation, when considered together with wind tunnel tests, can provide valuable insights into 'icing effects' and advance our understanding of the relationship between ice characteristics and their effects on performance degradation.

  19. Slurry-pressing consolidation of silicon nitride

    NASA Technical Reports Server (NTRS)

    Sanders, William A.; Kiser, James D.; Freedman, Marc R.

    1988-01-01

    A baseline slurry-pressing method for a silicon nitride material is developed. The Si3N4 composition contained 5.8 wt percent SiO2 and 6.4 wt percent Y2O3. Slurry-pressing variables included volume percent solids, application of ultrasonic energy, and pH. Twenty vol percent slurry-pressed material was approximately 11 percent stronger than both 30 vol percent slurry-pressed and dry-pressed materials. The Student's t-test showed the difference to be significant at the 99 percent confidence level. Twenty volume percent (300 h) slurry-pressed test bars exhibited strengths as high as 980 MPa. Large, columnar beta-Si3N4 grains caused failure in the highest strength specimens. The improved strength correlated with better structural uniformity as determined by radiography, optical microscopy, and image analysis.

  20. Capabilities and performance of the new generation ice-sheet model Elmer/Ice

    NASA Astrophysics Data System (ADS)

    Gagliardini, O.; Zwinger, T.; Durand, G.; Favier, L.; de Fleurian, B.; Gillet-chaulet, F.; Seddik, H.; Greve, R.; Mallinen, M.; Martin, C.; Raback, P.; Ruokolainen, J.; Schäfer, M.; Thies, J.

    2012-12-01

    Since the Fourth IPCC Assessment Report, and its conclusion about the inability of ice-sheet flow models to forecast the current increase of polar ice sheet discharge and associated contribution to sea-level rise, a huge development effort has been undertaken by the glaciological community. All around the world, models have been improved and, interestingly, a significant number of new ice-sheet models have emerged. Among them, the parallel finite-element model Elmer/Ice (based on the open-source multi-physics code Elmer) was one of the first full-Stokes models used to make projections of the future of the whole Greenland ice sheet for the coming two centuries. Originally developed to solve dedicated local ice flow problems of high mechanical and physical complexity, Elmer/Ice has today reached the maturity to solve larger scale problems, earning the status of an ice-sheet model. In this presentation, we summarise the almost 10 years of development performed by different groups. We present the components already included in Elmer/Ice, its numerical performance, selected applications, as well as developments planed for the future.

  1. Tribological Properties Of Coal Slurries

    NASA Technical Reports Server (NTRS)

    Fusaro, Robert L.; Schrubens, Dale L.

    1988-01-01

    Report describes study of tribological properties of coal/methanol slurries with pin-on-disk tribometer. Coefficients of friction, rates of wear of steel pin, and morphological studies of worn surfaces conducted on pins and disks of AISI 440C HT stainless steel and M-50 tool steel, both used as bearing steels. Coal slurries considered as replacement fuels in terrestrial oil-burning facilities and possible fuels for future aircraft turbine engines. Rates of wear of metallic components through which slurries flow limit such practical applications.

  2. Technical Development of Slurry Three-Dimensional Printer

    NASA Astrophysics Data System (ADS)

    Jiang, Cho-Pei; Hsu, Huang-Jan; Lee, Shyh-Yuan

    2017-09-01

    The aim of this paper is to review the technical development of slurry three-dimensional printer (3DP) which based on photo-polymerization and constrained surface method. Basically, slurry consists of ceramic powder, resin and photo-initiator. The light engines for solidifying the photo-curable slurry can be classified as laser, liquid crystal panel (LCD), digital light processing (DLP). The slurry can be reacted and solidified by selective ray according to the reaction spectrum of photo-initiator. Ceramic powder used in this study is zirconia oxide. Experimental results show that ceramic particle size affects the viscosity of slurry severely resulting in low accuracy and the occurrence of micro crack in the layer casting procedure. Therefore, the effect of particle size on the curability and accuracy of built green part is discussed. A single dental crown is proposed to be fabricated by these three light engines as a benchmark for comparison. In addition, the cost and the limitation are compared in the aspect of dental crown fabrication. Consequently, the lowest cost is LCD-type slurry 3DP system. DLP-type slurry 3DP can produce green body with the fastest fabrication time. The volumetric error of sintered part that made by these three fabrication methods is similar because the composition of slurry is the same.

  3. Supersonic coal water slurry fuel atomizer

    DOEpatents

    Becker, Frederick E.; Smolensky, Leo A.; Balsavich, John

    1991-01-01

    A supersonic coal water slurry atomizer utilizing supersonic gas velocities to atomize coal water slurry is provided wherein atomization occurs externally of the atomizer. The atomizer has a central tube defining a coal water slurry passageway surrounded by an annular sleeve defining an annular passageway for gas. A converging/diverging section is provided for accelerating gas in the annular passageway to supersonic velocities.

  4. Generation of Fullspan Leading-Edge 3D Ice Shapes for Swept-Wing Aerodynamic Testing

    NASA Technical Reports Server (NTRS)

    Camello, Stephanie C.; Lee, Sam; Lum, Christopher; Bragg, Michael B.

    2016-01-01

    The deleterious effect of ice accretion on aircraft is often assessed through dry-air flight and wind tunnel testing with artificial ice shapes. This paper describes a method to create fullspan swept-wing artificial ice shapes from partial span ice segments acquired in the NASA Glenn Icing Reserch Tunnel for aerodynamic wind-tunnel testing. Full-scale ice accretion segments were laser scanned from the Inboard, Midspan, and Outboard wing station models of the 65% scale Common Research Model (CRM65) aircraft configuration. These were interpolated and extrapolated using a weighted averaging method to generate fullspan ice shapes from the root to the tip of the CRM65 wing. The results showed that this interpolation method was able to preserve many of the highly three dimensional features typically found on swept-wing ice accretions. The interpolated fullspan ice shapes were then scaled to fit the leading edge of a 8.9% scale version of the CRM65 wing for aerodynamic wind-tunnel testing. Reduced fidelity versions of the fullspan ice shapes were also created where most of the local three-dimensional features were removed. The fullspan artificial ice shapes and the reduced fidelity versions were manufactured using stereolithography.

  5. DEMONSTRATION BULLETIN: SLURRY BIODEGRADATION, International Technology Corporation

    EPA Science Inventory

    This technology uses a slurry-phase bioreactor in which the soil is mixed with water to form a slurry. Microorganisms and nutrients are added to the slurry to enhance the biodegradation process, which converts organic wastes into relatively harmless byproducts of microbial metabo...

  6. Apparatus and method for transferring slurries

    DOEpatents

    Horton, J.R.

    1982-08-13

    Slurry is transferred to a high pressure region by pushing the slurry from the bottom of a transfer vessel with a pressurizing liquid admitted into the top of the vessel. While the pressurizing liquid is being introduced into the transfer vessel, pressurizing liquid which has mixed with slurry is drawn off from the transfer vessel at a point between its upper and lower ends.

  7. Apparatus and method for transferring slurries

    DOEpatents

    Horton, Joel R.

    1984-01-01

    Slurry is transferred to a high pressure region by pushing the slurry from the bottom of a transfer vessel with a pressurizing liquid admitted into the top of the vessel. While the pressurizing liquid is being introduced into the transfer vessel, pressurizing liquid which has mixed with slurry is drawn off from the transfer vessel at a point between its upper and lower ends.

  8. Process for heating coal-oil slurries

    DOEpatents

    Braunlin, Walter A.; Gorski, Alan; Jaehnig, Leo J.; Moskal, Clifford J.; Naylor, Joseph D.; Parimi, Krishnia; Ward, John V.

    1984-01-03

    Controlling gas to slurry volume ratio to achieve a gas holdup of about 0.4 when heating a flowing coal-oil slurry and a hydrogen containing gas stream allows operation with virtually any coal to solvent ratio and permits operation with efficient heat transfer and satisfactory pressure drops. The critical minimum gas flow rate for any given coal-oil slurry will depend on numerous factors such as coal concentration, coal particle size distribution, composition of the solvent (including recycle slurries), and type of coal. Further system efficiency can be achieved by operating with multiple heating zones to provide a high heat flux when the apparent viscosity of the gas saturated slurry is highest. Operation with gas flow rates below the critical minimum results in system instability indicated by temperature excursions in the fluid and at the tube wall, by a rapid increase and then decrease in overall pressure drop with decreasing gas flow rate, and by increased temperature differences between the temperature of the bulk fluid and the tube wall. At the temperatures and pressures used in coal liquefaction preheaters the coal-oil slurry and hydrogen containing gas stream behaves essentially as a Newtonian fluid at shear rates in excess of 150 sec.sup. -1. The gas to slurry volume ratio should also be controlled to assure that the flow regime does not shift from homogeneous flow to non-homogeneous flow. Stable operations have been observed with a maximum gas holdup as high as 0.72.

  9. The effect on slurry water as a fresh water replacement in concrete properties

    NASA Astrophysics Data System (ADS)

    Kadir, Aeslina Abdul; Shahidan, Shahiron; Hai Yee, Lau; Ikhmal Haqeem Hassan, Mohd; Bakri Abdullah, Mohd Mustafa Al

    2016-06-01

    Concrete is the most widely used engineering material in the world and one of the largest water consuming industries. Consequently, the concrete manufacturer, ready mixed concrete plant is increased dramatically due to high demand from urban development project. At the same time, slurry water was generated and leading to environmental problems. Thus, this paper is to investigate the effect of using slurry water on concrete properties in term of mechanical properties. The basic wastewater characterization was investigated according to USEPA (Method 150.1 & 300.0) while the mechanical property of concrete with slurry water was compared according to ASTM C1602 and BS EN 1008 standards. In this research, the compressive strength, modulus of elasticity and tensile strength were studied. The percentage of wastewater replaced in concrete mixing was ranging from 0% up to 50%. In addition, the resulted also suggested that the concrete with 20% replacement of slurry water was achieved the highest compressive strength and modulus of elasticity compared to other percentages. Moreover, the results also recommended that concrete with slurry water mix have better compressive strength compared to control mix concrete.

  10. Experimental insights into pyroclast-ice heat transfer in water-drained, low-pressure cavities during subglacial explosive eruptions

    NASA Astrophysics Data System (ADS)

    Woodcock, D. C.; Lane, S. J.; Gilbert, J. S.

    2017-07-01

    Subglacial explosive volcanism generates hazards that result from magma-ice interaction, including large flow rate meltwater flooding and fine-grained volcanic ash. We consider eruptions where subglacial cavities produced by ice melt during eruption establish a connection to the atmosphere along the base of the ice sheet that allows accumulated meltwater to drain. The resulting reduction of pressure initiates or enhances explosive phreatomagmatic volcanism within a steam-filled cavity with pyroclast impingement on the cavity roof. Heat transfer rates to melt ice in such a system have not, to our knowledge, been assessed previously. To study this system, we take an experimental approach to gain insight into the heat transfer processes and to quantify ice melt rates. We present the results of a series of analogue laboratory experiments in which a jet of steam, air, and sand at approximately 300°C impinged on the underside of an ice block. A key finding was that as the steam to sand ratio was increased, behavior ranged from predominantly horizontal ice melting to predominantly vertical melting by a mobile slurry of sand and water. For the steam to sand ratio that matches typical steam to pyroclast ratios during subglacial phreatomagmatic eruptions at 300°C, we observed predominantly vertical melting with upward ice melt rates of 1.5 mm s-1, which we argue is similar to that within the volcanic system. This makes pyroclast-ice heat transfer an important contributing ice melt mechanism under drained, low-pressure conditions that may precede subaerial explosive volcanism on sloping flanks of glaciated volcanoes.

  11. Preparing and Analyzing Iced Airfoils

    NASA Technical Reports Server (NTRS)

    Vickerman, Mary B.; Baez, Marivell; Braun, Donald C.; Cotton, Barbara J.; Choo, Yung K.; Coroneos, Rula M.; Pennline, James A.; Hackenberg, Anthony W.; Schilling, Herbert W.; Slater, John W.; hide

    2004-01-01

    SmaggIce version 1.2 is a computer program for preparing and analyzing iced airfoils. It includes interactive tools for (1) measuring ice-shape characteristics, (2) controlled smoothing of ice shapes, (3) curve discretization, (4) generation of artificial ice shapes, and (5) detection and correction of input errors. Measurements of ice shapes are essential for establishing relationships between characteristics of ice and effects of ice on airfoil performance. The shape-smoothing tool helps prepare ice shapes for use with already available grid-generation and computational-fluid-dynamics software for studying the aerodynamic effects of smoothed ice on airfoils. The artificial ice-shape generation tool supports parametric studies since ice-shape parameters can easily be controlled with the artificial ice. In such studies, artificial shapes generated by this program can supplement simulated ice obtained from icing research tunnels and real ice obtained from flight test under icing weather condition. SmaggIce also automatically detects geometry errors such as tangles or duplicate points in the boundary which may be introduced by digitization and provides tools to correct these. By use of interactive tools included in SmaggIce version 1.2, one can easily characterize ice shapes and prepare iced airfoils for grid generation and flow simulations.

  12. Microbial community composition and electricity generation in cattle manure slurry treatment using microbial fuel cells: effects of inoculum addition.

    PubMed

    Xie, Binghan; Gong, Weijia; Ding, An; Yu, Huarong; Qu, Fangshu; Tang, Xiaobin; Yan, Zhongsen; Li, Guibai; Liang, Heng

    2017-10-01

    Microbial fuel cell (MFC) is a sustainable technology to treat cattle manure slurry (CMS) for converting chemical energy to bioelectricity. In this work, two types of allochthonous inoculum including activated sludge (AS) and domestic sewage (DS) were added into the MFC systems to enhance anode biofilm formation and electricity generation. Results indicated that MFCs (AS + CMS) obtained the maximum electricity output with voltage approaching 577 ± 7 mV (~ 196 h), followed by MFCs (DS + CMS) (520 ± 21 mV, ~ 236 h) and then MFCs with autochthonous inoculum (429 ± 62 mV, ~ 263.5 h). Though the raw cattle manure slurry (RCMS) could facilitate electricity production in MFCs, the addition of allochthonous inoculum (AS/DS) significantly reduced the startup time and enhanced the output voltage. Moreover, the maximum power (1.259 ± 0.015 W/m 2 ) and the highest COD removal (84.72 ± 0.48%) were obtained in MFCs (AS + CMS). With regard to microbial community, Illumina HiSeq of the 16S rRNA gene was employed in this work and the exoelectrogens (Geobacter and Shewanella) were identified as the dominant members on all anode biofilms in MFCs. For anode microbial diversity, the MFCs (AS + CMS) outperformed MFCs (DS + CMS) and MFCs (RCMS), allowing the occurrence of the fermentative (e.g., Bacteroides) and nitrogen fixation bacteria (e.g., Azoarcus and Sterolibacterium) which enabled the efficient degradation of the slurry. This study provided a feasible strategy to analyze the anode biofilm formation by adding allochthonous inoculum and some implications for quick startup of MFC reactors for CMS treatment.

  13. Determination of As, Hg and Pb in herbs using slurry sampling flow injection chemical vapor generation inductively coupled plasma mass spectrometry.

    PubMed

    Tai, Chia-Yi; Jiang, Shiuh-Jen; Sahayam, A C

    2016-02-01

    Analysis of herbs for As, Hg and Pb has been carried out using slurry sampling inductively coupled plasma mass spectrometry (ICP-MS) with flow injection vapor generation. Slurry containing 0.5% m/v herbal powder, 0.1% m/v citric acid and 2% v/v HCl was injected into the VG-ICP-MS system for the determination of As, Hg and Pb that obviate dissolution and mineralization. Standard addition and isotope dilution methods were used for quantifications in selected herbal powders. This method has been validated by the determination of As, Hg and Pb in NIST standard reference materials SRM 1547 Peach Leaves and SRM 1573a Tomato Leaves. The As, Hg and Pb analysis results of the reference materials agreed with the certified values. The precision obtained by the reported procedure was better than 7% for all determinations. The detection limit estimated from standard addition curve was 0.008, 0.003, and 0.007 ng mL(-1) for As, Hg and Pb, respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Process for heating coal-oil slurries

    DOEpatents

    Braunlin, W.A.; Gorski, A.; Jaehnig, L.J.; Moskal, C.J.; Naylor, J.D.; Parimi, K.; Ward, J.V.

    1984-01-03

    Controlling gas to slurry volume ratio to achieve a gas holdup of about 0.4 when heating a flowing coal-oil slurry and a hydrogen containing gas stream allows operation with virtually any coal to solvent ratio and permits operation with efficient heat transfer and satisfactory pressure drops. The critical minimum gas flow rate for any given coal-oil slurry will depend on numerous factors such as coal concentration, coal particle size distribution, composition of the solvent (including recycle slurries), and type of coal. Further system efficiency can be achieved by operating with multiple heating zones to provide a high heat flux when the apparent viscosity of the gas saturated slurry is highest. Operation with gas flow rates below the critical minimum results in system instability indicated by temperature excursions in the fluid and at the tube wall, by a rapid increase and then decrease in overall pressure drop with decreasing gas flow rate, and by increased temperature differences between the temperature of the bulk fluid and the tube wall. At the temperatures and pressures used in coal liquefaction preheaters the coal-oil slurry and hydrogen containing gas stream behaves essentially as a Newtonian fluid at shear rates in excess of 150 sec[sup [minus]1]. The gas to slurry volume ratio should also be controlled to assure that the flow regime does not shift from homogeneous flow to non-homogeneous flow. Stable operations have been observed with a maximum gas holdup as high as 0.72. 29 figs.

  15. Biogas slurry pricing method based on nutrient content

    NASA Astrophysics Data System (ADS)

    Zhang, Chang-ai; Guo, Honghai; Yang, Zhengtao; Xin, Shurong

    2017-11-01

    In order to promote biogas-slurry commercialization, A method was put forward to valuate biogas slurry based on its nutrient contents. Firstly, element contents of biogas slurry was measured; Secondly, each element was valuated based on its market price, and then traffic cost, using cost and market effect were taken into account, the pricing method of biogas slurry were obtained lastly. This method could be useful in practical production. Taking cattle manure raw meterial biogas slurry and con stalk raw material biogas slurry for example, their price were 38.50 yuan RMB per ton and 28.80 yuan RMB per ton. This paper will be useful for recognizing the value of biogas projects, ensuring biogas project running, and instructing the cyclic utilization of biomass resources in China.

  16. INEZ, KENTUCKY COAL SLURRY SPILL

    EPA Science Inventory

    On October 11th, 2000, a breach of a coal slurry impoundment released approximately 210 million gallons of coal slurry ( a mixture of fine coal particles, silt, clay, sand and water) into the Big Andy Branch, Wolf Creek, and Coldwater Fork. Approximately 75 river miles were affec...

  17. Tribological properties of coal slurries

    NASA Technical Reports Server (NTRS)

    Fusaro, Robert L.; Schrubens, Dale L.

    1987-01-01

    A pin-on-disk tribometer was used to study the tribological properties of methyl alcohol-coal slurries. Friction coefficients, steel pin wear rates and wear surface morphological studies were conducted on AISI 440C HT and M-50 bearing steels which were slid dry and in solutions of methyl alcohol, methyl alcohol-fine coal particles, and methyl alcohol-fine coal particles-flocking additive. The latter was an oil derived from coal and originally intended to be added to the coal slurry to improve the sedimentation and rheology properties. The results of this study indicated that the addition of the flocking additive to the coal slurry markedly improved the tribological properties, especially wear. In addition, the type of steel was found to be very important in determining the type of wear that took place. Cracks and pits were found on the M-50 steel pin wear surfaces that slid in the coal slurries while 440C HT steel pins showed none.

  18. Method and apparatus for improved wire saw slurry

    DOEpatents

    Costantini, Michael A.; Talbott, Jonathan A.; Chandra, Mohan; Prasad, Vishwanath; Caster, Allison; Gupta, Kedar P.; Leyvraz, Philippe

    2000-09-05

    A slurry recycle process for use in free-abrasive machining operations such as for wire saws used in wafer slicing of ingots, where the used slurry is separated into kerf-rich and abrasive-rich components, and the abrasive-rich component is reconstituted into a makeup slurry. During the process, the average particle size of the makeup slurry is controlled by monitoring the condition of the kerf and abrasive components and making necessary adjustments to the separating force and dwell time of the separator apparatus. Related pre-separator and post separator treatments, and feedback of one or the other separator slurry output components for mixing with incoming used slurry and recirculation through the separator, provide further effectiveness and additional control points in the process. The kerf-rich component is eventually or continually removed; the abrasive-rich component is reconstituted into a makeup slurry with a controlled, average particle size such that the products of the free-abrasive machining method using the recycled slurry process of the invention are of consistent high quality with less TTV deviation from cycle to cycle for a prolonged period or series of machining operations.

  19. A Study on Generation Ice Containing Ozone

    NASA Astrophysics Data System (ADS)

    Yoshimura, Kenji; Koyama, Shigeru; Yamamoto, Hiromi

    Ozone has the capability of sterilization and deodorization due to high oxidation power. It is also effective for the conservation of perishable foods and purification of water. However, ozone has a disadvantage, that is, conservation of ozone is difficult because it changes back into oxygen. Recently, ice containing ozone is taken attention for the purpose of its conservation. The use of ice containing ozone seems to keep food fresher when we conserve and transport perishable foods due to effects of cooling and sterilization of ice containing ozone. In the present study, we investigated the influence of temperatures of water dissolving ozone on the timewise attenuations of ozone concentration in water. We also investigated the influence of cooling temperature, ice diameter, initial temperatures of water dissolving ozone and container internal pressure of the water dissolving ozone on ozone concentration in the ice. In addition, we investigated the influence of the ice diameter on the timewise attenuations of ozone concentration in the ice. It was confirmed that the solidification experimental data can be adjusted by a correlation between ozone concentration in the ice and solidification time.

  20. NACA Research on Slurry Fuels

    NASA Technical Reports Server (NTRS)

    Pinns, M L; Olson, W T; Barnett, H C; Breitwieser, R

    1958-01-01

    An extensive program was conducted to investigate the use of concentrated slurries of boron and magnesium in liquid hydrocarbon as fuels for afterburners and ramjet engines. Analytical calculations indicated that magnesium fuel would give greater thrust and that boron fuel would give greater range than are obtainable from jet hydrocarbon fuel alone. It was hoped that the use of these solid elements in slurry form would permit the improvement to be obtained without requiring unconventional fuel systems or combustors. Small ramjet vehicles fueled with magnesium slurry were flown successfully, but the test flights indicated that further improvement of combustors and fuel systems was needed.

  1. Coal-oil slurry preparation

    DOEpatents

    Tao, John C.

    1983-01-01

    A pumpable slurry of pulverized coal in a coal-derived hydrocarbon oil carrier which slurry is useful as a low-ash, low-sulfur clean fuel, is produced from a high sulfur-containing coal. The initial pulverized coal is separated by gravity differentiation into (1) a high density refuse fraction containing the major portion of non-coal mineral products and sulfur, (2) a lowest density fraction of low sulfur content and (3) a middlings fraction of intermediate sulfur and ash content. The refuse fraction (1) is gasified by partial combustion producing a crude gas product from which a hydrogen stream is separated for use in hydrogenative liquefaction of the middlings fraction (3). The lowest density fraction (2) is mixed with the liquefied coal product to provide the desired fuel slurry. Preferably there is also separately recovered from the coal liquefaction LPG and pipeline gas.

  2. Flight and Preflight Tests of a Ram Jet Burning Magnesium Slurry Fuel and Utilizing a Solid-propellant Gas Generator for Fuel Expulsion

    NASA Technical Reports Server (NTRS)

    Bartlett, Walter, A , jr; Hagginbotham, William K , Jr

    1955-01-01

    Data obtained from the first flight test of a ram jet utilizing a magnesium slurry fuel are presented. The ram jet accelerated from a Mach number of 1.75 to a Mach number of 3.48 in 15.5 seconds. During this period a maximum values of air specific impulse and gross thrust coefficient were calculated to be 151 seconds and 0.658, respectively. The rocket gas generator used as a fuel-pumping system operated successfully.

  3. Chemical Hydride Slurry for Hydrogen Production and Storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McClaine, Andrew W

    2008-09-30

    The purpose of this project was to investigate and evaluate the attractiveness of using a magnesium chemical hydride slurry as a hydrogen storage, delivery, and production medium for automobiles. To fully evaluate the potential for magnesium hydride slurry to act as a carrier of hydrogen, potential slurry compositions, potential hydrogen release techniques, and the processes (and their costs) that will be used to recycle the byproducts back to a high hydrogen content slurry were evaluated. A 75% MgH 2 slurry was demonstrated, which was just short of the 76% goal. This slurry is pumpable and storable for months at amore » time at room temperature and pressure conditions and it has the consistency of paint. Two techniques were demonstrated for reacting the slurry with water to release hydrogen. The first technique was a continuous mixing process that was tested for several hours at a time and demonstrated operation without external heat addition. Further work will be required to reduce this design to a reliable, robust system. The second technique was a semi-continuous process. It was demonstrated on a 2 kWh scale. This system operated continuously and reliably for hours at a time, including starts and stops. This process could be readily reduced to practice for commercial applications. The processes and costs associated with recycling the byproducts of the water/slurry reaction were also evaluated. This included recovering and recycling the oils of the slurry, reforming the magnesium hydroxide and magnesium oxide byproduct to magnesium metal, hydriding the magnesium metal with hydrogen to form magnesium hydride, and preparing the slurry. We found that the SOM process, under development by Boston University, offers the lowest cost alternative for producing and recycling the slurry. Using the H2A framework, a total cost of production, delivery, and distribution of $4.50/kg of hydrogen delivered or $4.50/gge was determined. Experiments performed at Boston University

  4. Comparative assessment of water use and environmental implications of coal slurry pipelines

    USGS Publications Warehouse

    Palmer, Richard N.; James II, I. C.; Hirsch, R.M.

    1977-01-01

    With other studies conducted by the U.S. Geological Survey of water use in the conversion and transportation of the West 's coal, an analysis of water use and environmental implications of coal-slurry pipeline transport is presented. Simulations of a hypothetical slurry pipeline of 1000-mile length transporting 12.5 million tons per year indicate that pipeline costs and energy requirements are quite sensitive to the coal-to-water ratio. For realistic water prices, the optimal ratio will not vary far from the 50/50 ratio by weight. In comparison to other methods of energy conversion and transport, coal-slurry pipeline utilize about 1/3 the amount of water required for coal gasification, and about 1/5 the amount required for on-site electrical generation. An analysis of net energy output from operating alternative energy transportation systems for the assumed conditions indicates that both slurry pipeline and rail shipment require approximately 4.5 percent of the potential electrical energy output of the coal transported, and high-voltage, direct-current transportation requires approximately 6.5 percent. The environmental impacts of the different transports options are so substantially different that a common basis for comparison does not exist. (Woodard-USGS)

  5. BOILING SLURRY REACTOR AND METHOD FO CONTROL

    DOEpatents

    Petrick, M.; Marchaterre, J.F.

    1963-05-01

    The control of a boiling slurry nuclear reactor is described. The reactor consists of a vertical tube having an enlarged portion, a steam drum at the top of the vertical tube, and at least one downcomer connecting the steam drum and the bottom of the vertical tube, the reactor being filled with a slurry of fissionabie material in water of such concentration that the enlarged portion of the vertical tube contains a critical mass. The slurry boils in the vertical tube and circulates upwardly therein and downwardly in the downcomer. To control the reactor by controlling the circulation of the slurry, a gas is introduced into the downcomer. (AEC)

  6. Biogas production generated through continuous digestion of natural and cultivated seaweeds with dairy slurry.

    PubMed

    Tabassum, Muhammad Rizwan; Wall, David M; Murphy, Jerry D

    2016-11-01

    The technical feasibility of long term anaerobic mono-digestion of two brown seaweeds, and co-digestion of both seaweeds with dairy slurry was investigated whilst increasing the organic loading rate (OLR). One seaweed was natural (L. digitata); the second seaweed (S. Latissima) was cultivated. Higher proportions of L. digitata in co-digestion (66.6%) allowed the digester to operate more efficiently (OLR of 5kgVSm(-3)d(-1) achieving a specific methane yield (SMY) of 232LCH4kg(-1)VS) as compared to lower proportions (33.3%). Co-digestion of 66.6% cultivated S. latissima, with dairy slurry allowed a higher SMY of 252LCH4kg(-1)VS but at a lower OLR of 4kgVSm(-3)d(-1). Optimum conditions for mono-digestion of both seaweeds were effected at 4kgVSm(-3)d(-1). Chloride concentrations increased to high levels in the digestion of both seaweeds but were not detrimental to operation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Rheological characterisation of concentrated domestic slurry.

    PubMed

    Thota Radhakrishnan, A K; van Lier, J B; Clemens, F H L R

    2018-05-03

    The much over-looked element in new sanitation, the transport systems which bridge the source and treatment facilities, is the focus of this study. The knowledge of rheological properties of concentrated domestic slurry is essential for the design of the waste collection and transport systems. To investigate these properties, samples were collected from a pilot sanitation system in the Netherlands. Two types of slurries were examined: black water (consisting of human faecal waste, urine, and flushed water from vacuum toilets) and black water with ground kitchen waste. Rheograms of these slurries were obtained using a narrow gap rotating rheometer and modelled using a Herschel-Bulkley model. The effect of concentration on the slurry are described through the changes in the parameters of the Herschel-Bulkley model. A detailed method is proposed on estimating the parameters for the rheological models. For the black water, yield stress and consistency index follow an increasing power law with the concentration and the behaviour index follows a decreasing power law. The influence of temperature on the viscosity of the slurry is described using an Arrhenius type relation. The viscosity of black water decreases with temperature. As for the black water mixed with ground kitchen waste, it is found that the viscosity increases with concentration and decreases with temperature. The viscosity of black-water with ground kitchen waste is found to be higher than that of black water, which can be attributed to the presence of larger particles in the slurry. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Ammonia volatilization from farm tanks containing anaerobically digested animal slurry

    NASA Astrophysics Data System (ADS)

    Sommer, S. G.

    Ammonia (NH 3) volatilization from three full-scale tanks containing anaerobically digested animal slurry from one biogas plant was determined with a meteorological mass balance technique. No surface crust developed on the slurry. This provided an ideal system for analysing loss patterns from slurries without cover and to study the effect of a cover of straw and air-filled clay granules. Ammonia volatilization from uncovered slurry ranged from zero at subzero temperatures to 30 g N m -2 d -1 during summer. The high volatilization rate was attributed to a lack of surface cover, high slurry pH and high TAN (NH 3 + NH 4+) concentration. Ammonia volatilization from the covered slurry was insignificant. From the uncovered slurry the annual loss of NH3 was 3.3 kg N m -2 There was a significant effect of incident global radiation (ICR), air temperature at 20 cm (T_20) and rain on NH3 volatilization from the uncovered slurry. The straw covered slurry was significantly affected by T_20.

  9. Streamline coal slurry letdown valve

    DOEpatents

    Platt, Robert J.; Shadbolt, Edward A.

    1983-01-01

    A streamlined coal slurry letdown valve is featured which has a two-piece throat comprised of a seat and seat retainer. The two-piece design allows for easy assembly and disassembly of the valve. A novel cage holds the two-piece throat together during the high pressure letdown. The coal slurry letdown valve has long operating life as a result of its streamlined and erosion-resistance surfaces.

  10. Study on Latent Heat of Fusion of Ice in Aqueous Solutions

    NASA Astrophysics Data System (ADS)

    Kumano, Hiroyuki; Asaoka, Tatsunori; Saito, Akio; Okawa, Seiji

    In this study, latent heat of fusion of ice in aqueous solutions was measured to understand latent heat of fusion of ice slurries. Propylene glycol, ethylene glycol, ethanol, NaCl and NaNO3 solutions were examined as the aqueous solutions. In the measurement, pure ice was put into the solution, and the temperature variation of the solution due to the melting of the ice was measured. Then, the effective latent heat of fusion was calculated from energy balance equation. When ice melts in solution, the concentration of the solution varies due to the melting of the ice, and dilution heat must be considered. Therefore, the latent heat of fusion of ice in aqueous solutions was predicted by considering the effects of dilution and freezing-point depression. The latent heat of fusion was also measured by differential scanning calorimetry(DSC) to compare the results obtained from the experiments with that obtained by DSC. As the result, it was found that the effective latent heat of fusion of ice decreased with the increase of the concentration of solution, and the effective latent heat of fusion was calculated from latent heat of fusion of pure ice and the effects of freezing-point depression and the dilution heat.

  11. Artificial Bone and Teeth through Controlled Ice Growth in Colloidal Suspensions

    NASA Astrophysics Data System (ADS)

    Tomsia, Antoni P.; Saiz, Eduardo; Deville, Sylvain

    2007-06-01

    The formation of regular patterns is a common feature of many solidification processes involving cast materials. We describe here how regular patterns can be obtained in porous alumina and hydroxyapatite (HAP) by controlling the freezing of ceramic slurries followed by subsequent ice sublimation and sintering, leading to multilayered porous ceramic structures with homogeneous and well-defined architecture. These porous materials can be infiltrated with a second phase of choice to yield biomimetic nacre-like composites with improved mechanical properties, which could be used for artificial bone and teeth applications. Proper control of the solidification patterns provides powerful means of control over the final functional properties. We discuss the relationships between the experimental results, ice growth fundamentals, the physics of ice and the interaction between inert particles and the solidification front during directional freezing.

  12. Low frequency aeration of pig slurry affects slurry characteristics and emissions of greenhouse gases and ammonia.

    PubMed

    Calvet, Salvador; Hunt, John; Misselbrook, Tom H

    2017-07-01

    Low frequency aeration of slurries may reduce ammonia (NH 3 ) and methane (CH 4 ) emissions without increasing nitrous oxide (N 2 O) emissions. The aim of this study was to quantify this potential reduction and to establish the underlying mechanisms. A batch experiment was designed with 6 tanks with 1 m 3 of pig slurry each. After an initial phase of 7 days when none of the tanks were aerated, a second phase of 4 weeks subjected three of the tanks to aeration (2 min every 6 h, airflow 10 m 3  h -1 ), whereas the other three tanks remained as a control. A final phase of 9 days was established with no aeration in any tank. Emissions of NH 3 , CH 4 , carbon dioxide (CO 2 ) and N 2 O were measured. In the initial phase no differences in emissions were detected, but during the second phase aeration increased NH 3 emissions by 20% with respect to the controls (8.48 vs. 7.07 g m -3  [slurry] d -1 , P < 0.05). A higher pH was found in the aerated tanks at the end of this phase (7.7 vs. 7.0 in the aerated and control tanks, respectively, P < 0.05). CH 4 emissions were 40% lower in the aerated tanks (2.04 vs. 3.39 g m -3  [slurry] d -1 , P < 0.05). These differences in NH 3 and CH 4 emissions remained after the aeration phase had finished. No effect was detected for CO 2 , and no relevant N 2 O emissions were detected during the experiment. Our results demonstrate that low frequency aeration of stored pig slurry increases slurry pH and increases NH 3 emissions.

  13. Liquid CO 2/Coal Slurry for Feeding Low Rank Coal to Gasifiers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marasigan, Jose; Goldstein, Harvey; Dooher, John

    2013-09-30

    This study investigates the practicality of using a liquid CO 2/coal slurry preparation and feed system for the E-Gas™ gasifier in an integrated gasification combined cycle (IGCC) electric power generation plant configuration. Liquid CO 2 has several property differences from water that make it attractive for the coal slurries used in coal gasification-based power plants. First, the viscosity of liquid CO 2 is much lower than water. This means it should take less energy to pump liquid CO 2 through a pipe compared to water. This also means that a higher solids concentration can be fed to the gasifier, whichmore » should decrease the heat requirement needed to vaporize the slurry. Second, the heat of vaporization of liquid CO 2 is about 80% lower than water. This means that less heat from the gasification reactions is needed to vaporize the slurry. This should result in less oxygen needed to achieve a given gasifier temperature. And third, the surface tension of liquid CO 2 is about 2 orders of magnitude lower than water, which should result in finer atomization of the liquid CO 2 slurry, faster reaction times between the oxygen and coal particles, and better carbon conversion at the same gasifier temperature. EPRI and others have recognized the potential that liquid CO 2 has in improving the performance of an IGCC plant and have previously conducted systemslevel analyses to evaluate this concept. These past studies have shown that a significant increase in IGCC performance can be achieved with liquid CO 2 over water with certain gasifiers. Although these previous analyses had produced some positive results, they were still based on various assumptions for liquid CO 2/coal slurry properties.« less

  14. The Effect of Volcanic Ash Composition on Ice Nucleation Affinity

    NASA Astrophysics Data System (ADS)

    Genareau, K. D.; Cloer, S.; Primm, K.; Woods, T.; Tolbert, M. A.

    2017-12-01

    Understanding the role that volcanic ash plays in ice nucleation is important for knowledge of lightning generation in both volcanic plumes and in clouds developing downwind from active volcanoes. Volcanic ash has long been suggested to influence heterogeneous ice nucleation following explosive eruptions, but determining precisely how composition and mineralogy affects ice nucleation affinity (INA) is poorly constrained. For the study presented here, volcanic ash samples with different compositions and mineral/glass contents were tested in both the deposition and immersion modes, following the methods presented in Schill et al. (2015). Bulk composition was determined with X-ray fluorescence (XRF), grain size distribution was determined with laser diffraction particle size analysis (LDPSA), and mineralogy was determined with X-ray diffraction (XRD) and scanning electron microscopy (SEM). Results of the deposition-mode experiments reveal that there is no relationship between ice saturation ratios (Sice) and either mineralogy or bulk ash composition, as all samples have similar Sice ratios. In the immersion-mode experiments, frozen fractions were determined from -20 °C to -50 °C using three different amounts of ash (0.5, 1.0, and 2.0 wt% of slurry). Results from the immersion freezing reveal that the rhyolitic samples (73 wt% SiO2) nucleate ice at higher temperatures compared to the basaltic samples (49 wt% SiO2). There is no observed correlation between frozen fractions and mineral content of ash samples, but the two most efficient ice nuclei are rhyolites that contain the greatest proportion of amorphous glass (> 90 %), and are enriched in K2O relative to transition metals (MnO and TiO2), the latter of which show a negative correlation with frozen fraction. Higher ash abundance in water droplets increases the frozen fraction at all temperatures, indicating that ash amount plays the biggest role in ice nucleation. If volcanic ash can reach sufficient abundance (

  15. Electrode Slurry Particle Density Mapping Using X-ray Radiography

    DOE PAGES

    Higa, Kenneth; Zhao, Hui; Parkinson, Dilworth Y.; ...

    2017-01-05

    The internal structure of a porous electrode strongly influences battery performance. Understanding the dynamics of electrode slurry drying could aid in engineering electrodes with desired properties. For instance, one might monitor the dynamic, spatially-varying thickness near the edge of a slurry coating, as it should lead to non-uniform thickness of the dried film. This work examines the dynamic behavior of drying slurry drops consisting of SiO x and carbon black particles in a solution of carboxymethylcellulose and deionized water, as an experimental model of drying behavior near the edge of a slurry coating. An X-ray radiography-based procedure is developed tomore » calculate the evolving spatial distribution of active material particles from images of the drying slurry drops. To the authors’ knowledge, this study is the first to use radiography to investigate battery slurry drying, as well as the first to determine particle distributions from radiography images of drying suspensions. The dynamic results are consistent with tomography reconstructions of the static, fully-dried films. It is found that active material particles can rapidly become non-uniformly distributed within the drops. Heating can promote distribution uniformity, but seemingly must be applied very soon after slurry deposition. Higher slurry viscosity is found to strongly restrain particle redistribution.« less

  16. Streamline coal slurry letdown valve

    DOEpatents

    Platt, R.J.; Shadbolt, E.A.

    1983-11-08

    A streamlined coal slurry letdown valve is featured which has a two-piece throat comprised of a seat and seat retainer. The two-piece design allows for easy assembly and disassembly of the valve. A novel cage holds the two-piece throat together during the high pressure letdown. The coal slurry letdown valve has long operating life as a result of its streamlined and erosion-resistance surfaces. 5 figs.

  17. Method and apparatus for transporting liquid slurries

    DOEpatents

    Berry, Gregory F.; Lyczkowski, Robert W.; Wang, Chi-Sheng

    1993-01-01

    An improved method and device to prevent erosion of slurry transport devices is disclosed which uses liquid injection to prevent contact by the slurry composition with the inner surface of the walls of the transport system. A non-abrasive liquid is injected into the slurry transport system and maintains intimate contact with the entire inner surface of the transport system, thereby creating a fluid barrier between the non-abrasive liquid and the inner surface of the transport system which thereby prevents erosion.

  18. Method and apparatus for transporting liquid slurries

    DOEpatents

    Berry, G.F.; Lyczkowski, R.W.; Chisheng Wang.

    1993-03-16

    An improved method and device to prevent erosion of slurry transport devices is disclosed which uses liquid injection to prevent contact by the slurry composition with the inner surface of the walls of the transport system. A non-abrasive liquid is injected into the slurry transport system and maintains intimate contact with the entire inner surface of the transport system, thereby creating a fluid barrier between the non-abrasive liquid and the inner surface of the transport system which thereby prevents erosion.

  19. A novel method for automated grid generation of ice shapes for local-flow analysis

    NASA Astrophysics Data System (ADS)

    Ogretim, Egemen; Huebsch, Wade W.

    2004-02-01

    Modelling a complex geometry, such as ice roughness, plays a key role for the computational flow analysis over rough surfaces. This paper presents two enhancement ideas in modelling roughness geometry for local flow analysis over an aerodynamic surface. The first enhancement is use of the leading-edge region of an airfoil as a perturbation to the parabola surface. The reasons for using a parabola as the base geometry are: it resembles the airfoil leading edge in the vicinity of its apex and it allows the use of a lower apparent Reynolds number. The second enhancement makes use of the Fourier analysis for modelling complex ice roughness on the leading edge of airfoils. This method of modelling provides an analytical expression, which describes the roughness geometry and the corresponding derivatives. The factors affecting the performance of the Fourier analysis were also investigated. It was shown that the number of sine-cosine terms and the number of control points are of importance. Finally, these enhancements are incorporated into an automated grid generation method over the airfoil ice accretion surface. The validations for both enhancements demonstrate that they can improve the current capability of grid generation and computational flow field analysis around airfoils with ice roughness.

  20. Technical Report on NETL's Non Newtonian Multiphase Slurry Workshop: A path forward to understanding non-Newtonian multiphase slurry flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guenther, Chris; Garg, Rahul

    2013-08-19

    The Department of Energy’s (DOE) National Energy Technology Laboratory (NETL) sponsored a workshop on non-Newtonian multiphase slurry at NETL’s Morgantown campus August 19 and 20, 2013. The objective of this special two-day meeting of 20-30 invited experts from industry, National Labs and academia was to identify and address technical issues associated with handling non-Newtonian multiphase slurries across various facilities managed by DOE. Particular emphasis during this workshop was placed on applications managed by the Office of Environmental Management (EM). The workshop was preceded by two webinars wherein personnel from ORP and NETL provided background information on the Hanford WTP projectmore » and discussed the critical design challenges facing this project. In non-Newtonian fluids, viscosity is not constant and exhibits a complex dependence on applied shear stress or deformation. Many applications under EM’s tank farm mission involve non-Newtonian slurries that are multiphase in nature; tank farm storage and handling, slurry transport, and mixing all involve multiphase flow dynamics, which require an improved understanding of the mechanisms responsible for rheological changes in non-Newtonian multiphase slurries (NNMS). To discuss the issues in predicting the behavior of NNMS, the workshop focused on two topic areas: (1) State-of-the-art in non-Newtonian Multiphase Slurry Flow, and (2) Scaling up with Confidence and Ensuring Safe and Reliable Long-Term Operation.« less

  1. SEPARATING LIQUID MODERATOR FROM A SLURRY TYPE REACTOR

    DOEpatents

    Vernon, H.C.

    1961-07-01

    A system for evaporating moderator such as D/sub 2/O from an irradiated slurry or sloution characterized by two successive evaproators is described. In the first of these the most troublesome radioactivity dissipates before the slurry becomes too thick to be pumped out; in the second the slurry, now easier to handle, can be safely reduced to a sludge.

  2. Oxidation of coal-water slurry feed to hydrogasifier

    DOEpatents

    Lee, Bernard S.

    1976-01-01

    An aqueous coal slurry is preheated, subjected to partial oxidation and vaporization by injection of high pressure oxygen and is introduced into a top section of a hydrogasifier in direct contact with hot methane-containing effluent gases where vaporization of the slurry is completed. The resulting solids are reacted in the hydrogasifier and the combined gases and vapors are withdrawn and subjected to purification and methanation to provide pipeline gas. The amount of oxygen injected into the slurry is controlled to provide the proper thermal balance whereby all of the water in the slurry can be evaporated in contact with the hot effluent gases from the hydrogasifier.

  3. Perturbation and melting of snow and ice by the 13 November 1985 eruption of Nevado del Ruiz, Colombia, and consequent mobilization, flow and deposition of lahars

    USGS Publications Warehouse

    Pierson, T.C.; Janda, R.J.; Thouret, J.-C.; Borrero, C.A.

    1990-01-01

    A complex sequence of pyroclastic flows and surges erupted by Nevado del Ruiz volcano on 13 November 1985 interacted with snow and ice on the summit ice cap to trigger catastrophic lahars (volcanic debris flows), which killed more than 23,000 people living at or beyond the base of the volcano. The rapid transfer of heat from the hot eruptive products to about 10 km2 of the snowpack, combined with seismic shaking, produced large volumes of meltwater that flowed downslope, liquefied some of the new volcanic deposits, and generated avalanches of saturated snow, ice and rock debris within minutes of the 21:08 (local time) eruption. About 2 ?? 107 m3 of water was discharged into the upper reaches of the Molinos, Nereidas, Guali, Azufrado and Lagunillas valleys, where rapid entrainment of valley-fill sediment transformed the dilute flows and avalanches to debris flows. Computed mean velocities of the lahars at peak flow ranged up to 17 m s-1. Flows were rapid in the steep, narrow upper canyons and slowed with distance away from the volcano as flow depth and channel slope diminished. Computed peak discharges ranged up to 48,000 m3 s-1 and were greatest in reaches 10 to 20 km downstream from the summit. A total of about 9 ?? 107 m3 of lahar slurry was transported to depositional areas up to 104 km from the source area. Initial volumes of individual lahars increased up to 4 times with distance away from the summit. The sedimentology and stratigraphy of the lahar deposits provide compelling evidence that: (1) multiple initial meltwater pulses tended to coalesce into single flood waves; (2) lahars remained fully developed debris flows until they reached confluences with major rivers; and (3) debris-flow slurry composition and rheology varied to produce gradationally density-stratified flows. Key lessons and reminders from the 1985 Nevado del Ruiz volcanic eruption are: (1) catastrophic lahars can be generated on ice- and snow-capped volcanoes by relatively small eruptions; (2

  4. Opportunities for ice storage to provide ancillary services to power grids incorporating wind turbine generation

    NASA Astrophysics Data System (ADS)

    Finley, Christopher

    Power generation using wind turbines increases the electrical system balancing, regulation and ramp rate requirements due to the minute to minute variability in wind speed and the difficulty in accurately forecasting wind speeds. The addition of thermal energy storage, such as ice storage, to a building's space cooling equipment increases the operational flexibility of the equipment by allowing the owner to choose when the chiller is run. The ability of the building owner to increase the power demand from the chiller (e.g. make ice) or to decrease the power demand (e.g. melt ice) to provide electrical system ancillary services was evaluated.

  5. Ice Crystal Icing Research at NASA

    NASA Technical Reports Server (NTRS)

    Flegel, Ashlie B.

    2017-01-01

    Ice crystals found at high altitude near convective clouds are known to cause jet engine power-loss events. These events occur due to ice crystals entering a propulsion system's core flowpath and accreting ice resulting in events such as uncommanded loss of thrust (rollback), engine stall, surge, and damage due to ice shedding. As part of a community with a growing need to understand the underlying physics of ice crystal icing, NASA has been performing experimental efforts aimed at providing datasets that can be used to generate models to predict the ice accretion inside current and future engine designs. Fundamental icing physics studies on particle impacts, accretion on a single airfoil, and ice accretions observed during a rollback event inside a full-scale engine in the Propulsion Systems Laboratory are summarized. Low fidelity code development using the results from the engine tests which identify key parameters for ice accretion risk and the development of high fidelity codes are described. These activities have been conducted internal to NASA and through collaboration efforts with industry, academia, and other government agencies. The details of the research activities and progress made to date in addressing ice crystal icing research challenges are discussed.

  6. Ice Crystal Icing Research at NASA

    NASA Technical Reports Server (NTRS)

    Flegel, Ashlie B.

    2017-01-01

    Ice crystals found at high altitude near convective clouds are known to cause jet engine power-loss events. These events occur due to ice crystals entering a propulsion systems core flowpath and accreting ice resulting in events such as uncommanded loss of thrust (rollback), engine stall, surge, and damage due to ice shedding. As part of a community with a growing need to understand the underlying physics of ice crystal icing, NASA has been performing experimental efforts aimed at providing datasets that can be used to generate models to predict the ice accretion inside current and future engine designs. Fundamental icing physics studies on particle impacts, accretion on a single airfoil, and ice accretions observed during a rollback event inside a full-scale engine in the Propulsion Systems Laboratory are summarized. Low fidelity code development using the results from the engine tests which identify key parameters for ice accretion risk and the development of high fidelity codes are described. These activities have been conducted internal to NASA and through collaboration efforts with industry, academia, and other government agencies. The details of the research activities and progress made to date in addressing ice crystal icing research challenges are discussed.

  7. Replacing process water and nitrogen sources with biogas slurry during cellulosic ethanol production.

    PubMed

    You, Yang; Wu, Bo; Yang, Yi-Wei; Wang, Yan-Wei; Liu, Song; Zhu, Qi-Li; Qin, Han; Tan, Fu-Rong; Ruan, Zhi-Yong; Ma, Ke-Dong; Dai, Li-Chun; Zhang, Min; Hu, Guo-Quan; He, Ming-Xiong

    2017-01-01

    Environmental issues, such as the fossil energy crisis, have resulted in increased public attention to use bioethanol as an alternative renewable energy. For ethanol production, water and nutrient consumption has become increasingly important factors being considered by the bioethanol industry as reducing the consumption of these resources would decrease the overall cost of ethanol production. Biogas slurry contains not only large amounts of wastewater, but also the nutrients required for microbial growth, e.g., nitrogen, ammonia, phosphate, and potassium. Therefore, biogas slurry is an attractive potential resource for bioethanol production that could serve as an alternative to process water and nitrogen sources. In this study, we propose a method that replaces the process water and nitrogen sources needed for cellulosic ethanol production by Zymomonas mobilis with biogas slurry. To test the efficacy of these methods, corn straw degradation following pretreatment with diluted NaOH and enzymatic hydrolysis in the absence of fresh water was evaluated. Then, ethanol fermentation using the ethanologenic bacterial strain Z. mobilis ZMT2 was conducted without supplementing with additional nitrogen sources. After pretreatment with 1.34% NaOH (w/v) diluted in 100% biogas slurry and continuous enzymatic hydrolysis for 144 h, 29.19 g/L glucose and 12.76 g/L xylose were generated from 30 g dry corn straw. The maximum ethanol concentration acquired was 13.75 g/L, which was a yield of 72.63% ethanol from the hydrolysate medium. Nearly 94.87% of the ammonia nitrogen was depleted and no nitrate nitrogen remained after ethanol fermentation. The use of biogas slurry as an alternative to process water and nitrogen sources may decrease the cost of cellulosic ethanol production by 10.0-20.0%. By combining pretreatment with NaOH diluted in biogas slurry, enzymatic hydrolysis, and ethanol fermentation, 56.3 kg of ethanol was produced by Z. mobilis ZMT-2 through fermentation of

  8. Artificial Bone and Teeth through Controlled Ice Growth in Colloidal Suspensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomsia, Antoni P.; Saiz, Eduardo; Deville, Sylvain

    2007-06-14

    The formation of regular patterns is a common feature of many solidification processes involving cast materials. We describe here how regular patterns can be obtained in porous alumina and hydroxyapatite (HAP) by controlling the freezing of ceramic slurries followed by subsequent ice sublimation and sintering, leading to multilayered porous ceramic structures with homogeneous and well-defined architecture. These porous materials can be infiltrated with a second phase of choice to yield biomimetic nacre-like composites with improved mechanical properties, which could be used for artificial bone and teeth applications. Proper control of the solidification patterns provides powerful means of control over themore » final functional properties. We discuss the relationships between the experimental results, ice growth fundamentals, the physics of ice and the interaction between inert particles and the solidification front during directional freezing.« less

  9. DWPF DECON FRIT: SUMP AND SLURRY SOLIDS ANALYSIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, C.; Peeler, D.; Click, D.

    The Savannah River National Laboratory (SRNL) has been requested to perform analyses on samples of the Defense Waste Processing Facility (DWPF) decon frit slurry (i.e., supernate samples and sump solid samples). Four 1-L liquid slurry samples were provided to SRNL by Savannah River Remediation (SRR) from the 'front-end' decon activities. Additionally, two 1-L sump solids samples were provided to SRNL for compositional and physical analysis. In this report, the physical and chemical characterization results of the slurry solids and sump solids are reported. Crawford et al. (2010) provide the results of the supernate analysis. The results of the sump solidsmore » are reported on a mass basis given the samples were essentially dry upon receipt. The results of the slurry solids were converted to a volume basis given approximately 2.4 grams of slurry solids were obtained from the {approx}4 liters of liquid slurry sample. Although there were slight differences in the analytical results between the sump solids and slurry solids the following general summary statements can be made. Slight differences in the results are also captured for specific analysis. (1) Physical characterization - (a) SEM/EDS analysis suggested that the samples were enriched in Li and Si (B and Na not detectable using the current EDS system) which is consistent with two of the four principle oxides of Frit 418 (B{sub 2}O{sub 3}, Na{sub 2}O, Li{sub 2}O and SiO{sub 2}). (b) SEM/EDS analysis also identified impurities which were elementally consistent with stainless steel (i.e., Fe, Ni, Cr contamination). (c) XRD results indicated that the sump solids samples were amorphous which is consistent with XRD results expected for a Frit 418 based sample. (d) For the sump solids, SEM/EDS analysis indicated that the particle size of the sump solids were consistent with that of an as received Frit 418 sample from a current DWPF vendor. (e) For the slurry solids, SEM/EDS analysis indicated that the particle size

  10. System and method for continuous solids slurry depressurization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leininger, Thomas Frederick; Steele, Raymond Douglas; Cordes, Stephen Michael

    A system includes a first pump having a first outlet and a first inlet, and a controller. The first pump is configured to continuously receive a flow of a slurry into the first outlet at a first pressure and to continuously discharge the flow of the slurry from the first inlet at a second pressure less than the first pressure. The controller is configured to control a first speed of the first pump against the flow of the slurry based at least in part on the first pressure, wherein the first speed of the first pump is configured to resistmore » a backflow of the slurry from the first outlet to the first inlet.« less

  11. CATALYTIC RECOMBINATION OF RADIOLYTIC GASES IN THORIUM OXIDE SLURRIES

    DOEpatents

    Morse, L.E.

    1962-08-01

    A method for the coinbination of hydrogen and oxygen in aqueous thorium oxide-uranium oxide slurries is described. A small amount of molybdenum oxide catalyst is provided in the slurry. This catalyst is applicable to the recombination of hydrogen and/or deuterium and oxygen produced by irradiation of the slurries in nuclear reactors. (AEC)

  12. Low Cost Dewatering of Waste Slurries

    NASA Technical Reports Server (NTRS)

    Peterson, J. B.; Sharma, S. K.; Church, R. H.; Scheiner, B. J.

    1993-01-01

    The U.S. Bureau of Mines has developed a technique for dewatering mineral waste slurries which utilizes polymer and a static screen. A variety of waste slurries from placer gold mines and crushed stone operations have been successfully treated using the system. Depending on the waste, a number of polymers have been used successfully with polymer costs ranging from $0.05 to $0.15 per 1,000 gal treated. The dewatering is accomplished using screens made from either ordinary window screen or wedge wire. The screens used are 8 ft wide and 8 ft long. The capacity of the screens varies from 3 to 7 gpm/sq. ft. The water produced is acceptable for recycling to the plant or for discharge to the environment. For example, a fine grain dolomite waste slurry produced from a crushed stone operation was dewatered from a nominal 2.5 pct solids to greater than 50 pct solids using $0.10 to $0.15 worth of polymer per 1,000 gal of slurry. The resulting waste water had a turbidity of less than 50 NTU and could be discharged or recycled. The paper describes field tests conducted using the polymer-screen dewatering system.

  13. Removal of endosulfan and methoxychlor from water on carbon slurry.

    PubMed

    Gupta, Vinod K; Ali, Imran

    2008-02-01

    A carbon slurry, produced in generators of fuel-oil-based industrial generators was converted into an effective and efficient adsorbent for the removal of endosulfan and methoxychlor from aqueous solution. The adsorbent was chemically treated, activated, characterized, and used for the adsorption of endosulfan and methoxychlor pesticides. The maximum adsorption was found at 90 min, 6.5 pH, 0.025 g/L dose, and 25 degrees C temperature. Langmuir and Freundlich adsorption models were applied to analyze adsorption data, and the former was found applicable to this adsorption system in terms of relatively high regression values. The thermodynamic aspect of the process was also investigated by evaluating certain important parameters (enthalpy, free energy, and entropy of system). Kinetics of adsorption was found to follow the pseudo second order rate equation. The diffusion of pesticides into carbon slurry pores was suggested to be the rate controlling step by applying Bangham's equation. Adsorption on a column was also investigated in a continuous flow system. Adsorption efficiencies of endosulfan and methoxychlor were 34.11 and 36.06 mg/g in batch processes and 32.62 and 33.52 mg/g in column operations, respectively.

  14. Development of Active Control Method for Supercooling Releasing of Water

    NASA Astrophysics Data System (ADS)

    Mito, Daisuke; Kozawa, Yoshiyuki; Tanino, Masayuki; Inada, Takaaki

    We have tested the prototype ice-slurry generator that enables both production of supercooled water (-2°C) and releasing of its supercooling simultaneously and continuously in a closed piping system. In the experiment, we adopted the irradiation of ultrasonic wave as an active control method of triggering for supercooling releasing, and evaluated the reliability for a practical use compared with the seed ice-crystal trigger. As the results, it has been confirmed that the ultrasonic wave trigger acts assuredly at the same level of degree of supercooling as that by using the seed ice-crystal Trigger. Moreover, it can be found that the ultrasonic wave trigger has the advantage of removing the growing ice-crystals on the pipe wall at the same time. Finally, we have specified the bombardment condition of ultrasonic wave enough to make continuously the ice-slurry in a closed system as the output surface power density > 31.4kW/m2 and the superficial bombardment time > 4.1sec. We have also demonstrated the continuous ice-slurry making for more than 6hours by using the refrigerator system with the practical scale of 88kW.

  15. Gaseous emissions and modification of slurry composition during storage and after field application: Effect of slurry additives and mechanical separation.

    PubMed

    Owusu-Twum, Maxwell Yeboah; Polastre, Adele; Subedi, Raghunath; Santos, Ana Sofia; Mendes Ferreira, Luis Miguel; Coutinho, João; Trindade, Henrique

    2017-09-15

    The aim of the study was to evaluate the impact of slurry treatment by additives (EU200 ® (EU200), Bio-buster ® (BB), JASS ® and sulphuric acid (H 2 SO 4 )) and mechanical separation on the physical-chemical characteristics, gaseous emissions (NH 3 , CH 4 , CO 2 and N 2 O) during anaerobic storage at ∼20 °C (experiment 1) and NH 3 losses after field application (experiment 2). The treatments studied in experiment 1 were: whole slurry (WS), WS+H 2 SO 4 to a pH of 6.0, WS+EU200 and WS+BB. Treatments for experiment 2 were: WS, slurry liquid fraction (LF), composted solid fraction (CSF), LFs treated with BB (LFB), JASS ® (LFJ), H 2 SO 4 to a pH of 5.5 (LFA) and soil only (control). The results showed an inhibition of the degradation of organic materials (cellulose, hemicellulose, dry matter organic matter and total carbon) in the WS+H 2 SO 4 relative to the WS. When compared to the WS, the WS+H 2 SO 4 increased electrical conductivity, ammonium (NH 4 + ) and sulphur (S) concentrations whilst reducing slurry pH after storage. The WS+H 2 SO 4 reduced NH 3 volatilization by 69% relative to the WS but had no effect on emissions of CH 4 , CO 2 and N 2 O during storage. Biological additive treatments (WS+EU200 and WS+BB) had no impact on slurry characteristics and gaseous emissions relative to the WS during storage. After field application, the cumulative NH 3 lost in the LF was almost 50% lower than the WS. The losses in the LFA were reduced by 92% relative to the LF. The LFB and LFJ had no impact on NH 3 losses relative to the LF. A significant effect of treatment on NH 4 + concentration was found at the top soil layer (0-5 cm) after NH 3 measurements with higher concentrations in the LF treatments relative to the WS. Overall, the use of the above biological additives to decrease pollutant gases and to modify slurry characteristics are questionable. Reducing slurry dry matter through mechanical separation can mitigate NH 3 losses after field application. Slurry

  16. Transport of veterinary antibiotics in overland flow following the application of slurry to arable land.

    PubMed

    Kay, Paul; Blackwell, Paul A; Boxall, Alistair B A

    2005-05-01

    The environment may be exposed to veterinary medicines administered to livestock due to the application of organic fertilisers to land. Slurry is often spread on to fields following the harvest of the previous crop. Despite recommendations to do so, the slurry may not be ploughed into the soil for some time. If precipitation occurs before incorporation then it is likely that the slurry and any antibiotic residues in the slurry will be transported towards surface waters in overland flow. This phenomenon has been investigated in a plot study and transport via 'tramlines' has been compared to that through crop stubble. Three veterinary antibiotics, from the tetracycline, sulphonamide and macrolide groups, were applied to the plots in pig slurry. Twenty four hours after the application the plots were irrigated. Following this the plots received natural rainfall. Sulphachloropyridazine was detected in runoff from the tramline plot at a peak concentration of 703.2 microgl(-1) and oxytetracycline at 71.7 microgl(-1). Peak concentrations from the plot that did not contain a tramline were lower at 415.5 and 32 microgl(-1), respectively. In contrast, tylosin was not detected at all. Mass losses of the compounds were also greater from the tramline plot due to greater runoff generation. These did not exceed 0.42% for sulphachloropyridazine and 0.07% for oxytetracycline however.

  17. Ice lollies: An ice particle generated in supercooled conveyor belts

    NASA Astrophysics Data System (ADS)

    Keppas, S. Ch.; Crosier, J.; Choularton, T. W.; Bower, K. N.

    2017-05-01

    On 21 January 2009, a maturing low-pressure weather system approached the UK along with several associated frontal systems. As a part of the Aerosol Properties, PRocesses And InfluenceS on the Earth's climate-Clouds project, an observational research flight took place in southern England, sampling the leading warm front of this system. During the flight, a distinctive hydrometeor type was repeatedly observed which has not been widely reported in previous studies. We refer to the hydrometeors as "drizzle-rimed columnar ice" or "ice lollies" for short due to their characteristic shape. We discuss the processes that led to their formation using in situ and remote sensing data.

  18. Fuel injection of coal slurry using vortex nozzles and valves

    DOEpatents

    Holmes, Allen B.

    1989-01-01

    Injection of atomized coal slurry fuel into an engine combustion chamber is achieved at relatively low pressures by means of a vortex swirl nozzle. The outlet opening of the vortex nozzle is considerably larger than conventional nozzle outlets, thereby eliminating major sources of failure due to clogging by contaminants in the fuel. Control fluid, such as air, may be used to impart vorticity to the slurry and/or purge the nozzle of contaminants during the times between measured slurry charges. The measured slurry charges may be produced by a diaphragm pump or by vortex valves controlled by a separate control fluid. Fluidic circuitry, employing vortex valves to alternatively block and pass cool slurry fuel flow, is disclosed.

  19. SmaggIce 2D Version 1.8: Software Toolkit Developed for Aerodynamic Simulation Over Iced Airfoils

    NASA Technical Reports Server (NTRS)

    Choo, Yung K.; Vickerman, Mary B.

    2005-01-01

    SmaggIce 2D version 1.8 is a software toolkit developed at the NASA Glenn Research Center that consists of tools for modeling the geometry of and generating the grids for clean and iced airfoils. Plans call for the completed SmaggIce 2D version 2.0 to streamline the entire aerodynamic simulation process--the characterization and modeling of ice shapes, grid generation, and flow simulation--and to be closely coupled with the public-domain application flow solver, WIND. Grid generated using version 1.8, however, can be used by other flow solvers. SmaggIce 2D will help researchers and engineers study the effects of ice accretion on airfoil performance, which is difficult to do with existing software tools because of complex ice shapes. Using SmaggIce 2D, when fully developed, to simulate flow over an iced airfoil will help to reduce the cost of performing flight and wind-tunnel tests for certifying aircraft in natural and simulated icing conditions.

  20. Use of flyash and biogas slurry for improving wheat yield and physical properties of soil.

    PubMed

    Garg, R N; Pathak, H; Das, D K; Tomar, R K

    2005-08-01

    This study explores the potential use of by-products of energy production, i.e., (i) flyash from coal-powered electricity generation and (ii) biogas slurry from agricultural waste treatment, as nutrient sources in agriculture. These residues are available in large amounts and their disposal is a major concern for the environment. As both residues contain considerable amounts of plant nutrients, their use as soil amendment may offer a promising win-win opportunity to improve crop production and, at the same time, preventing adverse environmental impacts of waste disposal. Effect of flyash and biogas slurry on soil physical properties and growth and yield of wheat (Triticum aestivum) was studied in a field experiment. Leaf area index, root length density and grain yield of wheat were higher in plots amended with flyash or biogas slurry compared to unamended plots. Both types of amendments reduced bulk density, and increased saturated hydraulic conductivity and moisture retention capacity of soil. The study showed that flyash and biogas slurry should be used as soil amendments for obtaining short-term and long-term benefits in terms of production increments and soil amelioration.

  1. Relationship between operational variables, fundamental physics and foamed cement properties in lab and field generated foamed cement slurries

    DOE PAGES

    Glosser, D.; Kutchko, B.; Benge, G.; ...

    2016-03-21

    Foamed cement is a critical component for wellbore stability. The mechanical performance of a foamed cement depends on its microstructure, which in turn depends on the preparation method and attendant operational variables. Determination of cement stability for field use is based on laboratory testing protocols governed by API Recommended Practice 10B-4 (API RP 10B-4, 2015). However, laboratory and field operational variables contrast considerably in terms of scale, as well as slurry mixing and foaming processes. Here in this paper, laboratory and field operational processes are characterized within a physics-based framework. It is shown that the “atomization energy” imparted by themore » high pressure injection of nitrogen gas into the field mixed foamed cement slurry is – by a significant margin – the highest energy process, and has a major impact on the void system in the cement slurry. There is no analog for this high energy exchange in current laboratory cement preparation and testing protocols. Quantifying the energy exchanges across the laboratory and field processes provides a basis for understanding relative impacts of these variables on cement structure, and can ultimately lead to the development of practices to improve cement testing and performance.« less

  2. Lake Generated Microseisms at Yellowstone Lake as a Record of Ice Phenology

    NASA Astrophysics Data System (ADS)

    Mohd Mokhdhari, A. A.; Koper, K. D.; Burlacu, R.

    2017-12-01

    It has recently been shown that wave action in lakes produces microseisms, which generate noise peaks in the period range of 0.8-1.2 s as recorded by nearby seismic stations. Such noise peaks have been observed at seven seismic stations (H17A, LKWY, B208, B944, YTP, YLA, and YLT) located within 2 km of the Yellowstone Lake shoreline. Initial work using 2016 data shows that the variations in the microseism signals at Yellowstone Lake correspond with the freezing and thawing of lake ice: the seismic noise occurs more frequently in the spring, summer, and fall, and less commonly in the winter. If this can be confirmed, then lake-generated microseisms could provide a consistent measure of the freezing and melting dates of high-latitude lakes in remote areas. The seismic data would then be useful in assessing the effects of climate change on the ice phenology of those lakes. In this work, we analyze continuous seismic data recorded by the seven seismic stations around Yellowstone Lake for the years of 1995 to 2016. We generate probability distribution functions of power spectral density for each station to observe the broad elevation of energy near a period of 1 s. The time dependence of this 1-s seismic noise energy is analyzed by extracting the power spectral density at 1 s from every processed hour. The seismic observations are compared to direct measurements of the dates of ice-out and freeze-up as reported by rangers at Yellowstone National Park. We examine how accurate the seismic data are in recording the freezing and melting of Yellowstone Lake, and how the accuracy changes as a function of the number of stations used. We also examine how sensitive the results are to the particular range of periods that are analyzed.

  3. Effective use of fly ash slurry as fill material.

    PubMed

    Horiuchi, S; Kawaguchi, M; Yasuhara, K

    2000-09-15

    A lot of effort has been put into increasing coal ash utilization; however, 50% of total amount is disposed of on land and in the sea. Several attempts have been reported recently concerning slurried coal fly ash use for civil engineering materials, such as for structural fill and backfill. The authors have studied this issue for more than 15 years and reported its potential for (1) underwater fills, (2) light weight backfills, and (3) light weight structural fills, through both laboratory tests and construction works. This paper is an overview of the results obtained for slurry, focusing on the following. (1) Coal fly ash reclaimed by slurry placement shows lower compressibility, higher ground density, and higher strength than by the other methods. This higher strength increases stability against liquefaction during earthquake. (2) Higher stability of the fly ash ground formed by slurry placement is caused by higher density and its self-hardening property. (3) Stability of fly ash reclaimed ground can be increased by increasing density and also by strength enhancement by cement addition. (4) Technical data obtained through a man-made island construction project shows the advantages of fly ash slurry in terms of mechanical properties such as higher stability against sliding failure, sufficient ground strength, and also in terms of cost saving. (5) Concentration in leachates from the placed slurry is lower than the Japanese environmental law. (6) In order to enlarge the fly ash slurry application toward a lightweight fill, mixtures of air foam, cement and fly ash were examined. Test results shows sufficient durability of this material against creep failure. This material was then used as lightweight structural fill around a high-rise building, and showed sufficient quality. From the above data, it can be concluded that coal fly ash slurry can be effectively utilized in civil engineering projects.

  4. Solids, organic load and nutrient concentration reductions in swine waste slurry using a polyacrylamide (PAM)-aided solids flocculation treatment.

    PubMed

    Walker, Paul; Kelley, Tim

    2003-11-01

    Increased swine production results in concentration of wastes generated within a limited geographical area, which may lead to land application rates exceeding the local or regional assimilatory capacity. This may result in pollutant transfer through surface water or soil-groundwater systems, environmental degradation, and/or odor concerns. Existing swine waste pit storage and lagoon treatment technologies may be inadequate to store or treat waste prior to land application without these concerns resulting. Efficient swine waste solids separation may reduce environmental health concerns and generate a value-added bioresource (solids). This study evaluated the efficiency of a polyacrylamide (PAM) flocculant-aided solids separation treatment to reduce pollution indicator concentrations in raw (untreated) swine waste slurry. Swine waste slurry solids separation efficiency through gravity settling (sedimentation) was evaluated before and after the addition of a proprietary polymeric (PAM) flocculant. Results indicated that polymer amendments at concentrations of 62.5-750 mg/l improved slurry solids separation efficiency and significantly reduced concentrations of other associated aquatic pollution indicators in a majority of analyses conducted (33 of 50 total analyses conducted). Results also suggested that PAM-aided solids separation from swine waste slurry might facilitate further treatment and/or disposal and therefore reduce associated environmental degradation potential.

  5. Slurry hydrocracking of Arab heavy vacuum resid with new bifunctional catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rankel, L.A.

    1993-12-31

    Co-processing coal with hydrogenated vacuum resids can solubilize coal and aid in metals removals from the hydrotreated resid. Several bifunctional NiW catalysts were evaluated for resid hydrocracking in a slurry reactor. Autoclave runs were made to determine whether a hydrogenative metal function (NiW) plus support with cracking activity might be an effective catalyst for high resid 1000F{degrees}{sup +} conversion, H-content enrichment, deS, and demetallation at low coke make. An Arab Heavy 895{degrees}F{sup +} vacuum resid (262 ppm Ni+V, 5.3% S and 24% CCR) was hydrocracked over sulfided and unsulfided NiW catalysts on alumina, silica-alumina, US-Y, etc. at 800{degrees}F and 2000more » psig hydrogen in a batch reactor and compared to oil soluble mixtures of Ni and W homogenous organometallics. Of the catalysts tested here, results indicate that addition of sulfided NiW/aluminum to slurry type processing might improve hydrogenation activity and produce more 1000{degrees}F{sup +} conversion at a particular severity while generating the low coke make necessary for a continuous process. Once the resid is hydrotreated, coal could be added to the NiW bifunctional catalyst/resid slurry for co-processing.« less

  6. Rheological Characterization of Unusual DWPF Slurry Samples (U)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koopman, D. C.

    2005-09-01

    A study was undertaken to identify and clarify examples of unusual rheological behavior in Defense Waste Processing Facility (DWPF) simulant slurry samples. Identification was accomplished by reviewing sludge, Sludge Receipt and Adjustment Tank (SRAT) product, and Slurry Mix Evaporator (SME) product simulant rheological results from the prior year. Clarification of unusual rheological behavior was achieved by developing and implementing new measurement techniques. Development of these new methods is covered in a separate report, WSRC-TR-2004-00334. This report includes a review of recent literature on unusual rheological behavior, followed by a summary of the rheological measurement results obtained on a set ofmore » unusual simulant samples. Shifts in rheological behavior of slurries as the wt. % total solids changed have been observed in numerous systems. The main finding of the experimental work was that the various unusual DWPF simulant slurry samples exhibit some degree of time dependent behavior. When a given shear rate is applied to a sample, the apparent viscosity of the slurry changes with time rather than remaining constant. These unusual simulant samples are more rheologically complex than Newtonian liquids or more simple slurries, neither of which shows significant time dependence. The study concludes that the unusual rheological behavior that has been observed is being caused by time dependent rheological properties in the slurries being measured. Most of the changes are due to the effect of time under shear, but SB3 SME products were also changing properties while stored in sample bottles. The most likely source of this shear-related time dependence for sludge is in the simulant preparation. More than a single source of time dependence was inferred for the simulant SME product slurries based on the range of phenomena observed. Rheological property changes were observed on the time-scale of a single measurement (minutes) as well as on a time scale of

  7. Dynamic-Type Ice Thermal Storage Systems

    NASA Astrophysics Data System (ADS)

    Ohira, Akiyoshi

    This paper deals with reviews for research and development of a dynamic-type ice thermal storage system. This system has three main features. First, the ice thermal storage tank and the ice generator are separate. Second, ice is transported to the tank from the ice generator by water or air. Third, the ice making and melting processes are operated at the same time. Outlet water temperature from the dynamic-type ice thermal storage tank remains low for a longer time. In this paper, dynamic-Type ice thermal storage systems are divided into three parts: the ice making part, the ice transport part, and the cold energy release part. Each part is reviewed separately.

  8. Pseudoplasticity of Propellant Slurry with Varied Aluminium Content for Castability Development

    NASA Astrophysics Data System (ADS)

    Restasari, A.; Budi, R. S.; Hartaya, K.

    2018-04-01

    The modification of the percentage of aluminium is necessary to obtain certain specific impulse. But, it affects the pseudoplasticity of propellant in elapsed time that is important in casting. Therefore, this research attempts to investigate the pseudoplasticity of propellant slurry with varied aluminium contents and as time elapsed, the range of percentage of aluminium and time that allows propellant slurry to be well processed. The methods include measuring the viscosity of propellant slurries that contain 6, 8, 10, 12, 14, 16 and 18% of aluminium at varied shear rates until 40 minutes after mixing by using Brookfield viscometer. The graphs of viscosity versus shear rate were made to determine pseudoplasticity index. After that, the graph volume fraction versus pseudoplasticity index were made to be investigated. It is concluded that the more aluminium contents, the slurries with 6 to 12% aluminium contents exhibit more pseudoplastic behaviour, but the slurries with 12 to 16% aluminium exhibit less pseudoplastic. While, slurry of 18% aluminium exhibit high pseudoplasticity. In the correlation with the time, the slurry compositions of 6, 8, 14, 16% aluminium become more pseudoplastic as time elapsed. While, for compositions of 10, 12 and 18% aluminium, the trend becomes contrary. Based on the pseudoplasticity index, propellant slurries that contain 10 and 14% of aluminium are suitable for pressure casting. While for slurries with 6, 8 and 16% of aluminium are also suitable for vacuum casting. All of those suitability are possesed until 40 minutes after mixing. While, the composition of slurries that contain 12 and 18% of aluminium need to be modified to enhanced its castability.

  9. Sensitivities of Greenland ice sheet volume inferred from an ice sheet adjoint model

    NASA Astrophysics Data System (ADS)

    Heimbach, P.; Bugnion, V.

    2009-04-01

    We present a new and original approach to understanding the sensitivity of the Greenland ice sheet to key model parameters and environmental conditions. At the heart of this approach is the use of an adjoint ice sheet model. Since its introduction by MacAyeal (1992), the adjoint method has become widespread to fit ice stream models to the increasing number and diversity of satellite observations, and to estimate uncertain model parameters such as basal conditions. However, no attempt has been made to extend this method to comprehensive ice sheet models. As a first step toward the use of adjoints of comprehensive three-dimensional ice sheet models we have generated an adjoint of the ice sheet model SICOPOLIS of Greve (1997). The adjoint was generated by means of the automatic differentiation (AD) tool TAF. The AD tool generates exact source code representing the tangent linear and adjoint model of the nonlinear parent model provided. Model sensitivities are given by the partial derivatives of a scalar-valued model diagnostic with respect to the controls, and can be efficiently calculated via the adjoint. By way of example, we determine the sensitivity of the total Greenland ice volume to various control variables, such as spatial fields of basal flow parameters, surface and basal forcings, and initial conditions. Reliability of the adjoint was tested through finite-difference perturbation calculations for various control variables and perturbation regions. Besides confirming qualitative aspects of ice sheet sensitivities, such as expected regional variations, we detect regions where model sensitivities are seemingly unexpected or counter-intuitive, albeit ``real'' in the sense of actual model behavior. An example is inferred regions where sensitivities of ice sheet volume to basal sliding coefficient are positive, i.e. where a local increase in basal sliding parameter increases the ice sheet volume. Similarly, positive ice temperature sensitivities in certain parts

  10. Single stage high pressure centrifugal slurry pump

    DOEpatents

    Meyer, John W.; Bonin, John H.; Daniel, Arnold D.

    1984-03-27

    Apparatus is shown for feeding a slurry to a pressurized housing. An impeller that includes radial passages is mounted in the loose fitting housing. The impeller hub is connected to a drive means and a slurry supply means which extends through the housing. Pressured gas is fed into the housing for substantially enveloping the impeller in a bubble of gas.

  11. Effects of cattle slurry acidification on ammonia and methane evolution during storage.

    PubMed

    Petersen, Søren O; Andersen, Astrid J; Eriksen, Jørgen

    2012-01-01

    Slurry acidification before storage is known to reduce NH(3) emissions, but recent observations have indicated that CH(4) emissions are also reduced. We investigated the evolution of CH(4) from fresh and aged cattle slurry during 3 mo of storage as influenced by pH adjustment to 5.5 with sulfuric acid. In a third storage experiment, cattle slurry acidified with commercial equipment on two farms was incubated. In the manipulation experiments, effects of acid and sulfate were distinguished by adding hydrochloric acid and potassium sulfate separately or in combination, rather than sulfuric acid. In one experiment sulfur was also added to slurry as the amino acid methionine in separate treatments. In each treatment 20-kg portions of slurry (n = 4) were stored for 95 d. All samples were subsampled nine to 10 times for determination of NH(3) and CH(4) evolution rates using a 2-L flow-through system. In all experiments, the pH of acidified cattle slurry increased gradually to between 6.5 and 7. Acidification of slurry reduced the evolution of CH(4) by 67 to 87%. The greatest reduction was observed with aged cattle slurry, which had a much higher potential for CH(4) production than fresh slurry. Sulfate and methionine amendment to cattle slurry without pH adjustment also significantly inhibited methanogenesis, probably as a result of sulfide production. The study suggests that complex microbial interactions involving sulfur transformations and pH determine the potential for CH(4) emission during storage of cattle slurry, and that slurry acidification may be a cost-effective greenhouse gas mitigation option. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  12. Seasonal persistence of faecal indicator organisms in soil following dairy slurry application to land by surface broadcasting and shallow injection.

    PubMed

    Hodgson, Christopher J; Oliver, David M; Fish, Robert D; Bulmer, Nicholas M; Heathwaite, A Louise; Winter, Michael; Chadwick, David R

    2016-12-01

    Dairy farming generates large volumes of liquid manure (slurry), which is ultimately recycled to agricultural land as a valuable source of plant nutrients. Different methods of slurry application to land exist; some spread the slurry to the sward surface whereas others deliver the slurry under the sward and into the soil, thus helping to reduce greenhouse gas (GHG) emissions from agriculture. The aim of this study was to investigate the impact of two slurry application methods (surface broadcast versus shallow injection) on the survival of faecal indicator organisms (FIOs) delivered via dairy slurry to replicated grassland plots across contrasting seasons. A significant increase in FIO persistence (measured by the half-life of E. coli and intestinal enterococci) was observed when slurry was applied to grassland via shallow injection, and FIO decay rates were significantly higher for FIOs applied to grassland in spring relative to summer and autumn. Significant differences in the behaviour of E. coli and intestinal enterococci over time were also observed, with E. coli half-lives influenced more strongly by season of application relative to the intestinal enterococci population. While shallow injection of slurry can reduce agricultural GHG emissions to air it can also prolong the persistence of FIOs in soil, potentially increasing the risk of their subsequent transfer to water. Awareness of (and evidence for) the potential for 'pollution-swapping' is critical in order to guard against unintended environmental impacts of agricultural management decisions. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Toxicity Evaluation of Pig Slurry Using Luminescent Bacteria and Zebrafish

    PubMed Central

    Chen, Wenyan; Cai, Qiang; Zhao, Yuan; Zheng, Guojuan; Liang, Yuting

    2014-01-01

    Biogas slurry has become a serious pollution problem and anaerobic digestion is widely applied to pig manure treatment for environmental protection and energy recovery. To evaluate environmental risk of the emission of biogas slurry, luminescent bacteria (Vibrio fischeri), larvae and embryos of zebrafish (Danio rerio) were used to detect the acute and development toxicity of digested and post-treated slurry. Then the ability of treatment process was evaluated. The results showed that digested slurry displayed strong toxicity to both zebrafish and luminescent bacteria, while the EC50 for luminescent bacteria and the LC50 for larvae were only 6.81% (v/v) and 1.95% (v/v) respectively, and embryonic development was inhibited at just 1% (v/v). Slurry still maintained a high level of toxicity although it had been treated by membrane bioreactor (MBR), while the LC50 of larvae was 75.23% (v/v) and there was a little effect on the development of embryos and V. fischeri; the results also revealed that the zebrafish larvae are more sensitive than embryos and luminescent bacteria to pig slurry. Finally, we also found the toxicity removal rate was higher than 90% after the treatment of MBR according to toxicity tests. In conclusion, further treatment should be used in pig slurry disposal or reused of final effluent. PMID:24995598

  14. Upland and wetland vegetation establishment on coal slurry in northern Missouri

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skeel, V.A.; Nawrot, J.R.

    Since the Cooperative Wildlife Research Laboratory`s (CWRL) Mined Land Reclamation Program`s first establishment of a wetland on slurry in 1976, industry, state, and federal agency interest in reclamation alternatives for inactive slurry has increased. CWRL has been involved in pre-reclamation site characterization and monitoring for inactive slurry impoundments throughout Illinois, Indiana, Kansas, Kentucky, Missouri, and Washington. Geochemical site characterization of three slurry impoundments at the AECI Bee Veer Mine located near Macon, Missouri began in April 1990. A substrate sampling grid was established for all slurry impoundments with a centerline orientated parallel to the discharge to decant flow pattern. Surfacemore » (0--6 in.) and subsurface (30--36 in.) slurry samples were collected annually and analyzed for acid-base balance, immediate acidity macro- and micro-nutrients, potential phytotoxic metallic ions and salts, and texture. Water table elevations and water quality were monitored quarterly from shallow ({le}12 ft.) piezometers. General reclamation plans included annual (3 years) incremental limestone amendments (35--50 tons/acre) and direct vegetation establishment. Cool and warm season grasses dominate vegetation cover in upland habitats (slurry cell RDA1) while wetland habitats (palustrine emergent seasonally-permanently inundated) have been established in slurry cells (RDA2 and RDA3). Isolated hot spots continue to be amended with limestone and supplemental vegetation establishment is scheduled.« less

  15. Environmental consequences of future biogas technologies based on separated slurry.

    PubMed

    Hamelin, Lorie; Wesnæs, Marianne; Wenzel, Henrik; Petersen, Bjørn M

    2011-07-01

    This consequential life cycle assessment study highlights the key environmental aspects of producing biogas from separated pig and cow slurry, a relatively new but probable scenario for future biogas production, as it avoids the reliance on constrained carbon cosubstrates. Three scenarios involving different slurry separation technologies have been assessed and compared to a business-as-usual reference slurry management scenario. The results show that the environmental benefits of such biogas production are highly dependent upon the efficiency of the separation technology used to concentrate the volatile solids in the solid fraction. The biogas scenario involving the most efficient separation technology resulted in a dry matter separation efficiency of 87% and allowed a net reduction of the global warming potential of 40%, compared to the reference slurry management. This figure comprises the whole slurry life cycle, including the flows bypassing the biogas plant. This study includes soil carbon balances and a method for quantifying the changes in yield resulting from increased nitrogen availability as well as for quantifying mineral fertilizers displacement. Soil carbon balances showed that between 13 and 50% less carbon ends up in the soil pool with the different biogas alternatives, as opposed to the reference slurry management.

  16. Method and apparatus for in-situ drying investigation and optimization of slurry drying methodology

    DOEpatents

    Armstrong, Beth L.; Daniel, Claus; Howe, Jane Y.; Kiggans, Jr, James O.; Sabau, Adrian S.; Wood, III, David L.; Kalnaus, Sergiy

    2016-05-10

    A method of drying casted slurries that includes calculating drying conditions from an experimental model for a cast slurry and forming a cast film. An infrared heating probe is positioned on one side of the casted slurry and a thermal probe is positioned on an opposing side of the casted slurry. The infrared heating probe may control the temperature of the casted slurry during drying. The casted slurry may be observed with an optical microscope, while applying the drying conditions from the experimental model. Observing the casted slurry includes detecting the incidence of micro-structural changes in the casted slurry during drying to determine if the drying conditions from the experimental model are optimal.

  17. Methods to enhance the characteristics of hydrothermally prepared slurry fuels

    DOEpatents

    Anderson, Chris M.; Musich, Mark A.; Mann, Michael D.; DeWall, Raymond A.; Richter, John J.; Potas, Todd A.; Willson, Warrack G.

    2000-01-01

    Methods for enhancing the flow behavior and stability of hydrothermally treated slurry fuels. A mechanical high-shear dispersion and homogenization device is used to shear the slurry fuel. Other improvements include blending the carbonaceous material with a form of coal to reduce or eliminate the flocculation of the slurry, and maintaining the temperature of the hydrothermal treatment between approximately 300.degree. to 350.degree. C.

  18. Roles of additives and surface control in slurry atomization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsai, S.C.

    1992-01-01

    This project studies the rheology and airblast atomization of micronized coal slurries. Its major objectives are (1) to promote further understanding of the mechanisms and the roles of additives in airblast atomization of coal water slurry (CWS), and (2) to investigate the impacts of coal particle surface properties and interparticle forces on CWS rheology. We have found that the flow behavior index (n) of a suspension (or slurry) is determined by the relative importance of the interparticle van der Waals attraction and the interparticle electrostatic repulsion. The interparticle attraction, measured by the Hamaker constant scaled to the thermal energy atmore » 25[degrees]C (A/kT), causes particle aggregation, which breaks down at high shear rates, and thus leads to slurry pseudoplastic behavior (n< 1). At a constant particle volume fraction and surface charge density (qualitatively measured by the zeta potential in deionized water), n decreases linearly as A/kT increases. The relative viscosity of the pseudoplastic suspension with respect to that of the suspending liquid is found to be independent of particle density and correlate well with the particle Peclet number which equals the particle diffusional relaxation time multiplied by shear rate. Specifically, the relative viscosities of the pseudoplastic glycerol/water coal slurry and the ethylene glycol/glycerol sand slurry, at same volume fractions as well as similar particle size distributions and liquid viscosities, as functions of the particle Peclet number fall along the same line.« less

  19. Roles of additives and surface control in slurry atomization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsai, S.C.

    1990-01-01

    This report focuses on the effects of interparticle forces on the rheology and airblast atomization of micronized coal water slurry (CWS). We found that the CWS flow behavior index is determined by the relative importance of the interparticle van der Waals attraction and the interparticle electrostatic repulsion. The former intensifies as the Hamaker constant increases and the interparticle distance reduces while the latter increases as the particle surface charge density increases. The interparticle attraction causes particle aggregation, which breaks down at high shear rates, and thus leads to slurry pseudoplastic behavior. In contrast, the interparticle repulsion prevents particle aggregation andmore » thus leads to Newtonian behavior. Both atomized at low atomizing air pressures (less than 270 kPa) using twin-fluid jet atomizers of various distributor designs. We found that the atomized drop sizes of micronized coal water slurries substantially decrease as the atomizing air pressure exceeds a threshold value. The effects of coal volume fraction, coal particle surface charge, liquid composition and liquid viscosity on slurry atomization can be accounted for by their effects on slurry rheology. 26 refs.« less

  20. Fischer-Tropsch Slurry Reactor modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soong, Y.; Gamwo, I.K.; Harke, F.W.

    1995-12-31

    This paper reports experimental and theoretical results on hydrodynamic studies. The experiments were conducted in a hot-pressurized Slurry-Bubble Column Reactor (SBCR). It includes experimental results of Drakeol-10 oil/nitrogen/glass beads hydrodynamic study and the development of an ultrasonic technique for measuring solids concentration. A model to describe the flow behavior in reactors was developed. The hydrodynamic properties in a 10.16 cm diameter bubble column with a perforated-plate gas distributor were studied at pressures ranging from 0.1 to 1.36 MPa, and at temperatures from 20 to 200{degrees}C, using a dual hot-wire probe with nitrogen, glass beads, and Drakeol-10 oil as the gas,more » solid, and liquid phase, respectively. It was found that the addition of 20 oil wt% glass beads in the system has a slight effect on the average gas holdup and bubble size. A well-posed three-dimensional model for bed dynamics was developed from an ill-posed model. The new model has computed solid holdup distributions consistent with experimental observations with no artificial {open_quotes}fountain{close_quotes} as predicted by the earlier model. The model can be applied to a variety of multiphase flows of practical interest. An ultrasonic technique is being developed to measure solids concentration in a three-phase slurry reactor. Preliminary measurements have been made on slurries consisting of molten paraffin wax, glass beads, and nitrogen bubbles at 180 {degrees}C and 0.1 MPa. The data show that both the sound speed and attenuation are well-defined functions of both the solid and gas concentrations in the slurries. The results suggest possibilities to directly measure solids concentration during the operation of an autoclave reactor containing molten wax.« less

  1. Preparing polymeric matrix composites using an aqueous slurry technique

    NASA Technical Reports Server (NTRS)

    Johnston, Norman J. (Inventor); Towell, Timothy W. (Inventor)

    1993-01-01

    An aqueous process was developed to prepare a consolidated composite laminate from an aqueous slurry. An aqueous poly(amic acid) surfactant solution was prepared by dissolving a poly(amic acid) powder in an aqueous ammonia solution. A polymeric powder was added to this solution to form a slurry. The slurry was deposited on carbon fiber to form a prepreg which was dried and stacked to form a composite laminate. The composite laminate was consolidated using pressure and was heated to form the polymeric matrix. The resulting composite laminate exhibited high fracture toughness and excellent consolidation.

  2. Seasonal variation in methane emission from stored slurry and solid manures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Husted, S.

    1994-05-01

    Methane (CH{sub 4}) is an important greenhouse gas and recent inventories have suggested that livestock manure makes a significant contribution to global CH{sub 4} emissions. The emission of CH{sub 4} from stored pig slurry, cattle slurry, pig solid manure, and cattle solid manure was followed during a 1-yr period. Methane emission was determined by dynamic chambers. Emission rates followed a ln-normal distribution for all four manures, Indicating large spatial and seasonal variation& Monthly geometric means for pig slurry, cattle slurry, pig solid manure, and cattle solid manure varied from 0.4 to 35.8, 0.0 to 34.5, 0.4 to 142.1, and 0.1more » to 42.7 g CH{sub 4} m{sup -3} d{sup -1}, respectively. For slurries CH{sub 4} emission rates increased significantly with storage temperatures, the Q{sub 10} value ranging from 14 to 5.7 depending on slurry type. The presence of a natural surface crust reduced CH{sub 4} emission from slurry by a factor of 11 to 12. Surface crust effects declined with increasing slurry temperature. Solid manures stored in dungheaps showed significant heat production. Pig solid manure temperatures were maintained at 30 to 60{degrees}C throughout most of the year, while cattle solid manure temperatures were close to ambient levels until late spring, when heat production was initiated. Methanogenesis in solid manure also increased with increasing temperatures. For pig solid manure, CH{sub 4} emission rates peaked at 35 to 45{degrees}C. No distinct temperature optimum could be detected for cattle solid manure, however, temperatures rarely exceeded 45{degrees}C. The Q{sub 10} values for dungheaps ranged from 2.7 to 10.3 depending on-manure type and Q{sub 10} temperature interval. Annual CH{sub 4} emissions from pig slurry, cattle slurry, pig solid manure, and cattle solid manure were estimated at 8.9, 15.5, 27.3, and 5.3 kg animal{sup -1} yr{sup -1}, respectively. 27 refs., 6 figs., 2 tabs.« less

  3. Si Oxidation and H 2 Gassing During Aqueous Slurry Preparation for Li-Ion Battery Anodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hays, Kevin A.; Key, Baris; Li, Jianlin

    Si has the possibility to greatly increase the energy density of Li-ion battery anodes, though it is not without its problems. One issue often overlooked is the decomposition of Si during large scale slurry formulation and battery fabrication. Here, we investigate the mechanism of H 2 production to understand the role of different slurry components and their impact on the Si oxidation and surface chemistry. Mass spectrometry and in situ pressure monitoring identifies that carbon black plays a major role in promoting the oxidation of Si and generation of H 2. Si oxidation also occurs through atmospheric O 2 consumption.more » Both pathways, along with solvent choice, impact the surface silanol chemistry, as analyzed by 1H– 29Si cross-polarization magic angle spinning nuclear magnetic resonance (MAS NMR) and attenuated total reflectance Fourier transform infrared spectroscopy (ATR FTIR). An understanding of the oxidation of Si, during slurry processing, provides a pathway toward improving the manufacturing of Si based anodes by maximizing its capacity and minimizing safety hazards.« less

  4. Si Oxidation and H 2 Gassing During Aqueous Slurry Preparation for Li-Ion Battery Anodes

    DOE PAGES

    Hays, Kevin A.; Key, Baris; Li, Jianlin; ...

    2018-04-24

    Si has the possibility to greatly increase the energy density of Li-ion battery anodes, though it is not without its problems. One issue often overlooked is the decomposition of Si during large scale slurry formulation and battery fabrication. Here, we investigate the mechanism of H 2 production to understand the role of different slurry components and their impact on the Si oxidation and surface chemistry. Mass spectrometry and in situ pressure monitoring identifies that carbon black plays a major role in promoting the oxidation of Si and generation of H 2. Si oxidation also occurs through atmospheric O 2 consumption.more » Both pathways, along with solvent choice, impact the surface silanol chemistry, as analyzed by 1H– 29Si cross-polarization magic angle spinning nuclear magnetic resonance (MAS NMR) and attenuated total reflectance Fourier transform infrared spectroscopy (ATR FTIR). An understanding of the oxidation of Si, during slurry processing, provides a pathway toward improving the manufacturing of Si based anodes by maximizing its capacity and minimizing safety hazards.« less

  5. EVALUATION OF CARBON BLACK SLURRIES AS CLEAN BURNING FUELS

    EPA Science Inventory

    Experiments were performed to examine the pumpability, atomization and combustion characteristics of slurries made of mixtures of carbon black with No. 2 fuel oil and methanol. Carbon black-No. 2 fuel oil and carbon black-methanol slurries, with carbon black contents of up to 50 ...

  6. Physio-Microstructural Properties of Aerated Cement Slurry for Lightweight Structures

    PubMed Central

    Salem, Talal; Hamadna, Sameer; Darsanasiri, A. G. N. D.; Soroushian, Parviz; Balchandra, Anagi; Al-Chaar, Ghassan

    2018-01-01

    Cementitious composites, including ferrocement and continuous fiber reinforced cement, are increasingly considered for building construction and repair. One alternative in processing of these composites is to infiltrate the reinforcement (continuous fibers or chicken mesh) with a flowable cementitious slurry. The relatively high density of cementitious binders, when compared with polymeric binders, are a setback in efforts to introduce cementitious composites as lower-cost, fire-resistant, and durable alternatives to polymer composites. Aeration of the slurry is an effective means of reducing the density of cementitious composites. This approach, however, compromises the mechanical properties of cementitious binders. An experimental program was undertaken in order to assess the potential for production of aerated slurry with a desired balance of density, mechanical performance, and barrier qualities. The potential for nondestructive monitoring of strength development in aerated cementitious slurry was also investigated. This research produced aerated slurries with densities as low as 0.9 g/cm3 with viable mechanical and barrier qualities for production of composites. The microstructure of these composites was also investigated. PMID:29649163

  7. Physio-Microstructural Properties of Aerated Cement Slurry for Lightweight Structures.

    PubMed

    Almalkawi, Areej T; Salem, Talal; Hamadna, Sameer; Darsanasiri, A G N D; Soroushian, Parviz; Balchandra, Anagi; Al-Chaar, Ghassan

    2018-04-12

    Cementitious composites, including ferrocement and continuous fiber reinforced cement, are increasingly considered for building construction and repair. One alternative in processing of these composites is to infiltrate the reinforcement (continuous fibers or chicken mesh) with a flowable cementitious slurry. The relatively high density of cementitious binders, when compared with polymeric binders, are a setback in efforts to introduce cementitious composites as lower-cost, fire-resistant, and durable alternatives to polymer composites. Aeration of the slurry is an effective means of reducing the density of cementitious composites. This approach, however, compromises the mechanical properties of cementitious binders. An experimental program was undertaken in order to assess the potential for production of aerated slurry with a desired balance of density, mechanical performance, and barrier qualities. The potential for nondestructive monitoring of strength development in aerated cementitious slurry was also investigated. This research produced aerated slurries with densities as low as 0.9 g/cm³ with viable mechanical and barrier qualities for production of composites. The microstructure of these composites was also investigated.

  8. IceVal DatAssistant: An Interactive, Automated Icing Data Management System

    NASA Technical Reports Server (NTRS)

    Levinson, Laurie H.; Wright, William B.

    2008-01-01

    As with any scientific endeavor, the foundation of icing research at the NASA Glenn Research Center (GRC) is the data acquired during experimental testing. In the case of the GRC Icing Branch, an important part of this data consists of ice tracings taken following tests carried out in the GRC Icing Research Tunnel (IRT), as well as the associated operational and environmental conditions documented during these tests. Over the years, the large number of experimental runs completed has served to emphasize the need for a consistent strategy for managing this data. To address the situation, the Icing Branch has recently elected to implement the IceVal DatAssistant automated data management system. With the release of this system, all publicly available IRT-generated experimental ice shapes with complete and verifiable conditions have now been compiled into one electronically-searchable database. Simulation software results for the equivalent conditions, generated using the latest version of the LEWICE ice shape prediction code, are likewise included and are linked to the corresponding experimental runs. In addition to this comprehensive database, the IceVal system also includes a graphically-oriented database access utility, which provides reliable and easy access to all data contained in the database. In this paper, the issues surrounding historical icing data management practices are discussed, as well as the anticipated benefits to be achieved as a result of migrating to the new system. A detailed description of the software system features and database content is also provided; and, finally, known issues and plans for future work are presented.

  9. IceVal DatAssistant: An Interactive, Automated Icing Data Management System

    NASA Technical Reports Server (NTRS)

    Levinson, Laurie H.; Wright, William B.

    2008-01-01

    As with any scientific endeavor, the foundation of icing research at the NASA Glenn Research Center (GRC) is the data acquired during experimental testing. In the case of the GRC Icing Branch, an important part of this data consists of ice tracings taken following tests carried out in the GRC Icing Research Tunnel (IRT), as well as the associated operational and environmental conditions during those tests. Over the years, the large number of experimental runs completed has served to emphasize the need for a consistent strategy to manage the resulting data. To address this situation, the Icing Branch has recently elected to implement the IceVal DatAssistant automated data management system. With the release of this system, all publicly available IRT-generated experimental ice shapes with complete and verifiable conditions have now been compiled into one electronically-searchable database; and simulation software results for the equivalent conditions, generated using the latest version of the LEWICE ice shape prediction code, are likewise included and linked to the corresponding experimental runs. In addition to this comprehensive database, the IceVal system also includes a graphically-oriented database access utility, which provides reliable and easy access to all data contained in the database. In this paper, the issues surrounding historical icing data management practices are discussed, as well as the anticipated benefits to be achieved as a result of migrating to the new system. A detailed description of the software system features and database content is also provided; and, finally, known issues and plans for future work are presented.

  10. Microbiota Analysis of an Environmental Slurry and Its Potential Role as a Reservoir of Bovine Digital Dermatitis Pathogens.

    PubMed

    Klitgaard, Kirstine; Strube, Mikael L; Isbrand, Anastasia; Jensen, Tim K; Nielsen, Martin W

    2017-06-01

    found only in DD-afflicted herds. The results strongly indicated that DD Treponema spp. are not part of the indigenous slurry and, therefore, do not comprise an infection reservoir in healthy herds. This study applied next-generation sequencing technology to decipher the microbial compositions of environmental slurry of dairy herds with and without digital dermatitis. Copyright © 2017 American Society for Microbiology.

  11. A novel kind of TSV slurry with guanidine hydrochloride

    NASA Astrophysics Data System (ADS)

    Jiao, Hong; Yuling, Liu; Baoguo, Zhang; Xinhuan, Niu; Liying, Han

    2015-10-01

    The effect of a novel alkaline TSV (through-silicon-via) slurry with guanidine hydrochloride (GH) on CMP (chemical mechanical polishing) was investigated. The novel alkaline TSV slurry was free of any inhibitors. During the polishing process, the guanidine hydrochloride serves as an effective surface-complexing agent for TSV CMP applications, the removal rate of barrier (Ti) can be chemically controlled through tuned selectivity with respect to the removal rate of copper and dielectric, which is helpful to modifying the dishing and gaining an excellent topography performance in TSV manufacturing. In this paper, we mainly studied the working mechanism of the components of slurry and the skillful application guanidine hydrochloride in the TSV slurry. Project supported by the Major National Science and Technology Special Projects (No. 2009ZX02308), the Fund Project of Hebei Provincial Department of Education, China (No. QN2014208), the Natural Science Foundation of Hebei Province, China (No. E2013202247), and Colleges and Universities Scientific research project of Hebei Province, China (No. Z2014088).

  12. Multiyear ice transport and small scale sea ice deformation near the Alaska coast measured by air-deployable Ice Trackers

    NASA Astrophysics Data System (ADS)

    Mahoney, A. R.; Kasper, J.; Winsor, P.

    2015-12-01

    contaminants entrained in the ice. This work demonstrates the ability of low-cost easily-deployable Ice Trackers to generate to generate data of both scientific and operational value.

  13. Modelling ammonia volatilization from animal slurry applied with trail hoses to cereals

    NASA Astrophysics Data System (ADS)

    Sommer, S. G.; Olesen, J. E.

    In Europe ammonia (NH 3), volatilization from animal manure is the major source of NH 3 in the atmosphere. From March to July 1997, NH 3 volatilization from trail hose applied slurry was measured for seven days after application in six experiments. A statistical analysis of data showed that NH 3 volatilization rate during the first 4-5 h after slurry application increased significantly ( P<5%) with wind speed and soil slurry surface water content. NH 3 volatilization in the six measuring periods during the experiments increased significantly ( P<5%) with relative water content of the soil slurry surface, global radiation, pH, and decreased with increasing rainfall during each measuring period and rainfall accumulated from onset of each experiment. A mechanistic model of NH 3 volatilization was developed. Model inputs are climate variables, soil characteristics and total ammoniacal nitrogen (TAN=ammonium+ammonia) in the soil surface layer. A pH submodel for predicting pH at the surface of the soil slurry liquid was developed. The measured NH 3 volatilization was compared with model simulations. The simulated results explained 27% of the variation in measured NH 3 volatilization rates during all seven days, but 48% of measured volatilization rates during the first 24 h. Calculations with the model showed that applying slurry in the morning or in the afternoon reduced volatilization by 50% compared with a noon application. Spreading the slurry with trail hoses to a 60 cm high crop reduced losses by 75% compared with a spreading onto bare soil. Ammonia volatilization was 50% lower when the soil had dried out after slurry application compared with a wet slurry surface.

  14. Aerosol and nucleation research in support of NASA cloud physics experiments in space. [ice nuclei generator for the atmospheric cloud physics laboratory on Spacelab

    NASA Technical Reports Server (NTRS)

    Vali, G.; Rogers, D.; Gordon, G.; Saunders, C. P. R.; Reischel, M.; Black, R.

    1978-01-01

    Tasks performed in the development of an ice nucleus generator which, within the facility concept of the ACPL, would provide a test aerosol suitable for a large number and variety of potential experiments are described. The impact of Atmospheric Cloud Physics Laboratory scientific functional requirements on ice nuclei generation and characterization subsystems was established. Potential aerosol generating systems were evaluated with special emphasis on reliability, repeatability and general suitability for application in Spacelab. Possible contamination problems associated with aerosol generation techniques were examined. The ice nucleating abilities of candidate test aerosols were examined and the possible impact of impurities on the nucleating abilities of those aerosols were assessed as well as the relative merits of various methods of aerosol size and number density measurements.

  15. Formulation of low solids coal water slurry from advanced coal cleaning waste fines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Battista, J.J.; Morrison, J.L.; Lambert, A.

    1997-07-01

    GPU Genco, the New York State Electric and Gas Corporation (NYSEG), Penn State University and the Homer City Coal Processing Corporation are conducting characterization and formulation tests to determine the suitability of using minus 325 mesh coal waste fines as a low solids coal water slurry (CWS) co-firing fuel. The fine coal is contained in a centrifuge effluent stream at the recently modified Homer City Coal Preparation Plant. Recovering, thickening and then co-firing this material with pulverized coal is one means of alleviating a disposal problem and increasing the Btu recovery for the adjacent power plant. The project team ismore » currently proceeding with the design of a pilot scale system to formulate the effluent into a satisfactory co-firing fuel on a continuous basis for combustion testing at Seward Station. The ultimate goal is to burn the fuel at the pulverized coal units at the Homer City Generating Station. This paper presents the success to date of the slurry characterization and pilot scale design work. In addition, the paper will update GPU Genco`s current status for the low solids coal water slurry co-firing technology and will outline the company`s future plans for the technology.« less

  16. Enhancing protein to extremely high content in photosynthetic bacteria during biogas slurry treatment.

    PubMed

    Yang, Anqi; Zhang, Guangming; Meng, Fan; Lu, Pei; Wang, Xintian; Peng, Meng

    2017-12-01

    This work proposed a novel approach to achieve an extremely high protein content in photosynthetic bacteria (PSB) using biogas slurry as a culturing medium. The results showed the protein content of PSB could be enhanced strongly to 90% in the biogas slurry, which was much higher than reported microbial protein contents. The slurry was partially purified at the same time. Dark-aerobic was more beneficial than light-anaerobic condition for protein accumulation. High salinity and high ammonia of the biogas slurry were the main causes for protein enhancement. In addition, the biogas slurry provided a good buffer system for PSB to grow. The biosynthesis mechanism of protein in PSB was explored according to theoretical analysis. During biogas slurry treatment, the activities of glutamate synthase and glutamine synthetase were increased by 26.55%, 46.95% respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Coal liquefaction process utilizing coal/CO.sub.2 slurry feedstream

    DOEpatents

    Comolli, Alfred G.; McLean, Joseph B.

    1989-01-01

    A coal hydrogenation and liquefaction process in which particulate coal feed is pressurized to an intermediate pressure of at least 500 psig and slurried with CO.sub.2 liquid to provide a flowable coal/CO.sub.2 slurry feedstream, which is further pressurized to at least 1000 psig and fed into a catalytic reactor. The coal particle size is 50-375 mesh (U.S. Sieve Series) and provides 50-80 W % coal in the coal/CO.sub.2 slurry feedstream. Catalytic reaction conditions are maintained at 650.degree.-850.degree. F. temperature, 1000-4000 psig hydrogen partial pressure and coal feed rate of 10-100 lb coal/hr ft.sup.3 reactor volume to produce hydrocarbon gas and liquid products. The hydrogen and CO.sub.2 are recovered from the reactor effluent gaseous fraction, hydrogen is recycled to the catalytic reactor, and CO.sub.2 is liquefied and recycled to the coal slurrying step. If desired, two catalytic reaction stages close coupled together in series relation can be used. The process advantageously minimizes the recycle and processing of excess hydrocarbon liquid previously needed for slurrying the coal feed to the reactor(s).

  18. Laboratory estimates of trace gas emissions following surface application and injection of cattle slurry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flessa, H.; Beese, F.

    2000-02-01

    Applying cattle slurry to soil may induce emissions of the greenhouse gases N{sub 2}O and CH{sub 4}. Their objective was to determine the effects of different application techniques (surface application and slit injection) of cattle (Bostaurus) slurry on the decomposition of slurry organic matter and the emissions of N{sub 2}O and CH{sub 4}. The effects of slurry application (43.6 m{sup 3} ha{sup {minus}1}) were studied for 9 wk under controlled laboratory conditions using a soil microcosm system with automated monitoring of the CO{sub 2}, N{sub 2}O, and CH{sub 4} fluxes. The soil used was a silty loam (Ap horizon ofmore » a cambisol) with a constant water-filled pore space of 67% during the experiment. About 38% of the organic matter applied with the slurry was decomposed within 9 wk. Production of CO{sub 2} was not affected by the application technique. Emissions of N{sub 2}O and CH{sub 4} from the injected slurry were significantly higher than from the surface-applied slurry, probably because of restricted aeration at the injected-slurry treatment. Total N{sub 2}O-N emissions were 0.2% (surface application) and 3.3% (slit injection) of the slurry N added. Methane emission occurred only during the first few days following application. The total net flux of CH{sub 4}-C for 2 wk was {minus}12 g ha{sup {minus}1} for the control (CH{sub 4} uptake), 2 g ha{sup {minus}1} for the surface-applied slurry, and 39 g ha{sup {minus}1} for the injected slurry. Slurry injection, which is recommended to reduce NH{sub 3} volatilization, appears to increase emissions of the greenhouse gases N{sub 2}O and CH{sub 4} from the fertilized fields.« less

  19. Slurry atomizer for a coal-feeder and dryer used to provide coal at gasifier pressure

    DOEpatents

    Loth, John L.; Smith, William C.; Friggens, Gary R.

    1982-01-01

    The present invention is directed to a coal-water slurry atomizer for use a high-pressure dryer employed in a pumping system utilized to feed coal into a pressurized coal gasifier. The slurry atomizer is provided with a venturi, constant area slurry injection conduit, and a plurality of tangentially disposed steam injection ports. Superheated steam is injected into the atomizer through these ports to provide a vortical flow of the steam, which, in turn, shears slurry emerging from the slurry injection conduit. The droplets of slurry are rapidly dispersed in the dryer through the venturi where the water is vaporized from the slurry by the steam prior to deleterious heating of the coal.

  20. SmaggIce User Guide. 1.0

    NASA Technical Reports Server (NTRS)

    Baez, Marivell; Vickerman, Mary; Choo, Yung

    2000-01-01

    SmaggIce (Surface Modeling And Grid Generation for Iced Airfoils) is one of NASNs aircraft icing research codes developed at the Glenn Research Center. It is a software toolkit used in the process of aerodynamic performance prediction of iced airfoils. It includes tools which complement the 2D grid-based Computational Fluid Dynamics (CFD) process: geometry probing; surface preparation for gridding: smoothing and re-discretization of geometry. Future releases will also include support for all aspects of gridding: domain decomposition; perimeter discretization; grid generation and modification.

  1. An investigation on the rheological behavior of metallic semi-solid slurries of Al-6.5 pct Si and semi-solid composite slurries of SiC particulates in an Al-6.5 pct Si alloy matrix

    NASA Technical Reports Server (NTRS)

    Moon, H.-K.; Ito, Y.; Cornie, J. A.; Flemings, M. C.

    1993-01-01

    The rheology of SiC particulate/Al-6.5 pct Si composite slurries was explored. The rheological behavior of the composite slurries shows both thixotropic and pseudoplastic behaviors. Isostructural experiments on the composite slurries revealed a Newtonian behavior beyond a high shear rate limit. The rheology of fully molten composite slurries over the low to high shear rate range indicates the existence of a low shear rate Newtonian region, an intermediate pseudoplastic region and a high shear rate Newtonian region. The isostructural studies indicate that the viscosity of a composite slurry depends upon the shearing history of a given volume of material. An unexpected shear thinning was noted for SiC particulate + alpha slurries as compared to semi-solid metallic slurries at the same fraction solid. The implications of these findings for the processing of slurries into cast components is discussed.

  2. Extensive massive basal-ice structures in West Antarctica relate to ice-sheet anisotropy and ice-flow

    NASA Astrophysics Data System (ADS)

    Ross, N.; Bingham, R. G.; Corr, H. F. J.; Siegert, M. J.

    2016-12-01

    Complex structures identified within both the East Antarctic and Greenland ice sheets are thought to be generated by the action of basal water freezing to the ice-sheet base, evolving under ice flow. Here, we use ice-penetrating radar to image an extensive series of similarly complex basal ice facies in West Antarctica, revealing a thick (>500 m) tectonised unit in an area of cold-based and relatively slow-flowing ice. We show that major folding and overturning of the unit perpendicular to ice flow elevates deep, warm ice into the mid ice-sheet column. Fold axes align with present ice flow, and axis amplitudes increase down-ice, suggesting long-term consistency in the direction and convergence of flow. In the absence of basal water, and the draping of the tectonised unit over major subglacial mountain ranges, the formation of the unit must be solely through the deformation of meteoric ice. Internal layer radar reflectivity is consistently greater parallel to flow compared with the perpendicular direction, revealing ice-sheet crystal anisotropy is associated with the folding. By linking layers to the Byrd ice-core site, we show the basal ice dates to at least the last glacial cycle and may be as old as the last interglacial. Deformation of deep-ice in this sector of WAIS, and potentially elsewhere in Antarctica, may be caused by differential shearing at interglacial-glacial boundaries, in a process analogous to that proposed for interior Greenland. The scale and heterogeneity of the englacial structures, and their subsequent impact on ice sheet rheology, means that the nature of ice flow across the bulk of West Antarctica must be far more complex that is currently accounted for by any numerical ice sheet model.

  3. Effects of dairy slurry on silage fermentation characteristics and nutritive value of alfalfa.

    PubMed

    Coblentz, W K; Muck, R E; Borchardt, M A; Spencer, S K; Jokela, W E; Bertram, M G; Coffey, K P

    2014-11-01

    Dairy producers frequently ask questions about the risks associated with applying dairy slurry to growing alfalfa (Medicago sativa L.). Our objectives were to determine the effects of applying dairy slurry on the subsequent nutritive value and fermentation characteristics of alfalfa balage. Dairy slurry was applied to 0.17-ha plots of alfalfa; applications were made to the second (HARV1) and third (HARV2) cuttings during June and July of 2012, respectively, at mean rates of 42,400 ± 5271 and 41,700 ± 2397 L/ha, respectively. Application strategies included (1) no slurry, (2) slurry applied directly to stubble immediately after the preceding harvest, (3) slurry applied after 1 wk of post-ensiled regrowth, or (4) slurry applied after 2 wk of regrowth. All harvested forage was packaged in large, rectangular bales that were ensiled as wrapped balage. Yields of DM harvested from HARV1 (2,477 kg/ha) and HARV2 (781 kg/ha) were not affected by slurry application treatment. By May 2013, all silages appeared to be well preserved, with no indication of undesirable odors characteristic of clostridial fermentations. Clostridium tyrobutyricum, which is known to negatively affect cheese production, was not detected in any forage on either a pre- or post-ensiled basis. On a pre-ensiled basis, counts for Clostridium cluster 1 were greater for slurry-applied plots than for those receiving no slurry, and this response was consistent for HARV1 (4.44 vs. 3.29 log10 genomic copies/g) and HARV2 (4.99 vs. 3.88 log10 genomic copies/g). Similar responses were observed on a post-ensiled basis; however, post-ensiled counts also were greater for HARV1 (5.51 vs. 5.17 log10 genomic copies/g) and HARV2 (5.84 vs. 5.28 log10 genomic copies/g) when slurry was applied to regrowth compared with stubble. For HARV2, counts also were greater following a 2-wk application delay compared with a 1-wk delay (6.23 vs. 5.45 log10 genomic copies/g). These results suggest that the risk of clostridial

  4. Autonomous Ice Mass Balance Buoys for Seasonal Sea Ice

    NASA Astrophysics Data System (ADS)

    Whitlock, J. D.; Planck, C.; Perovich, D. K.; Parno, J. T.; Elder, B. C.; Richter-Menge, J.; Polashenski, C. M.

    2017-12-01

    The ice mass-balance represents the integration of all surface and ocean heat fluxes and attributing the impact of these forcing fluxes on the ice cover can be accomplished by increasing temporal and spatial measurements. Mass balance information can be used to understand the ongoing changes in the Arctic sea ice cover and to improve predictions of future ice conditions. Thinner seasonal ice in the Arctic necessitates the deployment of Autonomous Ice Mass Balance buoys (IMB's) capable of long-term, in situ data collection in both ice and open ocean. Seasonal IMB's (SIMB's) are free floating IMB's that allow data collection in thick ice, thin ice, during times of transition, and even open water. The newest generation of SIMB aims to increase the number of reliable IMB's in the Arctic by leveraging inexpensive commercial-grade instrumentation when combined with specially developed monitoring hardware. Monitoring tasks are handled by a custom, expandable data logger that provides low-cost flexibility for integrating a large range of instrumentation. The SIMB features ultrasonic sensors for direct measurement of both snow depth and ice thickness and a digital temperature chain (DTC) for temperature measurements every 2cm through both snow and ice. Air temperature and pressure, along with GPS data complete the Arctic picture. Additionally, the new SIMB is more compact to maximize deployment opportunities from multiple types of platforms.

  5. Slurry burner for mixture of carbonaceous material and water

    DOEpatents

    Nodd, D.G.; Walker, R.J.

    1985-11-05

    The present invention is intended to overcome the limitations of the prior art by providing a fuel burner particularly adapted for the combustion of carbonaceous material-water slurries which includes a stationary high pressure tip-emulsion atomizer which directs a uniform fuel into a shearing air flow as the carbonaceous material-water slurry is directed into a combustion chamber, inhibits the collection of unburned fuel upon and within the atomizer, reduces the slurry to a collection of fine particles upon discharge into the combustion chamber, and regulates the operating temperature of the burner as well as primary air flow about the burner and into the combustion chamber for improved combustion efficiency, no atomizer plugging and enhanced flame stability.

  6. Prospects for coal slurry pipelines in California

    NASA Technical Reports Server (NTRS)

    Lynch, J. F.

    1978-01-01

    The coal slurry pipeline segment of the transport industry is emerging in the United States. If accepted it will play a vital role in meeting America's urgent energy requirements without public subsidy, tax relief, or federal grants. It is proven technology, ideally suited for transport of an abundant energy resource over thousands of miles to energy short industrial centers and at more than competitive costs. Briefly discussed are the following: (1) history of pipelines; (2) California market potential; (3) slurry technology; (4) environmental benefits; (5) market competition; and (6) a proposed pipeline.

  7. Turning into Ice

    ERIC Educational Resources Information Center

    Pietsch, Renée B.; Hanlon, Regina; Bohland, Cynthia; Schmale, David G., III

    2016-01-01

    This article describes an interdisciplinary unit in which students explore biological "ice nucleation"--by particles that cause water to freeze at temperatures above -38°C--through the lens of the microbial ice nucleator "Pseudomonas syringae." Such This activity, which aligns with the "Next Generation Science…

  8. Separation and sampling of ice nucleation chamber generated ice particles by means of the counterflow virtual impactor technique for the characterization of ambient ice nuclei.

    NASA Astrophysics Data System (ADS)

    Schenk, Ludwig; Mertes, Stephan; Kästner, Udo; Schmidt, Susan; Schneider, Johannes; Frank, Fabian; Nillius, Björn; Worringen, Annette; Kandler, Konrad; Ebert, Martin; Stratmann, Frank

    2014-05-01

    In 2011, the German research foundation (DFG) research group called Ice Nuclei Research Unit (INUIT (FOR 1525, project STR 453/7-1) was established with the objective to achieve a better understanding concerning heterogeneous ice formation. The presented work is part of INUIT and aims for a better microphysical and chemical characterization of atmospheric aerosol particles that have the potential to act as ice nuclei (IN). For this purpose a counterflow virtual impactor (Kulkarni et al., 2011) system (IN-PCVI) was developed and characterized in order to separate and collect ice particles generated in the Fast Ice Nucleus Chamber (FINCH; Bundke et al., 2008) and to release their IN for further analysis. Here the IN-PCVI was used for the inertial separation of the IN counter produced ice particles from smaller drops and interstitial particles. This is realized by a counterflow that matches the FINCH output flow inside the IN-PCVI. The choice of these flows determines the aerodynamic cut-off diameter. The collected ice particles are transferred into the IN-PCVI sample flow where they are completely evaporated in a particle-free and dry carrier air. In this way, the aerosol particles detected as IN by the IN counter can be extracted and distributed to several particle sensors. This coupled setup FINCH, IN-PCVI and aerosol instrumentation was deployed during the INUIT-JFJ joint measurement field campaign at the research station Jungfraujoch (3580m asl). Downstream of the IN-PCVI, the Aircraft-based Laser Ablation Aerosol Mass Spectrometer (ALABAMA; Brands et al., 2011) was attached for the chemical analysis of the atmospheric IN. Also, number concentration and size distribution of IN were measured online (TROPOS) and IN impactor samples for electron microscopy (TU Darmstadt) were taken. Therefore the IN-PCVI was operated with different flow settings than known from literature (Kulkarni et al., 2011), which required a further characterisation of its cut

  9. Fluid mechanics of slurry flow through the grinding media in ball mills

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Songfack, P.K.; Rajamani, R.K.

    1995-12-31

    The slurry transport within the ball mill greatly influences the mill holdup, residence time, breakage rate, and hence the power draw and the particle size distribution of the mill product. However, residence-time distribution and holdup in industrial mills could not be predicted a priori. Indeed, it is impossible to determine the slurry loading in continuously operating mills by direct measurement, especially in industrial mills. In this paper, the slurry transport problem is solved using the principles of fluid mechanics. First, the motion of the ball charge and its expansion are predicted by a technique called discrete element method. Then themore » slurry flow through the porous ball charge is tackled with a fluid-flow technique called the marker and cell method. This may be the only numerical technique capable of tracking the slurry free surface as it fluctuates with the motion of the ball charge. The result is a prediction of the slurry profile in both the radial and axial directions. Hence, it leads to the detailed description of slurry mass and ball charge within the mill. The model predictions are verified with pilot-scale experimental work. This novel approach based on the physics of fluid flow is devoid of any empiricism. It is shown that the holdup of industrial mills at a given feed percent solids can be predicted successfully.« less

  10. Influence of coal slurry particle composition on pipeline hydraulic transportation behavior

    NASA Astrophysics Data System (ADS)

    Li-an, Zhao; Ronghuan, Cai; Tieli, Wang

    2018-02-01

    Acting as a new type of energy transportation mode, the coal pipeline hydraulic transmission can reduce the energy transportation cost and the fly ash pollution of the conventional coal transportation. In this study, the effect of average velocity, particle size and pumping time on particle composition of coal particles during hydraulic conveying was investigated by ring tube test. Meanwhile, the effects of particle composition change on slurry viscosity, transmission resistance and critical sedimentation velocity were studied based on the experimental data. The experimental and theoretical analysis indicate that the alter of slurry particle composition can lead to the change of viscosity, resistance and critical velocity of slurry. Moreover, based on the previous studies, the critical velocity calculation model of coal slurry is proposed.

  11. Variability and Trends in Sea Ice Extent and Ice Production in the Ross Sea

    NASA Technical Reports Server (NTRS)

    Comiso, Josefino; Kwok, Ronald; Martin, Seelye; Gordon, Arnold L.

    2011-01-01

    Salt release during sea ice formation in the Ross Sea coastal regions is regarded as a primary forcing for the regional generation of Antarctic Bottom Water. Passive microwave data from November 1978 through 2008 are used to examine the detailed seasonal and interannual characteristics of the sea ice cover of the Ross Sea and the adjacent Bellingshausen and Amundsen seas. For this period the sea ice extent in the Ross Sea shows the greatest increase of all the Antarctic seas. Variability in the ice cover in these regions is linked to changes in the Southern Annular Mode and secondarily to the Antarctic Circumpolar Wave. Over the Ross Sea shelf, analysis of sea ice drift data from 1992 to 2008 yields a positive rate of increase in the net ice export of about 30,000 sq km/yr. For a characteristic ice thickness of 0.6 m, this yields a volume transport of about 20 cu km/yr, which is almost identical, within error bars, to our estimate of the trend in ice production. The increase in brine rejection in the Ross Shelf Polynya associated with the estimated increase with the ice production, however, is not consistent with the reported Ross Sea salinity decrease. The locally generated sea ice enhancement of Ross Sea salinity may be offset by an increase of relatively low salinity of the water advected into the region from the Amundsen Sea, a consequence of increased precipitation and regional glacial ice melt.

  12. Slurry erosion induced surface nanocrystallization of bulk metallic glass

    NASA Astrophysics Data System (ADS)

    Ji, Xiulin; Wu, Jili; Pi, Jinghong; Cheng, Jiangbo; Shan, Yiping; Zhang, Yingtao

    2018-05-01

    Microstructure evolution and phase transformation of metallic glasses (MGs) could occur under heating condition or mechanical deformation. The cross-section of as-cast Zr55Cu30Ni5Al10 MG rod was impacted by the solid particles when subjected to erosion in slurry flow. The surface microstructure was observed by XRD before and after slurry erosion. And the stress-driven de-vitrification increases with the increase of erosion time. A microstructure evolution layer with 1-2 μm thickness was formed on the topmost eroded surface. And a short range atomic ordering prevails in the microstructure evolution layer with crystalline size around 2-3 nm embedded in the amorphous matrix. The XPS analysis reveals that most of the metal elements in the MG surface, except for Cu, were oxidized. And a composite layer with ZrO2 and Al2O3 phases were formed in the topmost surface after slurry erosion. The cooling rate during solidification of MG has a strong influence on the slurry erosion induced nanocrystallization. And a lower cooling rate favors the surface nanocrystallization because of lower activation energy and thermo-stability. Finally, the slurry erosion induced surface nanocrystallization and microstructure evolution result in surface hardening and strengthening. Moreover, the microstructure evolution mechanisms were discussed and it is related to the cooling rate of solidification and the impact-induced temperature rise, as well as the combined effects of the impact-induced plastic flow, inter-diffusion and oxidation of the metal elements.

  13. Particle agglomeration and fuel decomposition in burning slurry droplets

    NASA Astrophysics Data System (ADS)

    Choudhury, P. Roy; Gerstein, Melvin

    In a burning slurry droplet the particles tend to agglomerate and produce large clusters which are difficult to burn. As a consequence, the combustion efficiency is drastically reduced. For such a droplet the nonlinear D2- t behavior associated with the formation of hard to burn agglomerates can be explained if the fuel decomposes on the surface of the particles. This paper deals with analysis and experiments with JP-10 and Diesel #2 slurries prepared with inert SiC and Al 2O 3 particles. It provides direct evidence of decomposed fuel residue on the surface of the particles heated by flame radiation. These decomposed fuel residues act as bonding agents and appear to be responsible for the observed agglomeration of particles in a slurry. Chemical analysis, scanning electron microscope photographs and finally micro-analysis by electron scattering clearly show the presence of decomposed fuel residue on the surface of the particles. Diesel #2 is decomposed relatively easily and therefore leaves a thicker deposit on SiC and forms larger agglomerates than the more stable JP-10. A surface reaction model with particles heated by flame radiation is able to describe the observed trend of the diameter history of the slurry fuel. Additional experiments with particles of lower emissivity (Al 2O 3) and radiation absorbing dye validate the theoretical model of the role of flame radiation in fuel decomposition and the formation of agglomerates in burning slurry droplets.

  14. A low-cost solid–liquid separation process for enzymatically hydrolyzed corn stover slurries

    DOE PAGES

    Sievers, David A.; Lischeske, James J.; Biddy, Mary J.; ...

    2015-07-01

    Solid-liquid separation of intermediate process slurries is required in some process configurations for the conversion of lignocellulosic biomass to transportation fuels. Thermochemically pretreated and enzymatically hydrolyzed corn stover slurries have proven difficult to filter due to formation of very low permeability cakes that are rich in lignin. Treatment of two different slurries with polyelectrolyte flocculant was demonstrated to increase mean particle size and filterability. Filtration flux was greatly improved, and thus scaled filter unit capacity was increased approximately 40-fold compared with unflocculated slurry. Although additional costs were accrued using polyelectrolyte, techno-economic analysis revealed that the increase in filter capacity significantlymore » reduced overall production costs. Fuel production cost at 95% sugar recovery was reduced by $1.35 US per gallon gasoline equivalent for dilute-acid pretreated and enzymatically hydrolyzed slurries and $3.40 for slurries produced using an additional alkaline de-acetylation preprocessing step that is even more difficult to natively filter.« less

  15. Thermophilic aeration of cattle slurry with whey and/or jam wastes.

    PubMed

    Heinonen-Tanski, Helvi; Kiuru, Tapio; Ruuskanen, Juhani; Korhonen, Kari; Koivunen, Jari; Ruokojärvi, Arja

    2005-01-01

    Thermophilic aeration of cattle slurry and food industrial by-products was studied with the aim to improve hygienic qualities of the slurry so that it could be used as a safe fertiliser for berries to be eaten raw. We also wanted to study if the process would be energetically favourable in an arctic climate. Cattle slurry alone or with whey and/or jam waste was treated. The tests were done in a well heat-insulated reactor with a 10 m(3) volume. Temperature increases up to over 70 degrees C could be recorded in 19 days even though some processes were carried out in winter time when the ambient air temperature was less than 0 degrees C. The heat energy formed was higher than the electrical energy needed to carry out the aeration. The hygienic qualities of the aerated product were good with only minor nitrogen losses. The end product could be useful as a fertiliser and soil improving compound to increase the organic matter content of agricultural soil. Cattle slurry alone was well suited as the raw material if attaining a high temperature was the main goal. A part of slurry could be replaced with food-industrial side products. Whey waste suited better for co-composting than jam waste but the mixture of whey, jam waste, and slurry was optimal for composting.

  16. 30 CFR 77.216 - Water, sediment, or slurry impoundments and impounding structures; general.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Water, sediment, or slurry impoundments and... WORK AREAS OF UNDERGROUND COAL MINES Surface Installations § 77.216 Water, sediment, or slurry... structures which impound water, sediment, or slurry shall be required if such an existing or proposed...

  17. 30 CFR 77.216 - Water, sediment, or slurry impoundments and impounding structures; general.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Water, sediment, or slurry impoundments and... WORK AREAS OF UNDERGROUND COAL MINES Surface Installations § 77.216 Water, sediment, or slurry... structures which impound water, sediment, or slurry shall be required if such an existing or proposed...

  18. Estimation of Methane Emissions from Slurry Pits below Pig and Cattle Confinements

    PubMed Central

    Petersen, Søren O.; Olsen, Anne B.; Elsgaard, Lars; Triolo, Jin Mi; Sommer, Sven G.

    2016-01-01

    Quantifying in-house emissions of methane (CH4) from liquid manure (slurry) is difficult due to high background emissions from enteric processes, yet of great importance for correct estimation of CH4 emissions from manure management and effects of treatment technologies such as anaerobic digestion. In this study CH4 production rates were determined in 20 pig slurry and 11 cattle slurry samples collected beneath slatted floors on six representative farms; rates were determined within 24 h at temperatures close to the temperature in slurry pits at the time of collection. Methane production rates in pig and cattle slurry differed significantly at 0.030 and 0.011 kg CH4 kg-1 VS (volatile solids). Current estimates of CH4 emissions from pig and cattle manure management correspond to 0.032 and 0.015 kg CH4 kg-1, respectively, indicating that slurry pits under animal confinements are a significant source. Fractions of degradable volatile solids (VSd, kg kg-1 VS) were estimated using an aerobic biodegradability assay and total organic C analyses. The VSd in pig and cattle slurry averaged 0.51 and 0.33 kg kg-1 VS, and it was estimated that on average 43 and 28% of VSd in fresh excreta from pigs and cattle, respectively, had been lost at the time of sampling. An empirical model of CH4 emissions from slurry was reparameterised based on experimental results. A sensitivity analysis indicated that predicted CH4 emissions were highly sensitive to uncertainties in the value of lnA of the Arrhenius equation, but much less sensitive to uncertainties in VSd or slurry temperature. A model application indicated that losses of carbon in VS as CO2 may be much greater than losses as CH4. Implications of these results for the correct estimation of CH4 emissions from manure management, and for the mitigation potential of treatments such as anaerobic digestion, are discussed. PMID:27529692

  19. Ice_Sheets_CCI: Essential Climate Variables for the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Forsberg, R.; Sørensen, L. S.; Khan, A.; Aas, C.; Evansberget, D.; Adalsteinsdottir, G.; Mottram, R.; Andersen, S. B.; Ahlstrøm, A.; Dall, J.; Kusk, A.; Merryman, J.; Hvidberg, C.; Khvorostovsky, K.; Nagler, T.; Rott, H.; Scharrer, M.; Shepard, A.; Ticconi, F.; Engdahl, M.

    2012-04-01

    As part of the ESA Climate Change Initiative (www.esa-cci.org) a long-term project "ice_sheets_cci" started January 1, 2012, in addition to the existing 11 projects already generating Essential Climate Variables (ECV) for the Global Climate Observing System (GCOS). The "ice_sheets_cci" goal is to generate a consistent, long-term and timely set of key climate parameters for the Greenland ice sheet, to maximize the impact of European satellite data on climate research, from missions such as ERS, Envisat and the future Sentinel satellites. The climate parameters to be provided, at first in a research context, and in the longer perspective by a routine production system, would be grids of Greenland ice sheet elevation changes from radar altimetry, ice velocity from repeat-pass SAR data, as well as time series of marine-terminating glacier calving front locations and grounding lines for floating-front glaciers. The ice_sheets_cci project will involve a broad interaction of the relevant cryosphere and climate communities, first through user consultations and specifications, and later in 2012 optional participation in "best" algorithm selection activities, where prototype climate parameter variables for selected regions and time frames will be produced and validated using an objective set of criteria ("Round-Robin intercomparison"). This comparative algorithm selection activity will be completely open, and we invite all interested scientific groups with relevant experience to participate. The results of the "Round Robin" exercise will form the algorithmic basis for the future ECV production system. First prototype results will be generated and validated by early 2014. The poster will show the planned outline of the project and some early prototype results.

  20. Precipitate hydrolysis process for the removal of organic compounds from nuclear waste slurries

    DOEpatents

    Doherty, Joseph P.; Marek, James C.

    1989-01-01

    A process for removing organic compounds from a nuclear waste slurry comprising reacting a mixture of radioactive waste precipitate slurry and an acid in the presence of a catalytically effective amount of a copper (II) catalyst whereby the organic compounds in the precipitate slurry are hydrolyzed to form volatile organic compounds which are separated from the reacting mixture. The resulting waste slurry, containing less than 10 percent of the orginal organic compounds, is subsequently blended with high level radioactive sludge and transferred to a virtrification facility for processing into borosilicate glass for long-term storage.

  1. Air blast type coal slurry fuel injector

    DOEpatents

    Phatak, Ramkrishna G.

    1986-01-01

    A device to atomize and inject a coal slurry in the combustion chamber of an internal combustion engine, and which eliminates the use of a conventional fuel injection pump/nozzle. The injector involves the use of compressed air to atomize and inject the coal slurry and like fuels. In one embodiment, the breaking and atomization of the fuel is achieved with the help of perforated discs and compressed air. In another embodiment, a cone shaped aspirator is used to achieve the breaking and atomization of the fuel. The compressed air protects critical bearing areas of the injector.

  2. Air blast type coal slurry fuel injector

    DOEpatents

    Phatak, R.G.

    1984-08-31

    A device to atomize and inject a coal slurry in the combustion chamber of an internal combustion engine is disclosed which eliminates the use of a conventional fuel injection pump/nozzle. The injector involves the use of compressed air to atomize and inject the coal slurry and like fuels. In one embodiment, the breaking and atomization of the fuel is achieved with the help of perforated discs and compressed air. In another embodiment, a cone shaped aspirator is used to achieve the breaking and atomization of the fuel. The compressed air protects critical bearing areas of the injector.

  3. Replacement of mineral fertilizers with anaerobically digested pig slurry in paddy fields: assessment of plant growth and grain quality.

    PubMed

    Zhang, Jin; Wang, Minyan; Cao, Yucheng; Liang, Peng; Wu, Shengchun; Leung, Anna Oi Wah; Christie, Peter

    2017-04-01

    Rice cultivation requires large quantities of irrigation water and mineral fertilizers. This provides an opportunity for the recycling of the plant nutrients in anaerobically digested pig slurry, large amounts of which are generated in Chinese pig farms. Hence, to promote the sustainable development of livestock and poultry breeding and rice production, a micro-plot field experiment was carried out to assess whether or not slurry can replace mineral fertilizers in rice paddy production in terms of plant tillering, grain quality, and yields. The results indicate that the total N content of the slurry can serve as an alternative source of N when compared to the control (450 kg ha -1 commercial compound fertilizer (N/P 2 O 5 /K 2 O = 15:15:15) as basal fertilizer, 300 kg ha -1 urea (N% = 46), and 150 kg ha -1 commercial compound fertilizer as top-dressed fertilizer). No negative effects on plant growth or grain yield were observed, although there may be a potential risk due to an increase in grain Cu concentration. The amylose content and gel consistency of the rice grains were enhanced significantly by the use of slurry as a basal fertilizer, but the grain protein and total amino acid contents decreased. The results suggest that anaerobically digested pig slurry can replace mineral fertilizers in rice production when applied as a basal dressing together with urea and commercial compound fertilizer as top-dressed fertilizers.

  4. Experimental study on the application of paraffin slurry to high density electronic package cooling

    NASA Astrophysics Data System (ADS)

    Cho, K.; Choi, M.

    Experiments were performed by using water and paraffin slurry to investigate thermal characteristics from a test multichip module. The parameters were the mass fraction of paraffin slurry (0, 2.5, 5, 7.5%), heat flux (10, 20, 30, 40W/cm2) and channel Reynolds numbers. The size of paraffin slurry particles was within 10-40μm. The local heat transfer coefficients for the paraffin slurry were larger than those for water. Thermally fully developed conditions were observed after the third or fourth row. The paraffin slurry with a mass fraction of 5% showed the most efficient cooling performance when the heat transfer and the pressure drop in the test section were considered simultaneously. A new correlation for the water and the paraffin slurry with a mass fraction of 5% was obtained for a channel Reynolds number over 5300.

  5. Debris flow rheology: Experimental analysis of fine-grained slurries

    USGS Publications Warehouse

    Major, Jon J.; Pierson, Thomas C.

    1992-01-01

    The rheology of slurries consisting of ≤2-mm sediment from a natural debris flow deposit was measured using a wide-gap concentric-cylinder viscometer. The influence of sediment concentration and size and distribution of grains on the bulk rheological behavior of the slurries was evaluated at concentrations ranging from 0.44 to 0.66. The slurries exhibit diverse rheological behavior. At shear rates above 5 s−1 the behavior approaches that of a Bingham material; below 5 s−1, sand exerts more influence and slurry behavior deviates from the Bingham idealization. Sand grain interactions dominate the mechanical behavior when sand concentration exceeds 0.2; transient fluctuations in measured torque, time-dependent decay of torque, and hysteresis effects are observed. Grain rubbing, interlocking, and collision cause changes in packing density, particle distribution, grain orientation, and formation and destruction of grain clusters, which may explain the observed behavior. Yield strength and plastic viscosity exhibit order-of-magnitude variation when sediment concentration changes as little as 2–4%. Owing to these complexities, it is unlikely that debris flows can be characterized by a single rheological model.

  6. REDUCTIVE DEHALOGENATION OF A NITROGEN HETEROCYCLIC HERBICIDE IN ANOXIC AQUIFER SLURRIES

    EPA Science Inventory

    We studied the metabolic fate of bromacil in anaerobic aquifer slurries held under denitrifying, sulfate-reducing, or methanogenic conditions. Liquid chromatograhy-mass spectrometry of the slurries confirmed that bromacil was debrominated under methanogenic conditions but was not...

  7. Ice-Borehole Probe

    NASA Technical Reports Server (NTRS)

    Behar, Alberto; Carsey, Frank; Lane, Arthur; Engelhardt, Herman

    2006-01-01

    An instrumentation system has been developed for studying interactions between a glacier or ice sheet and the underlying rock and/or soil. Prior borehole imaging systems have been used in well-drilling and mineral-exploration applications and for studying relatively thin valley glaciers, but have not been used for studying thick ice sheets like those of Antarctica. The system includes a cylindrical imaging probe that is lowered into a hole that has been bored through the ice to the ice/bedrock interface by use of an established hot-water-jet technique. The images acquired by the cameras yield information on the movement of the ice relative to the bedrock and on visible features of the lower structure of the ice sheet, including ice layers formed at different times, bubbles, and mineralogical inclusions. At the time of reporting the information for this article, the system was just deployed in two boreholes on the Amery ice shelf in East Antarctica and after successful 2000 2001 deployments in 4 boreholes at Ice Stream C, West Antarctica, and in 2002 at Black Rapids Glacier, Alaska. The probe is designed to operate at temperatures from 40 to +40 C and to withstand the cold, wet, high-pressure [130-atm (13.20-MPa)] environment at the bottom of a water-filled borehole in ice as deep as 1.6 km. A current version is being outfitted to service 2.4-km-deep boreholes at the Rutford Ice Stream in West Antarctica. The probe (see figure) contains a sidelooking charge-coupled-device (CCD) camera that generates both a real-time analog video signal and a sequence of still-image data, and contains a digital videotape recorder. The probe also contains a downward-looking CCD analog video camera, plus halogen lamps to illuminate the fields of view of both cameras. The analog video outputs of the cameras are converted to optical signals that are transmitted to a surface station via optical fibers in a cable. Electric power is supplied to the probe through wires in the cable at a

  8. Dynamic NMR Study of Model CMP Slurry Containing Silica Particles as Abrasives

    NASA Astrophysics Data System (ADS)

    Odeh, F.; Al-Bawab, A.; Li, Y.

    2018-02-01

    Chemical mechanical planarization (CMP) should provide a good surface planarity with minimal surface defectivity. Since CMP slurries are multi-component systems, it is very important to understand the various processes and interactions taking place in such slurries. Several techniques have been employed for such task, however, most of them lack the molecular recognition to investigate molecular interactions without adding probes which in turn increase complexity and might alter the microenvironment of the slurry. Nuclear magnetic resonance (NMR) is a powerful technique that can be employed in such study. The longitudinal relaxation times (T1) of the different components of CMP slurries were measured using Spin Echo-NMR (SE-NMR) at a constant temperature. The fact that NMR is non-invasive and gives information on the molecular level gives more advantage to the technique. The model CMP slurry was prepared in D2O to enable monitoring of T1 for the various components' protons. SE-NMR provide a very powerful tool to study the various interactions and adsorption processes that take place in a model CMP silica based slurry which contains BTA and/or glycine and/or Cu+2 ions. It was found that BTA is very competitive towards complexation with Cu+2 ions and BTA-Cu complex adsorbs on silica surface.

  9. Microalgal cultivation with biogas slurry for biofuel production.

    PubMed

    Zhu, Liandong; Yan, Cheng; Li, Zhaohua

    2016-11-01

    Microalgal growth requires a substantial amount of chemical fertilizers. An alternative to the utilization of fertilizer is to apply biogas slurry produced through anaerobic digestion to cultivate microalgae for the production of biofuels. Plenty of studies have suggested that anaerobic digestate containing high nutrient contents is a potentially feasible nutrient source to culture microalgae. However, current literature indicates a lack of review available regarding microalgal cultivation with biogas slurry for the production of biofuels. To help fill this gap, this review highlights the integration of digestate nutrient management with microalgal production. It first unveils the current status of microalgal production, providing basic background to the topic. Subsequently, microalgal cultivation technologies using biogas slurry are discussed in detail. A scale-up scheme for simultaneous biogas upgrade and digestate application through microalgal cultivation is then proposed. Afterwards, several uncertainties that might affect this practice are explored. Finally, concluding remarks are put forward. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Biological treatment of soils contaminated with hydrophobic organics using slurry- and solid-phase techniques

    NASA Astrophysics Data System (ADS)

    Cassidy, Daniel H.; Irvine, Robert L.

    1995-10-01

    Both slurry-phase and solid-phase bioremediation are effective ex situ soil decontamination methods. Slurrying is energy intensive relative to solid-phase treatment, but provides homogenization and uniform nutrient distribution. Limited contaminant bioavailability at concentrations above the required cleanup level reduces biodegradation rates and renders solid phase bioremediation more cost effective than complete treatment in a bio-slurry reactor. Slurrying followed by solid-phase bioremediation combines the advantages and minimizes the weaknesses of each treatment method when used alone. A biological treatment system consisting of slurrying followed by aeration in solid phase bioreactors was developed and tested in the laboratory using a silty clay loam contaminated with diesel fuel. The first set of experiments was designed to determine the impact of the water content and mixing time during slurrying on the rate an extent of contaminant removal in continuously aerated solid phase bioreactors. The second set of experiments compared the volatile and total diesel fuel removal in solid phase bioreactors using periodic and continuous aeration strategies. Results showed that slurrying for 1.5 hours at a water content less than saturation markedly increased the rate and extent of contaminant biodegradation in the solid phase bioreactors compared with soil having no slurry pretreatment. Slurrying the soil at or above its saturation moisture content resulted in lengthy dewatering times which prohibited aeration, thereby delaying the onset of biological treatment in the solid phase bioreactors. Results also showed that properly operated periodic aeration can provide less volatile contaminant removal and a grater fraction of biological contaminant removal than continuous aeration.

  11. Precipitate hydrolysis process for the removal of organic compounds from nuclear waste slurries

    DOEpatents

    Doherty, J.P.; Marek, J.C.

    1987-02-25

    A process for removing organic compounds from a nuclear waste slurry comprising reacting a mixture of radioactive waste precipitate slurry and an acid in the presence of a catalytically effective amount of a copper(II) catalyst whereby the organic compounds in the precipitate slurry are hydrolyzed to form volatile organic compounds which are separated from the reacting mixture. The resulting waste slurry, containing less than 10 percent of the original organic compounds, is subsequently blended with high level radioactive sludge land transferred to a vitrification facility for processing into borosilicate glass for long-term storage. 2 figs., 3 tabs.

  12. Yield Stress Reduction of DWPF Melter Feed Slurries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stone, M.E.; Smith, M.E.

    2007-07-01

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site vitrifies High Level Waste for repository internment. The process consists of three major steps: waste pretreatment, vitrification, and canister decontamination/sealing. The HLW consists of insoluble metal hydroxides and soluble sodium salts. The pretreatment process acidifies the sludge with nitric and formic acids, adds the glass formers as glass frit, then concentrates the resulting slurry to approximately 50 weight percent (wt%) total solids. This slurry is fed to the joule-heated melter where the remaining water is evaporated followed by calcination of the solids and conversion to glass. The Savannah Rivermore » National Laboratory (SRNL) is currently assisting DWPF efforts to increase throughput of the melter. As part of this effort, SRNL has investigated methods to increase the solids content of the melter feed to reduce the heat load required to complete the evaporation of water and allow more of the energy available to calcine and vitrify the waste. The process equipment in the facility is fixed and cannot process materials with high yield stresses, therefore increasing the solids content will require that the yield stress of the melter feed slurries be reduced. Changing the glass former added during pretreatment from an irregularly shaped glass frit to nearly spherical beads was evaluated. The evaluation required a systems approach which included evaluations of the effectiveness of beads in reducing the melter feed yield stress as well as evaluations of the processing impacts of changing the frit morphology. Processing impacts of beads include changing the settling rate of the glass former (which effects mixing and sampling of the melter feed slurry and the frit addition equipment) as well as impacts on the melt behavior due to decreased surface area of the beads versus frit. Beads were produced from the DWPF process frit by fire polishing. The frit was allowed to free fall through

  13. Imaging radar studies of polar ice

    NASA Technical Reports Server (NTRS)

    Carsey, Frank

    1993-01-01

    A vugraph format presentation is given. The following topics are discussed: scientific overview, radar data opportunities, sea ice investigations, and ice sheet investigations. The Sea Ice Scientific Objectives are as follows: (1) to estimate globally the surface brine generation, heat flux, and fresh water advection (as ice); (2) to monitor phasing of seasonal melt and freeze events and accurately estimate melt and growth rates; and (3) to develop improved treatment of momentum transfer and ice mechanics in coupled air-sea-ice models.

  14. Surface texture and composition of titanium brushed with toothpaste slurries of different pHs.

    PubMed

    Hossain, Awlad; Okawa, Seigo; Miyakawa, Osamu

    2007-02-01

    This in vitro study characterized the surface texture and composition of titanium brushed with toothpaste slurries of different pHs, and thereby elucidated mechanochemical interactions between the metal and abrasive material in dentifrice. Two fluoride-free toothpastes, which contained crystalline CaHPO(4).2H(2)O and amorphous SiO(2) particles as abrasive, were mixed with acidic buffers to provide slurries of pH 6.8 and 4.8. Specimens were cast from CP Ti, mirror-polished, and then toothbrushed at 120strokes/min for 350,400 strokes under a load of 2.45N. Specimen surfaces were characterized by means of SPM and EPMA. The obtained data were compared with the already reported results of water-diluted alkaline slurries. SPM data of each paste were analyzed using one-way ANOVA, followed by post hoc Tukey test. Irrespective of toothpaste, neutral slurries, as with alkaline slurries, yielded a chemically altered surface with rough texture, whereas acidic slurries formed a chemically clean surface with relatively smooth texture. Mechanochemical polishing effect might be mainly responsible for the cleanness and smoothness. Acidic slurry-induced smooth surface may minimize plaque formation. However, the augmentation of released titanium ions may be adverse to the human body. For evaluation of toothpaste abrasion effects on titanium, paste slurry pH should be taken into account.

  15. Transport of Cryptosporidium parvum Oocysts in Soil Columns following Applications of Raw and Separated Liquid Slurries

    PubMed Central

    Petersen, Heidi H.; Enemark, Heidi L.; Olsen, Annette; Amin, M. G. Mostofa

    2012-01-01

    The potential for the transport of viable Cryptosporidium parvum oocysts through soil to land drains and groundwater was studied using simulated rainfall and intact soil columns which were applied raw slurry or separated liquid slurry. Following irrigation and weekly samplings over a 4-week period, C. parvum oocysts were detected from all soil columns regardless of slurry type and application method, although recovery rates were low (<1%). Soil columns with injected liquid slurry leached 73 and 90% more oocysts compared to columns with injected and surface-applied raw slurries, respectively. Among leachate samples containing oocysts, 44/72 samples yielded viable oocysts as determined by a dye permeability assay (DAPI [4′,6′-diamidino-2-phenylindole]/propidium iodide) with the majority (41%) of viable oocysts found in leachate from soil columns with added liquid slurry. The number of viable oocysts was positively correlated (r = 0.63) with the total number of oocysts found. Destructively sampling of the soil columns showed that type of slurry and irrigation played a role in the vertical distribution of oocysts, with more oocysts recovered from soil columns added liquid slurry irrespective of the irrigation status. Further studies are needed to determine the effectiveness of different slurry separation technologies to remove oocysts and other pathogens, as well as whether the application of separated liquid slurry to agricultural land may represent higher risks for groundwater contamination compared to application of raw slurry. PMID:22706058

  16. Combined slurry and cavitation erosion resistance of surface modified SS410 stainless steel

    NASA Astrophysics Data System (ADS)

    Amarendra, H. J.; Pratap, M. S.; Karthik, S.; Punitha Kumara, M. S.; Rajath, H. C.; Ranjith, H.; Shubhatunga, S. V.

    2018-03-01

    Slurry erosion and combined slurry and cavitation erosion resistance of thermal spray coatings are studied and compared with the as-received martensitic stainless steel material. 70Ni-Cr coatings are deposited on SS 410 material through plasma thermal spray process. The synergy effect of the combined slurry and cavitation erosion resistance of plasma thermal spray coatings were investigated in a slurry pot tester in the presence of bluff bodies known as Cavitation Inducers. Results showed the combined slurry and cavitation erosion resistance of martensitic stainless steel - 410 can be improved by plasma thermal spray coating. It is observed that the plasma spray coated specimens are better erosion resistant than the as- received material, subjected to erosion test under similar conditions. As-received and the surface modified steels are mechanically characterized for its hardness, bending. Morphological studies are conducted through scanning electron microscope.

  17. Combined on-board hydride slurry storage and reactor system and process for hydrogen-powered vehicles and devices

    DOEpatents

    Brooks, Kriston P; Holladay, Jamelyn D; Simmons, Kevin L; Herling, Darrell R

    2014-11-18

    An on-board hydride storage system and process are described. The system includes a slurry storage system that includes a slurry reactor and a variable concentration slurry. In one preferred configuration, the storage system stores a slurry containing a hydride storage material in a carrier fluid at a first concentration of hydride solids. The slurry reactor receives the slurry containing a second concentration of the hydride storage material and releases hydrogen as a fuel to hydrogen-power devices and vehicles.

  18. Validation Ice Crystal Icing Engine Test in the Propulsion Systems Laboratory at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Oliver, Michael J.

    2014-01-01

    The Propulsion Systems Laboratory (PSL) is an existing altitude simulation jet engine test facility located at NASA Glenn Research Center in Cleveland, OH. It was modified in 2012 with the integration of an ice crystal cloud generation system. This paper documents the inaugural ice crystal cloud test in PSL--the first ever full scale, high altitude ice crystal cloud turbofan engine test to be conducted in a ground based facility. The test article was a Lycoming ALF502-R5 high bypass turbofan engine, serial number LF01. The objectives of the test were to validate the PSL ice crystal cloud calibration and engine testing methodologies by demonstrating the capability to calibrate and duplicate known flight test events that occurred on the same LF01 engine and to generate engine data to support fundamental and computational research to investigate and better understand the physics of ice crystal icing in a turbofan engine environment while duplicating known revenue service events and conducting test points while varying facility and engine parameters. During PSL calibration testing it was discovered than heated probes installed through tunnel sidewalls experienced ice buildup aft of their location due to ice crystals impinging upon them, melting and running back. Filtered city water was used in the cloud generation nozzle system to provide ice crystal nucleation sites. This resulted in mineralization forming on flow path hardware that led to a chronic degradation of performance during the month long test. Lacking internal flow path cameras, the response of thermocouples along the flow path was interpreted as ice building up. Using this interpretation, a strong correlation between total water content (TWC) and a weaker correlation between median volumetric diameter (MVD) of the ice crystal cloud and the rate of ice buildup along the instrumented flow path was identified. For this test article the engine anti-ice system was required to be turned on before ice crystal

  19. Validation Ice Crystal Icing Engine Test in the Propulsion Systems Laboratory at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Oliver, Michael J.

    2014-01-01

    The Propulsion Systems Laboratory (PSL) is an existing altitude simulation jet engine test facility located at NASA Glenn Research Center in Clevleand, OH. It was modified in 2012 with the integration of an ice crystal cloud generation system. This paper documents the inaugural ice crystal cloud test in PSLthe first ever full scale, high altitude ice crystal cloud turbofan engine test to be conducted in a ground based facility. The test article was a Lycoming ALF502-R5 high bypass turbofan engine, serial number LF01. The objectives of the test were to validate the PSL ice crystal cloud calibration and engine testing methodologies by demonstrating the capability to calibrate and duplicate known flight test events that occurred on the same LF01 engine and to generate engine data to support fundamental and computational research to investigate and better understand the physics of ice crystal icing in a turbofan engine environment while duplicating known revenue service events and conducting test points while varying facility and engine parameters. During PSL calibration testing it was discovered than heated probes installed through tunnel sidewalls experienced ice buildup aft of their location due to ice crystals impinging upon them, melting and running back. Filtered city water was used in the cloud generation nozzle system to provide ice crystal nucleation sites. This resulted in mineralization forming on flow path hardware that led to a chronic degradation of performance during the month long test. Lacking internal flow path cameras, the response of thermocouples along the flow path was interpreted as ice building up. Using this interpretation, a strong correlation between total water content (TWC) and a weaker correlation between median volumetric diameter (MVD) of the ice crystal cloud and the rate of ice buildup along the instrumented flow path was identified. For this test article the engine anti-ice system was required to be turned on before ice crystal icing

  20. Basal melt beneath whillans ice stream and ice streams A and C

    NASA Technical Reports Server (NTRS)

    Joughin, I.; Teluezyk, S.; Engelhardt, H.

    2002-01-01

    We have used a recently derived map of the velocity of Whillans Ice Stream and Ice Streams A and C to help estimate basal melt. Temperature was modeled with a simple vertical advection-diffusion equation, 'tuned' to match temperature profiles. We find that most of the melt occurs beneath the tributaries where larger basal shear stresses and thicker ice favors greater melt (e.g., 10-20 mm/yr). The occurrence of basal freezing is predicted beneath much of the ice plains of Ice Stream C and Whillans Ice Stream. Modelled melt rates for when Ice Stream C was active suggest there was just enough melt water generated in its tributaries to balance basal freezing on its ice plain. Net basal melt for Whillans Ice Stream is positive due to smaller basal temperature gradients. Modelled temperatures on Whillans Ice Stream, however, were constrained by a single temperature profile at UpB. Basal temperature gradients for Whillans B1 and Ice Stream A may have conditions more similar to those beneath Ice Streams C and D, in which case, there may not be sufficient melt to sustain motion. This would be consistent with the steady deceleration of Whillans stream over the last few decades.

  1. Seismic signals of snow-slurry lahars in motion: 25 September 2007, Mt Ruapehu, New Zealand

    NASA Astrophysics Data System (ADS)

    Cole, S. E.; Cronin, S. J.; Sherburn, S.; Manville, V.

    2009-05-01

    Detection of ground shaking forms the basis of many lahar-warning systems. Seismic records of two lahar types at Ruapehu, New Zealand, in 2007 are used to examine their nature and internal dynamics. Upstream detection of a flow depends upon flow type and coupling with the ground. 3-D characteristics of seismic signals can be used to distinguish the dominant rheology and gross physical composition. Water-rich hyperconcentrated flows are turbulent; common inter-particle and particle-substrate collisions engender higher energy in cross-channel vibrations relative to channel-parallel. Plug-like snow-slurry lahars show greater energy in channel-parallel signals, due to lateral deposition insulating channel margins, and low turbulence. Direct comparison of flow size must account for flow rheology; a water-rich lahar will generate signals of greater amplitude than a similar-sized snow-slurry flow.

  2. Long term fate of slurry derived nitrogen in soil: a case study with a macro-lysimeter experiment having received high loads of pig slurry (Solepur).

    PubMed

    Peu, P; Birgand, F; Martinez, J

    2007-12-01

    In intensive livestock production areas, land application remains the traditional management of manure and slurries for nutrient recycling. For sustainable agriculture there is fear, however, that this practice may have detrimental effects, particularly on the depletion of Soil Organic Matter associated with pig slurry applications. We investigated the long-term fate of nitrogen in a reconstituted soil having received high doses of pig slurry during 5 years (1991-1995). After 5 years of intensive application rates (nearly 1000 m(3)yr(-1)), the N and C content of the soil profile (0-20 cm) had increased by about 60% and 50%, respectively. These results confirm previous findings although it seems that the particularly high rates of application may explain, in part, the relatively important N incorporation in soil. Pig slurry applications ceased in 1995 and nitrogen content in soil and drainage water have been monitored. Apparent mineralization rates were calculated from the decrease in N content of the soil. This analysis indicated that more than 50% of the added N stored in the soil at the end of the applications would eventually be mineralized, leaving nearly 50% of the stored N to be immobilized in the soil. These results are the first published of their kinds, as most reports never examine the fate of applied pig slurry N after halting applications. In addition the few reports on long-term experiments suggest that Soil Organic Matter following pig slurry applications may be unstable. Our analysis tends to show the contrary. However, this conclusion must be tempered because data on nitrate leachate patterns suggest that soil management such as ploughing and sowing may actually trigger mineralization that could eventually deplete nitrogen stored following applications.

  3. PU-ICE Summary Information.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, Michael

    The Generator Knowledge Report for the Plutonium Isentropic Compression Experiment Containment Systems (GK Report) provides information for the Plutonium Isentropic Compression Experiment (Pu- ICE) program to support waste management and characterization efforts. Attachment 3-18 presents generator knowledge (GK) information specific to the eighteenth Pu-ICE conducted in August 2015, also known as ‘Shot 18 (Aug 2015) and Pu-ICE Z-2841 (1).’ Shot 18 (Aug 2015) was generated on August 28, 2015 (1). Calculations based on the isotopic content of Shot 18 (Aug 2015) and the measured mass of the containment system demonstrate the post-shot containment system is low-level waste (LLW). Therefore, thismore » containment system will be managed at Sandia National Laboratory/New Mexico (SNL/NM) as LLW. Attachment 3-18 provides documentation of the TRU concentration and documents the concentration of any hazardous constituents.« less

  4. The stability of a novel weakly alkaline slurry of copper interconnection CMPfor GLSI

    NASA Astrophysics Data System (ADS)

    Yao, Caihong; Wang, Chenwei; Niu, Xinhuan; Wang, Yan; Tian, Shengjun; Jiang, Zichao; Liu, Yuling

    2018-02-01

    Chemical mechanical polishing (CMP) is one of the important machining procedures of multilayered copper interconnection for GLSI, meanwhile polishing slurry is a critical factor for realizing the high polishing performance such as high planarization efficiency, low surface roughness. The effect of slurry components such as abrasive (colloidal silica), complexing agent (glycine), inhibitor (BTA) and oxidizing agent (H2O2) on the stability of the novel weakly alkaline slurry of copper interconnection CMP for GLSI was investigated in this paper. First, the synergistic and competitive relationship of them in a peroxide-based weakly alkaline slurry during the copper CMP process was studied and the stability mechanism was put forward. Then 1 wt% colloidal silica, 2.5 wt% glycine, 200 ppm BTA, 20 mL/L H2O2 had been selected as the appropriate concentration to prepare copper slurry, and using such slurry the copper blanket wafer was polished. From the variations of copper removal rate, root-mean square roughness (Sq) value with the setting time, it indicates that the working-life of the novel weakly alkaline slurry can reach more than 7 days, which satisfies the requirement of microelectronics further development. Project supported by the Major National Science and Technology Special Projects (No. 2016ZX02301003-004-007), the Professional Degree Teaching Case Foundation of Hebei Province, China (No. KCJSZ2017008), the Natural Science Foundation of Hebei Province, China (No. F2015202267), and the Natural Science Foundation of Tianjin, China (No. 16JCYBJC16100).

  5. Method of preparing a high solids content, low viscosity ceramic slurry

    DOEpatents

    Tiegs, Terry N.; Wittmer, Dale E.

    1995-01-01

    A method for producing a high solids content, low viscosity ceramic slurry composition comprises turbomilling a dispersion of a ceramic powder in a liquid to form a slurry having a viscosity less than 100 centipoise and a solids content equal to or greater than 48 volume percent.

  6. Method of preparing a high solids content, low viscosity ceramic slurry

    DOEpatents

    Tiegs, T.N.; Wittmer, D.E.

    1995-10-10

    A method for producing a high solids content, low viscosity ceramic slurry composition comprises turbomilling a dispersion of a ceramic powder in a liquid to form a slurry having a viscosity less than 100 centipoise and a solids content equal to or greater than 48 volume percent.

  7. Characterization of mixing and yield stress of pretreated wheat straw slurries used for the production of biofuels through tomography technique.

    PubMed

    Naghavi-Anaraki, Yasaman; Turcotte, Ginette; Ein-Mozaffari, Farhad

    2018-05-29

    Wheat straw is a low-cost feedstock for the production of biofuel. Pretreatment process is an important stage in producing biofuels since it makes the fibers more accessible to enzymatic hydrolysis which is the final step of producing biofuels. Pretreated wheat straw (PWS) slurries are non-Newtonian fluids with yield stress. Mixing of fluids exhibiting yield stress such as the pretreated wheat straw slurry results in the generation of cavern, which is a fully-mixed zone, around the impeller and the stationary regions elsewhere, which causes difficulties in the production of biofuels. In this study, the non-invasive electrical resistance tomography technique was utilized to determine the cavern dimensions as a function of the impeller type and impeller speed. The cavern sizes were then used to measure the yield stress of PWS slurries as a function of fiber size (≤ 2 and ≤ 6 mm) and fiber concentration (6, 8, and 10 wt%).

  8. Development of carbon slurry fuels for transportation (hybrid fuels, phase 2)

    NASA Technical Reports Server (NTRS)

    Ryan, T. W., III; Dodge, L. G.

    1984-01-01

    Slurry fuels of various forms of solids in diesel fuel are developed and evaluated for their relative potential as fuel for diesel engines. Thirteen test fuels with different solids concentrations are formulated using eight different materials. A variety of properties are examined including ash content, sulfur content, particle size distribution, and rheological properties. Attempts are made to determine the effects of these variations on these fuel properties on injection, atomization, and combustion processes. The slurries are also tested in a single cylinder CLR engine in both direct injection and prechamber configurations. The data includes the normal performance parameters as well as heat release rates and emissions. The slurries perform very much like the baseline fuel. The combustion data indicate that a large fraction (90 percent or more) of the solids are burning in the engine. It appears that the prechamber engine configuration is more tolerant of the slurries than the direct injection configuration.

  9. A new procedure for treatment of oily slurry using geotextile filters.

    PubMed

    Mendonça, M B; Cammarota, M C; Freire, D D C; Ehrlich, M

    2004-07-05

    A new procedure to mitigate the environmental impacts and reduce the cost of disposal of oil slurry is present in this paper. Waste from the petroleum industry has a high environmental impact. Systems for oil-water separation have been used to mitigate the contamination potential of these types of effluents. At the outlet of these systems, the oil is skimmed-off the surface, while the slurry is removed from the base. Due to the high concentration of contaminants, the disposal of this slurry is an environmentally hazardous practice. Usually this type of waste is disposed of in tanks or landfills after removal from the industrial plant. Basically, the proposed procedure utilizes drying beds with geotextile filters to both reduce the water content in the slurry and obtain a less contaminated effluent. Laboratory tests were carried out to simulate the drying system. Four types of filters were analyzed: two non-woven geotextiles, one woven geotextile, and a sand filter.

  10. Characterization and Delivery of Hanford High-Level Radioactive Waste Slurry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thien, Michael G.; Denslow, Kayte M.; Lee, K. P.

    2014-11-15

    Two primary challenges to characterizing Hanford’s high-level radioactive waste slurry prior to transfer to a treatment facility are the ability to representatively sample million-gallon tanks and to estimate the critical velocity of the complex slurry. Washington River Protection Solutions has successfully demonstrated a sampling concept that minimizes sample errors by collecting multiple sample increments from a sample loop where the mixed tank contents are recirculated. Pacific Northwest National Laboratory has developed and demonstrated an ultrasonic-based Pulse-Echo detection device that is capable of detecting a stationary settled bed of solids in a pipe with flowing slurry. These two concepts are essentialmore » elements of a feed delivery strategy that drives the Hanford clean-up mission.« less

  11. Arctic ice islands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sackinger, W.M.; Jeffries, M.O.; Lu, M.C.

    1988-01-01

    The development of offshore oil and gas resources in the Arctic waters of Alaska requires offshore structures which successfully resist the lateral forces due to moving, drifting ice. Ice islands are floating, a tabular icebergs, up to 60 meters thick, of solid ice throughout their thickness. The ice islands are thus regarded as the strongest ice features in the Arctic; fixed offshore structures which can directly withstand the impact of ice islands are possible but in some locations may be so expensive as to make oilfield development uneconomic. The resolution of the ice island problem requires two research steps: (1)more » calculation of the probability of interaction between an ice island and an offshore structure in a given region; and (2) if the probability if sufficiently large, then the study of possible interactions between ice island and structure, to discover mitigative measures to deal with the moving ice island. The ice island research conducted during the 1983-1988 interval, which is summarized in this report, was concerned with the first step. Monte Carlo simulations of ice island generation and movement suggest that ice island lifetimes range from 0 to 70 years, and that 85% of the lifetimes are less then 35 years. The simulation shows a mean value of 18 ice islands present at any time in the Arctic Ocean, with a 90% probability of less than 30 ice islands. At this time, approximately 34 ice islands are known, from observations, to exist in the Arctic Ocean, not including the 10-meter thick class of ice islands. Return interval plots from the simulation show that coastal zones of the Beaufort and Chukchi Seas, already leased for oil development, have ice island recurrences of 10 to 100 years. This implies that the ice island hazard must be considered thoroughly, and appropriate safety measures adopted, when offshore oil production plans are formulated for the Alaskan Arctic offshore. 132 refs., 161 figs., 17 tabs.« less

  12. Feasibility Studies on Pipeline Disposal of Concentrated Copper Tailings Slurry for Waste Minimization

    NASA Astrophysics Data System (ADS)

    Senapati, Pradipta Kumar; Mishra, Barada Kanta

    2017-06-01

    The conventional lean phase copper tailings slurry disposal systems create pollution all around the disposal area through seepage and flooding of waste slurry water. In order to reduce water consumption and minimize pollution, the pipeline disposal of these waste slurries at high solids concentrations may be considered as a viable option. The paper presents the rheological and pipeline flow characteristics of copper tailings samples in the solids concentration range of 65-72 % by weight. The tailings slurry indicated non-Newtonian behaviour at these solids concentrations and the rheological data were best fitted by Bingham plastic model. The influence of solids concentration on yield stress and plastic viscosity for the copper tailings samples were discussed. Using a high concentration test loop, pipeline experiments were conducted in a 50 mm nominal bore (NB) pipe by varying the pipe flow velocity from 1.5 to 3.5 m/s. A non-Newtonian Bingham plastic pressure drop model predicted the experimental data reasonably well for the concentrated tailings slurry. The pressure drop model was used for higher size pipes and the operating conditions for pipeline disposal of concentrated copper tailings slurry in a 200 mm NB pipe with respect to specific power consumption were discussed.

  13. Roles of additives and surface control in slurry atomization. Final project report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsai, S.C.

    1992-12-31

    This project studies the rheology and airblast atomization of micronized coal slurries. Its major objectives are (1) to promote further understanding of the mechanisms and the roles of additives in airblast atomization of coal water slurry (CWS), and (2) to investigate the impacts of coal particle surface properties and interparticle forces on CWS rheology. We have found that the flow behavior index (n) of a suspension (or slurry) is determined by the relative importance of the interparticle van der Waals attraction and the interparticle electrostatic repulsion. The interparticle attraction, measured by the Hamaker constant scaled to the thermal energy atmore » 25{degrees}C (A/kT), causes particle aggregation, which breaks down at high shear rates, and thus leads to slurry pseudoplastic behavior (n< 1). At a constant particle volume fraction and surface charge density (qualitatively measured by the zeta potential in deionized water), n decreases linearly as A/kT increases. The relative viscosity of the pseudoplastic suspension with respect to that of the suspending liquid is found to be independent of particle density and correlate well with the particle Peclet number which equals the particle diffusional relaxation time multiplied by shear rate. Specifically, the relative viscosities of the pseudoplastic glycerol/water coal slurry and the ethylene glycol/glycerol sand slurry, at same volume fractions as well as similar particle size distributions and liquid viscosities, as functions of the particle Peclet number fall along the same line.« less

  14. Narrow grass hedge effects on nutrient transport following swine slurry application

    USDA-ARS?s Scientific Manuscript database

    The effectiveness of a narrow grass hedge in reducing runoff nutrient loads following swine slurry application was examined in this study. Slurry was applied to 0.75-m wide by 4.0-m long plots established on an Aksarben silty clay loam soil located in southeast Nebraska. Manure treatments consisted ...

  15. Effect of Surface-active Additives on Physical Properties of Slurries of Vapor-process Magnesium

    NASA Technical Reports Server (NTRS)

    Pinns, Murray L

    1955-01-01

    The presence of 3 to 5 percent surface-active additive gave the lowest Brookfield apparent viscosity, plastic viscosity, and yield value that were obtained for slurry fuels containing approximately 50 percent vapor-process magnesium in JP-1 fuel. The slurries settled little and were easily remixed. A polyoxyethylene dodecyl alcohol was the most effective of 13 additives tested in reducing the Brookfield apparent viscosity and the yield value of the slurry. The seven most effective additives all had a hydroxyl group plus an ester or polyoxethylene group in the molecule. The densities of some of the slurries were measured.

  16. Holocene Accumulation and Ice Flow near the West Antarctic Ice Sheet Divide Ice Core Site

    NASA Technical Reports Server (NTRS)

    Koutnik, Michelle R.; Fudge, T.J.; Conway, Howard; Waddington, Edwin D.; Neumann, Thomas A.; Cuffey, Kurt M.; Buizert, Christo; Taylor, Kendrick C.

    2016-01-01

    The West Antarctic Ice Sheet Divide Core (WDC) provided a high-resolution climate record from near the Ross-Amundsen Divide in Central West Antarctica. In addition, radar-detected internal layers in the vicinity of the WDC site have been dated directly from the ice core to provide spatial variations in the age structure of the region. Using these two data sets together, we first infer a high-resolution Holocene accumulation-rate history from 9.2 thousand years of the ice-core timescale and then confirm that this climate history is consistent with internal layers upstream of the core site. Even though the WDC was drilled only 24 kilometers from the modern ice divide, advection of ice from upstream must be taken into account. We evaluate histories of accumulation rate by using a flowband model to generate internal layers that we compare to observed layers. Results show that the centennially averaged accumulation rate was over 20 percent lower than modern at 9.2 thousand years before present (B.P.), increased by 40 percent from 9.2 to 2.3 thousand years B.P., and decreased by at least 10 percent over the past 2 thousand years B.P. to the modern values; these Holocene accumulation-rate changes in Central West Antarctica are larger than changes inferred from East Antarctic ice-core records. Despite significant changes in accumulation rate, throughout the Holocene the regional accumulation pattern has likely remained similar to today, and the ice-divide position has likely remained on average within 5 kilometers of its modern position. Continent-scale ice-sheet models used for reconstructions of West Antarctic ice volume should incorporate this accumulation history.

  17. Fermentation of Anaerobic Cow Waste as Bio-Slurry Organic Fertilizer and Nitrogen Chemical Fertilizer on Soybean

    NASA Astrophysics Data System (ADS)

    Yafizham; Sutarno

    2018-02-01

    The study aimed was to evaluate the effect of bio-slurry organic fertilizer and urea chemical fertilizer combination on fresh material weight, phosphorus and potassium soybean straw, and seed weight per soybean plant plot. The experiment was conducted with a randomized block design with a single treatment repeated 5 times consisting of P0: control (without fertilizer), P1: bio-slurry 10 t/ha + 25 kg of N/ha, P2: bio-slurry 10 t/ha + 50 kg of N/ha, P3: bio-slurry 10 t/ha + 75 kg of N/ha, P4: bio-slurry 10 t/ha + 100 kg of N/ha and P5: bio-slurry 10 t/ha. The results showed that bio-slurry treatment of 10 t/ha + 25 kg of N/ha resulted in the highest fresh weight and dry weight of soybean plants, respectively of 240.7 g and 22.33 g, but not significantly different from the bio-slurry treatment of 10 t/ha + 50 kg of N/ha which yielded fresh weight of 197.7 g and a dry weight of 19.08 g. P production of 10.23 g per plant was significantly higher than other treatments but didn’t differ significantly between P2 and P4 treatments of 8.05 and 7.17 g per plant. The bio-slurry treatment of 10 t/ha + 25 kg of N/ha also yielded K of 6.46 g per plant butn’t unlike the bio-slurry treatment of 10 t/ha + 50 kg of N/ha. While the number of pods per plant and weight of 100 grains of the highest soybean seeds were also produced from bio-slurry treatment of 10 t/ha + 25 kg of N/ha.

  18. Pollution attenuation by soils receiving cattle slurry after passage of a slurry-like feed solution. Column experiments.

    PubMed

    Núñez-Delgado, Avelino; López-Períago, Eugenio; Diaz-Fierros-Viqueira, Francisco

    2002-09-01

    Designing soil filtration systems or vegetated filter strips as a means of attenuating water pollution should take into account soil purging capacity. Here we report data on laboratory column trials used to investigate the capacity of a Hortic Anthrosol to attenuate contamination due to downward leaching from cattle slurry applied at the surface. The columns comprised 900 g of soil to a depth of about 20-25 cm, and had been used previously in an experiment involving passage of at least 5 pore volumes of an ion-containing cattle slurry-like feed solution. For the present experiments, the columns were first washed through with distilled water (simulating resting and rain falling after passage of the feed solution), and then received a single slurry dose equivalent to about 300 m3 ha(-1). The columns were then leached with distilled water, with monitoring of chemical oxygen demand (COD) and ion contents in outflow. The results indicated that the pollution-neutralising capacity of the soil was still high but clearly lower than in the earlier experiments with the feed solution. Furthermore, the time-course of COD showed that organic acids were leached through the column even more rapidly than chloride (often viewed as an inert tracer) enhancing the risk of heavy metals leaching and subsequent water pollution. Resting and alternate use of different soil-plant buffer zones would increase the lifespan of purging systems that use soil like the here studied one.

  19. Interactions between phosphorus feeding strategies for pigs and dairy cows and separation efficiency of slurry.

    PubMed

    Sommer, S G; Maahn, M; Poulsen, H D; Hjorth, M; Sehested, J

    2008-01-01

    Phosphorus (P) in manure is a nutrient source for plants, but surplus P amended to fields represents a risk to the environment. This study examines the interactions between low-P diets for pigs and dairy cows and the separation of animal slurry into a solid P fraction and a liquid fraction. Replacing inorganic phosphates with phytase in pig feed reduced the concentration of P in slurry by 35%, but supplementing concentrates to dairy cows did not affect the P concentration in cattle slurry. Particle-size fractions of the slurry were not affected by these dietary changes. The amount of dry matter (DM) in the < 0.025 mm fraction was greater in pig slurry than in cattle slurry, but the relative amounts of P and nitrogen (N) were larger in the > 0.025 mm fraction. Replacing feed phosphate, in the form of mono-calcium phosphate, with phytase in the pig diet reduced the separation index (efficiency) of P from 80% to 60%.

  20. Management factors affecting ammonia volatilization from land-applied cattle slurry in the Mid-Atlantic USA.

    PubMed

    Thompson, R B; Meisinger, J J

    2002-01-01

    Ammonia (NH3) volatilization commonly causes a substantial loss of crop-available N from surface-applied cattle slurry. Field studies were conducted with small wind tunnels to assess the effect of management factors on NH3 volatilization. Two studies compared NH3 volatilization from grass sward and bare soil. The average total NH3 loss was 1.5 times greater from slurry applied to grass sward. Two studies examined the effect of slurry dry matter (DM) content on NH3 loss under hot, summer conditions in Maryland, USA. Slurry DM contents were between 54 and 134 g kg(-1). Dry matter content did not affect total NH3 loss, but did influence the time course of NH3 loss. Higher DM content slurries had relatively higher rates of NH3 volatilization during the first 12 to 24 h, but lower rates thereafter. Under the hot conditions, the higher DM content slurries appeared to dry and crust more rapidly causing smaller rates of NH3 volatilization after 12 to 24 h, which offset the earlier positive effects of DM content on NH3 volatilization. Three studies compared immediate incorporation with different tillage implements. Total NH3 loss from unincorporated slurry was 45% of applied slurry NH4+-N, while losses following immediate incorporation with a moldboard plow, tandem-disk harrow, or chisel plow were, respectively, 0 to 3, 2 to 8, and 8 to 12%. These ground cover and DM content data can be used to improve predictions of NH3 loss under specific farming conditions. The immediate incorporation data demonstrate management practices that can reduce NH3 volatilization, which can improve slurry N utilization in crop-forage production.

  1. Ice Shapes on a Tail Rotor

    NASA Technical Reports Server (NTRS)

    Kreeger, Richard E.; Tsao, Jen-Ching

    2014-01-01

    Testing of a thermally-protected helicopter rotor in the Icing Research Tunnel (IRT) was completed. Data included inter-cycle and cold blade ice shapes. Accreted ice shapes were thoroughly documented, including tracing, scanning and photographing. This was the first time this scanning capability was used outside of NASA. This type of data has never been obtained for a rotorcraft before. This data will now be used to validate the latest generation of icing analysis tools.

  2. Coal-water slurry fuel internal combustion engine and method for operating same

    DOEpatents

    McMillian, Michael H.

    1992-01-01

    An internal combustion engine fueled with a coal-water slurry is described. About 90 percent of the coal-water slurry charge utilized in the power cycle of the engine is directly injected into the main combustion chamber where it is ignited by a hot stream of combustion gases discharged from a pilot combustion chamber of a size less than about 10 percent of the total clearance volume of main combustion chamber with the piston at top dead center. The stream of hot combustion gases is provided by injecting less than about 10 percent of the total coal-water slurry charge into the pilot combustion chamber and using a portion of the air from the main combustion chamber that has been heated by the walls defining the pilot combustion chamber as the ignition source for the coal-water slurry injected into the pilot combustion chamber.

  3. Concentration and Velocity Measurements of Both Phases in Liquid-Solid Slurries

    NASA Astrophysics Data System (ADS)

    Altobelli, Stephen; Hill, Kimberly; Caprihan, Arvind

    2007-03-01

    Natural and industrial slurry flows abound. They are difficult to calculate and to measure. We demonstrate a simple technique for studying steady slurries. We previously used time-of-flight techniques to study pressure driven slurry flow in pipes. Only the continuous phase velocity and concentration fields were measured. The discrete phase concentration was inferred. In slurries composed of spherical, oil-filled pills and poly-methyl-siloxane oils, we were able to use inversion nulling to measure the concentration and velocity fields of both phases. Pills are available in 1-5mm diameter and silicone oils are available in a wide range of viscosities, so a range of flows can be studied. We demonstrated the technique in horizontal, rotating cylinder flows. We combined two tried and true methods to do these experiments. The first used the difference in T1 to select between phases. The second used gradient waveforms with controlled first moments to produce velocity dependent phase shifts. One novel processing method was developed that allows us to use static continuous phase measurements to reference both the continuous and discrete phase velocity images. ?

  4. Evaluation of the Monroe Slurry Maker.

    DOT National Transportation Integrated Search

    2009-05-01

    In early February, 2009, the Maine Department of Transportation (MaineDOT) installed a Monroe Slurry : Maker on one of its 2009 Volvo Wheelers (see Photos 1 and 2). This truck was equipped with a : Henderson Utility Body. An 18 gallon per minute spoo...

  5. Development of High-Temperature Transport Technologies of Molten Salt Slurry in Pyrometallurgical Reprocessing

    NASA Astrophysics Data System (ADS)

    Hijikata, Takatoshi; Koyama, Tadafumi

    Pyrometallurgical-reprocessing is one of the most promising technologies for advanced fuel cycle with favorable economic potential and intrinsic proliferation resistance. The development of transport technology for molten salt is a key issue in the industrialization of pyro-reprocessing. As for pure molten LiCl-KCl eutectic salt at approximately 773 K, we have already reported the successful results of transport using gravity and a centrifugal pump. However, molten salt in an electrorefiner mixes with insoluble fines when spent fuel is dissolved in porous anode basket. The insoluble consists of noble metal fission products, such as Pd, Ru, Mo, and Zr. There have been very few transport studies of a molten salt slurry (metal fines-molten salt mixture). Hence, transport experiments on a molten salt slurry were carried out to investigate the behavior of the slurry in a tube. The apparatus used in the transport experiments on the molten salt slurry consisted of a supply tank, a 10° inclined transport tube (10 mm inner diameter), a valve, a filter, and a recovery tank. Stainless steel (SS) fines with diameters from 53 to 415 μm were used. To disperse these fines homogenously, the molten salt and fines were stirred in the supply tank by an impeller at speeds from 1200 to 2100 rpm. The molten salt slurry containing 0.04 to 0.4 vol.% SS fines was transported from the supply tank to the recovery tank through the transportation tube. In the recovery tank, the fines were separated from the molten salt by the filter to measure the transport behavior of molten salt and SS fines. When the velocity of the slurry was 0.02 m/s, only 1% of the fines were transported to the recovery tank. On the other hand, most of the fines were transported when the velocity of the slurry was more than 0.8 m/s. Consequently, the molten salt slurry can be transported when the velocity is more than 0.8 m/s.

  6. The role of heterotrophic microorganism Galactomyces sp. Z3 in improving pig slurry bioleaching.

    PubMed

    Zhou, Jun; Zheng, Guanyu; Zhou, Lixiang; Liu, Fenwu; Zheng, Chaocheng; Cui, Chunhong

    2013-01-01

    The feasibility of removing heavy metals and eliminating pathogens from pig slurry through bioleaching involving the fungus Galactomyces sp. Z3 and two acidophilic thiobacillus (A. ferrooxidans LX5 and A. thiooxidans TS6) was investigated. It was found that the isolated pig slurry dissolved organic matter (DOM) degrader Z3 was identified as Galactomyces sp. Z3, which could grow well at pH 2.5-7 and degrade pig slurry DOM from 1973 to 942 mg/l within 48 h. During the successive multi-batch bioleaching systems, the co-inoculation of pig slurry degrader Galactomyces sp. Z3 and the two Acidithiobacillus species could improve pig slurry bioleaching efficiency compared to the single system without Galactomyces sp. Z3. The removal efficiency of Zn and Cu exceeded 94% and 85%, respectively. In addition, the elimination efficiencies of pathogens, including both total coliform and faecal coliform counts, exceeded 99% after bioleaching treatment. However, the counts of Galactomyces sp. Z3 decreased with the fall of pH and did not restore to the initial level during successive multi-batch bioleaching systems, and it is necessary to re-inoculate Galactomyces sp. Z3 cells into the bioleaching system to maintain its role in degrading pig slurry DOM. Therefore, a bioleaching technique involving both Galactomyces sp. Z3 and Acidithiobacillus species is an efficient method for removing heavy metals and eliminating pathogens from pig slurry.

  7. Defining the upper viscosity limit for mineral slurries used in drilled shaft construction.

    DOT National Transportation Integrated Search

    2014-02-01

    Drilled shaft construction often requires the use of drill slurry to maintain borehole stability during : excavation and concreting. Florida Department of Transportation (FDOT) specifications require that the : mineral slurry used for all primary str...

  8. Kinetics of biotransformation of chlorpyrifos in aqueous and soil slurry environments.

    PubMed

    Tiwari, Manoj K; Guha, Saumyen

    2014-03-15

    The attenuation of chlorpyrifos (CPF) by the enriched indigenous soil microorganism was studied in 15 d aerobic and 60 d anaerobic batch experiments in aqueous and soil slurry (1:3 w/w) media. At the end of the batch experiments, 2.78 ± 0.11 μM of CPF was degraded by 82% in aerobic and 66% in anaerobic aqueous environments, while 12.4 ± 0.5 μM of CPF was degraded by 48% in aerobic and 31% in anaerobic soil slurries. The reduced degradation in the soil slurries was due to the significantly (2-10 times) slower rate of degradation of soil phase CPF compared with its degradation rate in water. The pathways of degradation of CPF were identified, including a partial anaerobic degradation pathway that is constructed for the first time. The simulation of the various conversions in the degradation pathways using first order kinetics was used to analyze relative persistence of metabolites. The common metabolite 3,5,6-trichloro-2-pyridinol (TCP) accumulated (increased monotonically during the period of experiments) in aerobic soil slurry and in anaerobic aqueous as well as soil slurry systems but did not accumulate in aerobic aqueous system. The most toxic compound in the pathway, chlorpyrifos oxon (CPFO) was not detected in anaerobic environment. In aerobic environment, CPFO was short lived in aqueous medium, but accumulated slowly in the soils. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Enhanced acetone-butanol-ethanol production from lignocellulosic hydrolysates by using starchy slurry as supplement.

    PubMed

    Yang, Ming; Kuittinen, Suvi; Vepsäläinen, Jouko; Zhang, Junhua; Pappinen, Ari

    2017-11-01

    This study aims to improve acetone-butanol-ethanol production from the hydrolysates of lignocellulosic material by supplementing starchy slurry as nutrients. In the fermentations of glucose, xylose and the hydrolysates of Salix schwerinii, the normal supplements such as buffer, minerals, and vitamins solutions were replaced with the barley starchy slurry. The ABE production was increased from 0.86 to 14.7g/L by supplementation of starchy slurry in the fermentation of xylose and the utilization of xylose increased from 29% to 81%. In the fermentations of hemicellulosic and enzymatic hydrolysates from S. schwerinii, the ABE yields were increased from 0 and 0.26 to 0.35 and 0.33g/g sugars, respectively. The results suggested that the starchy slurry supplied the essential nutrients for ABE fermentation. The starchy slurry as supplement could improve the ABE production from both hemicellulosic and cellulosic hydrolysate of lignocelluloses, and it is particularly helpful for enhancing the utilization of xylose from hemicelluloses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Research on numerical simulation and protection of transient process in long-distance slurry transportation pipelines

    NASA Astrophysics Data System (ADS)

    Lan, G.; Jiang, J.; Li, D. D.; Yi, W. S.; Zhao, Z.; Nie, L. N.

    2013-12-01

    The calculation of water-hammer pressure phenomenon of single-phase liquid is already more mature for a pipeline of uniform characteristics, but less research has addressed the calculation of slurry water hammer pressure in complex pipelines with slurry flows carrying solid particles. In this paper, based on the developments of slurry pipelines at home and abroad, the fundamental principle and method of numerical simulation of transient processes are presented, and several boundary conditions are given. Through the numerical simulation and analysis of transient processes of a practical engineering of long-distance slurry transportation pipeline system, effective protection measures and operating suggestions are presented. A model for calculating the water impact of solid and fluid phases is established based on a practical engineering of long-distance slurry pipeline transportation system. After performing a numerical simulation of the transient process, analyzing and comparing the results, effective protection measures and operating advice are recommended, which has guiding significance to the design and operating management of practical engineering of longdistance slurry pipeline transportation system.

  11. Doped colloidal artificial spin ice

    DOE PAGES

    Libál, A.; Reichhardt, C. J. Olson; Reichhardt, C.

    2015-10-07

    We examine square and kagome artificial spin ice for colloids confined in arrays of double-well traps. Conversely, magnetic artificial spin ices, unlike colloidal and vortex artificial spin ice realizations, allow creation of doping sites through double occupation of individual traps. We find that doping square and kagome ice geometries produces opposite effects. For square ice, doping creates local excitations in the ground state configuration that produce a local melting effect as the temperature is raised. In contrast, the kagome ice ground state can absorb the doping charge without generating non-ground-state excitations, while at elevated temperatures the hopping of individual colloidsmore » is suppressed near the doping sites. Our results indicate that in the square ice, doping adds degeneracy to the ordered ground state and creates local weak spots, while in the kagome ice, which has a highly degenerate ground state, doping locally decreases the degeneracy and creates local hard regions.« less

  12. Doped colloidal artificial spin ice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Libál, A.; Reichhardt, C. J. Olson; Reichhardt, C.

    We examine square and kagome artificial spin ice for colloids confined in arrays of double-well traps. Conversely, magnetic artificial spin ices, unlike colloidal and vortex artificial spin ice realizations, allow creation of doping sites through double occupation of individual traps. We find that doping square and kagome ice geometries produces opposite effects. For square ice, doping creates local excitations in the ground state configuration that produce a local melting effect as the temperature is raised. In contrast, the kagome ice ground state can absorb the doping charge without generating non-ground-state excitations, while at elevated temperatures the hopping of individual colloidsmore » is suppressed near the doping sites. Our results indicate that in the square ice, doping adds degeneracy to the ordered ground state and creates local weak spots, while in the kagome ice, which has a highly degenerate ground state, doping locally decreases the degeneracy and creates local hard regions.« less

  13. Effect of organized assemblies. Part 4. Formulation of highly concentrated coal-water slurry using a natural surfactant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Debadutta Das; Sagarika Panigrahi; Pramila K. Misra

    2008-05-15

    Coal-water slurry has received considerable research nowadays due to its ability in substituting energy sources. The present work reports the formulation of highly concentrated coal-water slurry using a natural occurring surface active compound, saponin, extracted from the fruits of plant Sapindous laurifolia. The isolation of saponin from the plant and its surface activity has been discussed. The rheological characteristics of coal-water slurry have been investigated as a function of coal loading, ash content of coal, pH, temperature, and amount of saponin. The viscosity of the slurry and zeta potential are substantially decreased with concomitant shift of the isoelectric point ofmore » coal on adsorption of saponin to it. In the presence of 0.8% of saponin, coal-water slurry containing 64% weight fraction of coal could be achieved. The slurry is stable for a period of as long as 1 month in contrast to 4-5 h in the case of bare coal-water slurry. The results confirm the use of saponin as a suitable additive for coal-water slurry similar to the commercially available additive such as sodium dodecyl sulfate. Basing on the effect of pH on the zeta potential and viscosity of slurry, a suitable mechanism for saponin-coal interaction and orientation of saponin at the coal-water interface has been proposed. 47 refs., 12 figs., 5 tabs.« less

  14. Reductive Dehalogenation of a Nitrogen Heterocyclic Herbicide in Anoxic Aquifer Slurries

    PubMed Central

    Adrian, Neal R.; Suflita, Joseph M.

    1990-01-01

    We studied the metabolic fate of bromacil in anaerobic aquifer slurries held under denitrifying, sulfate-reducing, or methanogenic conditions. Liquid chromatograhy-mass spectrometry of the slurries confirmed that bromacil was debrominated under methanogenic conditions but was not degraded under the other incubation conditions. This finding extends the range of aryl reductive dehalogenation reactions to include nitrogen heterocyclic compounds. PMID:16348103

  15. Impact of ice-shelf sediment content on the dynamics of plumes under melting ice shelves

    NASA Astrophysics Data System (ADS)

    Wells, A.

    2015-12-01

    When a floating ice shelf melts into an underlying warm salty ocean, the resulting fresh meltwater can rise in a buoyant Ice-Shelf-Water plume under the ice. In certain settings, ice flowing across the grounding line carries a basal layer of debris rich ice, entrained via basal freezing around till in the upstream ice sheet. Melting of this debris-laden ice from floating ice shelves provides a flux of dense sediment to the ocean, in addition to the release of fresh buoyant meltwater. This presentation considers the impact of the resulting suspended sediment on the dynamics of ice shelf water plumes, and identifies two key flow regimes depending on the sediment concentration frozen into the basal ice layer. For large sediment concentration, melting of the debris-laden ice shelf generates dense convectively unstable waters that drive convective overturning into the underlying ocean. For lower sediment concentration, the sediment initially remains suspended in a buoyant meltwater plume rising along the underside of the ice shelf, before slowly depositing into the underlying ocean. A theoretical plume model is used to evaluate the significance of the negatively buoyant sediment on circulation strength and the feedbacks on melting rate, along with the expected depositional patterns under the ice shelf.

  16. Cultivation of microalgae Chlorella zofingiensis on municipal wastewater and biogas slurry towards bioenergy.

    PubMed

    Zhou, Weizheng; Wang, Zhongming; Xu, Jingliang; Ma, Longlong

    2018-05-22

    The high cost of large-scale cultivation of microalgae has limited their industrial application. This study investigated the potential use of mixed biogas slurry and municipal wastewater to cultivate microalgae. Pig biogas slurry as the sole nutrient supplement, was assessed for the cultivation of Chlorella zofingiensis in municipal wastewater. Batch culture of various ratios of pig biogas slurry and municipal wastewater were compared. The characteristics of algal growth and lipid production were analyzed, and the removal rates of nitrogen and phosphate were examined. Results indicate that 8% pig bio-gas slurry in municipal wastewater, had a significant effect on microalgal growth. C. zofingiensis, with 2.5 g L -1 biomass, 93% total nitrogen and 90% total phosphorus removal. Lipid content was improved by 8% compared to BG11 medium. These findings show that mixing pig biogas slurry and municipal wastewater, without additional nutrition sources, allows efficient cultivation of C. zofingiensis. This is of high research and industrial significance, allowing cultivation of C. zofingiensis in mixed waste culture solution without additional nutrition sources. Copyright © 2018. Published by Elsevier B.V.

  17. New Icing Cloud Simulation System at the NASA Glenn Research Center Icing Research Tunnel

    NASA Technical Reports Server (NTRS)

    Irvine, Thomas B.; Oldenburg, John R.; Sheldon, David W.

    1999-01-01

    A new spray bar system was designed, fabricated, and installed in the NASA Glenn Research Center's Icing Research Tunnel (IRT). This system is key to the IRT's ability to do aircraft in-flight icing cloud simulation. The performance goals and requirements levied on the design of the new spray bar system included increased size of the uniform icing cloud in the IRT test section, faster system response time, and increased coverage of icing conditions as defined in Appendix C of the Federal Aviation Regulation (FAR), Part 25 and Part 29. Through significant changes to the mechanical and electrical designs of the previous-generation spray bar system, the performance goals and requirements were realized. Postinstallation aerodynamic and icing cloud calibrations were performed to quantify the changes and improvements made to the IRT test section flow quality and icing cloud characteristics. The new and improved capability to simulate aircraft encounters with in-flight icing clouds ensures that the 1RT will continue to provide a satisfactory icing ground-test simulation method to the aeronautics community.

  18. Nitrogen and phosphorus removal coupled with carbohydrate production by five microalgae cultures cultivated in biogas slurry.

    PubMed

    Tan, Fen; Wang, Zhi; Zhouyang, Siyu; Li, Heng; Xie, Youping; Wang, Yuanpeng; Zheng, Yanmei; Li, Qingbiao

    2016-12-01

    In this study, five microalgae strains were cultured for their ability to survive in biogas slurry, remove nitrogen resources and accumulate carbohydrates. It was proved that five microalgae strains adapted in biogas slurry well without ammonia inhibition. Among them, Chlorella vulgaris ESP-6 showed the best performance on carbohydrate accumulation, giving the highest carbohydrate content of 61.5% in biogas slurry and the highest ammonia removal efficiency and rate of 96.3% and 91.7mg/L/d respectively in biogas slurry with phosphorus and magnesium added. Additionally, the absence of phosphorus and magnesium that can be adverse for biomass accumulation resulted in earlier timing of carbohydrate accumulation and magnesium was firstly recognized and proved as the influence factor for carbohydrate accumulation. Microalgae that cultured in biogas slurry accumulated more carbohydrate in cell, making biogas slurry more suitable medium for the improvement of carbohydrate content, thus can be regarded as a new strategy to accumulate carbohydrate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. NPK NMR Sensor: Online Monitoring of Nitrogen, Phosphorus, and Potassium in Animal Slurry.

    PubMed

    Sørensen, Morten K; Jensen, Ole; Bakharev, Oleg N; Nyord, Tavs; Nielsen, Niels Chr

    2015-07-07

    Knowledge of the actual content of nitrogen, phosphorus, and potassium (NPK) in animal slurry is highly important to optimize crop production and avoid environmental pollution when slurry is spread on agricultural fields. Here, we present a mobile, low-field nuclear magnetic resonance (NMR) sensor suitable for online monitoring of the NPK content in animal slurry as an alternative to crude estimates or tedious nonspecific, off-site laboratory analysis. The sensor is based on (14)N, (17)O, (31)P, and (39)K NMR in a digital NMR instrument equipped with a 1.5 T Halbach magnet for direct detection of ammonium N, total P, and K and indirect evaluation of the organic N content, covering all practical components of NPK in animal slurry. In correlation studies, the obtained NMR measurements show good agreement with reference measurements from commercial laboratories.

  20. Water, ice and mud: Lahars and lahar hazards at ice- and snow-clad volcanoes

    USGS Publications Warehouse

    Waythomas, Christopher F.

    2014-01-01

    Large-volume lahars are significant hazards at ice and snow covered volcanoes. Hot eruptive products produced during explosive eruptions can generate a substantial volume of melt water that quickly evolves into highly mobile flows of ice, sediment and water. At present it is difficult to predict the size of lahars that can form at ice and snow covered volcanoes due to their complex flow character and behaviour. However, advances in experiments and numerical approaches are producing new conceptual models and new methods for hazard assessment. Eruption triggered lahars that are ice-dominated leave behind thin, almost unrecognizable sedimentary deposits, making them likely to be under-represented in the geological record.

  1. Ice Action on Pairs of Cylindrical and Conical Structures,

    DTIC Science & Technology

    1983-09-01

    correlation because the forces generated ficult to pick a distinct peak in the autospectra for between the structure and the ice sheet are af- the...against two conical structures ...... 20 24. Normalized maximum ice force versus ice velocity ................. 20 25. Normalized initial peak force...versus ice velocity .................. 21 26. Ratio of initial peak ice force to theoretical ice force versus ratio of center-to-center distance

  2. Identification of Plant Ice-binding Proteins Through Assessment of Ice-recrystallization Inhibition and Isolation Using Ice-affinity Purification.

    PubMed

    Bredow, Melissa; Tomalty, Heather E; Walker, Virginia K

    2017-05-05

    Ice-binding proteins (IBPs) belong to a family of stress-induced proteins that are synthesized by certain organisms exposed to subzero temperatures. In plants, freeze damage occurs when extracellular ice crystals grow, resulting in the rupture of plasma membranes and possible cell death. Adsorption of IBPs to ice crystals restricts further growth by a process known as ice-recrystallization inhibition (IRI), thereby reducing cellular damage. IBPs also demonstrate the ability to depress the freezing point of a solution below the equilibrium melting point, a property known as thermal hysteresis (TH) activity. These protective properties have raised interest in the identification of novel IBPs due to their potential use in industrial, medical and agricultural applications. This paper describes the identification of plant IBPs through 1) the induction and extraction of IBPs in plant tissue, 2) the screening of extracts for IRI activity, and 3) the isolation and purification of IBPs. Following the induction of IBPs by low temperature exposure, extracts are tested for IRI activity using a 'splat assay', which allows the observation of ice crystal growth using a standard light microscope. This assay requires a low protein concentration and generates results that are quickly obtained and easily interpreted, providing an initial screen for ice binding activity. IBPs can then be isolated from contaminating proteins by utilizing the property of IBPs to adsorb to ice, through a technique called 'ice-affinity purification'. Using cell lysates collected from plant extracts, an ice hemisphere can be slowly grown on a brass probe. This incorporates IBPs into the crystalline structure of the polycrystalline ice. Requiring no a priori biochemical or structural knowledge of the IBP, this method allows for recovery of active protein. Ice-purified protein fractions can be used for downstream applications including the identification of peptide sequences by mass spectrometry and the

  3. A coupled dynamic-thermodynamic model of an ice-ocean system in the marginal ice zone

    NASA Technical Reports Server (NTRS)

    Hakkinen, Sirpa

    1987-01-01

    Thermodynamics are incorporated into a coupled ice-ocean model in order to investigate wind-driven ice-ocean processes in the marginal zone. Upswelling at the ice edge which is generated by the difference in the ice-air and air-water surface stresses is found to give rise to a strong entrainment by drawing the pycnocline closer to the surface. Entrainment is shown to be negligible outside the areas affected by the ice edge upswelling. If cooling at the top is included in the model, the heat and salt exchanges are further enhanced in the upswelling areas. It is noted that new ice formation occurs in the region not affected by ice edge upswelling, and it is suggested that the high-salinity mixed layer regions (with a scale of a few Rossby radii of deformation) will overturn due to cooling, possibly contributing to the formation of deep water.

  4. Ice Accretion Roughness Measurements and Modeling

    NASA Technical Reports Server (NTRS)

    McClain, Stephen T.; Vargas, Mario; Tsao, Jen-Ching; Broeren, Andy P.; Lee, Sam

    2017-01-01

    Roughness on aircraft ice accretions is very important to the overall ice accretion process and to the resulting degradation in aircraft aerodynamic performance. Roughness enhances the local convection leading to more rapid ice accumulation rates, and roughness generates local flow perturbations that lead to higher skin friction. This paper presents 1) a review of the developments in ice shape three-dimensional laser scanning developed at NASA Glenn, 2) a review of the approach of McClain and Kreeger employed to characterize ice roughness evolution on an airfoil surface, and 3) a review of the experimental efforts that have been performed over the last five years to characterize, scale, and model ice roughness evolution physics.

  5. Tidal bending of ice shelves as a mechanism for large-scale temporal variations in ice flow

    NASA Astrophysics Data System (ADS)

    Rosier, Sebastian H. R.; Hilmar Gudmundsson, G.

    2018-05-01

    GPS measurements reveal strong modulation of horizontal ice shelf and ice stream flow at a variety of tidal frequencies, most notably a fortnightly (Msf) frequency not present in the vertical tides themselves. Current theories largely fail to explain the strength and prevalence of this signal over floating ice shelves. We show how well-known non-linear aspects of ice rheology can give rise to widespread, long-periodic tidal modulation in ice shelf flow, generated within ice shelves themselves through tidal flexure acting at diurnal and semidiurnal frequencies. Using full-Stokes viscoelastic modelling, we show that inclusion of tidal bending within the model accounts for much of the observed tidal modulation of ice shelf flow. Furthermore, our model shows that, in the absence of vertical tidal forcing, the mean flow of the ice shelf is reduced by almost 30 % for the geometry that we consider.

  6. Ice-Accretion Test Results for Three Large-Scale Swept-Wing Models in the NASA Icing Research Tunnel

    NASA Technical Reports Server (NTRS)

    Broeren, Andy P.; Potapczuk, Mark G.; Lee, Sam; Malone, Adam M.; Paul, Benard P., Jr.; Woodard, Brian S.

    2016-01-01

    Icing simulation tools and computational fluid dynamics codes are reaching levels of maturity such that they are being proposed by manufacturers for use in certification of aircraft for flight in icing conditions with increasingly less reliance on natural-icing flight testing and icing-wind-tunnel testing. Sufficient high-quality data to evaluate the performance of these tools is not currently available. The objective of this work was to generate a database of ice-accretion geometry that can be used for development and validation of icing simulation tools as well as for aerodynamic testing. Three large-scale swept wing models were built and tested at the NASA Glenn Icing Research Tunnel (IRT). The models represented the Inboard (20% semispan), Midspan (64% semispan) and Outboard stations (83% semispan) of a wing based upon a 65% scale version of the Common Research Model (CRM). The IRT models utilized a hybrid design that maintained the full-scale leading-edge geometry with a truncated afterbody and flap. The models were instrumented with surface pressure taps in order to acquire sufficient aerodynamic data to verify the hybrid model design capability to simulate the full-scale wing section. A series of ice-accretion tests were conducted over a range of total temperatures from -23.8 deg C to -1.4 deg C with all other conditions held constant. The results showed the changing ice-accretion morphology from rime ice at the colder temperatures to highly 3-D scallop ice in the range of -11.2 deg C to -6.3 deg C. Warmer temperatures generated highly 3-D ice accretion with glaze ice characteristics. The results indicated that the general scallop ice morphology was similar for all three models. Icing results were documented for limited parametric variations in angle of attack, drop size and cloud liquid-water content (LWC). The effect of velocity on ice accretion was documented for the Midspan and Outboard models for a limited number of test cases. The data suggest that

  7. Ice-Accretion Test Results for Three Large-Scale Swept-Wing Models in the NASA Icing Research Tunnel

    NASA Technical Reports Server (NTRS)

    Broeren, Andy P.; Potapczuk, Mark G.; Lee, Sam; Malone, Adam M.; Paul, Bernard P., Jr.; Woodard, Brian S.

    2016-01-01

    Icing simulation tools and computational fluid dynamics codes are reaching levels of maturity such that they are being proposed by manufacturers for use in certification of aircraft for flight in icing conditions with increasingly less reliance on natural-icing flight testing and icing-wind-tunnel testing. Sufficient high-quality data to evaluate the performance of these tools is not currently available. The objective of this work was to generate a database of ice-accretion geometry that can be used for development and validation of icing simulation tools as well as for aerodynamic testing. Three large-scale swept wing models were built and tested at the NASA Glenn Icing Research Tunnel (IRT). The models represented the Inboard (20 percent semispan), Midspan (64 percent semispan) and Outboard stations (83 percent semispan) of a wing based upon a 65 percent scale version of the Common Research Model (CRM). The IRT models utilized a hybrid design that maintained the full-scale leading-edge geometry with a truncated afterbody and flap. The models were instrumented with surface pressure taps in order to acquire sufficient aerodynamic data to verify the hybrid model design capability to simulate the full-scale wing section. A series of ice-accretion tests were conducted over a range of total temperatures from -23.8 to -1.4 C with all other conditions held constant. The results showed the changing ice-accretion morphology from rime ice at the colder temperatures to highly 3-D scallop ice in the range of -11.2 to -6.3 C. Warmer temperatures generated highly 3-D ice accretion with glaze ice characteristics. The results indicated that the general scallop ice morphology was similar for all three models. Icing results were documented for limited parametric variations in angle of attack, drop size and cloud liquid-water content (LWC). The effect of velocity on ice accretion was documented for the Midspan and Outboard models for a limited number of test cases. The data suggest

  8. Representation of Ice Geometry by Parametric Functions: Construction of Approximating NURBS Curves and Quantification of Ice Roughness--Year 1: Approximating NURBS Curves

    NASA Technical Reports Server (NTRS)

    Dill, Loren H.; Choo, Yung K. (Technical Monitor)

    2004-01-01

    Software was developed to construct approximating NURBS curves for iced airfoil geometries. Users specify a tolerance that determines the extent to which the approximating curve follows the rough ice. The user can therefore smooth the ice geometry in a controlled manner, thereby enabling the generation of grids suitable for numerical aerodynamic simulations. Ultimately, this ability to smooth the ice geometry will permit studies of the effects of smoothing upon the aerodynamics of iced airfoils. The software was applied to several different types of iced airfoil data collected in the Icing Research Tunnel at NASA Glenn Research Center, and in all cases was found to efficiently generate suitable approximating NURBS curves. This method is an improvement over the current "control point formulation" of Smaggice (v.1.2). In this report, we present the relevant theory of approximating NURBS curves and discuss typical results of the software.

  9. Ice Nucleation in Deep Convection

    NASA Technical Reports Server (NTRS)

    Jensen, Eric; Ackerman, Andrew; Stevens, David; Gore, Warren J. (Technical Monitor)

    2001-01-01

    The processes controlling production of ice crystals in deep, rapidly ascending convective columns are poorly understood due to the difficulties involved with either modeling or in situ sampling of these violent clouds. A large number of ice crystals are no doubt generated when droplets freeze at about -40 C. However, at higher levels, these crystals are likely depleted due to precipitation and detrainment. As the ice surface area decreases, the relative humidity can increase well above ice saturation, resulting in bursts of ice nucleation. We will present simulations of these processes using a large-eddy simulation model with detailed microphysics. Size bins are included for aerosols, liquid droplets, ice crystals, and mixed-phase (ice/liquid) hydrometers. Microphysical processes simulated include droplet activation, freezing, melting, homogeneous freezing of sulfate aerosols, and heterogeneous ice nucleation. We are focusing on the importance of ice nucleation events in the upper part of the cloud at temperatures below -40 C. We will show that the ultimate evolution of the cloud in this region (and the anvil produced by the convection) is sensitive to these ice nucleation events, and hence to the composition of upper tropospheric aerosols that get entrained into the convective column.

  10. A new magnetic compound fluid slurry and its performance in magnetic field-assisted polishing of oxygen-free copper

    NASA Astrophysics Data System (ADS)

    Wang, Youliang; Wu, Yongbo; Guo, Huiru; Fujimoto, Masakazu; Nomura, Mitsuyoshi; Shimada, Kunio

    2015-05-01

    In nano-precision surface finishing of engineering materials using MCF (magnetic compound fluid) slurry, the water-based MCF slurry is preferable from the viewpoint of the environmental issue and the running cost of cleaning workpiece and equipment. However, the uncoated-CIPs (carbonyl-iron-powders) within the conventional MCF slurry have low ability against aqueous corrosion, leading to the performance deterioration and working life shortening of the conventional MCF slurry. This study proposed a new MCF slurry containing ZrO2-coated CIPs instead of the uncoated CIPs. Its performance in the polishing of oxygen-free copper was compared experimentally with that of the conventional one. The results showed that the work-surface finish polished with the new slurry was in the same level as that with the conventional one when the slurry was used soon after prepared, i.e., the settling time was 0 min; however, as the settling time increased the uncoated-CIPs got rusty, leading to a deterioration in the slurry performance. By contrast, no rust was observed on ZrO2-coated CIPs even the settling time reached several days, indicating the employment of ZrO2-coated CIPs prolonged the working-life of the MCF slurry greatly.

  11. Freeforming objects with low-binder slurry

    DOEpatents

    Cesarano, III, Joseph; Calvert, Paul D.

    2000-01-01

    In a rapid prototyping system, a part is formed by depositing a bead of slurry that has a sufficient high concentration of particles to be pseudoplastic and almost no organic binders. After deposition the bead is heated to drive off sufficient liquid to cause the bead to become dilatant.

  12. Effects of total solids concentrations of poultry, cattle, and piggery waste slurries on biogas yield

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Itodo, I.N.; Awulu, J.O.

    1999-12-01

    The effects of total solids concentrations of poultry, cattle and piggery waste slurries on biogas yield was investigated. Twelve laboratory-size anaerobic batch digesters with 25 L volume were constructed and used for the experiments. Three replicates of 5%, 10%, 15%, and 20% TS concentrations of poultry, cattle, and piggery waste slurries were anaerobically digested for a 30-day detention period and gas yield was measured by the method of water displacement. Temperature variation within the digesters was measured with a maximum and minimum thermometer. Anaerobic digestion of the slurries was undertaken in the mesophilic temperature range (20--40 C). The carbon:nitrogen ratiomore » of each of the slurries digested was determined. The carbon content was determined using the wackley-Black method, and nitrogen content was determined by the regular kjeldhal method. The pH was measured weekly during the period of digestion from a digital pH meter. Gas quality (% methane fraction) was also measured weekly from an analyzer. Coefficient of variation was computed to ascertain the status of the digestion process. Analysis of variance was used to determine the significant difference in gas yield at p < 0.05. Duncan's New Multiple Range Test at p < 0.05 was used to analyze the difference in gas yield among the various TS concentrations of the slurries investigated. The results indicate that biogas yield is of the order: 5% TS > 10% TS > 15% TS > 20% TS. This result shows that gas yield increases with decreasing TS concentration of the slurries. The ANOVA showed that the gas yield from the various TS % was significantly different (p < 0.05). DNMRT showed that there was significant difference in gas yield from the slurries and wastetypes investigated. Poultry waste slurries had the greatest gas yield (L CH4/kg TS) as the gas yield from the waste types was of the order: Poultry > Piggery > Cattle. The pH of the slurries was of the range 5.5 to 6.8 (weakly acidic). The C:N of

  13. Effect of plastic viscosity and yield value on spray characteristics of magnesium-slurry fuel

    NASA Technical Reports Server (NTRS)

    Prok, George M

    1957-01-01

    Magnesium slurries were sprayed onto a sheet of paper from an air-atomizing injector. Drop sizes and distributions were then determined from photomicrographs. Four different surface-active additives were used in preparing the slurries to give plastic viscosities between 0.22 and 0.51 poise and yield values between 150 and 810 dynes-cm(exp 2). It was found that there was no significant variation in the spray characteristics of these slurries when tested under the same conditions.

  14. Slurry Coating System Statement of Work and Specification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, S. M.

    2017-02-06

    The Slurry Coating System will be used to coat crystals with a polymer to support Lawrence Livermore National Security, LLC (LLNS) research and development at Lawrence Livermore National Laboratory (LLNL). The crystals will be suspended in water in a kettle. A polymer solution is added, temperature of the kettle is raised and aggregates of the crystals and polymer form. The slurry is heated under vacuum to drive off the solvents and slowly cooled while mixing to room temperature. The resulting aggregates are then filtered and dried. The performance characteristics and fielding constraints define a unique set of requirements for amore » new system. This document presents the specifications and requirements for the system.« less

  15. Nitrous oxide from aerated dairy manure slurries: Effects of aeration rates and oxic/anoxic phasing.

    PubMed

    Molodovskaya, Marina; Singurindy, Olga; Richards, Brian K; Steenhuis, Tammo S

    2008-12-01

    Small-scale laboratory research was conducted to compare the effects of different aeration rates and oxic/anoxic phasing on nitrous oxide (N(2)O) formation from dairy manure slurries. Manure slurry samples were incubated in triplicate for three-weeks under a range of continuous sweep gas flows (0.01-0.23L min(-1)kg(-1) slurry) with and without oxygen (air and dinitrogen gas). The net release of N(2)O-N was affected by both aeration rates and oxic/anoxic conditions, whereas ammonia volatilization depended mainly on gas flow rates. Maximum N(2)O-N losses after three-weeks incubation were 4.2% of total slurry N. Major N losses (up to 50% of total slurry N) were caused by ammonia volatilization that increased with increasing gas flow rates. The lowest nitrous oxide and ammonia production was observed from low flow phased oxic/anoxic treatment.

  16. Whole slurry saccharification and fermentation of maleic acid-pretreated rice straw for ethanol production.

    PubMed

    Jung, Young Hoon; Park, Hyun Min; Kim, Kyoung Heon

    2015-09-01

    We evaluated the feasibility of whole slurry (pretreated lignocellulose) saccharification and fermentation for producing ethanol from maleic acid-pretreated rice straw. The optimized conditions for pretreatment were to treat rice straw at a high temperature (190 °C) with 1 % (w/v) maleic acid for a short duration (3 min ramping to 190 °C and 3 min holding at 190 °C). Enzymatic digestibility (based on theoretical glucose yield) of cellulose in the pretreated rice straw was 91.5 %. Whole slurry saccharification and fermentation of pretreated rice straw resulted in 83.2 % final yield of ethanol based on the initial quantity of glucan in untreated rice straw. These findings indicate that maleic acid pretreatment results in a high yield of ethanol from fermentation of whole slurry even without conditioning or detoxification of the slurry. Additionally, the separation of solids and liquid is not required; therefore, the economics of cellulosic ethanol fuel production are significantly improved. We also demonstrated whole slurry saccharification and fermentation of pretreated lignocellulose, which has rarely been reported.

  17. The discrimination of sea ice types using SAR backscatter statistics

    NASA Technical Reports Server (NTRS)

    Shuchman, Robert A.; Wackerman, Christopher C.; Maffett, Andrew L.; Onstott, Robert G.; Sutherland, Laura L.

    1989-01-01

    X-band (HH) synthetic aperture radar (SAR) data of sea ice collected during the Marginal Ice Zone Experiment in March and April of 1987 was statistically analyzed with respect to discriminating open water, first-year ice, multiyear ice, and Odden. Odden are large expanses of nilas ice that rapidly form in the Greenland Sea and transform into pancake ice. A first-order statistical analysis indicated that mean versus variance can segment out open water and first-year ice, and skewness versus modified skewness can segment the Odden and multilayer categories. In additions to first-order statistics, a model has been generated for the distribution function of the SAR ice data. Segmentation of ice types was also attempted using textural measurements. In this case, the general co-occurency matrix was evaluated. The textural method did not generate better results than the first-order statistical approach.

  18. Survival studies of a temperate and lytic bacteriophage in bovine faeces and slurry.

    PubMed

    Nyambe, S; Burgess, C; Whyte, P; Bolton, D

    2016-10-01

    Cattle are the main reservoir of verocytotoxigenic Escherichia coli (VTEC), food-borne pathogens that express verocytotoxins (vtx) encoded by temperate bacteriophage. Bovine faeces and unturned manure heaps can support the survival of VTEC and may propagate and transmit VTEC. This study investigated the survival of a vtx2 bacteriophage, φ24B ::Kan, in bovine faeces and slurry. The survival of an anti-Escherichia coli O157:H7 lytic bacteriophage, e11/2, was examined in the same matrices, as a possible bio-control option for VTEC. Samples were inoculated with φ24B ::Kan and/or e11/2 bacteriophage at a concentration of 7-8 log10  PFU g(-1)  (faeces) or ml(-1) (slurry), stored at 4 and 14°C and examined every 2 days for 36 days. The ability of φ24B ::Kan to transduce E. coli cells was examined. Moreover, E. coli concentrations in the faeces and slurry were monitored throughout the experiment as were the pH and aw (faeces only). Both bacteriophages survived well in faeces and slurry. In addition, φ24B ::Kan was able to form lysogens. φ24B ::Kan and e11/2 phage can survive and remain infective in bovine faeces and slurry for at least 30 days under representative Irish temperatures. Bovine faeces and slurry may act as a reservoir for vtx bacteriophages. The survival of the anti-O157 phage suggests it may be a suitable bio-control option in these matrices. © 2016 The Society for Applied Microbiology.

  19. Facile Generation and Storage of Polycyclic Aromatic Hydrocarbon Ions in Astrophysical Ices

    NASA Technical Reports Server (NTRS)

    Gudipati, Murthy S.; Allamandola, Louis J.

    2003-01-01

    In situ ultraviolet-visible absorption and emission studies of vacuum ultraviolet (VUV) irradiated water-rich, cosmic ice analogs containing polycyclic aromatic hydrocarbons (PAHs) are described. W V irradiation of 12 K water ices containing the PAHs naphthalene (H2O/C10H8 = 200) and 4-methylpyrene (H2O/C17H12 > 500) readily converts the PAHs into their cation form (PAH(+)). Under these conditions, PAH photoionization is the predominant reaction. These ions are trapped and stored in the ices at temperatures between 10 and 50 K, a temperature domain common to ices throughout interstellar clouds and the solar system. Unlike the approx.15% ionization typical after W V irradiation of PAHs isolated in rare-gas matrices, in water ice, PAH photoionization and storage proceed efficiently and almost quantitatively with a greater than 70% ionization yield. As the temperature is increased from 50 to 150 K, the PAH ion bands slowly diminish as the PAH ions ultimately react to form more complex organic species involving the water host. The chemical, spectroscopic, and physical properties of these ion-rich ices can be important in icy objects such as molecular clouds, comets, and planets. Several astrophysical applications are presented.

  20. Pyroclast/snow interactions and thermally driven slurry formation. Part 2: Experiments and theoretical extension to polydisperse tephra

    USGS Publications Warehouse

    Walder, J.S.

    2000-01-01

    Erosion of snow by pyroclastic flows and surges presumably involves mechanical scour, but there may be thermally driven phenomena involved as well. To investigate this possibility, layers of hot (up to 400??C), uniformly sized, fine- to medium-grained sand were emplaced vertically onto finely shaved ice ('snow'); thus there was no relative shear motion between sand and snow and no purely mechanical scour. In some cases large vapor bubbles, commonly more than 10 mm across, rose through the sand layer, burst at the surface, and caused complete convective overturn of the sand, which then scoured and mixed with snow and transformed into a slurry. In other cases no bubbling occurred and the sand passively melted its way downward into the snow as a wetting front moved upward into the sand. A continuum of behaviors between these two cases was observed. Vigorous bubbling and convection were generally favored by high temperature, small grain size, and small layer thickness. A physically based theory of heat- and mass transfer at the pyroclast/snow interface, developed in Part 1 of this paper, does a good job of explaining the observations as a manifestation of unstable vapor-driven fluidization. The theory, when extrapolated to the behavior of actual, poorly sorted pyroclastic flow sediments, leads to the prediction that the observed 'thermal-scour' phenomenon should also occur for many real pyroclastic flows passing over snow. 'Thermal scour' is therefore likely to be involved in the generation of lahars.

  1. Slurry Erosive Wear Evaluation of HVOF-Spray Cr2O3 Coating on Some Turbine Steels

    NASA Astrophysics Data System (ADS)

    Goyal, Deepak Kumar; Singh, Harpreet; Kumar, Harmesh; Sahni, Varinder

    2012-09-01

    In this study, Cr2O3 coatings were deposited on CF8M and CA6NM turbine steels by high-velocity oxy-fuel (HVOF)-spray process and analyzed with regard to their performance under slurry erosion conditions. High Speed Erosion Test Rig was used for slurry erosion tests, and the effects of three parameters, namely, average particle size, speed (rpm), and slurry concentration on slurry erosion of these materials were investigated. SEM micrographs on the surface of samples, before and after slurry erosion tests, were taken to study the erosion mechanism. For the uncoated steels, CA6NM steel showed better erosion resistance in comparison with CF8M steel. The HVOF-sprayed Cr2O3-coated CF8M and CA6NM steels showed better slurry erosion resistance in comparison with their uncoated counterparts. It may be due to the higher hardness as a result of HVOF-sprayed Cr2O3 coating in comparison with the uncoated CF8M and CA6NM steels.

  2. Operationally Merged Satellite Visible/IR and Passive Microwave Sea Ice Information for Improved Sea Ice Forecasts and Ship Routing

    DTIC Science & Technology

    2015-09-30

    microwave sea ice information for improved sea ice forecasts and ship routing W. Meier NASA Goddard Space Flight Center, Cryospheric Sciences Laboratory...updating the initial ice concentration analysis fields along the ice edge. In the past year, NASA Goddard and NRL have generated a merged 4 km AMSR-E...collaborations of three groups: NASA Goddard Space Flight Center ( NASA /GSFC) in Greenbelt, MD, NRL/Oceanography Division located at Stennis Space Center (SSC

  3. Coal-water slurry spray characteristics of an electronically-controlled accumulator fuel injection system

    NASA Astrophysics Data System (ADS)

    Caton, J. A.; Payne, S. E.; Terracina, D. P.; Kihm, K. D.

    Experiments have been complete to characterize coal-water slurry sprays from a electronically-controlled accumulator fuel injection system of diesel engine. The sprays were injected into a pressurized chamber equipped with windows. High speed movies, fuel pressures and needle lifts were obtained as a function of time, orifice diameter, coal loading, gas density in the chamber, and accumulator fuel pressure. For the base conditions 50% (by mass) coal loading, 0.4 mm diameter nozzle hole, coal-water slurry pressure of 82 MPa (12,000 psi), and a chamber density of 25 kg/m(exp 3), the break-up time was 0.30 ms. An empirical correlation for both spray tip penetration and initial jet velocity was developed. For the conditions of this study, the spray tip penetration and initial jet velocity were 15% greater for coal-water slurry than for diesel fuel or water. Cone angles of the sprays were dependent on the operating conditions and fluid, as well as the time and locations of the measurement. The time-averaged cone angle for the base case conditions was 13.6 degrees. Results of this study and the correlation are specific to the tested coal-water slurry and are not general for other coal-water slurry fuels.

  4. Ice formation in subglacial Lake Vostok, Central Antarctica

    NASA Astrophysics Data System (ADS)

    Souchez, R.; Petit, J. R.; Tison, J.-L.; Jouzel, J.; Verbeke, V.

    2000-09-01

    The investigation of chemical and isotopic properties in the lake ice from the Vostok ice core gives clues to the mechanisms involved in ice formation within the lake. A small lake water salinity can be reasonably deduced from the chemical data. Possible implications for the water circulation of Lake Vostok are developed. The characteristics of the isotopic composition of the lake ice indicate that ice formation in Lake Vostok occurred by frazil ice crystal generation due to supercooling as a consequence of rising waters and a possible contrast in water salinity. Subsequent consolidation of the developed loose ice crystals results in the accretion of ice to the ceiling of the lake.

  5. Morphometric analysis of polygonal cracking patterns in desiccated starch slurries

    NASA Astrophysics Data System (ADS)

    Akiba, Yuri; Magome, Jun; Kobayashi, Hiroshi; Shima, Hiroyuki

    2017-08-01

    We investigate the geometry of two-dimensional polygonal cracking that forms on the air-exposed surface of dried starch slurries. Two different kinds of starches, made from potato and corn, exhibited distinguished crack evolution, and there were contrasting effects of slurry thickness on the probability distribution of the polygonal cell area. The experimental findings are believed to result from the difference in the shape and size of starch grains, which strongly influence the capillary transport of water and tensile stress field that drives the polygonal cracking.

  6. IceProd 2 Usage Experience

    NASA Astrophysics Data System (ADS)

    Delventhal, D.; Schultz, D.; Diaz Velez, J. C.

    2017-10-01

    IceProd is a data processing and management framework developed by the IceCube Neutrino Observatory for processing of Monte Carlo simulations, detector data, and data driven analysis. It runs as a separate layer on top of grid and batch systems. This is accomplished by a set of daemons which process job workflow, maintaining configuration and status information on the job before, during, and after processing. IceProd can also manage complex workflow DAGs across distributed computing grids in order to optimize usage of resources. IceProd has recently been rewritten to increase its scaling capabilities, handle user analysis workflows together with simulation production, and facilitate the integration with 3rd party scheduling tools. IceProd 2, the second generation of IceProd, has been running in production for several months now. We share our experience setting up the system and things we’ve learned along the way.

  7. Slurried solid media for simultaneous water purification and carbon dioxide removal from gas mixtures

    DOEpatents

    Aines, Roger D.; Bourcier, William L.; Viani, Brian

    2013-01-29

    A slurried solid media for simultaneous water purification and carbon dioxide removal from gas mixtures includes the steps of dissolving the gas mixture and carbon dioxide in water providing a gas, carbon dioxide, water mixture; adding a porous solid media to the gas, carbon dioxide, water mixture forming a slurry of gas, carbon dioxide, water, and porous solid media; heating the slurry of gas, carbon dioxide, water, and porous solid media producing steam; and cooling the steam to produce purified water and carbon dioxide.

  8. Influence of Pig Slurry on Microbial and Biochemical Characteristics of Soil in Albacete Region, SE Spain

    NASA Astrophysics Data System (ADS)

    Halil Yanardaǧ, Ibrahim

    2013-04-01

    Soil quality is very important in terms of agricultural sustainability, ecosystem and terrestrial carbon (C) cycle. In turn, soil microbial and biochemical characteristics are indicative of nutrient cycling and soil organic matter dynamics. We investigated the effects of the pig slurries (raw pig slurry (RPS) and treated pig slurry (TPS) from liquid and solid feeding diets) on microbial and biochemical characteristics of soil under barley cropping system. Application doses of slurries are identified with legal doses of Castilla La Mancha Region, which is 210 kg N ha-1 year-1. Microbial biomass C, soluble C, black C and three soil enzymes (β-Glucosidase, β-galactosidase and Arylesterase enzymes) are studied to determine effect slurry on soil biochemical characteristics, which are very important in terms of C cycle in soil. Black carbon content and β-Glucosidase enzyme activities are increased with all pig slurry applications from liquid and traditional feeding diet, as well as microbial biomass and organic carbon content and β-galactosidase enzyme activities are increased with slurry from liquid feeding diet doses. However, pig slurry application from liquid feeding diet doses have increased yield, quality, length and total biomass content of barley. Bioavailable metal contents are increased with all slurry application and with using high doses of slurry can be caused soil pollution. Pig slurries from liquid feeding diet had positive impacts on microbial and biochemical characteristics in terms of soil quality in comparison to the different feeding diets. PS addition to soil had a very significant stimulating effect on the enzyme activities, microbial biomass, soluble and black C compared with different kind of PS and control plots on Mediterranean soil in barley monoculture. This effect may originate from the organic C, N, P and S compounds added with PS. The highest enzyme activity and microbial biomass were observed on the soil samples from the RPS treatment

  9. 3D-printed conductive static mixers enable all-vanadium redox flow battery using slurry electrodes

    NASA Astrophysics Data System (ADS)

    Percin, Korcan; Rommerskirchen, Alexandra; Sengpiel, Robert; Gendel, Youri; Wessling, Matthias

    2018-03-01

    State-of-the-art all-vanadium redox flow batteries employ porous carbonaceous materials as electrodes. The battery cells possess non-scalable fixed electrodes inserted into a cell stack. In contrast, a conductive particle network dispersed in the electrolyte, known as slurry electrode, may be beneficial for a scalable redox flow battery. In this work, slurry electrodes are successfully introduced to an all-vanadium redox flow battery. Activated carbon and graphite powder particles are dispersed up to 20 wt% in the vanadium electrolyte and charge-discharge behavior is inspected via polarization studies. Graphite powder slurry is superior over activated carbon with a polarization behavior closer to the standard graphite felt electrodes. 3D-printed conductive static mixers introduced to the slurry channel improve the charge transfer via intensified slurry mixing and increased surface area. Consequently, a significant increase in the coulombic efficiency up to 95% and energy efficiency up to 65% is obtained. Our results show that slurry electrodes supported by conductive static mixers can be competitive to state-of-the-art electrodes yielding an additional degree of freedom in battery design. Research into carbon properties (particle size, internal surface area, pore size distribution) tailored to the electrolyte system and optimization of the mixer geometry may yield even better battery properties.

  10. Denitrification of aging biogas slurry from livestock farm by photosynthetic bacteria.

    PubMed

    Yang, Anqi; Zhang, Guangming; Yang, Guang; Wang, Hangyao; Meng, Fan; Wang, Hongchen; Peng, Meng

    2017-05-01

    Huge amount of aging biogas slurry is in urgent need to be treated properly. However, due to high NH 3 -N concentration and low C/N ratio, this aging biogas slurry is refractory for traditional methods. Its denitrification has become a big challenge. In this paper, photosynthetic bacteria (PSB) were employed to handle this problem. The results showed denitrification of aging biogas slurry by PSB treatment was promising. The highest removal efficiency of NH 3 -N reached 99.75%, much higher than all other treatments. The removal of NH 3 -N followed pseudo zero order reaction under dark-aerobic condition. The better inoculation rate for NH 3 -N removal was 30%; and aerobic condition was more beneficial for NH 3 -N removal than anaerobic condition because of different metabolic pathways. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. A model for spiral flows in basal ice and the formation of subglacial flutes based on a Reiner-Rivlin rheology for glacial ice

    NASA Astrophysics Data System (ADS)

    Schoof, Christian G.; Clarke, Garry K. C.

    2008-05-01

    Flutes are elongated sediment ridges formed at the base of glaciers and ice sheets. In this paper, we show that flutes can be the product of a corkscrew-like spiral flow in basal ice that removes sediment from troughs between flutes and deposits it at their crests, as first suggested by Shaw and Freschauf. In order to generate the type of basal ice flow required for this mechanism, the viscous rheology of ice must allow for the generation of deviatoric normal stresses transverse to the main flow direction. This type of behavior, which is commonly observed in real nonlinearly viscous and viscoelastic fluids, can be described by a Reiner-Rivlin rheology. Here, we develop a mathematical model that describes the role of these transverse stresses in generating spiral flows in basal ice and investigate how these flows lead to the amplification of initially small basal topography and the eventual formation of assemblies of evenly spaced subglacial flutes.

  12. Superheated fuel injection for combustion of liquid-solid slurries

    DOEpatents

    Robben, F.A.

    1984-10-19

    A method and device are claimed for obtaining, upon injection, flash evaporation of a liquid in a slurry fuel to aid in ignition and combustion. The device is particularly beneficial for use of coal-water slurry fuels in internal combustion engines such as diesel engines and gas turbines, and in external combustion devices such as boilers and furnaces. The slurry fuel is heated under pressure to near critical temperature in an injector accumulator, where the pressure is sufficiently high to prevent boiling. After injection into a combustion chamber, the water temperature will be well above boiling point at a reduced pressure in the combustion chamber, and flash boiling will preferentially take place at solid-liquid surfaces, resulting in the shattering of water droplets and the subsequent separation of the water from coal particles. This prevents the agglomeration of the coal particles during the subsequent ignition and combustion process, and reduces the energy required to evaporate the water and to heat the coal particles to ignition temperature. The overall effect will be to accelerate the ignition and combustion rates, and to reduce the size of the ash particles formed from the coal. 2 figs., 2 tabs.

  13. Superheated fuel injection for combustion of liquid-solid slurries

    DOEpatents

    Robben, Franklin A.

    1985-01-01

    A method and device for obtaining, upon injection, flash evaporation of a liquid in a slurry fuel to aid in ignition and combustion. The device is particularly beneficial for use of coal-water slurry fuels in internal combustion engines such as diesel engines and gas turbines, and in external combustion devices such as boilers and furnaces. The slurry fuel is heated under pressure to near critical temperature in an injector accumulator, where the pressure is sufficiently high to prevent boiling. After injection into a combustion chamber, the water temperature will be well above boiling point at a reduced pressure in the combustion chamber, and flash boiling will preferentially take place at solid-liquid surfaces, resulting in the shattering of water droplets and the subsequent separation of the water from coal particles. This prevents the agglomeration of the coal particles during the subsequent ignition and combustion process, and reduces the energy required to evaporate the water and to heat the coal particles to ignition temperature. The overall effect will be to accelerate the ignition and combustion rates, and to reduce the size of the ash particles formed from the coal.

  14. Interactions between soil texture and placement of dairy slurry application: II. Leaching of phosphorus forms.

    PubMed

    Glaesner, Nadia; Kjaergaard, Charlotte; Rubaek, Gitte H; Magid, Jakob

    2011-01-01

    Managing phosphorus (P) losses in soil leachate folllowing land application of manure is key to curbing eutrophication in many regions. We compared P leaching from columns of variably textured, intact soils (20 cm diam., 20 cm high) subjected to surface application or injection of dairy cattle (Bos taurus L.) manure slurry. Surface application of slurry increased P leaching losses relative to baseline losses, but losses declined with increasing active flow volume. After elution of one pore volume, leaching averaged 0.54 kg P ha(-1) from the loam, 0.38 kg P ha(-1) from the sandy loam, and 0.22 kg P ha(-1) from the loamy sand following surface application. Injection decreased leaching of all P forms compared with surface application by an average of 0.26 kg P ha(-1) in loam and 0.23 kg P ha(-1) in sandy loam, but only by 0.03 kg P ha(-1) in loamy sand. Lower leaching losses were attributed to physical retention of particulate P and dissolved organic P, caused by placing slurry away from active flow paths in the fine-textured soil columns, as well as to chemical retention of dissolved inorganic P, caused by better contact between slurry P and soil adsorption sites. Dissolved organic P was less retained in soil after slurry application than other P forms. On these soils with low to intermediate P status, slurry injection lowered P leaching losses from clay-rich soil, but not from the sandy soils, highlighting the importance of soil texture in manageing P losses following slurry application.

  15. An investigation on characterizing dense coal-water slurry with ultrasound: theoretical and experimental method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xue, M.H.; Su, M.X.; Dong, L.L.

    2010-07-01

    Particle size distribution and concentration in particulate two-phase flow are important parameters in a wide variety of industrial areas. For the purpose of online characterization in dense coal-water slurries, ultrasonic methods have many advantages such as avoiding dilution, the capability for being used in real time, and noninvasive testing, while light-based techniques are not capable of providing information because optical methods often require the slurry to be diluted. In this article, the modified Urick equation including temperature modification, which can be used to determine the concentration by means of the measurement of ultrasonic velocity in a coal-water slurry, is evaluatedmore » on the basis of theoretical analysis and experimental study. A combination of the coupled-phase model and the Bouguer-Lambert-Beer law is employed in this work, and the attenuation spectrum is measured within the frequency region from 3 to 12 MHz. Particle size distributions of the coal-water slurry at different volume fractions are obtained with the optimum regularization technique. Therefore, the ultrasonic technique presented in this work brings the possibility of using ultrasound for online measurements of dense slurries.« less

  16. Proteorhodopsin-bearing bacteria in Antarctic sea ice.

    PubMed

    Koh, Eileen Y; Atamna-Ismaeel, Nof; Martin, Andrew; Cowie, Rebecca O M; Beja, Oded; Davy, Simon K; Maas, Elizabeth W; Ryan, Ken G

    2010-09-01

    Proteorhodopsins (PRs) are widespread bacterial integral membrane proteins that function as light-driven proton pumps. Antarctic sea ice supports a complex community of autotrophic algae, heterotrophic bacteria, viruses, and protists that are an important food source for higher trophic levels in ice-covered regions of the Southern Ocean. Here, we present the first report of PR-bearing bacteria, both dormant and active, in Antarctic sea ice from a series of sites in the Ross Sea using gene-specific primers. Positive PR sequences were generated from genomic DNA at all depths in sea ice, and these sequences aligned with the classes Alphaproteobacteria, Gammaproteobacteria, and Flavobacteria. The sequences showed some similarity to previously reported PR sequences, although most of the sequences were generally distinct. Positive PR sequences were also observed from cDNA reverse transcribed from RNA isolated from sea ice samples. This finding indicates that these sequences were generated from metabolically active cells and suggests that the PR gene is functional within sea ice. Both blue-absorbing and green-absorbing forms of PRs were detected, and only a limited number of blue-absorbing forms were found and were in the midsection of the sea ice profile in this study. Questions still remain regarding the protein's ecological functions, and ultimately, field experiments will be needed to establish the ecological and functional role of PRs in the sea ice ecosystem.

  17. Stress and deformation characteristics of sea ice in a high resolution numerical sea ice model.

    NASA Astrophysics Data System (ADS)

    Heorton, Harry; Feltham, Daniel; Tsamados, Michel

    2017-04-01

    The drift and deformation of sea ice floating on the polar oceans is due to the applied wind and ocean currents. The deformations of sea ice over ocean basin length scales have observable patterns; cracks and leads in satellite images and within the velocity fields generated from floe tracking. In a climate sea ice model the deformation of sea ice over ocean basin length scales is modelled using a rheology that represents the relationship between stresses and deformation within the sea ice cover. Here we investigate the link between observable deformation characteristics and the underlying internal sea ice stresses and force balance using the Los Alamos numerical sea ice climate model. In order to mimic laboratory experiments on the deformation of small cubes of sea ice we have developed an idealised square domain that tests the model response at spatial resolutions of up to 500m. We use the Elastic Anisotropic Plastic and Elastic Viscous Plastic rheologies, comparing their stability over varying resolutions and time scales. Sea ice within the domain is forced by idealised winds in order to compare the confinement of wind stresses and internal sea ice stresses. We document the characteristic deformation patterns of convergent, divergent and rotating stress states.

  18. Apparatus and method for pumping hot, erosive slurry of coal solids in coal derived, water immiscible liquid

    DOEpatents

    Ackerman, Carl D.

    1983-03-29

    An apparatus for and method of pumping hot, erosive slurry of coal solids in a coal derived, water immiscible liquid to higher pressure involves the use of a motive fluid which is miscible with the liquid of the slurry. The apparatus includes a pump 12, a remote check valve 14 and a chamber 16 between and in fluid communication with the pump 12 and check valve 14 through conduits 18,20. Pump 12 exerts pressure on the motive fluid and thereby on the slurry through a concentration gradient of coal solids within chamber 16 to alternately discharge slurry under pressure from the outlet port of check valve 14 and draw slurry in through the inlet port of check valve 14.

  19. IceT users' guide and reference.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moreland, Kenneth D.

    2011-01-01

    The Image Composition Engine for Tiles (IceT) is a high-performance sort-last parallel rendering library. In addition to providing accelerated rendering for a standard display, IceT provides the unique ability to generate images for tiled displays. The overall resolution of the display may be several times larger than any viewport that may be rendered by a single machine. This document is an overview of the user interface to IceT.

  20. Interactions between soil texture and placement of dairy slurry application: I. Flow characteristics and leaching of nonreactive components.

    PubMed

    Glaesner, Nadia; Kjaergaard, Charlotte; Rubaek, Gitte H; Magid, Jakob

    2011-01-01

    Land application of manure can exacerbate nutrient and contaminant transfers to the aquatic environment. This study examined the effect of injecting a dairy cattle (Bostaurus L.) manure slurry on mobilization and leaching of dissolved, nonreactive slurry components across a range of agricultural soils. We compared leaching of slurry-applied bromide through intact soil columns (20 cm diam., 20 cm high) of differing textures following surface application or injection of slurry. The volumetric fraction of soil pores >30 microm ranged from 43% in a loamy sand to 28% in a sandy loam and 15% in a loam-textured soil. Smaller active flow volumes and higher proportions of preferential flow were observed with increasing soil clay content. Injection of slurry in the loam soil significantly enhanced diffusion of applied bromide into the large fraction of small pores compared with surface application. The resulting physical protection against leaching of bromide was reflected by 60.2% of the bromide tracer was recovered in the effluent after injection, compared with 80.6% recovery after surface application. No effect of slurry injection was observed in the loamy sand and sandy loam soils. Our findings point to soil texture as an important factor influencing leaching of dissolved, nonreactive slurry components in soils amended with manure slurry.

  1. Ice Particle Analysis of the Honeywell AL502 Engine Booster

    NASA Technical Reports Server (NTRS)

    Bidwell, Colin S.; Rigby, David L.

    2015-01-01

    A flow and ice particle trajectory analysis was performed for the booster of the Honeywell ALF502 engine. The analysis focused on two closely related conditions one of which produced an icing event and another which did not during testing of the ALF502 engine in the Propulsion Systems Lab (PSL) at NASA Glenn Research Center. The flow analysis was generated using the NASA Glenn GlennHT flow solver and the particle analysis was generated using the NASA Glenn LEWICE3D v3.63 ice accretion software. The inflow conditions for the two conditions were similar with the main differences being that the condition that produced the icing event was 6.8 K colder than the non-icing event case and the inflow ice water content (IWC) for the non-icing event case was 50% less than for the icing event case. The particle analysis, which considered sublimation, evaporation and phase change, was generated for a 5 micron ice particle with a sticky impact model and for a 24 micron median volume diameter (MVD), 7 bin ice particle distribution with a supercooled large droplet (SLD) splash model used to simulate ice particle breakup. The particle analysis did not consider the effect of the runback and re-impingement of water resulting from the heated spinner and anti-icing system. The results from the analysis showed that the amount of impingement for the components were similar for the same particle size and impact model for the icing and non-icing event conditions. This was attributed to the similar aerodynamic conditions in the booster for the two cases. The particle temperature and melt fraction were higher at the same location and particle size for the non-icing event than for the icing event case due to the higher incoming inflow temperature for the non-event case. The 5 micron ice particle case produced higher impact temperatures and higher melt fractions on the components downstream of the fan than the 24 micron MVD case because the average particle size generated by the particle

  2. Arctic landfast sea ice

    NASA Astrophysics Data System (ADS)

    Konig, Christof S.

    Landfast ice is sea ice which forms and remains fixed along a coast, where it is attached either to the shore, or held between shoals or grounded icebergs. Landfast ice fundamentally modifies the momentum exchange between atmosphere and ocean, as compared to pack ice. It thus affects the heat and freshwater exchange between air and ocean and impacts on the location of ocean upwelling and downwelling zones. Further, the landfast ice edge is essential for numerous Arctic mammals and Inupiat who depend on them for their subsistence. The current generation of sea ice models is not capable of reproducing certain aspects of landfast ice formation, maintenance, and disintegration even when the spatial resolution would be sufficient to resolve such features. In my work I develop a new ice model that permits the existence of landfast sea ice even in the presence of offshore winds, as is observed in mature. Based on viscous-plastic as well as elastic-viscous-plastic ice dynamics I add tensile strength to the ice rheology and re-derive the equations as well as numerical methods to solve them. Through numerical experiments on simplified domains, the effects of those changes are demonstrated. It is found that the modifications enable landfast ice modeling, as desired. The elastic-viscous-plastic rheology leads to initial velocity fluctuations within the landfast ice that weaken the ice sheet and break it up much faster than theoretically predicted. Solving the viscous-plastic rheology using an implicit numerical method avoids those waves and comes much closer to theoretical predictions. Improvements in landfast ice modeling can only verified in comparison to observed data. I have extracted landfast sea ice data of several decades from several sources to create a landfast sea ice climatology that can be used for that purpose. Statistical analysis of the data shows several factors that significantly influence landfast ice distribution: distance from the coastline, ocean depth, as

  3. Field device to measure viscosity, density, and other slurry properties in drilled shafts [summary].

    DOT National Transportation Integrated Search

    2016-08-01

    Proper performance of the mineral slurries used to stabilize drilled shaft excavations is : maintained by assuring that the density, viscosity, pH, and sand content of the slurry stay : within limits set by the Florida Department of Transportation (F...

  4. Influence of ice thickness and surface properties on light transmission through Arctic sea ice.

    PubMed

    Katlein, Christian; Arndt, Stefanie; Nicolaus, Marcel; Perovich, Donald K; Jakuba, Michael V; Suman, Stefano; Elliott, Stephen; Whitcomb, Louis L; McFarland, Christopher J; Gerdes, Rüdiger; Boetius, Antje; German, Christopher R

    2015-09-01

    The observed changes in physical properties of sea ice such as decreased thickness and increased melt pond cover severely impact the energy budget of Arctic sea ice. Increased light transmission leads to increased deposition of solar energy in the upper ocean and thus plays a crucial role for amount and timing of sea-ice-melt and under-ice primary production. Recent developments in underwater technology provide new opportunities to study light transmission below the largely inaccessible underside of sea ice. We measured spectral under-ice radiance and irradiance using the new Nereid Under-Ice (NUI) underwater robotic vehicle, during a cruise of the R/V Polarstern to 83°N 6°W in the Arctic Ocean in July 2014. NUI is a next generation hybrid remotely operated vehicle (H-ROV) designed for both remotely piloted and autonomous surveys underneath land-fast and moving sea ice. Here we present results from one of the first comprehensive scientific dives of NUI employing its interdisciplinary sensor suite. We combine under-ice optical measurements with three dimensional under-ice topography (multibeam sonar) and aerial images of the surface conditions. We investigate the influence of spatially varying ice-thickness and surface properties on the spatial variability of light transmittance during summer. Our results show that surface properties such as melt ponds dominate the spatial distribution of the under-ice light field on small scales (<1000 m 2 ), while sea ice-thickness is the most important predictor for light transmission on larger scales. In addition, we propose the use of an algorithm to obtain histograms of light transmission from distributions of sea ice thickness and surface albedo.

  5. Microbial oxidation of elemental selenium in soil slurries and bacterial cultures

    USGS Publications Warehouse

    Dowdle, P.R.; Oremland, R.S.

    1998-01-01

    The microbial oxidation of elemental selenium [Se(O)] was studied by employing 75Se(O) as a tracer. Live, oxic soil slurries demonstrated a linear production of mostly Se(IV), with the formation of smaller quantities of Se(VI). Production of both Se(IV) and Se(VI) was inhibited by autoclaving, formalin, antibiotics, azide, and 2,4-dinitrophenol, thereby indicating the involvement of microbes. Oxidation of Se(O) in slurries was enhanced by addition of acetate, glucose, or sulfide, which implied involvement of chemoheterotrophs as well as chemoautotrophic thiobacilli. Cultures of Thiobacillus ASN-1, Leptothrix MnB1, and a heterotrophic soil enrichment all oxidized Se(O) with Se(VI) observed as the major product rather than Se(IV). This indicated that microbial oxidation in soils is partly constrained by the adsorption of Se(IV) onto soil surfaces. Rate constants for unamended soil slurry Se(O) oxidation ranged from 0.0009 to 0.0117 day-1 which were 3-4 orders of magnitude lower than those reported for dissimilatory Se(VI) reduction in organic-rich, anoxic sediments.The microbial oxidation of elemental selenium [Se(0)] was studied by employing 75Se(0) as a tracer. Live, oxic soil slurries demonstrated a linear production of mostly Se(IV), with the formation of smaller quantities of Se(VI). Production of both Se(IV) and Se(VI) was inhibited by autoclaving, formalin, antibiotics, azide, and 2,4-dinitrophenol, thereby indicating the involvement of microbes. Oxidation of Se(O) in slurries was enhanced by addition of acetate, glucose, or sulfide, which implied involvement of chemoheterotrophs as well as chemoautotrophic thiobacilli. Cultures of Thiobacillus ASN-1, Leptothrix MnB1, and a heterotrophic soil enrichment all oxidized Se(O) with Se(VI) observed as the major product rather than Se(IV). This indicated that microbial oxidation in soils is partly constrained by the adsorption of Se(IV) onto soil surfaces. Rate constants for unamended soil slurry Se(O) oxidation

  6. On the Ice Nucleation Spectrum

    NASA Technical Reports Server (NTRS)

    Barahona, D.

    2012-01-01

    This work presents a novel formulation of the ice nucleation spectrum, i.e. the function relating the ice crystal concentration to cloud formation conditions and aerosol properties. The new formulation is physically-based and explicitly accounts for the dependency of the ice crystal concentration on temperature, supersaturation, cooling rate, and particle size, surface area and composition. This is achieved by introducing the concepts of ice nucleation coefficient (the number of ice germs present in a particle) and nucleation probability dispersion function (the distribution of ice nucleation coefficients within the aerosol population). The new formulation is used to generate ice nucleation parameterizations for the homogeneous freezing of cloud droplets and the heterogeneous deposition ice nucleation on dust and soot ice nuclei. For homogeneous freezing, it was found that by increasing the dispersion in the droplet volume distribution the fraction of supercooled droplets in the population increases. For heterogeneous ice nucleation the new formulation consistently describes singular and stochastic behavior within a single framework. Using a fundamentally stochastic approach, both cooling rate independence and constancy of the ice nucleation fraction over time, features typically associated with singular behavior, were reproduced. Analysis of the temporal dependency of the ice nucleation spectrum suggested that experimental methods that measure the ice nucleation fraction over few seconds would tend to underestimate the ice nuclei concentration. It is shown that inferring the aerosol heterogeneous ice nucleation properties from measurements of the onset supersaturation and temperature may carry significant error as the variability in ice nucleation properties within the aerosol population is not accounted for. This work provides a simple and rigorous ice nucleation framework where theoretical predictions, laboratory measurements and field campaign data can be

  7. [Culture medium based on biogas slurry and breeding of oil Chlorella].

    PubMed

    Zhao, Feng-Min; Mei, Shuai; Cao, You-Fu; Ding, Jin-Feng; Xu, Jia-Jie; Li, Shu-Jun

    2014-06-01

    The oil chlorella cultivation and biogas slurry treatment were combined. The biogas slurry provided water and nutrient for growing chlorella, at the same time, harmless treatment of biogas slurry was realized. This paper cultivated 4 species of oil chlorella in the mixed medium of biogas slurry and green algae medium (the volume ratios were 1 : 9, 1 : 3, 1 : 1 and 3 : 1, respectively), and compared their oil productivity to select the best oil chlorella species and the optimal culture medium. The results showed that, the combination of medium and chlorella species to reach the highest oil productivity was a volume ratio of 1 : 3 and the chlorella species BJ05, and the oil productivity of chlorella BJ05 was 9.20 mg x (L x d)(-1), higher than that in green algae medium [8.66 mg x (L x d)(-1)]. In mixed medium with a volume ratio of 1:3, the effect of adding different nutrients into the green algae medium on the oil productivity was examined, and the results showed that, sodium carbonate and citric acid had no negative effect on the oil productivity of chlorella BJ05. in the absence of sodium carbonate and citric acid, the oil productivity of chlorella BJ05 was 9.36 mg x (L x d)(-1), and the removal of COD (chemical oxygen demand), total nitrogen, total phosphorus and ammonia nitrogen rates were 59%, 75%, 61% and 100%, respectively. Deficiency in other nutrients had negative effect on the oil productivity. Therefore, the culture medium was further optimized to the mixed medium of biogas slurry and green algae medium with a volume ratio of 1 : 3 and without addition of sodium carbonate and citric acid.

  8. Innovative technology: Slurry-phase biodegradation. Fact sheet (Final)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1989-11-01

    The fact sheet provides technology description, site characteristics affecting treatment feasibility, technology considerations, and technology status for Slurry Phase Biodegradation (SPB). The sheet describes how SPB is potentially effective in treating various organic contaminants.

  9. Process for gasifying carbonaceous material from a recycled condensate slurry

    DOEpatents

    Forney, Albert J.; Haynes, William P.

    1981-01-01

    Coal or other carbonaceous material is gasified by reaction with steam and oxygen in a manner to minimize the problems of effluent water stream disposal. The condensate water from the product gas is recycled to slurry the coal feed and the amount of additional water or steam added for cooling or heating is minimized and preferably kept to a level of about that required to react with the carbonaceous material in the gasification reaction. The gasification is performed in a pressurized fluidized bed with the coal fed in a water slurry and preheated or vaporized by indirect heat exchange contact with product gas and recycled steam. The carbonaceous material is conveyed in a gas-solid mixture from bottom to top of the pressurized fluidized bed gasifier with the solids removed from the product gas and recycled steam in a supported moving bed filter of the resulting carbonaceous char. Steam is condensed from the product gas and the condensate recycled to form a slurry with the feed coal carbonaceous particles.

  10. Transformations of TNT and related aminotoluenes in groundwater aquifer slurries under different electron-accepting conditions

    USGS Publications Warehouse

    Krumholz, L.R.; Li, J.; Clarkson, W.W.; Wilber, G.G.; Suflita, J.M.

    1997-01-01

    The transport and fate of pollutants is often governed by both their tendency to sorb as well as their susceptibility to biodegradation. We have evaluated these parameters for 2,4,6-trinitrotoluene (TNT) and several biodegradation products. Slurries of aquifer sediment and groundwater depleted TNT at rates of 27, 7.7 and 5.9 μM day−1 under methanogenic, sulfate-reducing and nitrate-reducing conditions, respectively. Abiotic losses of TNT were determined in autoclaved controls. Abiotic TNT loss and subsequent transformation of the products was also observed. These transformations were especially important during the first step in the reduction of TNT. Subsequent abiotic reactions could account for all of the transformations observed in bottles which were initially nitrate-reducing. Other controls removed TNT reduction products at much slower rates than slurries containing live organisms. 2-Amino-4,6-dinitrotoluene was produced in all slurries but disappeared in methanogenic and in sulfate-reducing slurries within several weeks. This compound was converted to 2,4-diamino-6-nitrotoluene in all slurries with subsequent removal of the latter from methanogenic and sulfate-reducing slurries, while it persisted in autoclaved controls and in the nitrate-reducing slurries. Aquifer slurries incubated with either 2,4- or 2,6-diaminotoluene showed losses of these compounds relative to autoclaved controls under nitrate-reducing conditions but not under sulfate-reducing or methanogenic conditions. These latter compounds are important as reduced intermediates in the biodegradation of dinitrotoluenes and as industrial chemicals. In experiments to examine sorption, exposure to landfill sediment resulted in losses of approximately 15% of diaminotoluene isomers and 25% of aminodinitrotoluene isomers from initial solution concentrations within 24 h. Isotherms confirmed that the diaminotoluenes were least strongly sorbed and the amino-dinitrotoluenes most strongly sorbed to this

  11. Carbon dynamics in an almond orchard soil amended with raw and treated pig slurry

    NASA Astrophysics Data System (ADS)

    Domínguez, Sara G.; Zornoza, Raúl; Faz, Ángel

    2010-05-01

    In SE Spain, intensive farming is very common which supposes the generation of great amounts of pig slurries. These residues cause many storage problems due to their pollution capacity. A good management of them is necessary to avoid damages to the environment. The use of this effluent as fertilizer is a usual practice that in the correct dose is a good amend and important for sustainable development, but in excess can be a risk of polluting and damaging soil, water and crop conditions. Pig slurry is a source of many nutrients and specially rich in organic matter. The main objective of this study is to determine changes in soil organic carbon dynamics resulting from raw and treated slurry amendments applied in different doses. The experimental area is an almond orchard located in Cartagena (SE Spain). The climate of the area is semiarid Mediterranean with mean annual temperature of 18°C and mean annual rainfall of 275 mm. A total of 10 plots (12 m x 30 m) were designed, one of them being the control without fertilizer. Surface soil samples (0-25 cm) were collected in September 2009. Three different treatments were applied, raw slurry, the effluent obtained after solid-liquid separation and solid manure, all of them in three doses being the first one of 170 kg N/ha, (maximum permitted in nitrates directive 91/676/CEE), and the others two and three times the first one. Soil biochemical parameters are rapid indicators of changes in soil quality. According to this, total organic carbon, soil microbial biomass carbon, soluble carbon, and β-glucosidase, β-galactosidase and arylesterase activities were measured in order to assess some soil biochemical conditions and carbon dynamics in terms of the different treatments. As we expected, the use of these organic fertilizers rich in organic matter, had an effect on soil carbon and soil microbial activity resulting in an increase in most of the parameters; total organic carbon and β-galactosidase activity showed the

  12. System for pressure letdown of abrasive slurries

    DOEpatents

    Kasper, Stanley

    1991-01-01

    A system and method for releasing erosive slurries from containment at high pressure without subjecting valves to highly erosive slurry flow. The system includes a pressure letdown tank disposed below the high-pressure tank, the two tanks being connected by a valved line communicating the gas phases and a line having a valve and choke for a transfer of liquid into the letdown tank. The letdown tank has a valved gas vent and a valved outlet line for release of liquid. In operation, the gas transfer line is opened to equalize pressure between tanks so that a low level of liquid flow occurs. The letdown tank is then vented, creating a high-pressure differential between the tanks. At this point, flow between tanks is controlled by the choke. High-velocity, erosive flow through a high-pressure outlet valve is prevented by equalizing the start up pressure and thereafter limiting flow with the choke.

  13. Separation of catalyst from Fischer-Tropsch slurry

    DOEpatents

    White, Curt M.; Quiring, Michael S.; Jensen, Karen L.; Hickey, Richard F.; Gillham, Larry D.

    1998-10-27

    In a catalytic process for converting synthesis gas including hydrogen and carbon monoxide to hydrocarbons and oxygenates by a slurry Fischer-Tropsch synthesis, the wax product along with dispersed catalyst is removed from the slurry and purified by removing substantially all of the catalyst prior to upgrading the wax and returning a portion to the Fischer-Tropsch reaction. Separation of the catalyst particles from the wax product is accomplished by dense gas and/or liquid extraction in which the organic compounds in the wax are dissolved and carried away from the insoluble inorganic catalyst particles that are primarily inorganic in nature. The purified catalyst free wax product can be subsequently upgraded by various methods such as hydrogenation, isomerization, hydrocracking, conversion to gasoline and other products over ZSM-5 aluminosilicate zeolite, etc. The catalyst particles are returned to the Fischer-Tropsch Reactor by slurring them with a wax fraction of appropriate molecular weight, boiling point and viscosity to avoid reactor gelation.

  14. Separation of catalyst from Fischer-Tropsch slurry

    DOEpatents

    White, C.M.; Quiring, M.S.; Jensen, K.L.; Hickey, R.F.; Gillham, L.D.

    1998-10-27

    In a catalytic process for converting synthesis gas including hydrogen and carbon monoxide to hydrocarbons and oxygenates by a slurry Fischer-Tropsch synthesis, the wax product along with dispersed catalyst is removed from the slurry and purified by removing substantially all of the catalyst prior to upgrading the wax and returning a portion to the Fischer-Tropsch reaction. Separation of the catalyst particles from the wax product is accomplished by dense gas and/or liquid extraction in which the organic compounds in the wax are dissolved and carried away from the insoluble inorganic catalyst particles that are primarily inorganic in nature. The purified catalyst-free wax product can be subsequently upgraded by various methods such as hydrogenation, isomerization, hydrocracking, conversion to gasoline and other products over ZSM-5 aluminosilicate zeolite, etc. The catalyst particles are returned to the Fischer-Tropsch Reactor by mixing them with a wax fraction of appropriate molecular weight, boiling point and viscosity to avoid reactor gelation. 2 figs.

  15. Ice Shelf-Ocean Interactions Near Ice Rises and Ice Rumples

    NASA Astrophysics Data System (ADS)

    Lange, M. A.; Rückamp, M.; Kleiner, T.

    2013-12-01

    The stability of ice shelves depends on the existence of embayments and is largely influenced by ice rises and ice rumples, which act as 'pinning-points' for ice shelf movement. Of additional critical importance are interactions between ice shelves and the water masses underlying them in ice shelf cavities, particularly melting and refreezing processes. The present study aims to elucidate the role of ice rises and ice rumples in the context of climate change impacts on Antarctic ice shelves. However, due to their smaller spatial extent, ice rumples react more sensitively to climate change than ice rises. Different forcings are at work and need to be considered separately as well as synergistically. In order to address these issues, we have decided to deal with the following three issues explicitly: oceanographic-, cryospheric and general topics. In so doing, we paid particular attention to possible interrelationships and feedbacks in a coupled ice-shelf-ocean system. With regard to oceanographic issues, we have applied the ocean circulation model ROMBAX to ocean water masses adjacent to and underneath a number of idealized ice shelf configurations: wide and narrow as well as laterally restrained and unrestrained ice shelves. Simulations were performed with and without small ice rises located close to the calving front. For larger configurations, the impact of the ice rises on melt rates at the ice shelf base is negligible, while for smaller configurations net melting rates at the ice-shelf base differ by a factor of up to eight depending on whether ice rises are considered or not. We employed the thermo-coupled ice flow model TIM-FD3 to simulate the effects of several ice rises and one ice rumple on the dynamics of ice shelf flow. We considered the complete un-grounding of the ice shelf in order to investigate the effect of pinning points of different characteristics (interior or near calving front, small and medium sized) on the resulting flow and stress fields

  16. Comparison of Aircraft Icing Growth Assessment Software

    NASA Technical Reports Server (NTRS)

    Wright, William; Potapczuk, Mark G.; Levinson, Laurie H.

    2011-01-01

    A research project is underway to produce computer software that can accurately predict ice growth under any meteorological conditions for any aircraft surface. An extensive comparison of the results in a quantifiable manner against the database of ice shapes that have been generated in the NASA Glenn Icing Research Tunnel (IRT) has been performed, including additional data taken to extend the database in the Super-cooled Large Drop (SLD) regime. The project shows the differences in ice shape between LEWICE 3.2.2, GlennICE, and experimental data. The project addresses the validation of the software against a recent set of ice-shape data in the SLD regime. This validation effort mirrors a similar effort undertaken for previous validations of LEWICE. Those reports quantified the ice accretion prediction capabilities of the LEWICE software. Several ice geometry features were proposed for comparing ice shapes in a quantitative manner. The resulting analysis showed that LEWICE compared well to the available experimental data.

  17. Rapid Analysis of Copper Ore in Pre-Smelter Head Flow Slurry by Portable X-ray Fluorescence.

    PubMed

    Burnett, Brandon J; Lawrence, Neil J; Abourahma, Jehad N; Walker, Edward B

    2016-05-01

    Copper laden ore is often concentrated using flotation. Before the head flow slurry can be smelted, it is important to know the concentration of copper and contaminants. The concentration of copper and other elements fluctuate significantly in the head flow, often requiring modification of the concentrations in the slurry prior to smelting. A rapid, real-time analytical method is needed to support on-site optimization of the smelter feedstock. A portable, handheld X-ray fluorescence spectrometer was utilized to determine the copper concentration in a head flow suspension at the slurry origin. The method requires only seconds and is reliable for copper concentrations of 2.0-25%, typically encountered in such slurries. © The Author(s) 2016.

  18. Improving rheology and enzymatic hydrolysis of high-solid corncob slurries by adding lignosulfonate and long-chain fatty alcohols.

    PubMed

    Lou, Hongming; Wu, Shun; Li, Xiuli; Lan, Tianqing; Yang, Dongjie; Pang, Yuxia; Qiu, Xueqing; Li, Xuehui; Huang, Jinhao

    2014-08-20

    The effects of lignosulfonate (SXSL) and long-chain fatty alcohols (LFAs) on the rheology and enzymatic hydrolysis of high-solid corncob slurries were investigated. The application of 2.5% (w/w) SXSL increased the substrate enzymatic digestibility (SED) of high-solid corncob slurries at 72 h from 31.7 to 54.0%, but meanwhile it increased the slurry's yield stress and complex viscosity to make the slurry difficult to stir and pump. The smallest molecular weight (MW) SXSL fraction had the strongest enhancement on SED. The SXSL fraction with large MW had a negative effect on rheology. n-Octanol (C8) and n-decanol (C10) improved the rheological properties of high-solid slurry and are strong enough to counteract the negative effect of SXSL. Furthermore, C8 and C10 clearly enhanced the enzymatic hydrolysis of high-solid corncob slurries with and without SXSL. A mechanism was proposed to explain the observed negative effect of SXSL and the positive effect of LFAs on the rheological properties.

  19. Zeolite Combined with Alum and Polyaluminum Chloride Mixed with Agricultural Slurries Reduces Carbon Losses in Runoff from Grassed Soil Boxes.

    PubMed

    Murnane, J G; Brennan, R B; Fenton, O; Healy, M G

    2016-11-01

    Carbon (C) losses from agricultural soils to surface waters can migrate through water treatment plants and result in the formation of disinfection by-products, which are potentially harmful to human health. This study aimed to quantify total organic carbon (TOC) and total inorganic C losses in runoff after application of dairy slurry, pig slurry, or milk house wash water (MWW) to land and to mitigate these losses through coamendment of the slurries with zeolite (2.36-3.35 mm clinoptilolite) and liquid polyaluminum chloride (PAC) (10% AlO) for dairy and pig slurries or liquid aluminum sulfate (alum) (8% AlO) for MWW. Four treatments under repeated 30-min simulated rainfall events (9.6 mm h) were examined in a laboratory study using grassed soil runoff boxes (0.225 m wide, 1 m long; 10% slope): control soil, unamended slurries, PAC-amended dairy and pig slurries (13.3 and 11.7 kg t, respectively), alum-amended MWW (3.2 kg t), combined zeolite and PAC-amended dairy (160 and 13.3 kg t zeolite and PAC, respectively) and pig slurries (158 and 11.7 kg t zeolite and PAC, respectively), and combined zeolite and alum-amended MWW (72 and 3.2 kg t zeolite and alum, respectively). The unamended and amended slurries were applied at net rates of 31, 34, and 50 t ha for pig and dairy slurries and MWW, respectively. Significant reductions of TOC in runoff compared with unamended slurries were measured for PAC-amended dairy and pig slurries (52 and 56%, respectively) but not for alum-amended MWW. Dual zeolite and alum-amended MWW significantly reduced TOC in runoff compared with alum amendment only. We conclude that use of PAC-amended dairy and pig slurries and dual zeolite and alum-amended MWW, although effective, may not be economically viable to reduce TOC losses from organic slurries given the relatively low amounts of TOC measured in runoff from unamended slurries compared with the amounts applied. Copyright © by the American Society of Agronomy, Crop Science Society of

  20. Structure of ice crystallized from supercooled water.

    PubMed

    Malkin, Tamsin L; Murray, Benjamin J; Brukhno, Andrey V; Anwar, Jamshed; Salzmann, Christoph G

    2012-01-24

    The freezing of water to ice is fundamentally important to fields as diverse as cloud formation to cryopreservation. At ambient conditions, ice is considered to exist in two crystalline forms: stable hexagonal ice and metastable cubic ice. Using X-ray diffraction data and Monte Carlo simulations, we show that ice that crystallizes homogeneously from supercooled water is neither of these phases. The resulting ice is disordered in one dimension and therefore possesses neither cubic nor hexagonal symmetry and is instead composed of randomly stacked layers of cubic and hexagonal sequences. We refer to this ice as stacking-disordered ice I. Stacking disorder and stacking faults have been reported earlier for metastable ice I, but only for ice crystallizing in mesopores and in samples recrystallized from high-pressure ice phases rather than in water droplets. Review of the literature reveals that almost all ice that has been identified as cubic ice in previous diffraction studies and generated in a variety of ways was most likely stacking-disordered ice I with varying degrees of stacking disorder. These findings highlight the need to reevaluate the physical and thermodynamic properties of this metastable ice as a function of the nature and extent of stacking disorder using well-characterized samples.

  1. Structure of ice crystallized from supercooled water

    PubMed Central

    Malkin, Tamsin L.; Murray, Benjamin J.; Brukhno, Andrey V.; Anwar, Jamshed; Salzmann, Christoph G.

    2012-01-01

    The freezing of water to ice is fundamentally important to fields as diverse as cloud formation to cryopreservation. At ambient conditions, ice is considered to exist in two crystalline forms: stable hexagonal ice and metastable cubic ice. Using X-ray diffraction data and Monte Carlo simulations, we show that ice that crystallizes homogeneously from supercooled water is neither of these phases. The resulting ice is disordered in one dimension and therefore possesses neither cubic nor hexagonal symmetry and is instead composed of randomly stacked layers of cubic and hexagonal sequences. We refer to this ice as stacking-disordered ice I. Stacking disorder and stacking faults have been reported earlier for metastable ice I, but only for ice crystallizing in mesopores and in samples recrystallized from high-pressure ice phases rather than in water droplets. Review of the literature reveals that almost all ice that has been identified as cubic ice in previous diffraction studies and generated in a variety of ways was most likely stacking-disordered ice I with varying degrees of stacking disorder. These findings highlight the need to reevaluate the physical and thermodynamic properties of this metastable ice as a function of the nature and extent of stacking disorder using well-characterized samples. PMID:22232652

  2. Modelling wave-induced sea ice break-up in the marginal ice zone

    NASA Astrophysics Data System (ADS)

    Montiel, F.; Squire, V. A.

    2017-10-01

    A model of ice floe break-up under ocean wave forcing in the marginal ice zone (MIZ) is proposed to investigate how floe size distribution (FSD) evolves under repeated wave break-up events. A three-dimensional linear model of ocean wave scattering by a finite array of compliant circular ice floes is coupled to a flexural failure model, which breaks a floe into two floes provided the two-dimensional stress field satisfies a break-up criterion. A closed-feedback loop algorithm is devised, which (i) solves the wave-scattering problem for a given FSD under time-harmonic plane wave forcing, (ii) computes the stress field in all the floes, (iii) fractures the floes satisfying the break-up criterion, and (iv) generates an updated FSD, initializing the geometry for the next iteration of the loop. The FSD after 50 break-up events is unimodal and near normal, or bimodal, suggesting waves alone do not govern the power law observed in some field studies. Multiple scattering is found to enhance break-up for long waves and thin ice, but to reduce break-up for short waves and thick ice. A break-up front marches forward in the latter regime, as wave-induced fracture weakens the ice cover, allowing waves to travel deeper into the MIZ.

  3. Ice Streams as the Critical Link Between the Interior Ice Reservoir of the Antarctic Ice Sheet and the Global Climate System - a WISSARD Perspective (Invited)

    NASA Astrophysics Data System (ADS)

    Tulaczyk, S. M.; Beem, L.; Walter, J. I.; Hossainzadeh, S.; Mankoff, K. D.

    2010-12-01

    Fast flowing ice streams represent crucial features of the Antarctic ice sheet because they provide discharge ‘valves’ for the interior ice reservoir and because their grounding lines are exposed to ocean thermal forcing. Even with no/little topographic control ice flow near the perimeter of a polar ice sheet self-organizes into discrete, fast-flowing ice streams. Within these features basal melting (i.e. lubrication for ice sliding) is sustained through elevated basal shear heating in a region of thin ice that would otherwise be characterized by basal freezing and slow ice motion. Because faster basal ice motion is typically associated with faster subglacial erosion, ice streams tend to localize themselves over time by carving troughs into underlying rocks and sediments. Debris generated by this erosional activity is carried to the continental shelf and/or continental slope where it may be deposited at very high rates, rivaling these associated with deposition by some of the largest rivers on Earth. In terms of their hydrologic and geological functions, Antarctic ice streams play pretty much the same role as rivers do on non-glaciated continents. However, understanding of their dynamics is still quite rudimentary, largely because of the relative inaccessibility of the key basal and marine boundaries of ice streams where pertinent measurements need to be made. The present elevated interest in predicting future contribution of Antarctica to global sea level changes is driving ambitious research programs aimed at scientific exploration of these poorly investigated environments that will play a key role in defining the response of the ice sheet to near future climate changes. We will review one of these programs, the Whillans Ice Stream Subglacial Access Research Drilling (WISSARD) with particular focus on its planned contributions to understanding of ice stream dynamics.

  4. Research on and Application to BH-HTC High Density Cementing Slurry System on Tarim Region

    NASA Astrophysics Data System (ADS)

    Yuanhong, Song; Fei, Gao; Jianyong, He; Qixiang, Yang; Jiang, Yang; Xia, Liu

    2017-08-01

    A large section of salt bed is contented in Tarim region Piedmont which constructs complex geological conditions. For high-pressure gas well cementing difficulties from the region, high density cement slurry system has been researched through reasonable level of particle size distribution and second weighting up. The results of laboratory tests and field applications show that the high density cementing slurry system is available to Tarim region cementing because this system has a well performance in slurry stability, gas breakthrough control, fluidity, water loss, and strength.

  5. Reductive dechlorination of chlorobenzenes in surfactant-amended sediment slurries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Hoof, P.L.; Jafvert, C.T.

    1996-11-01

    Microbial anaerobic dechlorination of hexachlorobenzene (HCB) was examined in sediment slurries amended with two classes of nonionic surfactant, polyoxyethylene (POE) sorbitan fatty acid esters (Tweens) and POE alcohols (Brijs). The rationale for surfactant addition was to increase the bioavailability of highly sorbed organic pollutants to degrading microorganisms by enhancing their solubility. The solubility of HCB was initially enhanced via micellar partitioning; however, primary degradation of most surfactants occurred within 10 d. Dechlorination activity was significantly reduced at POE alcohol concentrations above the critical micelle concentration (cmc), with or without the occurrence of surfactant degradation. Tween 80 decreased HCB dechlorination atmore » concentrations significantly above the cmc. At concentrations closer to the cmc, Tween 80 increased dechlorination rate constants four- to fivefold in acclimated slurries. Additions of Tween 80 at or below the cmc stimulated dechlorination activity in unacclimated slurries that exhibited very little activity in unamended controls. An average of 89% of HCB was dechlorinated after 90 d, compared to 20% in unamended sediments. No effect was observed for POE alcohols at these sub-cmc levels. The lack of a stimulated response for the POE alcohols suggests that Tween 80 may not be acting simply as a source of carbon or energy.« less

  6. Decomposition Studies of Tetraphenylborate Slurries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, C.L.

    1997-05-06

    This report details the decomposition of aqueous (K,Na) slurries in concentrated salt solutions using a more complete candidate catalyst recipe, extended testing temperatures (40-70 degrees C) and test durations of approximately 1500 hours (9 weeks). This study uses recently developed High-Pressure Liquid Chromatography (HPLC) methods for analysis of tetraphenylborate (TPB-), triphenylborane (3PB) and diphenylborinic acid (2PB). All of the present tests involve non-radioactive simulants and do not include investigations of radiolysis effects.

  7. File level metadata generation and use for diverse airborne and in situ data: Experiences with Operation IceBridge and SnowEx

    NASA Astrophysics Data System (ADS)

    Tanner, S.; Schwab, M.; Beam, K.; Skaug, M.

    2017-12-01

    Operation IceBridge has been flying campaigns in the Arctic and Antarctic for nearly 10 years and will soon be a decadal mission. During that time, the generation and use of file level metadata has evolved from nearly non-existent to robust spatio-temporal support. This evolution has been difficult at times, but the results speak for themselves in the form of production tools for search, discovery, access and analysis. The lessons learned from this experience are now being incorporated into SnowEx, a new mission to measure snow cover using airborne and ground-based measurements. This presentation will focus on techniques for generating metadata for such a diverse set of measurements as well as the resulting tools that utilize this information. This includes the development and deployment of MetGen, a semi-automated metadata generation capability that relies on collaboration between data producers and data archivers, the newly deployed IceBridge data portal which incorporates data browse capabilities and limited in-line analysis, and programmatic access to metadata and data for incorporation into larger automated workflows.

  8. Simulation Model Development for Icing Effects Flight Training

    NASA Technical Reports Server (NTRS)

    Barnhart, Billy P.; Dickes, Edward G.; Gingras, David R.; Ratvasky, Thomas P.

    2003-01-01

    A high-fidelity simulation model for icing effects flight training was developed from wind tunnel data for the DeHavilland DHC-6 Twin Otter aircraft. First, a flight model of the un-iced airplane was developed and then modifications were generated to model the icing conditions. The models were validated against data records from the NASA Twin Otter Icing Research flight test program with only minimal refinements being required. The goals of this program were to demonstrate the effectiveness of such a simulator for training pilots to recognize and recover from icing situations and to establish a process for modeling icing effects to be used for future training devices.

  9. Simulation of the Greenland Ice Sheet over two glacial-interglacial cycles: investigating a sub-ice-shelf melt parameterization and relative sea level forcing in an ice-sheet-ice-shelf model

    NASA Astrophysics Data System (ADS)

    Bradley, Sarah L.; Reerink, Thomas J.; van de Wal, Roderik S. W.; Helsen, Michiel M.

    2018-05-01

    Observational evidence, including offshore moraines and sediment cores, confirm that at the Last Glacial Maximum (LGM) the Greenland ice sheet (GrIS) expanded to a significantly larger spatial extent than seen at present, grounding into Baffin Bay and out onto the continental shelf break. Given this larger spatial extent and its close proximity to the neighbouring Laurentide Ice Sheet (LIS) and Innuitian Ice Sheet (IIS), it is likely these ice sheets will have had a strong non-local influence on the spatial and temporal behaviour of the GrIS. Most previous paleo ice-sheet modelling simulations recreated an ice sheet that either did not extend out onto the continental shelf or utilized a simplified marine ice parameterization which did not fully include the effect of ice shelves or neglected the sensitivity of the GrIS to this non-local bedrock signal from the surrounding ice sheets. In this paper, we investigated the evolution of the GrIS over the two most recent glacial-interglacial cycles (240 ka BP to the present day) using the ice-sheet-ice-shelf model IMAU-ICE. We investigated the solid earth influence of the LIS and IIS via an offline relative sea level (RSL) forcing generated by a glacial isostatic adjustment (GIA) model. The RSL forcing governed the spatial and temporal pattern of sub-ice-shelf melting via changes in the water depth below the ice shelves. In the ensemble of simulations, at the glacial maximums, the GrIS coalesced with the IIS to the north and expanded to the continental shelf break to the southwest but remained too restricted to the northeast. In terms of the global mean sea level contribution, at the Last Interglacial (LIG) and LGM the ice sheet added 1.46 and -2.59 m, respectively. This LGM contribution by the GrIS is considerably higher (˜ 1.26 m) than most previous studies whereas the contribution to the LIG highstand is lower (˜ 0.7 m). The spatial and temporal behaviour of the northern margin was highly variable in all simulations

  10. Study on the antiseepage mechanism of the PBFC slurry for landfill site

    NASA Astrophysics Data System (ADS)

    Dai, Guozhong; Shi, Weicheng; Jiang, Xiaoshu; Shi, Guicai; Zhang, Yaxing

    2017-07-01

    In order to develop a kind of slurry with low permeability which has some adsorption and retardation to the pollutants in leachate to be used in antiseepage engineering of leachate for landfill site, experiments based on orthogonal method were performed. The optimal PBFC slurry was selected: bentonite 18-26%, cement 16-24%, fly ash 18-20%, TOJ800-10 water reducing agent 0.01-0.03%, polyvinyl alcohol 0.2-0.8%, sodium carbonate 0.8-1.5% and water 680-780/1000 mL seriflus. The material has good groutability and a concretion stone ratio which is greater than 99.6%. The coefficient of permeability of 28-day concretion body is 0.53 × 10-8-1.86 × 10-8 cm/s and the compressive strength is 0.64-1.04 MPa. The slurry has good adsorption and retardation properties. The block rate of NH4-N and phosphorus reached 98.28%, and the block rate of CODCr and BOD5 reached 85.67%. The block rate of Hg, Pb and other heavy metal ions reached 99.8%. The PBFC slurry improved the retardation capability of the pollutants of the leachate at the landfill site by its infiltration sedimentation and adsorption fixation.

  11. Nutrient Status and Contamination Risks from Digested Pig Slurry Applied on a Vegetable Crops Field

    PubMed Central

    Zhang, Shaohui; Hua, Yumei; Deng, Liangwei

    2016-01-01

    The effects of applied digested pig slurry on a vegetable crops field were studied. The study included a 3-year investigation on nutrient characteristics, heavy metals contamination and hygienic risks of a vegetable crops field in Wuhan, China. The results showed that, after anaerobic digestion, abundant N, P and K remained in the digested pig slurry while fecal coliforms, ascaris eggs, schistosoma eggs and hookworm eggs were highly reduced. High Cr, Zn and Cu contents in the digested pig slurry were found in spring. Digested pig slurry application to the vegetable crops field led to improved soil fertility. Plant-available P in the fertilized soils increased due to considerable increase in total P content and decrease in low-availability P fraction. The As content in the fertilized soils increased slightly but significantly (p = 0.003) compared with control. The Hg, Zn, Cr, Cd, Pb, and Cu contents in the fertilized soils did not exceed the maximum permissible contents for vegetable crops soils in China. However, high Zn accumulation should be of concern due to repeated applications of digested pig slurry. No fecal coliforms, ascaris eggs, schistosoma eggs or hookworm eggs were detected in the fertilized soils. PMID:27058548

  12. Neutrino Astronomy with IceCube

    NASA Astrophysics Data System (ADS)

    Meagher, Kevin J.

    The IceCube Neutrino Observatory is a cubic kilometer neutrino telescope located at the Geographic South Pole. Cherenkov radiation emitted by charged secondary particles from neutrino interactions is observed by IceCube using an array of 5160 photomultiplier tubes embedded between a depth of 1.5 km to 2.5 km in the Antarctic glacial ice. The detection of astrophysical neutrinos is a primary goal of IceCube and has now been realized with the discovery of a diffuse, high-energy flux consisting of neutrino events from tens of TeV up to several PeV. Many analyses have been performed to identify the source of these neutrinos: correlations with active galactic nuclei, gamma-ray bursts, and the galactic plane. IceCube also conducts multi-messenger campaigns to alert other observatories of possible neutrino transients in real-time. However, the source of these neutrinos remains elusive as no corresponding electromagnetic counterparts have been identified. This proceeding will give an overview of the detection principles of IceCube, the properties of the observed astrophysical neutrinos, the search for corresponding sources (including real-time searches), and plans for a next-generation neutrino detector, IceCube-Gen2.

  13. Ice-Release and Erosion Resistant Materials for Wind Turbines

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Brinn, Cameron; Cook, Alex; Pascual-Marquez, Fernando

    2017-11-01

    Icing conditions may cause wind turbine generators to partially lose productivity or to be completely shut down to avoid structural damage. At present, commercially available technologies to mitigate this problem consist of expensive, energy hungry heating elements, which costs roughly 70,000 euro per medium size turbine. Conventional passive ice protection coating systems heavily rely on delicate surface structures and expensive materials to create water repellent superhydrophobic / low surface energy surfaces, which have been proven to be ineffective against ice accumulation. The lack of performance among conventional ice protection materials stems from a flaw in the approach to the problem: failure to recognize that water in its liquid form (WATER) and water in its solid form (ICE) are two different things. Something that works for WATER does not automatically work for ICE. Another reason is that many superhydrophobic materials are often reliant upon often fragile micro-structured surfaces to achieve their intended effects. This paper discusses a fundamentally different approach to the creation of a robust, low cost, durable, and multifunctional materials for ice release and erosion resistance. This National Science Foundation sponsored ice-release coating technology holds promise for protecting wind turbine blades and towers, thus potentially increasing reliability for power generation under icing conditions. Because of the vulnerability of wind turbine blades to ice buildup and erosion damages, wind farm facilities stand to reap considerable benefits.

  14. The use of additive ceramic hollow spheres on cement slurry to prevent lost circulation in formation `X' having low pressure fracture

    NASA Astrophysics Data System (ADS)

    Rita, Novia; Mursyidah, Syahindra, Michael

    2018-03-01

    When drilling, if the hydrostatic pressure is higher than formation pressure (fracture pressure) it will cause lost circulation during cementing process. To solve this problem, hydrostatic pressure of slurry can be decreased by lowering the slurry density by using some additives. Ceramic Hollow Spheres (CHS) is lightweight additive. This additive comes with low specific gravity so it can lowered the slurry density. When the low-density slurry used in cementing process, it can prevent low circulation and fractured formation caused by cement itself. Class G cement is used in this experiment with the standard density of this slurry is 15.8 ppg. With the addition of CHS, slurry density lowered to 12.5 ppg. CHS not only used to lower the slurry density, it also used to make the same properties with the standard slurry even the density has been lowered. Both thickening time and compressive strength have not change if the CHS added to the slurry. With addition of CHS, thickening time at 70 Bc reached in 03 hours 12 minutes. For the compressive strength, 2000 psi reached in 07 hours 07 minutes. Addition of CHS can save more time in cementing process of X formation.

  15. Design and Operation of the World's First Long Distance Bauxite Slurry Pipeline

    NASA Astrophysics Data System (ADS)

    Gandhi, Ramesh; Weston, Mike; Talavera, Maru; Brittes, Geraldo Pereira; Barbosa, Eder

    Mineracão Bauxita Paragominas (MBP) is the first long distance slurry pipeline transporting bauxite slurry. Bauxite had developed a reputation for being difficult to hydraulically transport using long distance pipelines. This myth has now been proven wrong. The 245-km- long, 13.5 MTPY capacity MBP pipeline was designed and commissioned by PSI for CVRD. The pipeline is located in the State of Para, Brazil. The Miltonia bauxite mine is in a remote location with no other efficient means of transport. The bauxite slurry is delivered to Alunorte Alumina refinery located near Barcarena. This first of its kind pipeline required significant development work in order to assure technical and economic feasibility. This paper describes the technical aspects of design of the pipeline. It also summarizes the operating experience gained during the first year of operation.

  16. Two-liquid-phase slurry bioreactors to enhance the degradation of high-molecular-weight polycyclic aromatic hydrocarbons in soil.

    PubMed

    Villemur, R; Déziel, E; Benachenhou, A; Marcoux, J; Gauthier, E; Lépine, F; Beaudet, R; Comeau, Y

    2000-01-01

    High-molecular-weight (HMW) polycyclic aromatic hydrocarbons (PAHs) are pollutants that persist in the environment due to their low solubility in water and their sequestration by soil and sediments. The addition of a water-immiscible, nonbiodegradable, and biocompatible liquid, silicone oil, to a soil slurry was studied to promote the desorption of PAHs from soil and to increase their bioavailability. First, the transfer into silicone oil of phenanthrene, pyrene, chrysene, and benzo[a]pyrene added to a sterilized soil (sandy soil with 0.65% total volatile solids) was measured for 4 days in three two-liquid-phase (TLP) slurry systems each containing 30% (w/v) soil but different volumes of silicone oil (2.5%, 7.5%, and 15% [v/v]). Except for chrysene, a high percentage of these PAHs was transferred from soil to silicone oil in the TLP slurry system containing 15% silicone oil. Rapid PAH transfer occurred during the first 8 h, probably resulting from the extraction of nonsolubilized and of poorly sorbed PAHs. This was followed by a period in which a slower but constant transfer occurred, suggesting extraction of more tightly bound PAHs. Second, a HMW PAH-degrading consortium was enriched in a TLP slurry system with a microbial population isolated from a creosote-contaminated soil. This consortium was then added to three other TLP slurry systems each containing 30% (w/v) sterilized soil that had been artificially contaminated with pyrene, chrysene, and benzo[a]pyrene, but different volumes of silicone oil (10%, 20%, and 30% [v/v]). The resulting TLP slurry bioreactors were much more efficient than the control slurry bioreactor containing the same contaminated soil but no oil phase. In the TLP slurry bioreactor containing 30% silicone oil, the rate of pyrene degradation was 19 mg L(-)(1) day(-)(1) and no pyrene was detected after 4 days. The degradation rates of chrysene and benzo[a]pyrene in the 30% TLP slurry bioreactor were, respectively, 3.5 and 0.94 mg L(-)(1) day

  17. Chilean Tsunami Rocks the Ross Ice Shelf

    NASA Astrophysics Data System (ADS)

    Bromirski, P. D.; Gerstoft, P.; Chen, Z.; Stephen, R. A.; Diez, A.; Arcas, D.; Wiens, D.; Aster, R. C.; Nyblade, A.

    2016-12-01

    The response of the Ross Ice Shelf (RIS) to the September 16, 2015 9.3 Mb Chilean earthquake tsunami (> 75 s period) and infragravity (IG) waves (50 - 300 s period) were recorded by a broadband seismic array deployed on the RIS from November 2014 to November 2015. The array included two linear transects, one approximately orthogonal to the shelf front extending 430 km southward toward the grounding zone, and an east-west transect spanning the RIS roughly parallel to the front about 100 km south of the ice edge (https://scripps.ucsd.edu/centers/iceshelfvibes/). Signals generated by both the tsunami and IG waves were recorded at all stations on floating ice, with little ocean wave-induced energy reaching stations on grounded ice. Cross-correlation and dispersion curve analyses indicate that tsunami and IG wave-generated signals propagate across the RIS at gravity wave speeds (about 70 m/s), consistent with coupled water-ice flexural-gravity waves propagating through the ice shelf from the north. Gravity wave excitation at periods > 100 s is continuously observed during the austral winter, providing mechanical excitation of the RIS throughout the year. Horizontal displacements are typically about 3 times larger than vertical displacements, producing extensional motions that could facilitate expansion of existing fractures. The vertical and horizontal spectra in the IG band attenuate exponentially with distance from the front. Tsunami model data are used to assess variability of excitation of the RIS by long period gravity waves. Substantial variability across the RIS roughly parallel to the front is observed, likely resulting from a combination of gravity wave amplitude variability along the front, signal attenuation, incident angle of the wave forcing at the front that depends on wave generation location as well as bathymetry under and north of the shelf, and water layer and ice shelf thickness and properties.

  18. [Tail Plane Icing

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Aviation Safety Program initiated by NASA in 1997 has put greater emphasis in safety related research activities. Ice-contaminated-tailplane stall (ICTS) has been identified by the NASA Lewis Icing Technology Branch as an important activity for aircraft safety related research. The ICTS phenomenon is characterized as a sudden, often uncontrollable aircraft nose- down pitching moment, which occurs due to increased angle-of-attack of the horizontal tailplane resulting in tailplane stall. Typically, this phenomenon occurs when lowering the flaps during final approach while operating in or recently departing from icing conditions. Ice formation on the tailplane leading edge can reduce tailplane angle-of-attack range and cause flow separation resulting in a significant reduction or complete loss of aircraft pitch control. In 1993, the Federal Aviation Authority (FAA) and NASA embarked upon a four-year research program to address the problem of tailplane stall and to quantify the effect of tailplane ice accretion on aircraft performance and handling characteristics. The goals of this program, which was completed in March 1998, were to collect aerodynamic data for an aircraft tail with and without ice contamination and to develop analytical methods for predicting the effects of tailplane ice contamination. Extensive dry air and icing tunnel tests which resulted in a database of the aerodynamic effects associated with tailplane ice contamination. Although the FAA/NASA tailplane icing program generated some answers regarding ice-contaminated-tailplane stall (ICTS) phenomena, NASA researchers have found many open questions that warrant further investigation into ICTS. In addition, several aircraft manufacturers have expressed interest in a second research program to expand the database to other tail configurations and to develop experimental and computational methodologies for evaluating the ICTS phenomenon. In 1998, the icing branch at NASA Lewis initiated a second

  19. Periodic bedforms generated by sublimation on terrestrial and martian ice sheets under the influence of the turbulent atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Bordiec, Maï; Carpy, Sabrina; Perret, Laurent; Bourgeois, Olivier; Massé, Marion

    2017-04-01

    The redistribution of surface ice induced the wind flow may lead to the development and migration of periodic bedforms, or "ice ripples", at the surface of ice sheets. In certain cold and dry environments, this redistribution need not involve solid particle transport but may be dominated by sublimation and condensation, inducing mass transfers between the ice surface and the overlying steady boundary layer turbulent flow. These mass transfers diffuse the water vapour sublimated from the ice into the atmosphere and become responsible for the amplification and propagation of ripples in a direction perpendicular to their crests. Such ice ripples, 24 cm in wavelength, have been described in the so-called Blue Ice Areas of Antarctica. In order to understand the mechanisms that generate and develop these periodic bedforms on terrestrial glaciers and to evaluate the plausibility that similar bedforms may develop on Mars, we performed a linear stability analysis applied to a turbulent boundary layer flow perturbed by a wavy ice surface. The model is developed as follow. We first solve the flow dynamics using numerical methods analogous to those used in sand wave models assuming that the airflow is similar in both problems. We then add the transport/diffusion equation of water vapour following the same scheme. We use the Reynolds-averaged description of the equation with a Prandtl-like closure. We insert a damping term in the exponential formula of the Van Driest mixing length, depending on the pressure gradient felt by the flow and related to the thickness of the viscous sublayer at the ice-atmosphere interface. This formulation is an efficient way to properly represent the transitional regime under which the ripples grow. Once the mass flux of water vapour is solved, the phase shift between the ripples crests and the maximum of the flux can be deduced for different environments. The temporal evolution of the ice surface can be expressed from these quantities to infer the

  20. Impact of drilled shaft synthetic slurries on groundwater.

    DOT National Transportation Integrated Search

    2011-06-01

    The overall objective of this project is to evaluate the effect of the aforementioned synthetic slurries on groundwater quality. The objective of Phase I (this report), however, was to conduct a comprehensive literature survey to gather data to evalu...

  1. The antifungal efficiency of carbide lime slurry compared with the commercial lime efficiency

    NASA Astrophysics Data System (ADS)

    Strigac, J.; Mikusinec, J.; Strigacova, J.; Stevulova, N.

    2017-10-01

    The article deals with studying the antifungal efficiency of carbide lime slurry compared to industrially manufactured commercial lime. Antifungal efficiency expressed as mould proofness properties was tested on the fungi using the procedure given in standard CSN 72 4310. A mixture of fungi Aspergillus niger, Chaetomium globosum, Penicillium funiculosum, Paecilomyces variotii and Gliocladium virens was utilized for testing. The scale for evaluating mould proofness properties according to CSN 72 4310 is from 0 to 5 in degree of fungi growth, where 0 means that no fungi growth occurs and the building products and materials possess fungistatic properties. The study confirms the fungistatic propeties of carbide lime slurry as well as industrially manufactured commercial lime. However, carbide lime slurry and industrially manufactured commercial lime possess no fungicidal effect.

  2. Bed morphological features associated with an optimal slurry concentration for reproducible preparation of efficient capillary ultrahigh pressure liquid chromatography columns.

    PubMed

    Reising, Arved E; Godinho, Justin M; Jorgenson, James W; Tallarek, Ulrich

    2017-06-30

    Column wall effects and the formation of larger voids in the bed during column packing are factors limiting the achievement of highly efficient columns. Systematic variation of packing conditions, combined with three-dimensional bed reconstruction and detailed morphological analysis of column beds, provide valuable insights into the packing process. Here, we study a set of sixteen 75μm i.d. fused-silica capillary columns packed with 1.9μm, C18-modified, bridged-ethyl hybrid silica particles slurried in acetone to concentrations ranging from 5 to 200mg/mL. Bed reconstructions for three of these columns (representing low, optimal, and high slurry concentrations), based on confocal laser scanning microscopy, reveal morphological features associated with the implemented slurry concentration, that lead to differences in column efficiency. At a low slurry concentration, the bed microstructure includes systematic radial heterogeneities such as particle size-segregation and local deviations from bulk packing density near the wall. These effects are suppressed (or at least reduced) with higher slurry concentrations. Concomitantly, larger voids (relative to the mean particle diameter) begin to form in the packing and increase in size and number with the slurry concentration. The most efficient columns are packed at slurry concentrations that balance these counteracting effects. Videos are taken at low and high slurry concentration to elucidate the bed formation process. At low slurry concentrations, particles arrive and settle individually, allowing for rearrangements. At high slurry concentrations, they arrive and pack as large patches (reflecting particle aggregation in the slurry). These processes are discussed with respect to column packing, chromatographic performance, and bed microstructure to help reinforce general trends previously described. Conclusions based on this comprehensive analysis guide us towards further improvement of the packing process. Copyright

  3. Influence of ice thickness and surface properties on light transmission through Arctic sea ice

    PubMed Central

    Arndt, Stefanie; Nicolaus, Marcel; Perovich, Donald K.; Jakuba, Michael V.; Suman, Stefano; Elliott, Stephen; Whitcomb, Louis L.; McFarland, Christopher J.; Gerdes, Rüdiger; Boetius, Antje; German, Christopher R.

    2015-01-01

    Abstract The observed changes in physical properties of sea ice such as decreased thickness and increased melt pond cover severely impact the energy budget of Arctic sea ice. Increased light transmission leads to increased deposition of solar energy in the upper ocean and thus plays a crucial role for amount and timing of sea‐ice‐melt and under‐ice primary production. Recent developments in underwater technology provide new opportunities to study light transmission below the largely inaccessible underside of sea ice. We measured spectral under‐ice radiance and irradiance using the new Nereid Under‐Ice (NUI) underwater robotic vehicle, during a cruise of the R/V Polarstern to 83°N 6°W in the Arctic Ocean in July 2014. NUI is a next generation hybrid remotely operated vehicle (H‐ROV) designed for both remotely piloted and autonomous surveys underneath land‐fast and moving sea ice. Here we present results from one of the first comprehensive scientific dives of NUI employing its interdisciplinary sensor suite. We combine under‐ice optical measurements with three dimensional under‐ice topography (multibeam sonar) and aerial images of the surface conditions. We investigate the influence of spatially varying ice‐thickness and surface properties on the spatial variability of light transmittance during summer. Our results show that surface properties such as melt ponds dominate the spatial distribution of the under‐ice light field on small scales (<1000 m2), while sea ice‐thickness is the most important predictor for light transmission on larger scales. In addition, we propose the use of an algorithm to obtain histograms of light transmission from distributions of sea ice thickness and surface albedo. PMID:27660738

  4. Application of PTR-MS for Measuring Odorant Emissions from Soil Application of Manure Slurry

    PubMed Central

    Feilberg, Anders; Bildsoe, Pernille; Nyord, Tavs

    2015-01-01

    Odorous volatile organic compounds (VOC) and hydrogen sulfide (H2S) are emitted together with ammonia (NH3) from manure slurry applied as a fertilizer, but little is known about the composition and temporal variation of the emissions. In this work, a laboratory method based on dynamic flux chambers packed with soil has been used to measure emissions from untreated pig slurry and slurry treated by solid-liquid separation and ozonation. Proton-transfer-reaction mass spectrometry (PTR-MS) was used to provide time resolved data for a range of VOC, NH3 and H2S. VOC included organic sulfur compounds, carboxylic acids, phenols, indoles, alcohols, ketones and aldehydes. H2S emission was remarkably observed to take place only in the initial minutes after slurry application, which is explained by its high partitioning into the air phase. Long-term odor effects are therefore assessed to be mainly due to other volatile compounds with low odor threshold values, such as 4-methylphenol. PTR-MS signal assignment was verified by comparison to a photo-acoustic analyzer (NH3) and to thermal desorption GC/MS (VOC). Due to initial rapid changes in odorant emissions and low concentrations of odorants, PTR-MS is assessed to be a very useful method for assessing odor following field application of slurry. The effects of treatments on odorant emissions are discussed. PMID:25585103

  5. Reconciling records of ice streaming and ice margin retreat to produce a palaeogeographic reconstruction of the deglaciation of the Laurentide Ice Sheet

    NASA Astrophysics Data System (ADS)

    Margold, Martin; Stokes, Chris R.; Clark, Chris D.

    2018-06-01

    rates markedly increased after the YD and the ice sheet became limited to the Canadian Shield. This hard-bed substrate brought a change in the character of ice streaming, which became less frequent but generated much broader terrestrial ice streams. The final collapse of the ice sheet saw a series of small ephemeral ice streams that resulted from the rapidly changing ice sheet geometry in and around Hudson Bay. Our reconstruction indicates that the LIS underwent a transition from a topographically-controlled ice drainage network at the LGM to an ice drainage network characterised by less frequent, broad ice streams during the later stages of deglaciation. These deglacial ice streams are mostly interpreted as a reaction to localised ice-dynamical forcing (flotation and calving of the ice front in glacial lakes and transgressing sea; basal de-coupling due to large amount of meltwater reaching the bed, debuttressing due to rapid changes in ice sheet geometry) rather than as conveyors of excess mass from the accumulation area of the ice sheet. At an ice sheet scale, the ice stream drainage network became less widespread and less efficient with the decreasing size of the deglaciating ice sheet, the final elimination of which was mostly driven by surface melt.

  6. Soil microbial properties after long-term swine slurry application to conventional and no-tillage systems in Brazil.

    PubMed

    Balota, Elcio L; Machineski, Oswaldo; Hamid, Karima I A; Yada, Ines F U; Barbosa, Graziela M C; Nakatani, Andre S; Coyne, Mark S

    2014-08-15

    Swine waste can be used as an agricultural fertilizer, but large amounts may accumulate excess nutrients in soil or contaminate the surrounding environment. This study evaluated long-term soil amendment (15 years) with different levels of swine slurry to conventional (plow) tillage (CT) and no tillage (NT) soils. Long-term swine slurry application did not affect soil organic carbon. Some chemical properties, such as calcium, base saturation, and aluminum saturation were significantly different within and between tillages for various application rates. Available P and microbial parameters were significantly affected by slurry addition. Depending on tillage, soil microbial biomass and enzyme activity increased up to 120 m(3) ha(-1) year(-1) in all application rates. The NT system had higher microbial biomass and activity than CT at all application levels. There was an inverse relationship between the metabolic quotient (qCO2) and MBC, and the qCO2 was 53% lower in NT than CT. Swine slurry increased overall acid phosphatase activity, but the phosphatase produced per unit of microbial biomass decreased. A comparison of data obtained in the 3rd and 15th years of swine slurry application indicated that despite slurry application the CT system degraded with time while the NT system had improved values of soil quality indicators. For these Brazilian oxisols, swine slurry amendment was insufficient to maintain soil quality parameters in annual crop production without additional changes in tillage management. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Corrosion inhibitors for water-base slurry in multiblade sawing

    NASA Technical Reports Server (NTRS)

    Chen, C. P.; Odonnell, T. P.

    1982-01-01

    The use of a water-base slurry instead of the standard PC oil vehicle was proposed for multiblade sawing (MBS) silicon wafering technology. Potential cost savings were considerable; however, significant failures of high-carbon steel blades were observed in limited tests using a water-based slurry during silicon wafering. Failures were attributed to stress corrosion. A specially designed fatigue test of 1095 steel blades in distilled water with various corrosion inhibitor solutions was used to determine the feasibility of using corrosion inhibitors in water-base MBS wafering. Fatigue tests indicate that several corrosion inhibitors have significant potential for use in a water-base MBS operation. Blade samples tested in these specific corrosion-inhibitor solutions exhibited considerably greater lifetime than those blades tested in PC oil.

  8. Effect of H2O2 and nonionic surfactant in alkaline copper slurry

    NASA Astrophysics Data System (ADS)

    Haobo, Yuan; Yuling, Liu; Mengting, Jiang; Guodong, Chen; Weijuan, Liu; Shengli, Wang

    2015-01-01

    For improving the polishing performance, in this article, the roles of a nonionic surfactant (Fatty alcohol polyoxyethylene ether) and H2O2 were investigated in the chemical mechanical planarization process, respectively. Firstly, the effects of the nonionic surfactant on the within-wafer non-uniformity (WIWNU) and the surface roughness were mainly analyzed. In addition, the passivation ability of the slurry, which had no addition of BTA, was also discussed from the viewpoint of the static etch rate, electrochemical curve and residual step height under different concentrations of H2O2. The experimental results distinctly revealed that the nonionic surfactant introduced in the slurry improved the WIWNU and surface roughness, and that a 2 vol% was considered as an appropriate concentration relatively. When the concentration of H2O2 surpasses 3 vol%, the slurry will possess a relatively preferable passivation ability, which can effectively decrease the step height and contribute to acquiring a flat and smooth surface. Hence, based on the result of these experiments, the influences of the nonionic surfactant and H2O2 are further understood, which means the properties of slurry can be improved.

  9. Anti-icing Behavior of Thermally Sprayed Polymer Coatings

    NASA Astrophysics Data System (ADS)

    Koivuluoto, Heli; Stenroos, Christian; Kylmälahti, Mikko; Apostol, Marian; Kiilakoski, Jarkko; Vuoristo, Petri

    2017-01-01

    Surface engineering shows an increasing potential to provide a sustainable approach to icing problems. Currently, several passive anti-ice properties adoptable to coatings are known, but further research is required to proceed for practical applications. This is due to the fact that icing reduces safety, operational tempo, productivity and reliability of logistics, industry and infrastructure. An icing wind tunnel and a centrifugal ice adhesion test equipment can be used to evaluate and develop anti-icing and icephobic coatings for a potential use in various arctic environments, e.g., in wind power generation, oil drilling, mining and logistic industries. The present study deals with evaluation of icing properties of flame-sprayed polyethylene (PE)-based polymer coatings. In the laboratory-scale icing tests, thermally sprayed polymer coatings showed low ice adhesion compared with metals such as aluminum and stainless steel. The ice adhesion strength of the flame-sprayed PE coating was found to have approximately seven times lower ice adhesion values compared with metallic aluminum, indicating a very promising anti-icing behavior.

  10. Prognostics of slurry pumps based on a moving-average wear degradation index and a general sequential Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Tse, Peter W.

    2015-05-01

    Slurry pumps are commonly used in oil-sand mining for pumping mixtures of abrasive liquids and solids. These operations cause constant wear of slurry pump impellers, which results in the breakdown of the slurry pumps. This paper develops a prognostic method for estimating remaining useful life of slurry pump impellers. First, a moving-average wear degradation index is proposed to assess the performance degradation of the slurry pump impeller. Secondly, the state space model of the proposed health index is constructed. A general sequential Monte Carlo method is employed to derive the parameters of the state space model. The remaining useful life of the slurry pump impeller is estimated by extrapolating the established state space model to a specified alert threshold. Data collected from an industrial oil sand pump were used to validate the developed method. The results show that the accuracy of the developed method improves as more data become available.

  11. YIELD STRESS REDUCTION OF DWPF MELTER FEED SLURRIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stone, M; Michael02 Smith, M

    2006-12-28

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site vitrifies High Level Waste for repository internment. The process consists of three major steps: waste pretreatment, vitrification, and canister decontamination/sealing. The HLW consists of insoluble metal hydroxides (primarily iron, aluminum, magnesium, manganese, and uranium) and soluble sodium salts (carbonate, hydroxide, nitrite, nitrate, sulfate). The pretreatment process acidifies the sludge with nitric and formic acids, adds the glass formers as glass frit, then concentrates the resulting slurry to approximately 50 weight percent (wt%) total solids. This slurry is fed to the joule-heated melter where the remaining water is evaporated followedmore » by calcination of the solids and conversion to glass. The Savannah River National Laboratory (SRNL) is currently assisting DWPF efforts to increase throughput of the melter. As part of this effort, SRNL has investigated methods to increase the solids content of the melter feed to reduce the heat load required to complete the evaporation of water and allow more of the energy available to calcine and vitrify the waste. The process equipment in the facility is fixed and cannot process materials with high yield stresses, therefore increasing the solids content will require that the yield stress of the melter feed slurries be reduced. Changing the glass former added during pretreatment from an irregularly shaped glass frit to nearly spherical beads was evaluated. The evaluation required a systems approach which included evaluations of the effectiveness of beads in reducing the melter feed yield stress as well as evaluations of the processing impacts of changing the frit morphology. Processing impacts of beads include changing the settling rate of the glass former (which effects mixing and sampling of the melter feed slurry and the frit addition equipment) as well as impacts on the melt behavior due to decreased surface area of the beads versus

  12. Effects of pig slurry on the sorption of sulfonamide antibiotics in soil.

    PubMed

    Thiele-Bruhn, S; Aust, M O

    2004-07-01

    Sorption of p-aminobenzoic acid (pABA) and five sulfonamide antibiotics to loess Chernozem topsoil amended with varied additions of pig slurry was investigated in batch trials. In unfertilized soil, partition coefficients (Kd) of sulfonamides ranged from 0.3 to 2.0. Strong sorption nonlinearity (1/n = 0.5 to 0.8) was best fitted by the Freundlich isotherm (R2 = 0.7 to 1.0) and was indicative for specific sorption mechanisms. Adsorption to pig slurry was much stronger, and nondesorbable portions were increased compared with soil. However, in a mixture of soil and slurry (50:1 w/w), sorption of the antibiotics was significantly decreased at a lower concentration range of pABA and the sulfonamides. This was attributed to competitive adsorption of dissolved organic matter (DOM) constituents from manure. An increase in pig slurry amendment resulted in increased total organic matter, DOM concentration, and ionic strength, but pH decreased. As a result, the nonadsorbed portions of pABA, sulfanilamide, and sulfadiazine (logD(ow) < -0.4) ranged from 47% to 82% of the applied concentration in the differently manured substrates. Dissolved fractions of the antibiotics reached a maximum at a soil-slurry ratio of 9:1 and decreased with further addition of manure. This decrease was related to the formation of less-effective DOM associates in solution. The adsorbed and desorbed portions of the less-polar substances--sulfadimidine, sulfadimethoxine, and sulfapyridine (logD(ow) > 0.1)--remained nearly constant in the presence of increased manure input. The pH changes caused by manure amendment strongly affected ionisation status of the latter compounds, thus resulting in increased adsorption, which compensated the mobilizing effect of DOM. It is suggested that the effect of manure be considered in test methods to determine the soil retention of pharmaceutical substances.

  13. Modelling wave-induced sea ice break-up in the marginal ice zone

    PubMed Central

    Squire, V. A.

    2017-01-01

    A model of ice floe break-up under ocean wave forcing in the marginal ice zone (MIZ) is proposed to investigate how floe size distribution (FSD) evolves under repeated wave break-up events. A three-dimensional linear model of ocean wave scattering by a finite array of compliant circular ice floes is coupled to a flexural failure model, which breaks a floe into two floes provided the two-dimensional stress field satisfies a break-up criterion. A closed-feedback loop algorithm is devised, which (i) solves the wave-scattering problem for a given FSD under time-harmonic plane wave forcing, (ii) computes the stress field in all the floes, (iii) fractures the floes satisfying the break-up criterion, and (iv) generates an updated FSD, initializing the geometry for the next iteration of the loop. The FSD after 50 break-up events is unimodal and near normal, or bimodal, suggesting waves alone do not govern the power law observed in some field studies. Multiple scattering is found to enhance break-up for long waves and thin ice, but to reduce break-up for short waves and thick ice. A break-up front marches forward in the latter regime, as wave-induced fracture weakens the ice cover, allowing waves to travel deeper into the MIZ. PMID:29118659

  14. Modelling wave-induced sea ice break-up in the marginal ice zone.

    PubMed

    Montiel, F; Squire, V A

    2017-10-01

    A model of ice floe break-up under ocean wave forcing in the marginal ice zone (MIZ) is proposed to investigate how floe size distribution (FSD) evolves under repeated wave break-up events. A three-dimensional linear model of ocean wave scattering by a finite array of compliant circular ice floes is coupled to a flexural failure model, which breaks a floe into two floes provided the two-dimensional stress field satisfies a break-up criterion. A closed-feedback loop algorithm is devised, which (i) solves the wave-scattering problem for a given FSD under time-harmonic plane wave forcing, (ii) computes the stress field in all the floes, (iii) fractures the floes satisfying the break-up criterion, and (iv) generates an updated FSD, initializing the geometry for the next iteration of the loop. The FSD after 50 break-up events is unimodal and near normal, or bimodal, suggesting waves alone do not govern the power law observed in some field studies. Multiple scattering is found to enhance break-up for long waves and thin ice, but to reduce break-up for short waves and thick ice. A break-up front marches forward in the latter regime, as wave-induced fracture weakens the ice cover, allowing waves to travel deeper into the MIZ.

  15. Characterization of the March 2017 Tank 15 Waste Removal Slurry Sample (Combination of Slurry Samples HTF-15-17-28 and HTF-15-17-29)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reboul, S. H.; King, W. D.; Coleman, C. J.

    2017-05-09

    Two March 2017 Tank 15 slurry samples (HTF-15-17-28 and HTF-15-17-29) were collected during the second bulk waste removal campaign and submitted to SRNL for characterization. At SRNL, the two samples were combined and then characterized by a series of physical, elemental, radiological, and ionic analysis methods. Sludge settling as a function of time was also quantified. The characterization results reported in this document are consistent with expectations based upon waste type, process knowledge, comparisons between alternate analysis techniques, and comparisons with the characterization results obtained for the November 2016 Tank 15 slurry sample (the sample collected during the first bulkmore » waste removal campaign).« less

  16. Ask about ice, then consider iron

    PubMed Central

    Rabel, Antoinette; Leitman, Susan F.; Miller, Jeffery L.

    2015-01-01

    Background and purpose To review a condition defined by the desire to consume ice in order to satisfy an addictive-like compulsion, rather than for purposes of hydration or pain relief. This condition is called ice pica, or pagophagia. Explain the association between ice pica and iron deficiency. Suggest to clinicians how to perform clinical screening for patients at risk for ice pica. Recommend treatment and follow-up care, if needed. Methods Extensive published literature review of original research articles, reviews, clinical practice manuscripts and scientific publications on pica and pagophagia. Conclusions A compulsion or craving for the consumption of ice is often overlooked in clinical practice. It is therefore important for clinicians to include ice pica as part of the review of systems for certain patient populations. Ice pica is frequently associated with iron deficiency, and iron supplementation is an effective therapy in most cases. Implications for practice Knowledge gained from screening for ice pica can generate valuable patient information and lead to the diagnosis and treatment of iron deficiency. The populations at risk include young women and blood donors of either sex. PMID:25943566

  17. 30 CFR 77.216-4 - Water, sediment or slurry impoundments and impounding structures; reporting requirements...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Water, sediment or slurry impoundments and....216-4 Water, sediment or slurry impoundments and impounding structures; reporting requirements... of the initial plan approval, the person owning, operating, or controlling a water, sediment, or...

  18. 30 CFR 77.216-4 - Water, sediment or slurry impoundments and impounding structures; reporting requirements...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Water, sediment or slurry impoundments and....216-4 Water, sediment or slurry impoundments and impounding structures; reporting requirements... of the initial plan approval, the person owning, operating, or controlling a water, sediment, or...

  19. 30 CFR 77.216-4 - Water, sediment or slurry impoundments and impounding structures; reporting requirements...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Water, sediment or slurry impoundments and....216-4 Water, sediment or slurry impoundments and impounding structures; reporting requirements... of the initial plan approval, the person owning, operating, or controlling a water, sediment, or...

  20. Control of foodborne pathogens on ready-to-eat roast beef slurry by epsilon-polylysine.

    PubMed

    Chang, Su-Sen; Lu, Wei-Yi Wendy; Park, Sang-Hyun; Kang, Dong-Hyun

    2010-07-15

    This study evaluates the antimicrobial effectiveness of epsilon-polylysine against Escherichia coli O157:H7, Salmonella typhimurium and Listeria monocytogenes in laboratory media and roast beef slurry. epsilon-Polylysine supplemented laboratory media and roast beef slurry were inoculated with three-strain cocktails of each pathogen and survival was periodically monitored using conventional spread plating. Inoculated laboratory media was stored at room temperature (22 degrees C) for 48 h, and inoculated roast beef slurry was stored at 4 degrees C for up to 7 days. Maximum log reductions in laboratory media/roast beef slurry were 6.01+/-1.43/3.81+/-0.37, >7.82+/-0.05/5.23+/-0.08, and 4.58+/-0.86/5.83+/-0.48 for E. coli O157:H7, S. typhimurium, and L. monocytogenes, respectively. Injured cells were produced as a result of exposure to polylysine. This study confirms the effectiveness of polylysine against pathogens in laboratory media, and demonstrates its potential as a novel antimicrobial agent in complex food matrix such as roast beef. 2010 Elsevier B.V. All rights reserved.

  1. An Approach to Understanding Cohesive Slurry Settling, Mobilization, and Hydrogen Gas Retention in Pulsed Jet Mixed Vessels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gauglitz, Phillip A.; Wells, Beric E.; Fort, James A.

    2009-05-22

    The Hanford Waste Treatment and Immobilization Plant (WTP) is being designed and built to pretreat and vitrify a large portion of the waste in Hanford’s 177 underground waste storage tanks. Numerous process vessels will hold waste at various stages in the WTP. Some of these vessels have mixing-system requirements to maintain conditions where the accumulation of hydrogen gas stays below acceptable limits, and the mixing within the vessels is sufficient to release hydrogen gas under normal conditions and during off-normal events. Some of the WTP process streams are slurries of solid particles suspended in Newtonian fluids that behave as non-Newtonianmore » slurries, such as Bingham yield-stress fluids. When these slurries are contained in the process vessels, the particles can settle and become progressively more concentrated toward the bottom of the vessels, depending on the effectiveness of the mixing system. One limiting behavior is a settled layer beneath a particle-free liquid layer. The settled layer, or any region with sufficiently high solids concentration, will exhibit non-Newtonian rheology where it is possible for the settled slurry to behave as a soft solid with a yield stress. In this report, these slurries are described as settling cohesive slurries.« less

  2. Experimental Evaluation of Cement Replacement Fillers on the Performance of Slurry Seal

    NASA Astrophysics Data System (ADS)

    Fakhri, Mansour; Alrezaei, Hossein Ali; Naji Almasi, Soroush

    2016-10-01

    Reducing the level of roads service is a process that starts from the first day of the operation of road and the slope of deterioration curve of road sustainability becomes faster with the passage of time. After building the road, adopting an economic approach in order to maintain the road is very important. Slurry seal as one type of protective asphalts that works by sealing inactive cracks of the road and increasing skid resistance is the most effective types of restoration with environmentally friendly behaviour. Fillers are responsible for adjusting set time in slurry seal. Cement is the most common filler used in slurry seal. Cements having suitable properties as a filler, has a very energy demanding manufacturing process and a notable amount of energy is used for manufacturing cement in the country annually. On the other hand, manufacturing process and application of cement have increased levels of pollutant gases, followed by significant environmental pollution. So in this study other options as a filler such as hydrated lime, stone powder and the slag from iron melting furnace were compared with two common types of cement (Portland and type-v cement) in the mixtures of slurry seal by wet abrasion and cohesion tests. Results indicated that, in both tests, lime and slag fillers had behaviours close to the cement filler.

  3. Experimental Study of Heat Transfer Performance of Polysilicon Slurry Drying Process

    NASA Astrophysics Data System (ADS)

    Wang, Xiaojing; Ma, Dongyun; Liu, Yaqian; Wang, Zhimin; Yan, Yangyang; Li, Yuankui

    2016-12-01

    In recent years, the growth of the solar energy photovoltaic industry has greatly promoted the development of polysilicon. However, there has been little research into the slurry by-products of polysilicon production. In this paper the thermal performance of polysilicon slurry was studied in an industrial drying process with a twin-screw horizontal intermittent dryer. By dividing the drying process into several subunits, the parameters of each unit could be regarded as constant in that period. The time-dependent changes in parameters including temperature, specific heat and evaporation enthalpy were plotted. An equation for the change in the heat transfer coefficient over time was calculated based on heat transfer equations. The concept of a distribution coefficient was introduced to reflect the influence of stirring on the heat transfer area. The distribution coefficient ranged from 1.2 to 1.7 and was obtained with the fluid simulation software FLUENT, which simplified the calculation of heat transfer area during the drying process. These experimental data can be used to guide the study of polysilicon slurry drying and optimize the design of dryers for industrial processes.

  4. Ice swimming - 'Ice Mile' and '1 km Ice event'.

    PubMed

    Knechtle, Beat; Rosemann, Thomas; Rüst, Christoph A

    2015-01-01

    Ice swimming for 1 mile and 1 km is a new discipline in open-water swimming since 2009. This study examined female and male performances in swimming 1 mile ('Ice Mile') and 1 km ('1 km Ice event') in water of 5 °C or colder between 2009 and 2015 with the hypothesis that women would be faster than men. Between 2009 and 2015, 113 men and 38 women completed one 'Ice Mile' and 26 men and 13 completed one '1 km Ice event' in water colder than +5 °C following the rules of International Ice Swimming Association (IISA). Differences in performance between women and men were determined. Sex difference (%) was calculated using the equation ([time for women] - [time for men]/[time for men] × 100). For 'Ice Mile', a mixed-effects regression model with interaction analyses was used to investigate the influence of sex and environmental conditions on swimming speed. The association between water temperature and swimming speed was assessed using Pearson correlation analyses. For 'Ice Mile' and '1 km Ice event', the best men were faster than the best women. In 'Ice Mile', calendar year, number of attempts, water temperature and wind chill showed no association with swimming speed for both women and men. For both women and men, water temperature was not correlated to swimming speed in both 'Ice Mile' and '1 km Ice event'. In water colder than 5 °C, men were faster than women in 'Ice Mile' and '1 km Ice event'. Water temperature showed no correlation to swimming speed.

  5. Removal of enzymatic and fermentation inhibitory compounds from biomass slurries for enhanced biorefinery process efficiencies.

    PubMed

    Gurram, Raghu N; Datta, Saurav; Lin, Yupo J; Snyder, Seth W; Menkhaus, Todd J

    2011-09-01

    Within the biorefinery paradigm, many non-monomeric sugar compounds have been shown to be inhibitory to enzymes and microbial organisms that are used for hydrolysis and fermentation. Here, two novel separation technologies, polyelectrolyte polymer adsorption and resin-wafer electrodeionization (RW-EDI), have been evaluated to detoxify a dilute acid pretreated biomass slurry. Results showed that detoxification of a dilute acid pretreated ponderosa pine slurry by sequential polyelectrolyte and RW-EDI treatments was very promising, with significant removal of acetic acid, 5-hydroxymethyl furfural, and furfural (up to 77%, 60%, and 74% removed, respectively) along with >97% removal of sulfuric acid. Removal of these compounds increased the cellulose conversion to 94% and elevated the hydrolysis rate to 0.69 g glucose/L/h. When using Saccharomyces cerevisiae D(5)A for fermentation of detoxified slurry, the process achieved 99% of the maximum theoretical ethanol yield and an ethanol production rate nearly five-times faster than untreated slurry. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Ice Bridge Antarctic Sea Ice

    NASA Image and Video Library

    2009-10-21

    Sea ice is seen out the window of NASA's DC-8 research aircraft as it flies 2,000 feet above the Bellingshausen Sea in West Antarctica on Wednesday, Oct., 21, 2009. This was the fourth science flight of NASA’s Operation Ice Bridge airborne Earth science mission to study Antarctic ice sheets, sea ice, and ice shelves. Photo Credit: (NASA/Jane Peterson)

  7. A Database of Supercooled Large Droplet Ice Accretions

    NASA Technical Reports Server (NTRS)

    VanZante, Judith Foss

    2007-01-01

    A unique, publicly available database regarding supercooled large droplet ice accretions has been developed in NASA Glenn's Icing Research Tunnel. Identical cloud and flight conditions were generated for five different airfoil models. The models chosen represent a variety of aircraft types from the horizontal stabilizer of a large trans-port aircraft to the wings of regional, business, and general aviation aircraft. In addition to the standard documentation methods of 2D ice shape tracing and imagery, ice mass measurements were also taken. This database will also be used to validate and verify the extension of the ice accretion code, LEWICE, into the SLD realm.

  8. Non-equilibrium freezing of water-ice in sandy basaltic regoliths and implications for fluidized debris flows on Mars

    NASA Technical Reports Server (NTRS)

    Gooding, J. L.

    1987-01-01

    Many geomorphic features on Mars were attributed to Earth-analogous, cold-climate processes involving movement of water or ice lubricated debris. Clearly, knowledge of the behavior of water in regolith materials under Martian conditions is essential to understanding the postulated geomorphic processes. Experiments were performed with sand-sized samples of natural basaltic regoliths in order to further elucidate how water/regolith interactions depend upon grain size and mineralogy. The data reveal important contrasts with data for clay-mineral substrates and suggest that the microphysics of water/mineral interactions might affect Martian geomorphic processes in ways that are not fully appreciated. Sand and silt sized fractions of two soils from the summit of Mauna Kea were used as Mars-analogous regolith materials. Temperatures were measured for water/ice phase transitions as wet slurries of individual soil fractions which were cooled or heated at controlled rates under a carbon dioxide atmosphere. Freezing and melting of ice was studied as a function of water/soil mass ratio, soil particle size, and thermal-cycle rate. Comparison tests were done under the same conditions with U.S. Geological Survey standard rock powders.

  9. The role of fluid temperature and form on endurance performance in the heat.

    PubMed

    Tan, P M S; Lee, J K W

    2015-06-01

    Exercising in the heat often results in an excessive increase in body core temperature, which can be detrimental to health and endurance performance. Research in recent years has shifted toward the optimum temperature at which drinks should be ingested. The ingestion of cold drinks can reduce body core temperature before exercise but less so during exercise. Temperature of drinks does not seem to have an effect on the rate of gastric emptying and intestinal absorption. Manipulating the specific heat capacity of a solution can further induce a greater heat sink. Ingestion of ice slurry exploits the additional energy required to convert the solution from ice to water (enthalpy of fusion). Body core temperature is occasionally observed to be higher at the point of exhaustion with the ingestion of ice slurry. There is growing evidence to suggest that ingesting ice slurry is an effective and practical strategy to prevent excessive rise of body core temperature and improve endurance performance. This information is especially important when only a fixed amount of fluid is allowed to be carried, often seen in some ultra-endurance events and military operations. Future studies should evaluate the efficacy of ice slurry in various exercise and environmental conditions. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. A Preliminary Study of the Preparation of Slurry Fuels from Vaporized Magnesium

    NASA Technical Reports Server (NTRS)

    Witzke, Walter R; Prok, George M; Walsh, Thomas J

    1954-01-01

    Slurry fuels containing extremely small particles of magnesium were prepared by concentrating the dilute slurry product resulting from the shock-cooling of magnesium metal vapors with a liquid hydrocarbon spray. A complete description of the equipment and procedure used in preparing the fuel is given. Ninety-five percent by weight of the solid particles formed by this process passed through a 100-mesh screen. The particle-size distribution of the screened fraction of one run, as determined by sedimentation analysis, indicated that 73 percent by weight of the metal particles were finer than 2 microns in equivalent spherical diameter. The purity of the solid particles ranged as high as 98.9 percent by weight of free magnesium. The screened product was concentrated by means of a bowl-type centrifuge from 0.5 to more than 50 percent by weight solids content to form an extremely viscous, clay-like mass. By addition of a surface active agent, this viscous material was converted into a pumpable slurry fuel.

  11. The effect of operating conditions on the performance of soil slurry-SBRs.

    PubMed

    Cassidy, D P; Irvine, R L

    2001-01-01

    Biological treatment of a silty clay loam with aged diesel fuel contamination was conducted in 8 L Soil Slurry-Sequencing Batch Reactors (SS-SBRs). The purpose was to monitor slurry conditions and evaluate reactor performance for varying solids concentration (5%, 25%, 40%, 50%), mixing speed (300 rpm, 700 rpm, 1200 rpm), retention time (8 d, 10 d, 20 d), and volume replaced per cycle (10%, 50%, 90%). Diesel fuel was measured in slurry and in filtered aqueous samples. Oxygen uptake rate (OUR) was monitored. Aggregate size was measured with sieve analyses. Biosurfactant production was quantified with surface tension measurements. Increasing solids concentration and decreasing mixing speed resulted in increased aggregate size, which in turn increased effluent diesel fuel concentrations. Diesel fuel removal was unaffected by retention time and volume replaced per cycle. Biosurfactant production occurred with all operating strategies. Foam thickness was related to surfactant concentration and mixing speed. OUR, surfactant concentration, and foam thickness increased with increasing diesel fuel added per cycle.

  12. A site-specific slurry application technique on grassland and on arable crops.

    PubMed

    Schellberg, Jürgen; Lock, Reiner

    2009-01-01

    There is evidence that unequal slurry application on agricultural land contributes to N losses to the environment. Heterogeneity within fields demands adequate response by means of variable rate application. A technique is presented which allows site-specific application of slurry on grassland and arable land based on pre-defined application maps. The system contains a valve controlling flow rate by an on-board PC. During operation, flow rate is measured and scaled against set point values given in the application map together with the geographic position of the site. The systems worked sufficiently precise at a flow rate between 0 and 25 l s(-1) and an offset of actual slurry flow from set point values between 0.33 and 0.67 l s(-1). Long-term experimentation is required to test if site-specific application de facto reduces N surplus within fields and so significantly contributes to the unloading of N in agricultural areas.

  13. Evaluation of Computational Method of High Reynolds Number Slurry Flow for Caverns Backfilling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bettin, Giorgia

    2015-05-01

    The abandonment of salt caverns used for brining or product storage poses a significant environmental and economic risk. Risk mitigation can in part be address ed by the process of backfilling which can improve the cavern geomechanical stability and reduce the risk o f fluid loss to the environment. This study evaluate s a currently available computational tool , Barracuda, to simulate such process es as slurry flow at high Reynolds number with high particle loading . Using Barracuda software, a parametric sequence of simu lations evaluated slurry flow at Re ynolds number up to 15000 and loading up tomore » 25%. Li mitations come into the long time required to run these simulation s due in particular to the mesh size requirement at the jet nozzle. This study has found that slurry - jet width and centerline velocities are functions of Re ynold s number and volume fractio n The solid phase was found to spread less than the water - phase with a spreading rate smaller than 1 , dependent on the volume fraction. Particle size distribution does seem to have a large influence on the jet flow development. This study constitutes a first step to understand the behavior of highly loaded slurries and their ultimate application to cavern backfilling.« less

  14. Laser-induced cracks in ice due to temperature gradient and thermal stress

    NASA Astrophysics Data System (ADS)

    Yang, Song; Yang, Ying-Ying; Zhang, Jing-Yuan; Zhang, Zhi-Yan; Zhang, Ling; Lin, Xue-Chun

    2018-06-01

    This work presents the experimental and theoretical investigations on the mechanism of laser-induce cracks in ice. The laser-induced thermal gradient would generate significant thermal stress and lead to the cracking without thermal melting in the ice. The crack density induced by a pulsed laser in the ice critically depends on the laser scanning speed and the size of the laser spot on the surface, which determines the laser power density on the surface. A maximum of 16 cracks within an area of 17 cm × 10 cm can be generated when the laser scanning speed is at 10 mm/s and the focal point of the laser is right on the surface of the ice with a laser intensity of ∼4.6 × 107 W/cm2. By comparing the infrared images of the ice generated at various experimental conditions, it was found that a larger temperature gradient would result in more laser-induced cracks, while there is no visible melting of the ice by the laser beam. The data confirm that the laser-induced thermal stress is the main cause of the cracks created in the ice.

  15. Improving profitability through slurry management: a look at the impact of slurry pH on various glass types

    NASA Astrophysics Data System (ADS)

    Hooper, Abigail R.; Boffa, Christopher C.; Sarkas, Harry W.; Cureton, Kevin

    2015-08-01

    When building an optical system, optical fabricators and designers meticulously choose the glass types for their application knowing that each one will have different chemical, thermal and mechanical properties. As the requirements for new optical systems have grown more demanding, the range of available glass types has vastly expanded and the specifications on the produced products have grown tighter. In an attempt to simplify processes and streamline consumable purchases, optical polishing houses often rely on one polishing slurry to manage these vast array of glass types. An unforeseen consequence of these practices can be a reduction in productivity by reduced removal rate, poor yields and frequent rework all translating into higher costs and reduced profitability. In this paper, the authors will examine the impact slurry pH has on glass types of different compositions and chemical, thermal and mechanical properties when using a double-sided polishing process. Experiments will use material removal rate, surface quality, and surface figure to provide insight into improving process control for differing glass types. Further guidance will be provided on how simple on-site monitoring and adjustment can deliver improved profitability on challenging substrates.

  16. Possible Sea Ice Impacts on Oceanic Deep Convection

    NASA Technical Reports Server (NTRS)

    Parkinson, C. L.

    1984-01-01

    Many regions of the world ocean known or suspected to have deep convection are sea-ice covered for at least a portion of the annual cycle. As this suggests that sea ice might have some impact on generating or maintaining this phenomenon, several mechanisms by which sea ice could exert an influence are presented in the following paragraphs. Sea ice formation could be a direct causal factor in deep convection by providing the surface density increase necessary to initiate the convective overturning. As sea ice forms, either by ice accretion or by in situ ice formation in open water or in lead areas between ice floes, salt is rejected to the underlying water. This increases the water salinity, thereby increasing water density in the mixed layer under the ice. A sufficient increase in density will lead to mixing with deeper waters, and perhaps to deep convection or even bottom water formation. Observations are needed to establish whether this process is actually occurring; it is most likely in regions with extensive ice formation and a relatively unstable oceanic density structure.

  17. Coal-water slurry sprays from an electronically controlled accumulator fuel injection system: Break-up distances and times

    NASA Astrophysics Data System (ADS)

    Caton, J. A.; Payne, S. E.; Terracina, D. P.; Kihm, K. D.

    Experiments have been completed to characterize coal-water slurry sprays from an electronically-controlled accumulator fuel injection system of a diesel engine. The sprays were injected into a pressurized chamber equipped with windows. High speed movies, fuel pressures, and needle lifts were obtained as a function of time, orifice diameter, coal loading, gas density in the chamber, and accumulator fuel pressure. For the base conditions (50% by mass coal loading, 0.4 mm diameter nozzle hole, coal-water slurry pressure of 82 MPa (12,000 psi), and a chamber density of 25 kg/m(exp 3)), the break-up time was 0.30 ms. An empirical correlation for spray tip penetration, break-up time, and initial jet velocity was developed. For the conditions of this study, the spray tip penetration and initial jet velocity were 15% greater for coal-water slurry than for diesel fuel or water. Results of this study and the correlation are specific to the tested coal-water slurry and are not general for other coal-water slurry fuels.

  18. Polar Bear Conservation Status in Relation to Projected Sea-ice Conditions

    NASA Astrophysics Data System (ADS)

    Regehr, E. V.

    2015-12-01

    The status of the world's 19 subpopulations of polar bears (Ursus maritimus) varies as a function of sea-ice conditions, ecology, management, and other factors. Previous methods to project the response of polar bears to loss of Arctic sea ice—the primary threat to the species—include expert opinion surveys, Bayesian Networks providing qualitative stressor assessments, and subpopulations-specific demographic analyses. Here, we evaluated the global conservation status of polar bears using a data-based sensitivity analysis. First, we estimated generation length for subpopulations with available data (n=11). Second, we developed standardized sea-ice metrics representing habitat availability. Third, we projected global population size under alternative assumptions for relationships between sea ice and subpopulation abundance. Estimated generation length (median = 11.4 years; 95%CI = 9.8 to 13.6) and sea-ice change (median = loss of 1.26 ice-covered days per year; 95%CI = 0.70 to 3.37) varied across subpopulations. Assuming a one-to-one proportional relationship between sea ice and abundance, the median percent change in global population size over three polar bear generations was -30% (95%CI = -35% to -25%). Assuming a linear relationship between sea ice and normalized estimates of subpopulation abundance, median percent change was -4% (95% CI = -62% to +50%) or -43% (95% CI = -76% to -20%), depending on how subpopulations were grouped and how inference was extended from relatively well-studied subpopulations (n=7) to those with little or no data. Our findings suggest the potential for large reductions in polar bear numbers over the next three polar bear generations if sea-ice loss due to climate change continues as forecasted.

  19. Rheological properties of the product slurry of the Nitrate to Ammonia and Ceramic (NAC) process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muguercia, I.; Yang, G.; Ebadian, M.A.

    The Nitrate to Ammonia and Ceramic (NAC) process is an innovative technology for immobilizing the liquid from Low Level radioactive Waste (LLW). An experimental study was conducted to measure the rheological properties of the pipe flow of the NAC product slurry. Test results indicate that the NAC product slurry has a profound rheological behavior. At low solids concentration, the slurry exhibits a typical dilatant fluid (or shear thinning)fluid. The transition from dilatant fluid to pseudo-plastic fluid will occur at between 25% to 30% solids concentration in temperature ranges of 50--80{degree}C. Correlation equations are developed based on the test data.

  20. Slurry-phase biodegradation of weathered oily sludge waste.

    PubMed

    Machín-Ramírez, C; Okoh, A I; Morales, D; Mayolo-Deloisa, K; Quintero, R; Trejo-Hernández, M R

    2008-01-01

    We assessed the biodegradation of a typical oily sludge waste (PB401) in Mexico using several regimes of indigenous microbial consortium and relevant bioremediation strategies in slurry-phase system. Abiotic loss of total petroleum hydrocarbons (TPH) in the PB401 was insignificant, and degradation rates under the various treatment conditions ranged between 666.9 and 2168.7 mg kg(-1) day(-1) over a 15 days reaction period, while viable cell count peaked at between log(10)5.7 and log(10)7.4 cfu g(-1). Biostimulation with a commercial fertilizer resulted in 24% biodegradation of the TPH in the oily waste and a corresponding peak cell density of log(10)7.4 cfu g(-1). Addition of non-indigenous adapted consortium did not appear to enhance the removal of TPH from the oily waste. It would appear that the complexities of the components of the alkylaromatic fraction of the waste limited biodegradation rate even in a slurry system.

  1. The Effect of Chemical Amendments Used for Phosphorus Abatement on Greenhouse Gas and Ammonia Emissions from Dairy Cattle Slurry: Synergies and Pollution Swapping.

    PubMed

    Brennan, Raymond B; Healy, Mark G; Fenton, Owen; Lanigan, Gary J

    2015-01-01

    Land application of cattle slurry can result in incidental and chronic phosphorus (P) loss to waterbodies, leading to eutrophication. Chemical amendment of slurry has been proposed as a management practice, allowing slurry nutrients to remain available to plants whilst mitigating P losses in runoff. The effectiveness of amendments is well understood but their impacts on other loss pathways (so-called 'pollution swapping' potential) and therefore the feasibility of using such amendments has not been examined to date. The aim of this laboratory scale study was to determine how the chemical amendment of slurry affects losses of NH3, CH4, N2O, and CO2. Alum, FeCl2, Polyaluminium chloride (PAC)- and biochar reduced NH3 emissions by 92, 54, 65 and 77% compared to the slurry control, while lime increased emissions by 114%. Cumulative N2O emissions of cattle slurry increased when amended with alum and FeCl2 by 202% and 154% compared to the slurry only treatment. Lime, PAC and biochar resulted in a reduction of 44, 29 and 63% in cumulative N2O loss compared to the slurry only treatment. Addition of amendments to slurry did not significantly affect soil CO2 release during the study while CH4 emissions followed a similar trend for all of the amended slurries applied, with an initial increase in losses followed by a rapid decrease for the duration of the study. All of the amendments examined reduced the initial peak in CH4 emissions compared to the slurry only treatment. There was no significant effect of slurry amendments on global warming potential (GWP) caused by slurry land application, with the exception of biochar. After considering pollution swapping in conjunction with amendment effectiveness, the amendments recommended for further field study are PAC, alum and lime. This study has also shown that biochar has potential to reduce GHG losses arising from slurry application.

  2. The Effect of Chemical Amendments Used for Phosphorus Abatement on Greenhouse Gas and Ammonia Emissions from Dairy Cattle Slurry: Synergies and Pollution Swapping

    PubMed Central

    Brennan, Raymond B.; Healy, Mark G.; Fenton, Owen; Lanigan, Gary J.

    2015-01-01

    Land application of cattle slurry can result in incidental and chronic phosphorus (P) loss to waterbodies, leading to eutrophication. Chemical amendment of slurry has been proposed as a management practice, allowing slurry nutrients to remain available to plants whilst mitigating P losses in runoff. The effectiveness of amendments is well understood but their impacts on other loss pathways (so-called ‘pollution swapping’ potential) and therefore the feasibility of using such amendments has not been examined to date. The aim of this laboratory scale study was to determine how the chemical amendment of slurry affects losses of NH3, CH4, N2O, and CO2. Alum, FeCl2, Polyaluminium chloride (PAC)- and biochar reduced NH3 emissions by 92, 54, 65 and 77% compared to the slurry control, while lime increased emissions by 114%. Cumulative N2O emissions of cattle slurry increased when amended with alum and FeCl2 by 202% and 154% compared to the slurry only treatment. Lime, PAC and biochar resulted in a reduction of 44, 29 and 63% in cumulative N2O loss compared to the slurry only treatment. Addition of amendments to slurry did not significantly affect soil CO2 release during the study while CH4 emissions followed a similar trend for all of the amended slurries applied, with an initial increase in losses followed by a rapid decrease for the duration of the study. All of the amendments examined reduced the initial peak in CH4 emissions compared to the slurry only treatment. There was no significant effect of slurry amendments on global warming potential (GWP) caused by slurry land application, with the exception of biochar. After considering pollution swapping in conjunction with amendment effectiveness, the amendments recommended for further field study are PAC, alum and lime. This study has also shown that biochar has potential to reduce GHG losses arising from slurry application. PMID:26053923

  3. Thickness of tropical ice and photosynthesis on a snowball Earth

    NASA Technical Reports Server (NTRS)

    McKay, C. P.

    2000-01-01

    On a completely ice-covered "snowball" Earth the thickness of ice in the tropical regions would be limited by the sunlight penetrating into the ice cover and by the latent heat flux generated by freezing at the ice bottom--the freezing rate would balance the sublimation rate from the top of the ice cover. Heat transfer models of the perennially ice-covered Antarctic dry valley lakes applied to the snowball Earth indicate that the tropical ice cover would have a thickness of 10 m or less with a corresponding transmissivity of > 0.1%. This light level is adequate for photosynthesis and could explain the survival of the eukaryotic algae.

  4. Thickness of tropical ice and photosynthesis on a snowball Earth.

    PubMed

    McKay, C P

    2000-07-15

    On a completely ice-covered "snowball" Earth the thickness of ice in the tropical regions would be limited by the sunlight penetrating into the ice cover and by the latent heat flux generated by freezing at the ice bottom--the freezing rate would balance the sublimation rate from the top of the ice cover. Heat transfer models of the perennially ice-covered Antarctic dry valley lakes applied to the snowball Earth indicate that the tropical ice cover would have a thickness of 10 m or less with a corresponding transmissivity of > 0.1%. This light level is adequate for photosynthesis and could explain the survival of the eukaryotic algae.

  5. The importance of the solids loading on confirming the dielectric nanosize dependence of BaTiO₃ powders by slurry method.

    PubMed

    Zhou, Wei; Nie, Yi Mei; Li, Shu Jing; Liang, Hai Yan

    2013-01-01

    The dielectric nanosize dependence of BaTiO₃ powders was investigated by the slurry method, where two series of BaTiO₃ slurries with 10 vol% and 30 vol% solids loadings were prepared as model samples. Applying the Bruggeman-Hanai equation, the high-frequency limiting permittivity (ε(h)) of the slurries was extracted from the dielectric spectra. The ε(h) of the 10 vol% slurry showed abnormal size independence in the range from 100 nm to 700 nm, and the ε(h) of the 30 vol% slurry exhibited good agreement with the previous prediction. Through analysing quantitatively the response of ε(h) to the changing permittivity of the powders under different solids loading, it was found that the ε h of the slurry with lower solids loading is more inclined to be interfered by the systematic and random errors. Furthermore, a high permittivity value was found in the BaTiO₃ powders with 50 nm particle size.

  6. Ice sheet margins and ice shelves

    NASA Technical Reports Server (NTRS)

    Thomas, R. H.

    1984-01-01

    The effect of climate warming on the size of ice sheet margins in polar regions is considered. Particular attention is given to the possibility of a rapid response to warming on the order of tens to hundreds of years. It is found that the early response of the polar regions to climate warming would be an increase in the area of summer melt on the ice sheets and ice shelves. For sufficiently large warming (5-10C) the delayed effects would include the breakup of the ice shelves by an increase in ice drainage rates, particularly from the ice sheets. On the basis of published data for periodic changes in the thickness and melting rates of the marine ice sheets and fjord glaciers in Greenland and Antarctica, it is shown that the rate of retreat (or advance) of an ice sheet is primarily determined by: bedrock topography; the basal conditions of the grounded ice sheet; and the ice shelf condition downstream of the grounding line. A program of satellite and ground measurements to monitor the state of ice sheet equilibrium is recommended.

  7. Lava heating and loading of ice sheets on early Mars: Predictions for meltwater generation, groundwater recharge, and resulting landforms

    NASA Astrophysics Data System (ADS)

    Cassanelli, James P.; Head, James W.

    2016-06-01

    accumulate to a sufficient thickness to raise the ice-melting isotherm to the base of the superposed lavas. In these locations, if lava accumulation occurs rapidly, bottom-up melting of the ice sheet can continue, or begin, after lava accumulation has completed in a process we term "deferred melting". Subsurface mass loss through melting of the buried ice sheets is predicted to cause substantial subsidence in the superposed lavas, leading to the formation of associated collapse features including fracture systems, depressions, surface faulting and folding, wrinkle-ridge formation, and chaos terrain. In addition, if meltwater generated from the lava heating and loading process becomes trapped at the lava flow margins due to the presence of impermeable confining units, large highly pressurized episodic flooding events could occur. Examination of the study area reveals geological features which are generally consistent with those predicted to form as a result of the ice sheet lava heating and loading process, suggesting the presence of surface snow and ice during the Late Noachian to Early Hesperian period.

  8. Deformation of debris-ice mixtures

    NASA Astrophysics Data System (ADS)

    Moore, Peter L.

    2014-09-01

    Mixtures of rock debris and ice are common in high-latitude and high-altitude environments and are thought to be widespread elsewhere in our solar system. In the form of permafrost soils, glaciers, and rock glaciers, these debris-ice mixtures are often not static but slide and creep, generating many of the landforms and landscapes associated with the cryosphere. In this review, a broad range of field observations, theory, and experimental work relevant to the mechanical interactions between ice and rock debris are evaluated, with emphasis on the temperature and stress regimes common in terrestrial surface and near-surface environments. The first-order variables governing the deformation of debris-ice mixtures in these environments are debris concentration, particle size, temperature, solute concentration (salinity), and stress. A key observation from prior studies, consistent with expectations, is that debris-ice mixtures are usually more resistant to deformation at low temperatures than their pure end-member components. However, at temperatures closer to melting, the growth of unfrozen water films at ice-particle interfaces begins to reduce the strengthening effect and can even lead to profound weakening. Using existing quantitative relationships from theoretical and experimental work in permafrost engineering, ice mechanics, and glaciology combined with theory adapted from metallurgy and materials science, a simple constitutive framework is assembled that is capable of capturing most of the observed dynamics. This framework highlights the competition between the role of debris in impeding ice creep and the mitigating effects of unfrozen water at debris-ice interfaces.

  9. Ask about ice, then consider iron.

    PubMed

    Rabel, Antoinette; Leitman, Susan F; Miller, Jeffery L

    2016-02-01

    The study aims to review a condition defined by the desire to consume ice in order to satisfy an addictive-like compulsion, rather than for purposes of hydration or pain relief. This condition is called ice pica, or pagophagia. Associations between ice pica and iron deficiency, suggestions for clinical screening of at risk populations, and recommendations for treatment and follow-up care are provided. An extensive literature review of original research articles, reviews, clinical practice manuscripts, and scientific publications on pica and pagophagia. A compulsion or craving for the consumption of ice is often overlooked in clinical practice. It is therefore important for clinicians to include ice pica as part of the review of systems for certain patient populations. Ice pica is frequently associated with iron deficiency, and iron supplementation is an effective therapy in most cases. Knowledge gained from screening for ice pica can generate valuable patient information and lead to the diagnosis and treatment of iron deficiency. The populations at risk include young women and blood donors of either sex. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  10. Removal of Suspended Solids in Anaerobically Digested Slurries of Livestock and Poultry Manure by Coagulation Using Different Dosages of Polyaluminum Chloride

    NASA Astrophysics Data System (ADS)

    Li, P.; Zhang, C. J.; Zhao, T. K.; Zhong, H.

    2017-01-01

    In this study, anaerobically digested slurries of livestock and poultry manure were pretreated by coagulation-sedimentation using an inorganic polymer coagulant, polyaluminum chloride (PAC). The effect of different PAC dosages on suspended solids (SS) removal and pH in the biogas slurries was assessed to provide reference values for reducing the organic load of biogas slurry in the coagulation-sedimentation process and explore the feasibility of reducing the difficulty in subsequent utilization or processing of biogas slurry. The results showed that for the pig slurry containing approximately 5000 mg/L SS, the removal rate of SS reached up to 81.6% with the coagulant dosage of 0.28 g/L PAC. For the chicken slurry containing approximately 2600 mg/L SS, the removal rate of SS was 30.2% with the coagulant dosage of 0.33 g/L PAC. The removal rate of SS in both slurries of livestock and poultry manure exhibited a downward trend with high PAC dosage. Therefore, there is a need to control the PAC dosage in practical use. The pH changed little in the two types of biogas slurries after treatment with different PAC dosages and both were in line with the standard values specified in the “Standards for Irrigation Water Quality”.

  11. Method for inducing hypothermia

    DOEpatents

    Becker, Lance B.; Hoek, Terry Vanden; Kasza, Kenneth E.

    2003-04-15

    Systems for phase-change particulate slurry cooling equipment and methods to induce hypothermia in a patient through internal and external cooling are provided. Subcutaneous, intravascular, intraperitoneal, gastrointestinal, and lung methods of cooling are carried out using saline ice slurries or other phase-change slurries compatible with human tissue. Perfluorocarbon slurries or other slurry types compatible with human tissue are used for pulmonary cooling. And traditional external cooling methods are improved by utilizing phase-change slurry materials in cooling caps and torso blankets.

  12. Method for inducing hypothermia

    DOEpatents

    Becker, Lance B [Chicago, IL; Hoek, Terry Vanden [Chicago, IL; Kasza, Kenneth E [Palos Park, IL

    2008-09-09

    Systems for phase-change particulate slurry cooling equipment and methods to induce hypothermia in a patient through internal and external cooling are provided. Subcutaneous, intravascular, intraperitoneal, gastrointestinal, and lung methods of cooling are carried out using saline ice slurries or other phase-change slurries compatible with human tissue. Perfluorocarbon slurries or other slurry types compatible with human tissue are used for pulmonary cooling. And traditional external cooling methods are improved by utilizing phase-change slurry materials in cooling caps and torso blankets.

  13. Method for inducing hypothermia

    DOEpatents

    Becker, Lance B.; Hoek, Terry Vanden; Kasza, Kenneth E.

    2005-11-08

    Systems for phase-change particulate slurry cooling equipment and methods to induce hypothermia in a patient through internal and external cooling are provided. Subcutaneous, intravascular, intraperitoneal, gastrointestinal, and lung methods of cooling are carried out using saline ice slurries or other phase-change slurries compatible with human tissue. Perfluorocarbon slurries or other slurry types compatible with human tissue are used for pulmonary cooling. And traditional external cooling methods are improved by utilizing phase-change slurry materials in cooling caps and torso blankets.

  14. Method for freeforming objects with low-binder slurry

    DOEpatents

    Cesarano, III, Joseph; Calvert, Paul D.

    2002-01-01

    In a rapid prototyping system, a part is formed by depositing a bead of slurry that has a sufficient high concentration of particles to be pseudoplastic and almost no organic binders. After deposition the bead is heated to drive off sufficient liquid to cause the bead to become dilatant.

  15. Modelling approaches for pipe inclination effect on deposition limit velocity of settling slurry flow

    NASA Astrophysics Data System (ADS)

    Matoušek, Václav; Kesely, Mikoláš; Vlasák, Pavel

    2018-06-01

    The deposition velocity is an important operation parameter in hydraulic transport of solid particles in pipelines. It represents flow velocity at which transported particles start to settle out at the bottom of the pipe and are no longer transported. A number of predictive models has been developed to determine this threshold velocity for slurry flows of different solids fractions (fractions of different grain size and density). Most of the models consider flow in a horizontal pipe only, modelling approaches for inclined flows are extremely scarce due partially to a lack of experimental information about the effect of pipe inclination on the slurry flow pattern and behaviour. We survey different approaches to modelling of particle deposition in flowing slurry and discuss mechanisms on which deposition-limit models are based. Furthermore, we analyse possibilities to incorporate the effect of flow inclination into the predictive models and select the most appropriate ones based on their ability to modify the modelled deposition mechanisms to conditions associated with the flow inclination. A usefulness of the selected modelling approaches and their modifications are demonstrated by comparing model predictions with experimental results for inclined slurry flows from our own laboratory and from the literature.

  16. Using the glacial geomorphology of palaeo-ice streams to understand mechanisms of ice sheet collapse

    NASA Astrophysics Data System (ADS)

    Stokes, Chris R.; Margold, Martin; Clark, Chris; Tarasov, Lev

    2017-04-01

    Processes which bring about ice sheet deglaciation are critical to our understanding of glacial-interglacial cycles and ice sheet sensitivity to climate change. The precise mechanisms of deglaciation are also relevant to our understanding of modern-day ice sheet stability and concerns over global sea level rise. Mass loss from ice sheets can be broadly partitioned between melting and a 'dynamic' component whereby rapidly-flowing ice streams/outlet glaciers transfer ice from the interior to the oceans. Surface and basal melting (e.g. of ice shelves) are closely linked to atmospheric and oceanic conditions, but the mechanisms that drive dynamic changes in ice stream discharge are more complex, which generates much larger uncertainties about their future contribution to ice sheet mass loss and sea level rise. A major problem is that observations of modern-day ice streams typically span just a few decades and, at the ice-sheet scale, it is unclear how the entire drainage network of ice streams evolves during deglaciation. A key question is whether ice streams might increase and sustain rates of mass loss over centuries or millennia, beyond those expected for a given ocean-climate forcing. To address this issue, numerous workers have sought to understand ice stream dynamics over longer time-scales using their glacial geomorphology in the palaeo-record. Indeed, our understanding of their geomorphology has grown rapidly in the last three decades, from almost complete ignorance to a detailed knowledge of their geomorphological products. Building on this body of work, this paper uses the glacial geomorphology of 117 ice streams in the North American Laurentide Ice Sheet to reconstruct their activity during its deglaciation ( 22,000 to 7,000 years ago). Ice stream activity was characterised by high variability in both time and space, with ice streams switching on and off in different locations. During deglaciation, we find that their overall number decreased, they occupied a

  17. Effect of the Inhomogeneity of Ice Crystals on Retrieving Ice Cloud Optical Thickness and Effective Particle Size

    NASA Technical Reports Server (NTRS)

    Xie, Yu; Minnis, Patrick; Hu, Yong X.; Kattawar, George W.; Yang, Ping

    2008-01-01

    Spherical or spheroidal air bubbles are generally trapped in the formation of rapidly growing ice crystals. In this study the single-scattering properties of inhomogeneous ice crystals containing air bubbles are investigated. Specifically, a computational model based on an improved geometric-optics method (IGOM) has been developed to simulate the scattering of light by randomly oriented hexagonal ice crystals containing spherical or spheroidal air bubbles. A combination of the ray-tracing technique and the Monte Carlo method is used. The effect of the air bubbles within ice crystals is to smooth the phase functions, diminish the 22deg and 46deg halo peaks, and substantially reduce the backscatter relative to bubble-free particles. These features vary with the number, sizes, locations and shapes of the air bubbles within ice crystals. Moreover, the asymmetry factors of inhomogeneous ice crystals decrease as the volume of air bubbles increases. Cloud reflectance lookup tables were generated at wavelengths 0.65 m and 2.13 m with different air-bubble conditions to examine the impact of the bubbles on retrieving ice cloud optical thickness and effective particle size. The reflectances simulated for inhomogeneous ice crystals are slightly larger than those computed for homogenous ice crystals at a wavelength of 0.65 microns. Thus, the retrieved cloud optical thicknesses are reduced by employing inhomogeneous ice cloud models. At a wavelength of 2.13 microns, including air bubbles in ice cloud models may also increase the reflectance. This effect implies that the retrieved effective particle sizes for inhomogeneous ice crystals are larger than those retrieved for homogeneous ice crystals, particularly, in the case of large air bubbles.

  18. Performance of colloidal silica and ceria based slurries on CMP of Si-face 6H-SiC substrates

    NASA Astrophysics Data System (ADS)

    Chen, Guomei; Ni, Zifeng; Xu, Laijun; Li, Qingzhong; Zhao, Yongwu

    2015-12-01

    Colloidal silica and ceria based slurries, both using KMnO4 as an oxidizer, for chemical mechanical polishing (CMP) of Si-face (0 0 0 1) 6H-SiC substrate, were investigated to obtain higher material removal rate (MRR) and ultra-smooth surface. The results indicate that there was a significant difference in the CMP performance of 6H-SiC between silica and ceria based slurries. For the ceria based slurries, a higher MRR was obtained, especially in strong acid KMnO4 environment, and the maximum MRR (1089 nm/h) and a smoother surface with an average roughness Ra of 0.11 nm was achieved using slurries containing 2 wt% colloidal ceria, 0.05 M KMnO4 at pH 2. In contrast, due to the attraction between negative charged silica particles and positive charged SiC surface below pH 5, the maximum MRR of silica based slurry was only 185 nm/h with surface roughness Ra of 0.254 nm using slurries containing 6 wt% colloidal silica, 0.05 M KMnO4 at pH 6. The polishing mechanism was discussed based on the zeta potential measurements of the abrasives and the X-ray photoelectron spectroscopy (XPS) analysis of the polished SiC surfaces.

  19. Rotation of melting ice disks due to melt fluid flow.

    PubMed

    Dorbolo, S; Adami, N; Dubois, C; Caps, H; Vandewalle, N; Darbois-Texier, B

    2016-03-01

    We report experiments concerning the melting of ice disks (85 mm in diameter and 14 mm in height) at the surface of a thermalized water bath. During the melting, the ice disks undergo translational and rotational motions. In particular, the disks rotate. The rotation speed has been found to increase with the bath temperature. We investigated the flow under the bottom face of the ice disks by a particle image velocimetry technique. We find that the flow goes downwards and also rotates horizontally, so that a vertical vortex is generated under the ice disk. The proposed mechanism is the following. In the vicinity of the bottom face of the disk, the water eventually reaches the temperature of 4 °C for which the water density is maximum. The 4 °C water sinks and generates a downwards plume. The observed vertical vorticity results from the flow in the plume. Finally, by viscous entrainment, the horizontal rotation of the flow induces the solid rotation of the ice block. This mechanism seems generic: any vertical flow that generates a vortex will induce the rotation of a floating object.

  20. 30 CFR 77.216-2 - Water, sediment, or slurry impoundments and impounding structures; minimum plan requirements...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... the District Manager. (b) Any changes or modifications to plans for water, sediment, or slurry... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Water, sediment, or slurry impoundments and impounding structures; minimum plan requirements; changes or modifications; certification. 77.216-2 Section...

  1. 30 CFR 77.216-2 - Water, sediment, or slurry impoundments and impounding structures; minimum plan requirements...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... the District Manager. (b) Any changes or modifications to plans for water, sediment, or slurry... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Water, sediment, or slurry impoundments and impounding structures; minimum plan requirements; changes or modifications; certification. 77.216-2 Section...

  2. 30 CFR 77.216-2 - Water, sediment, or slurry impoundments and impounding structures; minimum plan requirements...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... the District Manager. (b) Any changes or modifications to plans for water, sediment, or slurry... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Water, sediment, or slurry impoundments and impounding structures; minimum plan requirements; changes or modifications; certification. 77.216-2 Section...

  3. 30 CFR 77.216-2 - Water, sediment, or slurry impoundments and impounding structures; minimum plan requirements...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... the District Manager. (b) Any changes or modifications to plans for water, sediment, or slurry... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Water, sediment, or slurry impoundments and impounding structures; minimum plan requirements; changes or modifications; certification. 77.216-2 Section...

  4. Ice, Ice, Baby!

    NASA Astrophysics Data System (ADS)

    Hamilton, C.

    2008-12-01

    The Center for Remote Sensing of Ice Sheets (CReSIS) has developed an outreach program based on hands-on activities called "Ice, Ice, Baby". These lessons are designed to teach the science principles of displacement, forces of motion, density, and states of matter. These properties are easily taught through the interesting topics of glaciers, icebergs, and sea level rise in K-8 classrooms. The activities are fun, engaging, and simple enough to be used at science fairs and family science nights. Students who have participated in "Ice, Ice, Baby" have successfully taught these to adults and students at informal events. The lessons are based on education standards which are available on our website www.cresis.ku.edu. This presentation will provide information on the activities, survey results from teachers who have used the material, and other suggested material that can be used before and after the activities.

  5. The Effect of pH on Slurry Erosion-Corrosion of Tungsten Carbide Overlays Alloyed with Ru

    NASA Astrophysics Data System (ADS)

    Nelwalani, Ndivhuwo B.; van der Merwe, Josias W.

    2018-02-01

    The aim of the study was to determine the effect of Ru additions to WC-Fe overlays when exposed to low pH slurry erosion conditions. These overlays were applied through Plasma Transferred Arc, and the original bulk Ru powder concentrations varied from 0.5 to 5 wt.%. A slurry jet impingement erosion-corrosion test rig was used to evaluate wear, and electrochemical measurements were performed to characterize the corrosion properties. The slurry mixtures contained silica sand and synthetic mine water. The pH was varied between 3 and 6.5 for the slurry erosion tests and lowered further for the corrosion characterization. Samples were examined optically and with a scanning electron microscope using energy-dispersive x-ray spectroscopy. X-ray diffraction analysis was used to determine the phases present. For the slurry erosion-corrosion results at the pH of 6.5, addition of Ru did not show a decrease in erosion-corrosion rates. However, when the pH was decreased to 3, by the addition of HCl, Ru improved the resistance. From the electrochemistry, it was also clear that Ru additions improved the corrosion resistance, but more than 1 wt.% Ru was required. At very low pH levels, the presence of Ru was not able to prevent corrosion.

  6. Porous hydroxyapatite/gelatine scaffolds with ice-designed channel-like porosity for biomedical applications.

    PubMed

    Landi, Elena; Valentini, Federica; Tampieri, Anna

    2008-11-01

    A cryogenic process, including freeze-casting and drying has been performed to obtain hydroxyapatite (HA) scaffolds (approx. diameter 10 mm, height 20 mm) with completely lamellar morphology due to preferentially aligned channel-like pores. Changing the process parameters that influence the cold transmission efficiency from the bottom to the top of the poured HA slurry, lamellar ice crystals with different thickness grew throughout the samples. After sintering, scaffolds with porosity features nearly resembling the ice ones were obtained. The interconnection of pores and the ability of the scaffolds to be rapidly penetrated by synthetic body fluid has been proven. Biohybrid HA/gel composites were prepared, infiltrating HA lamellar scaffolds (45-55 vol.% of porosity) with a 10wt.% solution of gelatine. Colouring genipine was used to cross-link gelatine and clearly show the distribution of the protein in the composite. The compressive mechanical properties of lamellar scaffolds improved with the addition of gelatine: the strength increased up to 5-6 times, while the elastic modulus and strain approximately doubled. The effectiveness of the cross-linkage has been preliminarily verified following scaffold degradation in synthetic body fluid.

  7. Process for generating electricity in a pressurized fluidized-bed combustor system

    DOEpatents

    Kasper, Stanley

    1991-01-01

    A process and apparatus for generating electricity using a gas turbine as part of a pressurized fluidized-bed combustor system wherein coal is fed as a fuel in a slurry in which other constituents, including a sulfur sorbent such as limestone, are added. The coal is combusted with air in a pressurized combustion chamber wherein most of the residual sulfur in the coal is captured by the sulfur sorbent. After particulates are removed from the flue gas, the gas expands in a turbine, thereby generating electric power. The spent flue gas is cooled by heat exchange with system combustion air and/or system liquid streams, and the condensate is returned to the feed slurry.

  8. Supportability of a High-Yield-Stress Slurry in a New Stereolithography-Based Ceramic Fabrication Process

    NASA Astrophysics Data System (ADS)

    He, Li; Song, Xuan

    2018-03-01

    In recent years, ceramic fabrication using stereolithography (SLA) has gained in popularity because of its high accuracy and density that can be achieved in the final part of production. One of the key challenges in ceramic SLA is that support structures are required for building overhanging features, whereas removing these support structures without damaging the components is difficult. In this research, a suspension-enclosing projection-stereolithography process is developed to overcome this challenge. This process uses a high-yield-stress ceramic slurry as the feedstock material and exploits the elastic force of the material to support overhanging features without the need for building additional support structures. Ceramic slurries with different solid loadings are studied to identify the rheological properties most suitable for supporting overhanging features. An analytical model of a double doctor-blade module is established to obtain uniform and thin recoating layers from a high-yield-stress slurry. Several test cases highlight the feasibility of using a high-yield-stress slurry to support overhanging features in SLA.

  9. Life cycle assessment of pig slurry treatment technologies for nutrient redistribution in Denmark.

    PubMed

    ten Hoeve, Marieke; Hutchings, Nicholas J; Peters, Gregory M; Svanström, Magdalena; Jensen, Lars S; Bruun, Sander

    2014-01-01

    Animal slurry management is associated with a range of impacts on fossil resource use and the environment. The impacts are greatest when large amounts of nutrient-rich slurry from livestock production cannot be adequately utilised on adjacent land. To facilitate nutrient redistribution, a range of different technologies are available. This study comprised a life cycle assessment of the environmental impacts from handling 1000 kg of pig slurry ex-animal. Application of untreated pig slurry onto adjacent land was compared with using four different treatment technologies to enable nutrient redistribution before land application: (a) separation by mechanical screw press, (b) screw press separation with composting of the solid fraction, (c) separation by decanter centrifuge, and (d) decanter centrifuge separation with ammonia stripping of the liquid fraction. Emissions were determined based on a combination of values derived from the literature and simulations with the Farm-N model for Danish agricultural and climatic conditions. The environmental impact categories assessed were climate change, freshwater eutrophication, marine eutrophication, terrestrial acidification, natural resource use, and soil carbon, nitrogen and phosphorus storage. In all separation scenarios, the liquid fraction was applied to land on the pig-producing (donor) farm and the solid fraction transported to a recipient farm and utilised for crop production. Separation, especially by centrifuge, was found to result in a lower environmental impact potential than application of untreated slurry to adjacent land. Composting and ammonia stripping either slightly increased or slightly decreased the environmental impact potential, depending on the impact category considered. The relative ranking of scenarios did not change after a sensitivity analysis in which coefficients for field emissions of nitrous oxide, ammonia and phosphorus were varied within the range cited in the literature. Therefore, the best

  10. What Controls the Low Ice Number Concentration in the Upper Tropical Troposphere?

    NASA Astrophysics Data System (ADS)

    Penner, J.; Zhou, C.; Lin, G.; Liu, X.; Wang, M.

    2015-12-01

    Cirrus clouds in the tropical tropopause play a key role in regulating the moisture entering the stratosphere through their dehydrating effect. Low ice number concentrations and high supersaturations were frequently were observed in these clouds. However, low ice number concentrations are inconsistent with cirrus cloud formation based on homogeneous freezing. Different mechanisms have been proposed to explain this discrepancy, including the inhibition of homogeneous freezing by pre-existing ice crystals and/or glassy organic aerosol heterogeneous ice nuclei (IN) and limiting the formation of ice number from high frequency gravity waves. In this study, we examined the effect from three different parameterizations of in-cloud updraft velocities, the effect from pre-existing ice crystals, the effect from different water vapor deposition coefficients (α=0.1 or 1), and the effect from 0.1% of secondary organic aerosol (SOA) acting as glassy heterogeneous ice nuclei (IN) in CAM5. Model simulated ice crystal numbers are compared against an aircraft observational dataset. Using grid resolved large-scale updraft velocity in the ice nucleation parameterization generates ice number concentrations in better agreement with observations for temperatures below 205K while using updraft velocities based on the model-generated turbulence kinetic energy generates ice number concentrations in better agreement with observations for temperatures above 205K. A larger water vapor deposition coefficient (α=1) can efficiently reduce the ice number at temperatures below 205K but less so at higher temperatures. Glassy SOA IN are most effective at reducing the ice number concentrations when the effective in-cloud updraft velocities are moderate (~0.05-0.2 m s-1). Including the removal of water vapor on pre-existing ice can also effectively reduce the ice number and diminish the effects from the additional glassy SOA heterogeneous IN. We also re-evaluate whether IN seeding in cirrus cloud is

  11. Retrieval of ice cloud properties from Himawari-8 satellite measurements by Voronoi ice particle model

    NASA Astrophysics Data System (ADS)

    Letu, H.; Nagao, T. M.; Nakajima, T. Y.; Ishimoto, H.; Riedi, J.; Shang, H.

    2017-12-01

    Ice cloud property product from satellite measurements is applicable in climate change study, numerical weather prediction, as well as atmospheric study. Ishimoto et al., (2010) and Letu et al., (2016) developed a single scattering property of the highly irregular ice particle model, called the Voronoi model for developing ice cloud product of the GCOM-C satellite program. It is investigated that Voronoi model has a good performance on retrieval of the ice cloud properties by comparing it with other well-known scattering models. Cloud property algorithm (Nakajima et al., 1995, Ishida and Nakajima., 2009, Ishimoto et al., 2009, Letu et al., 2012, 2014, 2016) of the GCOM-C satellite program is improved to produce the Himawari-8/AHI cloud products based on the variation of the solar zenith angle. Himawari-8 is the new-generational geostationary meteorological satellite, which is successfully launched by the Japan Meteorological Agency (JMA) on 7 October 2014. In this study, ice cloud optical and microphysical properties are simulated from RSTAR radiative transfer code by using various model. Scattering property of the Voronoi model is investigated for developing the AHI ice cloud products. Furthermore, optical and microphysical properties of the ice clouds are retrieved from Himawari-8/AHI satellite measurements. Finally, retrieval results from Himawari-8/AHI are compared to MODIS-C6 cloud property products for validation of the AHI cloud products.

  12. Generation and fate of glacial sediments in the central Transantarctic Mountains based on radiogenic isotopes and implications for reconstructing past ice dynamics

    NASA Astrophysics Data System (ADS)

    Farmer, G. Lang; Licht, Kathy J.

    2016-10-01

    The Nd, Sr and Pb isotopic compositions of glacial tills from the Byrd and Nimrod Glaciers in the central Transantarctic Mountains (TAM) in East Antarctica were obtained to assess the sources of detritus transported by these ice masses. Tills from lateral moraines along the entire extent of both glaciers have isotopic compositions consistent with their derivation predominately from erosion of adjacent bedrock. Fine- (<63μ) and coarser-grained (0.5 mm-2 mm) sediment from these tills have identical isotopic characteristics, indicating that fine-grained detritus is the product of further comminution of coarser sediments. Comparison of present-day till isotopic data to existing data from fine-grained LGM tills in the central Ross Sea confirm that these were deposited from East Antarctic ice that expanded through the TAM and indicates that the LGM sediments are mixtures of detritus eroded along the entire path of ice transiting the TAM. If specific lithologies were preferentially eroded as ice passed through the TAM, it is not clearly evident in the Ross Sea till isotopic compositions. Our data do demonstrate, however, that glacial tills generated from erosion of inboard regions of the mountain belt yield sediment with a larger component of 560 Ma to 600 Ma detrital zircons and lower average εNd(0) values (<-5) than that produced further downstream. As a result, past retreat of ice grounding-lines up the narrow valleys of the TAM resulting in active erosion of inboard region should recognizable in glacial sediments deposited in the Ross Sea and so provide a means to identify times when the East Antarctic ice sheet was smaller than today. This study highlights both the value and necessity of utilizing multiple provenance methods in evaluating glacial erosion and transport when reconstructing past ice sheet dynamics.

  13. Nitrogen fertilizer replacement value of cattle slurry in grassland as affected by method and timing of application.

    PubMed

    Lalor, S T J; Schröder, J J; Lantinga, E A; Oenema, O; Kirwan, L; Schulte, R P O

    2011-01-01

    Slurry application with methods such as trailing shoe (TS) results in reduced emissions of ammonia (NH3) compared with broadcast application using splashplate (SP). Timing the application during cool and wet weather conditions also contributes to low NH3 emissions. From this perspective, we investigated whether reduced NH3 emissions due to improved slurry application method and timing results in an increase in the nitrogen (N) fertilizer replacement value (NFRV). The effects of application timing (June vs. April) and application method (TS vs. SP) on the apparent N recovery (ANR) and NFRV from cattle slurry applied to grassland were examined on three sites over 3 yr in randomized block experiments. The NFRV was calculated using two methods: (i) NFRV(N) based on the ANR of slurry N relative to mineral N fertilizer; and (ii) NFRV(DM) based on DM yield. The TS method increased the ANR, NFRV(N), and NFRV(DM) compared with SP in the 40- to 50-d period following slurry application by 0.09, 0.10, and 0.10 kg kg(-1), respectively. These values were reduced to 0.07, 0.06, and 0.05 kg kg(-1), respectively, when residual harvests during the rest of the year were included. The highest NFRV(DM) for the first harvest period was with application in April using STS (0.30 kg kg(-1)), while application in June with SP had the Slowest (0.12 kg kg(-1)). The highest NFRV(DM) for the cumulative harvest period was with application in April using TS (0.38 kg kg(-1)), while application in June with SP had the lowest (0.17 kg kg(-1)). Improved management of application method, by using TS instead of SP, and timing, by applying slurry in April rather than June, offer potential to increase the NFRV(DM) of cattle slurry applied to grassland.

  14. Incorrect Match Detection Method for Arctic Sea-Ice Reconstruction Using Uav Images

    NASA Astrophysics Data System (ADS)

    Kim, J.-I.; Kim, H.-C.

    2018-05-01

    Shapes and surface roughness, which are considered as key indicators in understanding Arctic sea-ice, can be measured from the digital surface model (DSM) of the target area. Unmanned aerial vehicle (UAV) flying at low altitudes enables theoretically accurate DSM generation. However, the characteristics of sea-ice with textureless surface and incessant motion make image matching difficult for DSM generation. In this paper, we propose a method for effectively detecting incorrect matches before correcting a sea-ice DSM derived from UAV images. The proposed method variably adjusts the size of search window to analyze the matching results of DSM generated and distinguishes incorrect matches. Experimental results showed that the sea-ice DSM produced large errors along the textureless surfaces, and that the incorrect matches could be effectively detected by the proposed method.

  15. Winter ocean-ice interactions under thin sea ice observed by IAOOS platforms during N-ICE2015: Salty surface mixed layer and active basal melt

    NASA Astrophysics Data System (ADS)

    Koenig, Zoé; Provost, Christine; Villacieros-Robineau, Nicolas; Sennéchael, Nathalie; Meyer, Amelie

    2016-10-01

    IAOOS (Ice Atmosphere Arctic Ocean Observing System) platforms, measuring physical parameters at the atmosphere-snow-ice-ocean interface deployed as part of the N-ICE2015 campaign, provide new insights on winter conditions North of Svalbard. The three regions crossed during the drifts, the Nansen Basin, the Sofia Deep, and the Svalbard northern continental slope featured distinct hydrographic properties and ice-ocean exchanges. In the Nansen Basin, the quiescent warm layer was capped by a stepped halocline (60 and 110 m) and a deep thermocline (110 m). Ice was forming and the winter mixed layer salinity was larger by ˜0.1 g/kg than previously observed. Over the Svalbard continental slope, the Atlantic Water (AW) was very shallow (20 m from the surface) and extended offshore from the 500 m isobath by a distance of about 70 km, sank along the slope (40 m from the surface) and probably shed eddies into the Sofia Deep. In the Sofia Deep, relatively warm waters of Atlantic origin extended from 90 m downward. Resulting from different pathways, these waters had a wide range of hydrographic characteristics. Sea-ice melt was widespread over the Svalbard continental slope and ocean-to-ice heat fluxes reached values of 400 W m-2 (mean of ˜150 W m-2 over the continental slope). Sea-ice melt events were associated with near 12 h fluctuations in the mixed-layer temperature and salinity corresponding to the periodicity of tides and near-inertial waves potentially generated by winter storms, large barotropic tides over steep topography, and/or geostrophic adjustments.

  16. Ice stream activity scaled to ice sheet volume during Laurentide Ice Sheet deglaciation.

    PubMed

    Stokes, C R; Margold, M; Clark, C D; Tarasov, L

    2016-02-18

    The contribution of the Greenland and West Antarctic ice sheets to sea level has increased in recent decades, largely owing to the thinning and retreat of outlet glaciers and ice streams. This dynamic loss is a serious concern, with some modelling studies suggesting that the collapse of a major ice sheet could be imminent or potentially underway in West Antarctica, but others predicting a more limited response. A major problem is that observations used to initialize and calibrate models typically span only a few decades, and, at the ice-sheet scale, it is unclear how the entire drainage network of ice streams evolves over longer timescales. This represents one of the largest sources of uncertainty when predicting the contributions of ice sheets to sea-level rise. A key question is whether ice streams might increase and sustain rates of mass loss over centuries or millennia, beyond those expected for a given ocean-climate forcing. Here we reconstruct the activity of 117 ice streams that operated at various times during deglaciation of the Laurentide Ice Sheet (from about 22,000 to 7,000 years ago) and show that as they activated and deactivated in different locations, their overall number decreased, they occupied a progressively smaller percentage of the ice sheet perimeter and their total discharge decreased. The underlying geology and topography clearly influenced ice stream activity, but--at the ice-sheet scale--their drainage network adjusted and was linked to changes in ice sheet volume. It is unclear whether these findings can be directly translated to modern ice sheets. However, contrary to the view that sees ice streams as unstable entities that can accelerate ice-sheet deglaciation, we conclude that ice streams exerted progressively less influence on ice sheet mass balance during the retreat of the Laurentide Ice Sheet.

  17. The structure of ice crystallized from supercooled water

    NASA Astrophysics Data System (ADS)

    Murray, Benjamin

    2013-03-01

    The freezing of water to ice is fundamentally important to fields as diverse as cloud formation to cryopreservation. Traditionally ice was thought to exist in two well-crystalline forms: stable hexagonal ice and metastable cubic ice. It has recently been shown, using X-ray diffraction data, that ice which crystallizes homogeneously and heterogeneously from supercooled water is neither of these phases. The resulting ice is disordered in one dimension and therefore possesses neither cubic nor hexagonal symmetry and is instead composed of randomly stacked layers of cubic and hexagonal sequences. We refer to this ice as stacking-disordered ice I (ice Isd) . This result is consistent with a number of computational studies of the crystallization of water. Review of the literature reveals that almost all ice that has been identified as cubic ice in previous diffraction studies and generated in a variety of ways was most likely stacking-disordered ice I with varying degrees of stacking disorder, which raises the question of whether cubic ice exists. New data will be presented which shows significant stacking disorder (or stacking faults on the order of 1 in every 100 layers of ice Ih) in droplets which froze heterogeneously as warm as 257 K. The identification of stacking-disordered ice from heterogeneous ice nucleation supports the hypothesis that the structure of ice that initially crystallises from supercooled water is stacking-disordered ice I, independent of nucleation mechanism, but this ice can relax to the stable hexagonal phase subject to the kinetics of recrystallization. The formation and persistence of stacking disordered ice in the Earth's atmosphere will also be discussed. Funded by the European Research Council (FP7, 240449 ICE)

  18. PSL Icing Facility Upgrade Overview

    NASA Technical Reports Server (NTRS)

    Griffin, Thomas A.; Dicki, Dennis J.; Lizanich, Paul J.

    2014-01-01

    The NASA Glenn Research Center Propulsion Systems Lab (PSL) was recently upgraded to perform engine inlet ice crystal testing in an altitude environment. The system installed 10 spray bars in the inlet plenum for ice crystal generation using 222 spray nozzles. As an altitude test chamber, the PSL is capable of simulating icing events at altitude in a groundtest facility. The system was designed to operate at altitudes from 4,000 to 40,000 ft at Mach numbers up to 0.8M and inlet total temperatures from -60 to +15 degF. This paper and presentation will be part of a series of presentations on PSL Icing and will cover the development of the icing capability through design, developmental testing, installation, initial calibration, and validation engine testing. Information will be presented on the design criteria and process, spray bar developmental testing at Cox and Co., system capabilities, and initial calibration and engine validation test. The PSL icing system was designed to provide NASA and the icing community with a facility that could be used for research studies of engine icing by duplicating in-flight events in a controlled ground-test facility. With the system and the altitude chamber we can produce flight conditions and cloud environments to simulate those encountered in flight. The icing system can be controlled to set various cloud uniformities, droplet median volumetric diameter (MVD), and icing water content (IWC) through a wide variety of conditions. The PSL chamber can set altitudes, Mach numbers, and temperatures of interest to the icing community and also has the instrumentation capability of measuring engine performance during icing testing. PSL last year completed the calibration and initial engine validation of the facility utilizing a Honeywell ALF502-R5 engine and has duplicated in-flight roll back conditions experienced during flight testing. This paper will summarize the modifications and buildup of the facility to accomplish these tests.

  19. Strain in shore fast ice due to incoming ocean waves and swell

    NASA Astrophysics Data System (ADS)

    Fox, Colin; Squire, Vernon A.

    1991-03-01

    Using a development from the theoretical model presented by Fox and Squire (1990), this paper investigates the strain field generated in shore fast ice by normally incident ocean waves and swell. After a brief description of the model and its convergence, normalized absolute strain (relative to a 1-m incident wave) is found as a function of distance from the ice edge for various wave periods, ice thicknesses, and water depths. The squared transfer function, giving the relative ability of incident waves of different periods to generate strain in the ice, is calculated, and its consequences are discussed. The ice is then forced with a Pierson-Moskowitz spectrum, and the consequent strain spectra are plotted as a function of penetration into the ice sheet. Finally, rms strain, computed as the incoherent sum of the strains resulting from energy in the open water spectrum, is found. The results have implications to the breakup of shore fast ice and hence to the floe size distribution of the marginal ice zone.

  20. Ice in Channels and Ice-Rock Mixtures in Valleys on Mars: Did They Slide on Deformable Rubble Like Antarctic Ice Streams?

    NASA Technical Reports Server (NTRS)

    Lucchitta, B. K.

    1997-01-01

    Recent studies of ice streams in Antarctica reveal a mechanism of basal motion that may apply to channels and valleys on Mars. The mechanism is sliding of the ice on deformable water-saturated till under high pore pressures. It has been suggested by Lucchitta that ice was present in outflow channels on Mars and gave them their distinctive morphology. This ice may have slid like Antarctic ice streams but on rubbly weathering products rather than till. However, to generate water under high pore pressures, elevated heatflow is needed to melt the base of the ice. Either volcanism or higher heatflow more than 2 b.y. ago could have raised the basal temperature. Regarding valley networks, higher heatflow 3 b.y. ago could have allowed sliding of ice-saturated overburden at a few hundred meters depth. If the original, pristine valleys were somewhat deeper than they are now, they could have formed by the same mechanism. Recent sounding of the seafloor in front of the Ross Ice Shelf in Antarctica reveals large persistent patterns of longitudinal megaflutes and drumlinoid forms, which bear remarkable resemblance to longitudinal grooves and highly elongated streamlined islands found on the floors of martian outflow channels. The flutes are interpreted to have formed at the base of ice streams during the last glacial advance. Additional similarities of Antarctic ice streams with martian outflow channels are apparent. Antarctic ice streams are 30 to 80 km wide and hundreds of kilometers long. Martian outflow channels have similar dimensions. Ice stream beds are below sea level. Carr determined that most common floor elevations of martian outflow channels lie below martian datum, which may have been close to or below past martian sea levels. The Antarctic ice stream bed gradient is flat and locally may go uphill, and surface slopes are exceptionally. Martian channels also have floor gradients that are shallow or go uphill locally and have low surface gradients. The depth to the

  1. Plans and Preliminary Results of Fundamental Studies of Ice Crystal Icing Physics in the NASA Propulsion Systems Laboratory

    NASA Technical Reports Server (NTRS)

    Struk, Peter; Tsao, Jen-Ching; Bartkus, Tadas

    2017-01-01

    This paper describes plans and preliminary results for using the NASA Propulsion Systems Lab (PSL) to experimentally study the fundamental physics of ice-crystal ice accretion. NASA is evaluating whether this facility, in addition to full-engine and motor-driven-rig tests, can be used for more fundamental ice-accretion studies that simulate the different mixed-phase icing conditions along the core flow passage of a turbo-fan engine compressor. The data from such fundamental accretion tests will be used to help develop and validate models of the accretion process. This paper presents data from some preliminary testing performed in May 2015 which examined how a mixed-phase cloud could be generated at PSL using evaporative cooling in a warmer-than-freezing environment.

  2. Plans and Preliminary Results of Fundamental Studies of Ice Crystal Icing Physics in the NASA Propulsion Systems Laboratory

    NASA Technical Reports Server (NTRS)

    Struk, Peter; Tsao, Jen-Ching; Bartkus, Tadas

    2016-01-01

    This presentation accompanies the paper titled Plans and Preliminary Results of Fundamental Studies of Ice Crystal Icing Physics in the NASA Propulsion Systems Laboratory. NASA is evaluating whether PSL, in addition to full-engine and motor-driven-rig tests, can be used for more fundamental ice-accretion studies that simulate the different mixed-phase icing conditions along the core flow passage of a turbo-fan engine compressor. The data from such fundamental accretion tests will be used to help develop and validate models of the accretion process. This presentation (and accompanying paper) presents data from some preliminary testing performed in May 2015 which examined how a mixed-phase cloud could be generated at PSL using evaporative cooling in a warmer-than-freezing environment.

  3. Optical properties of sea ice doped with black carbon - an experimental and radiative-transfer modelling comparison

    NASA Astrophysics Data System (ADS)

    Marks, Amelia A.; Lamare, Maxim L.; King, Martin D.

    2017-12-01

    Radiative-transfer calculations of the light reflectivity and extinction coefficient in laboratory-generated sea ice doped with and without black carbon demonstrate that the radiative-transfer model TUV-snow can be used to predict the light reflectance and extinction coefficient as a function of wavelength. The sea ice is representative of first-year sea ice containing typical amounts of black carbon and other light-absorbing impurities. The experiments give confidence in the application of the model to predict albedo of other sea ice fabrics. Sea ices, ˜ 30 cm thick, were generated in the Royal Holloway Sea Ice Simulator ( ˜ 2000 L tanks) with scattering cross sections measured between 0.012 and 0.032 m2 kg-1 for four ices. Sea ices were generated with and without ˜ 5 cm upper layers containing particulate black carbon. Nadir reflectances between 0.60 and 0.78 were measured along with extinction coefficients of 0.1 to 0.03 cm-1 (e-folding depths of 10-30 cm) at a wavelength of 500 nm. Values were measured between light wavelengths of 350 and 650 nm. The sea ices generated in the Royal Holloway Sea Ice Simulator were found to be representative of natural sea ices. Particulate black carbon at mass ratios of ˜ 75, ˜ 150 and ˜ 300 ng g-1 in a 5 cm ice layer lowers the albedo to 97, 90 and 79 % of the reflectivity of an undoped clean sea ice (at a wavelength of 500 nm).

  4. Reducing Pumping Power in Hydronic Heating and Cooling Systems with Microencapsulated Phase Change Material Slurries

    NASA Astrophysics Data System (ADS)

    Karas, Kristoffer Jason

    Phase change materials (PCMs) are being used increasingly in a variety of thermal transfer and thermal storage applications. This thesis presents the results of a laboratory study into the feasibility of improving the performance of hydronic heating and cooling systems by adding microcapsules filled with a PCM to the water used as heat transport media in these systems. Microencapsulated PCMs (MPCMs) increase the heat carrying capacity of heat transport liquids by absorbing or releasing heat at a constant temperature through a change of phase. Three sequences of tests and their results are presented: 1) Thermal cycling tests conducted to determine the melting temperatures and extent of supercooling associated with the MPCMs tested. 2) Hydronic performance tests in which MPCM slurries were pumped through a fin-and-tube, air-to-liquid heat exchanger and their thermal transfer performance compared against that of ordinary water. 3) Mechanical stability tests in which MPCM slurries were pumped in a continuous loop in order to gauge the extent of rupture due to pumping. It is shown that slurries consisting of water and MPCMs ˜ 14-24 mum in diameter improve thermal performance and offer the potential for power savings in the form of reduced pumping requirements. In addition, it is shown that while slurries of MPCMs 2-5 mum in diameter appear to exhibit better mechanical stability than slurries of larger diameter MPCMs, the smaller MPCMs appear to reduce the thermal performance of air-to-liquid heat exchangers.

  5. A Database of Supercooled Large Droplet Ice Accretions [Supplement

    NASA Technical Reports Server (NTRS)

    VanZante, Judith Foss

    2007-01-01

    A unique, publicly available database regarding supercooled large droplet (SLD) ice accretions has been developed in NASA Glenn's Icing Research Tunnel. Identical cloud and flight conditions were generated for five different airfoil models. The models chosen represent a variety of aircraft types from the horizontal stabilizer of a large transport aircraft to the wings of regional, business, and general aviation aircraft. In addition to the standard documentation methods of 2D ice shape tracing and imagery, ice mass measurements were also taken. This database will also be used to validate and verify the extension of the ice accretion code, LEWICE, into the SLD realm.

  6. Ice sheets play important role in climate change

    NASA Astrophysics Data System (ADS)

    Clark, Peter U.; MacAyeal, Douglas R.; Andrews, John T.; Bartlein, Patrick J.

    Ice sheets once were viewed as passive elements in the climate system enslaved to orbitally generated variations in solar radiation. Today, modeling results and new geologic records suggest that ice sheets actively participated in late-Pleistocene climate change, amplifying or driving significant variability at millennial as well as orbital timescales. Although large changes in global ice volume were ultimately caused by orbital variations (the Milankovitch hypothesis), once in existence, the former ice sheets behaved dynamically and strongly influenced regional and perhaps even global climate by altering atmospheric and oceanic circulation and temperature.Experiments with General Circulation Models (GCMs) yielded the first inklings of ice sheets' climatic significance. Manabe and Broccoli [1985], for example, found that the topographic and albedo effects of ice sheets alone explain much of the Northern Hemisphere cooling identified in paleoclimatic records of the last glacial maximum (˜21 ka).

  7. Development and Validation of a Slurry Model for Chemical Hydrogen Storage in Fuel Cell Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brooks, Kriston P.; Pires, Richard P.; Simmons, Kevin L.

    2014-07-25

    The US Department of Energy's (DOE) Hydrogen Storage Engineering Center of Excellence (HSECoE) is developing models for hydrogen storage systems for fuel cell-based light duty vehicle applications for a variety of promising materials. These transient models simulate the performance of the storage system for comparison to the DOE’s Technical Targets and a set of four drive cycles. The purpose of this research is to describe the models developed for slurry-based chemical hydrogen storage materials. The storage systems of both a representative exothermic system based on ammonia borane and endothermic system based on alane were developed and modeled in Simulink®. Oncemore » complete the reactor and radiator components of the model were validated with experimental data. The model was then run using a highway cycle, an aggressive cycle, cold-start cycle and hot drive cycle. The system design was adjusted to meet these drive cycles. A sensitivity analysis was then performed to identify the range of material properties where these DOE targets and drive cycles could be met. Materials with a heat of reaction greater than 11 kJ/mol H2 generated and a slurry hydrogen capacity of greater than 11.4% will meet the on-board efficiency and gravimetric capacity targets, respectively.« less

  8. Fused slurry silicide coatings for columbium alloy reentry heat shields. Volume 2: Experimental and coating process details

    NASA Technical Reports Server (NTRS)

    Fitzgerald, B.

    1973-01-01

    The experimental and coating process details are presented. The process specifications which were developed for the formulation and application of the R-512E fused slurry silicide coating using either an acrylic or nitrocellulose base slurry system is also discussed.

  9. Improved predictions of atmospheric icing in Norway

    NASA Astrophysics Data System (ADS)

    Engdahl, Bjørg Jenny; Nygaard, Bjørn Egil; Thompson, Gregory; Bengtsson, Lisa; Berntsen, Terje

    2017-04-01

    Atmospheric icing of ground structures is a problem in cold climate locations such as Norway. During the 2013/2014 winter season two major power lines in southern Norway suffered severe damage due to ice loads exceeding their design values by two to three times. Better methods are needed to estimate the ice loads that affect various infrastructure, and better models are needed to improve the prediction of severe icing events. The Wind, Ice and Snow loads Impact on Infrastructure and the Natural Environment (WISLINE) project, was initiated to address this problem and to explore how a changing climate may affect the ice loads in Norway. Creating better forecasts of icing requires a proper simulation of supercooled liquid water (SLW). Preliminary results show that the operational numerical weather prediction model (HARMONIE-AROME) at MET-Norway generates considerably lower values of SLW as compared with the WRF model when run with the Thompson microphysics scheme. Therefore, we are piecewise implementing specific processes found in the Thompson scheme into the AROME model and testing the resulting impacts to prediction of SLW and structural icing. Both idealized and real icing cases are carried out to test the newly modified AROME microphysics scheme. Besides conventional observations, a unique set of specialized instrumentation for icing measurements are used for validation. Initial results of this investigation will be presented at the conference.

  10. Thick or Thin Ice Shell on Europa?

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Scientists are all but certain that Europa has an ocean underneath its icy surface, but they do not know how thick this ice might be. This artist concept illustrates two possible cut-away views through Europa's ice shell. In both, heat escapes, possibly volcanically, from Europa's rocky mantle and is carried upward by buoyant oceanic currents. If the heat from below is intense and the ice shell is thin enough (left), the ice shell can directly melt, causing what are called 'chaos' on Europa, regions of what appear to be broken, rotated and tilted ice blocks. On the other hand, if the ice shell is sufficiently thick (right), the less intense interior heat will be transferred to the warmer ice at the bottom of the shell, and additional heat is generated by tidal squeezing of the warmer ice. This warmer ice will slowly rise, flowing as glaciers do on Earth, and the slow but steady motion may also disrupt the extremely cold, brittle ice at the surface. Europa is no larger than Earth's moon, and its internal heating stems from its eccentric orbit about Jupiter, seen in the distance. As tides raised by Jupiter in Europa's ocean rise and fall, they may cause cracking, additional heating and even venting of water vapor into the airless sky above Europa's icy surface. (Artwork by Michael Carroll.)

  11. Critical parameters for coarse coal underground slurry haulage systems

    NASA Technical Reports Server (NTRS)

    Maynard, D. P.

    1981-01-01

    Factors are identified which must be considered in meeting the requirements of a transportation system for conveying, in a pipeline, the coal mined by a continuous mining machine to a storage location neat the mine entrance or to a coal preparation plant located near the surface. For successful operation, the slurry haulage the system should be designed to operated in the turbulent flow regime at a flow rate at least 30% greater than the deposition velocity (slurry flow rate at which the solid particles tend to settle in the pipe). The capacity of the haulage system should be compatible with the projected coal output. Partical size, solid concentration, density, and viscosity of the suspension are if importance as well as the selection of the pumps, pipes, and valves. The parameters with the greatest effect on system performance ar flow velocity, pressure coal particle size, and solids concentration.

  12. Laboratory studies on the rheology of cryogenic slurries with implications for icy satellites

    NASA Astrophysics Data System (ADS)

    Carey, Elizabeth; Mitchell, Karl; Choukroun, Mathieu; Zhong, Fang

    2015-04-01

    Interpretation of Cassini RADAR and VIMS data has suggested some landforms on Titan may be due to effusive cryovolcanic processes that created cones, craters and flows. High-resolution Voyager 2 images of Triton also show strong evidence of cryovolcanic features. Fundamental to modeling of cryovolcanic features is the understanding of the rheological properties of cryogenic icy slurries in a thermodynamic and fluid mechanical context, i.e., how they deform and flow or stall under an applied stress. A series of measurements were performed on methanol-water mixtures and ammonia-water mixtures. We measured the rheology of the slurries as a function of temperature and strain rate, which revealed development of yield stress-like behaviors, shear-rate dependence, and thixotropic behavior, even at relatively low crystal fractions. Visualization of icy slurries supports the current hypothesis that crystallization dominates rheological properties. We shall discuss these findings and their implications for cryovolcanism on icy satellites.

  13. Effect of thermal state and thermal comfort on cycling performance in the heat.

    PubMed

    Schulze, Emiel; Daanen, Hein A M; Levels, Koen; Casadio, Julia R; Plews, Daniel J; Kilding, Andrew E; Siegel, Rodney; Laursen, Paul B

    2015-07-01

    To determine the effect of thermal state and thermal comfort on cycling performance in the heat. Seven well-trained male triathletes completed 3 performance trials consisting of 60 min cycling at a fixed rating of perceived exertion (14) followed immediately by a 20-km time trial in hot (30°C) and humid (80% relative humidity) conditions. In a randomized order, cyclists either drank ambient-temperature (30°C) fluid ad libitum during exercise (CON), drank ice slurry (-1°C) ad libitum during exercise (ICE), or precooled with iced towels and ice slurry ingestion (15 g/kg) before drinking ice slurry ad libitum during exercise (PC+ICE). Power output, rectal temperature, and ratings of thermal comfort were measured. Overall mean power output was possibly higher in ICE (+1.4%±1.8% [90% confidence limit]; 0.4> smallest worthwhile change [SWC]) and likely higher PC+ICE (+2.5%±1.9%; 1.5>SWC) than in CON; however, no substantial differences were shown between PC+ICE and ICE (unclear). Time-trial performance was likely enhanced in ICE compared with CON (+2.4%±2.7%; 1.4>SWC) and PC+ICE (+2.9%±3.2%; 1.9>SWC). Differences in mean rectal temperature during exercise were unclear between trials. Ratings of thermal comfort were likely and very likely lower during exercise in ICE and PC+ICE, respectively, than in CON. While PC+ICE had a stronger effect on mean power output compared with CON than ICE did, the ICE strategy enhanced late-stage time-trial performance the most. Findings suggest that thermal comfort may be as important as thermal state for maximizing performance in the heat.

  14. Erosion and entrainment of snow and ice by pyroclastic density currents: some outstanding questions (Invited)

    NASA Astrophysics Data System (ADS)

    Walder, J. S.

    2010-12-01

    a hot grain flow over snow, although improperly scaled for investigating erosive processes, does demonstrate that snow hydrology and snowpack stability may be critical in the transformation of pyroclastic density currents to lahars. When such an experiment is run in a sloping flume, with meltwater able to drain freely at the base of the snow layer, the hot grain flow spreads over the snow surface and then comes to rest--no slurry is produced. In contrast, if meltwater drainage is blocked, the wet snow layer fails at its bed, mobilizes as a slush flow, and mixes with the hot grains to form a slurry. Ice layers within a natural snowpack would likewise block meltwater drainage and be conducive to the formation of slush flows. Abrasion and particle impacts—processes that have been studied intensively by engineers concerned with the wear of surfaces in machinery—probably play an important role in the erosion of glacier ice by pyroclastic density currents. A prime example may be the summit ice cap of Nevado del Ruiz, Colombia, which was left grooved by the eruption of 1985 (Thouret, J. Volcanol. Geotherm. Res., v. 41, 1990). Erosion of glacier ice is also strongly controlled by the orientation of crevasses, which can “capture” pyroclastic currents. This phenomenon was well displayed at Mount Redoubt, Alaska during the eruptions of 1989-90 and 2009.

  15. Ice Bridge Antarctic Sea Ice

    NASA Image and Video Library

    2009-10-21

    An iceberg is seen out the window of NASA's DC-8 research aircraft as it flies 2,000 feet above the Amundsen Sea in West Antarctica on Wednesday, Oct., 21, 2009. This was the fourth science flight of NASA’s Operation Ice Bridge airborne Earth science mission to study Antarctic ice sheets, sea ice, and ice shelves. Photo Credit: (NASA/Jane Peterson)

  16. Slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry for steelmaking flue dust analysis

    NASA Astrophysics Data System (ADS)

    Coedo, A. G.; Dorado, T.; Padilla, I.; Maibusch, R.; Kuss, H.-M.

    2000-02-01

    A commercial atomic absorption graphite furnace (AAGF), with a self-made adapter and valve system, was used as a slurry sampling cell for electrothermal vaporization inductively coupled plasma mass spectrometry (ETV-ICP-MS). The system was applied to the determination of As, Sn, Sb, Se, Te, Bi, Cd, V, Ti and Mo in steelmaking flue dusts. Experimental conditions with respect to ETV and ICP-MS operating parameters were optimized. Compared to aqueous solutions, slurry samples were found to present better analyte transport. Microgram amounts of Rh were used to reduce the difference in analyte response in sensitivity for aqueous solutions of the tested analytes. No such increasing effect was observed for slurry samples and aqueous standards. An added quantity of Rh acting as modifier/carrier resulted in an increase for the same analytes in matrix-slurry solutions, even the addition of an extra Rh quantity has resulted in a decrease in the signals. The effect of Triton X-100 (used as a dispersant agent) on analyte intensity and precision was also studied. External calibration from aqueous standards spiked with 100 μg ml -1 Rh was performed to quantified 0.010 g/100 ml slurry samples. Results are presented for a certified reference electrical arc furnace flue dust (EAF): CRM-876-1 (Bureau of Analysis Samples Ltd., Cleveland, UK), a reference sample of coke ashes X-3705 (from AG der Dillinger Hüttenwerke, Germany), and a representative sample of EAF flue dust from a Spanish steelmaking company (CENIM-1). For the two reference materials an acceptable agreement with certificate values was achieved, and the results for the CENIM sample matched with those obtained from conventional nebulization solution.

  17. Vertical thermodynamic structure of the troposphere during the Norwegian young sea ICE expedition (N-ICE2015)

    NASA Astrophysics Data System (ADS)

    Kayser, Markus; Maturilli, Marion; Graham, Robert M.; Hudson, Stephen R.; Rinke, Annette; Cohen, Lana; Kim, Joo-Hong; Park, Sang-Jong; Moon, Woosok; Granskog, Mats A.

    2017-10-01

    The Norwegian young sea ICE (N-ICE2015) expedition was designed to investigate the atmosphere-snow-ice-ocean interactions in the young and thin sea ice regime north of Svalbard. Radiosondes were launched twice daily during the expedition from January to June 2015. Here we use these upper air measurements to study the multiple cyclonic events observed during N-ICE2015 with respect to changes in the vertical thermodynamic structure, moisture content, and boundary layer characteristics. We provide statistics of temperature inversion characteristics, static stability, and boundary layer extent. During winter, when radiative cooling is most effective, we find the strongest impact of synoptic cyclones. Changes to thermodynamic characteristics of the boundary layer are associated with transitions between the radiatively "clear" and "opaque" atmospheric states. In spring, radiative fluxes warm the surface leading to lifted temperature inversions and a statically unstable boundary layer. Further, we compare the N-ICE2015 static stability distributions to corresponding profiles from ERA-Interim reanalysis, from the closest land station in the Arctic North Atlantic sector, Ny-Ålesund, and to soundings from the SHEBA expedition (1997/1998). We find similar stability characteristics for N-ICE2015 and SHEBA throughout the troposphere, despite differences in location, sea ice thickness, and snow cover. For Ny-Ålesund, we observe similar characteristics above 1000 m, while the topography and ice-free fjord surrounding Ny-Ålesund generate great differences below. The long-term radiosonde record (1993-2014) from Ny-Ålesund indicates that during the N-ICE2015 spring period, temperatures were close to the climatological mean, while the lowest 3000 m were 1-3°C warmer than the climatology during winter.

  18. Reynolds-averaged Navier-Stokes based ice accretion for aircraft wings

    NASA Astrophysics Data System (ADS)

    Lashkajani, Kazem Hasanzadeh

    This thesis addresses one of the current issues in flight safety towards increasing icing simulation capabilities for prediction of complex 2D and 3D glaze ice shapes over aircraft surfaces. During the 1980's and 1990's, the field of aero-icing was established to support design and certification of aircraft flying in icing conditions. The multidisciplinary technologies used in such codes were: aerodynamics (panel method), droplet trajectory calculations (Lagrangian framework), thermodynamic module (Messinger model) and geometry module (ice accretion). These are embedded in a quasi-steady module to simulate the time-dependent ice accretion process (multi-step procedure). The objectives of the present research are to upgrade the aerodynamic module from Laplace to Reynolds-Average Navier-Stokes equations solver. The advantages are many. First, the physical model allows accounting for viscous effects in the aerodynamic module. Second, the solution of the aero-icing module directly provides the means for characterizing the aerodynamic effects of icing, such as loss of lift and increased drag. Third, the use of a finite volume approach to solving the Partial Differential Equations allows rigorous mesh and time convergence analysis. Finally, the approaches developed in 2D can be easily transposed to 3D problems. The research was performed in three major steps, each providing insights into the overall numerical approaches. The most important realization comes from the need to develop specific mesh generation algorithms to ensure feasible solutions in very complex multi-step aero-icing calculations. The contributions are presented in chronological order of their realization. First, a new framework for RANS based two-dimensional ice accretion code, CANICE2D-NS, is developed. A multi-block RANS code from U. of Liverpool (named PMB) is providing the aerodynamic field using the Spalart-Allmaras turbulence model. The ICEM-CFD commercial tool is used for the iced airfoil

  19. Techno-economic assessment of the Mobil Two-Stage Slurry Fischer-Tropsch/ZSM-5 process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    El Sawy, A.; Gray, D.; Neuworth, M.

    1984-11-01

    A techno-economic assessment of the Mobil Two-Stage Slurry Fischer-Tropsch reactor system was carried out. Mobil bench-scale data were evaluated and scaled to a commercial plant design that produced specification high-octane gasoline and high-cetane diesel fuel. Comparisons were made with three reference plants - a SASOL (US) plant using dry ash Lurgi gasifiers and Synthol synthesis units, a modified SASOL plant with a British Gas Corporation slagging Lurgi gasifier (BGC/Synthol) and a BGC/slurry-phase process based on scaled data from the Koelbel Rheinpreussen-Koppers plant. A conceptual commercial version of the Mobil two-stage process shows a higher process efficiency than a SASOL (US)more » and a BGC/Synthol plant. The Mobil plant gave lower gasoline costs than obtained from the SASOL (US) and BGC/Synthol versions. Comparison with published data from a slurry-phase Fischer-Tropsch (Koelbel) unit indicated that product costs from the Mobil process were within 6% of the Koelbel values. A high-wax version of the Mobil process combined with wax hydrocracking could produce gasoline and diesel fuel at comparable cost to the lowest values achieved from prior published slurry-phase results. 27 references, 18 figures, 49 tables.« less

  20. Characterization methodology for re-using marble slurry in industrial applications

    NASA Astrophysics Data System (ADS)

    Marras, Graziella; Careddu, Nicola; Peretti, Roberto; Bortolussi, Augusto

    2017-04-01

    In the effort towards waste minimization and circular economy, natural stone waste is one of the foremost parameter to turn scientific community attention. At this time, calcium carbonate has a great importance in industrial fields and currently there is the necessity of appreciate the potential value of marble waste and convert it into marketable products. A large amount of residues is produced in ornamental stone sector with different dimension and particle size. The research focused on marble slurry, recovered at the end of the treatment plant in the filter-press section. The aim of this paper is to propose a defined way to characterize marble slurry, primarily composed of micronized particles, in order to obtain useful data to make a comparison with market specifications. In particular the proposed characterization methodology follows the indicated steps: Leaching test (TCLP) - Grain size distribution and bulk density - Mineralogical analyses - X-Ray diffraction - Chemical analysis - Loss on ignition - SEM determination - Colorimetric and bright analysis. Marble slurry samples, collected by different dimension stone treatment plants in Orosei marble district (Sardinia - Italy), were analyzed by physical, mineralogical and chemical determinations and the obtained data were evaluated for compatibility with the CaCO3 specifications required by a definite industrial sector, seeing as how CaCO3 product specifications vary depending on the utilization. The importance of this investigation is to characterize completely the "waste" that must apply for further uses and to identify the feasibility to substitute marketable micronized CaCO3 with marble slurry. Further goal is to enhance the environmental advantages of re-using stone waste by reducing marble waste landfills and by applying raw material substitution, in accordance with regulatory requirements, thus pursuing the objective to convert natural stone waste into by-product with a renewed environmental and economic

  1. Icebergs, sea ice, blue carbon and Antarctic climate feedbacks

    PubMed Central

    Fleming, Andrew; Sands, Chester J.; Quartino, Maria Liliana; Deregibus, Dolores

    2018-01-01

    Sea ice, including icebergs, has a complex relationship with the carbon held within animals (blue carbon) in the polar regions. Sea-ice losses around West Antarctica's continental shelf generate longer phytoplankton blooms but also make it a hotspot for coastal iceberg disturbance. This matters because in polar regions ice scour limits blue carbon storage ecosystem services, which work as a powerful negative feedback on climate change (less sea ice increases phytoplankton blooms, benthic growth, seabed carbon and sequestration). This resets benthic biota succession (maintaining regional biodiversity) and also fertilizes the ocean with nutrients, generating phytoplankton blooms, which cascade carbon capture into seabed storage and burial by benthos. Small icebergs scour coastal shallows, whereas giant icebergs ground deeper, offshore. Significant benthic communities establish where ice shelves have disintegrated (giant icebergs calving), and rapidly grow to accumulate blue carbon storage. When 5000 km2 giant icebergs calve, we estimate that they generate approximately 106 tonnes of immobilized zoobenthic carbon per year (t C yr−1). However, their collisions with the seabed crush and recycle vast benthic communities, costing an estimated 4 × 104 t C yr−1. We calculate that giant iceberg formation (ice shelf disintegration) has a net potential of approximately 106 t C yr−1 sequestration benefits as well as more widely known negative impacts. This article is part of the theme issue ‘The marine system of the West Antarctic Peninsula: status and strategy for progress in a region of rapid change’. PMID:29760118

  2. Icebergs, sea ice, blue carbon and Antarctic climate feedbacks.

    PubMed

    Barnes, David K A; Fleming, Andrew; Sands, Chester J; Quartino, Maria Liliana; Deregibus, Dolores

    2018-06-28

    Sea ice, including icebergs, has a complex relationship with the carbon held within animals (blue carbon) in the polar regions. Sea-ice losses around West Antarctica's continental shelf generate longer phytoplankton blooms but also make it a hotspot for coastal iceberg disturbance. This matters because in polar regions ice scour limits blue carbon storage ecosystem services, which work as a powerful negative feedback on climate change (less sea ice increases phytoplankton blooms, benthic growth, seabed carbon and sequestration). This resets benthic biota succession (maintaining regional biodiversity) and also fertilizes the ocean with nutrients, generating phytoplankton blooms, which cascade carbon capture into seabed storage and burial by benthos. Small icebergs scour coastal shallows, whereas giant icebergs ground deeper, offshore. Significant benthic communities establish where ice shelves have disintegrated (giant icebergs calving), and rapidly grow to accumulate blue carbon storage. When 5000 km 2 giant icebergs calve, we estimate that they generate approximately 10 6 tonnes of immobilized zoobenthic carbon per year (t C yr -1 ). However, their collisions with the seabed crush and recycle vast benthic communities, costing an estimated 4 × 10 4  t C yr -1 We calculate that giant iceberg formation (ice shelf disintegration) has a net potential of approximately 10 6  t C yr -1 sequestration benefits as well as more widely known negative impacts.This article is part of the theme issue 'The marine system of the West Antarctic Peninsula: status and strategy for progress in a region of rapid change'. © 2018 The Authors.

  3. Soil slurry reactors for the assessment of contaminant biodegradation

    NASA Astrophysics Data System (ADS)

    Toscano, G.; Colarieti, M. L.; Greco, G.

    2012-04-01

    Slurry reactors are frequently used in the assessment of feasibility of biodegradation in natural soil systems. The rate of contaminant removal is usually quantified by zero- or first-order kinetics decay constants. The significance of such constants for the evaluation of removal rate in the field could be questioned because the slurry reactor is a water-saturated, well-stirred system without resemblance with an unsaturated fixed bed of soil. Nevertheless, a kinetic study with soil slurry reactors can still be useful by means of only slightly more sophisticated kinetic models than zero-/first-order decay. The use of kinetic models taking into account the role of degrading biomass, even in the absence of reliable experimental methods for its quantification, provides further insight into the effect of nutrient additions. A real acceleration of biodegradation processes is obtained only when the degrading biomass is in the growth condition. The apparent change in contaminant removal course can be useful to diagnose biomass growth without direct biomass measurement. Even though molecular biology techniques are effective to assess the presence of potentially degrading microorganism in a "viable-but-nonculturable" state, the attainment of conditions for growth is still important to the development of enhanced remediation techniques. The methodology is illustrated with reference to data gathered for two test sites, Oslo airport Gardermoen in Norway (continuous contamination by aircraft deicing fluids) and the Trecate site in Italy (aged contamination by crude oil spill). This research is part of SoilCAM project (Soil Contamination, Advanced integrated characterisation and time-lapse Monitoring 2008-2012, EU-FP7).

  4. Ergogenic effects of precooling with cold water immersion and ice ingestion: A meta-analysis.

    PubMed

    Choo, Hui C; Nosaka, Kazunori; Peiffer, Jeremiah J; Ihsan, Mohammed; Abbiss, Chris R

    2018-03-01

    This review evaluated the effects of precooling via cold water immersion (CWI) and ingestion of ice slurry/slushy or crushed ice (ICE) on endurance performance measures (e.g. time-to-exhaustion and time trials) and psychophysiological parameters (core [T core ] and skin [T skin ] temperatures, whole body sweat [WBS] response, heart rate [HR], thermal sensation [TS], and perceived exertion [RPE]). Twenty-two studies were included in the meta-analysis based on the following criteria: (i) cooling was performed before exercise with ICE or CWI; (ii) exercise longer than 6 min was performed in ambient temperature ≥26°C; and (iii) crossover study design with a non-cooling passive control condition. CWI improved performance measures (weighted average effect size in Hedges' g [95% confidence interval] + 0.53 [0.28; 0.77]) and resulted in greater increase (ΔEX) in T skin (+4.15 [3.1; 5.21]) during exercise, while lower peak T core (-0.93 [-1.18; -0.67]), WBS (-0.74 [-1.18; -0.3]), and TS (-0.5 [-0.8; -0.19]) were observed without concomitant changes in ΔEX-T core (+0.19 [-0.22; 0.6]), peak T skin (-0.67 [-1.52; 0.18]), peak HR (-0.14 [-0.38; 0.11]), and RPE (-0.14 [-0.39; 0.12]). ICE had no clear effect on performance measures (+0.2 [-0.07; 0.46]) but resulted in greater ΔEX-T core (+1.02 [0.59; 1.45]) and ΔEX-T skin (+0.34 [0.02; 0.67]) without concomitant changes in peak T core (-0.1 [-0.48; 0.28]), peak T skin (+0.1 [-0.22; 0.41]), peak HR (+0.08 [-0.19; 0.35]), WBS (-0.12 [-0.42; 0.18]), TS (-0.2 [-0.49; 0.1]), and RPE (-0.01 [-0.33; 0.31]). From both ergogenic and thermoregulatory perspectives, CWI may be more effective than ICE as a precooling treatment prior to exercise in the heat.

  5. Implementation of high slurry concentration and sonication to pack high-efficiency, meter-long capillary ultrahigh pressure liquid chromatography columns.

    PubMed

    Godinho, Justin M; Reising, Arved E; Tallarek, Ulrich; Jorgenson, James W

    2016-09-02

    Slurry packing capillary columns for ultrahigh pressure liquid chromatography is complicated by many interdependent experimental variables. Previous results have suggested that combination of high slurry concentration and sonication during packing would create homogeneous bed microstructures and yield highly efficient capillary columns. Herein, the effect of sonication while packing very high slurry concentrations is presented. A series of six, 1m×75μm internal diameter columns were packed with 200mg/mL slurries of 2.02μm bridged-ethyl hybrid silica particles. Three of the columns underwent sonication during packing and yielded highly efficient separations with reduced plate heights as low as 1.05. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. A novel approach of chemical mechanical polishing using environment-friendly slurry for mercury cadmium telluride semiconductors

    PubMed Central

    Zhang, Zhenyu; Wang, Bo; Zhou, Ping; Guo, Dongming; Kang, Renke; Zhang, Bi

    2016-01-01

    A novel approach of chemical mechanical polishing (CMP) is developed for mercury cadmium telluride (HgCdTe or MCT) semiconductors. Firstly, fixed-abrasive lapping is used to machine the MCT wafers, and the lapping solution is deionized water. Secondly, the MCT wafers are polished using the developed CMP slurry. The CMP slurry consists of mainly SiO2 nanospheres, H2O2, and malic and citric acids, which are different from previous CMP slurries, in which corrosive and toxic chemical reagents are usually employed. Finally, the polished MCT wafers are cleaned and dried by deionized water and compressed air, respectively. The novel approach of CMP is environment-friendly. Surface roughness Ra, and peak-to-valley (PV) values of 0.45, and 4.74 nm are achieved, respectively on MCT wafers after CMP. The first and second passivating processes are observed in electrochemical measurements on MCT wafers. The fundamental mechanisms of CMP are proposed according to the X-ray photoelectron spectroscopy (XPS) and electrochemical measurements. Malic and citric acids dominate the first passivating process, and the CMP slurry governs the second process. Te4+3d peaks are absent after CMP induced by the developed CMP slurry, indicating the removing of oxidized films on MCT wafers, which is difficult to achieve using single H2O2 and malic and citric acids solutions. PMID:26926622

  7. Three-dimensional numerical study of laminar confined slot jet impingement cooling using slurry of nano-encapsulated phase change material

    NASA Astrophysics Data System (ADS)

    Mohib Ur Rehman, M.; Qu, Z. G.; Fu, R. P.

    2016-10-01

    This Article presents a three dimensional numerical model investigating thermal performance and hydrodynamics features of the confined slot jet impingement using slurry of Nano Encapsulated Phase Change Material (NEPCM) as a coolant. The slurry is composed of water as a base fluid and n-octadecane NEPCM particles with mean diameter of 100nm suspended in it. A single phase fluid approach is employed to model the NEPCM slurry.The thermo physical properties of the NEPCM slurry are computed using modern approaches being proposed recently and governing equations are solved with a commercial Finite Volume based code. The effects of jet Reynolds number varying from 100 to 600 and particle volume fraction ranging from 0% to 28% are considered. The computed results are validated by comparing Nusselt number values at stagnation point with the previously published results with water as working fluid. It was found that adding NEPCM to the base fluid results with considerable amount of heat transfer enhancement.The highest values of heat transfer coefficients are observed at H/W=4 and Cm=0.28. However, due to the higher viscosity of slurry compared with the base fluid, the slurry can produce drastic increase in pressure drop of the system that increases with NEPCM particle loading and jet Reynolds number.

  8. Turbulent slurry flow measurement using ultrasonic Doppler method in rectangular pipe

    NASA Astrophysics Data System (ADS)

    Bareš, V.; Krupička, J.; Picek, T.; Brabec, J.; Matoušek, V.

    2014-03-01

    Distribution of velocity and Reynolds stress was measured using ultrasonic velocimetry in flows of water and Newtonian water-ballotini slurries in a pressurized Plexiglas pipe. Profiles of the measured parameters were sensed in the vertical plane at the centreline of a rectangular cross section of the pipe. Reference measurements in clear water produced expected symmetrical velocity profiles the shape of which was affected by secondary currents developed in the rectangular pipe. Slurry-flow experiments provided information on an effect of the concentration of solid grains on the internal structure of the flow. Strong attenuation of velocity fluctuations caused by a presence of grains was identified. The attenuation increased with the increasing local concentration of the grains.

  9. Ice cream structure modification by ice-binding proteins.

    PubMed

    Kaleda, Aleksei; Tsanev, Robert; Klesment, Tiina; Vilu, Raivo; Laos, Katrin

    2018-04-25

    Ice-binding proteins (IBPs), also known as antifreeze proteins, were added to ice cream to investigate their effect on structure and texture. Ice recrystallization inhibition was assessed in the ice cream mixes using a novel accelerated microscope assay and the ice cream microstructure was studied using an ice crystal dispersion method. It was found that adding recombinantly produced fish type III IBPs at a concentration 3 mg·L -1 made ice cream hard and crystalline with improved shape preservation during melting. Ice creams made with IBPs (both from winter rye, and type III IBP) had aggregates of ice crystals that entrapped pockets of the ice cream mixture in a rigid network. Larger individual ice crystals and no entrapment in control ice creams was observed. Based on these results a model of ice crystals aggregates formation in the presence of IBPs was proposed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. IceBridge: Bringing a Field Campaign Home

    NASA Astrophysics Data System (ADS)

    Woods, J.; Beck, J.; Bartholow, S.

    2015-12-01

    IceBridge, a six-year NASA mission, is the largest airborne survey of Earth's polar ice ever flown. It will yield an unprecedented three-dimensional view of Arctic and Antarctic ice sheets, ice shelves and sea ice. These flights will provide a yearly, multi-instrument look at the behavior of the rapidly changing features of the Greenland and Antarctic ice. Data collected during IceBridge will help scientists bridge the gap in polar observations between NASA's Ice, Cloud and Land Elevation Satellite (ICESat) -- in orbit since 2003 -- and ICESat-2, planned for 2017. ICESat stopped collecting science data in 2009, making IceBridge critical for ensuring a continuous series of observations. IceBridge will use airborne instruments to map Arctic and Antarctic areas once a year at a minimum, with new campaigns being developed during the Arctic melt season. IceBridge flights are conducted in the spring and summer for the Arctic and in the fall over Antarctica. Other smaller airborne surveys around the world are also part of the IceBridge campaign. IceBridge actively engages the public and educators through a variety of outlets ranging from communications strategies through social media outlets, to larger organized efforts such as PolarTREC. In field activities include blog posts, photo updates, in flight chat sessions, and more intensive live events to include google hangouts, where field team members can interact with the public during a scheduled broadcast. The IceBridge team provides scientists and other team members with the training and support to become communicators in their own right. There is an exciting new initiative where IceBridge will be collaborating with Undergraduate and Graduate students to integrate the next generation of scientists and communicators into the Science Teams. This will be explored through partnerships with institutions that are interested in mentoring through project based initiatives.

  11. Observational evidence for the aerosol impact on ice cloud properties regulated by cloud/aerosol types

    NASA Astrophysics Data System (ADS)

    Zhao, B.; Gu, Y.; Liou, K. N.; Jiang, J. H.; Li, Q.; Liu, X.; Huang, L.; Wang, Y.; Su, H.

    2016-12-01

    The interactions between aerosols and ice clouds (consisting only of ice) represent one of the largest uncertainties in global radiative forcing from pre-industrial time to the present. The observational evidence for the aerosol impact on ice cloud properties has been quite limited and showed conflicting results, partly because previous observational studies did not consider the distinct features of different ice cloud and aerosol types. Using 9-year satellite observations, we find that, for ice clouds generated from deep convection, cloud thickness, cloud optical thickness (COT), and ice cloud fraction increase and decrease with small-to-moderate and high aerosol loadings, respectively. For in-situ formed ice clouds, however, the preceding cloud properties increase monotonically and more sharply with aerosol loadings. The case is more complicated for ice crystal effective radius (Rei). For both convection-generated and in-situ ice clouds, the responses of Rei to aerosol loadings are modulated by water vapor amount in conjunction with several other meteorological parameters, but the sensitivities of Rei to aerosols under the same water vapor amount differ remarkably between the two ice cloud types. As a result, overall Rei slightly increases with aerosol loading for convection-generated ice clouds, but decreases for in-situ ice clouds. When aerosols are decomposed into different types, an increase in the loading of smoke aerosols generally leads to a decrease in COT of convection-generated ice clouds, while the reverse is true for dust and anthropogenic pollution. In contrast, an increase in the loading of any aerosol type can significantly enhance COT of in-situ ice clouds. The modulation of the aerosol impacts by cloud/aerosol types is demonstrated and reproduced by simulations using the Weather Research and Forecasting (WRF) model. Adequate and accurate representations of the impact of different cloud/aerosol types in climate models are crucial for reducing the

  12. Observational evidence for the aerosol impact on ice cloud properties regulated by cloud/aerosol types

    NASA Astrophysics Data System (ADS)

    Zhao, B.; Gu, Y.; Liou, K. N.; Jiang, J. H.; Li, Q.; Liu, X.; Huang, L.; Wang, Y.; Su, H.

    2017-12-01

    The interactions between aerosols and ice clouds (consisting only of ice) represent one of the largest uncertainties in global radiative forcing from pre-industrial time to the present. The observational evidence for the aerosol impact on ice cloud properties has been quite limited and showed conflicting results, partly because previous observational studies did not consider the distinct features of different ice cloud and aerosol types. Using 9-year satellite observations, we find that, for ice clouds generated from deep convection, cloud thickness, cloud optical thickness (COT), and ice cloud fraction increase and decrease with small-to-moderate and high aerosol loadings, respectively. For in-situ formed ice clouds, however, the preceding cloud properties increase monotonically and more sharply with aerosol loadings. The case is more complicated for ice crystal effective radius (Rei). For both convection-generated and in-situ ice clouds, the responses of Rei to aerosol loadings are modulated by water vapor amount in conjunction with several other meteorological parameters, but the sensitivities of Rei to aerosols under the same water vapor amount differ remarkably between the two ice cloud types. As a result, overall Rei slightly increases with aerosol loading for convection-generated ice clouds, but decreases for in-situ ice clouds. When aerosols are decomposed into different types, an increase in the loading of smoke aerosols generally leads to a decrease in COT of convection-generated ice clouds, while the reverse is true for dust and anthropogenic pollution. In contrast, an increase in the loading of any aerosol type can significantly enhance COT of in-situ ice clouds. The modulation of the aerosol impacts by cloud/aerosol types is demonstrated and reproduced by simulations using the Weather Research and Forecasting (WRF) model. Adequate and accurate representations of the impact of different cloud/aerosol types in climate models are crucial for reducing the

  13. Evaluation of the slurry management strategy and the integration of the composting technology in a pig farm - Agronomical and environmental implications.

    PubMed

    Sáez, José A; Clemente, Rafael; Bustamante, M Ángeles; Yañez, David; Bernal, M Pilar

    2017-05-01

    The changes in livestock production systems towards intensification frequently lead to an excess of manure generation with respect to the agricultural land available for its soil application. However, treatment technologies can help in the management of manures, especially in N-surplus areas. An integrated slurry treatment system based on solid-liquid separation, aerobic treatment of the liquid and composting the solid fraction was evaluated in a pig farm (sows and piglets) in the South of Spain. Solid fraction separation using a filter band connected to a screw press had low efficiency (38%), which was greatly improved incorporating a rotatory sieve (61%). The depuration system was very efficient for the liquid, with total removal of 84% total solids, 87% volatile solids, and 98% phosphorus. Two composting systems were tested through mechanical turning of: 1- a mixture of solid fraction stored for 1 month after solid-liquid separation and cereal straw; 2- recently-separated solid fraction mixed with cotton gin waste. System 2 was recommended for the farm, as it exhibited a fast temperature rise and a long thermophilic phase to ensure compost sanitisation, and high recovery of nutrients (TN 77%, P and K > 85%) and organic matter (45%). The composts obtained were mature, stable and showed a high degree of humification of their organic matter, absence of phytotoxicity and concentrations of nutrients similar to other composts from pig manure or separated slurry solids. However, the introduction of slurry from piglets into the solid-liquid separation system should be avoided in order to reduce the content of Zn in the compost, which lowers its quality. The slurry separation followed by composting of the solid fraction using a passive windrow system, and aeration of the liquid phase, was the most recommendable procedure for the reduction of GHG emissions on the farm. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. The Impact of Using Alternative Forages on the Nutrient Value within Slurry and Its Implications for Forage Productivity in Agricultural Systems

    PubMed Central

    Crotty, Felicity V.; Fychan, Rhun; Theobald, Vince J.; Sanderson, Ruth; Chadwick, David R.; Marley, Christina L.

    2014-01-01

    Alternative forages can be used to provide valuable home-grown feed for ruminant livestock. Utilising these different forages could affect the manure value and the implications of incorporating these forages into farming systems, needs to be better understood. An experiment tested the hypothesis that applying slurries from ruminants, fed ensiled red clover (Trifolium pratense), lucerne (Medicago sativa) or kale (Brassica oleracea) would improve the yield of hybrid ryegrass (Lolium hybridicum), compared with applying slurries from ruminants fed ensiled hybrid ryegrass, or applying inorganic N alone. Slurries from sheep offered one of four silages were applied to ryegrass plots (at 35 t ha−1) with 100 kg N ha−1 inorganic fertiliser; dry matter (DM) yield was compared to plots only receiving ammonium nitrate at rates of 0, 100 and 250 kg N ha−1 year−1. The DM yield of plots treated with 250 kg N, lucerne or red clover slurry was significantly higher than other treatments (P<0.001). The estimated relative fertiliser N equivalence (FNE) (fertiliser-N needed to produce same yield as slurry N), was greatest for lucerne (114 kg) >red clover (81 kg) >kale (44 kg) >ryegrass (26 kg ha−1 yr−1). These FNE values represent relative efficiencies of 22% (ryegrass), 52% (kale), 47% (red clover) and 60% for lucerne slurry, with the ryegrass slurry efficiency being lowest (P = 0.005). Soil magnesium levels in plots treated with legume slurry were higher than other treatments (P<0.001). Overall, slurries from ruminants fed alternative ensiled forages increased soil nutrient status, forage productivity and better N efficiency than slurries from ruminants fed ryegrass silage. The efficiency of fertiliser use is one of the major factors influencing the sustainability of farming systems, these findings highlight the cascade in benefits from feeding ruminants alternative forages, and the need to ensure their value is effectively captured to reduce environmental risks. PMID

  15. Impact of chemical amendment of dairy cattle slurry on phosphorus, suspended sediment and metal loss to runoff from a grassland soil.

    PubMed

    Brennan, R B; Fenton, O; Grant, J; Healy, M G

    2011-11-01

    Emerging remediation technologies such as chemical amendment of dairy cattle slurry have the potential to reduce phosphorus (P) solubility and consequently reduce P losses arising from land application of dairy cattle slurry. The aim of this study was to determine the effectiveness of chemical amendment of slurry to reduce incidental losses of P and suspended sediment (SS) from grassland following application of dairy cattle slurry and to examine the effect of amendments on metal concentrations in runoff water. Intact grassed-soil samples were placed in two laboratory runoff boxes, each 200-cm-long by 22.5-cm-wide by 5-cm-deep, before being amended with dairy cattle slurry (the study control) and slurry amended with either: (i) alum, comprising 8% aluminium oxide (Al(2)O(3)) (1.11:1 aluminium (Al):total phosphorus (TP) of slurry) (ii) poly-aluminium chloride hydroxide (PAC) comprising 10% Al(2)O(3) (0.93:1 Al:TP) (iii) analytical grade ferric chloride (FeCl(2)) (2:1 Fe:TP), (iv) and lime (Ca(OH)(2)) (10:1 Ca:TP). When compared with the study control, PAC was the most effective amendment, reducing dissolved reactive phosphorus (DRP) by up to 86% while alum was most effective in reducing SS (88%), TP (94%), particulate phosphorus (PP) (95%), total dissolved phosphorus (TDP) (81%), and dissolved unreactive phosphorus (DUP) (86%). Chemical amendment of slurry did not appear to significantly increase losses of Al and Fe compared to the study control, while all amendments increased Ca loss compared to control and grass-only treatment. While chemical amendments were effective, the reductions in incidental P losses observed in this study were similar to those observed in other studies where the time from slurry application to the first rainfall event was increased. Timing of slurry application may therefore be a much more feasible way to reduce incidental P losses. Future work must examine the long-term effects of amendments on P loss to runoff and not only incidental

  16. Apparatus for converting biomass to a pumpable slurry

    DOEpatents

    Ergun, Sabri; Schaleger, Larry L.; Wrathall, James A.; Yaghoubzadeh, Nasser

    1986-01-01

    An apparatus used in the pretreatment of wood chips in a process for converting biomass to a liquid hydrocarbonaceous fuel. The apparatus functions to break down the wood chips to a size distribution that can be readily handled in a slurry form. Low maintenance operation is obtained by hydrolyzing the chips in a pressure vessel having no moving parts.

  17. Greenland ice sheet motion insensitive to exceptional meltwater forcing.

    PubMed

    Tedstone, Andrew J; Nienow, Peter W; Sole, Andrew J; Mair, Douglas W F; Cowton, Thomas R; Bartholomew, Ian D; King, Matt A

    2013-12-03

    Changes to the dynamics of the Greenland ice sheet can be forced by various mechanisms including surface-melt-induced ice acceleration and oceanic forcing of marine-terminating glaciers. We use observations of ice motion to examine the surface melt-induced dynamic response of a land-terminating outlet glacier in southwest Greenland to the exceptional melting observed in 2012. During summer, meltwater generated on the Greenland ice sheet surface accesses the ice sheet bed, lubricating basal motion and resulting in periods of faster ice flow. However, the net impact of varying meltwater volumes upon seasonal and annual ice flow, and thus sea level rise, remains unclear. We show that two extreme melt events (98.6% of the Greenland ice sheet surface experienced melting on July 12, the most significant melt event since 1889, and 79.2% on July 29) and summer ice sheet runoff ~3.9 σ above the 1958-2011 mean resulted in enhanced summer ice motion relative to the average melt year of 2009. However, despite record summer melting, subsequent reduced winter ice motion resulted in 6% less net annual ice motion in 2012 than in 2009. Our findings suggest that surface melt-induced acceleration of land-terminating regions of the ice sheet will remain insignificant even under extreme melting scenarios.

  18. Computer Modeling of the Thermal Conductivity of Cometary Ice

    NASA Technical Reports Server (NTRS)

    Bunch, Theodore E.; Wilson, Michael A.; Pohorille, Andrew

    1998-01-01

    The main objective of this research was to estimate the thermal conductivity of cometry ices from computer simulations of model amorphous ices. This was divided into four specific tasks: (1) Generating samples of amorphous water ices at different microporosities; (2) Comparing the resulting molecular structures of the ices with experimental results, for those densities where data was available; (3) Calculating the thermal conductivities of liquid water and bulk amorphous ices and comparing these results with experimentally determined thermal conductivities; and (4) Investigating how the thermal conductivity of amorphous ice depends upon the microscopic porosity of the samples. The thermal conductivity was found to be only weakly dependent on the microstructure of the amorphous ice. In general, the amorphous ices were found to have thermal conductivities of the same order of magnitude as liquid water. This is in contradiction to recent experimental estimates of the thermal conductivity of amorphous ice, and it is suggested that the extremely low value obtained experimentally is due to larger-scale defects in the ice, such as cracks, but it is not an intrinsic property of the bulk amorphous ice.

  19. [Effect of SiO₂-ZrO₂slurry coating on surface performance of zirconia ceramic].

    PubMed

    Du, Qiao; Niu, Guangliang; Lin, Hong; Jiang, Ruodan

    2015-11-01

    To evaluate the effect of SiO₂-ZrO₂slurry coating on surface performance of zirconia ceramic. Seventy pre-sintered zirconia discs were randomly divided into seven groups with 10 discs per group. Sample discs in each group received one of the following seven different surface treatments, namely, sintered (group AS), sand blasting after sintered (group SB), coated with slurry of mole ratio of SiO₂to ZrO₂2:1 (group 2SiO₂-1ZrO₂), coated with slurry of mole ratio of SiO₂to ZrO₂1:1 (group 1SiO₂-1ZrO₂), coated with slurry of mole ratio of SiO₂to ZrO₂1:2 (group 1SiO₂-2ZrO₂), coated with slurry of mole ratio of SiO₂to ZrO₂1:3 (group 1SiO₂-3ZrO₂), coated with slurry of mole ratio of SiO₂to ZrO₂1:4 (group 1SiO₂-4ZrO₂). Profilometer, X-ray diffractometer (XRD), energy dispersive spectrometer, scanning electron microscopy (SEM) were used to analyze surface performance. The surface roughness of the discs in group AS was lower than those in the other groups [(0.33 ± 0.03) µm] (P < 0.05), there was no statistically significant difference (P > 0.05) among group 2SiO₂-1ZrO₂[(3.85 ± 0.38) µm], group 1SiO₂-1ZrO₂[(3.78 ± 0.56) µm] and group 1SiO₂-2ZrO₂[(4.06 ± 0.48) µm], and no difference (P > 0.05) was observed between group 1SiO₂-3ZrO₂[(1.02 ± 0.09) µm] and group 1SiO₂-4ZrO₂[(1.53 ± 0.23) µm] either. However, surface roughness in all coating groups was higher than those in group SB [(0.86 ± 0.05) µm] (P < 0.05). According to the XRD pattern, group AS and all coating groups consisted of 100% tetragonal airconia and monoclinic zirconia was detected at surface of group SB. Contents of surface silicon of coating groups increased significantly, however, no silicon was detected at sample surface of group AS and group SB. SEM showed that zirconia grains of coating exposed since part of silicon was etched by hydrofluoric acid, a three-dimensional network of intergrain nano-spaces was created. SiO₂-ZrO₂slurry

  20. Experimental provocation of 'ice-cream headache' by ice cubes and ice water.

    PubMed

    Mages, Stephan; Hensel, Ole; Zierz, Antonia Maria; Kraya, Torsten; Zierz, Stephan

    2017-04-01

    Background There are various studies on experimentally provoked 'ice-cream headache' or 'headache attributed to ingestion or inhalation of a cold stimulus' (HICS) using different provocation protocols. The aim of this study was to compare two provocation protocols. Methods Ice cubes pressed to the palate and fast ingestion of ice water were used to provoke HICS and clinical features were compared. Results The ice-water stimulus provoked HICS significantly more often than the ice-cube stimulus (9/77 vs. 39/77). Ice-water-provoked HICS had a significantly shorter latency (median 15 s, range 4-97 s vs. median 68 s, range 27-96 s). There was no difference in pain localisation. Character after ice-cube stimulation was predominantly described as pressing and after ice-water stimulation as stabbing. A second HICS followed in 10/39 (26%) of the headaches provoked by ice water. Lacrimation occurred significantly more often in volunteers with than in those without HICS. Discussion HICS provoked by ice water was more frequent, had a shorter latency, different pain character and higher pain intensity than HICS provoked by ice cubes. The finding of two subsequent HICS attacks in the same volunteers supports the notion that two types of HICS exist. Lacrimation during HICS indicates involvement of the trigeminal-autonomic reflex.

  1. The EUMETSAT sea ice concentration climate data record

    NASA Astrophysics Data System (ADS)

    Tonboe, Rasmus T.; Eastwood, Steinar; Lavergne, Thomas; Sørensen, Atle M.; Rathmann, Nicholas; Dybkjær, Gorm; Toudal Pedersen, Leif; Høyer, Jacob L.; Kern, Stefan

    2016-09-01

    An Arctic and Antarctic sea ice area and extent dataset has been generated by EUMETSAT's Ocean and Sea Ice Satellite Application Facility (OSISAF) using the record of microwave radiometer data from NASA's Nimbus 7 Scanning Multichannel Microwave radiometer (SMMR) and the Defense Meteorological Satellite Program (DMSP) Special Sensor Microwave/Imager (SSM/I) and Special Sensor Microwave Imager and Sounder (SSMIS) satellite sensors. The dataset covers the period from October 1978 to April 2015 and updates and further developments are planned for the next phase of the project. The methodology for computing the sea ice concentration uses (1) numerical weather prediction (NWP) data input to a radiative transfer model for reduction of the impact of weather conditions on the measured brightness temperatures; (2) dynamical algorithm tie points to mitigate trends in residual atmospheric, sea ice, and water emission characteristics and inter-sensor differences/biases; and (3) a hybrid sea ice concentration algorithm using the Bristol algorithm over ice and the Bootstrap algorithm in frequency mode over open water. A new sea ice concentration uncertainty algorithm has been developed to estimate the spatial and temporal variability in sea ice concentration retrieval accuracy. A comparison to US National Ice Center sea ice charts from the Arctic and the Antarctic shows that ice concentrations are higher in the ice charts than estimated from the radiometer data at intermediate sea ice concentrations between open water and 100 % ice. The sea ice concentration climate data record is available for download at www.osi-saf.org, including documentation.

  2. Simple technologies for on-farm composting of cattle slurry solid fraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brito, L.M., E-mail: miguelbrito@esa.ipvc.pt; Mourao, I.; Coutinho, J., E-mail: j_coutin@utad.pt

    2012-07-15

    Highlights: Black-Right-Pointing-Pointer Simple management techniques were examined for composting slurry solid fraction. Black-Right-Pointing-Pointer Composting slurry solids was effective without bulking agents, turning or rewetting. Black-Right-Pointing-Pointer Maximum rates of organic matter destruction were observed in short piles. Black-Right-Pointing-Pointer Thermophilic temperatures in tall piles maximised sanitation and moisture reduction. Black-Right-Pointing-Pointer The simple compost management approach maximised N retention and agronomic value. - Abstract: Composting technologies and control systems have reached an advanced stage of development, but these are too complex and expensive for most agricultural practitioners for treating livestock slurries. The development of simple, but robust and cost-effective techniques for composting animalmore » slurries is therefore required to realise the potential benefits of waste sanitation and soil improvement associated with composted livestock manures. Cattle slurry solid fraction (SF) was collected at the rates of 4 m{sup 3} h{sup -1} and 1 m{sup 3} h{sup -1} and composted in tall (1.7 m) and short (1.2 m) static piles, to evaluate the physicochemical characteristics and nutrient dynamics of SF during composting without addition of bulking agent materials, and without turning or water addition. Highest maximum temperatures (62-64 Degree-Sign C) were measured in tall piles compared to short piles (52 Degree-Sign C). However, maximum rates of organic matter (OM) destruction were observed at mesophilic temperature ranges in short piles, compared to tall piles, whereas thermophilic temperatures in tall piles maximised sanitation and enhanced moisture reduction. Final OM losses were within the range of 520-660 g kg{sup -1} dry solids and the net loss of OM significantly (P < 0.001) increased nutrient concentrations during the composting period. An advanced degree of stabilization of the SF was indicated by low

  3. Ice-Binding Proteins in Plants.

    PubMed

    Bredow, Melissa; Walker, Virginia K

    2017-01-01

    Sub-zero temperatures put plants at risk of damage associated with the formation of ice crystals in the apoplast. Some freeze-tolerant plants mitigate this risk by expressing ice-binding proteins (IBPs), that adsorb to ice crystals and modify their growth. IBPs are found across several biological kingdoms, with their ice-binding activity and function uniquely suited to the lifestyle they have evolved to protect, be it in fishes, insects or plants. While IBPs from freeze-avoidant species significantly depress the freezing point, plant IBPs typically have a reduced ability to lower the freezing temperature. Nevertheless, they have a superior ability to inhibit the recrystallization of formed ice. This latter activity prevents ice crystals from growing larger at temperatures close to melting. Attempts to engineer frost-hardy plants by the controlled transfer of IBPs from freeze-avoiding fish and insects have been largely unsuccessful. In contrast, the expression of recombinant IBP sequences from freeze-tolerant plants significantly reduced electrolyte leakage and enhanced freezing survival in freeze-sensitive plants. These promising results have spurred additional investigations into plant IBP localization and post-translational modifications, as well as a re-evaluation of IBPs as part of the anti-stress and anti-pathogen axis of freeze-tolerant plants. Here we present an overview of plant freezing stress and adaptation mechanisms and discuss the potential utility of IBPs for the generation of freeze-tolerant crops.

  4. The new idea of transporting tailings-logs in tailings slurry pipeline and the innovation of technology of mining waste-fill method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin Yu; Wang Fuji; Tao Yan

    2000-07-01

    This paper introduced a new idea of transporting mine tailings-logs in mine tailings-slurry pipeline and a new technology of mine cemented filing of tailings-logs with tailings-slurry. The hydraulic principles, the compaction of tailings-logs and the mechanic function of fillbody of tailings-logs cemented by tailings-slurry have been discussed.

  5. Aerodynamic Simulation of Ice Accretion on Airfoils

    NASA Technical Reports Server (NTRS)

    Broeren, Andy P.; Addy, Harold E., Jr.; Bragg, Michael B.; Busch, Greg T.; Montreuil, Emmanuel

    2011-01-01

    This report describes recent improvements in aerodynamic scaling and simulation of ice accretion on airfoils. Ice accretions were classified into four types on the basis of aerodynamic effects: roughness, horn, streamwise, and spanwise ridge. The NASA Icing Research Tunnel (IRT) was used to generate ice accretions within these four types using both subscale and full-scale models. Large-scale, pressurized windtunnel testing was performed using a 72-in.- (1.83-m-) chord, NACA 23012 airfoil model with high-fidelity, three-dimensional castings of the IRT ice accretions. Performance data were recorded over Reynolds numbers from 4.5 x 10(exp 6) to 15.9 x 10(exp 6) and Mach numbers from 0.10 to 0.28. Lower fidelity ice-accretion simulation methods were developed and tested on an 18-in.- (0.46-m-) chord NACA 23012 airfoil model in a small-scale wind tunnel at a lower Reynolds number. The aerodynamic accuracy of the lower fidelity, subscale ice simulations was validated against the full-scale results for a factor of 4 reduction in model scale and a factor of 8 reduction in Reynolds number. This research has defined the level of geometric fidelity required for artificial ice shapes to yield aerodynamic performance results to within a known level of uncertainty and has culminated in a proposed methodology for subscale iced-airfoil aerodynamic simulation.

  6. Comparative coal transportation costs: an economic and engineering analysis of truck, belt, rail, barge and coal slurry and pneumatic pipelines. Volume 3. Coal slurry pipelines. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rieber, M.; Soo, S.L.

    1977-08-01

    A coal slurry pipeline system requires that the coal go through a number of processing stages before it is used by the power plant. Once mined, the coal is delivered to a preparation plant where it is pulverized to sizes between 18 and 325 mesh and then suspended in about an equal weight of water. This 50-50 slurry mixture has a consistency approximating toothpaste. It is pushed through the pipeline via electric pumping stations 70 to 100 miles apart. Flow velocity through the line must be maintained within a narrow range. For example, if a 3.5 mph design is usedmore » at 5 mph, the system must be able to withstand double the horsepower, peak pressure, and wear. Minimum flowrate must be maintained to avoid particle settling and plugging. However, in general, once a pipeline system has been designed, because of economic considerations on the one hand and design limits on the other, flowrate is rather inflexible. Pipelines that have a slowly moving throughput and a water carrier may be subject to freezing in northern areas during periods of severe cold. One of the problems associated with slurry pipeline analyses is the lack of operating experience.« less

  7. Survival of Salmonella spp. and fecal indicator bacteria in Vietnamese biogas digesters receiving pig slurry.

    PubMed

    Huong, Luu Quynh; Forslund, Anita; Madsen, Henry; Dalsgaard, Anders

    2014-09-01

    Small-scale biogas digesters are widely promoted worldwide as a sustainable technology to manage livestock manure. In Vietnam, pig slurry is commonly applied to biogas digesters for production of gas for electricity and cooking with the effluent being used to fertilize field crops, vegetables and fish ponds. Slurry may contain a variety of zoonotic pathogens, e.g. Salmonella spp., which are able to cause disease in humans either through direct contact with slurry or by fecal contamination of water and foods. The objective of this study was to evaluate the survival of Salmonella spp. and the fecal indicator bacteria, enterococci, E. coli, and spores of Clostridium perfringens in biogas digesters operated by small-scale Vietnamese pig farmers. The serovar and antimicrobial susceptibility of the Salmonella spp. isolated were also established. The study was conducted in 12 farms (6 farms with and 6 farms without toilet connected) located in Hanam province, Vietnam. Sampling of pig slurry and biogas effluent was done during two seasons. Results showed that the concentration of enterococci, E. coli, and Clostridium perfringens spores was overall reduced by only 1-2 log10-units in the biogas digesters when comparing raw slurry and biogas effluent. Salmonella spp. was found in both raw slurry and biogas effluent. A total of 19 Salmonella serovars were identified, with the main serovars being Salmonella Typhimurium (55/138), Salmonella enterica serovar 4,[5],12:i:- (19/138), Salmonella Weltevreden (9/138) and Salmonella Rissen (9/138). The Salmonella serovars showed similar antimicrobial resistance patterns to those previously reported from Vietnam. When promoting biogas, farmers should be made aware that effluent should only be used as fertilizer for crops not consumed raw and that indiscriminate discharge of effluent are likely to contaminate water recipients, e.g. drinking water sources, with pathogens. Relevant authorities should promote safe animal manure management

  8. Type-Dependent Responses of Ice Cloud Properties to Aerosols From Satellite Retrievals

    NASA Astrophysics Data System (ADS)

    Zhao, Bin; Gu, Yu; Liou, Kuo-Nan; Wang, Yuan; Liu, Xiaohong; Huang, Lei; Jiang, Jonathan H.; Su, Hui

    2018-04-01

    Aerosol-cloud interactions represent one of the largest uncertainties in external forcings on our climate system. Compared with liquid clouds, the observational evidence for the aerosol impact on ice clouds is much more limited and shows conflicting results, partly because the distinct features of different ice cloud and aerosol types were seldom considered. Using 9-year satellite retrievals, we find that, for convection-generated (anvil) ice clouds, cloud optical thickness, cloud thickness, and cloud fraction increase with small-to-moderate aerosol loadings (<0.3 aerosol optical depth) and decrease with further aerosol increase. For in situ formed ice clouds, however, these cloud properties increase monotonically and more sharply with aerosol loadings. An increase in loading of smoke aerosols generally reduces cloud optical thickness of convection-generated ice clouds, while the reverse is true for dust and anthropogenic pollution aerosols. These relationships between different cloud/aerosol types provide valuable constraints on the modeling assessment of aerosol-ice cloud radiative forcing.

  9. The Importance of the Solids Loading on Confirming the Dielectric Nanosize Dependence of BaTiO3 Powders by Slurry Method

    PubMed Central

    Zhou, Wei; Nie, Yi Mei; Li, Shu Jing; Liang, Hai Yan

    2013-01-01

    The dielectric nanosize dependence of BaTiO3 powders was investigated by the slurry method, where two series of BaTiO3 slurries with 10 vol% and 30 vol% solids loadings were prepared as model samples. Applying the Bruggeman-Hanai equation, the high-frequency limiting permittivity (ε h) of the slurries was extracted from the dielectric spectra. The ε h of the 10 vol% slurry showed abnormal size independence in the range from 100 nm to 700 nm, and the ε h of the 30 vol% slurry exhibited good agreement with the previous prediction. Through analysing quantitatively the response of ε h to the changing permittivity of the powders under different solids loading, it was found that the ε h of the slurry with lower solids loading is more inclined to be interfered by the systematic and random errors. Furthermore, a high permittivity value was found in the BaTiO3 powders with 50 nm particle size. PMID:23844376

  10. Breakup of Pack Ice, Antarctic Ice Shelf

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Breakup of Pack Ice along the periphery of the Antarctic Ice Shelf (53.5S, 3.0E) produced this mosaic of ice floes off the Antarctic Ice Shelf. Strong offshore winds, probably associated with strong katabatic downdrafts from the interior of the continent, are seen peeling off the edges of the ice shelf into long filamets of sea ice, icebergs, bergy bits and growlers to flow northward into the South Atlantic Ocean. 53.5S, 3.0E

  11. Update on the NASA Glenn Propulsion Systems Lab Ice Crystal Cloud Characterization (2015)

    NASA Technical Reports Server (NTRS)

    Van Zante, Judith F.; Bencic, Timothy J.; Ratvasky, Thomas P.

    2016-01-01

    NASA Glenn's Propulsion Systems Lab (PSL), an altitude engine test facility, was outfitted with a spray system to generate ice crystals. The first ice crystal characterization test occurred in 2012. At PSL, turbine engines and driven rigs can experience ice crystal icing at flight altitudes, temperatures and Mach numbers. To support these tests, four ice crystal characterizations have been conducted in two different facility configurations. In addition, super-cooled liquid and mixed phase clouds have also been generated. This paper will discuss the recent learning from the previous two calibrations. It will describe some of the 12-parameter calibration space, and how those parameters interact with each other, the instrumentation used to characterize the cloud and present a sample of the cloud characterization results.

  12. Stationary Waves of the Ice Age Climate.

    NASA Astrophysics Data System (ADS)

    Cook, Kerry H.; Held, Isaac M.

    1988-08-01

    A linearized, steady state, primitive equation model is used to simulate the climatological zonal asymmetries (stationary eddies) in the wind and temperature fields of the 18 000 YBP climate during winter. We compare these results with the eddies simulated in the ice age experiments of Broccoli and Manabe, who used CLIMAP boundary conditions and reduced atmospheric CO2 in an atmospheric general circulation model (GCM) coupled with a static mixed layer ocean model. The agreement between the models is good, indicating that the linear model can be used to evaluate the relative influences of orography, diabatic heating, and transient eddy heat and momentum transports in generating stationary waves. We find that orographic forcing dominates in the ice age climate. The mechanical influence of the continental ice sheets on the atmosphere is responsible for most of the changes between the present day and ice age stationary eddies. This concept of the ice age climate is complicated by the sensitivity of the stationary eddies to the large increase in the magnitude of the zonal mean meridional temperature gradient simulated in the ice age GCM.

  13. Large and Small Droplet Impingement Data on Airfoils and Two Simulated Ice Shapes

    NASA Technical Reports Server (NTRS)

    Papadakis, Michael; Wong, See-Cheuk; Rachman, Arief; Hung, Kuohsing E.; Vu, Giao T.; Bidwell, Colin S.

    2007-01-01

    Water droplet impingement data were obtained at the NASA Glenn Icing Research Tunnel (IRT) for four wings and one wing with two simulated ice shapes. The wings tested include three 36-in. chord wings (MS(1)-317, GLC-305, and a NACA 652-415) and a 57-in. chord Twin Otter horizontal tail section. The simulated ice shapes were 22.5- and 45-min glaze ice shapes for the Twin Otter horizontal tail section generated using the LEWICE 2.2 ice accretion program. The impingement experiments were performed with spray clouds having median volumetric diameters of 11, 21, 79, 137, and 168 mm. Comparisons to the experimental data were generated which showed good agreement for the clean wings and ice shapes at lower drop sizes. For larger drop sizes LEWICE 2.2 over predicted the collection efficiencies due to droplet splashing effects which were not modeled in the program. Also for the more complex glaze ice shapes interpolation errors resulted in the over prediction of collection efficiencies in cove and shadow regions of ice shapes.

  14. Effects of cattle-slurry treatment by acidification and separation on nitrogen dynamics and global warming potential after surface application to an acidic soil.

    PubMed

    Fangueiro, David; Pereira, José; Bichana, André; Surgy, Sónia; Cabral, Fernanda; Coutinho, João

    2015-10-01

    Cattle-slurry (liquid manure) application to soil is a common practice to provide nutrients and organic matter for crop growth but it also strongly impacts the environment. The objective of the present study was to assess the efficiency of cattle-slurry treatment by solid-liquid separation and/or acidification on nitrogen dynamics and global warming potential (GWP) following application to an acidic soil. An aerobic laboratory incubation was performed over 92 days with a Dystric Cambisol amended with raw cattle-slurry or separated liquid fraction (LF) treated or not by acidification to pH 5.5 by addition of sulphuric acid. Soil mineral N contents and NH3, N2O, CH4 and CO2 emissions were measured. Results obtained suggest that the acidification of raw cattle-slurry reduced significantly NH3 emissions (-88%) but also the GWP (-28%) while increased the N availability relative to raw cattle-slurry (15% of organic N applied mineralised against negative mineralisation in raw slurry). However, similar NH3 emissions and GWP were observed in acidified LF and non-acidified LF treatments. On the other hand, soil application of acidified cattle-slurry rather than non-acidified LF should be preferred attending the lower costs associated to acidification compared to solid-liquid separation. It can then be concluded that cattle-slurry acidification is a solution to minimise NH3 emissions from amended soil and an efficient strategy to decrease the GWP associated with slurry application to soil. Furthermore, the more intense N mineralisation observed with acidified slurry should lead to a higher amount of plant available N and consequently to higher crop yields. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Managing IceBridge Airborne Mission Data at the National Snow and Ice Data Center

    NASA Astrophysics Data System (ADS)

    Brodzik, M.; Kaminski, M. L.; Deems, J. S.; Scambos, T. A.

    2010-12-01

    a map-based interface. This portal will provide flight line rendering and multi-instrument data previewing capabilities to facilitate use of the wide array of data types, resolutions, and configurations in this dynamic airborne mission. Together with the IceBridge Science Team and Ice Bridge Science Working Groups, NSIDC is generating value-added products from the Ice Bridge data streams and other ancillary data. These products will provide simple, useful combinations of Ice Bridge products and regional maps of important geophysical parameters from other sources. Planned value-added products include: (1) gridded products in which new profiles from Ice Bridge (e.g. elevation or ice thickness) are combined with existing DEMs or bed maps to produce revised grids and (2) flight-profile multi-instrument products in which data from several instruments are combined into ice sheet profiles (surface elevation, ice thickness, internal reflection data, bed reflection intensity, and gravimetry), sea ice profiles (freeboard, snow cover, and thickness), and surface data profiles (elevation, slope, roughness, near-surface layering, and imagery).

  16. Ammonia volatilization following dairy slurry application to a permanent grassland on a volcanic soil

    NASA Astrophysics Data System (ADS)

    Martínez-Lagos, J.; Salazar, F.; Alfaro, M.; Misselbrook, T.

    2013-12-01

    Agriculture is the largest source of ammonia (NH3) emission to the atmosphere. Within the agricultural sector, the application of slurry to grasslands as fertilizer is one of the main emission sources. This is a common practice in southern Chile, where most dairy production systems are grazing-based. In Chile, there are few published data of gaseous emissions following slurry application to grassland. The aim of this study was to evaluate NH3 volatilization following dairy slurry application to a permanent grassland on an Andosol soil. Ammonia volatilization was measured in four field experiments (winters of 2009 and 2011 and early and late springs of 2011) using a micrometeorological mass balance method with passive flux samplers following dairy slurry application at a target rate of 100 kg total N ha-1. The accumulated N loss was equivalent to 7, 8, 16 and 21% of the total N applied and 22, 34, 88 and 74% of total ammoniacal nitrogen (TAN) applied for winters 2009 and 2011, and early and late spring 2011, respectively. Ammonia emission rates were high immediately after application and declined rapidly with time, with more than 50% of the total emissions within the first 24 h. Losses were highly influenced by environmental conditions, increasing with temperature and lack of rainfall. Taking into consideration the low N losses via leaching and nitrous oxide emissions reported for the study area, results indicate that NH3 volatilization is the main pathway of N loss in fertilized grasslands of southern Chile. However, dairy slurry application could be an important source of nutrients, if applied at a suitable time, rate and using an appropriate technique, and if soil and climate conditions are taken into consideration. This could improve N use efficiency and reduce N losses to the wider environment.

  17. Environmental vulnerability and phosphorus fractions of areas with pig slurry applied to the soil.

    PubMed

    da Rosa Couto, Rafael; Santos, Matheus Dos; Comin, Jucinei José; Pittol Martini, Luíz Carlos; Gatiboni, Luciano Colpo; Martins, Sérgio Roberto; Filho, Paulo Belli; Brunetto, Gustavo

    2015-01-01

    The application of pig slurry as a fertilizer can cause soil and water contamination. Intrinsic characteristics of the environment may enhance this effect and influence the vulnerability of the agricultural system. The goal of this study was to evaluate the accumulation of soil P fractions in areas treated with pig slurry and in forest areas and to propose an evaluation of the areas' vulnerability to P contamination. Soil samples were collected from 10 areas with pig slurry applied to the soil and one in forest without a history of pig slurry application, all located in the Coruja and Bonito rivers microbasin at Braço do Norte, Santa Catarina, southern Brazil. Samples were prepared and subjected to P chemical fractionation. Two versions of the P index method, based on soil P forms or only on P extracted by Mehlich-1, were used to evaluate the environmental risk of the studied areas. Estimated soil losses were lower for the forest and natural pasture and highest in areas with black oat ( Schreb.)-corn ( L.) crop cultivation. Concentrations of P fractions, especially of organic and inorganic P extracted by 0.1 and 0.5 mol L NaOH and NaHCO and of inorganic P extracted by anion exchange resin and HCl, were higher in areas with a longer history and higher frequency of pig slurry applications. Vulnerability to P contamination was mainly influenced by soil P concentrations and soil losses in the studied areas. The P index based on Hedley's fractionation P forms resulted in a more accurate risk scoring of the studied areas than the P index based on the concentration of available P extracted by Mehlich-1. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  18. Thermodynamic Analysis of a Rankine Cycle Powered Vapor Compression Ice Maker Using Solar Energy

    PubMed Central

    Hu, Bing; Bu, Xianbiao; Ma, Weibin

    2014-01-01

    To develop the organic Rankine-vapor compression ice maker driven by solar energy, a thermodynamic model was developed and the effects of generation temperature, condensation temperature, and working fluid types on the system performance were analyzed. The results show that the cooling power per square meter collector and ice production per square meter collector per day depend largely on generation temperature and condensation temperature and they increase firstly and then decrease with increasing generation temperature. For every working fluid there is an optimal generation temperature at which organic Rankine efficiency achieves the maximum value. The cooling power per square meter collector and ice production per square meter collector per day are, respectively, 126.44 W m−2 and 7.61 kg m−2 day−1 at the generation temperature of 140°C for working fluid of R245fa, which demonstrates the feasibility of organic Rankine cycle powered vapor compression ice maker. PMID:25202735

  19. Effects of nettle slurry (Urtica dioica L.) used as foliar fertilizer on potato (Solanum tuberosum L.) yield and plant growth

    PubMed Central

    Raigón, María Dolores; Marques, Olmo; Ferriol, María; Royo, Jorge

    2018-01-01

    Organic agriculture is becoming increasingly important, and many natural products are now available for organic farmers to manage and improve their crops. Several ethnobotanical studies have indicated that the use of nettle slurry as fertilizer in organic farming for horticultural crops is spreading. Sometimes, however, the consequences of using these natural products have been poorly evaluated, and there is very little scientific evidence for the effects of using these slurries. In this study, we aimed to analyze the possible effect of nettle slurry on potato yields produced by organic farming. To achieve this main objective, we assessed the effect of nettle slurry on potato yields, plant size and growth parameters, chlorophyll content, and the presence of pests and diseases. Different slurry doses were assessed in 36 plots and nine variables were measured during the crop cycle. Under these field experimental conditions, nettle slurry (including one treatment with Urtica in combination with Equisetum) had no significant effects on yield, chlorophyll content, or the presence of pests and diseases in organic potato crops. The highest chlorophyll content was found in the double dose treatment, but the difference was not significant. This result, together with a small improvement in plant height with the double dose treatment, might indicate very slight crop enhancement which, under our experimental conditions, was not enough to improve yield. The Urtica and Equisetum slurry chemical analyses showed very low levels of nitrogen, phosphorus, and potassium. PMID:29761049

  20. Simple model of melange and its influence on rapid ice retreat in a large-scale Antarctic ice sheet model.

    NASA Astrophysics Data System (ADS)

    Pollard, D.; Deconto, R. M.

    2017-12-01

    Theory, modeling and observations point to the prospect of runaway grounding-line retreat and marine ice loss from West Antarctica and major East Antarctic basins, in response to climate warming. These rapid retreats are associated with geologic evidence of past high sea-level stands, and pose a threat of drastic sea-level rise in the future.Rapid calving of ice from deep grounding lines generates substantial downstream melange (floating ice debris). It is unknown whether this melange has a significant effect on ice dynamics during major Antarctic retreats, through clogging of seaways and back pressure at the grounding line. Observations in Greenland fjords suggest that melange can have a significant buttressing effect, but the lateral scales of Antarctic basins are an order of magnitude larger (100's km compared to 10's km), with presumably much less influence of confining margins.Here we attempt to include melange as a prognostic variable in a 3-DAntarctic ice sheet-shelf model. Continuum mechanics is used as aheuristic representation of discrete particle physics. Melange is createdby ice calving and cliff failure. Its dynamics are treated similarly to ice flow, but with little or no resistance to divergence. Melange providesback pressure where adjacent to grounded tidewater ice faces or ice-shelf edges. We examine the influence of the new melange component during rapid Antarctic retreat in warm-Pliocene and future warming scenarios.

  1. Spray System Trials in the Icing Research Tunnel

    NASA Image and Video Library

    1949-09-21

    The spray bar system introduces water droplets into the Icing Research Tunnel’s air stream at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory. The icing tunnel was designed in the early 1940s to study ice accretion on airfoils and models. The Carrier Corporation designed a refrigeration system that reduced temperatures to -45° F. The tunnel’s drive fan generated speeds up to 400 miles per hour. The uniform injection of water droplets to the air was a key element of the facility’s operation. The system had to generate small droplets, distribute them uniformly throughout the airstream, and resist freezing and blockage. The Icing Research Tunnel’s designers struggled to develop a realistic spray system because they did not have access to data on the size of naturally occurring water droplets. For five years a variety of different designs were painstakingly developed and tested before the system was perfected. This photograph shows one of the trials using eight air-atomizing nozzles placed 48 feet upstream from the test section. A multi-cylinder device measured the size, liquid content, and distribution of the water droplets. The final system that was put into operation in 1950 included six horizontal spray bars with 80 nozzles that produced a 4- by 4-foot cloud in the test section. The Icing Research Tunnel produced excellent data throughout the 1950s and provided the basis for a hot air anti-icing system used on many transport aircraft.

  2. Microbial degradation of decabromodiphenyl ether (DBDE) in soil slurry microcosms.

    PubMed

    Chou, Hsi-Ling; Hwa, Mei-Yin; Lee, Yao-Chuan; Chang, Yu-Jie; Chang, Yi-Tang

    2016-03-01

    Decabromodiphenyl ether (DBDE), which has been identified as an endocrine disrupting compound, is used as brominated flame retardant, and this can result in serious bioaccumulation within ecological systems. The objective of this study was to explore DBDE bioremediation (25 mg/kg) using laboratory scale soil slurry microcosms. It was found that effective biodegradation of DBDE occurred in all microcosms. Various biometabolites were identified, namely polybrominated diphenyl ethers congeners and hydroxylated brominated diphenyl ether. Reductive debrominated products such as tri-BDE to hepta-BDE congeners were also detected, and their total concentrations ranged from 77.83 to 91.07 ng/g. The mechanism of DBDE biodegradation in soil slurry microcosms is proposed to consist of a series of biological reactions involving hydroxylation and debromination. Catechol 2,3-oxygenase genes, which are able to bring about meta-cleavage at specific unbrominated locations in carbon backbones, were identified as present during the DBDE biodegradation. No obvious effect on the ecological functional potential based on community-level physiological profiling was observed during DBDE biodegradation, and one major facultative Pseudomonas sp. (99 % similarity) was identified in the various soil slurry microcosms. These findings provide an important basis that should help environmental engineers to design future DBDE bioremediation systems that use a practical microcosm system. A bacterial-mixed culture can be selected as part of the bioaugmentation process for in situ DBDE bioremediation. A soil/water microcosm system can be successfully applied to carry out ex situ DBDE bioremediation.

  3. Note: Evaluation of slurry particle size analyzers for chemical mechanical planarization process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jang, Sunjae; Kulkarni, Atul; Qin, Hongyi

    In the chemical mechanical planarization (CMP) process, slurry particle size is important because large particles can cause defects. Hence, selection of an appropriate particle measuring system is necessary in the CMP process. In this study, a scanning mobility particle sizer (SMPS) and dynamic light scattering (DLS) were compared for particle size distribution (PSD) measurements. In addition, the actual particle size and shape were confirmed by transmission electron microscope (TEM) results. SMPS classifies the particle size according to the electrical mobility, and measures the particle concentration (single particle measurement). On the other hand, the DLS measures the particle size distribution bymore » analyzing scattered light from multiple particles (multiple particle measurement). For the slurry particles selected for evaluation, it is observed that SMPS shows bi-modal particle sizes 30 nm and 80 nm, which closely matches with the TEM measurements, whereas DLS shows only single mode distribution in the range of 90 nm to 100 nm and showing incapability of measuring small particles. Hence, SMPS can be a better choice for the evaluation of CMP slurry particle size and concentration measurements.« less

  4. Investigation on mercury reemission from limestone-gypsum wet flue gas desulfurization slurry.

    PubMed

    Chen, Chuanmin; Liu, Songtao; Gao, Yang; Liu, Yongchao

    2014-01-01

    Secondary atmospheric pollutions may result from wet flue gas desulfurization (WFGD) systems caused by the reduction of Hg(2+) to Hg(0) and lead to a damping of the cobenefit mercury removal efficiency by WFGD systems. The experiment on Hg(0) reemission from limestone-gypsum WFGD slurry was carried out by changing the operating conditions such as the pH, temperature, Cl(-) concentrations, and oxygen concentrations. The partitioning behavior of mercury in the solid and liquid byproducts was also discussed. The experimental results indicated that the Hg(0) reemission rate from WFGD slurry increased as the operational temperatures and pH values increased. The Hg(0) reemission rates decreased as the O2 concentration of flue gas and Cl(-) concentration of WFGD slurry increased. The concentrations of O2 in flue gas have an evident effect on the mercury retention in the solid byproducts. The temperature and Cl(-) concentration have a slight effect on the mercury partitioning in the byproducts. No evident relation was found between mercury retention in the solid byproducts and the pH. The present findings could be valuable for industrial application of characterizing and optimizing mercury control in wet FGD systems.

  5. Investigation on Mercury Reemission from Limestone-Gypsum Wet Flue Gas Desulfurization Slurry

    PubMed Central

    Liu, Songtao; Liu, Yongchao

    2014-01-01

    Secondary atmospheric pollutions may result from wet flue gas desulfurization (WFGD) systems caused by the reduction of Hg2+ to Hg0 and lead to a damping of the cobenefit mercury removal efficiency by WFGD systems. The experiment on Hg0 reemission from limestone-gypsum WFGD slurry was carried out by changing the operating conditions such as the pH, temperature, Cl− concentrations, and oxygen concentrations. The partitioning behavior of mercury in the solid and liquid byproducts was also discussed. The experimental results indicated that the Hg0 reemission rate from WFGD slurry increased as the operational temperatures and pH values increased. The Hg0 reemission rates decreased as the O2 concentration of flue gas and Cl− concentration of WFGD slurry increased. The concentrations of O2 in flue gas have an evident effect on the mercury retention in the solid byproducts. The temperature and Cl− concentration have a slight effect on the mercury partitioning in the byproducts. No evident relation was found between mercury retention in the solid byproducts and the pH. The present findings could be valuable for industrial application of characterizing and optimizing mercury control in wet FGD systems. PMID:24737981

  6. Ice-shell purification of ice-binding proteins.

    PubMed

    Marshall, Craig J; Basu, Koli; Davies, Peter L

    2016-06-01

    Ice-affinity purification is a simple and efficient method of purifying to homogeneity both natural and recombinant ice-binding proteins. The purification involves the incorporation of ice-binding proteins into slowly-growing ice and the exclusion of other proteins and solutes. In previous approaches, the ice was grown around a hollow brass finger through which coolant was circulated. We describe here an easily-constructed apparatus that employs ice affinity purification that not only shortens the time for purification from 1-2 days to 1-2 h, but also enhances yield and purity. In this apparatus, the surface area for the separation was increased by extracting the ice-binding proteins into an ice-shell formed inside a rotating round-bottom flask partially submerged in a sub-zero bath. In principle, any ice-binding compound can be recovered from liquid solution, and the method is readily scalable. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Quantification of Ice Accretions for Icing Scaling Evaluations

    NASA Technical Reports Server (NTRS)

    Ruff, Gary A.; Anderson, David N.

    2003-01-01

    The comparison of ice accretion characteristics is an integral part of aircraft icing research. It is often necessary to compare an ice accretion obtained from a flight test or numerical simulation to one produced in an icing wind tunnel or for validation of an icing scaling method. Traditionally, this has been accomplished by overlaying two-dimensional tracings of ice accretion shapes. This paper addresses the basic question of how to compare ice accretions using more quantitative methods. For simplicity, geometric characteristics of the ice accretions are used for the comparison. One method evaluated is a direct comparison of the percent differences of the geometric measurements. The second method inputs these measurements into a fuzzy inference system to obtain a single measure of the goodness of the comparison. The procedures are demonstrated by comparing ice shapes obtained in the Icing Research Tunnel at NASA Glenn Research Center during recent icing scaling tests. The results demonstrate that this type of analysis is useful in quantifying the similarity of ice accretion shapes and that the procedures should be further developed by expanding the analysis to additional icing data sets.

  8. Ice Accretions and Icing Effects for Modern Airfoils

    NASA Technical Reports Server (NTRS)

    Addy, Harold E., Jr.

    2000-01-01

    Icing tests were conducted to document ice shapes formed on three different two-dimensional airfoils and to study the effects of the accreted ice on aerodynamic performance. The models tested were representative of airfoil designs in current use for each of the commercial transport, business jet, and general aviation categories of aircraft. The models were subjected to a range of icing conditions in an icing wind tunnel. The conditions were selected primarily from the Federal Aviation Administration's Federal Aviation Regulations 25 Appendix C atmospheric icing conditions. A few large droplet icing conditions were included. To verify the aerodynamic performance measurements, molds were made of selected ice shapes formed in the icing tunnel. Castings of the ice were made from the molds and placed on a model in a dry, low-turbulence wind tunnel where precision aerodynamic performance measurements were made. Documentation of all the ice shapes and the aerodynamic performance measurements made during the icing tunnel tests is included in this report. Results from the dry, low-turbulence wind tunnel tests are also presented.

  9. Sunlight, Sea Ice, and the Ice Albedo Feedback in a Changing Arctic Sea Ice Cover

    DTIC Science & Technology

    2013-09-30

    Sea Ice , and the Ice Albedo Feedback in a...COVERED 00-00-2013 to 00-00-2013 4. TITLE AND SUBTITLE Sunlight, Sea Ice , and the Ice Albedo Feedback in a Changing Arctic Sea Ice Cover 5a...during a period when incident solar irradiance is large increasing solar heat input to the ice . Seasonal sea ice typically has a smaller albedo

  10. Direct spray drying and microencapsulation of probiotic Lactobacillus reuteri from slurry fermentation with whey.

    PubMed

    Jantzen, M; Göpel, A; Beermann, C

    2013-10-01

    Formulations of dietary probiotics have to be robust against process conditions and have to maintain a sufficient survival rate during gastric transit. To increase efficiency of the encapsulation process and the viability of applied bacteria, this study aimed at developing spray drying and encapsulation of Lactobacillus reuteri with whey directly from slurry fermentation. Lactobacillus reuteri was cultivated in watery 20% (w/v) whey solution with or without 0·5% (w/v) yeast extract supplementation in a submerged slurry fermentation. Growth enhancement with supplement was observed. Whey slurry containing c. 10(9)  CFU g(-1) bacteria was directly spray-dried. Cell counts in achieved products decreased by 2 log cycles after drying and 1 log cycle during 4 weeks of storage. Encapsulated bacteria were distinctively released in intestinal milieu. Survival rate of encapsulated bacteria was 32% higher compared with nonencapsulated ones exposed to artificial digestive juice. Probiotic L. reuteri proliferate in slurry fermentation with yeast-supplemented whey and enable a direct spray drying in whey. The resulting microcapsules remain stable during storage and reveal adequate survival in simulated gastric juices and a distinct release in intestinal juices. Exploiting whey as a bacterial substrate and encapsulation matrix within a coupled fermentation and spray-drying process offers an efficient option for industrial production of vital probiotics. © 2013 The Society for Applied Microbiology.

  11. Enhanced conversion efficiency of dye-sensitized solar cells using a CNT-incorporated TiO{sub 2} slurry-based photoanode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Jiaoping; Chen, Zexiang, E-mail: zxchen@uestc.edu.cn; Li, Jun

    2015-02-15

    A new titanium dioxide (TiO{sub 2}) slurry formulation is herein reported for the fabrication of TiO{sub 2} photoanode for use in dye-sensitized solar cells (DSSCs). The prepared TiO{sub 2} photoanode featured a highly uniform mesoporous structure with well-dispersed TiO{sub 2} nanoparticles. The energy conversion efficiency of the resulting TiO{sub 2} slurry-based DSSC was ∼63% higher than that achieved by a DSSC prepared using a commercial TiO{sub 2} slurry. Subsequently, the incorporation of acid-treated multi-walled carbon nanotubes (CNTs) into the TiO{sub 2} slurry was examined. More specifically, the effect of varying the concentration of the CNTs in this slurry on themore » performance of the resulting DSSCs was studied. The chemical state of the CNTs-incorporated TiO{sub 2} photoanode was investigated by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. A high energy conversion efficiency of 6.23% was obtained at an optimum CNT concentration of ∼0.06 wt.%. The obtained efficiency corresponds to a 63% enhancement when compared with that obtained from a DSSC based on a commercial TiO{sub 2} slurry. The higher efficiency was attributed to the improvement in the collection and transport of excited electrons in the presence of the CNTs.« less

  12. Ice Types in the Beaufort Sea, Alaska

    NASA Technical Reports Server (NTRS)

    2003-01-01

    the MISR cameras, whereas younger, smoother ice types are predominantly forward scattering. The MISR map at right was generated using a statistical classification routine (called ISODATA) and analyzed using ice charts from the National Ice Center. Five classes of sea ice were found based upon the classification of MISR angular data. These are described, based on interpretation of the SAR image, by the image key. Very smooth ice areas that are predominantly forward scattering are colored red. Frost flowers are largely smooth to the MISR visible band sensor and are mapped as forward scattering. Areas mapped as blue are predominantly backward scattering, and the other three classes have statistically distinct angular signatures and fall within the middle of the forward/backward scattering continuum. Some areas that may be first year or younger ice between the multi year ice floes are not discernible to SAR, illustrating how MISR potentially can make a unique contribution to sea ice mapping.

    The Multi-angle Imaging SpectroRadiometer observes the daylit Earth continuously and every 9 days views the entire globe between 82 degrees north and 82 degrees south latitude. This data product was generated from a portion of the imagery acquired during Terra orbit 6663. The MISR image has been cropped to include an area that is 200 kilometers wide, and utilizes data from blocks 30 to 33 within World Reference System-2 path 71.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory,Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

  13. Slurry photocatalytic membrane reactor technology for removal of pharmaceutical compounds from wastewater: Towards cytostatic drug elimination.

    PubMed

    Janssens, Raphael; Mandal, Mrinal Kanti; Dubey, Kashyap Kumar; Luis, Patricia

    2017-12-01

    The potential of photocatalytic membrane reactors (PMR) to degrade cytostatic drugs is presented in this work as an emerging technology for wastewater treatment. Cytostatic drugs are pharmaceutical compounds (PhCs) commonly used in cancer treatment. Such compounds and their metabolites, as well as their degraded by-products have genotoxic and mutagenic effects. A major challenge of cytostatic removal stands in the fact that most drugs are delivered to ambulant patients leading to diluted concentration in the municipal waste. Therefore safe strategies should be developed in order to collect and degrade the micro-pollutants using appropriate treatment technologies. Degradation of cytostatic compounds can be achieved with different conventional processes such as chemical oxidation, photolysis or photocatalysis but the treatment performances obtained are lower than the ones observed with slurry PMRs. Therefore the reasons why slurry PMRs may be considered as the next generation technology will be discussed in this work together with the limitations related to the mechanical abrasion of polymeric and ceramic membranes, catalyst suspension and interferences with the water matrix. Furthermore key recommendations are presented in order to develop a renewable energy powered water treatment based on long lifetime materials. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. METHOD OF MAKING UO$sub 2$-Bi SLURRIES

    DOEpatents

    Hahn, H.T.

    1960-05-24

    A process is given of preparing an easily dispersible slurry of uranium dioxide in bismuth. A mixture of bismuth oxide, uranium, and bismuth are heated in a capsule to a temperature over the melting point of bismuth oxide. The amount of bismuth oxide used is less than that stoichiometrically required because the oxygen in the capsule also enters into the reaction.

  15. IceCube's Search for Neutrinos from Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-07-01

    In a cubic kilometer of volume of ice under Antarctica, an observatory called IceCube is taking measurements that may help us to determine what causes the ultra-high-energy cosmic rays (UHECRs) we occasionally observe from Earth. A recent study reports on its latest results.Atomic BaseballsCosmic rays are high-energy radiation primarily composed of protons and atomic nuclei. When these charged and extremely energetic particles impact the Earths atmosphere on their journey through space, they generate showers of secondary particles that we then detect.A UHECR is any cosmic-ray particle with a kinetic energy exceeding 1018 eV and some have been detected with energies of more than 1020 eV! In practical terms, this is an atomic nucleus with the same kinetic energy as a baseball pitched at 60mph. These unbelievably energetic particlesare quite rare, but weve observed them for decades. Yet in spite of this, the source of UHECRs is unknown.Illustration of a gamma-ray burst in a star-forming region. Could these phenomena accelerate UHECRs to their enormous energies? [NASA/Swift/Mary Pat Hrybyk-Keith and John Jones]Gamma-Ray Burst FireballsOne proposed source that could accelerate particles to these energies is a gamma-ray burst (GRB). In some models for GRBs, the explosion is envisioned as a relativistically expanding fireball of electrons, photons and protons. Internal shock fronts accelerate electrons and protons within the fireball, generating UHECRs, gamma rays, and neutrinos in the process.Because the charged cosmic-ray particles can be easily deflected as they travel, its difficult to identify where they came from. Neutrinos and photons, on the other hand, both travel largely undeflected through the universe. As a result, if we detect high-energy neutrinos that are correlated with gamma-ray photons from a GRB, this would providestrong support for GRBfireball models for UHECR production.Heading Under the IceThe IceCube Laboratory in Antarctica. Beneath the Antarctic

  16. Comparisons of Cubed Ice, Crushed Ice, and Wetted Ice on Intramuscular and Surface Temperature Changes

    PubMed Central

    Dykstra, Joseph H; Hill, Holly M; Miller, Michael G; Cheatham, Christopher C; Michael, Timothy J; Baker, Robert J

    2009-01-01

    Context: Many researchers have investigated the effectiveness of different types of cold application, including cold whirlpools, ice packs, and chemical packs. However, few have investigated the effectiveness of different types of ice used in ice packs, even though ice is one of the most common forms of cold application. Objective: To evaluate and compare the cooling effectiveness of ice packs made with cubed, crushed, and wetted ice on intramuscular and skin surface temperatures. Design: Repeated-measures counterbalanced design. Setting: Human performance research laboratory. Patients or Other Participants: Twelve healthy participants (6 men, 6 women) with no history of musculoskeletal disease and no known preexisting inflammatory conditions or recent orthopaedic injuries to the lower extremities. Intervention(s): Ice packs made with cubed, crushed, or wetted ice were applied to a standardized area on the posterior aspect of the right gastrocnemius for 20 minutes. Each participant was given separate ice pack treatments, with at least 4 days between treatment sessions. Main Outcome Measure(s): Cutaneous and intramuscular (2 cm plus one-half skinfold measurement) temperatures of the right gastrocnemius were measured every 30 seconds during a 20-minute baseline period, a 20-minute treatment period, and a 120-minute recovery period. Results: Differences were observed among all treatments. Compared with the crushed-ice treatment, the cubed-ice and wetted-ice treatments produced lower surface and intramuscular temperatures. Wetted ice produced the greatest overall temperature change during treatment and recovery, and crushed ice produced the smallest change. Conclusions: As administered in our protocol, wetted ice was superior to cubed or crushed ice at reducing surface temperatures, whereas both cubed ice and wetted ice were superior to crushed ice at reducing intramuscular temperatures. PMID:19295957

  17. Influence of the individual or combined application of biochar and slurry on soil macro-aggregate formation under varying moisture conditions

    NASA Astrophysics Data System (ADS)

    Kaiser, Michael; Grunwald, Dennis; Koch, Heinz-Josef; Rauber, Rolf; Ludwig, Bernard

    2017-04-01

    The formation of aggregates is of large importance for the structure and the storage of organic matter (OM) in soil. Although positive effects of organic soil additives on the formation of macro-aggregates (> 250 µm) have been reported, the influence of biochar especially applied in combination with other organic amendments remains unclear. Furthermore, studies on the effect of varying soil moisture conditions in form of drying-rewetting cycles on soil aggregate dynamics in the presence of biochar are almost missing. The objectives of this study were to analyze the effects of biochar and slurry applied to the soil individually or in combination on the formation of macro-aggregates under constant and under varying moisture conditions. We sampled four silty loam soils, carefully crushed the soil macro-aggregates, and incubated the soil at 15 °C for 60 days with the following additions: (i) none (control), (ii) biochar (12 % of dry soil mass), (iii) slurry (150 kg N ha-1), (iv) biochar (6 %) + slurry (75 kg N ha-1), (v) biochar (12 %) + slurry (75 kg N ha-1), (vi) biochar (6 %) + slurry (150 kg N ha-1) and (vii) biochar (12 %) + slurry (150 kg N ha-1). The samples were further subdivided into two groups that were incubated under conditions of constant soil moisture and of three drying-rewetting cycles. The CO2 fluxes were continuously measured during the incubation period and the samples were analyzed for microbial biomass C, macro-aggregate yields and macro-aggregate-associated C after finishing the experiment. We found the application of biochar to result in lower macro-aggregate yields with or without slurry compared to the control or the individual slurry application. In contrast, similar or higher C contents in the macro-aggregate fraction of the biochar treatments as compared to the control or slurry treatments were found indicating an occlusion of biochar in macro-aggregates. Due to the sorption characteristics of biochar, we assume the aggregate formation to

  18. Enhanced biogas production from anaerobic co-digestion of pig slurry and horse manure with mechanical pre-treatment.

    PubMed

    Lopes, Madalena; Baptista, Patrícia; Duarte, Elizabeth; Moreira, António L N

    2018-01-02

    Enhanced biogas production from anaerobic co-digestion of pig slurry and horse manure with mechanical pre-treatment. In this study, co-digestion of horse manure and pig slurry was investigated in a continuously stirred tank reactor, with a mechanical pre-treatment. Experiments were conducted at 37°C, with hydraulic retention times of 23 days and increasing shares of horse manure, corresponding to different horse manure to pig slurry ratios (HM:PS) equal to 0:100, 10:90, 13:87 and 20:80, in terms of percentage of inlet volatile solids (%VS inlet). The results show that the best synergetic effect between the microbial consortia of pig slurry and the high Carbon to Nitrogen ratio (C/N) of horse manure is obtained for the mixture of 20:80%VS inlet, yielding the highest specific methane production (SMP = 142.6 L kg TCOD -1 ) and the highest soluble chemical oxygen demand (SCOD) reduction (68.5%), due to the high volatile dissolved solids content and soluble chemical oxygen demand to total chemical oxygen demand ratio (SCOD/TCOD). Thus, co-digestion of horse manure and pig slurry is shown to be a promising approach for biogas production and as a waste treatment solution. Furthermore, the analysis provides a methodology for the pre-treatment of these substrates and to investigate into the best combination for improved biogas production.

  19. Effectiveness of bio-slurry on the growth and production of soybean (Glycine max (L.) Merrill)

    NASA Astrophysics Data System (ADS)

    Rafiuddin; Mollah, A.; Iswoyo, H.

    2018-05-01

    This research was aimed to determine the effectiveness of bio-slurry fertilizer on the growth and production of soybean plants which was conducted in the Pucak village, Tompobulu District, Maros Regency, South Sulawesi from July to October 2016. The research was set in randomized block design (RBD) with 8 treatments replicated three times. Treatment used were the application of bio-slurry consisted of 8 level of concentrations, namely: control (0 mL.liter-1 of water), 3, 5, 7, 9, 11, 13 and 15 mL.liter-1 of water. The variables measured were plant’s height, number of pods, weight of 100-seed, and soybean seeds’ yield per hectare. The results of research shows that the application of bio-slurry effectively improved growth and yield of soybean (pod’s number, 100-seed’s weight and seed yield per hectare). Optimal concentration of liquid bio-slurry to obtain maximum results were 9.27 mL.liter-1 of water for the highest number of pods (68.49 pods); concentration of 8.75 mL.liter-1 of water for heaviest weight of 100 grains (14.22 grams); and the concentration 8,12 mL.liter-1 of water for the highest production of seed per hectare (23.20 quintal).

  20. Towards Stable CuZnAl Slurry Catalysts for the Synthesis of Ethanol from Syngas

    NASA Astrophysics Data System (ADS)

    Dong, Weibing; Gao, Zhihua; Zhang, Qian; Huang, Wei

    2018-07-01

    A stable CuZnAl slurry catalyst for the synthesis of ethanol from syngas has been developed by adjusting the heat treatment conditions of the complete liquid-phase method. The activity evaluation results showed that the CuZnAl catalyst, when heat-treated under a high pressure and temperature, was a stable catalyst for the synthesis of ethanol. The selectivity of ethanol using the CuZnAl slurry catalyst, which was heat-treated at 553 K under 4.0 MPa, increased continuously with time and was stable at approximately 26.00% after 144 h. The characterization results indicated that the CuZnAl slurry catalyst heat-treated under high pressure conditions could facilitate the formation of a more perfect structure with a larger specific surface area. The prepared catalyst contained a balance of strong and weak acid sites, an appropriate form of Cu2O and a high Cu/Zn atomic ratio at the catalyst surface, providing its stability in ethanol synthesis from syngas.