Sample records for ice storm damage

  1. Effects of ice storm damage on hardwood survival and growth in Ohio

    Treesearch

    Richard M. Turcotte; Thomas R. Elliott; Mary Ann Fajvan; Yong-Lak Park; Daniel A. Snider; Patrick C. Tobin

    2012-01-01

    In 2003, an ice storm occurred across four Mid-Atlantic states. This study investigated the effects of the ice-storm damage on growth and mortality of five tree species (Acer rubrum, Acer saccharum, Quercus alba, Quercus prinus, and Quercus rubra) from three forest stands in the Wayne National Forest in Ohio. We remeasured the same...

  2. Evaluation of ikonos satellite imagery for detecting ice storm damage to oak forests in Eastern Kentucky

    Treesearch

    W. Henry McNab; Tracy Roof

    2006-01-01

    Ice storms are a recurring landscape-scale disturbance in the eastern U.S. where they may cause varying levels of damage to upland hardwood forests. High-resolution Ikonos imagery and semiautomated detection of ice storm damage may be an alternative to manually interpreted aerial photography. We evaluated Ikonos multispectral, winter and summer imagery as a tool for...

  3. February 1994 ice storm: forest resource damage assessment in northern Mississippi

    Treesearch

    Dennis M. Jacobs

    2000-01-01

    During February 8­11, 1994, a severe winter storm moved from Texas and Oklahoma to the mid-Atlantic depositing in northern Mississippi a major ice accumulation of 3 to 6 inches. An assessment of forest resource damage was initiated immediately after the storm by performing an airborne video mission to acquire aerial imagery linked to global positioning coordinates....

  4. Effect of Nitrogen and Phosphorus Fertilization on Growth of a Sweetgum Plantation Damaged by an Ice Storm

    Treesearch

    Yanfei Guo; Curtis Vanderschaaf

    2002-01-01

    In 1994, an ice storm impacted a 19-year-old sweetgum plantation (Liquidambar styraciflua L.) fertilized with nitrogen (N) and phosphorus (P) at age 4. Thirty-nine percent of the stems were broken, 55 percent were not damaged, and 6 percent were leaning. After the ice storm, differences in height and dbh among the fertilization treatments disappeared...

  5. Properties of wood from ice-storm damaged loblolly pine trees

    Treesearch

    David W. Patterson; Jonathan Hartly

    2007-01-01

    Fifty-sex trees were harvested to determine the properties of the wood produced by ice-storm damaged trees. There were 12 trees each for three classes of bend: () to 15. 16 to 30. and more than 30 degrees from the vertical. Also. 10 trees were selected for each of two classes of crown loss: 20 percent or less and more than 20 percent loss. Samples were taken from three...

  6. Tree recovery from ice storm injury

    Treesearch

    Kevin T. Smith

    2015-01-01

    Ice storms are part of nature, particularly in northeastern North America. The combination of air and surface temperatures, precipitation, and wind that result in damaging layers of ice is very specific, occurring infrequently at any given location. Across the region however, damaging ice is formed in fragmented areas every year. Occasionally as in December 2013 and...

  7. Relative Impacts of Ice Storms on Loblolly Pine Plantations in Central Arkansas

    Treesearch

    Don C. Bragg; Michael G. Shelton; Eric Heitzman

    2004-01-01

    Catastrophic ice storms can inflict widespread damage to forests in the Southeastern United States. Two severe ice storms struck Arkansas in December 2000, resulting in heavy losses to loblolly pine (Pinus taeda L.) plantations. We assessed the type and magnitude of damage in four loblolly pine plantation conditions: unthinned 11- to 12-year-old...

  8. Evaluation of landsat imagery for detecting ice storm damage in upland forests of Eastern Kentucky

    Treesearch

    Henry W. McNab; Tracy Roof; Jeffrey F. Lewis; David L. Loftis

    2007-01-01

    Two categories of forest canopy damage (none to light vs. moderate to heavy) resulting from a 2003 ice storm in eastern Kentucky could be identified on readily available Landsat Thematic Mapper imagery using change detection techniques to evaluate the ratio of spectral bands 4 and 5. Regression analysis was used to evaluate several model formulations based on the...

  9. Carbohydrate reserves in Acer saccharum trees damaged during the January 1998 ice storm in northern New York

    Treesearch

    B.L. Wong; L.J. Staats; A.S. Burfeind; K.L. Baggett; A.H. Rye; A.H. Rye

    2005-01-01

    To assess the effect of the ice storm of January 1998 on sugar maple (Acer saccharum Marsh.) tree health, starch, and soluble sugars in twigs from two damaged sugarbushes (younger: trees 50-100 years old, and older: trees approximately 200 years old) in northern New York were measured throughout the leafless phase (September 1998 - May 1999). Trees severely damaged by...

  10. An assessment of management history of damaged and undamaged trees 8 years after the ice storm in Rochester, New York, U.S.

    Treesearch

    Wayne C. Zipperer; Susan M. Sisinni; Jerry Bond; Chris Luley; Andrew G. Pleninger

    2004-01-01

    Rochester, New York, U.S., were reviewed to evaluate the city's storm related removal protocol and how maintenance varied by damage classes. Maintenance codes assigned in 1991 were used to identify ice-storm damage classes based on percentage of crown loss. We evaluated seven species Noway maple (Acer platanoides), silver maple (A. saccharinum), sugar maple (A....

  11. Factors Contributing To Genetic Variation In Ice Damage Susceptibility In Shortleaf Pine

    Treesearch

    Ronald C. Schmidtling; Valerie Hipkins

    2002-01-01

    There are differences among species in susceptibility to ice damage (Williston 1974). There is also at least one report on within-species variation, where coastal Ioblolly pine was damaged more than interior seed sources in an ice storm (Jones and Wells 1969). Of ail the maladies affecting the growth and s&ival of southern pines. damage from ice storms is one of...

  12. A Novel Ice Storm Experiment for Evaluating the Ecological Impacts of These Extreme Weather Events

    NASA Astrophysics Data System (ADS)

    Driscoll, C. T.; Campbell, J. L.; Rustad, L.; Fahey, T.; Fahey, R. T.; Garlick, S.; Groffman, P.; Hawley, G. J.; Schaberg, P. G.

    2017-12-01

    Ice storms are among the most destructive natural disturbances in some regions of the world, and are an example of an extreme weather event that can profoundly disrupt ecosystem function. Despite potential dire consequences of ice storms on ecosystems and society, we are poorly positioned to predict responses because severe ice storms are infrequent and understudied. Since it is difficult to determine when and where ice storms will occur, most previous research has consisted of ad hoc attempts to characterize impacts in the wake of major icing events. To evaluate ice storm effects in a more controlled manner, we conducted a novel ice storm manipulation experiment at the Hubbard Brook Experimental Forest in New Hampshire. Water was sprayed above the forest canopy in sub-freezing conditions to simulate a glaze ice event. Treatments included replicate plots that received three levels of radial ice thickness (6, 13, and 19 mm) and reference plots that were not sprayed. Additionally, two of the mid-level treatment plots received ice applications in back-to-back years to evaluate effects associated with ice storm frequency. Measures of the forest canopy, including hemispherical photography, photosynthetically active radiation, and ground-based LiDAR, indicated that the ice loads clearly damaged vegetation and opened up the canopy, allowing more light to penetrate. These changes in the canopy were reflected in measurements of fine and coarse woody debris that were commensurate with the level of icing. Soil respiration declined in the most heavily damaged plots, which we attribute to changes in root activity. Although soil solution nitrogen showed clear seasonal patterns, there was no treatment response. These results differ from the severe regional natural ice storm of 1998, which caused large leaching losses of nitrate in soil solutions and stream water during the growing season after the event, due to lack of uptake by damaged vegetation. It is not yet clear why there

  13. Recovery of planted loblolly pine 5 years after severe ice storms in Arkansas

    Treesearch

    Don C. Bragg; Michael G. Shelton

    2010-01-01

    Following a severe ice storm, one of a landowner’s first considerations regarding the future of their damaged stands should be on the recovery potential of injured crop trees. The ice storms that struck Arkansas in December 2000 provided an opportunity to monitor 410 injured loblolly pines (Pinus taeda L.), representing a wide range of damage in 18 –20-year-old...

  14. Silvicultural lessons from the December 2000 ice storms

    Treesearch

    Don C. Bragg; Michael G. Shelton; Eric Heitzman

    2002-01-01

    In December of 2000, two destructive ice storms covered Arkansas, affecing 40% of the state's forestlands. Damage estimates ran into the hundreds of millions of dollars, with much of the loss occuring in loblolly pine () plantations. A study was initiated in south-central Arkansas to track the recovery of damaged trees on these...

  15. Ice damage effects on thinned loblolly pine (Pinus taeda) stands in southeastern Oklahoma

    Treesearch

    Thomas Hennessey; Robert Heinemann; Randal Holeman; Rodney Will; Thomas Lynch; Douglas Stevenson; Edward Lorenzi; Giulia Caterina

    2012-01-01

    Loblolly pine plantations in southeastern Oklahoma and Arkansas are periodically subjected to damaging ice storms. Following one such event, damage to a 25-year-old, previously thinned stand was assessed and quantitative relationships were developed to guide stand management in ice storm-prone areas.

  16. Ice damage in loblolly pine: understanding the factors that influence susceptibility

    Treesearch

    Doug P. Aubrey; Mark D. Coleman; David R. Coyle

    2007-01-01

    Winter ice storms frequently occur in the southeastern United States and can severely damage softwood plantations. In January 2004, a severe storm deposited approximately 2 cm of ice on an intensively managed 4-year-old loblolly pine (Pinus taeda L.) plantation in South Carolina. Existing irrigation and fertilization treatments presented an...

  17. Interaction of ice storms and management practices on current carbon sequestration in forests with potential mitigation under future CO2 atmosphere

    Treesearch

    Heather R. McCarthy; Ram Oren; Hyun-Seok Kim; Kurt H. Johnsen; Chris Maier; Seth G. Pritchard; Michael A. Davis

    2006-01-01

    Ice storms are disturbance events with potential impacts on carbon sequestration. Common forest management practices, such as fertilization and thinning, can change wood and stand properties and thus may change vulnerability to ice storm damage. At the same time, increasing atmospheric CO2 levels may also influence ice storm vulnerability. Here...

  18. Responses of two genetically superior loblolly pine clonal ideotypes to a severe ice storm

    Treesearch

    Lauren S. Pile; Christopher A. Maier; G. Geoff Wang; Dapao Yu; Tim M. Shearman

    2016-01-01

    An increase in the frequency and magnitude of extreme weather events, such as major ice storms, can have severe impacts on southern forests. We investigated the damage inflicted by a severe ice storm that occurred in February 2014 on two loblolly pine (Pinus taeda L.) ideotypes in Cross, South Carolina located in the southeastern coastal plain. The ‘‘narrow crown”...

  19. Classification and Feature Selection Algorithms for Modeling Ice Storm Climatology

    NASA Astrophysics Data System (ADS)

    Swaminathan, R.; Sridharan, M.; Hayhoe, K.; Dobbie, G.

    2015-12-01

    Ice storms account for billions of dollars of winter storm loss across the continental US and Canada. In the future, increasing concentration of human populations in areas vulnerable to ice storms such as the northeastern US will only exacerbate the impacts of these extreme events on infrastructure and society. Quantifying the potential impacts of global climate change on ice storm prevalence and frequency is challenging, as ice storm climatology is driven by complex and incompletely defined atmospheric processes, processes that are in turn influenced by a changing climate. This makes the underlying atmospheric and computational modeling of ice storm climatology a formidable task. We propose a novel computational framework that uses sophisticated stochastic classification and feature selection algorithms to model ice storm climatology and quantify storm occurrences from both reanalysis and global climate model outputs. The framework is based on an objective identification of ice storm events by key variables derived from vertical profiles of temperature, humidity and geopotential height. Historical ice storm records are used to identify days with synoptic-scale upper air and surface conditions associated with ice storms. Evaluation using NARR reanalysis and historical ice storm records corresponding to the northeastern US demonstrates that an objective computational model with standard performance measures, with a relatively high degree of accuracy, identify ice storm events based on upper-air circulation patterns and provide insights into the relationships between key climate variables associated with ice storms.

  20. Direct observations of atmosphere - sea ice - ocean interactions during Arctic winter and spring storms

    NASA Astrophysics Data System (ADS)

    Graham, R. M.; Itkin, P.; Granskog, M. A.; Assmy, P.; Cohen, L.; Duarte, P.; Doble, M. J.; Fransson, A.; Fer, I.; Fernandez Mendez, M.; Frey, M. M.; Gerland, S.; Haapala, J. J.; Hudson, S. R.; Liston, G. E.; Merkouriadi, I.; Meyer, A.; Muilwijk, M.; Peterson, A.; Provost, C.; Randelhoff, A.; Rösel, A.; Spreen, G.; Steen, H.; Smedsrud, L. H.; Sundfjord, A.

    2017-12-01

    To study the thinner and younger sea ice that now dominates the Arctic the Norwegian Young Sea ICE expedition (N-ICE2015) was launched in the ice-covered region north of Svalbard, from January to June 2015. During this time, eight local and remote storms affected the region and rare direct observations of the atmosphere, snow, ice and ocean were conducted. Six of these winter storms passed directly over the expedition and resulted in air temperatures rising from below -30oC to near 0oC, followed by abrupt cooling. Substantial snowfall prior to the campaign had already formed a snow pack of approximately 50 cm, to which the February storms contributed an additional 6 cm. The deep snow layer effectively isolated the ice cover and prevented bottom ice growth resulting in low brine fluxes. Peak wind speeds during winter storms exceeded 20 m/s, causing strong snow re-distribution, release of sea salt aerosol and sea ice deformation. The heavy snow load caused widespread negative freeboard; during sea ice deformation events, level ice floes were flooded by sea water, and at least 6-10 cm snow-ice layer was formed. Elevated deformation rates during the most powerful winter storms damaged the ice cover permanently such that the response to wind forcing increased by 60 %. As a result of a remote storm in April deformation processes opened about 4 % of the total area into leads with open water, while a similar amount of ice was deformed into pressure ridges. The strong winds also enhanced ocean mixing and increased ocean heat fluxes three-fold in the pycnocline from 4 to 12 W/m2. Ocean heat fluxes were extremely large (over 300 W/m2) during storms in regions where the warm Atlantic inflow is located close to surface over shallow topography. This resulted in very large (5-25 cm/day) bottom ice melt and in cases flooding due to heavy snow load. Storm events increased the carbon dioxide exchange between the atmosphere and ocean but also affected the pCO2 in surface waters

  1. Evaluating the Impacts of Extreme Events on Ecological Processes Through the Lens of an Ice Storm Manipulation Experiment

    NASA Astrophysics Data System (ADS)

    Campbell, J. L.; Rustad, L.; Driscoll, C. T.; Fahey, T.; Garlick, S.; Groffman, P.; Schaberg, P. G.

    2016-12-01

    It is increasingly evident that human-induced climate change is altering the prevalence and severity of extreme weather events. Ice storms are an example of a rare and typically localized extreme weather event that is difficult to predict and has impacts that are poorly understood. We used long-term data and a field manipulation experiment to evaluate how ice storms alter the structure, function, and composition of forest ecosystems. Plots established after a major ice storm in the Northeast in 1998 were re-sampled to evaluate longer-term (17 yr) responses of tree health, productivity, and species composition. Results indicate, that despite changes in herbaceous vegetation in the years immediately after the ice storm, the forest canopy recovered, albeit with some changes in composition, most notably a release of American Beech. An ice storm field manipulation experiment was used to evaluate mechanistic understanding of short term ecological responses. Water from a stream was sprayed above the forest canopy when air temperatures were below freezing, which was effective in simulating a natural ice storm. The experimental design consisted of three levels of ice thickness treatment with two replicates per treatment. The plots with the two more severe icing treatments experienced significant damage to the forest canopy, creating gaps. These plots also had large inputs of fine and coarse woody debris to the forest floor. The exposure to light and presence of brush piles in the more heavily damaged plots resulted in warming with increased spatial variability of soil temperature. Preliminary results from the early growing season have shown no significant changes in soil respiration or soil solution losses of nutrients despite significant forest canopy damage. Further monitoring will determine whether these trends continue in the future.

  2. Initial mortality rates and extent of damage to loblolly and longleaf pine plantations affected by an ice storm in South Carolina

    Treesearch

    Don C. Bragg

    2016-01-01

    A major ice storm struck Georgia and the Carolinas in February of 2014, damaging or destroying hundreds of thousands of hectares of timber worth hundreds of millions of dollars. Losses were particularly severe in pine plantations in west-central South Carolina, including many on the Savannah River Site (SRS). An array of paired, mid-rotation loblolly (Pinus...

  3. Ice Storms in a Changing Climate

    DTIC Science & Technology

    2016-06-01

    CHANGING CLIMATE by Jennifer M. McNitt June 2016 Thesis Advisor: Wendell Nuss Co-Advisor: David W. Titley THIS PAGE INTENTIONALLY LEFT...SUBTITLE ICE STORMS IN A CHANGING CLIMATE 5. FUNDING NUMBERS 6. AUTHOR(S) Jennifer M. McNitt 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS...increase in global temperatures, due to climate change , could affect the frequency, intensity, and geographic location of ice storms. Three known ice

  4. Effect of simulated ice storm damage on loblolly pine tree and stand growth

    Treesearch

    Rodney E. Will; Thomas Hennessey; Thomas Lynch; Robert Heinemann; Randal Holeman; Dennis Wilson

    2012-01-01

    Ice damage to loblolly pine plantations is a recurrent problem in eastern Oklahoma and western Arkansas with significant ice events occurring recently in 1995, twice in 2000, and in 2007. Following ice damage, forest owners need to decide to clear-cut and replant, thin or partial cut to rehabilitate, or take no action. A quantitative assessment of tree and stand growth...

  5. Ice Damage in a Georgia Planting of Loblolly Pine from Different Seed Sources

    Treesearch

    Earle P. Jones; Osborn O. Wells

    1969-01-01

    After a severe ice storm in south-central Georgia, the degree of ice damage in a provenance test planting of 11-year-old loblolly pines varied considerably among the nine widely seperated seed sources represented. Damage was less among tress from the colder, more inland locations than among tress from coastal areas where the climate is more moderate. In terms of...

  6. Hardwood crown injuries and rebuilding following ice storms: a literature review

    Treesearch

    Martin J. Kraemer; Ralph D. Nyland

    2010-01-01

    Ice storms occur frequently in northeastern North America. They damage and kill trees, change the structural characteristics of a forest, and may importantly alter the goods and services that owners realize from their land. This literature review summarizes 90 years of relevant information, mainly from fairly short term studies published between 1904 and 2006. It...

  7. Tree Survival and Growth Following Ice Storm Injury

    Treesearch

    Walter C. Shortle; Kevin T. Smith; Kenneth R. Dudzik

    2003-01-01

    Nearly 25 million acres of forest from northwestern New York and southern Quebec to the south-central Maine coast were coated with ice from a 3-day storm in early January 1998. This storm was unusual in its size and the duration of icing. Trees throughout the region were injured as branches and stems broke and forks split under the weight of the ice. These injuries...

  8. A novel ice storm manipulation experiment in a northern hardwood forest

    Treesearch

    Lindsey E. Rustad; John L. Campbell

    2012-01-01

    Ice storms are an important natural disturbance within forest ecosystems of the northeastern United States. Current models suggest that the frequency and severity of ice storms may increase in the coming decades in response to changes in climate. Because of the stochastic nature of ice storms and difficulties in predicting their occurrence, most past investigations of...

  9. Impacts and management implications of ice storms on forests in the southern United States

    Treesearch

    Don C. Bragg; Michael G Shelton; Boris Zeide

    2003-01-01

    Abstract: This review explores the ecological and silvicultural impacts of ice storms on forests in the southern United States. Different environmental factors like weather conditions, topography, vegetation, stand density, and management practices influence the degree of glaze damage a particular forest may experience. Additionally, the frequent...

  10. Predicting severe winter coastal storm damage

    NASA Astrophysics Data System (ADS)

    Hondula, David M.; Dolan, Robert

    2010-07-01

    Over the past 40 years residents of, and visitors to, the North Carolina coastal barrier islands have experienced the destructive forces of several 'named' extratropical storms. These storms have caused large-scale redistributions of sand and loss of coastal structures and infrastructure. While most of the population living on the islands are familiar with the wintertime storms, the damage and scars of the 'super northeasters'—such as the Ash Wednesday storm of 7 March 1962, and the Halloween storm of 1989—are slipping away from the public's memory. In this research we compared the damage zones of the 1962 Ash Wednesday storm, as depicted on aerial photographs taken after the storm, with photos taken of the same areas in 2003. With these high-resolution aerial photos we were able to estimate the extent of new development which has taken place along the Outer Banks of North Carolina since 1962. Three damage zones were defined that extend across the islands from the ocean landward on the 1962 aerial photos: (1) the zone of almost total destruction on the seaward edge of the islands where the storm waves break; (2) the zone immediately inland where moderate structural damage occurs during severe storms; and (3) the zone of flood damage at the landward margin of the storm surge and overwash. We considered the rate of coastal erosion, the rate of development, and increases in property values as factors which may contribute to changing the financial risk for coastal communities. In comparing the values of these four factors with the 1962 damage data, we produced a predicted dollar value for storm damage should another storm of the magnitude of the 1962 Ash Wednesday storm occur in the present decade. This model also provides an opportunity to estimate the rate of increase in the potential losses through time as shoreline erosion continues to progressively reduce the buffer between the development and the edge of the sea. Our data suggest that the losses along the

  11. Ice Storm Supercomputer

    ScienceCinema

    None

    2018-05-01

    A new Idaho National Laboratory supercomputer is helping scientists create more realistic simulations of nuclear fuel. Dubbed "Ice Storm" this 2048-processor machine allows researchers to model and predict the complex physics behind nuclear reactor behavior. And with a new visualization lab, the team can see the results of its simulations on the big screen. For more information about INL research, visit http://www.facebook.com/idahonationallaboratory.

  12. Investigating and Modeling Ecosystem Response to an Experimental and a Natural Ice Storm

    NASA Astrophysics Data System (ADS)

    Fakhraei, H.; Driscoll, C. T.; Rustad, L.; Campbell, J. L.; Groffman, P.; Fahey, T.; Likens, G.; Swaminathan, R.

    2017-12-01

    Our understanding of ecosystem response to the extreme events is generally limited to rare observations from the natural historical events. However, investigating extreme events under controlled conditions can improve our understanding of these natural phenomena. A novel field experiment was conducted in a northern hardwood forest at the Hubbard Brook Experimental Forest in New Hampshire in the northeastern United States to quantify the influence of ice storms on the ecological processes. During subfreezing conditions in the winters of 2016 and 2017, water from a nearby stream was pumped and sprayed on the canopy of eight experimental plots to accrete ice to a targeted thickness on the canopy. The experiment was conducted at three levels of icing thickness (0.25, 0.5, 0.75 in.) in 2016 comparable to the naturally occurring 1998 ice storm and a second 0.5 in. treatment 2017 which were compared with reference plots. The most notable response of the icing treatments was a marked increase in fine and course litter fall which increased exponentially with increases in the icing thickness. Post-treatment openings in the canopy caused short-term increases in soil temperature in the ice-treatment plots compared to the reference plots. No response from the ice storm treatments were detected for soil moisture, net N mineralization, net nitrification, or denitrification after both natural and experimental ice storm. In contrast to the marked increase in the stream water nitrate after the natural occurring 1998 ice storm, we have not observed any significant change in soil solution N concentrations in the experimental ice storm treatments. Inconsistency in the response between the natural and experimental ice storm is likely due to differences in geophysical characteristics of the study sites including slope and lateral uptake of nutrient by the trees outside the experimental plots. In order to evaluate the long-term impacts of ice storms on northern hardwood forests, we used

  13. Rapid Assessment of Tree Debris Following Urban Forest Ice Storms

    Treesearch

    Richard J. Hauer; Angela J. Hauer; Dudley R. Hartel; Jill R. Johnson

    2011-01-01

    This paper presents a rapid assessment method to estimate urban tree debris following an ice storm. Data were collected from 60 communities to quantify tree debris volumes, mostly from public rights-of-way, following ice storms based on community infrastructure, weather parameters, and urban forest structure. Ice thickness, area of a community, and street distance are...

  14. The Northeastern Ice Storm 1998, A forest damage assessment for New York, Vermont, New Hampshire, and Maine

    Treesearch

    Margaret Miller-Weeks; Chris Eagar; Christina M. Petersen

    1999-01-01

    The ice storm of January 1998 affected 17 million acres of forestland in northern New York, Vermont, New Hampshire, and Maine, including parts of the Green Mountain National Forest and the White Mountain National Forest. Portions of eastern Canada were also impacted, especially Quebec. The weight of accumulated ice caused trees to snap off or bend over to the ground....

  15. Impacts of extratropical storm tracks on Arctic sea ice export through Fram Strait

    NASA Astrophysics Data System (ADS)

    Wei, Jianfen; Zhang, Xiangdong; Wang, Zhaomin

    2018-05-01

    Studies have indicated regime shifts in atmospheric circulation, and associated changes in extratropical storm tracks and Arctic storm activity, in particular on the North Atlantic side of the Arctic Ocean. To improve understanding of changes in Arctic sea ice mass balance, we examined the impacts of the changed storm tracks and cyclone activity on Arctic sea ice export through Fram Strait by using a high resolution global ocean-sea ice model, MITgcm-ECCO2. The model was forced by the Japanese 25-year Reanalysis (JRA-25) dataset. The results show that storm-induced strong northerly wind stress can cause simultaneous response of daily sea ice export and, in turn, exert cumulative effects on interannual variability and long-term changes of sea ice export. Further analysis indicates that storm impact on sea ice export is spatially dependent. The storms occurring southeast of Fram Strait exhibit the largest impacts. The weakened intensity of winter (in this study winter is defined as October-March and summer as April-September) storms in this region after 1994/95 could be responsible for the decrease of total winter sea ice export during the same time period.

  16. Impacts of Changed Extratropical Storm Tracks on Arctic Sea Ice Export through Fram Strait

    NASA Astrophysics Data System (ADS)

    Wei, J.; Zhang, X.; Wang, Z.

    2017-12-01

    Studies have indicated a poleward shift of extratropical storm tracks and intensification of Arctic storm activities, in particular on the North Atlantic side of the Arctic Ocean. To improve understanding of dynamic effect on changes in Arctic sea ice mass balance, we examined the impacts of the changed storm tracks and activities on Arctic sea ice export through Fram Strait through ocean-sea ice model simulations. The model employed is the high-resolution Massachusetts Institute of Technology general circulation model (MITgcm), which was forced by the Japanese 25-year Reanalysis (JRA-25) dataset. The results show that storm-induced strong northerly wind stress can cause simultaneous response of daily sea ice export and, in turn, exert cumulative effects on interannual variability and long-term changes of sea ice export. Further analysis indicates that storm impact on sea ice export is spatially dependent. The storms occurring southeast of Fram Strait exhibit the largest impacts. The weakened intensity of winter storms in this region after 1994/95 could be responsible for the decrease of total winter sea ice export during the same time period.

  17. Early density management of longleaf pine reduces susceptibility to ice storm damage

    Treesearch

    Timothy B. Harrington; Thaddeus A. Harrington

    2016-01-01

    The Pax winter storm of February 2014 caused widespread damage to forest stands throughout the southeastern U.S. In a long-term study of savanna plant community restoration at the Savannah River Site, Aiken, SC, precommercial thinning (PCT) of 8- to 11-year-old plantations of longleaf pine (Pinus palustris) in 1994 reduced...

  18. Storm-Related Postmortem Damage to Skeletal Remains.

    PubMed

    Maijanen, Heli; Wilson-Taylor, Rebecca J; Jantz, Lee Meadows

    2016-05-01

    In April 2011, human skeletons were exposed to heavy storms at the outdoor Anthropology Research Facility (ARF) in Knoxville, Tennessee. Of the approximate 125 skeletons at the ARF in April 2011, 30 donations exhibited postmortem damage that could be attributed to the storms. At least 20 of the affected donations exhibit postmortem damage clearly associated with hailstones due to the oval shape and similar small size of the defects observed. The irregular shape and larger size of other defects may be a product of other falling objects (e.g., tree branches) associated with the storms. Storm-related damage was observed throughout the skeleton, with the most commonly damaged skeletal elements being the scapula and ilium, but more robust elements (i.e., femora and tibiae) also displayed characteristic features of hailstone damage. Thus, hailstone damage should be considered when forensic practitioners observe unusual postmortem damage in skeletal remains recovered from the outdoor context. © 2016 American Academy of Forensic Sciences.

  19. Species-specific effects of a 1994 ice storm on radial tree growth in Delaware

    Treesearch

    Matthew Smolnik; Amy Hessl; J. J. Colbert

    2006-01-01

    Ice storms are recurrent disturbances that alter forest succession and forest structure throughout North America. However, long-term effects of ice storms on tree growth are largely unknown. Following a 1994 ice storm in Delaware, the Delaware Forest Service established seventy-five study plots to sample four species of trees (southern red oak [Quercus falcate...

  20. The Impact of Cloud Properties on Young Sea Ice during Three Winter Storms at N-ICE2015

    NASA Astrophysics Data System (ADS)

    Murphy, S. Y.; Walden, V. P.; Cohen, L.; Hudson, S. R.

    2017-12-01

    The impact of clouds on sea ice varies significantly as cloud properties change. Instruments deployed during the Norwegian Young Sea Ice field campaign (N-ICE2015) are used to study how differing cloud properties influence the cloud radiative forcing at the sea ice surface. N-ICE2015 was the first campaign in the Arctic winter since SHEBA (1997/1998) to study the surface energy budget of sea ice and the associated effects of cloud properties. Cloud characteristics, surface radiative and turbulent fluxes, and meteorological properties were measured throughout the field campaign. Here we explore how cloud macrophysical and microphysical properties affect young, thin sea ice during three winter storms from 31 January to 15 February 2015. This time period is of interest due to the varying surface and atmospheric conditions, which showcase the variety of conditions the newly-formed sea ice can experience during the winter. This period was characterized by large variations in the ice surface and near-surface air temperatures, with highs near 0°C when warm, moist air was advected into the area and lows reaching -40°C during clear, calm periods between storms. The advection of warm, moist air into the area influenced the cloud properties and enhanced the downwelling longwave flux. For most of the period, downwelling longwave flux correlates closely with the air temperature. However, at the end of the first storm, a drop in downwelling longwave flux of about 50 Wm-2 was observed, independent of any change in surface or air temperature or cloud fraction, indicating a change in cloud properties. Lidar data show an increase in cloud height during this period and a potential shift in cloud phase from ice to mixed-phase. This study will describe the cloud properties during the three winter storms and discuss their impacts on surface energy budget.

  1. The effect of severe storms on the ice cover of the northern Tatarskiy Strait

    NASA Technical Reports Server (NTRS)

    Martin, Seelye; Munoz, Esther; Drucker, Robert

    1992-01-01

    Passive microwave images from the Special Sensor Microwave Imager are used to study the volume of ice and sea-bottom water in the Japan Sea as affected by winds and severe storms. The data set comprises brightness temperatures gridded on a polar stereographic projection, and the processing is accomplished with a linear algorithm by Cavalieri et al. (1983) based on the vertically polarized 37-GHz channel. The expressions for calculating heat fluxes and downwelling radiation are given, and ice-cover fluctuations are correlated with severe storm events. The storms generate large transient polynya that occur simultaneously with the strongest heat fluxes, and severe storms are found to contribute about 25 percent of the annual introduction of 25 cu km of ice in the region. The ice production could lead to the renewal of enough sea-bottom water to account for the C-14 data provided, and the generation of Japan Sea bottom water is found to vary directly with storm activity.

  2. Detection of Storm Damage Tracks with EOS Data

    NASA Technical Reports Server (NTRS)

    Jedlovec, Gary J.; Nair, Udaysankar; Haines, Stephanie L.

    2006-01-01

    The damage surveys conducted by the NWS in the aftermath of a reported tornadic event are used to document the location of the tornado ground damage track (pathlength and width) and an estimation of the tornado intensity. This study explores the possibility of using near-real-time medium and high spatial resolution satellite imagery from the NASA Earth Observing System satellites to provide additional information for the surveys. Moderate Resolution Imaging Spectroradiometer (MODIS) and Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data were used to study the damage tracks from three tornadic storms: the La Plata, Maryland, storm of 28 April 2002 and the Ellsinore and Marquand, Missouri, storms of 24 April 2002. These storms varied in intensity and occurred over regions with significantly different land cover. It was found that, depending on the nature of the land cover, tornado damage tracks from intense storms (F1 or greater) and hail storms may be evident in ASTER, Landsat, and MODIS satellite imagery. In areas where the land cover is dominated by forests, the scar patterns can show up very clearly, while in areas of grassland and regions with few trees, scar patterns are not as obvious or cannot be seen at all in the satellite imagery. The detection of previously unidentified segments of a damage track caused by the 24 April 2002 Marquand, Missouri, tornado demonstrates the utility of satellite imagery for damage surveys. However, the capability to detect tornado tracks in satellite imagery depends on the ability to observe the ground without obstruction from space and appears to be as much dependent on the nature of the underlying surface and land cover as on the severity of the tornadic storm.

  3. Radial growth of hardwoods following the 1998 ice storm in New Hampshire and Maine

    Treesearch

    Kevin T. Smith; Walter C. Shortle

    2003-01-01

    Ice storms and resulting injury to tree crowns occur frequently in North America. Reaction of land managers to injury caused by the regional ice storm of January 1998 had the potential to accelerate the harvesting of northern hardwoods due to concern about the future loss of wood production by injured trees. To assess the effect of this storm on radial stem growth,...

  4. Use of Remote Sensing Data to Enhance NWS Storm Damage Toolkit

    NASA Technical Reports Server (NTRS)

    Jedlove, Gary J.; Molthan, Andrew L.; White, Kris; Burks, Jason; Stellman, Keith; Smith, Mathew

    2012-01-01

    In the wake of a natural disaster such as a tornado, the National Weather Service (NWS) is required to provide a very detailed and timely storm damage assessment to local, state and federal homeland security officials. The Post ]Storm Data Acquisition (PSDA) procedure involves the acquisition and assembly of highly perishable data necessary for accurate post ]event analysis and potential integration into a geographic information system (GIS) available to its end users and associated decision makers. Information gained from the process also enables the NWS to increase its knowledge of extreme events, learn how to better use existing equipment, improve NWS warning programs, and provide accurate storm intensity and damage information to the news media and academia. To help collect and manage all of this information, forecasters in NWS Southern Region are currently developing a Storm Damage Assessment Toolkit (SDAT), which incorporates GIS ]capable phones and laptops into the PSDA process by tagging damage photography, location, and storm damage details with GPS coordinates for aggregation within the GIS database. However, this tool alone does not fully integrate radar and ground based storm damage reports nor does it help to identify undetected storm damage regions. In many cases, information on storm damage location (beginning and ending points, swath width, etc.) from ground surveys is incomplete or difficult to obtain. Geographic factors (terrain and limited roads in rural areas), manpower limitations, and other logistical constraints often prevent the gathering of a comprehensive picture of tornado or hail damage, and may allow damage regions to go undetected. Molthan et al. (2011) have shown that high resolution satellite data can provide additional valuable information on storm damage tracks to augment this database. This paper presents initial development to integrate satellitederived damage track information into the SDAT for near real ]time use by forecasters

  5. Use of Remote Sensing Data to Enhance NWS Storm Damage Toolkit

    NASA Astrophysics Data System (ADS)

    Jedlovec, G.; Molthan, A.; White, K.; Burks, J.; Stellman, K.; Smith, M. R.

    2012-12-01

    In the wake of a natural disaster such as a tornado, the National Weather Service (NWS) is required to provide a very detailed and timely storm damage assessment to local, state and federal homeland security officials. The Post-Storm Data Acquisition (PSDA) procedure involves the acquisition and assembly of highly perishable data necessary for accurate post-event analysis and potential integration into a geographic information system (GIS) available to its end users and associated decision makers. Information gained from the process also enables the NWS to increase its knowledge of extreme events, learn how to better use existing equipment, improve NWS warning programs, and provide accurate storm intensity and damage information to the news media and academia. To help collect and manage all of this information, forecasters in NWS Southern Region are currently developing a Storm Damage Assessment Toolkit (SDAT), which incorporates GIS-capable phones and laptops into the PSDA process by tagging damage photography, location, and storm damage details with GPS coordinates for aggregation within the GIS database. However, this tool alone does not fully integrate radar and ground based storm damage reports nor does it help to identify undetected storm damage regions. In many cases, information on storm damage location (beginning and ending points, swath width, etc.) from ground surveys is incomplete or difficult to obtain. Geographic factors (terrain and limited roads in rural areas), manpower limitations, and other logistical constraints often prevent the gathering of a comprehensive picture of tornado or hail damage, and may allow damage regions to go undetected. Molthan et al. (2011) have shown that high resolution satellite data can provide additional valuable information on storm damage tracks to augment this database. This paper presents initial development to integrate satellite-derived damage track information into the SDAT for near real-time use by forecasters

  6. Automatic Detection of Storm Damages Using High-Altitude Photogrammetric Imaging

    NASA Astrophysics Data System (ADS)

    Litkey, P.; Nurminen, K.; Honkavaara, E.

    2013-05-01

    The risks of storms that cause damage in forests are increasing due to climate change. Quickly detecting fallen trees, assessing the amount of fallen trees and efficiently collecting them are of great importance for economic and environmental reasons. Visually detecting and delineating storm damage is a laborious and error-prone process; thus, it is important to develop cost-efficient and highly automated methods. Objective of our research project is to investigate and develop a reliable and efficient method for automatic storm damage detection, which is based on airborne imagery that is collected after a storm. The requirements for the method are the before-storm and after-storm surface models. A difference surface is calculated using two DSMs and the locations where significant changes have appeared are automatically detected. In our previous research we used four-year old airborne laser scanning surface model as the before-storm surface. The after-storm DSM was provided from the photogrammetric images using the Next Generation Automatic Terrain Extraction (NGATE) algorithm of Socet Set software. We obtained 100% accuracy in detection of major storm damages. In this investigation we will further evaluate the sensitivity of the storm-damage detection process. We will investigate the potential of national airborne photography, that is collected at no-leaf season, to automatically produce a before-storm DSM using image matching. We will also compare impact of the terrain extraction algorithm to the results. Our results will also promote the potential of national open source data sets in the management of natural disasters.

  7. Tree Species Traits but Not Diversity Mitigate Stem Breakage in a Subtropical Forest following a Rare and Extreme Ice Storm

    PubMed Central

    Nadrowski, Karin; Pietsch, Katherina; Baruffol, Martin; Both, Sabine; Gutknecht, Jessica; Bruelheide, Helge; Heklau, Heike; Kahl, Anja; Kahl, Tiemo; Niklaus, Pascal; Kröber, Wenzel; Liu, Xiaojuan; Mi, Xiangcheng; Michalski, Stefan; von Oheimb, Goddert; Purschke, Oliver; Schmid, Bernhard; Fang, Teng; Welk, Erik; Wirth, Christian

    2014-01-01

    Future climates are likely to include extreme events, which in turn have great impacts on ecological systems. In this study, we investigated possible effects that could mitigate stem breakage caused by a rare and extreme ice storm in a Chinese subtropical forest across a gradient of forest diversity. We used Bayesian modeling to correct stem breakage for tree size and variance components analysis to quantify the influence of taxon, leaf and wood functional traits, and stand level properties on the probability of stem breakage. We show that the taxon explained four times more variance in individual stem breakage than did stand level properties; trees with higher specific leaf area (SLA) were less susceptible to breakage. However, a large part of the variation at the taxon scale remained unexplained, implying that unmeasured or undefined traits could be used to predict damage caused by ice storms. When aggregated at the plot level, functional diversity and wood density increased after the ice storm. We suggest that for the adaption of forest management to climate change, much can still be learned from looking at functional traits at the taxon level. PMID:24879434

  8. The role of ice particles in the microphysics and dynamics of deep convective storms in various latitudes

    NASA Astrophysics Data System (ADS)

    Huang, Y. C.; Wang, P. K.

    2017-12-01

    The role of ice particles in the microphysics and dynamics of deep convective storms in various latitudes Yi-Chih Huang and Pao K. Wang Ice particles contribute to the microphysics and dynamics of severe storms in various regions of the world to a degree that is not commonly recognized. This study is motivated by the need to understand the role of ice particles plays in the development of severe storms so that their impact on various aspects of the storm behavior can be properly assessed. In this study, we perform numerical simulations of thunderstorms using a cloud resolving model WISCDYMM that includes parameterized microphysical processes to understand the role played by ice processes. We simulate thunderstorms occurred over various regions of the world including tropics, substropics and midlatitudes. We then perform statistical analysis of the simulated results to show the formation of various categories of hydrometeors to reveal the importance of ice processes. We will show that ice hydrometeors (cloud ice, snow, graupel/hail) account for 80% of the total hydrometeor mass for the High Plains storms but 50% for the subtropical storms. In addition, the melting of large ice particles (graupel and hail) is the major production process of rain in tropical storms although the ratio of ice-phase mass is responsible for only 40% of the total hydrometeor mass. Furthermore, hydrometeors have their own special microphysical processes in development and depletion over various latitudes. Microphysical structures depend on atmospheric dynamical and thermodynamical conditions which determine the partitioning of hydrometeors. This knowledge would benefit the microphysics parameterization in cloud models and cumulus parameterization in global circulation models.

  9. Assessing health impacts of the December 2013 Ice storm in Ontario, Canada.

    PubMed

    Rajaram, Nikhil; Hohenadel, Karin; Gattoni, Laera; Khan, Yasmin; Birk-Urovitz, Elizabeth; Li, Lennon; Schwartz, Brian

    2016-07-11

    Ice, or freezing rain storms have the potential to affect human health and disrupt normal functioning of a community. The purpose of this study was to assess acute health impacts of an ice storm that occurred in December 2013 in Toronto, Ontario, Canada. Data on emergency department visits were obtained from the National Ambulatory Care Reporting System. Rates of visits in Toronto during the storm period (December 21, 2013 - January 1, 2014) were compared to rates occurring on the same dates in the previous five years (historical comparison) and compared to those in a major unaffected city, Ottawa, Ontario (geographic comparison). Overall visits and rates for three categories of interest (cardiac conditions, environmental causes and injuries) were assessed. Rate ratios were calculated using Poisson regression with population counts as an offset. Absolute counts of carbon monoxide poisoning were compared descriptively in a sub-analysis. During the 2013 storm period, there were 34 549 visits to EDs in Toronto (12.46 per 1000 population) compared with 10 794 visits in Ottawa (11.55 per 1000 population). When considering year and geography separately, rates of several types of ED visits were higher in the storm year than in previous years in both Toronto and Ottawa. Considering year and geography together, rates in the storm year were higher for overall ED visits (RR: 1.10, 95 % CI: 1.09-1.11) and for visits due to environmental causes (RR: 2.52, 95 % CI: 2.21-2.87) compared to previous years regardless of city. For injuries, visit rates were higher in the storm year in both Toronto and Ottawa, but the increase in Toronto was significantly greater than the increase in Ottawa, indicating a significant interaction between geography and year (RR: 1.23, 95 % CI: 1.16-1.30). This suggests that the main health impact of the 2013 Ice Storm was an increase in ED visits for injuries, while other increases could have been due to severe weather across Ontario at that time

  10. Contribution of Deformation to Sea Ice Mass Balance: A Case Study From an N-ICE2015 Storm

    NASA Astrophysics Data System (ADS)

    Itkin, Polona; Spreen, Gunnar; Hvidegaard, Sine Munk; Skourup, Henriette; Wilkinson, Jeremy; Gerland, Sebastian; Granskog, Mats A.

    2018-01-01

    The fastest and most efficient process of gaining sea ice volume is through the mechanical redistribution of mass as a consequence of deformation events. During the ice growth season divergent motion produces leads where new ice grows thermodynamically, while convergent motion fractures the ice and either piles the resultant ice blocks into ridges or rafts one floe under the other. Here we present an exceptionally detailed airborne data set from a 9 km2 area of first year and second year ice in the Transpolar Drift north of Svalbard that allowed us to estimate the redistribution of mass from an observed deformation event. To achieve this level of detail we analyzed changes in sea ice freeboard acquired from two airborne laser scanner surveys just before and right after a deformation event brought on by a passing low-pressure system. A linear regression model based on divergence during this storm can explain 64% of freeboard variability. Over the survey region we estimated that about 1.3% of level sea ice volume was pressed together into deformed ice and the new ice formed in leads in a week after the deformation event would increase the sea ice volume by 0.5%. As the region is impacted by about 15 storms each winter, a simple linear extrapolation would result in about 7% volume increase and 20% deformed ice fraction at the end of the season.

  11. Warming in the Nordic Seas, North Atlantic storms and thinning Arctic sea ice

    NASA Astrophysics Data System (ADS)

    Alexeev, Vladimir A.; Walsh, John E.; Ivanov, Vladimir V.; Semenov, Vladimir A.; Smirnov, Alexander V.

    2017-08-01

    Arctic sea ice over the last few decades has experienced a significant decline in coverage both in summer and winter. The currently warming Atlantic Water layer has a pronounced impact on sea ice in the Nordic Seas (including the Barents Sea). More open water combined with the prevailing atmospheric pattern of airflow from the southeast, and persistent North Atlantic storms such as the recent extremely strong Storm Frank in December 2015, lead to increased energy transport to the high Arctic. Each of these storms brings sizeable anomalies of heat to the high Arctic, resulting in significant warming and slowing down of sea ice growth or even melting. Our analysis indicates that the recently observed sea ice decline in the Nordic Seas during the cold season around Svalbard, Franz Joseph Land and Novaya Zemlya, and the associated heat release from open water into the atmosphere, contributed significantly to the increase in the downward longwave radiation throughout the entire Arctic. Added to other changes in the surface energy budget, this increase since the 1960s to the present is estimated to be at least 10 W m-2, which can result in thinner (up to at least 15-20 cm) Arctic ice at the end of the winter. This change in the surface budget is an important contributing factor accelerating the thinning of Arctic sea ice.

  12. On the 2012 Record Low Arctic Sea Ice Cover: Combined Impact of Preconditioning and an August Storm

    NASA Technical Reports Server (NTRS)

    Parkinson, Claire L.; Comiso, Josefino C.

    2013-01-01

    A new record low Arctic sea ice extent for the satellite era, 3.4 x 10(exp 6) square kilometers, was reached on 13 September 2012; and a new record low sea ice area, 3.01 x 10(exp 6) square kilometers was reached on the same date. Preconditioning through decades of overall ice reductions made the ice pack more vulnerable to a strong storm that entered the central Arctic in early August 2012. The storm caused the separation of an expanse of 0.4 x 10(exp 6) square kilometers of ice that melted in total, while its removal left the main pack more exposed to wind and waves, facilitating the main pack's further decay. Future summer storms could lead to a further acceleration of the decline in the Arctic sea ice cover and should be carefully monitored.

  13. Tree survival 15 years after the ice storm of January 1998

    Treesearch

    Walter C. Shortle; Kevin T. Smith; Kenneth R. Dudzik

    2014-01-01

    The regional ice storm of early January 1998 was a widespread disturbance for millions of acres of forest in northeastern New York, northern New England, and southern Quebec. Tree crowns were partially or totally lost as stems snapped and branches broke with the weight of the deposited ice. We tracked the effect of crown injury on a large sample of northern hardwood...

  14. An outbreak of carbon monoxide poisoning after a major ice storm in Maine.

    PubMed

    Daley, W R; Smith, A; Paz-Argandona, E; Malilay, J; McGeehin, M

    2000-01-01

    Unintentional carbon monoxide (CO) exposure kills over 500 people in the U.S. annually. Outbreaks of CO poisoning have occurred after winter storms. The objective of this study was to describe clinical features and identify important risk factors of a CO poisoning outbreak occurring after a major ice storm. The study design included a case series of CO poisoning patients, a telephone survey of the general community, and a case-controlled study of households using specific CO sources. The setting was the primary service area of four hospital emergency departments located in the heavily storm-impacted interior region of Maine. Participants included all patients with a laboratory-confirmed diagnosis of CO poisoning during the 2 weeks after the storm onset, and a population-based comparison group of 522 households selected by random digit dialing. There were 100 cases identified, involving 42 common-source exposure incidents, most of them during the first week. Though classic CO symptoms of headache, dizziness, and nausea predominated, 9 patients presented with chest pain and 10 were asymptomatic. One patient died and 5 were transferred for hyperbaric oxygen therapy. Gasoline-powered electric generators were a CO source in 30 incidents, kerosene heaters in 8, and propane heaters in 4. In the community, 31.4% of households used a generator after the ice storm. The strongest risk factor for poisoning was locating a generator in a basement or an attached structure such as a garage. Cases of CO poisoning with various presentations can be expected in the early aftermath of a severe ice storm. Generators are a major CO source and generator location an important risk factor for such disasters.

  15. Applying stochastic small-scale damage functions to German winter storms

    NASA Astrophysics Data System (ADS)

    Prahl, B. F.; Rybski, D.; Kropp, J. P.; Burghoff, O.; Held, H.

    2012-03-01

    Analyzing insurance-loss data we derive stochastic storm-damage functions for residential buildings. On district level we fit power-law relations between daily loss and maximum wind speed, typically spanning more than 4 orders of magnitude. The estimated exponents for 439 German districts roughly range from 8 to 12. In addition, we find correlations among the parameters and socio-demographic data, which we employ in a simplified parametrization of the damage function with just 3 independent parameters for each district. A Monte Carlo method is used to generate loss estimates and confidence bounds of daily and annual storm damages in Germany. Our approach reproduces the annual progression of winter storm losses and enables to estimate daily losses over a wide range of magnitudes.

  16. Damage Mechanics in the Community Ice Sheet Model

    NASA Astrophysics Data System (ADS)

    Whitcomb, R.; Cathles, L. M. M., IV; Bassis, J. N.; Lipscomb, W. H.; Price, S. F.

    2016-12-01

    Half of the mass that floating ice shelves lose to the ocean comes from iceberg calving, which is a difficult process to simulate accurately. This is especially true in the large-scale ice dynamics models that couple changes in the cryosphere to climate projections. Damage mechanics provide a powerful technique with the potential to overcome this obstacle by describing how fractures in ice evolve over time. Here, we demonstrate the application of a damage model to ice shelves that predicts realistic geometries. We incorporated this solver into the Community Ice Sheet Model, a three dimensional ice sheet model developed at Los Alamos National Laboratory. The damage mechanics formulation that we use comes from a first principles-based evolution law for the depth of basal and surface crevasses and depends on the large scale strain rate, stress state, and basal melt. We show that under idealized conditions it produces ice tongue lengths that match well with observations for a selection of natural ice tongues, including Erebus, Drygalski, and Pine Island in Antarctica, as well as Petermann in Greenland. We also apply the model to more generalized ideal ice shelf geometries and show that it produces realistic calving front positions. Although our results are preliminary, the damage mechanics model that we developed provides a promising first principles method for predicting ice shelf extent and how the calving margins of ice shelves respond to climate change.

  17. Cold-season patterns of reserve and soluble carbohydrates in sugar maple and ice-damaged trees of two age classes following drought

    Treesearch

    B. L. Wong; K. L. Baggett; A. H. Rye

    2009-01-01

    This study examines the effects of summer drought on the composition and profiles of cold-season reserve and soluble carbohydrates in sugar maple (Acer saccharum Marsh.) trees (50-100 years old or ~200 years old) in which the crowns were nondamaged or damaged by the 1998 ice storm. The overall cold season reserve...

  18. Quebec's Ice Storm '98: "all cards wild, all rules broken" in Quebec's shell-shocked hospitals

    PubMed Central

    Hamilton, J

    1998-01-01

    The remarkable ice storm that brought life to a standstill in most of Eastern Ontario and Quebec in January had a huge impact on medical services. Hospitals that lost power found themselves serving as shelters not only for patients but also for staff members and nearby residents. Doctors' offices were forced to close and a large number of operations were cancelled. The 2 articles that follow detail the huge impact the "ice storm of the century" had on health care. PMID:9627567

  19. Ice damage to concrete

    DOT National Transportation Integrated Search

    1998-04-01

    Concrete is a porous material. When saturated with water and then cooled to below 00C, it cracks internally. Upon repeated freezing and thawing, the cracks grow, interact, and lead eventually to macroscopic degradation, termed ice damage. This report...

  20. Carbon Monoxide Poisoning After an Ice Storm in Kentucky, 2009

    PubMed Central

    Lutterloh, Emily C.; Iqbal, Shahed; Clower, Jacquelyn H.; Spillerr, Henry A.; Riggs, Margaret A.; Sugg, Tennis J.; Humbaugh, Kraig E.; Cadwell, Betsy L.; Thoroughman, Douglas A.

    2011-01-01

    Objectives. Carbon monoxide (CO) poisoning is a leading cause of morbidity and mortality during natural disasters. On January 26–27, 2009, a severe ice storm occurred in Kentucky, causing widespread, extended power outages and disrupting transportation and communications. After the storm, CO poisonings were reported throughout the state. The objectives of this investigation were to determine the extent of the problem, identify sources of CO poisoning, characterize cases, make recommendations to reduce morbidity and mortality, and develop prevention strategies. Methods. We obtained data from the Kentucky Regional Poison Center (KRPC), hyperbaric oxygen treatment (HBOT) facilities, and coroners. Additionally, the Kentucky Department for Public Health provided statewide emergency department (ED) and hospitalization data. Results. During the two weeks after the storm, KRPC identified 144 cases of CO poisoning; exposure sources included kerosene heaters, generators, and propane heaters. Hospitals reported 202 ED visits and 26 admissions. Twenty-eight people received HBOT. Ten deaths were attributed to CO poisoning, eight of which were related to inappropriate generator location. Higher rates of CO poisoning were reported in areas with the most ice accumulation. Conclusions. Although CO poisonings are preventable, they continue to occur in postdisaster situations. Recommendations include encouraging use of CO alarms, exploring use of engineering controls on generators to decrease CO exposure, providing specific information regarding safe use and placement of CO-producing devices, and using multiple communication methods to reach people without electricity. PMID:21563718

  1. Altered dynamics of broad-leaved tree species in a Chinese subtropical montane mixed forest: the role of an anomalous extreme 2008 ice storm episode.

    PubMed

    Ge, Jielin; Xiong, Gaoming; Wang, Zhixian; Zhang, Mi; Zhao, Changming; Shen, Guozhen; Xu, Wenting; Xie, Zongqiang

    2015-04-01

    Extreme climatic events can trigger gradual or abrupt shifts in forest ecosystems via the reduction or elimination of foundation species. However, the impacts of these events on foundation species' demography and forest dynamics remain poorly understood. Here we quantified dynamics for both evergreen and deciduous broad-leaved species groups, utilizing a monitoring permanent plot in a subtropical montane mixed forest in central China from 2001 to 2010 with particular relevance to the anomalous 2008 ice storm episode. We found that both species groups showed limited floristic alterations over the study period. For each species group, size distribution of dead individuals approximated a roughly irregular and flat shape prior to the ice storm and resembled an inverse J-shaped distribution after the ice storm. Furthermore, patterns of mortality and recruitment displayed disequilibrium behaviors with mortality exceeding recruitment for both species groups following the ice storm. Deciduous broad-leaved species group accelerated overall diameter growth, but the ice storm reduced evergreen small-sized diameter growth. We concluded that evergreen broad-leaved species were more susceptible to ice storms than deciduous broad-leaved species, and ice storm events, which may become more frequent with climate change, might potentially threaten the perpetuity of evergreen-dominated broad-leaved forests in this subtropical region in the long term. These results underscore the importance of long-term monitoring that is indispensible to elucidate causal links between forest dynamics and climatic perturbations.

  2. Altered dynamics of broad-leaved tree species in a Chinese subtropical montane mixed forest: the role of an anomalous extreme 2008 ice storm episode

    PubMed Central

    Ge, Jielin; Xiong, Gaoming; Wang, Zhixian; Zhang, Mi; Zhao, Changming; Shen, Guozhen; Xu, Wenting; Xie, Zongqiang

    2015-01-01

    Extreme climatic events can trigger gradual or abrupt shifts in forest ecosystems via the reduction or elimination of foundation species. However, the impacts of these events on foundation species' demography and forest dynamics remain poorly understood. Here we quantified dynamics for both evergreen and deciduous broad-leaved species groups, utilizing a monitoring permanent plot in a subtropical montane mixed forest in central China from 2001 to 2010 with particular relevance to the anomalous 2008 ice storm episode. We found that both species groups showed limited floristic alterations over the study period. For each species group, size distribution of dead individuals approximated a roughly irregular and flat shape prior to the ice storm and resembled an inverse J-shaped distribution after the ice storm. Furthermore, patterns of mortality and recruitment displayed disequilibrium behaviors with mortality exceeding recruitment for both species groups following the ice storm. Deciduous broad-leaved species group accelerated overall diameter growth, but the ice storm reduced evergreen small-sized diameter growth. We concluded that evergreen broad-leaved species were more susceptible to ice storms than deciduous broad-leaved species, and ice storm events, which may become more frequent with climate change, might potentially threaten the perpetuity of evergreen-dominated broad-leaved forests in this subtropical region in the long term. These results underscore the importance of long-term monitoring that is indispensible to elucidate causal links between forest dynamics and climatic perturbations. PMID:25897387

  3. Simulating damage for wind storms in the land surface model ORCHIDEE-CAN (revision 4262)

    NASA Astrophysics Data System (ADS)

    Chen, Yi-Ying; Gardiner, Barry; Pasztor, Ferenc; Blennow, Kristina; Ryder, James; Valade, Aude; Naudts, Kim; Otto, Juliane; McGrath, Matthew J.; Planque, Carole; Luyssaert, Sebastiaan

    2018-03-01

    Earth system models (ESMs) are currently the most advanced tools with which to study the interactions among humans, ecosystem productivity, and the climate. The inclusion of storm damage in ESMs has long been hampered by their big-leaf approach, which ignores the canopy structure information that is required for process-based wind-throw modelling. Recently the big-leaf assumptions in the large-scale land surface model ORCHIDEE-CAN were replaced by a three-dimensional description of the canopy structure. This opened the way to the integration of the processes from the small-scale wind damage risk model ForestGALES into ORCHIDEE-CAN. The integration of ForestGALES into ORCHIDEE-CAN required, however, developing numerically efficient solutions to deal with (1) landscape heterogeneity, i.e. account for newly established forest edges for the parameterization of gusts; (2) downscaling spatially and temporally aggregated wind fields to obtain more realistic wind speeds that would represents gusts; and (3) downscaling storm damage within the 2500 km2 pixels of ORCHIDEE-CAN. This new version of ORCHIDEE-CAN was parameterized over Sweden. Subsequently, the performance of the model was tested against data for historical storms in southern Sweden between 1951 and 2010 and south-western France in 2009. In years without big storms, here defined as a storm damaging less than 15 × 106 m3 of wood in Sweden, the model error is 1.62 × 106 m3, which is about 100 % of the observed damage. For years with big storms, such as Gudrun in 2005, the model error increased to 5.05 × 106 m3, which is between 10 and 50 % of the observed damage. When the same model parameters were used over France, the model reproduced a decrease in leaf area index and an increase in albedo, in accordance with SPOT-VGT and MODIS records following the passing of Cyclone Klaus in 2009. The current version of ORCHIDEE-CAN (revision 4262) is therefore expected to have the capability to capture the dynamics of

  4. Using Satellite Remote Sensing to Assist the National Weather Service (NWS) in Storm Damage Surveys

    NASA Technical Reports Server (NTRS)

    Schultz, Lori A.; Molthan, Andrew; McGrath, Kevin; Bell, Jordan; Cole, Tony; Burks, Jason

    2016-01-01

    In the United States, the National Oceanic and Atmospheric Administration (NOAA) National Weather Service (NWS) is charged with performing damage assessments when storm or tornado damage is suspected after a severe weather event. This has led to the development of the Damage Assessment Toolkit (DAT), an application for smartphones, tablets and web browsers that allows for the collection, geolocation, and aggregation of various damage indicators collected during storm surveys.

  5. Susceptibility of central hardwood trees to stem breakage due to ice glazing

    Treesearch

    KaDonna C. Randolph

    2014-01-01

    During January 26-28, 2009, a winter storm dropped a mix of rain, ice, and snow from Texas across the Ohio River Valley and into New England. The storm caused multiple fatalities and millions of dollars of property damage and was called "the biggest natural disaster in modern Kentucky history" (Brammer and Funk 2009: 13). The storm disturbed an estimated 2.4...

  6. 98. DETAIL VIEW OF STORM DAMAGE AND EXPOSED SUBSTRUCTURE, NORTHWEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    98. DETAIL VIEW OF STORM DAMAGE AND EXPOSED SUBSTRUCTURE, NORTHWEST SIDE OF 4TH TEE, LOOKING WEST - Huntington Beach Municipal Pier, Pacific Coast Highway at Main Street, Huntington Beach, Orange County, CA

  7. Winter in the Ouachitas--a severe winter storm signature in Pinus echinata in the Ouachita Mountains of Oklahoma and Arkansas, USA

    Treesearch

    Douglas J. Stevenson; Thomas B. Lynch; Pradip Saud; Robert Heineman; Randal Holeman; Dennis Wilson; Keith Anderson; Chris Cerny; James M. Guldin

    2016-01-01

    Each year severe winter storms (≈ice storms) damage trees throughout the southern USA. Arkansas and Oklahoma have a history of severe winter storms. To extend that history back beyond the reach of written records, a distinctive tree ring pattern or signature is needed. Storm-caused breakage, branch loss and bending stress provide that signature. We found a severe storm...

  8. A Synoptic- and Planetary-Scale Analysis of Widespread North American Ice Storms

    NASA Astrophysics Data System (ADS)

    McCray, C.; Gyakum, J. R.; Atallah, E.

    2017-12-01

    Freezing rain can have devastating impacts, particularly when it persists for many hours. Predicting the precise temperature stratification necessary for long duration freezing rain events remains an important forecast challenge. To better elucidate the conditions responsible for the most severe events, we concentrate on surface observations of long-duration (6 or more hours) freezing rain events over North America from 1979-2016. Furthermore, we analyze cases in which multiple stations observe long-duration events simultaneously. Following these cases over successive days allows us to generate maps of freezing rain "tracks." We then categorize recurring geographic patterns to examine the meteorological conditions leading to these events. While freezing rain is most frequently observed in the northeastern United States and southeastern Canada, long-duration events have affected areas as far south as the Gulf Coast. Notably, a disproportionately large number of very long duration (18 or more hours) events have occurred in the Southern Plains states relative to the climatological annual frequency of freezing rain there. Classification of individual cases shows that most of these very long duration events are associated with a recurring pattern which produces freezing rain along a southwest-northeast swath from Texas/Oklahoma into the northeastern U.S. and eastern Canada. Storms classified within this pattern include the January 1998 and December 2013 ice storms. While this pattern is the most widespread, additional spatially extensive patterns occur. One of these areas extends from the Southern Plains eastward along the Gulf Coast to Georgia and the Carolinas. A third category of events extends from the Upper Midwest into the northeastern U.S. and southeastern Canada. The expansive areal extent and long duration of these events make them especially problematic. An analysis of the planetary- to synoptic-scale settings responsible for these cases and the differences

  9. Towards a Universal Calving Law: Modeling Ice Shelves Using Damage Mechanics

    NASA Astrophysics Data System (ADS)

    Whitcomb, M.; Bassis, J. N.; Price, S. F.; Lipscomb, W. H.

    2017-12-01

    Modeling iceberg calving from ice shelves and ice tongues is a particularly difficult problem in glaciology because of the wide range of observed calving rates. Ice shelves naturally calve large tabular icebergs at infrequent intervals, but may instead calve smaller bergs regularly or disintegrate due to hydrofracturing in warmer conditions. Any complete theory of iceberg calving in ice shelves must be able to generate realistic calving rate values depending on the magnitudes of the external forcings. Here we show that a simple damage evolution law, which represents crevasse distributions as a continuum field, produces reasonable estimates of ice shelf calving rates when added to the Community Ice Sheet Model (CISM). Our damage formulation is based on a linear stability analysis and depends upon the bulk stress and strain rate in the ice shelf, as well as the surface and basal melt rates. The basal melt parameter in our model enhances crevasse growth near the ice shelf terminus, leading to an increased iceberg production rate. This implies that increasing ocean temperatures underneath ice shelves will drive ice shelf retreat, as has been observed in the Amundsen and Bellingshausen Seas. We show that our model predicts broadly correct calving rates for ice tongues ranging in length from 10 km (Erebus) to over 100 km (Drygalski), by matching the computed steady state lengths to observations. In addition, we apply the model to idealized Antarctic ice shelves and show that we can also predict realistic ice shelf extents. Our damage mechanics model provides a promising, computationally efficient way to compute calving fluxes and links ice shelf stability to climate forcing.

  10. 75 FR 17132 - Intent To Prepare a Draft Environmental Impact Statement for Hurricane and Storm Damage Reduction...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-05

    ... DEPARTMENT OF DEFENSE Department of the Army; Corps of Engineers Intent To Prepare a Draft Environmental Impact Statement for Hurricane and Storm Damage Reduction for South Ponte Vedra Beach, Vilano... feasibility of providing hurricane and storm damage reduction (HSDR), and related purposes to the shores of St...

  11. Orographic influence on storm damage to forests in mountain areas by the example of windstorm 'Lothar'

    NASA Astrophysics Data System (ADS)

    Schmoeckel, J.; Kottmeier, Ch.

    2003-04-01

    The extraordinary strong storm 'LOTHAR' on December 26, 1999 caused large damage in the forests of France, Switzerland and Germany. In Germany, specially the Black Forest (Schwarzwald) was concerned. In this contribution an empirical analysis of storm damage in the northern Black Forest is given. The aim is to derive the orographical influence on the windfield from the damage pattern. This is recorded approx. 5 months after the desaster by an airborne survey with a digital line scanner. From these data highly resolved, georeferenced distributions of the vegetation index are calculated (2 m x 2 m pixel size). The damaged forest areas appear with a lower vegetation index than areas with intact vegetation. Demarcation between damaged forest areas and populated or differently used areas is given by a landuse model. Mapping of the storm damages and their combination with a digital elevation model and landuse data is performed in a GIS. It is shown that the damage pattern is significantly affected by orographic factors. Large damage occurred e.g. at the location of saddles between single mountains, on mountain flanks facing to the North and Northwest, and at the windward (west) flanks of extended mountain ridges. Little damage is found in areas that presumably were protected against the wind, i.e. on the leeside (eastern) mountain flanks, in dells and niches as well as in valleys perpendicular to the mean west to southwest winds. To explain the spatially complex distribution of damages more fully, an analysis is made where characteristics of the forest and of the soil are taken into account. The knowledge gained can be profitable for future afforestation in mountain areas to stabilize forests against severe storms.

  12. Glaze Damage In 13- To 18-Year-Old, Natural, Even-Aged Stands of Loblolly Pines in Southeastern Arkansas

    Treesearch

    Michael D. Cain; Michael G. Shelton

    2002-01-01

    In late December 1998, a severe winter storm deposited 2.1 inches of precipitation on the Crossett Experimental Forest in southeastern Arkansas. Ice, in the form of glaze, accumulated on needles and branches of trees, and resulted in visual damage to sapling and pulpwood-sized pines. Within 60 days after the storm, damage was assessed within naturally regenerated,...

  13. Soft-sediment deformation structures from an ice-marginal storm-tide interactive system, Permo-Carboniferous Talchir Formation, Talchir Coalbasin, India

    NASA Astrophysics Data System (ADS)

    Bhattacharya, H. N.; Bhattacharya, Biplab

    2010-01-01

    Permo-Carboniferous Talchir Formation, Talchir Coalbasin, India, records sedimentation during a phase of climatic amelioration in an ice-marginal storm-affected shelf. Evidences of subtidal processes are preserved only under thick mud drapes deposited during waning storm phases. Various soft-sediment deformation structures in some sandstone/siltstone-mudstone interbeds, like syn-sedimentary faults, deformed laminations, sand-silt flows, convolute laminations and various flame structures, suggest liquefaction and fluidization of the beds due to passage of syn-depositional seismic shocks. In the Late Paleozoic ice-marginal shelf, such earthquake tremors could be generated by crustal movements in response to glacioisostatic adjustments of the basin floor.

  14. Identifying Climate Model Teleconnection Mechanisms Between Arctic Sea Ice Loss and Mid-Latitude Winter Storms

    NASA Astrophysics Data System (ADS)

    Kravitz, B.; Mills, C.; Rasch, P. J.; Wang, H.; Yoon, J. H.

    2016-12-01

    The role of Arctic amplification, including observed decreases in sea ice concentration, thickness, and extent, with potential for exciting downstream atmospheric responses in the mid-latitudes, is a timely issue. We identify the role of the regionality of autumn sea ice loss on downstream mid-latitude responses using engineering methodologies adapted to climate modeling, which allow for multiple Arctic sea regions to be perturbed simultaneously. We evaluate downstream responses in various climate fields (e.g., temperature, precipitation, cloud cover) associated with perturbations in the Beaufort/Chukchi Seas and the Kara/Barents Seas. Simulations suggest that the United States response is primarily linked to sea ice changes in the Beaufort/Chukchi Seas, whereas Eurasian response is primarily due to Kara/Barents sea ice coverage changes. Downstream effects are most prominent approximately 6-10 weeks after the initial perturbation (sea ice loss). Our findings suggest that winter mid-latitude storms (connected to the so-called "Polar Vortex") are linked to sea ice loss in particular areas, implying that further sea ice loss associated with climate change will exacerbate these types of extreme events.

  15. Agricultural damages and losses from ARkStorm scenario flooding in California

    USGS Publications Warehouse

    Wein, Anne; David Mitchell,; Peters, Jeff; John Rowden,; Johnny Tran,; Alessandra Corsi,; Dinitz, Laura B.

    2016-01-01

    Scientists designed the ARkStorm scenario to challenge the preparedness of California communities for widespread flooding with a historical precedence and increased likelihood under climate change. California is an important provider of vegetables, fruits, nuts, and other agricultural products to the nation. This study analyzes the agricultural damages and losses pertaining to annual crops, perennial crops, and livestock in California exposed to ARkStorm flooding. Statewide, flood damage is incurred on approximately 23% of annual crop acreage, 5% of perennial crop acreage, and 5% of livestock, e.g., dairy, feedlot, and poultry, acreage. The sum of field repair costs, forgone income, and product replacement costs span $3.7 and $7.1 billion (2009) for a range of inundation durations. Perennial crop loss estimates dominate, and the vulnerability of orchards and vineyards has likely increased with recent expansion. Crop reestablishment delays from levee repair and dewatering more than double annual crop losses in the delta islands, assuming the fragile system does not remain permanently flooded. The exposure of almost 200,000 dairy cows to ARkStorm flooding poses livestock evacuation challenges. Read More: http://ascelibrary.org/doi/abs/10.1061/%28ASCE%29NH.1527-6996.0000174

  16. Managing storm water at airports

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halm, M.J.

    1996-09-01

    Airports are active facilities with numerous on-going operations at their sites. The following operations may adversely affect the water quality of nearby aquatic environments: De-icing runways; de-icing taxiways; de-icing and anti-icing aircraft; aircraft maintenance; and salt de-icer application. Until the amendments to the Clean Water Act of 1972, referred to as the Water Quality Act of 1987, were passed by Congress, the majority of storm water discharges in the US were unregulated. The Water Quality Act of 1987 was promulgated as an effort to manage the pollution resulting from storm water runoff. Many industrial facilities, especially airports, were faced withmore » complex problems in attempting to comply with these new federal regulations. National Pollution Discharge Elimination System (NPDES) permits for airports with more than 50,000 flight operations per year require periodic monitoring of receiving waters and storm sewer outfalls. The federal government has given states jurisdiction in issuing NPDES permits for storm water discharges. States may require composite or grab samples.« less

  17. Soil Nutrient Responses to Disturbance in a Northern Temperate Forest: The Influence of an Ice Storm Manipulation Experiment on Belowground Biogeochemical Cycling

    NASA Astrophysics Data System (ADS)

    Weitzman, J. N.; Groffman, P.

    2017-12-01

    Temperate forest ecosystems are increasingly impacted by human-induced changes in climate, which have the ability to alter the prevalence, severity, and extent of extreme weather events. Ice storms, an example of such extreme events, tend to be rarer and often occur as localized events, making them difficult to predict. As such, their impacts on ecosystem structure and functioning are poorly understood. We utilized a field manipulation experiment that effectively simulated natural ice storms of varying intensities to mechanistically understand the short-term nitrogen (N) responses to such extreme weather events. Net N mineralization and nitrification were quantified for both the organic and mineral soil horizons via 30-day in situ incubations of intact soil cores, while gross N transformations were measured in short-term laboratory incubations using the 15N pool dilution technique. Net C mineralization and N and C microbial biomass were also measured on disturbed soil cores via the chloroform fumigation incubation method. All microbial transformation measurements were carried out in the fall of the pre-treatment year (2015), and the spring and fall of the post-treatment years (2016 and 2017). We found that the availability of inorganic N to the microbial community did not significantly change immediately following the simulated ice storms. Over longer time-scales, however, we expect that N loss (mineralization, nitrification, denitrification) and conservation (immobilization) processes will be controlled more by the flow and availability of labile C from newly decaying fine and coarse woody debris that was dropped immediately following the ice storm. We hypothesize that the forested ecosystem is now in a state of N oligotrophy, and thus less likely to show any N response to disturbance in the short-term. This suggests that recovery of the forest over the long-term may be slower than that observed following a natural ice storm event that took place in 1998 in the

  18. Soil Nutrient Responses to Disturbance in a Northern Temperate Forest: The Influence of an Ice Storm Manipulation Experiment on Belowground Biogeochemical Cycling

    NASA Astrophysics Data System (ADS)

    Wiley, E.; King, C.; Richardson, A. D.; Landhäusser, S.

    2016-12-01

    Temperate forest ecosystems are increasingly impacted by human-induced changes in climate, which have the ability to alter the prevalence, severity, and extent of extreme weather events. Ice storms, an example of such extreme events, tend to be rarer and often occur as localized events, making them difficult to predict. As such, their impacts on ecosystem structure and functioning are poorly understood. We utilized a field manipulation experiment that effectively simulated natural ice storms of varying intensities to mechanistically understand the short-term nitrogen (N) responses to such extreme weather events. Net N mineralization and nitrification were quantified for both the organic and mineral soil horizons via 30-day in situ incubations of intact soil cores, while gross N transformations were measured in short-term laboratory incubations using the 15N pool dilution technique. Net C mineralization and N and C microbial biomass were also measured on disturbed soil cores via the chloroform fumigation incubation method. All microbial transformation measurements were carried out in the fall of the pre-treatment year (2015), and the spring and fall of the post-treatment years (2016 and 2017). We found that the availability of inorganic N to the microbial community did not significantly change immediately following the simulated ice storms. Over longer time-scales, however, we expect that N loss (mineralization, nitrification, denitrification) and conservation (immobilization) processes will be controlled more by the flow and availability of labile C from newly decaying fine and coarse woody debris that was dropped immediately following the ice storm. We hypothesize that the forested ecosystem is now in a state of N oligotrophy, and thus less likely to show any N response to disturbance in the short-term. This suggests that recovery of the forest over the long-term may be slower than that observed following a natural ice storm event that took place in 1998 in the

  19. Living with a Chronic Disabling Illness and Then Some: Data from the 1998 Ice Storm

    ERIC Educational Resources Information Center

    Gignac, Monique A. M.; Cott, Cheryl A.; Badley, Elizabeth M.

    2003-01-01

    This study examined the impact of the 1998 Canadian ice storm on the physical and psychological health of older adults (age greater than 55 years) living with a chronic physical illness, namely osteoarthritis and/or osteoporosis. Although disasters are relatively rare, they are a useful means of examining the impact of a single stressor on a group…

  20. Simulating storm surge inundation and damage potential within complex port facilities

    NASA Astrophysics Data System (ADS)

    Mawdsley, Robert; French, Jon; Fujiyama, Taku; Achutan, Kamalasudhan

    2017-04-01

    Storm surge inundation of port facilities can cause damage to critical elements of infrastructure, significantly disrupt port operations and cause downstream impacts on vital supply chains. A tidal surge in December 2013 in the North Sea partly flooded the Port of Immingham, which handles the largest volume of bulk cargo in the UK including major flows of coal and biomass for power generation. This flooding caused damage to port and rail transport infrastructure and disrupted operations for several weeks. This research aims to improve resilience to storm surges using hydrodynamic modelling coupled to an agent-based model of port operations. Using the December 2013 event to validate flood extent, depth and duration, we ran a high resolution hydrodynamic simulation using the open source Telemac 2D finite element code. The underlying Digital Elevation Model (DEM) was derived from Environment Agency LiDAR data, with ground truthing of the flood defences along the port frontage. Major infrastructure and buildings are explicitly resolved with varying degrees of permeability. Telemac2D simulations are run in parallel and take only minutes on a single 16 cpu compute node. Inundation characteristics predicted using Telemac 2D differ from a simple Geographical Information System 'bath-tub' analysis of the DEM based upon horizontal application of the maximum water level across the port topography. The hydrodynamic simulation predicts less extensive flooding and more closely matches observed flood extent. It also provides more precise depth and duration curves. Detailed spatial flood depth and duration maps were generated for a range of tide and surge scenarios coupled to mean sea-level rise projections. These inundation scenarios can then be integrated with critical asset databases and an agent-based model of port operation (MARS) that is capable of simulating storm surge disruption along wider supply chains. Port operators are able to act on information from a particular

  1. Blasim: A computational tool to assess ice impact damage on engine blades

    NASA Astrophysics Data System (ADS)

    Reddy, E. S.; Abumeri, G. H.; Chamis, C. C.

    1993-04-01

    A portable computer called BLASIM was developed at NASA LeRC to assess ice impact damage on aircraft engine blades. In addition to ice impact analyses, the code also contains static, dynamic, resonance margin, and supersonic flutter analysis capabilities. Solid, hollow, superhybrid, and composite blades are supported. An optional preprocessor (input generator) was also developed to interactively generate input for BLASIM. The blade geometry can be defined using a series of airfoils at discrete input stations or by a finite element grid. The code employs a coarse, fixed finite element mesh containing triangular plate finite elements to minimize program execution time. Ice piece is modeled using an equivalent spherical objective that has a high velocity opposite that of the aircraft and parallel to the engine axis. For local impact damage assessment, the impact load is considered as a distributed force acting over a region around the impact point. The average radial strain of the finite elements along the leading edge is used as a measure of the local damage. To estimate damage at the blade root, the impact is treated as an impulse and a combined stress failure criteria is employed. Parametric studies of local and root ice impact damage, and post-impact dynamics are discussed for solid and composite blades.

  2. Pond Hockey on Whitmore Lacus: the Formation of Ponds and Ethane Ice Deposits Following Storm Events on Titan

    NASA Astrophysics Data System (ADS)

    Steckloff, Jordan; Soderblom, Jason M.

    2017-10-01

    Cassini ISS observations reveled regions, later identified as topographic low spots (Soderblom et al. 2014, DPS) on Saturn’s moon Titan become significantly darker (lower albedo) following storm events (Turtle et al. 2009, GRL; 2011, Science), suggesting pools of liquid hydrocarbon mixtures (predominantly methane-ethane-nitrogen). However, these dark ponds then significantly brighten (higher albedo relative to pre-storm albedo), before fading to their pre-storm albedos (Barnes et al. 2013 Planet. Sci; Soderblom et al. 2014, DPS). We interpret these data to be the result of ethane ice formation, which cools from evaporation of methane. The formation of ethane ices results from a unique sequence of thermophysical processes. Initially, the methane in the ternary mixture evaporates, cooling the pond. Nitrogen, dissolved primarily in the methane, exsolves, further cooling the liquid. However, because nitrogen is significantly more soluble in cooler methane-hydrocarbon mixtures, the relative concentration of nitrogen in the solution increases as it cools. This increased nitrogen fraction increases the density of the pond, as nitrogen is significantly more dense thane methane or ethane (pure ethane’s density is intermediate to that of methane and nitrogen). At around ~85 K the mixture is as dense as pure liquid ethane. Thus, further evaporative methane loss and cooling at the pond’s surface leads to a chemical stratification, with an increasingly ethane rich epilimnion (surface layer) overlying a methane rich hypolimnion (subsurface layer). Further evaporation of methane from the ethane-rich epilimnion drives its temperature and composition toward the methane-ethane-nitrogen liquidus curve, causing pure ethane ice to precipitate out of solution and settle to the bottom of the pool. This settling would obscure the ethane ice from Cassini VIMS and ISS, which would instead continue to appear as a dark pond on the surface. As the ethane precipitates out completely, a

  3. Project Ice Storm: Prenatal Maternal Stress Affects Cognitive and Linguistic Functioning in 5 1/2-Year-Old Children

    ERIC Educational Resources Information Center

    Laplante, David P.; Brunet, Alain; Schmitz, Norbert; Ciampi, Antonio; King, Suzanne

    2008-01-01

    The study used data from Project Ice Storm to determine the extent to which exposure to prenatal maternal stress due to a natural disaster can explain variance in the intellectual and language performance of offspring at age 5 1/2.

  4. Statistics of Storm Updraft Velocities from TWP-ICE Including Verification with Profiling Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collis, Scott; Protat, Alain; May, Peter T.

    2013-08-01

    Comparisons between direct measurements and modeled values of vertical air motions in precipitating systems are complicated by differences in temporal and spatial scales. On one hand, vertically profiling radars more directly measure the vertical air motion but do not adequately capture full storm dynamics. On the other hand, vertical air motions retrieved from two or more scanning Doppler radars capture the full storm dynamics but require model constraints that may not capture all updraft features because of inadequate sampling, resolution, numerical constraints, and the fact that the storm is evolving as it is scanned by the radars. To investigate themore » veracity of radar-based retrievals, which can be used to verify numerically modeled vertical air motions, this article presents several case studies from storm events around Darwin, Northern Territory, Australia, in which measurements from a dual-frequency radar profiler system and volumetric radar-based wind retrievals are compared. While a direct comparison was not possible because of instrumentation location, an indirect comparison shows promising results, with volume retrievals comparing well to those obtained from the profiling system. This prompted a statistical analysis of an extended period of an active monsoon period during the Tropical Warm Pool International Cloud Experiment (TWP-ICE). Results show less vigorous deep convective cores with maximum updraft velocities occurring at lower heights than some cloudresolving modeling studies suggest. 1. Introduction The regionalization of global climate models has been a driver of demand for more complex convective parameterization schemes. A key readjustment of the modeled atmosphere« less

  5. Wave-Ice and Air-Ice-Ocean Interaction During the Chukchi Sea Ice Edge Advance

    DTIC Science & Technology

    2015-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Wave -Ice and Air-Ice-Ocean Interaction During the...Chukchi Sea in the late summer have potentially changed the impact of fall storms by creating wave fields in the vicinity of the advancing ice edge. A...first) wave -ice interaction field experiment that adequately documents the relationship of a growing pancake ice cover with a time and space varying

  6. Thinning and Pruning Influence Glaze Damage in a Loblolly Pine Plantation

    Treesearch

    James D. Burton

    1981-01-01

    An old-field plantation was thinned and pruned at age 11 and again at age 14 to 4 basal area levels and 3 crown percent levels. A survey was made to determine how damage by an ice storm at age 15 was influenced by treatment. Severe damage was heaviest in the densest stands and in stands with the shortest crowns, while the percent of stand destroyed was least under the...

  7. A Storm-by-Storm Analysis of Alpine and Regional Precipitation Dynamics at the Mount Hunter Ice Core Site, Denali National Park, Central Alaska Range

    NASA Astrophysics Data System (ADS)

    Saylor, P. L.; Osterberg, E. C.; Kreutz, K. J.; Wake, C. P.; Winski, D.

    2014-12-01

    In May-June 2013, an NSF-funded team from Dartmouth College and the Universities of Maine and New Hampshire collected two 1000-year ice cores to bedrock from the summit plateau of Mount Hunter in Denali National Park, Alaska (62.940291, -151.087616, 3912 m). The snow accumulation record from these ice cores will provide key insight into late Holocene precipitation variability in central Alaska, and compliment existing precipitation paleorecords from the Mt. Logan and Eclipse ice cores in coastal SE Alaska. However, correct interpretation of the Mt. Hunter accumulation record requires an understanding of the relationships between regional meteorological events and micrometeorological conditions at the Mt. Hunter ice core collection site. Here we analyze a three-month window of snow accumulation and meteorological conditions recorded by an Automatic Weather Station (AWS) at the Mt. Hunter site during the summer of 2013. Snow accumulation events are identified in the Mt. Hunter AWS dataset, and compared on a storm-by-storm basis to AWS data collected from the adjacent Kahiltna glacier 2000 m lower in elevation, and to regional National Weather Service (NWS) station data. We also evaluate the synoptic conditions associated with each Mt. Hunter accumulation event using NWS surface maps, NCEP-NCAR Reanalysis data, and the NOAA HYSPLIT back trajectory model. We categorize each Mt. Hunter accumulation event as pure snow accumulation, drifting, or blowing snow events based on snow accumulation, wind speed and temperature data using the method of Knuth et al (2009). We analyze the frequency and duration of events within each accumulation regime, in addition to the overall contribution of each event to the snowpack. Preliminary findings indicate that a majority of Mt. Hunter accumulation events are of pure accumulation nature (55.5%) whereas drifting (28.6%) and blowing (15.4%) snow events play a secondary role. Our results will characterize the local accumulation dynamics on

  8. Near-surface elastic changes in the Ross Ice Shelf arising from transient storm and melt forcing observed with high-frequency ambient seismic noise

    NASA Astrophysics Data System (ADS)

    Chaput, J.; Aster, R. C.; Baker, M. G.; Gerstoft, P.; Bromirski, P. D.; Nyblade, A.; Stephen, R. A.; Wiens, D.

    2017-12-01

    Ice shelf collapse can herald subsequent grounded ice instability. However, robust understanding of external mechanisms capable of triggering rapid changes remains elusive. Improved understanding therefore requires improved remote and in-situ measurements of ice shelf properties. Using nearly three years of continuous data from a recently deployed 34-station broadband seismic array on the Ross Ice Shelf, we analyze persistent temporally varying, anisotropic near-surface resonant wave modes at frequencies above 1 Hz that are highly sensitive to small changes in elastic shelf properties to depths of tens of m. We further find that these modes exhibit both progressive (on the scale of months) and rapid (on the scale of hours) changes in frequency content. The largest and most rapid excursions are associated with forcing from local storms, and with a large regional ice shelf melt event in January 2016. We hypothesize that temporally variable behavior of the resonance features arises from wind slab formation during storms and/or to porosity changes, and to the formation of percolation-related refrozen layers and thinning in the case of surface melting. These resonance variations can be reproduced and inverted for structural changes using numerical wave propagation models, and thus present an opportunity for 4-D structural monitoring of shallow ice shelf elasticity and structure using long-duration seismic recordings.

  9. Alaskan Ice Core Shows Relationship Between Asian Dust Storm And The Stratosphere Troposphere Exchange

    NASA Astrophysics Data System (ADS)

    Yasunari, T. J.; Shiraiwa, T.; Kanamori, S.; Fujii, Y.; Igarashi, M.; Yamazaki, K.; Benson, C. S.; Hondoh, T.

    2005-12-01

    Atmospheric dust absorbs and scatters solar radiation, and affects global radiative balance. Dust storm in arid and semi-arid regions in East Asia is main dust source in the northern hemisphere. Asian dust has large effect on radiative balance in the northern hemisphere and its long range transport to Alaskan region frequently occurs in springtime. On the other hand, the stratosphere-troposphere exchange (STE) is a important phenomenon for material exchange among the spheres. Some parameters such as tritium, ozone and beryllium can be transferred from the stratosphere into the troposphere under some conditions such as tropopause folding outbreaks, cut-off low developing and cyclonic activities. STE has a seasonal exchange with maximum in springtime. In June 2003, a 50m ice core was drilled at the summit of Mount Wrangell volcano (60N, 144W, 4100 m), Alaska. Dust particle concentration, tritium content and ratio of stable hydrogen isotope were analyzed. Tritium is the stratospheric tracer recently because the effect of nuclear tests in 1960s has faded these days, and its concentration is highest north of 30th parallel. Therefore, the ice core drilled here is ideal to assess both the Asian dust transport and STE. The core covers 1992-2002 with divided four seasons (winter, spring, late-spring and summer). Fine dust less than one micro meter generally represents long range transport increased in springtime every year. The drastic fine and coarse dust flux increases after 2000 correspond to recent increase of Asian Dust outbreaks. These indicate that Asian dust storm largely affects Mount Wrangell every year. Here we show the fact that highest positive correlation between tritium and fine dust fluxes was seen in the term from late-spring to summer (also high correlation between tritium and coarse dust fluxes in this term), suggesting that the stratosphere-troposphere exchange was most intensified by Asian dust storms in this transient season from spring to summer

  10. Ross Ice Shelf, Antarctic Ice and Clouds

    NASA Technical Reports Server (NTRS)

    1991-01-01

    In this view of Antarctic ice and clouds, (56.5S, 152.0W), the Ross Ice Shelf of Antarctica is almost totally clear, showing stress cracks in the ice surface caused by wind and tidal drift. Clouds on the eastern edge of the picture are associated with an Antarctic cyclone. Winds stirred up these storms have been known to reach hurricane force.

  11. Effects of sea-ice and biogeochemical processes and storms on under-ice water fCO2 during the winter-spring transition in the high Arctic Ocean: Implications for sea-air CO2 fluxes

    NASA Astrophysics Data System (ADS)

    Fransson, Agneta; Chierici, Melissa; Skjelvan, Ingunn; Olsen, Are; Assmy, Philipp; Peterson, Algot K.; Spreen, Gunnar; Ward, Brian

    2017-07-01

    We performed measurements of carbon dioxide fugacity (fCO2) in the surface water under Arctic sea ice from January to June 2015 during the Norwegian young sea ICE (N-ICE2015) expedition. Over this period, the ship drifted with four different ice floes and covered the deep Nansen Basin, the slopes north of Svalbard, and the Yermak Plateau. This unique winter-to-spring data set includes the first winter-time under-ice water fCO2 observations in this region. The observed under-ice fCO2 ranged between 315 µatm in winter and 153 µatm in spring, hence was undersaturated relative to the atmospheric fCO2. Although the sea ice partly prevented direct CO2 exchange between ocean and atmosphere, frequently occurring leads and breakup of the ice sheet promoted sea-air CO2 fluxes. The CO2 sink varied between 0.3 and 86 mmol C m-2 d-1, depending strongly on the open-water fractions (OW) and storm events. The maximum sea-air CO2 fluxes occurred during storm events in February and June. In winter, the main drivers of the change in under-ice water fCO2 were dissolution of CaCO3 (ikaite) and vertical mixing. In June, in addition to these processes, primary production and sea-air CO2 fluxes were important. The cumulative loss due to CaCO3 dissolution of 0.7 mol C m-2 in the upper 10 m played a major role in sustaining the undersaturation of fCO2 during the entire study. The relative effects of the total fCO2 change due to CaCO3 dissolution was 38%, primary production 26%, vertical mixing 16%, sea-air CO2 fluxes 16%, and temperature and salinity insignificant.

  12. Historical reconstruction of storms in the West of France in the early Little Ice Age.

    NASA Astrophysics Data System (ADS)

    Athimon, Emmanuelle; Maanan, Mohamed

    2016-04-01

    This research offers to : 1) identify, as accurately as possible, the storms and the coastal flooding in the early Little Ice Age, 2) expose their impacts on the environment and populations, 3) query the « resilience » and adaptation of medieval and modern coastal societies in the West of France by presenting their perceptions and reactions. The space-time frame of the study is located in France, from Brittany to Gascony, between the xivth and the xvith century. Sensitive and brittle, this area is regularly battered by violent winds. It also undergoes episodic sea flooding that can cause ruptures of balance. Hence, the historical reconstruction and analysis of storms and coastal flooding in a long period appear fundamental. A thorough knowledge of past meteo-marine hazards allows to recreate a link with the territory, particularly through the (re)construction of an effective memory of these phenomena. This process is essential however difficult because of many documentary gaps. They are due to historical contingencies such as wars, French Revolution, or archival disasters like the fire of the Chamber of Accounts in Paris in 1737. Many limits must also be taken into account and discussed as inaccurate dates, exaggerated or undervalued descriptions, strict spatial demarcation almost impossible to achieve for the xivth-xvith centuries. Furthermore, during this period, no death toll, material and economic balance was done after a climate disaster. Yet, many historical records - especially narrative sources, books of accounts or cities repairs - expose the impacts of storms and marine submersion on agriculture, environment, infrastructures, etc. For instance, a violent storm hit the coast on June 24th 1452. It washed away part of the roof of a castle on Noirmoutier island and knocked down the bell towers of two churches in Angers. Storms and sea flooding have affected activities, constructions and populations' lives. They have therefore forced societies to adapt

  13. Remote Sensing Techniques for Rapid Assessment of Forest Damage Caused by Catastrophic Climatic Events, NA-TP-01-01

    Treesearch

    William Ciesla; William Frament; Margaret Miller-Weeks

    2001-01-01

    Catastrophic climatic events such as hurricanes, tornadoes, and ice storms can cause billions of dollars in damage to infrastructure and personal property, loss of lives, and damage to natural resources. Forests are especially susceptible to these events. The following is a list of recent climatic events in North America that have had devastating effects on forest...

  14. Screening of plant resources with anti-ice nucleation activity for frost damage prevention.

    PubMed

    Suzuki, Shingo; Fukuda, Satoshi; Fukushi, Yukiharu; Arakawa, Keita

    2017-11-01

    Previous studies have shown that some polyphenols have anti-ice nucleation activity (anti-INA) against ice-nucleating bacteria that contribute to frost damage. In the present study, leaf disk freezing assay, a test of in vitro application to plant leaves, was performed for the screening of anti-INA, which inhibits the ice nucleation activity of an ice-nucleating bacterium Erwinia ananas in water droplets on the leaf surfaces. The application of polyphenols with anti-INA, kaempferol 7-O-β-glucoside and (-)-epigallocatechin gallate, to the leaf disk freezing assay by cooling at -4--6 °C for 3 h, revealed that both the compounds showed anti-INAs against E. ananas in water droplets on the leaf surfaces. Further, this assay also revealed that the extracts of five plant leaves showed high anti-INA against E. ananas in water droplets on leaf surfaces, indicating that they are the candidate resources to protect crops from frost damage.

  15. Radar image interpretation techniques applied to sea ice geophysical problems

    NASA Technical Reports Server (NTRS)

    Carsey, F. D.

    1983-01-01

    The geophysical science problems in the sea ice area which at present concern understanding the ice budget, where ice is formed, how thick it grows and where it melts, and the processes which control the interaction of air-sea and ice at the ice margins is discussed. The science problems relate to basic questions of sea ice: how much is there, thickness, drift rate, production rate, determination of the morphology of the ice margin, storms feeling for the ice, storms and influence at the margin to alter the pack, and ocean response to a storm at the margin. Some of these questions are descriptive and some require complex modeling of interactions between the ice, the ocean, the atmosphere and the radiation fields. All involve measurements of the character of the ice pack, and SAR plays a significant role in the measurements.

  16. GIS-based estimation of the winter storm damage probability in forests: a case study from Baden-Wuerttemberg (Southwest Germany).

    PubMed

    Schindler, Dirk; Grebhan, Karin; Albrecht, Axel; Schönborn, Jochen; Kohnle, Ulrich

    2012-01-01

    Data on storm damage attributed to the two high-impact winter storms 'Wiebke' (28 February 1990) and 'Lothar' (26 December 1999) were used for GIS-based estimation and mapping (in a 50 × 50 m resolution grid) of the winter storm damage probability (P(DAM)) for the forests of the German federal state of Baden-Wuerttemberg (Southwest Germany). The P(DAM)-calculation was based on weights of evidence (WofE) methodology. A combination of information on forest type, geology, soil type, soil moisture regime, and topographic exposure, as well as maximum gust wind speed field was used to compute P(DAM) across the entire study area. Given the condition that maximum gust wind speed during the two storm events exceeded 35 m s(-1), the highest P(DAM) values computed were primarily where coniferous forest grows in severely exposed areas on temporarily moist soils on bunter sandstone formations. Such areas are found mainly in the mountainous ranges of the northern Black Forest, the eastern Forest of Odes, in the Virngrund area, and in the southwestern Alpine Foothills.

  17. Using remotely sensed data and elementary analytical techniques in post-katrina mississippi to examine storm damage modeling

    Treesearch

    Curtis A. Collins; David L. Evans; Keith L. Belli; Patrick A. Glass

    2010-01-01

    Hurricane Katrina’s passage through south Mississippi on August 29, 2005, which damaged or destroyed thousands of hectares of forest land, was followed by massive salvage, cleanup, and assessment efforts. An initial assessment by the Mississippi Forestry Commission estimated that over $1 billion in raw wood material was downed by the storm, with county-level damage...

  18. Patterns of Storm Injury and Tree Response

    Treesearch

    Kevin Smith; Walter Shortle; Kenneth Dudzik

    2001-01-01

    The ice storm of January 1998 in the northeastern United States and adjacent Canada was an extreme example of severe weather that injures trees every year. Broken branches, split branch forks, and snapped stems are all examples of storm injury.

  19. A Bulk Microphysics Parameterization with Multiple Ice Precipitation Categories.

    NASA Astrophysics Data System (ADS)

    Straka, Jerry M.; Mansell, Edward R.

    2005-04-01

    A single-moment bulk microphysics scheme with multiple ice precipitation categories is described. It has 2 liquid hydrometeor categories (cloud droplets and rain) and 10 ice categories that are characterized by habit, size, and density—two ice crystal habits (column and plate), rimed cloud ice, snow (ice crystal aggregates), three categories of graupel with different densities and intercepts, frozen drops, small hail, and large hail. The concept of riming history is implemented for conversions among the graupel and frozen drops categories. The multiple precipitation ice categories allow a range of particle densities and fall velocities for simulating a variety of convective storms with minimal parameter tuning. The scheme is applied to two cases—an idealized continental multicell storm that demonstrates the ice precipitation process, and a small Florida maritime storm in which the warm rain process is important.

  20. Storm-damaged saline-contaminated boreholes as a means of aquifer contamination

    USGS Publications Warehouse

    Carlson, D.A.; Van Biersel, T. P.; Milner, L.R.

    2008-01-01

    Saline water from a storm surge can flow down storm-damaged submerged water supply wells and contaminate boreholes and surrounding aquifers. Using data from conventional purging techniques, aquifer test response analysis, chemical analysis, and regression analysis of chloride/silica (Cl/Si) ratio, equations were derived to estimate the volume of saline water intrusion into a well and a porous media aquifer, the volume of water needed to purge a well shortly following an intrusion event, and the volume of water needed after delay of several or more months, when the saline plume has expanded. Purging time required is a function of volume of water and pumping rate. The study site well is located within a shoreline community of Lake Pontchartrain, St. Tammany Parish, in southeastern Louisiana, United States, which was impacted by two hurricane storm surges and had neither been rehabilitated nor chlorinated prior to our study. Chemical analysis of water samples in fall 2005 and purging of well and aquifer in June 6, 2006, indicated saline water had intruded the well in 2005 and the well and aquifer in 2006. The volume of water needed to purge the study well was approximately 200 casing volumes, which is significantly greater than conventionally used during collection of water samples for water quality analyses. ?? 2007 National Ground Water Association.

  1. Ice damage effects on an old-field, thinned and fertilized loblolly pine stand in South Carolina

    Treesearch

    Bryan C. McElvany; Beth W. Richardson; E. David Dickens

    2006-01-01

    On January 26, 2004, an ice storm impacted 15 South Carolina counties. An established fertilization study area in Clarendon County, SC, was in the affected region. This old-field, thinned, loblolly pine (Pinus taeda L.) stand was fertilized in the spring of 1998. Treatments consisted of: (1) control; (2) poultry litter (7 tons acre-1); and (3)...

  2. Ice on waterfowl markers

    USGS Publications Warehouse

    Greenwood, R.J.; Bair, W.C.

    1974-01-01

    Wild and captive giant Canada geese (Branta canadensis maxima) and captive mallards (Anas platyrhynchos) accumulated ice on neck collars and/or nasal saddles during winter storm periods in 1971 and 1972. Weather conditions associated with icing were documented, and characteristics of icing are discussed. Severe marker icing occurred during subfreezing weather when the windchill reached approximately -37 deg.C. Birds appeared able to de-ice nasal saddles in most instances.

  3. Meteorological conditions in a thinner Arctic sea ice regime from winter to summer during the Norwegian Young Sea Ice expedition (N-ICE2015)

    NASA Astrophysics Data System (ADS)

    Cohen, Lana; Hudson, Stephen R.; Walden, Von P.; Graham, Robert M.; Granskog, Mats A.

    2017-07-01

    Atmospheric measurements were made over Arctic sea ice north of Svalbard from winter to early summer (January-June) 2015 during the Norwegian Young Sea Ice (N-ICE2015) expedition. These measurements, which are available publicly, represent a comprehensive meteorological data set covering the seasonal transition in the Arctic Basin over the new, thinner sea ice regime. Winter was characterized by a succession of storms that produced short-lived (less than 48 h) temperature increases of 20 to 30 K at the surface. These storms were driven by the hemispheric scale circulation pattern with a large meridional component of the polar jet stream steering North Atlantic storms into the high Arctic. Nonstorm periods during winter were characterized by strong surface temperature inversions due to strong radiative cooling ("radiatively clear state"). The strength and depth of these inversions were similar to those during the Surface Heat Budget of the Arctic Ocean (SHEBA) campaign. In contrast, atmospheric profiles during the "opaquely cloudy state" were different to those from SHEBA due to differences in the synoptic conditions and location within the ice pack. Storm events observed during spring/summer were the result of synoptic systems located in the Barents Sea and the Arctic Basin rather than passing directly over N-ICE2015. These synoptic systems were driven by a large-scale circulation pattern typical of recent years, with an Arctic Dipole pattern developing during June. Surface temperatures became near-constant 0°C on 1 June marking the beginning of summer. Atmospheric profiles during the spring and early summer show persistent lifted temperature and moisture inversions that are indicative of clouds and cloud processes.

  4. Nearshore Circulation and Storm Surge Along the Mackenzie Delta Coast

    NASA Astrophysics Data System (ADS)

    Perrie, W.; Mulligan, R. P.; Solomon, S. M.; Hoque, A.; Zhang, L.

    2008-12-01

    model, simulations of the storm pattern, track and intensity are in very good agreement with the NCEP re-analysis. This is model coupled to the Princeton Ocean Model (POM) and Hibler Ice Model, which are used to provide basin-scale driver fields and define the boundary conditions of the nearshore Delft3D model for the Mackenzie Delta region. Coastal damage was predominately caused by storm surge, and the high salinity flood waters that flowed over the surface of the outer delta.

  5. Observing storm surges from satellite altimetry

    NASA Astrophysics Data System (ADS)

    Han, Guoqi

    2016-07-01

    Storm surges can cause catastrophic damage to properties and loss of life in coastal communities. Thus it is important to enhance our capabilities of observing and forecasting storm surges for mitigating damage and loss. In this presentation we show examples of observing storm surges around the world using nadir satellite altimetry, during Hurricane Sandy, Igor, and Isaac, as well as other cyclone events. The satellite observations are evaluated against tide-gauge observations and discussed for dynamic mechanisms. We also show the potential of a new wide-swath altimetry mission, the Surface Water and Ocean Topography (SWOT), for observing storm surges.

  6. The May 25-27 2005 Mount Logan Storm: Implications for the reconstruction of the climate signal contained in Gulf of Alaska Ice Cores

    NASA Astrophysics Data System (ADS)

    Moore, K.; Holdsworth, G.

    2006-12-01

    In late May 2005, 3 climbers were immobilized at 5400 m on Mount Logan, Canada`s highest mountain, by the high impact weather associated with an extratropical cyclone over the Gulf of Alaska. Rescue operations were hindered by the high winds, cold temperatures, and heavy snowfall associated with the storm. Ultimately, the climbers were rescued after the weather cleared. Just prior to the storm, two automated weather stations had been deployed on the mountain as part of a research program aimed at interpreting the climate signal contained in summit ice cores. These data provide a unique and hitherto unobtainable record of the high elevation meteorological conditions associated with a severe extratropical cyclone. In this talk, data from these weather stations along with surface and sounding data from the nearby town of Yakutat Alaska, satellite imagery and the NCEP reanalysis are used to characterize the synoptic-scale conditions associated with this storm. Particular emphasis is placed on the water vapor transport associated with this storm. The authors show that during this event, subtropical moisture was transported northwards towards the Mount Logan region. The magnitude of this transport into the Gulf of Alaska was exceeded only 1% of the time during the months of May and June over the period 1948-2005. As a result, the magnitude of the precipitable water field in the Gulf of Alaska region attained values usually found in the tropics. An atmospheric moisture budget analysis indicates that most of the moisture advected into the Mount Logan region was pre-existing water vapor already in the subtropical atmosphere and was not water vapor evaporated from the surface during the evolution of the storm. Implications of this moisture source for our understanding of the water isotopic climate signal in the Mount Logan ice cores will be discussed.

  7. Observed and Simulated Radiative and Microphysical Properties of Tropical Convective Storms

    NASA Technical Reports Server (NTRS)

    DelGenio, Anthony D.; Hansen, James E. (Technical Monitor)

    2001-01-01

    Increases in the ice content, albedo and cloud cover of tropical convective storms in a warmer climate produce a large negative contribution to cloud feedback in the GISS GCM. Unfortunately, the physics of convective upward water transport, detrainment, and ice sedimentation, and the relationship of microphysical to radiative properties, are all quite uncertain. We apply a clustering algorithm to TRMM satellite microwave rainfall retrievals to identify contiguous deep precipitating storms throughout the tropics. Each storm is characterized according to its size, albedo, OLR, rain rate, microphysical structure, and presence/absence of lightning. A similar analysis is applied to ISCCP data during the TOGA/COARE experiment to identify optically thick deep cloud systems and relate them to large-scale environmental conditions just before storm onset. We examine the statistics of these storms to understand the relative climatic roles of small and large storms and the factors that regulate convective storm size and albedo. The results are compared to GISS GCM simulated statistics of tropical convective storms to identify areas of agreement and disagreement.

  8. Flood Damage Assessment in Pearl River Delta Rural Area Application in Huashan Town, Huadu District,Guanghzou during the 2017 5.7 Heavy Rain Storm

    NASA Astrophysics Data System (ADS)

    Wang, X.

    2017-12-01

    The Pearl River Delta (PRD) in China, the summer rain storm occurs frequently, the flood damage is very serious. Damage assessment is the basis of scientific decision-making in disaster mitigation. All approaches of flood damage analysis contain uncertainties due to the inaccuracies and generalisations used, the lack of data aggravates this problem, making methods very rough. This study presents a detailed flood damage assessment framework in Pearl River Delta rural area, using 2017 "5.7" heavy rain storm event to simulate the process and estimate the flood loss in resident building and property, agriculture production. The framework integrates four modules,1) utilize the remote sensing and statistical yearbook and so on to construct the disaster bearing bodies GIS database; 2) using hydraulics model to simulate the flood extent and depth spatial distribution;3)through field investigation to obtain the flood loss data for all kinds of hazard-affected body, using statistical analysis method to get the damage curves;4)Integrate flood scenarios, disaster bearing bodies GIS database and damage curves to calculate the flood loss estimation value. Using this methodology, in the 2017 "5.7" heavy rain storm event, Huashan Town flood damage loss is underestimate compared with the government report, because of not considering the damage of water conservancy facilities. But the disaster loss value on the spatial distribution is consistent with actual situation. In terms of aggregated values in the whole town, the model is capable of obtaining figures that are within the same order of magnitude. This study produce a flood damage assessment framework taking into account the regional characteristics of PRD rural area, provide a template for future practice. This study only considers the current impacts, the framework should be improved by taking into account socio-economic and climatic changes, as well as implementing adaptation measures to be applied to assess the potential

  9. Severe storm identification with satellite microwave radiometry: An initial investigation with Nimbus-7 SMMR data

    NASA Technical Reports Server (NTRS)

    Spencer, R. W.; Howland, M. R.

    1984-01-01

    The severe weather characteristics of convective storms as observed by the Nimbus 7 Scanning Multichannel Microwave Radiometer (SMMR) are investigated. Low 37 GHz brightness temperatures (due to scattering of upwelling radiation by precipitation size ice) are related to the occurrence of severe weather (large hail, strong winds or wind damage, tornadoes and funnel clouds) within one hour of the satellite observation time. During 1979 and 1980 over the United States there were 263 storms which had very cold 37 GHz signatures. Of these storms 15% were severe. The SMMR detected hail, wind, and tornadic storms equally well. Critical Success Indices (CSI's) of 0.32, 0.48, and 0.38 are achieved for the thresholding of severe vs. nonsevere low brightness temperature events during 1979, 1980, and the two years combined, respectively. Such scores are comparable to skill scores for early radar detection methods. These results suggest that a future geostationary passive microwave imaging capability at 37 GHz, with sufficient spatial and temporal resolution, would allow the detection of severe convective storms. This capability would provide a useful complement to radar, especially in areas not covered by radar.

  10. Meteorology, Macrophysics, Microphysics, Microwaves, and Mesoscale Modeling of Mediterranean Mountain Storms: The M8 Laboratory

    NASA Technical Reports Server (NTRS)

    Starr, David O. (Technical Monitor); Smith, Eric A.

    2002-01-01

    Comprehensive understanding of the microphysical nature of Mediterranean storms can be accomplished by a combination of in situ meteorological data analysis and radar-passive microwave data analysis, effectively integrated with numerical modeling studies at various scales, from synoptic scale down through the mesoscale, the cloud macrophysical scale, and ultimately the cloud microphysical scale. The microphysical properties of and their controls on severe storms are intrinsically related to meteorological processes under which storms have evolved, processes which eventually select and control the dominant microphysical properties themselves. This involves intense convective development, stratiform decay, orographic lifting, and sloped frontal lifting processes, as well as the associated vertical motions and thermodynamical instabilities governing physical processes that affect details of the size distributions and fall rates of the various types of hydrometeors found within the storm environment. Insofar as hazardous Mediterranean storms, highlighted in this study by three mountain storms producing damaging floods in northern Italy between 1992 and 2000, developing a comprehensive microphysical interpretation requires an understanding of the multiple phases of storm evolution and the heterogeneous nature of precipitation fields within a storm domain. This involves convective development, stratiform transition and decay, orographic lifting, and sloped frontal lifting processes. This also involves vertical motions and thermodynamical instabilities governing physical processes that determine details of the liquid/ice water contents, size disi:ributions, and fall rates of the various modes of hydrometeors found within hazardous storm environments.

  11. Detection of severe storm signatures in loblolly pine using seven-year periodic standardized averages and standard deviations

    Treesearch

    Stevenson Douglas; Thomas Hennessey; Thomas Lynch; Giulia Caterina; Rodolfo Mota; Robert Heineman; Randal Holeman; Dennis Wilson; Keith Anderson

    2016-01-01

    A loblolly pine plantation near Eagletown, Oklahoma was used to test standardized tree ring widths in detecting snow and ice storms. Widths of two rings immediately following suspected storms were standardized against widths of seven rings following the storm (Stan1 and Stan2). Values of Stan1 less than -0.900 predict a severe (usually ice) storm when Stan 2 is less...

  12. Defining Coastal Storm and Quantifying Storms Applying Coastal Storm Impulse Parameter

    NASA Astrophysics Data System (ADS)

    Mahmoudpour, Nader

    2014-05-01

    What defines a storm condition and what would initiate a "storm" has not been uniquely defined among scientists and engineers. Parameters that have been used to define a storm condition can be mentioned as wind speed, beach erosion and storm hydrodynamics parameters such as wave height and water levels. Some of the parameters are storm consequential such as beach erosion and some are not directly related to the storm hydrodynamics such as wind speed. For the purpose of the presentation, the different storm conditions based on wave height, water levels, wind speed and beach erosion will be discussed and assessed. However, it sounds more scientifically to have the storm definition based on the hydrodynamic parameters such as wave height, water level and storm duration. Once the storm condition is defined and storm has initiated, the severity of the storm would be a question to forecast and evaluate the hazard and analyze the risk in order to determine the appropriate responses. The correlation of storm damages to the meteorological and hydrodynamics parameters can be defined as a storm scale, storm index or storm parameter and it is needed to simplify the complexity of variation involved developing the scale for risk analysis and response management. A newly introduced Coastal Storm Impulse (COSI) parameter quantifies storms into one number for a specific location and storm event. The COSI parameter is based on the conservation of linear, horizontal momentum to combine storm surge, wave dynamics, and currents over the storm duration. The COSI parameter applies the principle of conservation of momentum to physically combine the hydrodynamic variables per unit width of shoreline. This total momentum is then integrated over the duration of the storm to determine the storm's impulse to the coast. The COSI parameter employs the mean, time-averaged nonlinear (Fourier) wave momentum flux, over the wave period added to the horizontal storm surge momentum above the Mean High

  13. Ice crystallization in porous building materials: assessing damage using real-time 3D monitoring

    NASA Astrophysics Data System (ADS)

    Deprez, Maxim; De Kock, Tim; De Schutter, Geert; Cnudde, Veerle

    2017-04-01

    Frost action is one of the main causes of deterioration of porous building materials in regions at middle to high latitudes. Damage will occur when the internal stresses due to ice formation become larger than the strength of the material. Hence, the sensitivity of the material to frost damage is partly defined by the structure of the solid body. On the other hand, the size, shape and interconnection of pores manages the water distribution in the building material and, therefore, the characteristics of the pore space control potential to form ice crystals (Ruedrich et al., 2011). In order to assess the damage to building materials by ice crystallization, lot of effort was put into identifying the mechanisms behind the stress build up. First of all, volumetric expansion of 9% (Hirschwald, 1908) during the transition of water to ice should be mentioned. Under natural circumstances, however, water saturation degrees within natural rocks or concrete cannot reach a damaging value. Therefore, linear growth pressure (Scherer, 1999), as well as several mechanisms triggered by water redistribution during freezing (Powers and Helmuth, 1953; Everett, 1961) are more likely responsible for damage due to freezing. Nevertheless, these theories are based on indirect observations and models and, thus, direct evidence that reveals the exact damage mechanism under certain conditions is still lacking. To obtain this proof, in-situ information needs to be acquired while a freezing process is performed. X-ray computed tomography has proven to be of great value in material research. Recent advances at the Ghent University Centre for Tomography (UGCT) have already allowed to dynamically 3D image crack growth in natural rock during freeze-thaw cycles (De Kock et al., 2015). A great potential to evaluate the different stress build-up mechanisms can be found in this imaging technique consequently. It is required to cover a range of materials with different petrophysical properties to achieve

  14. Flood Losses Associated with Winter Storms in the U.S. Northeast

    NASA Astrophysics Data System (ADS)

    Ting, M.; Shimkus, C.

    2015-12-01

    Winter storms pose a number of hazards to coastal communities in the U.S. Northeast including heavy rain, snow, strong wind, cold temperatures, and flooding. These hazards can cause millions in property damages from one storm alone. This study addresses the impacts of winter storms from 2001 - 2012 on coastal counties in the U.S. Northeast and underscores the significant economic consequences extreme winter storms have on property. The analysis on the types of hazards (floods, strong wind, snow, etc.) and associated damage from the National Climatic Data Center Storm Events Database indicates that floods were responsible for the highest damages. This finding suggests that winter storm vulnerability could grow in the future as precipitation intensity increases and sea level rise exacerbate flood losses. Flood loss maps are constructed based on damage amount, which can be compared to the flood exposure maps constructed by the NOAA Office of Coastal Management. Interesting agreements and discrepancies exist between the two methods, which warrant further examination. Furthermore, flood losses often came from storms characterized as heavy precipitation storms and strong surge storms, and sometimes both, illustrating the compounding effect of flood risks in the region. While New Jersey counties experienced the most damage per unit area, there is no discernable connection between population density and damage amount, which suggests that societal impacts may rely less on population characteristics and more on infrastructure types and property values, which vary throughout the region.

  15. Lightning and precipitation history of a microburst-producing storm

    NASA Technical Reports Server (NTRS)

    Goodman, Steven J.; Buechler, Dennis E.; Wright, Patrick D.; Rust, W. David

    1988-01-01

    Quantitative measurements of the lightning and precipitation life cycle of a microburst-producing storm are discussed. The storm, which occurred on July 20, 1986 at Huntsville, Alabama, was studied using Doppler radar data. The storm produced 116 flashes, 6 of which were discharges to the ground. It is suggested that an abrupt decrease in the total flash rates is associated with storm collapse, and serves as a precursor to the arrival of the maximum microburst outflows at the surface. Ice-phase precipitation is shown to be an important factor in both the formation of the strong downdraft and the electrification of the storm.

  16. Analysis of Storm Surge in Hong Kong

    NASA Astrophysics Data System (ADS)

    Kao, W. H.

    2017-12-01

    A storm surge is a type of coastal flood that is caused by low-pressure systems such as tropical cyclones. Storm surges caused by tropical cyclones can be very powerful and damaging, as they can flood coastal areas, and even destroy infrastructure in serious cases. Some serious cases of storm surges leading to more than thousands of deaths include Hurricane Katrina (2005) in New Orleans and Typhoon Haiyan (2013) in Philippines. Hong Kong is a coastal city that is prone to tropical cyclones, having an average of 5-6 tropical cyclones entering 500km range of Hong Kong per year. Storm surges have seriously damaged Hong Kong in the past, causing more than 100 deaths by Typhoon Wanda (1962), and leading to serious damage to Tai O and Cheung Chau by Typhoon Hagupit (2008). To prevent economic damage and casualties from storm surges, accurately predicting the height of storm surges and giving timely warnings to citizens is very important. In this project, I will be analyzing how different factors affect the height of storm surge, mainly using data from Hong Kong. These factors include the windspeed in Hong Kong, the atmospheric pressure in Hong Kong, the moon phase, the wind direction, the intensity of the tropical cyclone, distance between the tropical cyclone and Hong Kong, the direction of the tropical cyclone relative to Hong Kong, the speed of movement of the tropical cyclone and more. My findings will also be compared with cases from other places, to see if my findings also apply for other places.

  17. The Oklahoma ice storm, a Y2K disaster that arrived one year later--how two rural hospitals coped and what they learned.

    PubMed

    2001-05-01

    An unexpected ice storm last December in southeastern Oklahoma cut off power and water for days in the area and punched holes in the disaster plans of the two hospitals most affected. In this report, hospital officials describe how they fared and tell what they will do in the future to be better prepared for such a worst-case scenario.

  18. Advances in using satellite altimetry to observe storm surge

    NASA Astrophysics Data System (ADS)

    Han, Guoqi

    2017-04-01

    Storm surges are the major cause for coastal flooding, resulting in catastrophic damage to properties and loss of life in coastal communities. Thus it is important to utilize new technology to enhance our capabilities of observing storm surges and ultimately to improve our capacity for forecasting storm surges and mitigating damage and loss. In this talk we first review traditional methods of monitoring storm surges. We then provide examples of storm surges observed by nadir satellite altimetry, during Hurricane Sandy and Igor, as well as typhoon and cyclone events. We further evaluate satellite results against tide-gauge data and explain storm surge features. Finally, we discuss the potential of a wide-swath altimetry mission, the Surface Water and Ocean Topography (SWOT), for observing storm surges.

  19. Severe Storm Identification with Satellite Microwave Radiometry: An Initial Investigation with Nimbus-7 SMMR Data.

    NASA Astrophysics Data System (ADS)

    Spencer, Roy W.; Howland, Michael R.; Santek, David A.

    1987-06-01

    In an attempt to determine the feasibility of detecting and monitoring severe weather with future satellite passive microwave observations, the severe weather characteristics of convective storms as observed by the Nimbus 7 Scanning Multichannel Microwave Radiometer (SMMR) are investigated. Low 37 GHz brightness temperatures (due to scattering of upwelling radiation by precipitation size ice) were related to the occurrence of severe weather (large hail, strong winds or wind damage, tornados and funnel clouds) within one hour of the satellite observation time. During 1979 and 1980 over the study area within the United States, there were 263 storms that had cold 37 GHz signatures. Of these storms, 15 percent were reported as severe. The relative number of storms falling in hail, wind, or tornadic categories did not differ from those expected climatologically. Critical Success Indices (CSIs) of 0.32, 0.48 and 0.38 were achieved for the low brightness temperature thresholding of severe versus nonsevere storms during 1979, 1980 and the two years combined, respectively. The preliminary indication is that a future geostationary passive microwave imaging capability at 37 GHz (or possibly higher frequencies), with sufficient spatial and temporal resolution, would facilitate the detection and monitoring of severe convective storms. This capability would provide a useful complement to radar, especially over most of the globe which is not covered by radar.

  20. Ice shelf fracture parameterization in an ice sheet model

    NASA Astrophysics Data System (ADS)

    Sun, Sainan; Cornford, Stephen L.; Moore, John C.; Gladstone, Rupert; Zhao, Liyun

    2017-11-01

    Floating ice shelves exert a stabilizing force onto the inland ice sheet. However, this buttressing effect is diminished by the fracture process, which on large scales effectively softens the ice, accelerating its flow, increasing calving, and potentially leading to ice shelf breakup. We add a continuum damage model (CDM) to the BISICLES ice sheet model, which is intended to model the localized opening of crevasses under stress, the transport of those crevasses through the ice sheet, and the coupling between crevasse depth and the ice flow field and to carry out idealized numerical experiments examining the broad impact on large-scale ice sheet and shelf dynamics. In each case we see a complex pattern of damage evolve over time, with an eventual loss of buttressing approximately equivalent to halving the thickness of the ice shelf. We find that it is possible to achieve a similar ice flow pattern using a simple rule of thumb: introducing an enhancement factor ˜ 10 everywhere in the model domain. However, spatially varying damage (or equivalently, enhancement factor) fields set at the start of prognostic calculations to match velocity observations, as is widely done in ice sheet simulations, ought to evolve in time, or grounding line retreat can be slowed by an order of magnitude.

  1. Tropical Storm Erin

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Location: The Atlantic Ocean 210 miles south of Galveston, Texas Categorization: Tropical Storm Sustained Winds: 40 mph (60 km/hr)

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Infrared ImageMicrowave Image

    Infrared Images Because infrared radiation does not penetrate through clouds, AIRS infrared images show either the temperature of the cloud tops or the surface of the Earth in cloud-free regions. The lowest temperatures (in purple) are associated with high, cold cloud tops that make up the top of the storm. In cloud-free areas the AIRS instrument will receive the infrared radiation from the surface of the Earth, resulting in the warmest temperatures (orange/red).

    Microwave Images In the AIRS microwave imagery, deep blue areas in storms show where the most precipitation occurs, or where ice crystals are present in the convective cloud tops. Outside of these storm regions, deep blue areas may also occur over the sea surface due to its low radiation emissivity. On the other hand, land appears much warmer due to its high radiation emissivity.

    Microwave radiation from Earth's surface and lower atmosphere penetrates most clouds to a greater or lesser extent depending upon their water vapor, liquid water and ice content. Precipitation, and ice crystals found at the cloud tops where strong convection is taking place, act as barriers to microwave radiation. Because of this barrier effect, the AIRS microwave sensor detects only the radiation arising at or above their location in the atmospheric column. Where these barriers are not present, the microwave sensor detects radiation arising throughout the air column and down to the surface. Liquid surfaces (oceans, lakes and rivers) have 'low emissivity' (the signal isn't as strong) and their radiation brightness temperature is therefore low. Thus the ocean also appears 'low temperature' in the AIRS microwave images and is assigned the color blue

  2. Winter storm intensity, hazards, and property losses in the New York tristate area.

    PubMed

    Shimkus, Cari E; Ting, Mingfang; Booth, James F; Adamo, Susana B; Madajewicz, Malgosia; Kushnir, Yochanan; Rieder, Harald E

    2017-07-01

    Winter storms pose numerous hazards to the Northeast United States, including rain, snow, strong wind, and flooding. These hazards can cause millions of dollars in damages from one storm alone. This study investigates meteorological intensity and impacts of winter storms from 2001 to 2014 on coastal counties in Connecticut, New Jersey, and New York and underscores the consequences of winter storms. The study selected 70 winter storms on the basis of station observations of surface wind strength, heavy precipitation, high storm tide, and snow extremes. Storm rankings differed between measures, suggesting that intensity is not easily defined with a single metric. Several storms fell into two or more categories (multiple-category storms). Following storm selection, property damages were examined to determine which types lead to high losses. The analysis of hazards (or events) and associated damages using the Storm Events Database of the National Centers for Environmental Information indicates that multiple-category storms were responsible for a greater portion of the damage. Flooding was responsible for the highest losses, but no discernible connection exists between the number of storms that afflict a county and the damage it faces. These results imply that losses may rely more on the incidence of specific hazards, infrastructure types, and property values, which vary throughout the region. © 2017 The Authors. Annals of the New York Academy of Sciences published by Wiley Periodicals Inc. on behalf of The New York Academy of Sciences.

  3. Anticipating environmental and environmental-health implications of extreme storms: ARkStorm scenario

    USGS Publications Warehouse

    Plumlee, Geoffrey S.; Alpers, Charles N.; Morman, Suzette A.; San Juan, Carma A.

    2016-01-01

    The ARkStorm Scenario predicts that a prolonged winter storm event across California would cause extreme precipitation, flooding, winds, physical damages, and economic impacts. This study uses a literature review and geographic information system-based analysis of national and state databases to infer how and where ARkStorm could cause environmental damages, release contamination from diverse natural and anthropogenic sources, affect ecosystem and human health, and cause economic impacts from environmental-remediation, liability, and health-care costs. Examples of plausible ARkStorm environmental and health concerns include complex mixtures of contaminants such as petroleum, mercury, asbestos, persistent organic pollutants, molds, and pathogens; adverse physical and contamination impacts on riverine and coastal marine ecosystems; and increased incidences of mold-related health concerns, some vector-borne diseases, and valley fever. Coastal cities, the San Francisco Bay area, the Sacramento-San Joaquin River Delta, parts of the Central Valley, and some mountainous areas would likely be most affected. This type of screening analysis, coupled with follow-up local assessments, can help stakeholders in California and disaster-prone areas elsewhere better plan for, mitigate, and respond to future environmental disasters.

  4. Atmospheric Icing on Sea Structures,

    DTIC Science & Technology

    1984-04-01

    structures causes many safety risks and inconve- niences. Ship icing has been recognized as a serious problem for a long time and has been discussed in...during an icing storm. Also, as will be shown in the theory section, ice density and type may even vary in constant environmental con- ditions, so...oeiousn aret otn cmalcurglatie for the roplet thabhaecth mdianrvolme dater ofltheug drEt distfriton.ec Ths mehode givese fairlyraccurateyresultsron

  5. Storm-related mortality--central Texas, October 17-31, 1998.

    PubMed

    2000-02-25

    On October 17, 1998, a series of storms moved across the central and south regions of Texas, dropping up to 22 inches of rain in some areas and spawning several tornados. Sixty Texas counties (24%) reported flooding during October 17-19. Thirty-six counties became eligible for federal and/or state assistance as a result of damages suffered from this storm system during October 17-31. Estimated flood damage was approximately $900 million, including damage to 12,000 homes, 700 businesses, and public property. This report summarizes findings of an epidemiologic investigation of 31 deaths associated with the storm system.

  6. In Situ Quantification of Experimental Ice Accretion on Tree Crowns Using Terrestrial Laser Scanning

    PubMed Central

    Nock, Charles A.; Greene, David; Delagrange, Sylvain; Follett, Matt; Fournier, Richard; Messier, Christian

    2013-01-01

    In the eastern hardwood forests of North America ice storms are an important disturbance event. Ice storms strongly influence community dynamics as well as urban infrastructure via catastrophic branch failure; further, the severity and frequency of ice storms are likely to increase with climate change. However, despite a long-standing interest into the effects of freezing rain on forests, the process of ice accretion and thus ice loading on branches remains poorly understood. This is because a number of challenges have prevented in situ measurements of ice on branches, including: 1) accessing and measuring branches in tall canopies, 2) limitations to travel during and immediately after events, and 3) the unpredictability of ice storms. Here, utilizing a novel combination of outdoor experimental icing, manual measurements and terrestrial laser scanning (TLS), we perform the first in situ measurements of ice accretion on branches at differing heights in a tree crown and with increasing duration of exposure. We found that TLS can reproduce both branch and iced branch diameters with high fidelity, but some TLS instruments do not detect ice. Contrary to the expectations of ice accretion models, radial accretion varied sharply within tree crowns. Initially, radial ice accretion was similar throughout the crown, but after 6.5 hours of irrigation (second scanning) radial ice accretion was much greater on upper branches than on lower (∼factor of 3). The slope of the change in radial ice accretion along branches increased with duration of exposure and was significantly greater at the second scanning compared to the first. We conclude that outdoor icing experiments coupled with the use of TLS provide a robust basis for evaluation of models of ice accretion and breakage in tree crowns, facilitating estimation of the limiting breaking stress of branches by accurate measurements of ice loads. PMID:23741409

  7. Prenatal maternal stress predicts autism traits in 6½ year-old children: Project Ice Storm.

    PubMed

    Walder, Deborah J; Laplante, David P; Sousa-Pires, Alexandra; Veru, Franz; Brunet, Alain; King, Suzanne

    2014-10-30

    Research implicates prenatal maternal stress (PNMS) as a risk factor for neurodevelopmental disorders; however few studies report PNMS effects on autism risk in offspring. We examined, prospectively, the degree to which objective and subjective elements of PNMS explained variance in autism-like traits among offspring, and tested moderating effects of sex and PNMS timing in utero. Subjects were 89 (46F/43M) children who were in utero during the 1998 Quebec Ice Storm. Soon after the storm, mothers completed questionnaires on objective exposure and subjective distress, and completed the Autism Spectrum Screening Questionnaire (ASSQ) for their children at age 6½. ASSQ scores were higher among boys than girls. Greater objective and subjective PNMS predicted higher ASSQ independent of potential confounds. An objective-by-subjective interaction suggested that when subjective PNMS was high, objective PNMS had little effect; whereas when subjective PNMS was low, objective PNMS strongly affected ASSQ scores. A timing-by-objective stress interaction suggested objective stress significantly affected ASSQ in first-trimester exposed children, though less so with later exposure. The final regression explained 43% of variance in ASSQ scores; the main effect of sex and the sex-by-PNMS interactions were not significant. Findings may help elucidate neurodevelopmental origins of non-clinical autism-like traits from a dimensional perspective. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  8. The value of wetlands in protecting southeast louisiana from hurricane storm surges.

    PubMed

    Barbier, Edward B; Georgiou, Ioannis Y; Enchelmeyer, Brian; Reed, Denise J

    2013-01-01

    The Indian Ocean tsunami in 2004 and Hurricanes Katrina and Rita in 2005 have spurred global interest in the role of coastal wetlands and vegetation in reducing storm surge and flood damages. Evidence that coastal wetlands reduce storm surge and attenuate waves is often cited in support of restoring Gulf Coast wetlands to protect coastal communities and property from hurricane damage. Yet interdisciplinary studies combining hydrodynamic and economic analysis to explore this relationship for temperate marshes in the Gulf are lacking. By combining hydrodynamic analysis of simulated hurricane storm surges and economic valuation of expected property damages, we show that the presence of coastal marshes and their vegetation has a demonstrable effect on reducing storm surge levels, thus generating significant values in terms of protecting property in southeast Louisiana. Simulations for four storms along a sea to land transect show that surge levels decline with wetland continuity and vegetation roughness. Regressions confirm that wetland continuity and vegetation along the transect are effective in reducing storm surge levels. A 0.1 increase in wetland continuity per meter reduces property damages for the average affected area analyzed in southeast Louisiana, which includes New Orleans, by $99-$133, and a 0.001 increase in vegetation roughness decreases damages by $24-$43. These reduced damages are equivalent to saving 3 to 5 and 1 to 2 properties per storm for the average area, respectively.

  9. Effects of ice storm on forest ecosystem of southern China in 2008 Shaoqiang Wang1, Lei Zhou1, Weimin Ju2, Kun Huang1 1Key Lab of Ecosystem Network Observation and Modeling, Institute of Geographical Sciences and Natural Resources Research, Beijing, 10010

    NASA Astrophysics Data System (ADS)

    Wang, Shaoqiang

    2014-05-01

    Evidence is mounting that an increase in extreme climate events has begun to occur worldwide during the recent decades, which affect biosphere function and biodiversity. Ecosystems returned to its original structures and functions to maintain its sustainability, which was closely dependent on ecosystem resilience. Understanding the resilience and recovery capacity of ecosystem to extreme climate events is essential to predicting future ecosystem responses to climate change. Given the overwhelming importance of this region in the overall carbon cycle of forest ecosystems in China, south China suffered a destructive ice storm in 2008. In this study, we used the number of freezing day and a process-based model (Boreal Ecosystem Productivity Simulator, BEPS) to characterize the spatial distribution of ice storm region in southeastern China and explore the impacts on carbon cycle of forest ecosystem over the past decade. The ecosystem variables, i.e. Net primary productivity (NPP), Evapotranspiration (ET), and Water use efficiency (WUE, the ratio of NPP to ET) from the outputs of BEPS models were used to detect the resistance and resilience of forest ecosystem in southern China. The pattern of ice storm-induced forest productivity widespread decline was closely related to the number of freezing day during the ice storm period. The NPP of forest area suffered heavy ice storm returned to normal status after five months with high temperature and ample moisture, indicated a high resilience of subtropical forest in China. The long-term changes of forest WUE remain stable, behaving an inherent sensitivity of ecosystem to extreme climate events. In addition, ground visits suggested that the recovery of forest productivity was attributed to rapid growth of understory. Understanding the variability and recovery threshold of ecosystem following extreme climate events help us to better simulate and predict the variability of ecosystem structure and function under current and

  10. Templates of Change: Storms and Shoreline Hazards.

    ERIC Educational Resources Information Center

    Dolan, Robert; Hayden, Bruce

    1980-01-01

    Presents results of research designed to assess and predict the storm-related hazards of living on the coast. Findings suggest that certain sections of coastline are more vulnerable than others to storm damage. (WB)

  11. Avian responses to an extreme ice storm are determined by a combination of functional traits, behavioural adaptations and habitat modifications

    PubMed Central

    Zhang, Qiang; Hong, Yongmi; Zou, Fasheng; Zhang, Min; Lee, Tien Ming; Song, Xiangjin; Rao, Jiteng

    2016-01-01

    The extent to which species’ traits, behavior and habitat synergistically determine their response to extreme weather events (EWE) remains poorly understood. By quantifying bird and vegetation assemblages before and after the 2008 ice storm in China, combined with interspecific interactions and foraging behaviours, we disentangled whether storm influences avian reassembly directly via functional traits (i.e. behavioral adaptations), or indirectly via habitat variations. We found that overall species richness decreased, with 20 species detected exclusively before the storm, and eight species detected exclusively after. These shifts in bird relative abundance were linked to habitat preferences, dietary guild and flocking behaviours. For instance, forest specialists at higher trophic levels (e.g. understory-insectivores, woodpeckers and kingfishers) were especially vulnerable, whereas open-habitat generalists (e.g. bulbuls) were set to benefit from potential habitat homogenization. Alongside population fluctuations, we found that community reassembly can be rapidly adjusted via foraging plasticity (i.e. increased flocking propensity and reduced perching height). And changes in preferred habitat corresponded to a variation in bird assemblages and traits, as represented by intact canopy cover and high density of large trees. Accurate predictions of community responses to EWE are crucial to understanding ecosystem disturbances, thus linking species-oriented traits to a coherent analytical framework. PMID:26929387

  12. Storm-driven Mixing and Potential Impact on the Arctic Ocean

    NASA Technical Reports Server (NTRS)

    Yang, Jiayan; Comiso, Josefino; Walsh, David; Krishfield, Richard; Honjo, Susumu; Koblinsky, Chester J. (Technical Monitor)

    2001-01-01

    Observations of the ocean, atmosphere, and ice made by Ice-Ocean Environmental Buoys (IOEBs) indicate that mixing events reaching the depth of the halocline have occurred in various regions in the Arctic Ocean. Our analysis suggests that these mixing events were mechanically forced by intense storms moving across the buoy sites. In this study, we analyzed these mixing events in the context of storm developments that occurred in the Beaufort Sea and in the general area just north of Fram Strait, two areas with quite different hydrographic structures. The Beaufort Sea is strongly influenced by inflow of Pacific water through Bering Strait, while the area north of Fram Strait is directly affected by the inflow of warm and salty North Atlantic water. Our analyses of the basin-wide evolution of the surface pressure and geostrophic wind fields indicate that the characteristics of the storms could be very different. The buoy-observed mixing occurred only in the spring and winter seasons when the stratification was relatively weak. This indicates the importance of stratification, although the mixing itself was mechanically driven. We also analyze the distribution of storms, both the long-term climatology as well as the patterns for each year in the last two decades. The frequency of storms is also shown to be correlated- (but not strongly) to Arctic Oscillation indices. This study indicates that the formation of new ice that leads to brine rejection is unlikely the mechanism that results in the type of mixing that could overturn the halocline. On the other hand, synoptic-scale storms can force mixing deep enough to the halocline and thermocline layer. Despite a very stable stratification associated with the Arctic halocline, the warm subsurface thermocline water is not always insulated from the mixed layer.

  13. Studies of images of short-lived events using ERTS data. [forest fires, oil spills, vegetation damage, volcanoes, storm ridges, earthquakes, and floods

    NASA Technical Reports Server (NTRS)

    Deutschman, W. A. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Detection of short-lived events has continued. Forest fires, oil spills, vegetation damage, volcanoes, storm ridges, earthquakes, and floods have been detected and analyzed.

  14. Anchor ice, seabed freezing, and sediment dynamics in shallow arctic seas

    USGS Publications Warehouse

    Reimnitz, E.; Kempema, E.W.; Barnes, P.W.

    1987-01-01

    Diving investigations confirm previous circumstantial evidence of seafloor freezing and anchor ice accretion during freeze-up storms in the Alaskan Beaufort Sea. These related bottom types were found to be continuous from shore to 2 m depth and spotty to 4.5 m depth. The concretelike nature of frozen bottom, where present, should prohibit sediment transport by any conceivable wave or current regime during the freezing storm. But elsewhere, anchor ice lifts coarse material off the bottom and incorporates it into the ice canopy, thereby leading to significant ice rafting of shallow shelf sediment and likely sediment loss to the deep sea. -from Authors

  15. Force Criterion Prediction of Damage for Carbon/Epoxy Composite Panels Impacted by High Velocity Ice

    NASA Astrophysics Data System (ADS)

    Rhymer, Jennifer D.

    The use of advanced fiber-reinforced polymer matrix composites in load-bearing aircraft structures is increasing, as evident by the various composites-intensive transport aircraft presently under development. A major impact source of concern for these structures is hail ice, which affects design and skin-sizing (skin thickness determination) at various locations of the aircraft. Impacts onto composite structures often cause internal damage that is not visually detectable due to the high strength and resiliency of the composite material (unlike impacts onto metallic structures). This internal damage and its effect on the performance of the structure are of great concern to the aircraft industry. The prediction of damage in composite structures due to SHI impact has been accomplished via experimental work, explicit dynamic nonlinear finite element analysis (FEA) and the definition of design oriented relationships. Experiments established the critical threshold and corresponding analysis provided contact force results not readily measurable in high velocity SHI impact experiments. The design oriented relationships summarize the FEA results and experimental database into contact force estimation curves that can be easily applied for damage prediction. Failure thresholds were established for the experimental conditions (panel thickness ranging from 1.56 to 4.66 mm and ice diameters from 38.1 to 61.0 mm). Additionally, the observations made by high-speed video during the impact event, and ultrasonic C-scan post-impact, showed how the ice failed during impact and the overall shape and location of the panel damage. Through analysis, the critical force, the force level where damage occurs above but not below, of a SHI impact onto the panel was found to be dependent only on the target structure. However, the peak force generated during impact was dependent on both the projectile and target. Design-oriented curves were generated allowing the prediction of the allowable

  16. Hurricane Matthew Damage Survey

    NASA Image and Video Library

    2016-10-08

    Damage to a facility roof is seen during an aerial survey of NASA's Kennedy Space Center in Florida on Saturday. The survey was performed to identify structures and facilities that may have sustained damage from Hurricane Matthew as the storm passed to the east of Kennedy on Oct. 6 and 7, 2016. Officials determined that the center received some isolated roof damage, damaged support buildings, a few downed power lines, and limited water intrusion. Beach erosion also occurred, although the storm surge was less than expected. NASA closed the center ahead of the storm’s onset and only a small team of specialists known as the Rideout Team was on the center as the storm approached and passed

  17. Hurricane Matthew Damage Survey

    NASA Image and Video Library

    2016-10-08

    Damaged power lines are seen during an aerial survey of NASA's Kennedy Space Center in Florida on Saturday. The survey was performed to identify structures and facilities that may have sustained damage from Hurricane Matthew as the storm passed to the east of Kennedy on Oct. 6 and 7, 2016. Officials determined that the center received some isolated roof damage, damaged support buildings, a few downed power lines, and limited water intrusion. Beach erosion also occurred, although the storm surge was less than expected. NASA closed the center ahead of the storm’s onset and only a small team of specialists known as the Rideout Team was on the center as the storm approached and passed.

  18. Hurricane Matthew Damage Survey

    NASA Image and Video Library

    2016-10-08

    Damage to a facility roof is seen during an aerial survey of NASA's Kennedy Space Center in Florida on Saturday. The survey was performed to identify structures and facilities that may have sustained damage from Hurricane Matthew as the storm passed to the east of Kennedy on Oct. 6 and 7, 2016. Officials determined that the center received some isolated roof damage, damaged support buildings, a few downed power lines, and limited water intrusion. Beach erosion also occurred, although the storm surge was less than expected. NASA closed the center ahead of the storm’s onset and only a small team of specialists known as the Rideout Team was on the center as the storm approached and passed.

  19. The Value of Wetlands in Protecting Southeast Louisiana from Hurricane Storm Surges

    PubMed Central

    Barbier, Edward B.; Georgiou, Ioannis Y.; Enchelmeyer, Brian; Reed, Denise J.

    2013-01-01

    The Indian Ocean tsunami in 2004 and Hurricanes Katrina and Rita in 2005 have spurred global interest in the role of coastal wetlands and vegetation in reducing storm surge and flood damages. Evidence that coastal wetlands reduce storm surge and attenuate waves is often cited in support of restoring Gulf Coast wetlands to protect coastal communities and property from hurricane damage. Yet interdisciplinary studies combining hydrodynamic and economic analysis to explore this relationship for temperate marshes in the Gulf are lacking. By combining hydrodynamic analysis of simulated hurricane storm surges and economic valuation of expected property damages, we show that the presence of coastal marshes and their vegetation has a demonstrable effect on reducing storm surge levels, thus generating significant values in terms of protecting property in southeast Louisiana. Simulations for four storms along a sea to land transect show that surge levels decline with wetland continuity and vegetation roughness. Regressions confirm that wetland continuity and vegetation along the transect are effective in reducing storm surge levels. A 0.1 increase in wetland continuity per meter reduces property damages for the average affected area analyzed in southeast Louisiana, which includes New Orleans, by $99-$133, and a 0.001 increase in vegetation roughness decreases damages by $24-$43. These reduced damages are equivalent to saving 3 to 5 and 1 to 2 properties per storm for the average area, respectively. PMID:23536815

  20. Performance evaluation of snow and ice plows.

    DOT National Transportation Integrated Search

    2015-11-01

    Removal of ice and snow from road surfaces is a critical task in the northern tier of the United States, : including Illinois. Highways with high levels of traffic are expected to be cleared of snow and ice quickly : after each snow storm. This is ne...

  1. Reservoir Bank Erosion Caused and Influenced by Ice Cover.

    DTIC Science & Technology

    1982-12-01

    8 8. Bank sediment deposited on shorefast ice ------------ 9 9. Sediment frozen to the bottom of ice laid down onto the reservoir bed...end of November 1979 during a storm with 45-mph northwesterly winds-- 17 16. Ice and shore sediment uplifted where an ice pres- sure ridge intersects...restarts at breakup when the ice becomes mobile; the ice scrapes, shoves and scours the shore or bank, and transports sediment away. Figure 1. Narrow zone

  2. De-Icing Salts and the Environment.

    ERIC Educational Resources Information Center

    Massachusetts Audubon Society, Lincoln.

    Reported is an examination of the use and effects of chlorides as de-icing products for removal of snow and ice from roads immediately following storms. Increasing evidence of detrimental side effects led to a closer look and more careful evaluation of the overall significance of the so-called "bare pavement maintenance." The side…

  3. Natural Hazards Risk Reduction and the ARkStorm Scenario

    NASA Astrophysics Data System (ADS)

    Cox, D. A.; Dettinger, M. D.; Ralph, F. M.

    2016-12-01

    The ARkStorm Scenario project began in 2008, led by the USGS Multi-Hazards Demonstration Project (now Science Application for Risk Reduction) in an effort to innovate the application of science to reduce natural-hazard risk associated with large atmospheric-river (AR) storms on the West Coast of the US. The effort involved contributions from many federal, state and academic organizations including NOAA's Environmental Systems Laboratory. The ARkStorm project used new understanding of atmospheric river physics, combined with downscaled meteorological data from two recent ARs (in 1969 and 1986), to describe and model a prolonged sequence of back-to-back storms similar to those that bankrupted California in 1862. With this scientifically plausible (but not worst-case) scenario, the ARkStorm team engaged flood and levee experts to identify plausible flooding extents and durations, created a coastal-storm inundation model (CoSMoS), and California's first landslide susceptibility map, to better understand secondary meteorological and geophysical hazards (flood, wind, landslide, coastal erosion and inundation) across California. Physical damages to homes, infrastructure, agriculture, and the environment were then estimated to calculate the likely social and economic impact to California and the nation. Across California, property damage from the ARkStorm scenario was estimated to exceed 300 billion, mostly from flooding. Including damage and losses, lifeline damages and business interruptions, the total cost of an ARkStorm-sized series of storms came to nearly 725 billion, nearly three times the losses estimated from another SAFRR scenario describing a M7.8 earthquake in southern California. Thus, atmospheric rivers have the potential to be California's other "Big One." Since its creation, the ARkStorm scenario has been used in preparedness exercises by NASA, the US Navy, the State of California, the County of Ventura, and cities and counties in the Tahoe Basin and

  4. Ice bridges and ridges in the Maxwell-EB sea ice rheology

    NASA Astrophysics Data System (ADS)

    Dansereau, Véronique; Weiss, Jérôme; Saramito, Pierre; Lattes, Philippe; Coche, Edmond

    2017-09-01

    This paper presents a first implementation of a new rheological model for sea ice on geophysical scales. This continuum model, called Maxwell elasto-brittle (Maxwell-EB), is based on a Maxwell constitutive law, a progressive damage mechanism that is coupled to both the elastic modulus and apparent viscosity of the ice cover and a Mohr-Coulomb damage criterion that allows for pure (uniaxial and biaxial) tensile strength. The model is tested on the basis of its capability to reproduce the complex mechanical and dynamical behaviour of sea ice drifting through a narrow passage. Idealized as well as realistic simulations of the flow of ice through Nares Strait are presented. These demonstrate that the model reproduces the formation of stable ice bridges as well as the stoppage of the flow, a phenomenon occurring within numerous channels of the Arctic. In agreement with observations, the model captures the propagation of damage along narrow arch-like kinematic features, the discontinuities in the velocity field across these features dividing the ice cover into floes, the strong spatial localization of the thickest, ridged ice, the presence of landfast ice in bays and fjords and the opening of polynyas downstream of the strait. The model represents various dynamical behaviours linked to an overall weakening of the ice cover and to the shorter lifespan of ice bridges, with implications in terms of increased ice export through narrow outflow pathways of the Arctic.

  5. Tropical Storm Ernesto over Cuba

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Microwave Image

    These infrared, microwave, and visible images were created with data retrieved by the Atmospheric Infrared Sounder (AIRS) on NASA's Aqua satellite.

    Infrared Image Because infrared radiation does not penetrate through clouds, AIRS infrared images show either the temperature of the cloud tops or the surface of the Earth in cloud-free regions. The lowest temperatures (in purple) are associated with high, cold cloud tops that make up the top of the storm. In cloud-free areas the AIRS instrument will receive the infrared radiation from the surface of the Earth, resulting in the warmest temperatures (orange/red).

    Microwave Image In the AIRS microwave imagery, deep blue areas in storms show where the most precipitation occurs, or where ice crystals are present in the convective cloud tops. Outside of these storm regions, deep blue areas may also occur over the sea surface due to its low radiation emissivity. On the other hand, land appears much warmer due to its high radiation emissivity.

    Microwave radiation from Earth's surface and lower atmosphere penetrates most clouds to a greater or lesser extent depending upon their water vapor, liquid water and ice content. Precipitation, and ice crystals found at the cloud tops where strong convection is taking place, act as barriers to microwave radiation. Because of this barrier effect, the AIRS microwave sensor detects only the radiation arising at or above their location in the atmospheric column. Where these barriers are not present, the microwave sensor detects radiation arising throughout the air column and down to the surface. Liquid surfaces (oceans, lakes and rivers) have 'low emissivity' (the signal isn't as strong) and their radiation brightness temperature is therefore low. Thus the ocean also appears 'low temperature' in the AIRS microwave images and is assigned the color blue. Therefore deep blue areas in storms show where the most

  6. Hurricane Matthew Damage Survey

    NASA Image and Video Library

    2016-10-08

    The Central Campus construction site is seen during an aerial survey of NASA's Kennedy Space Center in Florida on Saturday. The survey was performed to identify structures and facilities that may have sustained damage from Hurricane Matthew as the storm passed to the east of Kennedy on Oct. 6 and 7, 2016. Officials determined that the center received some isolated roof damage, damaged support buildings, a few downed power lines, and limited water intrusion. Beach erosion also occurred, although the storm surge was less than expected. NASA closed the center ahead of the storm’s onset and only a small team of specialists known as the Rideout Team was on the center as the storm approached and passed

  7. Hurricane Matthew Damage Survey

    NASA Image and Video Library

    2016-10-08

    A support building is seen during an aerial survey of NASA's Kennedy Space Center in Florida on Saturday. The survey was performed to identify structures and facilities that may have sustained damage from Hurricane Matthew as the storm passed to the east of Kennedy on Oct. 6 and 7, 2016. Officials determined that the center received some isolated roof damage, damaged support buildings, a few downed power lines, and limited water intrusion. Beach erosion also occurred, although the storm surge was less than expected. NASA closed the center ahead of the storm’s onset and only a small team of specialists known as the Rideout Team was on the center as the storm approached and passed.

  8. Hurricane Matthew Damage Survey

    NASA Image and Video Library

    2016-10-08

    Bob Cabana, director of NASA's Kennedy Space Center in Florida, begins an aerial survey of the center on Saturday. The survey was performed to identify structures and facilities that may have sustained damage from Hurricane Matthew as the storm passed to the east of Kennedy on Oct. 6 and 7, 2016. Officials determined that the center received some isolated roof damage, damaged support buildings, a few downed power lines, and limited water intrusion. Beach erosion also occurred, although the storm surge was less than expected. NASA closed the center ahead of the storm’s onset and only a small team of specialists known as the Rideout Team was on the center as the storm approached and passed.

  9. Hurricane Matthew Damage Survey

    NASA Image and Video Library

    2016-10-08

    The NASA News Center is seen during an aerial survey of NASA's Kennedy Space Center in Florida on Saturday. The survey was performed to identify structures and facilities that may have sustained damage from Hurricane Matthew as the storm passed to the east of Kennedy on Oct. 6 and 7, 2016. Officials determined that the center received some isolated roof damage, damaged support buildings, a few downed power lines, and limited water intrusion. Beach erosion also occurred, although the storm surge was less than expected. NASA closed the center ahead of the storm’s onset and only a small team of specialists known as the Rideout Team was on the center as the storm approached and passed

  10. Hurricane Matthew Damage Survey

    NASA Image and Video Library

    2016-10-08

    The Beach House is seen during an aerial survey of NASA's Kennedy Space Center in Florida on Saturday. The survey was performed to identify structures and facilities that may have sustained damage from Hurricane Matthew as the storm passed to the east of Kennedy on Oct. 6 and 7, 2016. Officials determined that the center received some isolated roof damage, damaged support buildings, a few downed power lines, and limited water intrusion. Beach erosion also occurred, although the storm surge was less than expected. NASA closed the center ahead of the storm’s onset and only a small team of specialists known as the Rideout Team was on the center as the storm approached and passed

  11. Hurricane Matthew Damage Survey

    NASA Image and Video Library

    2016-10-08

    The Vehicle Assembly Building is seen during an aerial survey of NASA's Kennedy Space Center in Florida on Saturday. The survey was performed to identify structures and facilities that may have sustained damage from Hurricane Matthew as the storm passed to the east of Kennedy on Oct. 6 and 7, 2016. Officials determined that the center received some isolated roof damage, damaged support buildings, a few downed power lines, and limited water intrusion. Beach erosion also occurred, although the storm surge was less than expected. NASA closed the center ahead of the storm’s onset and only a small team of specialists known as the Rideout Team was on the center as the storm approached and passed.

  12. Hurricane Matthew Damage Survey

    NASA Image and Video Library

    2016-10-08

    The Launch Complex 39 area is seen during an aerial survey of NASA's Kennedy Space Center in Florida on Saturday. The survey was performed to identify structures and facilities that may have sustained damage from Hurricane Matthew as the storm passed to the east of Kennedy on Oct. 6 and 7, 2016. Officials determined that the center received some isolated roof damage, damaged support buildings, a few downed power lines, and limited water intrusion. Beach erosion also occurred, although the storm surge was less than expected. NASA closed the center ahead of the storm’s onset and only a small team of specialists known as the Rideout Team was on the center as the storm approached and passed.

  13. Hurricane Matthew Damage Survey

    NASA Image and Video Library

    2016-10-08

    Launch Complex 39B is seen during an aerial survey of NASA's Kennedy Space Center in Florida on Saturday. The survey was performed to identify structures and facilities that may have sustained damage from Hurricane Matthew as the storm passed to the east of Kennedy on Oct. 6 and 7, 2016. Officials determined that the center received some isolated roof damage, damaged support buildings, a few downed power lines, and limited water intrusion. Beach erosion also occurred, although the storm surge was less than expected. NASA closed the center ahead of the storm’s onset and only a small team of specialists known as the Rideout Team was on the center as the storm approached and passed.

  14. Hurricane Matthew Damage Survey

    NASA Image and Video Library

    2016-10-08

    Launch Complex 39B is seen during an aerial survey of NASA's Kennedy Space Center in Florida on Saturday. The survey was performed to identify structures and facilities that may have sustained damage from Hurricane Matthew as the storm passed to the east of Kennedy on Oct. 6 and 7, 2016. Officials determined that the center received some isolated roof damage, damaged support buildings, a few downed power lines, and limited water intrusion. Beach erosion also occurred, although the storm surge was less than expected. NASA closed the center ahead of the storm’s onset and only a small team of specialists known as the Rideout Team was on the center as the storm approached and passed

  15. Hurricane Matthew Damage Survey

    NASA Image and Video Library

    2016-10-08

    The Kennedy Space Center Visitor Complex is seen during an aerial survey of NASA's Kennedy Space Center in Florida on Saturday. The survey was performed to identify structures and facilities that may have sustained damage from Hurricane Matthew as the storm passed to the east of Kennedy on Oct. 6 and 7, 2016. Officials determined that the center received some isolated roof damage, damaged support buildings, a few downed power lines, and limited water intrusion. Beach erosion also occurred, although the storm surge was less than expected. NASA closed the center ahead of the storm’s onset and only a small team of specialists known as the Rideout Team was on the center as the storm approached and passed.

  16. Hurricane Matthew Damage Survey

    NASA Image and Video Library

    2016-10-08

    A tree is seen across a road during a survey of NASA's Kennedy Space Center in Florida on Saturday. The survey was performed to identify structures and facilities that may have sustained damage from Hurricane Matthew as the storm passed to the east of Kennedy on Oct. 6 and 7, 2016. Officials determined that the center received some isolated roof damage, damaged support buildings, a few downed power lines, and limited water intrusion. Beach erosion also occurred, although the storm surge was less than expected. NASA closed the center ahead of the storm’s onset and only a small team of specialists known as the Rideout Team was on the center as the storm approached and passed.

  17. Hurricane Matthew Damage Survey

    NASA Image and Video Library

    2016-10-08

    A beach area is seen during a survey of NASA's Kennedy Space Center in Florida on Saturday. The survey was performed to identify structures and facilities that may have sustained damage from Hurricane Matthew as the storm passed to the east of Kennedy on Oct. 6 and 7, 2016. Officials determined that the center received some isolated roof damage, damaged support buildings, a few downed power lines, and limited water intrusion. Beach erosion also occurred, although the storm surge was less than expected. NASA closed the center ahead of the storm’s onset and only a small team of specialists known as the Rideout Team was on the center as the storm approached and passed.

  18. Hurricane Matthew Damage Survey

    NASA Image and Video Library

    2016-10-08

    The Beach House is seen during an aerial survey of NASA's Kennedy Space Center in Florida on Saturday. The survey was performed to identify structures and facilities that may have sustained damage from Hurricane Matthew as the storm passed to the east of Kennedy on Oct. 6 and 7, 2016. Officials determined that the center received some isolated roof damage, damaged support buildings, a few downed power lines, and limited water intrusion. Beach erosion also occurred, although the storm surge was less than expected. NASA closed the center ahead of the storm’s onset and only a small team of specialists known as the Rideout Team was on the center as the storm approached and passed.

  19. Hurricane Matthew Damage Assessment

    NASA Image and Video Library

    2016-10-08

    An aerial survey of NASA's Kennedy Space Center in Florida was conducted after Hurricane Matthew hit the Space Coast area. The survey was performed to identify structures and facilities that may have sustained damage from Hurricane Matthew as the storm passed to the east of Kennedy on Oct. 6 and 7, 2016. Officials determined that the center received some isolated roof damage, damaged support buildings, a few downed power lines, and limited water intrusion. Beach erosion also occurred, although the storm surge was less than expected. NASA closed the center ahead of the storm’s onset and only a small team of specialists known as the Rideout Team was on the center as the storm approached and passed.

  20. Late-summer Martian Dust Storm

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This is an image of Mars taken from orbit by the Mars Reconnaissance Orbiter's Mars Color Imager (MARCI). The Red Planet's polar ice-cap is in the middle of the image. Captured in this image is a 37,000 square-kilometer (almost 23,000 miles) dust storm that moved counter-clockwise through the Phoenix landing site on Oct 11, 2008, or Sol 135 of the mission.

    Viewing this image as if it were the face of a clock, Phoenix is shown as a small white dot, located at about 10 AM. The storm, which had already passed over the landing site earlier in the day, is located at about 9:30 AM.

  1. An Evaluation of the Severity of the January 1998 Ice Storm in Northern New England

    DTIC Science & Technology

    1998-04-01

    17. Six miles of Bangor Hydro’s 115-kV H-frame transmission line in the blueberry barrens east of Deblois failed under the ice load...aged. Mount Philo rises about 500 ft above the surrounding terrain, to an elevation of 800 ft, with a steep west-facing slope. Damage to red pines at the...base of this slope is shown in Fig. 12c. Oaks and scotch pines growing on the northeast-facing terrace on the top of Mount Philo were also severely

  2. Spaceborne SAR and sea ice

    NASA Technical Reports Server (NTRS)

    Weeks, W. F.

    1983-01-01

    A number of remote sensing systems deployed in satellites to view the Earth which are successful in gathering data on the behavior of the world's snow and ice covers are described. Considering sea ice which covers over 10% of the world ocean, systems that have proven capable to collect useful data include those operating in the visible, near-infrared, infrared, and microwave frequency ranges. The microwave systems have the essential advantage in observing the ice under all weather and lighting conditions. Without this capability data are lost during the long polar night and during times of storm passage, periods when ice activity can be intense. The margins of the ice pack, a region of particular interest, is shrouded in cloud between 80 and 90% of the time.

  3. Influence of the sea-ice edge on the Arctic nearshore environment

    NASA Astrophysics Data System (ADS)

    Barnhart, K. R.; Overeem, I.; Anderson, R. S.

    2013-12-01

    Coasts form the dynamic interface of the terrestrial and oceanic systems. In the Arctic, and in much of the world, the coast is a zone of relatively high population, infrastructure, biodiversity, and ecosystem services. A significant difference between Arctic and temperate coasts is the presence of sea ice. Sea ice influences Arctic coasts in two main ways: (1) the length of the sea ice-free season controls the length of time over which nearshore water can interact with the land, and (2) the sea ice edge controls the fetch over which storm winds can blow over open water, resulting in changes in nearshore water level and wave field. The resulting nearshore hydrodynamic environment impacts all aspects of the coastal system. Here, we use satellite records of sea ice along with a simple model for wind-driven storm surge and waves to document how changes in the length and character of the sea ice-free season have impacted the nearshore hydrodynamic environment. For our sea ice analysis we primarily use the Bootstrap Sea Ice Concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS. We make whole-Arctic maps of sea ice change in the coastal zone. In addition to evaluating changes in length of the sea ice-free season at the coast, we look at changes segmented by azimuth. This allows us to consider changes in the sea ice in the context of the wind field. For our storm surge and wave field analysis we focus on the Beaufort Sea region. This region has experienced some of the greatest changes in both sea ice cover and coastal erosion rates in the Arctic and is anticipated to experience significant change in the future. In addition, the NOAA ESRL GMD has observed the wind field at Barrow since extends to 1977. In our past work on the rapid and accelerating coastal erosion, we have shown that one may model storm surge with a 2D numerical bathystrophic model, and that waves are well represented by the Shore Protection Manual methods for shallow-water fetch-limited waves. We use

  4. Adaptation of the Levee Erosional Equivalence Method for the Hurricane Storm Damage Risk Reduction System (HSDRRS)

    DTIC Science & Technology

    2011-05-01

    ER D C/ CH L TR -1 1- 3 Flood and Coastal Storm Damage Reduction R& D Program Adaptation of the Levee Erosional Equivalence Method for the...of vertical wall [-] γw Specific weight of water [kN/m3] γβ Reduction factor for influence of angle of wave attack [-] θ Landward-side levee ...stress multiplied by the flow velocity. Thus, from Equation (4) stream power has the form ERDC/CHL TR-11-3 9 S o D D dW P τ u ρ f u u ρ f u dt

  5. Gulf Coast Disaster Management: Forest Damage Detection and Carbon Flux Estimation

    NASA Astrophysics Data System (ADS)

    Maki, A. E.; Childs, L. M.; Jones, J.; Matthews, C.; Spindel, D.; Batina, M.; Malik, S.; Allain, M.; Brooks, A. O.; Brozen, M.; Chappell, C.; Frey, J. W.

    2008-12-01

    Along the Gulf Coast and Eastern Seaboard, tropical storms and hurricanes annually cause defoliation and deforestation amongst coastal forests. After a severe storm clears, there is an urgent need to assess impacts on timber resources for targeting state and national resources to assist in recovery. It is important to identify damaged areas following the storm, due to their increased probability of fire risk, as well as the effect upon the carbon budget. Better understanding and management of the immediate and future effects on the carbon cycle in the coastal forest ecosystem is especially important. Current methods of detection involve assessment through ground-based field surveys, aerial surveys, computer modeling of meteorological data, space-borne remote sensing, and Forest Inventory and Analysis field plots. Introducing remotely-sensed data from NASA and NASA-partnered Earth Observation Systems (EOS), this project seeks to improve the current methodology and focuses on a need for methods that are more synoptic than field surveys and more closely linked to the phenomenology of tree loss and damage than passive remote sensing methods. The primary concentration is on the utilization of Ice, Cloud, and land Elevation Satellite (ICESat) Geoscience Laser Altimeter System (GLAS) data products to detect changes in forest canopy height as an indicator of post-hurricane forest disturbances. By analyzing ICESat data over areas affected by Hurricane Katrina, this study shows that ICESsat is a useful method of detecting canopy height change, though further research is needed in mixed forest areas. Other EOS utilized in this study include Landsat, Moderate Resolution Imaging Spectroradiometer (MODIS), and the NASA verified and validated international Advanced Wide Field Sensor (AWiFS) sensor. This study addresses how NASA could apply ICESat data to contribute to an improved method of detecting hurricane-caused forest damage in coastal areas; thus to pinpoint areas more

  6. Is snow-ice now a major contributor to sea ice mass balance in the western Transpolar Drift region?

    NASA Astrophysics Data System (ADS)

    Graham, R. M.; Merkouriadi, I.; Cheng, B.; Rösel, A.; Granskog, M. A.

    2017-12-01

    During the Norwegian young sea ICE (N-ICE2015) campaign, which took place in the first half of 2015 north of Svalbard, a deep winter snow pack (50 cm) on sea ice was observed, that was 50% thicker than earlier climatological studies suggested for this region. Moreover, a significant fraction of snow contributed to the total ice mass in second-year ice (SYI) (9% on average). Interestingly, very little snow (3% snow by mass) was present in first-year ice (FYI). The combination of sea ice thinning and increased precipitation north of Svalbard is expected to promote the formation of snow-ice. Here we use the 1-D snow/ice thermodynamic model HIGHTSI forced with reanalysis data, to show that for the case study of N-ICE2015, snow-ice would even form over SYI with an initial thickness of 2 m. In current conditions north of Svalbard, snow-ice is ubiquitous and contributes to the thickness growth up to 30%. This contribution is important, especially in the absence of any bottom thermodynamic growth due to the thick insulating snow cover. Growth of FYI north of Svalbard is mainly controlled by the timing of growth onset relative to snow precipitation events and cold spells. These usually short-lived conditions are largely determined by the frequency of storms entering the Arctic from the Atlantic Ocean. In our case, a later freeze onset was favorable for FYI growth due to less snow accumulation in early autumn. This limited snow-ice formation but promoted bottom thermodynamic growth. We surmise these findings are related to a regional phenomenon in the Atlantic sector of the Arctic, with frequent storm events which bring increasing amounts of precipitation in autumn and winter, and also affect the duration of cold temperatures required for ice growth in winter. We discuss the implications for the importance of snow-ice in the future Arctic, formerly believed to be non-existent in the central Arctic due to thick perennial ice.

  7. Hurricane Matthew Damage Survey

    NASA Image and Video Library

    2016-10-08

    The roof of the Operations Support Building I is seen during an aerial survey of NASA's Kennedy Space Center in Florida on Saturday. The survey was performed to identify structures and facilities that may have sustained damage from Hurricane Matthew as the storm passed to the east of Kennedy on Oct. 6 and 7, 2016. Officials determined that the center received some isolated roof damage, damaged support buildings, a few downed power lines, and limited water intrusion. Beach erosion also occurred, although the storm surge was less than expected. NASA closed the center ahead of the storm’s onset and only a small team of specialists known as the Rideout Team was on the center as the storm approached and passed.

  8. Hurricane Matthew Damage Survey

    NASA Image and Video Library

    2016-10-08

    The roof of the Operations Support Building II is seen during an aerial survey of NASA's Kennedy Space Center in Florida on Saturday. The survey was performed to identify structures and facilities that may have sustained damage from Hurricane Matthew as the storm passed to the east of Kennedy on Oct. 6 and 7, 2016. Officials determined that the center received some isolated roof damage, damaged support buildings, a few downed power lines, and limited water intrusion. Beach erosion also occurred, although the storm surge was less than expected. NASA closed the center ahead of the storm’s onset and only a small team of specialists known as the Rideout Team was on the center as the storm approached and passed.

  9. Hurricane Matthew Damage Survey

    NASA Image and Video Library

    2016-10-08

    The NASA TV Support Building at the NASA News Center is seen during an aerial survey of NASA's Kennedy Space Center in Florida on Saturday. The survey was performed to identify structures and facilities that may have sustained damage from Hurricane Matthew as the storm passed to the east of Kennedy on Oct. 6 and 7, 2016. Officials determined that the center received some isolated roof damage, damaged support buildings, a few downed power lines, and limited water intrusion. Beach erosion also occurred, although the storm surge was less than expected. NASA closed the center ahead of the storm’s onset and only a small team of specialists known as the Rideout Team was on the center as the storm approached and passed.

  10. Hurricane Matthew Damage Survey

    NASA Image and Video Library

    2016-10-08

    A display area in front of the Vehicle Assembly Building is seen during an aerial survey of NASA's Kennedy Space Center in Florida on Saturday. The survey was performed to identify structures and facilities that may have sustained damage from Hurricane Matthew as the storm passed to the east of Kennedy on Oct. 6 and 7, 2016. Officials determined that the center received some isolated roof damage, damaged support buildings, a few downed power lines, and limited water intrusion. Beach erosion also occurred, although the storm surge was less than expected. NASA closed the center ahead of the storm’s onset and only a small team of specialists known as the Rideout Team was on the center as the storm approached and passed.

  11. Economic costs of extratropical storms under climate change: An application of FUND

    NASA Astrophysics Data System (ADS)

    Narita, D.; Tol, R.; Anthoff, D.

    2009-12-01

    Extratropical cyclones have attracted some attention in climate policy circles as a possible significant damage factor of climate change. This study conducts an assessment of economic impacts of increased storm activities under climate change with the integrated assessment model FUND 3.5. FUND is a model that calculates damages of climate change for 16 regions by making use of exogenous scenarios of socioeconomic variables (for details of our estimation approach, see our working paper whose URL is indicated below). Our estimation shows that in the base case, the direct economic damage of enhanced storms due to climate change amounts to $2.8 billion globally (approximately 38% of the total economic loss of storms at present) at the year 2100, while the ratio to the world GDP is 0.0009%. The regional results (Figure 1) indicate that the economic effect of extratropical storms with climate change would have relatively minor importance for the US (USA): The enhanced extratropical storm damage (less than 0.001% of GDP for the base case) is one order of magnitude lower than the tropical cyclone damage (roughly 0.01% GDP) calculated by the same version of FUND. In the regions without strong tropical cyclone influence, such as Western Europe (WEU) and Australia and New Zealand (ANZ), the extratropical storms might have some more significance as a possible damage factor of climate change. Especially for the latter, the direct economic damage could amount to more than 0.006% of GDP. Still, the impact is small relative to the income growth expected in these regions. Figure 1. Increased direct economic loss at the year 2100 for selected regions (results are shown for the three different baselines: the years 1986-2005, 1976-2005, and 1996-2005). US - USA; Canada - CAN; Western Europe - WEU; Australia and New Zealand - ANZ.

  12. Hubble Tracks Jupiter Storms

    NASA Technical Reports Server (NTRS)

    1995-01-01

    NASA's Hubble Space Telescope is following dramatic and rapid changes in Jupiter's turbulent atmosphere that will be critical for targeting observations made by the Galileo space probe when it arrives at the giant planet later this year.

    This Hubble image provides a detailed look at a unique cluster of three white oval-shaped storms that lie southwest (below and to the left) of Jupiter's Great Red Spot. The appearance of the clouds, as imaged on February 13, 1995 is considerably different from their appearance only seven months earlier. Hubble shows these features moving closer together as the Great Red Spot is carried westward by the prevailing winds while the white ovals are swept eastward. (This change in appearance is not an effect of last July's comet Shoemaker-Levy 9 collisions with Jupiter.)

    The outer two of the white storms formed in the late 1930s. In the centers of these cloud systems the air is rising, carrying fresh ammonia gas upward. New, white ice crystals form when the upwelling gas freezes as it reaches the chilly cloud top level where temperatures are -200 degrees Fahrenheit (- 130 degrees Centigrade).

    The intervening white storm center, the ropy structure to the left of the ovals, and the small brown spot have formed in low pressure cells. The white clouds sit above locations where gas is descending to lower, warmer regions. The extent of melting of the white ice exposes varied amounts of Jupiter's ubiquitous brown haze. The stronger the down flow, the less ice, and the browner the region.

    A scheduled series of Hubble observations will help target regions of interest for detailed scrutiny by the Galileo spacecraft, which will arrive at Jupiter in early December 1995. Hubble will provide a global view of Jupiter while Galileo will obtain close-up images of structure of the clouds that make up the large storm systems such as the Great Red Spot and white ovals that are seen in this picture.

    This color picture is assembled from a

  13. Cloudy with a Chance of Ice: The Stratification of Titan's Vernal Ponds and Formation of Ethane Ice

    NASA Astrophysics Data System (ADS)

    Soderblom, J. M.; Steckloff, J. K.

    2017-12-01

    Cassini ISS observations revealed regions on Saturn's moon Titan that become significantly darker (lower albedo) following storm events [1]. These regions are observed to be topographically low [2], indicating that liquid (predominantly methane-ethane-nitrogen) is pooling on Titan after these storm events. These dark ponds, however, are then observed to significantly brighten (higher albedo relative to pre-storm albedo), before fading to their pre-storm albedos [2-3]. We interpret these data to indicate ethane ice formation, which cools from evaporation of methane. The formation of ethane ices results from a unique sequence of thermophysical and thermochemical phenomena. Initially, the methane in the mixture evaporates, cooling the pond. Nitrogen, dissolved primarily in the methane, exsolves, further cooling the liquid. However, because nitrogen is significantly more soluble in cooler methane-hydrocarbon mixtures, relatively more methane than nitrogen leaves the fluid, increasing the relative fraction of nitrogen. This increased nitrogen fraction increases the density of the liquid, as nitrogen is significantly denser than methane or ethane (pure ethane's density is intermediate to that of methane and nitrogen). At around 85 K the mixture is as dense as pure liquid ethane. Thus, further evaporative methane loss and cooling at the pond's surface leads to a chemical stratification, with an increasingly ethane rich epilimnion (surface layer) overlying a methane rich hypolimnion (subsurface layer). Further evaporation of methane from the ethane-rich epilimnion drives its temperature and composition toward the methane-ethane-nitrogen liquidus curve, causing pure ethane ice to precipitate out of solution and settle to the bottom of the pool. This settling would obscure the ethane ice from Cassini VIMS and ISS, which would instead continue to appear as a dark pond on the surface. As the ethane precipitates out completely, a binary methane-nitrogen liquid mixture remains

  14. Biological ice nucleation initiates hailstone formation

    NASA Astrophysics Data System (ADS)

    Michaud, Alexander B.; Dore, John E.; Leslie, Deborah; Lyons, W. Berry; Sands, David C.; Priscu, John C.

    2014-11-01

    Cloud condensation and ice nuclei in the troposphere are required precursors to cloud and precipitation formation, both of which influence the radiative balance of Earth. The initial stage of hailstone formation (i.e., the embryo) and the subsequent layered growth allow hail to be used as a model for the study of nucleation processes in precipitation. By virtue of the preserved particle and isotopic record captured by hailstones, they represent a unique form of precipitation that allows direct characterization of the particles present during atmospheric ice nucleation. Despite the ecological and economic consequences of hail storms, the dynamics of hailstone nucleation, and thus their formation, are not well understood. Our experiments show that hailstone embryos from three Rocky Mountain storms contained biological ice nuclei capable of freezing water at warm, subzero (°C) temperatures, indicating that biological particles can act as nucleation sites for hailstone formation. These results are corroborated by analysis of δD and δ18O from melted hailstone embryos, which show that the hailstones formed at similarly warm temperatures in situ. Low densities of ice nucleation active abiotic particles were also present in hailstone embryos, but their low concentration indicates they were not likely to have catalyzed ice formation at the warm temperatures determined from water stable isotope analysis. Our study provides new data on ice nucleation occurring at the bottom of clouds, an atmospheric region whose processes are critical to global climate models but which has challenged instrument-based measurements.

  15. Recrystallization and damage of ice in winter sports.

    PubMed

    Seymour-Pierce, Alexandra; Lishman, Ben; Sammonds, Peter

    2017-02-13

    Ice samples, after sliding against a steel runner, show evidence of recrystallization and microcracking under the runner, as well as macroscopic cracking throughout the ice. The experiments that produced these ice samples are designed to be analogous to sliding in the winter sport of skeleton. Changes in the ice fabric are shown using thick and thin sections under both diffuse and polarized light. Ice drag is estimated as 40-50% of total energy dissipation in a skeleton run. The experimental results are compared with visual inspections of skeleton tracks, and to similar behaviour in rocks during sliding on earthquake faults. The results presented may be useful to athletes and designers of winter sports equipment.This article is part of the themed issue 'Microdynamics of ice'. © 2016 The Author(s).

  16. Tropical and Extratropical Cyclone Damages under Climate Change

    NASA Astrophysics Data System (ADS)

    Ranson, M.; Kousky, C.; Ruth, M.; Jantarasami, L.; Crimmins, A.; Tarquinio, L.

    2014-12-01

    This paper provides the first quantitative synthesis of the rapidly growing literature on future tropical and extratropical cyclone losses under climate change. We estimate a probability distribution for the predicted impact of changes in global surface air temperatures on future storm damages, using an ensemble of 296 estimates of the temperature-damage relationship from twenty studies. Our analysis produces three main empirical results. First, we find strong but not conclusive support for the hypothesis that climate change will cause damages from tropical cyclones and wind storms to increase, with most models (84 and 92 percent, respectively) predicting higher future storm damages due to climate change. Second, there is substantial variation in projected changes in losses across regions. Potential changes in damages are greatest in the North Atlantic basin, where the multi-model average predicts that a 2.5°C increase in global surface air temperature would cause hurricane damages to increase by 62 percent. The ensemble predictions for Western North Pacific tropical cyclones and European wind storms (extratropical cyclones) are approximately one third of that magnitude. Finally, our analysis shows that existing models of storm damages under climate change generate a wide range of predictions, ranging from moderate decreases to very large increases in losses.

  17. Future Flood Inundation and Damages from Storm Surge in the Coast of Virginia and Maryland with Projected Climate Change and Sea Level Rise Scenarios

    NASA Astrophysics Data System (ADS)

    Rezaie, A. M.; Ferreira, C.; Walls, M. A.

    2016-12-01

    The recurrent flood risks on coastal areas in the United States (US) due to hurricane wind and storm surge are likely to rise with warmer climate, frequent storms, and increasing coastal population. Recent studies suggested that the global financial losses from hurricanes will be doubled by 2100 due to combined impact of climate change, sea level rise (SLR) and intensified hurricanes. While the predicted average SLR for the Mid-Atlantic region of the US is 2.2 meter, some coastal areas in Virginia (VA) and Maryland (MD) are expected to experience a 0.7 to 1.6m and 0.6 to 1.7m SLR respectively. Nearly 80 percent of the total $5.3 billion property damage by Hurricane Isabel in 2003 was within VA and MD. In order to provide a quantitative assessment of the future flooding and associated damages for projected climate change and SLR scenarios, this study integrated state-of-the-art coastal numerical model ADCIRC with a careful economic valuation exercise of flood damages. The study area covers the entire coastal zone of VA and MD focusing on regions that are in the vicinity of the Chesapeake Bay and the Atlantic Ocean with high susceptibility to storm surge and flooding. Multiple climate change land cover scenarios generated by the United States Geological Survey (USGS) under a series of the IPCC's Emissions Scenarios are incorporated in the modeling approach to integrate climate change whereas local SLR projections are included to provide the regional aspects of future risks. Preliminary results for hurricane Isabel (2003) shows that a 2.3m rise in sea level can cause storm surges rising up to 3-4m in the coastal areas. While a 0.5m SLR makes the range 1-2.5m in the affected areas. It is also seen that higher increase in the sea level not only causes higher range of inundation but a greater extent of flood as well. The projected inland flooding extents are highest for the SRES A2 Scenario. Alongside an estimate of future loss and damage will be prepared to assist in

  18. Ice Crystal Icing Research at NASA

    NASA Technical Reports Server (NTRS)

    Flegel, Ashlie B.

    2017-01-01

    Ice crystals found at high altitude near convective clouds are known to cause jet engine power-loss events. These events occur due to ice crystals entering a propulsion system's core flowpath and accreting ice resulting in events such as uncommanded loss of thrust (rollback), engine stall, surge, and damage due to ice shedding. As part of a community with a growing need to understand the underlying physics of ice crystal icing, NASA has been performing experimental efforts aimed at providing datasets that can be used to generate models to predict the ice accretion inside current and future engine designs. Fundamental icing physics studies on particle impacts, accretion on a single airfoil, and ice accretions observed during a rollback event inside a full-scale engine in the Propulsion Systems Laboratory are summarized. Low fidelity code development using the results from the engine tests which identify key parameters for ice accretion risk and the development of high fidelity codes are described. These activities have been conducted internal to NASA and through collaboration efforts with industry, academia, and other government agencies. The details of the research activities and progress made to date in addressing ice crystal icing research challenges are discussed.

  19. Ice Crystal Icing Research at NASA

    NASA Technical Reports Server (NTRS)

    Flegel, Ashlie B.

    2017-01-01

    Ice crystals found at high altitude near convective clouds are known to cause jet engine power-loss events. These events occur due to ice crystals entering a propulsion systems core flowpath and accreting ice resulting in events such as uncommanded loss of thrust (rollback), engine stall, surge, and damage due to ice shedding. As part of a community with a growing need to understand the underlying physics of ice crystal icing, NASA has been performing experimental efforts aimed at providing datasets that can be used to generate models to predict the ice accretion inside current and future engine designs. Fundamental icing physics studies on particle impacts, accretion on a single airfoil, and ice accretions observed during a rollback event inside a full-scale engine in the Propulsion Systems Laboratory are summarized. Low fidelity code development using the results from the engine tests which identify key parameters for ice accretion risk and the development of high fidelity codes are described. These activities have been conducted internal to NASA and through collaboration efforts with industry, academia, and other government agencies. The details of the research activities and progress made to date in addressing ice crystal icing research challenges are discussed.

  20. Atmospheric rivers causing high accumulation storms in East Antarctica: regional climate model evaluation

    NASA Astrophysics Data System (ADS)

    Lazzara, M. A.; Tsukernik, M.; Gorodetskaya, I.

    2016-12-01

    Recent studies confirmed that atmospheric rivers (ARs) reach the continent of Antarctica and thus influence the Antarctic accumulation patterns and the ice sheet mass balance (Gorodetskaya et al. 2014, GRL). Similar to mid-latitude ARs, Antarctic ARs are associated with a blocking pattern downstream of a cyclone, which allows channeling of moisture toward the continent. However, due to the extremely cold atmosphere, Antarctic ARs possess some unique features. First, the existence of an AR in high latitudes is always associated with warm advection. Second, in order for an AR to penetrate the continent, it needs to overcome strong low-level outflow winds - katabatic winds - coming from the interior of the continent. Thirdly, sea ice surrounding the Antarctic ice sheet introduces an additional "cold barrier" decreasing the tropospheric moisture holding capacity and promoting precipitation before reaching the ice sheet. We believe these factors contribute to the scarcity of AR events influencing the ice sheet surface mass balance. Nevertheless, their presence is clearly seen in the long-term record. In particular, anomalous accumulation in 2009 and 2011 in Dronning Maud Land in East Antarctica has been linked to atmospheric rivers. We performed a detailed investigation of several AR storm events from 2009 and 2011 using the Weather Research and Forecasting (WRF) model simulations. These simulations depicted the synoptic scale development of storms that led to an anomalous precipitation pattern in the East Antarctic. We investigated the role of the upper level vs. lower level forcing in the formation of the contributing storms. The moisture and temperature anomalies of each case are evaluated in the context of synoptic and large-scale atmospheric forcing. We also performed sensitivity studies to determine the role of sea ice in the development of these systems.

  1. New Method for Estimating Landslide Losses for Major Winter Storms in California.

    NASA Astrophysics Data System (ADS)

    Wills, C. J.; Perez, F. G.; Branum, D.

    2014-12-01

    We have developed a prototype system for estimating the economic costs of landslides due to winter storms in California. This system uses some of the basic concepts and estimates of the value of structures from the HAZUS program developed for FEMA. Using the only relatively complete landslide loss data set that we could obtain, data gathered by the City of Los Angeles in 1978, we have developed relations between landslide susceptibility and loss ratio for private property (represented as the value of wood frame structures from HAZUS). The landslide loss ratios estimated from the Los Angeles data are calibrated using more generalized data from the 1982 storms in the San Francisco Bay area to develop relationships that can be used to estimate loss for any value of 2-day or 30-day rainfall averaged over a county. The current estimates for major storms are long projections from very small data sets, subject to very large uncertainties, so provide a very rough estimate of the landslide damage to structures and infrastructure on hill slopes. More importantly, the system can be extended and improved with additional data and used to project landslide losses in future major winter storms. The key features of this system—the landslide susceptibility map, the relationship between susceptibility and loss ratio, and the calibration of estimates against losses in past storms—can all be improved with additional data. Most importantly, this study highlights the importance of comprehensive studies of landslide damage. Detailed surveys of landslide damage following future storms that include locations and amounts of damage for all landslides within an area are critical for building a well-calibrated system to project future landslide losses. Without an investment in post-storm landslide damage surveys, it will not be possible to improve estimates of the magnitude or distribution of landslide damage, which can range up to billions of dollars.

  2. Linking ice accretion and crown structure: towards a model of the effect of freezing rain on tree canopies.

    PubMed

    Nock, Charles A; Lecigne, Bastien; Taugourdeau, Olivier; Greene, David F; Dauzat, Jean; Delagrange, Sylvain; Messier, Christian

    2016-06-01

    Despite a longstanding interest in variation in tree species vulnerability to ice storm damage, quantitative analyses of the influence of crown structure on within-crown variation in ice accretion are rare. In particular, the effect of prior interception by higher branches on lower branch accumulation remains unstudied. The aim of this study was to test the hypothesis that intra-crown ice accretion can be predicted by a measure of the degree of sheltering by neighbouring branches. Freezing rain was artificially applied to Acer platanoides L., and in situ branch-ice thickness was measured directly and from LiDAR point clouds. Two models of freezing rain interception were developed: 'IceCube', which uses point clouds to relate ice accretion to a voxel-based index (sheltering factor; SF) of the sheltering effect of branch elements above a measurement point; and 'IceTree', a simulation model for in silico evaluation of the interception pattern of freezing rain in virtual tree crowns. Intra-crown radial ice accretion varied strongly, declining from the tips to the bases of branches and from the top to the base of the crown. SF for branches varied strongly within the crown, and differences among branches were consistent for a range of model parameters. Intra-crown variation in ice accretion on branches was related to SF (R(2) = 0·46), with in silico results from IceTree supporting empirical relationships from IceCube. Empirical results and simulations confirmed a key role for crown architecture in determining intra-crown patterns of ice accretion. As suspected, the concentration of freezing rain droplets is attenuated by passage through the upper crown, and thus higher branches accumulate more ice than lower branches. This is the first step in developing a model that can provide a quantitative basis for investigating intra-crown and inter-specific variation in freezing rain damage. © The Author 2016. Published by Oxford University Press on behalf of the Annals of

  3. Linking ice accretion and crown structure: towards a model of the effect of freezing rain on tree canopies

    PubMed Central

    Nock, Charles A.; Lecigne, Bastien; Taugourdeau, Olivier; Greene, David F.; Dauzat, Jean; Delagrange, Sylvain; Messier, Christian

    2016-01-01

    Background and Aims Despite a longstanding interest in variation in tree species vulnerability to ice storm damage, quantitative analyses of the influence of crown structure on within-crown variation in ice accretion are rare. In particular, the effect of prior interception by higher branches on lower branch accumulation remains unstudied. The aim of this study was to test the hypothesis that intra-crown ice accretion can be predicted by a measure of the degree of sheltering by neighbouring branches. Methods Freezing rain was artificially applied to Acer platanoides L., and in situ branch-ice thickness was measured directly and from LiDAR point clouds. Two models of freezing rain interception were developed: ‘IceCube’, which uses point clouds to relate ice accretion to a voxel-based index (sheltering factor; SF) of the sheltering effect of branch elements above a measurement point; and ‘IceTree’, a simulation model for in silico evaluation of the interception pattern of freezing rain in virtual tree crowns. Key Results Intra-crown radial ice accretion varied strongly, declining from the tips to the bases of branches and from the top to the base of the crown. SF for branches varied strongly within the crown, and differences among branches were consistent for a range of model parameters. Intra-crown variation in ice accretion on branches was related to SF (R2 = 0·46), with in silico results from IceTree supporting empirical relationships from IceCube. Conclusions Empirical results and simulations confirmed a key role for crown architecture in determining intra-crown patterns of ice accretion. As suspected, the concentration of freezing rain droplets is attenuated by passage through the upper crown, and thus higher branches accumulate more ice than lower branches. This is the first step in developing a model that can provide a quantitative basis for investigating intra-crown and inter-specific variation in freezing rain damage. PMID:27107412

  4. Storm Physics and Lightning Properties over Northern Alabama during DC3

    NASA Astrophysics Data System (ADS)

    Matthee, R.; Carey, L. D.; Bain, A. L.

    2013-12-01

    The Deep Convective Clouds and Chemistry (DC3) experiment seeks to examine the relationship between deep moist convection (DMC) and the production of nitrogen oxides (NOx) via lightning (LNOx). The focus of this study will be to examine integrated storm microphysics and lightning properties of DMC across northern Alabama (NA) during the DC3 campaign through use of polarimetric radar [UAHuntsville's Advanced Radar for Meteorological and Operational Radar (ARMOR)] and lightning mapping [National Aeronautical and Space Administration's (NASA) north Alabama Lightning Mapping Array (NA LMA)] platforms. Specifically, ARMOR and NA LMA are being used to explore the ability of radar inferred microphysical (e.g., ice mass, graupel volume) measurements to parameterize flash rates (F) and flash area for estimation of LNOX production in cloud resolving models. The flash area was calculated by using the 'convex hull' method. This method essentially draws a polygon around all the sources that comprise a flash. From this polygon, the convex hull area that describes the minimum polygon that circumscribes the flash extent is calculated. Two storms have been analyzed so far; one on 21 May 2012 (S1) and another on 11 June 2012 (S2), both of which were aircraft-penetrated during DC3. For S1 and S2, radar reflectivity (Z) estimates of precipitation ice mass (M) within the mixed-phase zone (-10°C to -40°C) were well correlated to the trend of lightning flash rate. However, a useful radar-based F parameterization must provide accurate quantification of rates in addition to proper trends. The difference reflectivity was used to estimate Z associated with ice and then a single Z-M relation was employed to calculate M in the mixed-phase zone. Using this approach it was estimated that S1 produced an order of magnitude greater M, but produced about a third of the total amount of flashes compared to S2. Expectations based on the non-inductive charging (NIC) theory suggest that the M

  5. Calving and rifting on McMurdo Ice Shelf, Antarctica

    NASA Astrophysics Data System (ADS)

    Banwell, Alison; Willis, Ian; MacAyeal, Douglas; Goodsell, Becky; Macdonald, Grant; Mayer, David; Powell, Anthony

    2017-04-01

    On March 2, 2016, a series of small en échelon tabular icebergs calved from the seaward front of the McMurdo Ice Shelf, and a previously inactive ice-shelf rift suddenly widened and propagated by 3km, 25% of its previous length, setting the stage for future calving of an approximately 8 km2 segment of the ice shelf. Immediately prior to these events, perhaps within 24 hours, all remaining land-fast sea ice buttressing the ice shelf broke up and drifted away. The events were witnessed by time-lapse cameras at nearby Scott Base giving a unique opportunity to document the timing of the events and conditions leading up to them. In addition, the events can be put into context using nearby seismic and automatic weather station data, satellite imagery, and ground observation made 8 months later. Although the observations cannot be used definitively to identify the exact trigger of calving and rifting, the seismic records reveal superimposed sets of long-period (>10 s) sea swell, propagating into McMurdo Sound from distant storm sources in the Pacific Ocean, at the time of, and immediately prior to, the break-up of sea ice and associated ice shelf calving and rifting. This conspicuous presence suggests that sea swell should be studied further as a proximal cause of ice-shelf calving and rifting; if proven, it suggests that ice-shelf stability is tele-connected with far-field storm conditions at lower latitudes, adding a global dimension to the physics of potential ice-shelf breakup.

  6. Predicting September sea ice: Ensemble skill of the SEARCH Sea Ice Outlook 2008-2013

    NASA Astrophysics Data System (ADS)

    Stroeve, Julienne; Hamilton, Lawrence C.; Bitz, Cecilia M.; Blanchard-Wrigglesworth, Edward

    2014-04-01

    Since 2008, the Study of Environmental Arctic Change Sea Ice Outlook has solicited predictions of September sea-ice extent from the Arctic research community. Individuals and teams employ a variety of modeling, statistical, and heuristic approaches to make these predictions. Viewed as monthly ensembles each with one or two dozen individual predictions, they display a bimodal pattern of success. In years when observed ice extent is near its trend, the median predictions tend to be accurate. In years when the observed extent is anomalous, the median and most individual predictions are less accurate. Statistical analysis suggests that year-to-year variability, rather than methods, dominate the variation in ensemble prediction success. Furthermore, ensemble predictions do not improve as the season evolves. We consider the role of initial ice, atmosphere and ocean conditions, and summer storms and weather in contributing to the challenge of sea-ice prediction.

  7. The effects of storms and storm-generated currents on sand beaches in Southern Maine, USA

    USGS Publications Warehouse

    Hill, H.W.; Kelley, J.T.; Belknap, D.F.; Dickson, S.M.

    2004-01-01

    Storms are one of the most important controls on the cycle of erosion and accretion on beaches. Current meters placed in shoreface locations of Saco Bay and Wells Embayment, ME, recorded bottom currents during the winter months of 2000 and 2001, while teams of volunteers profiled the topography of nearby beaches. Coupling offshore meteorological and beach profile data made it possible to determine the response of nine beaches in southern Maine to various oceanographic and meteorological conditions. The beaches selected for profiling ranged from pristine to completely developed and permitted further examination of the role of seawalls on the response of beaches to storms. Current meters documented three unique types of storms: frontal passages, southwest storms, and northeast storms. In general, the current meter results indicate that frontal passages and southwest storms were responsible for bringing sediment towards the shore, while northeast storms resulted in a net movement of sediment away from the beach. During the 1999-2000 winter, there were a greater percentage of frontal passages and southwest storms, while during the 2000-2001 winter, there were more northeast storms. The sediment that was transported landward during the 1999-2000 winter was reworked into the berm along moderately and highly developed beaches during the next summer. A northeast storm on March 5-6, 2001, resulted in currents in excess of 1 m s-1 and wave heights that reached six meters. The storm persisted over 10 high tides and caused coastal flooding and property damage. Topographic profiles made before and after the storm demonstrate that developed beaches experienced a loss of sediment volume during the storm, while sediment was redistributed along the profile on moderately developed and undeveloped beaches. Two months after the storm, the profiles along the developed beaches had not reached their pre-storm elevation. In comparison, the moderately developed and undeveloped beaches

  8. Dust Storm Feature Identification and Tracking from 4D Simulation Data

    NASA Astrophysics Data System (ADS)

    Yu, M.; Yang, C. P.

    2016-12-01

    Dust storms cause significant damage to health, property and the environment worldwide every year. To help mitigate the damage, dust forecasting models simulate and predict upcoming dust events, providing valuable information to scientists, decision makers, and the public. Normally, the model simulations are conducted in four-dimensions (i.e., latitude, longitude, elevation and time) and represent three-dimensional (3D), spatial heterogeneous features of the storm and its evolution over space and time. This research investigates and proposes an automatic multi-threshold, region-growing based identification algorithm to identify critical dust storm features, and track the evolution process of dust storm events through space and time. In addition, a spatiotemporal data model is proposed, which can support the characterization and representation of dust storm events and their dynamic patterns. Quantitative and qualitative evaluations for the algorithm are conducted to test the sensitivity, and capability of identify and track dust storm events. This study has the potential to assist a better early warning system for decision-makers and the public, thus making hazard mitigation plans more effective.

  9. Overview of the ARkStorm scenario

    USGS Publications Warehouse

    Porter, Keith; Wein, Anne; Alpers, Charles N.; Baez, Allan; Barnard, Patrick L.; Carter, James; Corsi, Alessandra; Costner, James; Cox, Dale; Das, Tapash; Dettinger, Mike; Done, James; Eadie, Charles; Eymann, Marcia; Ferris, Justin; Gunturi, Prasad; Hughes, Mimi; Jarrett, Robert; Johnson, Laurie; Le-Griffin, Hanh Dam; Mitchell, David; Morman, Suzette; Neiman, Paul; Olsen, Anna; Perry, Suzanne; Plumlee, Geoffrey; Ralph, Martin; Reynolds, David; Rose, Adam; Schaefer, Kathleen; Serakos, Julie; Siembieda, William; Stock, Jonathan; Strong, David; Wing, Ian Sue; Tang, Alex; Thomas, Pete; Topping, Ken; Wills, Chris; Jones, Lucile

    2011-01-01

    The U.S. Geological Survey, Multi Hazards Demonstration Project (MHDP) uses hazards science to improve resiliency of communities to natural disasters including earthquakes, tsunamis, wildfires, landslides, floods and coastal erosion. The project engages emergency planners, businesses, universities, government agencies, and others in preparing for major natural disasters. The project also helps to set research goals and provides decision-making information for loss reduction and improved resiliency. The first public product of the MHDP was the ShakeOut Earthquake Scenario published in May 2008. This detailed depiction of a hypothetical magnitude 7.8 earthquake on the San Andreas Fault in southern California served as the centerpiece of the largest earthquake drill in United States history, involving over 5,000 emergency responders and the participation of over 5.5 million citizens. This document summarizes the next major public project for MHDP, a winter storm scenario called ARkStorm (for Atmospheric River 1,000). Experts have designed a large, scientifically realistic meteorological event followed by an examination of the secondary hazards (for example, landslides and flooding), physical damages to the built environment, and social and economic consequences. The hypothetical storm depicted here would strike the U.S. West Coast and be similar to the intense California winter storms of 1861 and 1862 that left the central valley of California impassible. The storm is estimated to produce precipitation that in many places exceeds levels only experienced on average once every 500 to 1,000 years. Extensive flooding results. In many cases flooding overwhelms the state's flood-protection system, which is typically designed to resist 100- to 200-year runoffs. The Central Valley experiences hypothetical flooding 300 miles long and 20 or more miles wide. Serious flooding also occurs in Orange County, Los Angeles County, San Diego, the San Francisco Bay area, and other

  10. Norwegian Young Sea Ice Experiment (N-ICE) Field Campaign Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walden, V. P.; Hudson, S. R.; Cohen, L.

    The Norwegian Young Sea Ice (N-ICE) experiment was conducted aboard the R/V Lance research vessel from January through June 2015. The primary purpose of the experiment was to better understand thin, first-year sea ice. This includes understanding of how different components of the Arctic system affect sea ice, but also how changing sea ice affects the system. A major part of this effort is to characterize the atmospheric conditions throughout the experiment. A micropulse lidar (MPL) (S/N: 108) was deployed from the U.S. Department of Energy’s (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility as part of the atmospheric suitemore » of instruments. The MPL operated successfully throughout the entire experiment, acquiring data from 21 January 2015 through 23 June 2015. The MPL was the essential instrument for determining the phase (water, ice or mixed) of the lower-level clouds over the sea ice. Data obtained from the MPL during the N-ICE experiment show large cloud fractions over young, thin Arctic sea ice from January through June 2015 (north of Svalbard). The winter season was characterized by frequent synoptic storms and large fluctuations in the near-surface temperature. There was much less synoptic activity in spring and summer as the near-surface temperature rose to 0 C. The cloud fraction was lower in winter (60%) than in the spring and summer (80%). Supercooled liquid clouds were observed for most of the deployment, appearing first in mid-February. Spring and summer clouds were characterized by low, thick, uniform clouds.« less

  11. Springtime Dust Storm Swirls at Martian North Pole

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Two Hubble Space Telescope images of Mars, taken about a month apart on September 18 and October 15, 1996, reveal a state-sized dust storm churning near the edge of the Martian north polar cap. The polar storm is probably a consequence of large temperature differences between the polar ice and the dark regions to the south, which are heated by the springtime sun. The increased sunlight also causes the dry ice in the polar cap to sublime and shrink.

    Mars is famous for large, planet-wide dust storms. Smaller storms resembling the one seen here were observed in other regions by Viking orbiters in the late 1970s. However, this is the first time that such an event has been caught near the receding north polar cap. The Hubble images provide valuable new insights into the behavior of localized dust storms on Mars, which are typically below the resolution of ground-based telescopes. This kind of advanced planetary 'weather report' will be invaluable for aiding preparation for the landing of NASA's Pathfinder spacecraft in July 1997 and the arrival of Mars Global Surveyor orbiter in September 1997.

    Top (September 18, 1996) - The salmon colored notch in the white north polar cap is a 600-mile (1,000 kilometer) long storm -- nearly the width of Texas. The bright dust can also be seen over the dark surface surrounding the cap, where it is caught up in the Martian jet stream and blown easterly. The white clouds at lower latitudes are mostly associated with major Martian volcanos such as Olympus Mons. This image was taken when Mars was more than 186 million miles (300 million kilometers) from Earth, and the planet was smaller in angular size than Jupiter's Great Red Spot!

    Bottom (October 15, 1996) - Though the storm has dissipated by October, a distinctive dust-colored comma-shaped feature can be seen curving across the ice cap. The shape is similar to cold fronts on Earth, which are associated with low pressure systems. Nothing quite like this feature has been seen

  12. Hurricane Katrina storm surge distribution and field observations on the Mississippi Barrier Islands

    NASA Astrophysics Data System (ADS)

    Fritz, Hermann M.; Blount, Chris; Sokoloski, Robert; Singleton, Justin; Fuggle, Andrew; McAdoo, Brian G.; Moore, Andrew; Grass, Chad; Tate, Banks

    2007-08-01

    Hurricane Katrina (23-30 August 2005) struck low-lying coastal plains particularly vulnerable to storm surge flooding. Maximum storm surges, overland flow depths, and inundation distances were measured along the Gulf Coast of Florida, Alabama, Mississippi and Louisiana. The vehicle based survey was complemented by inspections with the reconnaissance boat along the Gulf Coast and the Mississippi Barrier Islands. The storm surge peaked to the East of Katrina's path exceeding 10 meters in several locations along the Mississippi coastline. The storm surge measurements show that the lower floors of specially designed buildings were damaged by the surge of seawater and associated wave action, while the upper floors sustained minimal wind damage. Furthermore, the storm surge measurements along New Orleans's Lake shore indicate that the 17th Street Canal levee failed prior to overtopping. The land loss on the barrier islands resulted in an increased vulnerability of the US Gulf Coast to future hurricane storm surges.

  13. Storm Surge Simulation and Ensemble Forecast for Hurricane Irene (2011)

    NASA Astrophysics Data System (ADS)

    Lin, N.; Emanuel, K.

    2012-12-01

    Hurricane Irene, raking the U.S. East Coast during the period of 26-30 August 2011, caused widespread damage estimated at $15.8 billion and was responsible for 49 direct deaths (Avila and Cangialosi, 2011). Although the most severe impact in the northeastern U.S. was catastrophic inland flooding, with its unusually large size, Irene also generated high waves and storm surges and caused moderate to major coastal flooding. The most severe surge damage occurred between Oregon Inlet and Cape Hatteras in North Carolina (NC). Significant storm surge damage also occurred along southern Chesapeake Bay, and moderate and high surges were observed along the coast from New Jersey (NJ) northward. A storm surge of 0.9-1.8 m caused hundreds of millions of dollars in property damage in New York City (NYC) and Long Island, despite the fact that the storm made landfall to the west of NYC with peak winds of no more than tropical storm strength. Making three U.S. landfalls (in NC, NJ, and NY), Hurricane Irene provides a unique case for studying storm surge along the eastern U.S. coastline. We apply the hydrodynamic model ADCIRC (Luettich et al. 1992) to conduct surge simulations for Pamlico Sound, Chesapeake Bay, and NYC, using best track data and parametric wind and pressure models. The results agree well with tidal-gauge observations. Then we explore a new methodology for storm surge ensemble forecasting and apply it to Irene. This method applies a statistical/deterministic hurricane model (Emanuel et al. 2006) to generate large numbers of storm ensembles under the storm environment described by the 51 ECMWF ensemble members. The associated surge ensembles are then generated with the ADCIRC model. The numerical simulation is computationally efficient, making the method applicable to real-time storm surge ensemble forecasting. We report the results for NYC in this presentation. The ADCIRC simulation using the best track data generates a storm surge of 1.3 m and a storm tide of 2.1 m

  14. Cloud-to-ground lightning in a tornadic storm on 8 May 1986

    NASA Technical Reports Server (NTRS)

    Macgorman, Donald R.; Nielsen, Kurt E.

    1991-01-01

    The National Severe Storms Laboratory (NSSL) gathered Doppler radar and lightning ground strike data on a supercell storm that produced three tornadoes, including an F3 tornado in Edmond, Oklahoma, approximately 40 km north of NSSL. The Edmond storm formed 30 km ahead of a storm complex and developed its first and most damaging tornado just as the storm complex started to overtake it from the west. Lightning strike locations tended to concentrate just north of the mesocyclone, close to and inside a 50 dBZ reflectivity core. Positive ground flashes began just prior to the storm becoming tornadic, and positive flash rates peaked during the tornadic stage of the storm.

  15. Detection Of Tornado Damage Tracks With EOS Data

    NASA Technical Reports Server (NTRS)

    Jedlovec, Gary J.; Nair, Udaysankar; Haines, Stephanie L.

    2005-01-01

    The damage surveys conducted by the NWS in the aftermath of a reported tornadic event are used to document the location of the tornado ground damage track (path length and width) and an estimation of the tornado intensity. This study explored the possibility of using near real-time medium and high-resolution satellite imagery from the NASA EOS satellites to provide additional information for the surveys. MODIS and ASTER data were used to study the damage tracks from three tornadic storms; the La Plata, Maryland storm of 28 April 2002 and the Carter-Butler Counties and Madison County Missouri storms of 24 April 2002. These storms varied in intensity (from F0-F4) and occurred over regions with different land use. It was found that, depending on the nature of land use, tornado damage tracks from intense storms (F2 or greater) may be evident in both ASTER and MODIS satellite imagery. In areas of dense vegetation the scar patterns show up very clearly, while in areas of grassland and regions with few trees, scar patterns are not at all obvious in the satellite imagery. The detection of previously unidentified segments of a damage track caused by the 24 April 2004 Madison County, Missouri tornado demonstrates the utility of satellite imagery for damage surveys. However, the capability to detect tornado tracks in satellite imagery appears to be as much dependent on the nature of the underlying surface and land use as on the severity of the tornadic storm. The imaging sensors on the NPOESS operational satellites to be launched in 2006 will continue the unique observing capabilities of the EOS instruments.

  16. ICE911 Research: Preserving and Rebuilding Reflective Ice

    NASA Astrophysics Data System (ADS)

    Field, L. A.; Chetty, S.; Manzara, A.; Venkatesh, S.

    2014-12-01

    We have developed a localized surface albedo modification technique that shows promise as a method to increase reflective multi-year ice using floating materials, chosen so as to have low subsidiary environmental impact. It is now well-known that multi-year reflective ice has diminished rapidly in the Arctic over the past 3 decades and this plays a part in the continuing rapid decrease of summer-time ice. As summer-time bright ice disappears, the Arctic is losing its ability to reflect summer insolation, and this has widespread climatic effects, as well as a direct effect on sea level rise, as oceans heat and once-land-based ice melts into the sea. We have tested the albedo modification technique on a small scale over six Winter/Spring seasons at sites including California's Sierra Nevada Mountains, a Canadian lake, and a small man-made lake in Minnesota, using various materials and an evolving array of instrumentation. The materials can float and can be made to minimize effects on marine habitat and species. The instrumentation is designed to be deployed in harsh and remote locations. Localized snow and ice preservation, and reductions in water heating, have been quantified in small-scale testing. We have continued to refine our material and deployment approaches, and we have had laboratory confirmation by NASA. In the field, the materials were successfully deployed to shield underlying snow and ice from melting; applications of granular materials remained stable in the face of local wind and storms. We are evaluating the effects of snow and ice preservation for protection of infrastructure and habitat stabilization, and we are concurrently developing our techniques to aid in water conservation. Localized albedo modification options such as those being studied in this work may act to preserve ice, glaciers, permafrost and seasonal snow areas, and perhaps aid natural ice formation processes. If this method is deployed on a large enough scale, it could conceivably

  17. Facilitating Adaptation to Changing Storm Surge Patterns in Western Alaska.

    NASA Astrophysics Data System (ADS)

    Murphy, K. A.; Holman, A.; Reynolds, J.

    2014-12-01

    Coastal regions of North America are already experiencing the effects of climate change and the consequences of new storm patterns and sea level rise. These climate change effects are even more pronounced in western Alaska where the loss of sea ice in early winter and spring are exposing the coast to powerful winter storms that are visibly altering the landscape, putting coastal communities at risk, and are likely impacting important coastal wildlife habitat in ways we don't yet understand. The Western Alaska Landscape Conservation Cooperative has funded a suite of projects to improve the information available to assist managers and communities to adapt changes in coastal storms and their impacts. Projects range from modeling tide, wave and storm surge patters, to ShoreZone and NHD mapping, to bathymetry mapping, community vulnerability assessments and risks to important wildlife habitat. This group of diverse projects has helped stimulate momentum among partners which will lead to better tools for communities to respond to dangerous storms. For example, the State of Alaska and NOAA are working together to compile a series of community-scale maps that utilize best-available datasets to streamline communication about forecasted storm surges, local elevations and potentially impacted infrastructure during storm events that may lead to coastal flooding.

  18. Hurricane Irma Damage Assessment

    NASA Image and Video Library

    2017-09-12

    An aerial survey of NASA's Kennedy Space Center in Florida was conducted on September 12, 2017. The survey was performed to identify structures and facilities that may have sustained damage from Hurricane Irma as the storm passed Kennedy on September 10, 2017. NASA closed the center ahead of the storm's onset and only a small team of specialists known as the Rideout Team was on the center as the storm approached and passed.

  19. Analysis of High-Intensity Skating in Top-Class Ice Hockey Match-Play in Relation to Training Status and Muscle Damage.

    PubMed

    Lignell, Erik; Fransson, Dan; Krustrup, Peter; Mohr, Magni

    2018-05-01

    Lignell, E, Fransson, D, Krustrup, P, and Mohr, M. Analysis of high-intensity skating in top-class ice hockey match-play in relation to training status and muscle damage. J Strength Cond Res 32(5): 1303-1310, 2018-We examined high-intensity activities in a top-class ice-hockey game and the effect of training status. Male ice-hockey players (n = 36) from the National Hockey League participated. Match analysis was performed during a game and physical capacity was assessed by a submaximal Yo-Yo Intermittent Recovery Ice-hockey test, level 1 (YYIR1-IHSUB). Venous blood samples were collected 24-hour post-game to determine markers of muscle damage. Players performed 119 ± 8 and 31 ± 3 m·min of high intensity and sprint skating, respectively, during a game. Total distance covered was 4,606 ± 219 m (2,260-6,749 m), of which high-intensity distance was 2042 ± 97 m (757-3,026 m). Sprint-skating speed was 5-8% higher (p ≤ 0.05) in periods 1 and 2 vs. period 3 and overtime. Defensemen (D) covered 29% more (p ≤ 0.05) skating in total than forwards (F) and were on the ice 47% longer. However, F performed 54% more (p ≤ 0.05) high-intensity skating per minute than defensemen. Plasma creatine kinase (CK) was 338 ± 45 (78-757) U·L 24-hour post-game. Heart rate loading during YYIR1-IHSUB correlated inversely (p ≤ 0.05) to the frequency of high-intensity skating bouts (r = -0.55) and V[Combining Dot Above]O2max (r = -0.85) and positively to post-game CK (r = 0.49; p ≤ 0.05). In conclusion, ice hockey is a multiple-sprint sport that provokes fatigue in the latter half of a game. Forwards perform more intense skating than defensemen. Moreover, high-intensity game activities during top-class ice hockey are correlated with cardiovascular loading during a submaximal skating test. Taken together, training of elite ice-hockey players should improve the ability for repeated high-intensity skating, and testing should include the YYIR1-IHSUB test as an indicator for ice

  20. Comparisons Between Total Lightning Data, Mesocyclone Strength, and Storm Damage Associated with the Florida Tornado Outbreak of February 23, 1998

    NASA Technical Reports Server (NTRS)

    Hodanish, S; Sharp, D.; Williams, E.; Boldi, B.; Goodman, Steven J.; Raghavan, R.; Matlin, A.; Weber, M.

    1998-01-01

    During the early morning hours of February 23 1998, the worst tornado outbreak ever recorded occurred over the central Florida peninsula. At least 7 confirmed tornadoes, associated with 4 supercells, developed, with 3 of the tornadoes reaching F3 intensity. Many of the tornadoes where on the ground for tens of miles, uncommon for the state of Florida. A total of 42 people were killed, with over 250 people injured. During the outbreak, National Weather Service Melbourne, in collaboration with the National Aeronautics and Space Administration and the Massachusetts Institute of Technology was collecting data from a unique lightning observing system called Lightning Imaging Sensor Data Applications Display (LISDAD, Boldi et.al., this conference). This system marries radar data collected from the KMLB WSR-88D, cloud to ground data collected from the National Lightning Detection Network, and total lightning data collected from NASKs Lightning Detection And Ranging system. This poster will display, concurrently, total lightning data (displayed in 1 minute increments), time/height storm relative velocity products from the KMLB WSR-88D, and damage information (tornado/hail/wind) from each of the supercell thunderstorms. The primary objective of this poster presentation is to observe how total lightning activity changes as the convective storm intensifies, and how the lightning activity changes with respect to mesocyclone strength (vortex stretching) and damaging weather on the ground.

  1. Total Lightning and Radar Storm Characteristics Associated with Severe Storms in Central Florida

    NASA Technical Reports Server (NTRS)

    Goodman, Steven J; Raghavan, R.; Buechler, Dennis; Hodanish, S.; Sharp, D.; Williams, E.; Boldi, B.; Matlin, A.; Weber, M.

    1998-01-01

    This paper examines the three dimensional characteristics of lightning flashes and severe storms observed in Central Florida during 1997-1998. The lightning time history of severe and tornadic storms were captured during the on-going ground validation campaign supporting the Lightning Imaging Sensor (LIS) experiment on the Tropical Rainfall Measuring Mission (TRMM). The ground validation campaign is a collaborative experiment that began in 1997 and involves scientists at the Global Hydrology and Climate Center, MIT/Lincoln Laboratories, and the NWS Forecast Office at Melbourne, FL. Lightning signatures that may provide potential early warning of severe storms are being evaluated by the forecasters at the NWS/MLB office. Severe storms with extreme flash rates sometimes exceeding 300 per minute and accompanying rapid increases in flash rate prior to the onset of the severe weather (hall, damaging winds, tornadoes) have been reported by Hodanish et al. and Williams et al. (1998-this conference). We examine the co-evolving changes in storm structure (mass, echo top, shear, latent heat release) and kinematics associated with these extreme and rapid flash rate changes over time. The flash frequency and density are compared with the three dimensional radar reflectivity structure of the storm to help interpret the possible mechanisms producing the extreme and rapidly increasing flash rates. For two tornadic storms examined thus far, we find the burst of lightning is associated with the development of upper level rotation in the storm. In one case, the lightning burst follows the formation of a bounded weak echo region (BWER). The flash rates diminish with time as the rotation develops to the ground in conjunction with the decent of the reflectivity core. Our initial findings suggest the dramatic increase of flash rates is associated with a sudden and dramatic increase in storm updraft intensity which we hypothesize is stretching vertical vorticity as well as enhancing the

  2. Using Satellite Remote Sensing to assist the National Weather Service (NWS) in Storm Damage Surveys

    NASA Astrophysics Data System (ADS)

    Schultz, L. A.; Molthan, A.; McGrath, K.; Bell, J. R.; Cole, T.; Burks, J.

    2016-12-01

    In recent years, the NWS has developed a GIS-based application, called the Damage Assessment Toolkit (DAT), to conduct storm surveys after severe weather events. At present, the toolkit is primarily used for tornado damage surveys and facilitates the identification of damage indicators in accordance with the Enhanced Fujita (EF) intensity scale by allowing surveyors to compare time- and geo-tagged photos against the EF scale guidelines. Mobile and web-based applications provide easy access to the DAT for NWS personnel while performing their duties in the field or office. Multispectral satellite remote sensing imagery has demonstrated benefits for the detection and mapping of damage tracks caused by tornadoes, especially for long-track events and/or areas not easily accessed by NWS personnel. For example, imagery from MODIS, Landsat 7, Landsat 8, ASTER, Sentinel 2, and commercial satellites, collected and distributed in collaboration with the USGS Hazards Data Distribution System, have been useful for refining track location and extent through a "bird's eye" view of the damaged areas. The NASA Short-term Prediction Research and Transition (SPoRT) Center has been working with the NWS and USGS to provide imagery and derived products from polar-orbiting satellite platforms to assist in the detection and refinement of tornado tracks as part of a NASA Applied Science: Disasters project. Working closely with select Weather Forecast Offices (WFOs) and Regional Operations Centers (ROCs) in both the NWS Central and Southern regions, high- and medium-resolution (0.5 - 30 m and 250 m - 1 km resolutions, respectively) imagery and derived products have been provided to the DAT interface for evaluation of operational utility by the NWS for their use in both the field and in the office during post event analysis. Highlighted in this presentation will be case studies where the remotely sensed imagery assisted in the adjustment of a tornado track. Examples will be shown highlighting

  3. Microbial genesis, life and death in glacial ice.

    PubMed

    Price, P Buford

    2009-01-01

    Arguments are given that terrestrial RNA and DNA may have originated in a frozen environment more than 4 billion years ago. Scenarios are developed for atmospheric transport of microbes onto glacial ice, their adaptation to subzero temperatures in the ice, and their incorporation into one of three habitats - liquid veins, mineral grain surfaces, or isolated inside 1 of the crystals that make up polycrystalline ice. The Arrhenius dependence of microbial metabolic rate on temperature is shown to match that required to repair damage owing to spontaneous DNA depurination and amino acid racemization. Even for the oldest glacial ice, microbial lifetime is shown not to be shortened by radiation damage from 238U, 232Th, or 40K in mineral dust in ice, by phage-induced lysis, or by penetrating cosmic radiation. Instead, death of those cells adapted to the hostile conditions in glacial ice is probably due to exhaustion of available nutrients. By contrast, in permafrost microbial death is more likely due to alpha-particle radiation damage from U and Th in the soil and rocks intermixed with ice. For residence times in ice longer than a million years, spore formers may be unable to compete in longevity with vegetative cells that are able to repair DNA damage via survival metabolism.

  4. Onset of frequent dust storms in northern China at ~AD 1100.

    PubMed

    He, Yuxin; Zhao, Cheng; Song, Mu; Liu, Weiguo; Chen, Fahu; Zhang, Dian; Liu, Zhonghui

    2015-11-26

    Dust storms in northern China strongly affect the living and health of people there and the dusts could travel a full circle of the globe in a short time. Historically, more frequent dust storms occurred during cool periods, particularly the Little Ice Age (LIA), generally attributed to the strengthened Siberian High. However, limited by chronological uncertainties in proxy records, this mechanism may not fully reveal the causes of dust storm frequency changes. Here we present a late Holocene dust record from the Qaidam Basin, where hydrological changes were previously reconstructed, and examine dust records from northern China, including the ones from historical documents. The records, being broadly consistent, indicate the onset of frequent dust storms at ~AD 1100. Further, peaked dust storm events occurred at episodes of high total solar irradiance or warm-dry conditions in source regions, superimposed on the high background of frequent dust storms within the cool LIA period. We thus suggest that besides strong wind activities, the centennial-scale dust storm events over the last 1000 years appear to be linked to the increased availability of dust source. With the anticipated global warming and deteriorating vegetation coverage, frequent occurrence of dust storms in northern China would be expected to persist.

  5. Major coastal impact induced by a 1000-year storm event

    PubMed Central

    Fruergaard, Mikkel; Andersen, Thorbjørn J.; Johannessen, Peter N.; Nielsen, Lars H.; Pejrup, Morten

    2013-01-01

    Extreme storms and storm surges may induce major changes along sandy barrier coastlines, potentially causing substantial environmental and economic damage. We show that the most destructive storm (the 1634 AD storm) documented for the northern Wadden Sea within the last thousand years both caused permanent barrier breaching and initiated accumulation of up to several metres of marine sand. An aggradational storm shoal and a prograding shoreface sand unit having thicknesses of up to 8 m and 5 m respectively were deposited as a result of the storm and during the subsequent 30 to 40 years long healing phase, on the eroded shoreface. Our results demonstrate that millennial-scale storms can induce large-scale and long-term changes on barrier coastlines and shorefaces, and that coastal changes assumed to take place over centuries or even millennia may occur in association with and be triggered by a single extreme storm event.

  6. Arecibo weathers the storm

    NASA Astrophysics Data System (ADS)

    Rivera-Valentín, Edgard G.; Schmelz, Joan T.

    2018-04-01

    Hurricane Maria was 2 mph short of category 5 when it made landfall on Puerto Rico on 20 September 2017. The 305 m radio telescope at the Arecibo Observatory withstood the storm, suffering only minor structural damage. Staff have worked diligently to return the site to full operations and provide vital services to the surrounding Puerto Rican community.

  7. Polarization radar and electrical observations of microburst producing storms during Cohmex. [COoperative Huntsville Meteorological EXperiment

    NASA Technical Reports Server (NTRS)

    Goodman, Steven J.; Buechler, Dennis E.; Wright, Patrick D.; Rust, W. David; Nielsen, Kurt E.

    1989-01-01

    The life cycles of two electrified, microburst-producing storms that occurred on July 19 and 20, 1986 near Huntsville, Alabama are described and compared. The kinematic and microphysical development of the storm clouds is examined. Lightning activity prior to the onset of the microburst is studied. It is observed that ice phase precipitation particles are important in the electrification of the storm and in the formation of the strong downdraft, and the vertical distribution and movement of mass have a role in determining the total lightning activity and type of flashes.

  8. Use of waveform lidar and hyperspectral sensors to assess selected spatial and structural patterns associated with recent and repeat disturbance and the abundance of sugar maple (Acer saccharum Marsh.) in a temperate mixed hardwood and conifer forest

    USGS Publications Warehouse

    Anderson, J.E.; Ducey, Mark J.; Fast, A.; Martin, M.E.; Lepine, L.; Smith, M.-L.; Lee, T.D.; Dubayah, R.O.; Hofton, M.A.; Hyde, P.; Peterson, Birgit; Blair, J.B.

    2011-01-01

    Waveform lidar imagery was acquired on September 26, 1999 over the Bartlett Experimental Forest (BEF) in New Hampshire (USA) using NASA's Laser Vegetation Imaging Sensor (LVIS). This flight occurred 20 months after an ice storm damaged millions of hectares of forestland in northeastern North America. Lidar measurements of the amplitude and intensity of ground energy returns appeared to readily detect areas of moderate to severe ice storm damage associated with the worst damage. Southern through eastern aspects on side slopes were particularly susceptible to higher levels of damage, in large part overlapping tracts of forest that had suffered the highest levels of wind damage from the 1938 hurricane and containing the highest levels of sugar maple basal area and biomass. The levels of sugar maple abundance were determined through analysis of the 1997 Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) high resolution spectral imagery and inventory of USFS Northern Research Station field plots. We found a relationship between field measurements of stem volume losses and the LVIS metric of mean canopy height (r2 = 0.66; root mean square errors = 5.7 m3/ha, p < 0.0001) in areas that had been subjected to moderate-to-severe ice storm damage, accurately documenting the short-term outcome of a single disturbance event.

  9. Hurricane Irma Damage Assessment

    NASA Image and Video Library

    2017-09-12

    A boat dock torn apart is seen during a survey of NASA's Kennedy Space Center in Florida on September 12, 2017. The survey was performed to identify structures and facilities that may have sustained damage from Hurricane Irma as the storm passed Kennedy on September 10, 2017. NASA closed the center ahead of the storm's onset and only a small team of specialists known as the Rideout Team was on the center as the storm approached and passed.

  10. Hurricane Irma Damage Assessment

    NASA Image and Video Library

    2017-09-12

    The Beach House is seen during an aerial survey of NASA's Kennedy Space Center in Florida on September 12, 2017. The survey was performed to identify structures and facilities that may have sustained damage from Hurricane Irma as the storm passed Kennedy on September 10, 2017. NASA closed the center ahead of the storm's onset and only a small team of specialists known as the Rideout Team was on the center as the storm approached and passed.

  11. A computer assisted intelligent storm outage evaluator for power distribution systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balakrishnan, R.; Pahwa, A.

    1990-07-01

    The lower voltage part of the power distribution system (primary and secondary sub-systems) does not have the provision for real-time status feedback, and as a result evaluation of outages is an extremely difficult task, especially during system emergencies caused by tornadoes and ice-storms. In this paper, a knowledge based approach is proposed for evaluation of storm related outages in the distribution systems. At the outset, binary voltage sensors capable of transmitting the real-time voltage on/off symptoms are recommended to be installed at strategic locations in the distribution system.

  12. Identification of Plant Ice-binding Proteins Through Assessment of Ice-recrystallization Inhibition and Isolation Using Ice-affinity Purification.

    PubMed

    Bredow, Melissa; Tomalty, Heather E; Walker, Virginia K

    2017-05-05

    Ice-binding proteins (IBPs) belong to a family of stress-induced proteins that are synthesized by certain organisms exposed to subzero temperatures. In plants, freeze damage occurs when extracellular ice crystals grow, resulting in the rupture of plasma membranes and possible cell death. Adsorption of IBPs to ice crystals restricts further growth by a process known as ice-recrystallization inhibition (IRI), thereby reducing cellular damage. IBPs also demonstrate the ability to depress the freezing point of a solution below the equilibrium melting point, a property known as thermal hysteresis (TH) activity. These protective properties have raised interest in the identification of novel IBPs due to their potential use in industrial, medical and agricultural applications. This paper describes the identification of plant IBPs through 1) the induction and extraction of IBPs in plant tissue, 2) the screening of extracts for IRI activity, and 3) the isolation and purification of IBPs. Following the induction of IBPs by low temperature exposure, extracts are tested for IRI activity using a 'splat assay', which allows the observation of ice crystal growth using a standard light microscope. This assay requires a low protein concentration and generates results that are quickly obtained and easily interpreted, providing an initial screen for ice binding activity. IBPs can then be isolated from contaminating proteins by utilizing the property of IBPs to adsorb to ice, through a technique called 'ice-affinity purification'. Using cell lysates collected from plant extracts, an ice hemisphere can be slowly grown on a brass probe. This incorporates IBPs into the crystalline structure of the polycrystalline ice. Requiring no a priori biochemical or structural knowledge of the IBP, this method allows for recovery of active protein. Ice-purified protein fractions can be used for downstream applications including the identification of peptide sequences by mass spectrometry and the

  13. Assessing storm events for energy meteorology: using media and scientific reports to track a North Sea autumn storm.

    NASA Astrophysics Data System (ADS)

    Kettle, Anthony

    2016-04-01

    Important issues for energy meteorology are to assess meteorological conditions for normal operating conditions and extreme events for the ultimate limit state of engineering structures. For the offshore environment in northwest Europe, energy meteorology encompasses weather conditions relevant for petroleum production infrastructure and also the new field of offshore wind energy production. Autumn and winter storms are an important issue for offshore operations in the North Sea. The weather in this region is considered as challenging for extreme meteorological events as the Gulf of Mexico with its attendant hurricane risk. The rise of the Internet and proliferation of digital recording devices has placed a much greater amount of information in the public domain than was available to national meteorological agencies even 20 years ago. This contribution looks at reports of meteorology and infrastructure damage from a storm in the autumn of 2006 to trace the spatial and temporal record of meteorological events. Media reports give key information to assess the events of the storm. The storm passed over northern Europe between Oct.31-Nov. 2, 2006, and press reports from the time indicate that its most important feature was a high surge that inundated coastal areas. Sections of the Dutch and German North Sea coast were affected, and there was record flooding in Denmark and East Germany in the southern Baltic Sea. Extreme wind gusts were also reported that were strong enough to damage roofs and trees, and there was even tornado recorded near the Dutch-German border. Offshore, there were a series of damage reports from ship and platforms that were linked with sea state, and reports of rogue waves were explicitly mentioned. Many regional government authorities published summaries of geophysical information related to the storm, and these form part of a regular series of online winter storm reports that started as a public service about 15 years ago. Depending on the

  14. Interaction of ice binding proteins with ice, water and ions.

    PubMed

    Oude Vrielink, Anneloes S; Aloi, Antonio; Olijve, Luuk L C; Voets, Ilja K

    2016-03-19

    Ice binding proteins (IBPs) are produced by various cold-adapted organisms to protect their body tissues against freeze damage. First discovered in Antarctic fish living in shallow waters, IBPs were later found in insects, microorganisms, and plants. Despite great structural diversity, all IBPs adhere to growing ice crystals, which is essential for their extensive repertoire of biological functions. Some IBPs maintain liquid inclusions within ice or inhibit recrystallization of ice, while other types suppress freezing by blocking further ice growth. In contrast, ice nucleating proteins stimulate ice nucleation just below 0 °C. Despite huge commercial interest and major scientific breakthroughs, the precise working mechanism of IBPs has not yet been unraveled. In this review, the authors outline the state-of-the-art in experimental and theoretical IBP research and discuss future scientific challenges. The interaction of IBPs with ice, water and ions is examined, focusing in particular on ice growth inhibition mechanisms.

  15. Hurricane Irma Damage Assessment

    NASA Image and Video Library

    2017-09-12

    The Central Campus construction site is seen during an aerial survey of NASA's Kennedy Space Center in Florida on September 12, 2017. The survey was performed to identify structures and facilities that may have sustained damage from Hurricane Irma as the storm passed Kennedy on September 10, 2017. NASA closed the center ahead of the storm’s onset and only a small team of specialists known as the Rideout Team was on the center as the storm approached and passed.

  16. The role of synoptic weather variability in Greenland ice sheet dynamics

    NASA Astrophysics Data System (ADS)

    Walker, J. M.; Radic, V.

    2017-12-01

    Much of the large uncertainty in predictions of future global sea level rise is due to our limited understanding of Greenland ice sheet (GrIS) motion and its interactions with climate. Over the next century, climate models predict that the GrIS will experience not only gradual warming, but also changes in atmospheric circulation, hydrology, and weather, including a northward shift of the North Atlantic storm track, with greater frequency and intensity of rain storms over the GrIS. Recent studies of GrIS dynamics have focused on the effects of increased seasonal mean meltwater on ice velocities, finding only a modest impact due to compensation by subglacial drainage systems, but subglacial hydraulic theory indicates that variability on shorter timescales is also relevant: short-term surges in meltwater or rainfall can overload drainage systems at rates faster than they can adjust, leading to water pressure spikes and ice acceleration. If the magnitude or frequency of these transient ice accelerations increase substantially as synoptic weather patterns change over the next century, there could be a significant cumulative impact on seasonal mean ice velocities. However, this issue has not been addressed in the literature and represents a major source of uncertainty. In this study, we investigate the role of synoptic weather variability in GrIS dynamics, with the ultimate goal of evaluating the relationships between extreme weather events and ice sheet flow in different seasons and regions of the GrIS. As a first step, we apply the machine learning technique of self-organizing maps to atmospheric reanalysis data to categorize the predominant synoptic weather systems over the GrIS domain, evaluating atmospheric moisture transport and rainfall to assess the impacts of each weather system on GrIS surface hydrology. The preliminary results presented here will be used in conjunction with ice velocity satellite measurements in future work, to identify any correlations

  17. Ice-Nucleating Bacteria

    NASA Astrophysics Data System (ADS)

    Obata, Hitoshi

    Since the discovery of ice-nucleating bacteria in 1974 by Maki et al., a large number of studies on the biological characteristics, ice-nucleating substance, ice nucleation gene and frost damage etc. of the bacteria have been carried out. Ice-nucleating bacteria can cause the freezing of water at relatively warm temperature (-2.3°C). Tween 20 was good substrates for ice-nucleating activity of Pseudomonas fluorescens KUIN-1. Major fatty acids of Isolate (Pseudomonas fluorescens) W-11 grown at 30°C were palmitic, cis-9-hexadecenoic and cis-11-octadecenoic which amounted to 90% of the total fatty acids. Sequence analysis shows that an ice nucleation gene from Pseudomonas fluorescens is related to the gene of Pseudomonas syringae.

  18. Cumulative impacts of hurricanes on Florida mangrove ecosystems: Sediment deposition, storm surges and vegetation

    USGS Publications Warehouse

    Smith, T. J.; Anderson, G.H.; Balentine, K.; Tiling, G.; Ward, G.A.; Whelan, K.R.T.

    2009-01-01

    Hurricanes have shaped the structure of mangrove forests in the Everglades via wind damage, storm surges and sediment deposition. Immediate effects include changes to stem size-frequency distributions and to species relative abundance and density. Long-term impacts to mangroves are poorly understood at present. We examine impacts of Hurricane Wilma on mangroves and compare the results to findings from three previous storms (Labor Day, Donna, Andrew). Surges during Wilma destroyed ??? 1,250 ha of mangroves and set back recovery that started following Andrew. Data from permanent plots affected by Andrew and Wilma showed no differences among species or between hurricanes for stem mortality or basal area lost. Hurricane damage was related to hydro-geomorphic type of forest. Basin mangroves suffered significantly more damage than riverine or island mangroves. The hurricane by forest type interaction was highly significant. Andrew did slightly more damage to island mangroves. Wilma did significantly more damage to basin forests. This is most likely a result of the larger and more spatially extensive storm surge produced by Wilma. Forest damage was not related to amount of sediment deposited. Analyses of reports from Donna and the Labor Day storm indicate that some sites have recovered following catastrophic disturbance. Other sites have been permanently converted into a different ecosystem, namely intertidal mudflats. Our results indicate that mangroves are not in a steady state as has been recently claimed. ?? 2009 The Society of Wetland Scientists.

  19. Holocene landscape response to seasonality of storms in the Mojave Desert

    USGS Publications Warehouse

    Miller, D.M.; Schmidt, K.M.; Mahan, S.A.; McGeehin, J.P.; Owen, L.A.; Barron, J.A.; Lehmkuhl, F.; Lohrer, R.

    2010-01-01

    New optically stimulated and radiocarbon ages for alluvial fan and lake deposits in the Mojave Desert are presented, which greatly improves the temporal resolution of surface processes. The new Mojave Desert climate-landscape record is particularly detailed for the late Holocene. Evidence from ephemeral lake deposits and landforms indicates times of sustained stream flow during a wet interval of the latter part of the Medieval Warm Period at ca. AD 1290 and during the Little Ice Age at ca. AD 1650. The former lakes postdate megadroughts of the Medieval Warm Period, whereas the latter match the Maunder Minimum of the Little Ice Age. Periods of alluvial fan aggradation across the Mojave Desert are 14-9 cal ka and 6-3 cal ka. This timing largely correlates to times of increased sea-surface temperatures in the Gulf of California and enhanced warm-season monsoons. This correlation suggests that sustained alluvial fan aggradation may be driven by intense summer-season storms. These data suggest that the close proximity of the Mojave Desert to the Pacific Ocean and the Gulf of California promotes a partitioning of landscape-process responses to climate forcings that vary with seasonality of the dominant storms. Cool-season Pacific frontal storms cause river flow, ephemeral lakes, and fan incision, whereas periods of intense warm-season storms cause hillslope erosion and alluvial fan aggradation. The proposed landscape-process partitioning has important implications for hazard mitigation given that climate change may increase sea-surface temperatures in the Gulf of California, which indirectly could increase future alluvial fan aggradation.

  20. VULNERABILITY TO HURRICANE DAMAGE ON THE U.S. GULF COAST SINCE 1950

    PubMed Central

    LOGAN, JOHN R.; XU, ZENGWANG

    2015-01-01

    We study hurricane risk on the U.S. Gulf Coast during 1950–2005, estimating the wind damage and storm surge from every hurricane in this extended period. Wind damage is estimated from the known path and wind speeds of individual storms and calibrated to fit actual damage reports for a sample of Gulf Coast storms. Storm surge is estimated using the SLOSH model developed by NOAA. These models provide the first comprehensive overview of the hurricane storm hazard as it has been experienced over a fifty-six-year period. We link the estimated damage with information on the population and specific socio-demographic components of the population (by age, race, and poverty status). Results show that white, young adult, and nonpoor populations have shifted over time away from zones with higher risk of wind damage, while more vulnerable population groups–the elderly, African Americans, and poor—have moved in the opposite direction. All groups have moved away from areas with high risk of storm surge since 1970. But in this case, perhaps because living near the water is still perceived as an amenity, those at highest risk are whites, elderly, and nonpoor households. Here exposure represents a trade-off between the risk and the amenity. PMID:25926706

  1. The Kinematic and Microphysical Control of Storm Integrated Lightning Flash Extent

    NASA Technical Reports Server (NTRS)

    Carey, Lawrence; Koshak, William; Petersen, Harold; Schultz, Elise; Schultz, Chris; Matthee, Retha; Bain, Lamont

    2012-01-01

    The objective of this preliminary study is to investigate the kinematic and microphysical control of lightning properties, particularly those that may govern the production of nitrogen oxides (NOx) in thunderstorms, such as flash rate, type and extent. The mixed-phase region is where the noninductive charging (NIC) process is thought to generate most storm electrification during rebounding collisions between ice particles in the presence of supercooled water. As a result, prior radar-based studies have demonstrated that lightning flash rate is well correlated to kinematic and microphysical properties in the mixed-phase region of thunderstorms such as updraft volume, graupel mass, or ice mass flux. There is also some evidence that lightning type is associated with the convective state. Intracloud (IC) lightning tends to dominate during the updraft accumulation of precipitation ice mass while cloud-to-ground (CG) lightning is more numerous during the downdraft-driven descent of radar echo associated with graupel and hail. More study is required to generalize these relationships, especially regarding lightning type, in a wide variety of storm modes and meteorological conditions. Less is known about the co-evolving relationship between storm kinematics, microphysics, morphology and three-dimensional flash extent, despite its importance for lightning NOx production. To address this conceptual gap, the NASA MSFC Lightning Nitrogen Oxides Model (LNOM) is applied to North Alabama Lightning Mapping Array (NALMA) and Vaisala National Lightning Detection NetworkTM (NLDN) observations following ordinary convective cells through their lifecycle. LNOM provides estimates of flash type, channel length distributions, lightning segment altitude distributions (SADs) and lightning NOx production profiles. For this study, LNOM is applied in a Lagrangian sense to well isolated convective cells on 3 April 2007 (single cell and multi-cell hailstorm, non-severe multicell) and 6 July 2007

  2. Clouds and Dust Storms

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Released 2 July 2004 The atmosphere of Mars is a dynamic system. Water-ice clouds, fog, and hazes can make imaging the surface from space difficult. Dust storms can grow from local disturbances to global sizes, through which imaging is impossible. Seasonal temperature changes are the usual drivers in cloud and dust storm development and growth.

    Eons of atmospheric dust storm activity has left its mark on the surface of Mars. Dust carried aloft by the wind has settled out on every available surface; sand dunes have been created and moved by centuries of wind; and the effect of continual sand-blasting has modified many regions of Mars, creating yardangs and other unusual surface forms.

    This image was acquired during mid-spring near the North Pole. The linear water-ice clouds are now regional in extent and often interact with neighboring cloud system, as seen in this image. The bottom of the image shows how the interaction can destroy the linear nature. While the surface is still visible through most of the clouds, there is evidence that dust is also starting to enter the atmosphere.

    Image information: VIS instrument. Latitude 68.4, Longitude 180 East (180 West). 38 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with

  3. State of Arctic Sea Ice North of Svalbard during N-ICE2015

    NASA Astrophysics Data System (ADS)

    Rösel, Anja; King, Jennifer; Gerland, Sebastian

    2016-04-01

    The N-ICE2015 cruise, led by the Norwegian Polar Institute, was a drift experiment with the research vessel R/V Lance from January to June 2015, where the ship started the drift North of Svalbard at 83°14.45' N, 21°31.41' E. The drift was repeated as soon as the vessel drifted free. Altogether, 4 ice stations where installed and the complex ocean-sea ice-atmosphere system was studied with an interdisciplinary Approach. During the N-ICE2015 cruise, extensive ice thickness and snow depth measurements were performed during both, winter and summer conditions. Total ice and snow thickness was measured with ground-based and airborne electromagnetic instruments; snow depth was measured with a GPS snow depth probe. Additionally, ice mass balance and snow buoys were deployed. Snow and ice thickness measurements were performed on repeated transects to quantify the ice growth or loss as well as the snow accumulation and melt rate. Additionally, we collected independent values on surveys to determine the general ice thickness distribution. Average snow depths of 32 cm on first year ice, and 52 cm on multi-year ice were measured in January, the mean snow depth on all ice types even increased until end of March to 49 cm. The average total ice and snow thickness in winter conditions was 1.92 m. During winter we found a small growth rate on multi-year ice of about 15 cm in 2 months, due to above-average snow depths and some extraordinary storm events that came along with mild temperatures. In contrast thereto, we also were able to study new ice formation and thin ice on newly formed leads. In summer conditions an enormous melt rate, mainly driven by a warm Atlantic water inflow in the marginal ice zone, was observed during two ice stations with melt rates of up to 20 cm per 24 hours. To reinforce the local measurements around the ship and to confirm their significance on a larger scale, we compare them to airborne thickness measurements and classified SAR-satellite scenes. The

  4. Bacterial ice crystal controlling proteins.

    PubMed

    Lorv, Janet S H; Rose, David R; Glick, Bernard R

    2014-01-01

    Across the world, many ice active bacteria utilize ice crystal controlling proteins for aid in freezing tolerance at subzero temperatures. Ice crystal controlling proteins include both antifreeze and ice nucleation proteins. Antifreeze proteins minimize freezing damage by inhibiting growth of large ice crystals, while ice nucleation proteins induce formation of embryonic ice crystals. Although both protein classes have differing functions, these proteins use the same ice binding mechanisms. Rather than direct binding, it is probable that these protein classes create an ice surface prior to ice crystal surface adsorption. Function is differentiated by molecular size of the protein. This paper reviews the similar and different aspects of bacterial antifreeze and ice nucleation proteins, the role of these proteins in freezing tolerance, prevalence of these proteins in psychrophiles, and current mechanisms of protein-ice interactions.

  5. Arctic Storms and Their Influence on Surface Climate in the Chukchi-Beaufort Seas

    NASA Astrophysics Data System (ADS)

    Yang, Y.; Zhang, X.; Rinke, A.; Zhang, J.

    2017-12-01

    Increases in the frequency and intensity of Arctic storms and resulting weather hazards may endanger the offshore environment, coastal community, and energy infrastructure in the Arctic as sea ice retreats. Advancing ability to identify fine-scale variations in surface climate produced by progressively stronger storm would be extremely helpful to resources management and sustainable development for coastal community. In this study, we analyzed the storms and their impacts on surface climate over the Beaufort-Chukchi seas by employing the date sets from both the hindcast simulations of the coupled Arctic regional climate model HIRHAM-NAOSIM and the recently developed Chukchi-Beaufort High-resolution Atmospheric Reanalysis (CBHAR). Based on the characteristics of spatial pattern and temporal variability of the Arctic storm activity, we categorized storms to three groups with their different origins: the East Siberia Sea, Alaska and the central Arctic Ocean. The storms originating from the central Arctic Ocean have the strongest intensity in winter with relatively less storm number. Storms traveling from Alaska to the Beaufort Sea most frequently occurred in autumn with weaker intensity. A large portion of storms originated from the East Siberia Sea region in summer. Further statistical analysis suggests that increase in surface air temperature and wind speed could be attributed to the increased frequency of storm occurrence in autumn (September to November) along the continental shelf in the Beaufort Sea.

  6. Hurricane Irma Damage Assessment

    NASA Image and Video Library

    2017-09-12

    The Operations Support Building I (OSB I) is seen during an aerial survey of NASA's Kennedy Space Center in Florida on September 12, 2017. The roof of the building is currently undergoing repair from Hurricane Matthew. The survey was performed to identify structures and facilities that may have sustained damage from Hurricane Irma as the storm passed Kennedy on September 10, 2017. NASA closed the center ahead of the storm's onset and only a small team of specialists known as the Rideout Team was on the center as the storm approached and passed.

  7. Hubble Observes a New Saturn Storm

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This NASA Hubble Space Telescope image of the ringed planet Saturn shows a rare storm that appears as a white arrowhead-shaped feature near the planet's equator. The storm is generated by an upwelling of warmer air, similar to a terrestrial thunderhead. The east-west extent of this storm is equal to the diameter of the Earth (about 7,900 miles). Hubble provides new details about the effects of Saturn's prevailing winds on the storm. The new image shows that the storm's motion and size have changed little since its discovery in September, 1994.

    The storm was imaged with Hubble's Wide Field Planetary Camera 2 (WFPC2) in the wide field mode on December 1, 1994, when Saturn was 904 million miles from the Earth. The picture is a composite of images taken through different color filters within a 6 minute interval to create a 'true-color' rendition of the planet. The blue fringe on the right limb of the planet is an artifact of image processing used to compensate for the rotation of the planet between exposures.

    The Hubble images are sharp enough to reveal that Saturn's prevailing winds shape a dark 'wedge' that eats into the western (left) side of the bright central cloud. The planet's strongest eastward winds (clocked at 1,000 miles per hour from analysis of Voyager spacecraft images taken in 1980-81) are at the latitude of the wedge.

    To the north of this arrowhead-shaped feature, the winds decrease so that the storm center is moving eastward relative to the local flow. The clouds expanding north of the storm are swept westward by the winds at higher latitudes. The strong winds near the latitude of the dark wedge blow over the northern part of the storm, creating a secondary disturbance that generates the faint white clouds to the east (right) of the storm center.

    The storm's white clouds are ammonia ice crystals that form when an upward flow of warmer gases shoves its way through Saturn's frigid cloud tops. This current storm is larger than the white clouds

  8. Evaluation of Loss Due to Storm Surge Disasters in China Based on Econometric Model Groups.

    PubMed

    Jin, Xue; Shi, Xiaoxia; Gao, Jintian; Xu, Tongbin; Yin, Kedong

    2018-03-27

    Storm surge has become an important factor restricting the economic and social development of China's coastal regions. In order to improve the scientific judgment of future storm surge damage, a method of model groups is proposed to refine the evaluation of the loss due to storm surges. Due to the relative dispersion and poor regularity of the natural property data (login center air pressure, maximum wind speed, maximum storm water, super warning water level, etc.), storm surge disaster is divided based on eight kinds of storm surge disaster grade division methods combined with storm surge water, hypervigilance tide level, and disaster loss. The storm surge disaster loss measurement model groups consist of eight equations, and six major modules are constructed: storm surge disaster in agricultural loss, fishery loss, human resource loss, engineering facility loss, living facility loss, and direct economic loss. Finally, the support vector machine (SVM) model is used to evaluate the loss and the intra-sample prediction. It is indicated that the equations of the model groups can reflect in detail the relationship between the damage of storm surges and other related variables. Based on a comparison of the original value and the predicted value error, the model groups pass the test, providing scientific support and a decision basis for the early layout of disaster prevention and mitigation.

  9. Evaluation of Loss Due to Storm Surge Disasters in China Based on Econometric Model Groups

    PubMed Central

    Shi, Xiaoxia; Xu, Tongbin; Yin, Kedong

    2018-01-01

    Storm surge has become an important factor restricting the economic and social development of China’s coastal regions. In order to improve the scientific judgment of future storm surge damage, a method of model groups is proposed to refine the evaluation of the loss due to storm surges. Due to the relative dispersion and poor regularity of the natural property data (login center air pressure, maximum wind speed, maximum storm water, super warning water level, etc.), storm surge disaster is divided based on eight kinds of storm surge disaster grade division methods combined with storm surge water, hypervigilance tide level, and disaster loss. The storm surge disaster loss measurement model groups consist of eight equations, and six major modules are constructed: storm surge disaster in agricultural loss, fishery loss, human resource loss, engineering facility loss, living facility loss, and direct economic loss. Finally, the support vector machine (SVM) model is used to evaluate the loss and the intra-sample prediction. It is indicated that the equations of the model groups can reflect in detail the relationship between the damage of storm surges and other related variables. Based on a comparison of the original value and the predicted value error, the model groups pass the test, providing scientific support and a decision basis for the early layout of disaster prevention and mitigation. PMID:29584628

  10. Anticipating Future Sea Level Rise and Coastal Storms in New York City (Invited)

    NASA Astrophysics Data System (ADS)

    Horton, R. M.; Gornitz, V.; Bader, D.; Little, C. M.; Oppenheimer, M.; Patrick, L.; Orton, P. M.; Rosenzweig, C.; Solecki, W.

    2013-12-01

    Hurricane Sandy caused 43 fatalities in New York City and 19 billion in damages. Mayor Michael Bloomberg responded by convening the second New York City Panel on Climate Change (NPCC2), to provide up-to-date climate information for the City's Special Initiative for Rebuilding and Resiliency (SIRR). The Mayor's proposed 20 billion plan aims to strengthen the City's resilience to coastal inundation. Accordingly, the NPCC2 scientific and technical support team generated a suite of temperature, precipitation, and sea level rise and extreme event projections through the 2050s. The NPCC2 sea level rise projections include contributions from ocean thermal expansion, dynamic changes in sea surface height, mass changes in glaciers, ice caps, and ice sheets, and land water storage. Local sea level changes induced by changes in ice mass include isostatic, gravitational, and rotational effects. Results are derived from CMIP5 model-based outputs, expert judgment, and literature surveys. Sea level at the Battery, lower Manhattan, is projected to rise by 7-31 in (17.8-78.7cm) by the 2050s relative to 2000-2004 (10 to 90 percentile). As a result, flood heights above NAVD88 for the 100-year storm (stillwater plus waves) would rise from 15.0 ft (0.71 m) in the 2000s to 15.6-17.6 ft (4.8-5.4 m) by the 2050s (10-90 percentile). The annual chance of today's 100-year flood would increase from 1 to 1.4-5.0 percent by the 2050s.

  11. A-Train Observations of Deep Convective Storm Tops

    NASA Technical Reports Server (NTRS)

    Setvak, Martin; Bedka, Kristopher; Lindsey, Daniel T.; Sokol, Alois; Charvat, Zdenek; Stastka, Jindrich; Wang, Pao K.

    2013-01-01

    The paper highlights simultaneous observations of tops of deep convective clouds from several space-borne instruments including the Moderate Resolution Imaging Spectroradiometer (MODIS) of the Aqua satellite, Cloud Profiling Radar (CPR) of the CloudSat satellite, and Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) flown on the CALIPSO satellite. These satellites share very close orbits, thus together with several other satellites they are referred to as the "A-Train" constellation. Though the primary responsibility of these satellites and their instrumentation is much broader than observations of fine-scale processes atop convective storms, in this study we document how data from the A-Train can contribute to a better understanding and interpretation of various storm-top features, such as overshooting tops, cold-U/V and cold ring features with their coupled embedded warm areas, above anvil ice plumes and jumping cirrus. The relationships between MODIS multi-spectral brightness temperature difference (BTD) fields and cloud top signatures observed by the CPR and CALIOP are also examined in detail to highlight the variability in BTD signals across convective storm events.

  12. Bacterial Ice Crystal Controlling Proteins

    PubMed Central

    Lorv, Janet S. H.; Rose, David R.; Glick, Bernard R.

    2014-01-01

    Across the world, many ice active bacteria utilize ice crystal controlling proteins for aid in freezing tolerance at subzero temperatures. Ice crystal controlling proteins include both antifreeze and ice nucleation proteins. Antifreeze proteins minimize freezing damage by inhibiting growth of large ice crystals, while ice nucleation proteins induce formation of embryonic ice crystals. Although both protein classes have differing functions, these proteins use the same ice binding mechanisms. Rather than direct binding, it is probable that these protein classes create an ice surface prior to ice crystal surface adsorption. Function is differentiated by molecular size of the protein. This paper reviews the similar and different aspects of bacterial antifreeze and ice nucleation proteins, the role of these proteins in freezing tolerance, prevalence of these proteins in psychrophiles, and current mechanisms of protein-ice interactions. PMID:24579057

  13. Storm Surge Hazard in Oman Based on Cyclone Gonu and Historic Events

    NASA Astrophysics Data System (ADS)

    Blount, C.; Fritz, H. M.; Albusaidi, F. B.; Al-Harthy, A. H.

    2008-12-01

    Super Cyclone Gonu was the strongest tropical cyclone on record in the Arabian Sea. Gonu developed sustained winds reaching 240 km/h with gusts up to 315 km/h and an estimated central pressure of 920 mbar by late 4 June 2007 while centered east-southeast of Masirah Island on the coast of Oman. Gonu weakened after encountering dry air and cooler waters prior to the June 5 landfall on the eastern-most tip of Oman, becoming the strongest tropical cyclone to hit the Arabian Peninsula. Gonu dropped heavy rainfall near the eastern coastline, reaching up to 610 mm which caused wadi flooding and heavy damage. The shore parallel cyclone track resulted in coastal damage due to storm surge and storm wave impact along a 300km stretch of Omani coastline. Maximum high water marks, overland flow depths, and inundation distances were measured along the Gulf of Oman during the 1-4 August 2007 reconnaissance. The high water marks peaked at Ras al Hadd at the eastern tip of Oman exceeding 5 meters, surpassing 2004 Indian Ocean tsunami runup at every corresponding point. The cyclone caused $4 billion in damage and at least 49 deaths in the Sultanate of Oman. Prior to Gonu, only two similar cyclones struck the coast of Oman in the last 1200 years (in 865 and 1890). The 1890 storm, which remains the worst natural disaster in Oman's history, drenched the coast from Soor to Suwayq causing inland wadi flooding. Matrah and Muscat were the hardest hit areas with many ships being washed ashore and wrecked. The storm is known to have killed about 727 people and caused huge agricultural and shipping losses. Similarly, the 865 storm affected areas between Gobrah and Sohar. A high-resolution finite element ADCIRC mesh of the Arabian Sea is created to model storm surge and is coupled with STWAVE. Modeling results from Gonu are compared to measurements and used to determine the contribution from storm surge and waves. The 1890 and 865 storms are modeled with standard cyclone parameters and results

  14. Discontinuous Galerkin methods for modeling Hurricane storm surge

    NASA Astrophysics Data System (ADS)

    Dawson, Clint; Kubatko, Ethan J.; Westerink, Joannes J.; Trahan, Corey; Mirabito, Christopher; Michoski, Craig; Panda, Nishant

    2011-09-01

    Storm surge due to hurricanes and tropical storms can result in significant loss of life, property damage, and long-term damage to coastal ecosystems and landscapes. Computer modeling of storm surge can be used for two primary purposes: forecasting of surge as storms approach land for emergency planning and evacuation of coastal populations, and hindcasting of storms for determining risk, development of mitigation strategies, coastal restoration and sustainability. Storm surge is modeled using the shallow water equations, coupled with wind forcing and in some events, models of wave energy. In this paper, we will describe a depth-averaged (2D) model of circulation in spherical coordinates. Tides, riverine forcing, atmospheric pressure, bottom friction, the Coriolis effect and wind stress are all important for characterizing the inundation due to surge. The problem is inherently multi-scale, both in space and time. To model these problems accurately requires significant investments in acquiring high-fidelity input (bathymetry, bottom friction characteristics, land cover data, river flow rates, levees, raised roads and railways, etc.), accurate discretization of the computational domain using unstructured finite element meshes, and numerical methods capable of capturing highly advective flows, wetting and drying, and multi-scale features of the solution. The discontinuous Galerkin (DG) method appears to allow for many of the features necessary to accurately capture storm surge physics. The DG method was developed for modeling shocks and advection-dominated flows on unstructured finite element meshes. It easily allows for adaptivity in both mesh ( h) and polynomial order ( p) for capturing multi-scale spatial events. Mass conservative wetting and drying algorithms can be formulated within the DG method. In this paper, we will describe the application of the DG method to hurricane storm surge. We discuss the general formulation, and new features which have been added to

  15. Spring snow conditions on Arctic sea ice north of Svalbard, during the Norwegian Young Sea ICE (N-ICE2015) expedition

    NASA Astrophysics Data System (ADS)

    Gallet, Jean-Charles; Merkouriadi, Ioanna; Liston, Glen E.; Polashenski, Chris; Hudson, Stephen; Rösel, Anja; Gerland, Sebastian

    2017-10-01

    Snow is crucial over sea ice due to its conflicting role in reflecting the incoming solar energy and reducing the heat transfer so that its temporal and spatial variability are important to estimate. During the Norwegian Young Sea ICE (N-ICE2015) campaign, snow physical properties and variability were examined, and results from April until mid-June 2015 are presented here. Overall, the snow thickness was about 20 cm higher than the climatology for second-year ice, with an average of 55 ± 27 cm and 32 ± 20 cm on first-year ice. The average density was 350-400 kg m-3 in spring, with higher values in June due to melting. Due to flooding in March, larger variability in snow water equivalent was observed. However, the snow structure was quite homogeneous in spring due to warmer weather and lower amount of storms passing over the field camp. The snow was mostly consisted of wind slab, faceted, and depth hoar type crystals with occasional fresh snow. These observations highlight the more dynamic character of evolution of snow properties over sea ice compared to previous observations, due to more variable sea ice and weather conditions in this area. The snowpack was isothermal as early as 10 June with the first onset of melt clearly identified in early June. Based on our observations, we estimate than snow could be accurately represented by a three to four layers modeling approach, in order to better consider the high variability of snow thickness and density together with the rapid metamorphose of the snow in springtime.

  16. Influence of sea ice on Arctic coasts

    NASA Astrophysics Data System (ADS)

    Barnhart, K. R.; Kay, J. E.; Overeem, I.; Anderson, R. S.

    2017-12-01

    Coasts form the dynamic interface between the terrestrial and oceanic systems. In the Arctic, and in much of the world, the coast is a focal point for population, infrastructure, biodiversity, and ecosystem services. A key difference between Arctic and temperate coasts is the presence of sea ice. Changes in sea ice cover can influence the coast because (1) the length of the sea ice-free season controls the time over which nearshore water can interact with the land, and (2) the location of the sea ice edge controls the fetch over which storm winds can interact with open ocean water, which in turn governs nearshore water level and wave field. We first focus on the interaction of sea ice and ice-rich coasts. We combine satellite records of sea ice with a model for wind-driven storm surge and waves to estimate how changes in the sea ice-free season have impacted the nearshore hydrodynamic environment along Alaska's Beaufort Sea Coast for the period 1979-2012. This region has experienced some of the greatest changes in both sea ice cover and coastal erosion rates in the Arctic: the median length of the open-water season has expanded by 90 percent, while coastal erosion rates have more than doubled from 8.7 to 19 m yr-1. At Drew Point, NW winds increase shoreline water levels that control the incision of a submarine notch, the rate-limiting step of coastal retreat. The maximum water-level setup at Drew Point has increased consistently with increasing fetch. We extend our analysis to the entire Arctic using both satellite-based observations and global coupled climate model output from the Community Earth System Model Large Ensemble (CESM-LE) project. This 30-member ensemble employs a 1-degree version of the CESM-CAM5 historical forcing for the period 1920-2005, and RCP 8.5 forcing from 2005-2100. A control model run with constant pre-industrial (1850) forcing characterizes internal variability in a constant climate. Finally, we compare observations and model results to

  17. Calcification, Storm Damage and Population Resilience of Tabular Corals under Climate Change

    PubMed Central

    Madin, Joshua S.; Hughes, Terry P.; Connolly, Sean R.

    2012-01-01

    Two facets of climate change–increased tropical storm intensity and ocean acidification–are expected to detrimentally affect reef-building organisms by increasing their mortality rates and decreasing their calcification rates. Our current understanding of these effects is largely based on individual organisms’ short-term responses to experimental manipulations. However, predicting the ecologically-relevant effects of climate change requires understanding the long-term demographic implications of these organism-level responses. In this study, we investigate how storm intensity and calcification rate interact to affect population dynamics of the table coral Acropora hyacinthus, a dominant and geographically widespread ecosystem engineer on wave-exposed Indo-Pacific reefs. We develop a mechanistic framework based on the responses of individual-level demographic rates to changes in the physical and chemical environment, using a size-structured population model that enables us to rigorously incorporate uncertainty. We find that table coral populations are vulnerable to future collapse, placing in jeopardy many other reef organisms that are dependent upon them for shelter and food. Resistance to collapse is largely insensitive to predicted changes in storm intensity, but is highly dependent on the extent to which calcification influences both the mechanical properties of reef substrate and the colony-level trade-off between growth rate and skeletal strength. This study provides the first rigorous quantitative accounting of the demographic implications of the effects of ocean acidification and changes in storm intensity, and provides a template for further studies of climate-induced shifts in ecosystems, including coral reefs. PMID:23056379

  18. Development of a Near-Real Time Hail Damage Swath Identification Algorithm for Vegetation

    NASA Technical Reports Server (NTRS)

    Bell, Jordan R.; Molthan, Andrew L.; Schultz, Lori A.; McGrath, Kevin M.; Burks, Jason E.

    2015-01-01

    The Midwest is home to one of the world's largest agricultural growing regions. Between the time period of late May through early September, and with irrigation and seasonal rainfall these crops are able to reach their full maturity. Using moderate to high resolution remote sensors, the monitoring of the vegetation can be achieved using the red and near-infrared wavelengths. These wavelengths allow for the calculation of vegetation indices, such as Normalized Difference Vegetation Index (NDVI). The vegetation growth and greenness, in this region, grows and evolves uniformly as the growing season progresses. However one of the biggest threats to Midwest vegetation during the time period is thunderstorms that bring large hail and damaging winds. Hail and wind damage to crops can be very expensive to crop growers and, damage can be spread over long swaths associated with the tracks of the damaging storms. Damage to the vegetation can be apparent in remotely sensed imagery and is visible from space after storms slightly damage the crops, allowing for changes to occur slowly over time as the crops wilt or more readily apparent if the storms strip material from the crops or destroy them completely. Previous work on identifying these hail damage swaths used manual interpretation by the way of moderate and higher resolution satellite imagery. With the development of an automated and near-real time hail swath damage identification algorithm, detection can be improved, and more damage indicators be created in a faster and more efficient way. The automated detection of hail damage swaths will examine short-term, large changes in the vegetation by differencing near-real time eight day NDVI composites and comparing them to post storm imagery from the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard Terra and Aqua and Visible Infrared Imaging Radiometer Suite (VIIRS) aboard Suomi NPP. In addition land surface temperatures from these instruments will be examined as

  19. Impacts on Coralligenous Outcrop Biodiversity of a Dramatic Coastal Storm

    PubMed Central

    Teixidó, Núria; Casas, Edgar; Cebrián, Emma; Linares, Cristina; Garrabou, Joaquim

    2013-01-01

    Extreme events are rare, stochastic perturbations that can cause abrupt and dramatic ecological change within a short period of time relative to the lifespan of organisms. Studies over time provide exceptional opportunities to detect the effects of extreme climatic events and to measure their impacts by quantifying rates of change at population and community levels. In this study, we show how an extreme storm event affected the dynamics of benthic coralligenous outcrops in the NW Mediterranean Sea using data acquired before (2006–2008) and after the impact (2009–2010) at four different sites. Storms of comparable severity have been documented to occur occasionally within periods of 50 years in the Mediterranean Sea. We assessed the effects derived from the storm comparing changes in benthic community composition at sites exposed to and sheltered from this extreme event. The sites analyzed showed different damage from severe to negligible. The most exposed and impacted site experienced a major shift immediately after the storm, represented by changes in the species richness and beta diversity of benthic species. This site also showed higher compositional variability immediately after the storm and over the following year. The loss of cover of benthic species resulted between 22% and 58%. The damage across these species (e.g. calcareous algae, sponges, anthozoans, bryozoans, tunicates) was uneven, and those with fragile forms were the most impacted, showing cover losses up to 50 to 100%. Interestingly, small patches survived after the storm and began to grow slightly during the following year. In contrast, sheltered sites showed no significant changes in all the studied parameters, indicating no variations due to the storm. This study provides new insights into the responses to large and rare extreme events of Mediterranean communities with low dynamics and long-lived species, which are among the most threatened by the effects of global change. PMID:23326496

  20. Storm-induced water dynamics and thermohaline structure at the tidewater Flade Isblink Glacier outlet to the Wandel Sea (NE Greenland)

    NASA Astrophysics Data System (ADS)

    Kirillov, Sergei; Dmitrenko, Igor; Rysgaard, Søren; Babb, David; Toudal Pedersen, Leif; Ehn, Jens; Bendtsen, Jørgen; Barber, David

    2017-11-01

    In April 2015, an ice-tethered conductivity-temperature-depth (CTD) profiler and a down-looking acoustic Doppler current profiler (ADCP) were deployed from the landfast ice near the tidewater glacier terminus of the Flade Isblink Glacier in the Wandel Sea, NE Greenland. The 3-week time series showed that water dynamics and the thermohaline structure were modified considerably during a storm event on 22-24 April, when northerly winds exceeded 15 m s-1. The storm initiated downwelling-like water dynamics characterized by on-shore water transport in the surface (0-40 m) layer and compensating offshore flow at intermediate depths. After the storm, currents reversed in both layers, and the relaxation phase of downwelling lasted ˜ 4 days. Although current velocities did not exceed 5 cm s-1, the enhanced circulation during the storm caused cold turbid intrusions at 75-95 m depth, which are likely attributable to subglacial water from the Flade Isblink Ice Cap. It was also found that the semidiurnal periodicities in the temperature and salinity time series were associated with the lunar semidiurnal tidal flow. The vertical structure of tidal currents corresponded to the first baroclinic mode of the internal tide with a velocity minimum at ˜ 40 m. The tidal ellipses rotate in opposite directions above and below this depth and cause a divergence of tidal flow, which was observed to induce semidiurnal internal waves of about 3 m height at the front of the glacier terminus. Our findings provide evidence that shelf-basin interaction and tidal forcing can potentially modify coastal Wandel Sea waters even though they are isolated from the atmosphere by landfast sea ice almost year-round. The northerly storms over the continental slope cause an enhanced circulation facilitating a release of cold and turbid subglacial water to the shelf. The tidal flow may contribute to the removal of such water from the glacial terminus.

  1. The Potential of Wetlands in Reducing Storm Surge

    DTIC Science & Technology

    2010-01-01

    threatened by erosion and damage due to storm waves, wind, and surge. The risk of damage and loss of life is exacerbated by many factors, including coastal...obtained when attempting to correlate hurricane translation speed, surge hydrograph at the coast, and surge elevations inland. However, a trend was...greater surface roughness. In addition to reducing wind speeds, the models eliminate the wind stress in forested wetlands which inhibit wind from

  2. Breaking Off of Large Ice Masses From Hanging Glaciers

    NASA Astrophysics Data System (ADS)

    Pralong, A.; Funk, M.

    In order to reduce damage to settlements or other installations (roads, railway, etc) and avoid loss of life, a forecast of the final failure time of ice masses is required. At present, the most promising approach for such a prediction is based on the regularity by which certain large ice masses accelerate prior to the instant of collapse. The lim- itation of this forecast lies in short-term irregularities and in the difficulties to obtain sufficiently accurate data. A better physical understanding of the breaking off process is required, in order to improve the forecasting method. Previous analyze has shown that a stepwise crack extension coupling with a viscous flow leads to the observed acceleration function. We propose another approach by considering a local damage evolution law (gener- alized Kachanow's law) coupled with Glen's flow law to simulate the spatial evolu- tion of damage in polycristalline ice, using a finite element computational model. The present study focuses on the transition from a diffuse to a localised damage reparti- tion occurring during the damage evolution. The influence of inhomogeneous initial conditions (inhomogeneity of the mechanical properties of ice, damage inhomogene- ity) and inhomogeneous boundary conditions on the damage repartition are especially investigated.

  3. Establishing storm thresholds for the Spanish Gulf of Cádiz coast

    NASA Astrophysics Data System (ADS)

    Del Río, Laura; Plomaritis, Theocharis A.; Benavente, Javier; Valladares, María; Ribera, Pedro

    2012-03-01

    In this study critical thresholds are defined for storm impacts along the Spanish coast of the Gulf of Cádiz. The thresholds correspond to the minimum wave and tide conditions necessary to produce significant morphological changes on beaches and dunes and/or damage on coastal infrastructure or human occupation. Threshold definition was performed by computing theoretical sea-level variations during storms and comparing them with the topography of the study area and the location of infrastructure at a local level. Specifically, the elevations of the berm, the dune foot and the entrance of existing washovers were selected as threshold parameters. The total sea-level variation generated by a storm event was estimated as the sum of the tidal level, the wind-induced setup, the barometric setup and the wave-associated sea-level variation (wave setup and runup), assuming a minimum interaction between the different processes. These components were calculated on the basis of parameterisations for significant wave height (Hs) obtained for the oceanographic and environmental conditions of the Gulf of Cadiz. For this purpose real data and reanalysis time-series (HIPOCAS project) were used. Validation of the obtained results was performed for a range of coastal settings over the study area. The obtained thresholds for beach morphological changes in spring tide conditions range between a significant wave height of 1.5 m and 3.7 m depending on beach characteristics, while for dune foot erosion are around 3.3 to 3.7 m and for damage to infrastructure around 7.2 m. In case of neap tide conditions these values are increased on average by 50% over the areas with large tidal range. Furthermore, records of real damage in coastal infrastructure caused by storms were collected at a regional level from newspapers and other bibliographic sources and compared with the hydrodynamic conditions that caused the damage. These were extracted from the hindcast database of the HIPOCAS project

  4. Meteoroids and Meteor Storms: A Threat to Spacecraft

    NASA Technical Reports Server (NTRS)

    Anderson, B. Jeffrey

    1999-01-01

    Robust system design is the best protection against meteoroid damage. Impacts by small meteoroids are common on satellite surfaces, but impacts by meteoroids large enough to damage well designed systems are very rare. Estimating the threat from the normal meteoroid environment is difficult. Estimates for the occasional "storm" are even more uncertain. Common sense precautions are in order for the 1999 Leonids, but wide-spread catastrophic damage is highly unlikely. Strong Leonid showers are also expected in 2000 and 2001, but these pose much less threat than 1999.

  5. High Ice Water Content: DC-8 Aeronautics Campaign

    NASA Image and Video Library

    2015-09-10

    During the month of August, NASA’s DC-8 completed flights in Florida aimed at collecting data on high-altitude crystals for the High Ice Water Content (HIWC) mission. High ice water content can be found within large convective storms and can result in aircraft engines losing power or not functioning properly. Researchers will use the data to develop technology that can be used onboard commercial aircraft to avoid high ice water content conditions and provide a safer flight for passengers. This video gives an inside look at the HIWC mission, including research done in and around Hurricane Danny, as well as a look at the instruments being used onboard the research aircraft. Researchers and pilots onboard worked with satellite information from the ground to find regions of high ice water content within the convective systems.

  6. On the improvement of wave and storm surge hindcasts by downscaled atmospheric forcing: application to historical storms

    NASA Astrophysics Data System (ADS)

    Bresson, Émilie; Arbogast, Philippe; Aouf, Lotfi; Paradis, Denis; Kortcheva, Anna; Bogatchev, Andrey; Galabov, Vasko; Dimitrova, Marieta; Morvan, Guillaume; Ohl, Patrick; Tsenova, Boryana; Rabier, Florence

    2018-04-01

    Winds, waves and storm surges can inflict severe damage in coastal areas. In order to improve preparedness for such events, a better understanding of storm-induced coastal flooding episodes is necessary. To this end, this paper highlights the use of atmospheric downscaling techniques in order to improve wave and storm surge hindcasts. The downscaling techniques used here are based on existing European Centre for Medium-Range Weather Forecasts reanalyses (ERA-20C, ERA-40 and ERA-Interim). The results show that the 10 km resolution data forcing provided by a downscaled atmospheric model gives a better wave and surge hindcast compared to using data directly from the reanalysis. Furthermore, the analysis of the most extreme mid-latitude cyclones indicates that a four-dimensional blending approach improves the whole process, as it assimilates more small-scale processes in the initial conditions. Our approach has been successfully applied to ERA-20C (the 20th century reanalysis).

  7. Numerical simulation of pounding damage to caisson under storm surge

    NASA Astrophysics Data System (ADS)

    Yu, Chen

    2018-06-01

    In this paper, a new method for the numerical simulation of structural model is proposed, which is employed to analyze the pounding response of caissons subjected to storm surge loads. According to the new method, the simulation process is divided into two steps. Firstly, the wave propagation caused by storm surge is simulated by the wave-generating tool of Flow-3D, and recording the wave force time history on the caisson. Secondly, a refined 3D finite element model of caisson is established, and the wave force load is applied on the caisson according to the measured data in the first step for further analysis of structural pounding response using the explicit solver of LSDYNA. The whole simulation of pounding response of a caisson caused by "Sha Lijia" typhoon is carried out. The results show that the different wave direction results in the different angle caisson collisions, which will lead to different failure mode of caisson, and when the angle of 60 between wave direction and front/back wall is simulated, the numerical pounding failure mode is consistent with the situation.

  8. Dual-Polarization Radar Observations of Upward Lightning-Producing Storms

    NASA Astrophysics Data System (ADS)

    Lueck, R.; Helsdon, J. H.; Warner, T.

    2013-12-01

    The Upward Lightning Triggering Study (UPLIGHTS) seeks to determine how upward lightning, which originates from the tips of tall objects, is triggered by nearby flash activity. As a component of this study we analyze standard and dual-polarization weather radar data. The Correlation Coefficient (CC) in particular can be used to identify and quantify the melting layer associated with storms that produce upward lightning. It has been proposed that positive charge generation due to aggregate shedding at the melting layer results in a positive charge region just above the cloud base. This positive charge region may serve as a positive potential well favorable for negative leader propagation, which initiate upward positive leaders from tall objects. We characterize the horizontal coverage, thickness and height of the melting layer in addition to cloud base heights when upward lightning occurs to determine trends and possible threshold criteria relating to upward lightning production. Furthermore, we characterize storm type and morphology using relevant schemes as well as precipitation type using the Hydrometer Classification Algorithm (HCA) for upward lightning-producing storms. Ice-phase hydrometeors have been shown to be a significant factor in thunderstorm electrification. Only a small fraction of storms produce upward lightning, so null cases will be examined and compared as well.

  9. A Double-Moment Multiple-Phase Four-Class Bulk Ice Scheme. Part II: Simulations of Convective Storms in Different Large-Scale Environments and Comparisons with other Bulk Parameterizations.

    NASA Astrophysics Data System (ADS)

    Schoenberg Ferrier, Brad; Tao, Wei-Kuo; Simpson, Joanne

    1995-04-01

    Part I of this study described a detailed four-class bulk ice scheme (4ICE) developed to simulate the hydro-meteor profiles of convective and stratiform precipitation associated with mesoscale convective systems. In Part II, the 4ICE scheme is incorporated into the Goddard Cumulus Ensemble (GCE) model and applied without any `tuning' to two squall lines occurring in widely different environments, namely, one over the `Pica) ocean in the Global Atmospheric Research Program's (GARP) Atlantic Tropical Experiment (GATE) and the other over a midlatitude continent in the Cooperative Huntsville Meteorological Experiment (COHMEX). Comparisons were made both with earlier three-class ice formulations and with observations. In both cases, the 4ICE scheme interacted with the dynamics so as to resemble the observations much more closely than did the model runs with either of the three-class ice parameterizations. The following features were well simulated in the COHMEX case: a lack of stratiform rain at the surface ahead of the storm, reflectivity maxima near 60 dBZ in the vicinity of the melting level, and intense radar echoes up to near the tropopause. These features were in strong contrast with the GATE simulation, which showed extensive trailing stratiform precipitation containing a horizontally oriented radar bright band. Peak reflectivities were below the melting level, rarely exceeding 50 dBz, with a steady decrease in reflectivity with height above. With the other bulk formulations, the large stratiform rain areas were not reproduced in the GATE conditions.The microphysical structure of the model clouds in both environments were more realistic than that of earlier modeling efforts. Number concentrations of ice of O(100 L1) occurred above 6 km in the GATE model clouds as a result of ice enhancement and rime splintering in the 4ICE runs. These processes were more effective in the GATE simulation, because near the freezing level the weaker updrafts were comparable in

  10. Winter ocean-ice interactions under thin sea ice observed by IAOOS platforms during N-ICE2015: Salty surface mixed layer and active basal melt

    NASA Astrophysics Data System (ADS)

    Koenig, Zoé; Provost, Christine; Villacieros-Robineau, Nicolas; Sennéchael, Nathalie; Meyer, Amelie

    2016-10-01

    IAOOS (Ice Atmosphere Arctic Ocean Observing System) platforms, measuring physical parameters at the atmosphere-snow-ice-ocean interface deployed as part of the N-ICE2015 campaign, provide new insights on winter conditions North of Svalbard. The three regions crossed during the drifts, the Nansen Basin, the Sofia Deep, and the Svalbard northern continental slope featured distinct hydrographic properties and ice-ocean exchanges. In the Nansen Basin, the quiescent warm layer was capped by a stepped halocline (60 and 110 m) and a deep thermocline (110 m). Ice was forming and the winter mixed layer salinity was larger by ˜0.1 g/kg than previously observed. Over the Svalbard continental slope, the Atlantic Water (AW) was very shallow (20 m from the surface) and extended offshore from the 500 m isobath by a distance of about 70 km, sank along the slope (40 m from the surface) and probably shed eddies into the Sofia Deep. In the Sofia Deep, relatively warm waters of Atlantic origin extended from 90 m downward. Resulting from different pathways, these waters had a wide range of hydrographic characteristics. Sea-ice melt was widespread over the Svalbard continental slope and ocean-to-ice heat fluxes reached values of 400 W m-2 (mean of ˜150 W m-2 over the continental slope). Sea-ice melt events were associated with near 12 h fluctuations in the mixed-layer temperature and salinity corresponding to the periodicity of tides and near-inertial waves potentially generated by winter storms, large barotropic tides over steep topography, and/or geostrophic adjustments.

  11. Mapping Hurricane Inland-Storm Tides

    NASA Astrophysics Data System (ADS)

    Turco, M.; East, J. W.; Dorsey, M. E.; McGee, B. D.; McCallum, B. E.; Pearman, J. L.; Sallenger, A. H.; Holmes, R. R.; Berembrock, C. E.; Turnipseed, D. P.; Mason, R. R.

    2008-12-01

    Historically, hurricane-induced storm-tides were documented through analysis of structural or vegetative damage and high-water marks. However, these sources rarely provided quantitative information about the timing of the flooding, the sequencing of multiple paths by which the storm-surge waters arrived, or the magnitude of waves and wave run-up comprising floodwaters. In response to these deficiencies, the U.S. Geological Survey (USGS) developed and deployed an experimental mobile storm-surge network to provide detailed time-series data for selected hurricane landfalls. The USGS first deployed the network in September 2005 as Hurricane Rita approached the Texas and Louisiana coasts. The network for Rita consisted of 32 water-level and 14 barometric-pressure monitoring sites. Sensors were located at distances ranging from a few hundred feet to approximately 30 miles inland and sampled 4,000 square miles. Deployments have also occurred for Hurricanes Wilma, Gustav, and Ike. For Hurricane Gustav, more than 100 water level sensors were deployed. Analysis of the water-level data enable construction of maps depicting surge topography through time and space, essentially rendering elements of a 3-dimensional view of the storm-surge dome as it moves on- shore, as well as a map of maximum water-level elevations. The USGS also acquired LIDAR topographic data from coasts impacted by hurricanes. These data reveal extreme changes to the beaches and barrier islands that arise from hurricane storm surge and waves. By better understanding where extreme changes occur along our coasts, we will be able to position coastal structures away from hazards.

  12. Ice911 Research: Preserving and Rebuilding Multi-Year Ice

    NASA Astrophysics Data System (ADS)

    Field, L. A.; Chetty, S.; Manzara, A.

    2013-12-01

    A localized surface albedo modification technique is being developed that shows promise as a method to increase multi-year ice using reflective floating materials, chosen so as to have low subsidiary environmental impact. Multi-year ice has diminished rapidly in the Arctic over the past 3 decades (Riihela et al, Nature Climate Change, August 4, 2013) and this plays a part in the continuing rapid decrease of summer-time ice. As summer-time ice disappears, the Arctic is losing its ability to act as the earth's refrigeration system, and this has widespread climatic effects, as well as a direct effect on sea level rise, as oceans heat, and once-land-based ice melts into the sea. We have tested the albedo modification technique on a small scale over five Winter/Spring seasons at sites including California's Sierra Nevada Mountains, a Canadian lake, and a small man-made lake in Minnesota, using various materials and an evolving array of instrumentation. The materials can float and can be made to minimize effects on marine habitat and species. The instrumentation is designed to be deployed in harsh and remote locations. Localized snow and ice preservation, and reductions in water heating, have been quantified in small-scale testing. Climate modeling is underway to analyze the effects of this method of surface albedo modification in key areas on the rate of oceanic and atmospheric temperature rise. We are also evaluating the effects of snow and ice preservation for protection of infrastructure and habitat stabilization. This paper will also discuss a possible reduction of sea level rise with an eye to quantification of cost/benefit. The most recent season's experimentation on a man-made private lake in Minnesota saw further evolution in the material and deployment approach. The materials were successfully deployed to shield underlying snow and ice from melting; applications of granular materials remained stable in the face of local wind and storms. Localized albedo

  13. Tree-ring record of droughts and severe winter storms in the Ouachita Mountains since 1745

    Treesearch

    Douglas J. Stevenson; Thomas B. Lynch; James M. Guldin

    2015-01-01

    Severe winter storms cause serious damage to trees, timber, power lines, and transportation systems each year. In the Ouachita Mountains, historical records of these storms extend back only 117 years, and many of them are of low-quality or have missing data.

  14. Detection of Hail Storms in Radar Imagery Using Deep Learning

    NASA Technical Reports Server (NTRS)

    Pullman, Melinda; Gurung, Iksha; Ramachandran, Rahul; Maskey, Manil

    2017-01-01

    In 2016, hail was responsible for 3.5 billion and 23 million dollars in damage to property and crops, respectively, making it the second costliest weather phenomenon in the United States. In an effort to improve hail-prediction techniques and reduce the societal impacts associated with hail storms, we propose a deep learning technique that leverages radar imagery for automatic detection of hail storms. The technique is applied to radar imagery from 2011 to 2016 for the contiguous United States and achieved a precision of 0.848. Hail storms are primarily detected through the visual interpretation of radar imagery (Mrozet al., 2017). With radars providing data every two minutes, the detection of hail storms has become a big data task. As a result, scientists have turned to neural networks that employ computer vision to identify hail-bearing storms (Marzbanet al., 2001). In this study, we propose a deep Convolutional Neural Network (ConvNet) to understand the spatial features and patterns of radar echoes for detecting hailstorms.

  15. Space Transportation System (STS)-117 External Tank (ET)-124 Hail Damage Repair Assessment

    NASA Technical Reports Server (NTRS)

    Wilson, Timmy R.; Gentz, Steven J.; Barth, Timothy S.; Minute, Stephen A.; Flowers, Cody P.; Hamilton, David A.; Null, Cynthia H.; Schafer, Charles F.

    2009-01-01

    Severe thunderstorms with associated hail and high winds struck the STS-117 stack on February 26, 2007. Peak winds were recorded at 62 knots with hail sizes ranging from 0.3 inch to 0.8 inch in diameter. As a result of the storm, the North Carolina Foam Institute (NCFI) type 24-124 Thermal Protection System (TPS) foam on the liquid oxygen (LO2) ogive acreage incurred significant impact damage. The NCFI on the ET intertank and the liquid hydrogen (LH2) acreage sustained hail damage. The Polymer Development Laboratory (PDL)-1034 foam of the LO2 ice frost ramps (IFRs) and the Super-Lightweight Ablator (SLA) of the LO2 cable tray also suffered minor damage. NASA Engineering and Safety Center (NESC) was asked to assess the technical feasibility of repairing the ET TPS, the reasonableness of conducting those repairs with the vehicle in a vertical, integrated configuration at the Kennedy Space Center (KSC) Vehicle Assemble Building (VAB), and to address attendant human factors considerations including worker fatigue and the potential for error. The outcome of the assessment is recorded in this document.

  16. Aggregated responses of human mobility to severe winter storms: An empirical study.

    PubMed

    Wang, Yan; Wang, Qi; Taylor, John E

    2017-01-01

    Increasing frequency of extreme winter storms has resulted in costly damages and a disruptive impact on the northeastern United States. It is important to understand human mobility patterns during such storms for disaster preparation and relief operations. We investigated the effects of severe winter storms on human mobility during a 2015 blizzard using 2.69 million Twitter geolocations. We found that displacements of different trip distances and radii of gyration of individuals' mobility were perturbed significantly. We further explored the characteristics of perturbed mobility during the storm, and demonstrated that individuals' recurrent mobility does not have a higher degree of similarity with their perturbed mobility, when comparing with its similarity to non-perturbed mobility. These empirical findings on human mobility impacted by severe winter storms have potential long-term implications on emergency response planning and the development of strategies to improve resilience in severe winter storms.

  17. Spectral analysis of Uranus’ 2014 bright storm with VLT/SINFONI

    NASA Astrophysics Data System (ADS)

    Irwin, Patrick Gerard Joseph; Fletcher, Leigh N.; Read, Peter L.; Tice, Dane; de Pater, Imke; Orton, Glenn S.; Teanby, Nicholas A.; Davis, Gary R.

    2015-11-01

    Observations by amateur observers of an extremely bright storm system in Uranus’ atmosphere in September 2014 triggered an international campaign to view this feature with many telescopes across the world. Near infrared observations of the storm system were acquired in October/November 2014 with SINFONI on ESO’s Very Large Telescope (VLT) in Chile. SINFONI is an Integral Field Unit spectrometer, recording 64 × 64 pixel images with 2048 wavelengths/pixel using adaptive optics. H-band (1.43 - 1.87 µm) image 'cubes' were obtained at spatial resolutions of ˜ 0.1″ per pixel. The observations show that the centre of the storm feature shifts markedly with increasing altitude, moving in the retrograde direction and slightly poleward with increasing altitude. A faint 'tail' of more reflective material was also seen to the immediate south of the storm, which again trails in the retrograde direction. The observed spectra were analysed with the radiative transfer and retrieval code, NEMESIS (Irwin et al., 2008). We find that the storm is well-modelled using either two main cloud layers of a 5-layer aerosol model based on Sromovsky et al. (2011) or employing the simpler two-cloud-layer model of Tice et al. (2013). The deep component appears to be caused by a brightening (i.e. an increase in reflectivity) and increase in altitude of the main tropospheric cloud deck at 2 - 3 bars for both models, while the upper component of the feature appears to be due to either a thickening of the tropospheric haze of the 2-layer model or a vertical extension of the upper tropospheric cloud of the 5-layer model, assumed to be composed of methane ice and based at the assumed methane condensation level at 1.23 bar. For the 5-layer model we also found this methane ice cloud to be responsible for the faint ‘tail’ seen to the feature’s south and the brighter polar ‘hood’ seen in all observations polewards of ˜ 45°N.During the twelve days between our sets of observations the

  18. Validation of Satellite-based Rainfall Estimates for Severe Storms (Hurricanes & Tornados)

    NASA Astrophysics Data System (ADS)

    Nourozi, N.; Mahani, S.; Khanbilvardi, R.

    2005-12-01

    Severe storms such as hurricanes and tornadoes cause devastating damages, almost every year, over a large section of the United States. More accurate forecasting intensity and track of a heavy storm can help to reduce if not to prevent its damages to lives, infrastructure, and economy. Estimating accurate high resolution quantitative precipitation (QPE) from a hurricane, required to improve the forecasting and warning capabilities, is still a challenging problem because of physical characteristics of the hurricane even when it is still over the ocean. Satellite imagery seems to be a valuable source of information for estimating and forecasting heavy precipitation and also flash floods, particularly for over the oceans where the traditional ground-based gauge and radar sources cannot provide any information. To improve the capability of a rainfall retrieval algorithm for estimating QPE of severe storms, its product is evaluated in this study. High (hourly 4km x 4km) resolutions satellite infrared-based rainfall products, from the NESDIS Hydro-Estimator (HE) and also PERSIANN (Precipitation Estimation from Remotely Sensed Information using an Artificial Neural Networks) algorithms, have been tested against NEXRAD stage-IV and rain gauge observations in this project. Three strong hurricanes: Charley (category 4), Jeanne (category 3), and Ivan (category 3) that caused devastating damages over Florida in the summer 2004, have been considered to be investigated. Preliminary results demonstrate that HE tends to underestimate rain rates when NEXRAD shows heavy storm (rain rates greater than 25 mm/hr) and to overestimate when NEXRAD gives low rainfall amounts, but PERSIANN tends to underestimate rain rates, in general.

  19. European extra-tropical storm damage risk from a multi-model ensemble of dynamically-downscaled global climate models

    NASA Astrophysics Data System (ADS)

    Haylock, M. R.

    2011-10-01

    Uncertainty in the return levels of insured loss from European wind storms was quantified using storms derived from twenty-two 25 km regional climate model runs driven by either the ERA40 reanalyses or one of four coupled atmosphere-ocean global climate models. Storms were identified using a model-dependent storm severity index based on daily maximum 10 m wind speed. The wind speed from each model was calibrated to a set of 7 km historical storm wind fields using the 70 storms with the highest severity index in the period 1961-2000, employing a two stage calibration methodology. First, the 25 km daily maximum wind speed was downscaled to the 7 km historical model grid using the 7 km surface roughness length and orography, also adopting an empirical gust parameterisation. Secondly, downscaled wind gusts were statistically scaled to the historical storms to match the geographically-dependent cumulative distribution function of wind gust speed. The calibrated wind fields were run through an operational catastrophe reinsurance risk model to determine the return level of loss to a European population density-derived property portfolio. The risk model produced a 50-yr return level of loss of between 0.025% and 0.056% of the total insured value of the portfolio.

  20. Ice core evidence of rapid air temperature increases since 1960 in alpine areas of the Wind River Range, Wyoming, United States

    USGS Publications Warehouse

    Naftz, D.L.; Susong, D.D.; Schuster, P.F.; Cecil, L.D.; Dettinger, M.D.; Michel, R.L.; Kendall, C.

    2002-01-01

    Site-specific transfer functions relating delta oxygen 18 (δ18O) values in snow to the average air temperature (TA) during storms on Upper Fremont Glacier (UFG) were used in conjunction with δ18O records from UFG ice cores to reconstruct long-term trends in air temperature from alpine areas in the Wind River Range, Wyoming. Transfer functions were determined by using data collected from four seasonal snowpacks (1989-1990, 1997-1998, 1998-1999, and 1999-2000). The timing and amount of each storm was determined from an automated snowpack telemetry (SNOTEL) site, 22 km northeast of UFG, and ~1060 m in elevation below UFG. Statistically significant and positive correlations between δ18O values in the snow and TA were consistently found in three of the four seasonal snowpacks. The snowpack with the poor correlation was deposited in 1997-1998 during the 1997-1998 El Nino Southern Oscillation (ENSO). An ultrasonic snow-depth sensor installed on UFG provided valuable insights into site-specific storms and postdepositional processes that occur on UFG. The timing of storms recorded at the UFG and Cold Springs SNOTEL sites were similar; however, selected storms did not correlate. Snow from storms occurring after mid-October and followed by high winds was most susceptible to redeposition of snow. This removal of lower temperature snowfall could potentially bias the δ18O values preserved in ice core records to environmental conditions reflecting higher air temperatures and lower wind speeds. Transfer functions derived from seasonal snow cover on UFG were used to reconstruct TA values from δ18O values determined from two ice cores collected from UFG. Reconstructed air temperatures from the ice core data indicate an increase in TA of ~3.5oC from the mid-1960s to the early 1990s in the alpine areas of northwestern Wyoming. Reconstructed TA from the ice core records between the end of the Little Ice Age (LIA), mid-1800s, and the early 1990s indicate a TA increase of ~55oC. The

  1. Impact of early and late winter icing events on sub-arctic dwarf shrubs.

    PubMed

    Preece, C; Phoenix, G K

    2014-01-01

    Polar regions are predicted to undergo large increases in winter temperature and an increased frequency of freeze-thaw cycles, which can cause ice layers in the snow pack and ice encasement of vegetation. Early or late winter timing of ice encasement could, however, modify the extent of damage caused to plants. To determine impacts of the date of ice encasement, a novel field experiment was established in sub-arctic Sweden, with icing events simulated in January and March 2008 and 2009. In the subsequent summers, reproduction, phenology, growth and mortality, as well as physiological indicators of leaf damage were measured in the three dominant dwarf shrubs: Vaccinium uliginosum, Vaccinium vitis-idaea and Empetrum nigrum. It was hypothesised that January icing would be more damaging compared to March icing due to the longer duration of ice encasement. Following 2 years of icing, E. nigrum berry production was 83% lower in January-iced plots compared to controls, and V. vitis-idaea electrolyte leakage was increased by 69%. Conversely, electrolyte leakage of E. nigrum was 25% lower and leaf emergence of V. vitis-idaea commenced 11 days earlier in March-iced plots compared to control plots in 2009. There was no effect of icing on any of the other parameters measured, indicating that overall these study species have moderate to high tolerance to ice encasement. Even much longer exposure under the January icing treatment does not clearly increase damage. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.

  2. Influence of sea-ice coverage, sea-surface temperatures and latent heat release on baroclinic instability of an Arctic cyclone

    NASA Astrophysics Data System (ADS)

    Semenov, A.; Zhang, X.

    2012-12-01

    Arctic sea ice has shrunk drastically and Arctic storm activity has intensified over last decades. To improve understanding air-ice-sea interactions in the context of storm activity, we conducted a modeling study of a selected intense storm that invaded and was persistent for prolonged time in the central Arctic Ocean during March 16-22, 2011. A series of control and sensitivity simulations were carried out by employing the Weather Research and Forecasting (WRF) model, which was configured using two nested domains at a resolution of 10 km for the inner domain and 30 km for the outer domain. The control simulations well captured the cyclone genesis, regeneration, track and intensity. Diagnostic analysis and a comparison between the and sensitivity experiments suggest that the strong intensity, regeneration, and long-lasting duration of the cyclone were driven by unusually sustained baroclinic instability, which was resulted due to (1) anomalously reduced sea-ice coverage and strong advection of heat, moisture and vorticity from the North Atlantic; and (2) a release of latent heat due to condensation.

  3. Weathering a Perfect Storm from Space

    USGS Publications Warehouse

    Love, Jeffrey J.

    2016-01-01

    Extreme space-weather events — intense solar and geomagnetic storms — have occurred in the past: most recently in 1859, 1921 and 1989. So scientists expect that, sooner or later, another extremely intense spaceweather event will strike Earth again. Such storms have the potential to cause widespread interference with and damage to technological systems. A National Academy of Sciences study projects that an extreme space-weather event could end up costing the American economy more than $1 trillion. The question now is whether or not we will take the actions needed to avoid such expensive consequences. Let’s assume that we do. Below is an imagined scenario of how, sometime in the future, an extreme space-weather event might play out.

  4. Detection and Prediction of Hail Storms in Satellite Imagery using Deep Learning

    NASA Astrophysics Data System (ADS)

    Pullman, M.; Gurung, I.; Ramachandran, R.; Maskey, M.

    2017-12-01

    Natural hazards, such as damaging hail storms, dramatically disrupt both industry and agriculture, having significant socio-economic impacts in the United States. In 2016, hail was responsible for 3.5 billion and 23 million dollars in damage to property and crops, respectively, making it the second costliest 2016 weather phenomenon in the United States. The destructive nature and high cost of hail storms has driven research into the development of more accurate hail-prediction algorithms in an effort to mitigate societal impacts. Recently, weather forecasting efforts have turned to deep learning neural networks because neural networks can more effectively model complex, nonlinear, dynamical phenomenon that exist in large datasets through multiple stages of transformation and representation. In an effort to improve hail-prediction techniques, we propose a deep learning technique that leverages satellite imagery to detect and predict the occurrence of hail storms. The technique is applied to satellite imagery from 2006 to 2016 for the contiguous United States and incorporates hail reports obtained from the National Center for Environmental Information Storm Events Database for training and validation purposes. In this presentation, we describe a novel approach to predicting hail via a neural network model that creates a large labeled dataset of hail storms, the accuracy and results of the model, and its applications for improving hail forecasting.

  5. New fronts emerge in the influenza cytokine storm.

    PubMed

    Guo, Xi-Zhi J; Thomas, Paul G

    2017-07-01

    Influenza virus is a significant pathogen in humans and animals with the ability to cause extensive morbidity and mortality. Exuberant immune responses induced following infection have been described as a "cytokine storm," associated with excessive levels of proinflammatory cytokines and widespread tissue damage. Recent studies have painted a more complex picture of cytokine networks and their contributions to clinical outcomes. While many cytokines clearly inflict immunopathology, others have non-pathological delimited roles in sending alarm signals, facilitating viral clearance, and promoting tissue repair, such as the IL-33-amphiregulin axis, which plays a key role in resolving some types of lung damage. Recent literature suggests that type 2 cytokines, traditionally thought of as not involved in anti-influenza immunity, may play an important regulatory role. Here, we discuss the diverse roles played by cytokines after influenza infection and highlight new, serene features of the cytokine storm, while highlighting the specific functions of relevant cytokines that perform unique immune functions and may have applications for influenza therapy.

  6. Dust storm off Western Africa

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The impacts of Saharan dust storms reach far beyond Africa. Wind-swept deserts spill airborne dust particles out over the Atlantic Ocean where they can enter trade winds bound for Central and North America and the Caribbean. This Moderate Resolution Imaging Spectroradiometer (MODIS) image shows a dust storm casting an opaque cloud of cloud across the Canary Islands and the Atlantic Ocean west of Africa on June 30, 2002. In general it takes between 5 and 7 days for such an event to cross the Atlantic. The dust has been shown to introduce foreign bacteria and fungi that have damaged reef ecosystems and have even been hypothesized as a cause of increasing occurrences of respiratory complaints in places like Florida, where the amount of Saharan dust reaching the state has been increasing over the past 25 years.

  7. Assessing and Mitigating Hurricane Storm Surge Risk in a Changing Environment

    NASA Astrophysics Data System (ADS)

    Lin, N.; Shullman, E.; Xian, S.; Feng, K.

    2017-12-01

    Hurricanes have induced devastating storm surge flooding worldwide. The impacts of these storms may worsen in the coming decades because of rapid coastal development coupled with sea-level rise and possibly increasing storm activity due to climate change. Major advances in coastal flood risk management are urgently needed. We present an integrated dynamic risk analysis for flooding task (iDraft) framework to assess and manage coastal flood risk at the city or regional scale, considering integrated dynamic effects of storm climatology change, sea-level rise, and coastal development. We apply the framework to New York City. First, we combine climate-model projected storm surge climatology and sea-level rise with engineering- and social/economic-model projected coastal exposure and vulnerability to estimate the flood damage risk for the city over the 21st century. We derive temporally-varying risk measures such as the annual expected damage as well as temporally-integrated measures such as the present value of future losses. We also examine the individual and joint contributions to the changing risk of the three dynamic factors (i.e., sea-level rise, storm change, and coastal development). Then, we perform probabilistic cost-benefit analysis for various coastal flood risk mitigation strategies for the city. Specifically, we evaluate previously proposed mitigation measures, including elevating houses on the floodplain and constructing flood barriers at the coast, by comparing their estimated cost and probability distribution of the benefit (i.e., present value of avoided future losses). We also propose new design strategies, including optimal design (e.g., optimal house elevation) and adaptive design (e.g., flood protection levels that are designed to be modified over time in a dynamic and uncertain environment).

  8. Landslides, Floods, and Marine Effects of the Storm of January 3-5, 1982, in the San Francisco Bay Region, California

    USGS Publications Warehouse

    Ellen, Stephen D.; Wieczorek, Gerald F.

    1988-01-01

    A catastrophic rainstorm in central California on January 3-5,1982, dropped as much as half the mean annual precipitation within a period of about 32 hours, triggering landslides and floods throughout 10 counties in the vicinity of the San Francisco Bay. More than 18,000 of the slides induced by the storm transformed into debris flows that swept down hillslopes or drainages with little warning. Debris flows damaged at least 100 homes, killed 14 residents, and carried a 15th victim into a creek. Shortly after rainfall ceased, more than 459,000 m3 of earth and rock slid from a mountainside above the community of Love Creek in Santa Cruz County, burying 10 people in their homes. Throughout the bay region, thousands of people vacated homes in hazardous areas, entire communities were isolated as roads were blocked, public water systems were destroyed, and power and telephone services were disrupted. Altogether, the storm damaged 6,300 homes, 1,500 businesses, and tens of kilometers of roads, bridges, and communication lines. Preliminary rough estimates of total storm damage, compiled for emergency purposes within 2 weeks of the storm, exceeded $280 million. Carefully documented direct costs from landslides exceeded $66 million; total costs from landslides certainly were greater and probably constituted a much larger proportion of the total storm damage than suggested by these disparate figures. Landslides accounted for 25 of the 33 deaths attributed to the storm.

  9. September 2013 Storm and Flood Assessment Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walterscheid, J. C.

    2015-12-21

    Between September 10 and 17, 2013, New Mexico and Colorado received a historically large amount of precipitation (Figure 1). This report assesses the damage caused by flooding along with estimated costs to repair the damage at Los Alamos National Laboratory (the Laboratory) on the Pajarito Plateau. Los Alamos County, New Mexico, received between 200% and 600% of the normal precipitation for this time period (Figure 2), and the Laboratory received approximately 450% percent of its average precipitation for September (Figure 3). As a result, the Laboratory was inundated with rain, including the extremely large, greater-than-1000-yr return period event that occurredmore » between September 12 and 13 (Table 1). With saturated antecedent soil conditions from the September 10 storm, when the September 12 to September 13 storm hit, the flooding was disastrous to the Laboratory’s environmental infrastructure, including access roads, gage stations, watershed controls, control measures installed under the National Pollutant Discharge Elimination System Permit (hereafter, the Individual Permit), and groundwater monitoring wells (Figures 4 through 21). From September 16 to October 1, 2013, the Laboratory completed field assessments of environmental infrastructure and generated descriptions and estimates of the damage, which are presented in spreadsheets in Attachments 1 to 4 of this report. Section 2 of this report contains damage assessments by watershed, including access roads, gage stations, watershed controls, and control measures installed under the Individual Permit. Section 3 contains damage assessments of monitoring wells by the groundwater monitoring groups as established in the Interim Facility-Wide Groundwater Monitoring Plan for Monitoring Year 2014. Section 4 addresses damage and loss of automated samplers. Section 5 addresses sediment sampling needs, and Section 6 is the summary of estimated recovery costs from the significant rain and flooding during

  10. Influence of damage and basal friction on the grounding line dynamics

    NASA Astrophysics Data System (ADS)

    Brondex, Julien; Gagliardini, Olivier; Gillet-Chaulet, Fabien; Durand, Gael

    2016-04-01

    The understanding of grounding line dynamics is a major issue in the prediction of future sea level rise due to ice released from polar ice sheets into the ocean. This dynamics is complex and significantly affected by several physical processes not always adequately accounted for in current ice flow models. Among those processes, our study focuses on ice damage and evolving basal friction conditions. Softening of the ice due to damaging processes is known to have a strong impact on its rheology by reducing its viscosity and therefore promoting flow acceleration. Damage creates where shear stresses are high enough which is usually the case at shear margins and in the vicinity of pinning points in contact with ice-shelves. Those areas are known to have a buttressing effect on ice shelves contributing to stabilize the grounding line. We aim at evaluating the extent to which this stabilizing effect is hampered by damaging processes. Several friction laws have been proposed by various author to model the contact between grounded-ice and bedrock. Among them, Coulomb-type friction laws enable to account for reduced friction related to low effective pressure (the ice pressure minus the water pressure). Combining such a friction law to a parametrization of the effective pressure accounting for the fact that the area upstream the grounded line is connected to the ocean, is expected to have a significant impact on the grounding line dynamics. Using the finite-element code Elmer/Ice within which both the Coulomb-type friction law, the effective pressure parametrization and the damage model have been implemented, the goal of this study is to investigate the sensitivity of the grounding line dynamics to damage and to an evolving basal friction. The relative importance between those two processes on the grounding line dynamics is addressed as well.

  11. Lightning location relative to storm structure in a supercell storm and a multicell storm

    NASA Technical Reports Server (NTRS)

    Ray, Peter S.; Macgorman, Donald R.; Rust, W. David; Taylor, William L.; Rasmussen, Lisa Walters

    1987-01-01

    Relationships between lightning location and storm structure are examined for one radar volume scan in each of two mature, severe storms. One of these storms had characteristics of a supercell storm, and the other was a multicell storm. Data were analyzed from dual-Doppler radar and dual-VHF lightning-mapping systems. The distributions of VHF impulse sources were compared with radar reflectivity, vertical air velocity, and their respective gradients. In the supercell storm, lightning tended to occur along streamlines above and down-shear of the updraft and reflectivity cores; VHF impulse sources were most concentrated in reflectivities between 30 and 40 dBZ and were distributed uniformly with respect to updraft speed. In the multicell storm, on the other hand, lightning tended to coincide with the vertical reflectivity and updraft core and with the diverging streamlines near the top of the storm. The results suggest that the location of lightning in these severe storms were most directly associated with the wind field structure relative to updraft and reflectivity cores. Since the magnitude and vertical shear of the environmental wind are fundamental in determining the reflectivity and wind field structure of a storm, it is suggested that these environmental parameters are also fundamental in determining lightning location.

  12. Impacts of a Destructive and Well-Observed Cross-Country Winter Storm.

    NASA Astrophysics Data System (ADS)

    Martner, Brooks E.; Rauber, Robert M.; Ramamurthy, Mohan K.; Rasmussen, Roy M.; Prater, Erwin T.

    1992-02-01

    A winter storm that crossed the continental United States in mid-February 1990 produced hazardous weather across a vast area of the nation. A wide range of severe weather was reported, including heavy snowfall; freezing rain and drizzle; thunderstorms with destructive winds, lightning, large hail, and tornadoes; prolonged heavy rain with subsequent flooding; frost damage to citrus orchards; and sustained destructive winds not associated with thunderstorms. Low-end preliminary estimates of impacts included 9 deaths, 27 injuries, and $120 million of property damage. At least 35 states and southeastern Canada were adversely affected. The storm occurred during the field operations of four independent atmospheric research projects that obtained special, detailed observations of it from the Rocky Mountains to the eastern great Lakes.

  13. Growth ring response in shortleaf pine following glaze icing conditions in western Arkansas and eastern Oklahoma

    Treesearch

    Douglas J. Stevenson; Thomas B. Lynch; James M. Guldin

    2013-01-01

    Width reduction in growth rings in shortleaf pine (Pinus echinata Mill.) following glaze ice conditions produces a characteristic pattern dependent on live-crown ratio and extent of crown loss. Ring widths of 133 trees for 3 years preceding and 7 years following the December 2000 ice storm (Bragg and others 2002) in western Arkansas and eastern...

  14. A High Density Storm Surge Monitoring Network: Evaluating the Ability of Wetland Vegetation to Reduce Storm Surge

    NASA Astrophysics Data System (ADS)

    Lawler, S.; Denton, M.; Ferreira, C.

    2013-12-01

    Recent tropical storm activity in the Chesapeake Bay and a potential increase in the predicted frequency and magnitude of weather systems have drawn increased attention to the need for improved tools for monitoring, modeling and predicting the magnitude of storm surge, coastal flooding and the respective damage to infrastructure and wetland ecosystems. Among other forms of flood protection, it is believed that coastal wetlands and vegetation can act as a natural barrier that slows hurricane flooding, helping to reduce the impact of storm surge. However, quantifying the relationship between the physical process of storm surge and its attenuation by wetland vegetation is an active area of research and the deployment of in-situ measuring devices is crucial to data collection efforts in this field. The United States Geological Survey (USGS) mobile storm-surge network has already successfully provided a framework for evaluating hurricane induced storm surge water levels on a regional scale through the use of in-situ devices installed in areas affected by storm surge during extreme events. Based on the success of the USGS efforts, in this study we adapted the monitoring network to cover relatively small areas of wetlands and coastal vegetation with an increased density of sensors. Groups of 6 to 10 water level sensors were installed in sites strategically selected in three locations on the Virginia coast of the lower Chesapeake Bay area to monitor different types of vegetation and the resulting hydrodynamic patterns (open coast and inland waters). Each group of sensors recorded time series data of water levels for both astronomical tide circulation and meteorological induced surge. Field campaigns were carried out to survey characteristics of vegetation contributing to flow resistance (i.e. height, diameter and stem density) and mapped using high precision GPS. A geodatabase containing data from field campaigns will support the development and calibration of

  15. Two new ways of mapping sea ice thickness using ocean waves

    NASA Astrophysics Data System (ADS)

    Wadhams, P.

    2010-12-01

    TWO NEW METHODS OF MAPPING SEA ICE THICKNESS USING OCEAN WAVES. P. Wadhams (1,2), Martin Doble (1,2) and F. Parmiggiani (3) (1) Dept. of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, UK. (2) Laboratoire d’Océanographie de Villefranche, Université Pierre et Marie Curie, 06234 Villefranche-sur-Mer, France (2) ISAC-CNR, Bologna, Italy Two new methods of mapping ice thickness have been recently developed and tested, both making use of the dispersion relation of ocean waves in ice of radically different types. In frazil-pancake ice, a young ice type in which cakes less than 5 m across float in a suspension of individual ice crystals, the propagation of waves has been successfully modelled by treating the ice layer as a highly viscous fluid. The model predicts a shortening of wavelengths within the ice. Two-dimensional Fourier analysis of successive SAR subscenes to track the directional spectrum of a wave field as it enters an ice edge shows that waves do indeed shorten within the ice, and the change has been successfully used to predict the thickness of the frazil-pancake layer. Concurrent shipborne sampling in the Antarctic has shown that the method is accurate, and we now propose its use throughout the important frazil-pancake regimes in the world ocean (Antarctic circumpolar ice edge zone, Greenland Sea, Bering Sea and others). A radically different type of dispersion occurs when ocean waves enter the continuous icefields of the central Arctic, when they couple with the elastic ice cover to propagate as a flexural-gravity wave. A two-axis tiltmeter array has been used to measure the resulting change in the dispersion relation for long ocean swell (15-30 s) originating from storms in the Greenland Sea. The dispersion relation is slightly different from swell in the open ocean, so if two such arrays are placed a substantial distance (100s of km) apart and used to observe the changing wave period of arrivals from a given

  16. Assessing Hurricane Katrina Damage to the Mississippi Gulf Coast Using IKONOS Imagery

    NASA Technical Reports Server (NTRS)

    Spruce, Joseph; McKellip, Rodney

    2006-01-01

    Hurricane Katrina hit southeastern Louisiana and the Mississippi Gulf Coast as a Category 3 hurricane with storm surges as high as 9 m. Katrina devastated several coastal towns by destroying or severely damaging hundreds of homes. Several Federal agencies are assessing storm impacts and assisting recovery using high-spatial-resolution remotely sensed data from satellite and airborne platforms. High-quality IKONOS satellite imagery was collected on September 2, 2005, over southwestern Mississippi. Pan-sharpened IKONOS multispectral data and ERDAS IMAGINE software were used to classify post-storm land cover for coastal Hancock and Harrison Counties. This classification included a storm debris category of interest to FEMA for disaster mitigation. The classification resulted from combining traditional unsupervised and supervised classification techniques. Higher spatial resolution aerial and handheld photography were used as reference data. Results suggest that traditional classification techniques and IKONOS data can map wood-dominated storm debris in open areas if relevant training areas are used to develop the unsupervised classification signatures. IKONOS data also enabled other hurricane damage assessment, such as flood-deposited mud on lawns and vegetation foliage loss from the storm. IKONOS data has also aided regional Katrina vegetation damage surveys from multidate Land Remote Sensing Satellite and Moderate Resolution Imaging Spectroradiometer data.

  17. Barrier Island Restoration for Storm Damage Reduction: Willapa Bay, Washington, USA

    DTIC Science & Technology

    2010-07-01

    Harbor Coastal Data Information Program ( CDIP ) 036 buoy located 13 miles northwest of the Entrance are utilized to specify the offshore wave boundary...condition. For the case of the March 3, 1999 storm, there is a gap in the CDIP buoy data; therefore the spectra from the National Data Buoy Center

  18. 1954 hurricane damage on Penobscot Experimental Forest

    Treesearch

    T. J. Grisez

    1954-01-01

    The two hurricanes "Carol" and "Edna" that struck inland over New England this summer caused some timber losses. But the damage was neither so extensive nor so severe as the damage done by the hurricane of 1938 and the storms of 1950.

  19. Ice rafting of fine-grained sediment, a sorting and transport mechanism, Beaufort Sea, Alaska.

    USGS Publications Warehouse

    Barnes, P.W.; Reimnitz, E.; Fox, D.

    1982-01-01

    The presence of turbid, sediment-rich fast ice in the Arctic is a major factor affecting transport of fine-grained sediment. Observers have documented the widespread, sporadic occurrence of sediment- rich fast ice in both the Beaufort and Bering Seas. The occurrence of sediment in only the upper part of the seasonal fast ice indicates that sediment-rich ice forms early during ice growth. The most likely mechanism requires resuspension of nearshore bottom sediment during storms, accompanied by formation of frazil ice and subsequent lateral advection before the fast ice is stabilized. We estimate that the sediment incorporated in the Beaufort ice canopy formed a significant proportion of the seasonal influx of terrigenous fine-grained sediment. The dominance of fine-grained sediment suggests that in the Arctic and sub-Arctic these size fractions may be ice rafted in greater volumes than the coarse fraction of traditionally recognized ice-rafted sediment. -from Authors

  20. Short-term sea ice forecasts with the RASM-ESRL coupled model: A testbed for improving simulations of ocean-ice-atmosphere interactions in the marginal ice zone

    NASA Astrophysics Data System (ADS)

    Solomon, A.; Cox, C. J.; Hughes, M.; Intrieri, J. M.; Persson, O. P. G.

    2015-12-01

    The dramatic decrease of Arctic sea-ice has led to a new Arctic sea-ice paradigm and to increased commercial activity in the Arctic Ocean. NOAA's mission to provide accurate and timely sea-ice forecasts, as explicitly outlined in the National Ocean Policy and the U.S. National Strategy for the Arctic Region, needs significant improvement across a range of time scales to improve safety for human activity. Unfortunately, the sea-ice evolution in the new Arctic involves the interaction of numerous physical processes in the atmosphere, ice, and ocean, some of which are not yet understood. These include atmospheric forcing of sea-ice movement through stress and stress deformation; atmospheric forcing of sea-ice melt and formation through energy fluxes; and ocean forcing of the atmosphere through new regions of seasonal heat release. Many of these interactions involve emerging complex processes that first need to be understood and then incorporated into forecast models in order to realize the goal of useful sea-ice forecasting. The underlying hypothesis for this study is that errors in simulations of "fast" atmospheric processes significantly impact the forecast of seasonal sea-ice retreat in summer and its advance in autumn in the marginal ice zone (MIZ). We therefore focus on short-term (0-20 day) ice-floe movement, the freeze-up and melt-back processes in the MIZ, and the role of storms in modulating stress and heat fluxes. This study uses a coupled ocean-atmosphere-seaice forecast model as a testbed to investigate; whether ocean-sea ice-atmosphere coupling improves forecasts on subseasonal time scales, where systematic biases develop due to inadequate parameterizations (focusing on mixed-phase clouds and surface fluxes), how increased atmospheric resolution of synoptic features improves the forecasts, and how initialization of sea ice area and thickness and snow depth impacts the skill of the forecasts. Simulations are validated with measurements at pan-Arctic land

  1. Damage from wind and other causes in mixed white fir-red fir stands adjacent to clearcuttings

    Treesearch

    Donald T. Gordon

    1973-01-01

    Damage to timber surrounding clearcuttings and in one light selection cutting in mixed white fir-red fir stands was monitored for 6 years in northeastern California. In some years, bark beetles apparently killed more trees than did wind damage, but in two of the study years, severe wind storms caused much damage. One storm produced mainly break-age, apparently...

  2. Stochastic Modeling of Empirical Storm Loss in Germany

    NASA Astrophysics Data System (ADS)

    Prahl, B. F.; Rybski, D.; Kropp, J. P.; Burghoff, O.; Held, H.

    2012-04-01

    Based on German insurance loss data for residential property we derive storm damage functions that relate daily loss with maximum gust wind speed. Over a wide range of loss, steep power law relationships are found with spatially varying exponents ranging between approximately 8 and 12. Global correlations between parameters and socio-demographic data are employed to reduce the number of local parameters to 3. We apply a Monte Carlo approach to calculate German loss estimates including confidence bounds in daily and annual resolution. Our model reproduces the annual progression of winter storm losses and enables to estimate daily losses over a wide range of magnitude.

  3. Impacts of land cover changes on hurricane storm surge in the lower Chesapeake Bay

    NASA Astrophysics Data System (ADS)

    Denton, M.; Lawler, S.; Ferreira, C.

    2013-12-01

    with a geospatial inventory of critical infrastructure assets to evaluate the potential for storm damage associated with each level of wetland reduction. This poster will present quantitative analyses of the benefits and losses regarding storm surge inundation and damage from land cover changes in the study region.

  4. Contribution of insurance data to cost assessment of coastal flood damage to residential buildings: insights gained from Johanna (2008) and Xynthia (2010) storm events

    NASA Astrophysics Data System (ADS)

    André, C.; Monfort, D.; Bouzit, M.; Vinchon, C.

    2013-08-01

    There are a number of methodological issues involved in assessing damage caused by natural hazards. The first is the lack of data, due to the rarity of events and the widely different circumstances in which they occur. Thus, historical data, albeit scarce, should not be neglected when seeking to build ex-ante risk management models. This article analyses the input of insurance data for two recent severe coastal storm events, to examine what causal relationships may exist between hazard characteristics and the level of damage incurred by residential buildings. To do so, data was collected at two levels: from lists of about 4000 damage records, 358 loss adjustment reports were consulted, constituting a detailed damage database. The results show that for flooded residential buildings, over 75% of reconstruction costs are associated with interior elements, with damage to structural components remaining very localised and negligible. Further analysis revealed a high scatter between costs and water depth, suggesting that uncertainty remains high in drawing up damage functions with insurance data alone. Due to the paper format of the loss adjustment reports, and the lack of harmonisation between their contents, the collection stage called for a considerable amount of work. For future events, establishing a standardised process for archiving damage information could significantly contribute to the production of such empirical damage functions. Nevertheless, complementary sources of data on hazards and asset vulnerability parameters will definitely still be necessary for damage modelling; multivariate approaches, crossing insurance data with external material, should also be investigated more deeply.

  5. Contribution of insurance data to cost assessment of coastal flood damage to residential buildings: insights gained from Johanna (2008) and Xynthia (2010) storm events

    NASA Astrophysics Data System (ADS)

    André, C.; Monfort, D.; Bouzit, M.; Vinchon, C.

    2013-03-01

    There are a number of methodological issues involved in assessing damage caused by natural hazards. The first is the lack of data, due to the rarity of events and the widely different circumstances in which they occur. Thus, historical data, albeit scarce, should not be neglected when seeking to build ex-ante risk management models. This article analyses the input of insurance data for two recent severe coastal storm events, to examine what causal relationships may exist between hazard characteristics and the level of damage incurred by residential buildings. To do so, data was collected at two levels: from lists of about 4000 damage records, 358 loss adjustment reports were consulted, constituting a detailed damage database. The results show that for flooded residential buildings, over 75% of reconstruction costs are associated with interior elements, damage to structural components remaining very localised and negligible. Further analysis revealed a high scatter between costs and water depth, suggesting that uncertainty remains high in drawing up damage functions with insurance data alone. Due to the paper format of the loss adjustment reports and the lack of harmonisation between their contents, the collection stage called for a considerable amount of work. For future events, establishing a standardised process for archiving damage information could significantly contribute to the production of such empirical damage functions. Nevertheless, complementary sources of data on hazards and asset vulnerability parameters, will definitely still be necessary for damage modelling and multivariate approaches, crossing insurance data with external material, should also be deeper investigated.

  6. Satellite and aircraft passive microwave observations during the Marginal Ice Zone Experiment in 1984

    NASA Technical Reports Server (NTRS)

    Gloersen, Per; Campbell, William J.

    1988-01-01

    This paper compares satellite data on the marginal ice zone obtained during the Marginal Ice Zone Experiment in 1984 by Nimbus 7 with simultaneous mesoscale aircraft (in particular, the NASA CV-990 airborne laboratory) and surface observations. Total and multiyear sea ice concentrations calculated from the airborne multichannel microwave radiometer were found to agree well with similar calculations using the Nimbus SMMR data. The temperature dependence of the determination of multiyear sea-ice concentration near the melting point was found to be the same for both airborne and satellite data. It was found that low total ice concentrations and open-water storm effects near the ice edge could be reliably distinguished by means of spectral gradient ratio, using data from the 0.33-cm and the 1.55-cm radiometers.

  7. ARkStorm: A West Coast Storm Scenario

    NASA Astrophysics Data System (ADS)

    Cox, D. A.; Jones, L. M.; Ralph, F. M.; Dettinger, M. D.; Porter, K.; Perry, S. C.; Barnard, P. L.; Hoover, D.; Wills, C. J.; Stock, J. D.; Croyle, W.; Ferris, J. C.; Plumlee, G. S.; Alpers, C. N.; Miller, M.; Wein, A.; Rose, A.; Done, J.; Topping, K.

    2009-12-01

    The United Stated Geological Survey (USGS) Multi-Hazards Demonstration Project (MHDP) is preparing a new emergency-preparedness scenario, called ARkStorm, to address massive U.S. West Coast storms analogous to those that devastated California in 1861-62. Storms of this magnitude are projected to become more frequent and intense as a result of climate change. The MHDP has assembled experts from the National Oceanic and Atmospheric Administration (NOAA), USGS, Scripps Institute of Oceanography, the State of California, California Geological Survey, the University of Colorado, the National Center for Atmospheric Research, and other organizations to design the large, but scientifically plausible, hypothetical scenario storm that would provide emergency responders, resource managers, and the public a realistic assessment of what is historically possible. The ARkStorm patterns the 1861 - 1862 historical events but uses modern modeling methods and data from large storms in 1969 and 1986. The ARkStorm draws heat and moisture from the tropical Pacific, forming Atmospheric Rivers (ARs) that grow in size, gain speed, and with a ferocity equal to hurricanes, slam into the U.S. West Coast for several weeks. Using sophisticated weather models and expert analysis, precipitation, snowlines, wind, and pressure data the modelers will characterize the resulting floods, landslides, and coastal erosion and inundation. These hazards will then be translated into the infrastructural, environmental, agricultural, social, and economic impacts. Consideration will be given to catastrophic disruptions to water supplies resulting from impacts on groundwater pumping, seawater intrusion, water supply degradation, and land subsidence. Possible climate-change forces that could exacerbate the problems will also be evaluated. In contrast to the recent U.S. East and Gulf Coast hurricanes, only recently have scientific and technological advances documented the ferocity and strength of possible future

  8. Microphysics, Meteorology, Microwave and Modeling of Mediterranean Storms: The M(sup 5) Problem

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.; Fiorino, Steven; Mugnai, Alberto; Panegrossi, Giulia; Tripoli, Gregory; Starr, David (Technical Monitor)

    2001-01-01

    Comprehensive understanding of the microphysical nature of Mediterranean storms requires a combination of in situ meteorological data analysis and radar-passive microwave data analysis, effectively integrated with numerical modeling studies at various scales, particularly from synoptic scale down to mesoscale. The microphysical properties of and their controls on severe storms are intrinsically related to meteorological processes under which storms have evolved, processes which eventually select and control the dominant microphysical properties themselves. Insofar as hazardous Mediterranean storms, highlighted by the September 25-28/1992 Genova flood event, the October 5-7/1998 Friuli flood event, and the October 13-15/2000 Piemonte flood event (all taking place in northern Italy), developing a comprehensive microphysical interpretation requires an understanding of the multiple phases of storm evolution and the heterogeneous nature of precipitation fields within the storm domains. This involves convective development, stratiform transition and decay, orographic lifting, and sloped frontal lifting proc esses. This also involves vertical motions and thermodynamical instabilities governing physical processes that determine details of the liquid/ice water contents, size distributions, and fall rates of the various modes of hydrometeors found within the storm environments. This paper presents detailed 4-dimensional analyses of the microphysical elements of the three severe Mediterranean storms identified above, investigated with the aid of SSM/I and TRMM satellite measurements (and other remote sensing measurements). The analyses are guided by nonhydrostatic mesoscale model simulations at high resolution of the intense rain producing portions of the storm environments. The results emphasize how meteorological controls taking place at the large scale, coupled with localized terrain controls, ultimately determine the most salient features of the bulk microphysical

  9. A Study of Ionospheric Storm Association with Intense Geomagnetic Storms

    NASA Astrophysics Data System (ADS)

    Okpala, K. C.

    2017-12-01

    The bulk association between ionospheric storms and geomagnetic storms have been studied. Hemispheric features of seasonal variation of ionospheric storms in the mid-latitude were also investigated. 188 intense geomagnetic storms (Dst ≤100nT) that occurred during solar cycle 22 and 23 were considered, of which 143 were observed to be identified with an ionospheric storm. Individual ionospheric storms were identified as maximum deviations of the F2 layer peak electron density from quiet time values. Only ionospheric storms that could clearly be associated with the peak of a geomagnetic storms were considered. Data from two mid-latitude ionosonde stations; one in the northern hemisphere (i.e Moscow) and the other in the southern hemisphere (Grahamstown) were used to study ionospheric condition at the time of the individual geomagnetic storms. Results show hemispheric and latitudinal differences in the intensity and nature of ionospheric storms association with different types of geomagnetic storms. These results are significant for our present understanding of the mechanisms which drive the changes in electron density during different types of ionospheric storms.

  10. Wind damage effects of Hurricane Andrew on mangrove communities along the southwest coast of Florida, USA

    USGS Publications Warehouse

    Doyle, T.W.; Smith, T. J.; Robblee, M.B.

    1995-01-01

    On August 24, 1992, Hurricane Andrew downed and defoliated an extensive swath of mangrove trees across the lower Florida peninsula. Permanent field sites were established to assess the extent of forest damage and to monitor the rate and process of forest recovery. Canopy trees suffered the highest mortality particularly for sites within and immediately north of the storm's eyewall. The type and extent of site damage, windthrow, branch loss, and defoliation generally decreased exponentially with increasing distance from the storm track. Forest damage was greater for sites in the storm's right quadrant than in the left quadrant tor the same given distance from the storm center. Stand exposure, both horizontally and vertically, increased the susceptibility and probability of forest damage and accounted for much of the local variability. Slight species differences were found. Laguncularia racemosa exceeded Avicennia germinans and Rhizophora mangle in damage tendency under similar wind conditions. Azimuths of downed trees were strongly correlated with maximum wind speed and vector based on a hurricane simulation of the storm. Lateral branch loss and leaf defoliation on sites without windthrow damage indicated a degree of crown thinning and light penetration equivalent to treefall gaps under normally intact forest conditions. Mangrove species and forests are susceptible to catastrophic disturbance by hurricanes; the impacts of which are significant to changes in forest structure and function.

  11. Scour damage to Vermont bridges and scour monitoring.

    DOT National Transportation Integrated Search

    2015-06-01

    Scour is by far the primary cause of bridge failures in the United States. Regionally, the : vulnerability of bridges to flood damage became evident from the damage seen to Vermont : bridges in the 2011 Tropical Storm Irene. Successfully mitigating s...

  12. Spectral analysis of Uranus' 2014 bright storm with VLT/SINFONI

    NASA Astrophysics Data System (ADS)

    Irwin, P. G. J.; Fletcher, L. N.; Read, P. L.; Tice, D.; de Pater, I.; Orton, G. S.; Teanby, N. A.; Davis, G. R.

    2016-01-01

    An extremely bright storm system observed in Uranus' atmosphere by amateur observers in September 2014 triggered an international campaign to observe this feature with many telescopes across the world. Observations of the storm system in the near infrared were acquired in October and November 2014 with SINFONI on ESO's Very Large Telescope (VLT) in Chile. SINFONI is an Integral Field Unit spectrometer returning 64 × 64 pixel images with 2048 wavelengths and uses adaptive optics. Image cubes in the H-band (1.43-1.87 μm) were obtained at spatial resolutions of ∼ 0.1″ per pixel. The observations show that the centre of the storm feature shifts markedly with increasing altitude, moving in the retrograde direction and slightly poleward with increasing altitude. We also see a faint 'tail' of more reflective material to the immediate south of the storm, which again trails in the retrograde direction. The observed spectra were analysed with the radiative transfer and retrieval code, NEMESIS (Irwin et al. [2008]. J. Quant. Spec. Radiat. Transfer, 109, 1136-1150). We find that the storm is well-modelled using either two main cloud layers of a 5-layer aerosol model based on Sromovsky et al. (Sromovsky et al. [2011]. Icarus, 215, 292-312) or by the simpler two-cloud-layer model of Tice et al. (Tice et al. [2013]. Icarus, 223, 684-698). The deep component appears to be due to a brightening (i.e. an increase in reflectivity) and increase in altitude of the main tropospheric cloud deck at 2-3 bars for both models, while the upper component of the feature was modelled as being due to either a thickening of the tropospheric haze of the 2-layer model or a vertical extension of the upper tropospheric cloud of the 5-layer model, assumed to be composed of methane ice and based at the methane condensation level of our assumed vertical temperature and abundance profile at 1.23 bar. We also found this methane ice cloud to be responsible for the faint 'tail' seen to the feature

  13. Passive microwave structure of severe tornadic storms on 16 November 1987

    NASA Technical Reports Server (NTRS)

    Heymsfield, Gerald M.; Fulton, Richard

    1994-01-01

    Passive microwave observations using the Special Sensor Microwave/Imager (SSM/I) are presented for severe tornadic storms in the lower midwestern United States on 16 November 1987. These measurements are compared with Geostationary Operational Environmental Satellite infrared (IR) measurements for the same case. The IR observations had a classic 'V' cold feature commonly associated with severe Midwest thunderstorms. The minimum microwave brightness temperatures at 86 GHz, which primarily respond to ice scattering by larger ice particles, were located in the convective region and the warm interior of the anvil top, between the arms of the IR V feature. The interior warm region was the only portion of the entire anvil region that had high 86-GHz polarization difference temperatures. Microphysical implications of these multispectral observations are discussed. The observations suggest that there are large variations of ice microphysical characteristics spatially and vertically in the anvil region. These observations are discussed in the context of previous dynamical and microphysical hypotheses on the IR V feature.

  14. Dynamic Crush Characterization of Ice

    NASA Technical Reports Server (NTRS)

    Fasanella, Edwin L.; Boitnott, Richard L.; Kellas, Sotiris

    2006-01-01

    During the space shuttle return-to-flight preparations following the Columbia accident, finite element models were needed that could predict the threshold of critical damage to the orbiter's wing leading edge from ice debris impacts. Hence, an experimental program was initiated to provide crushing data from impacted ice for use in dynamic finite element material models. A high-speed drop tower was configured to capture force time histories of ice cylinders for impacts up to approximately 100 ft/s. At low velocity, the force-time history depended heavily on the internal crystalline structure of the ice. However, for velocities of 100 ft/s and above, the ice fractured on impact, behaved more like a fluid, and the subsequent force-time history curves were much less dependent on the internal crystalline structure.

  15. Flash Location, Size, and Rates Relative to the Evolving Kinematics and Microphysics of the 29 May 2012 DC3 Supercell Storm

    NASA Astrophysics Data System (ADS)

    MacGorman, D. R.; DiGangi, E.; Ziegler, C.; Biggerstaff, M. I.; Betten, D.; Bruning, E. C.

    2014-12-01

    A supercell thunderstorm was observed on 29 May 2012 during the Deep Convective Clouds and Chemistry (DC3) experiment. This storm was part of a cluster of severe storms and produced 5" hail, an EF-1 tornado, and copious lightning over the course of a few hours. During a period in which flash rates were increasing rapidly, observations were obtained from mobile polarimetric radars and a balloon-borne electric field meter (EFM) and particle imager, while aircraft sampled the chemistry of the inflow and anvil. In addition, the storm was within the domain of the 3-dimensional Oklahoma Lightning Mapping Array (LMA) and the S-band KTLX WSR-88D radar. The focus of this paper is the evolution of flash rates, the location of flash initiations, and the distribution of flash size and flash extent density as they relate to the evolving kinematics and microphysics of the storm for the approximately 30-minute period in which triple-Doppler coverage was available. Besides analyzing reflectivity structure and three-dimensional winds for the entire period, we examine mixing ratios of cloud water, cloud ice, rain, and graupel/hail that have been retrieved by a Lagrangian analysis for three select times, one each at the beginning, middle, and end of the period. Flashes in an around the updraft of this storm were typically small. Flash size tended to increase, and flash rates tended to decrease as distance from the updraft increased. Although flash initiations were most frequent near the updraft, some flashes were initiated near the edge of 30 dBZ cores and propagated into the anvil. Later, some flashes were initiated in the anvil itself, in vertical cells that formed and became electrified tens of kilometers downshear of the main body of the storm. Considerable lightning structure was inferred to be in regions dominated by cloud ice in the upper part of the storm. The continual small discharges in the overshooting top of the storm tended to be near or within 15 dBZ contours, although

  16. Dynamic interactions between coastal storms and salt marshes: A review

    NASA Astrophysics Data System (ADS)

    Leonardi, Nicoletta; Carnacina, Iacopo; Donatelli, Carmine; Ganju, Neil Kamal; Plater, Andrew James; Schuerch, Mark; Temmerman, Stijn

    2018-01-01

    This manuscript reviews the progresses made in the understanding of the dynamic interactions between coastal storms and salt marshes, including the dissipation of extreme water levels and wind waves across marsh surfaces, the geomorphic impact of storms on salt marshes, the preservation of hurricanes signals and deposits into the sedimentary records, and the importance of storms for the long term survival of salt marshes to sea level rise. A review of weaknesses, and strengths of coastal defences incorporating the use of salt marshes including natural, and hybrid infrastructures in comparison to standard built solutions is then presented. Salt marshes are effective in dissipating wave energy, and storm surges, especially when the marsh is highly elevated, and continuous. This buffering action reduces for storms lasting more than one day. Storm surge attenuation rates range from 1.7 to 25 cm/km depending on marsh and storms characteristics. In terms of vegetation properties, the more flexible stems tend to flatten during powerful storms, and to dissipate less energy but they are also more resilient to structural damage, and their flattening helps to protect the marsh surface from erosion, while stiff plants tend to break, and could increase the turbulence level and the scour. From a morphological point of view, salt marshes are generally able to withstand violent storms without collapsing, and violent storms are responsible for only a small portion of the long term marsh erosion. Our considerations highlight the necessity to focus on the indirect long term impact that large storms exerts on the whole marsh complex rather than on sole after-storm periods. The morphological consequences of storms, even if not dramatic, might in fact influence the response of the system to normal weather conditions during following inter-storm periods. For instance, storms can cause tidal flats deepening which in turn promotes wave energy propagation, and exerts a long term detrimental

  17. Dynamic interactions between coastal storms and salt marshes: A review

    USGS Publications Warehouse

    Leonardi, Nicoletta; Carnacina, Iacopo; Donatelli, Carmine; Ganju, Neil K.; Plater, Andrew James; Schuerch, Mark; Temmerman, Stijn

    2018-01-01

    This manuscript reviews the progresses made in the understanding of the dynamic interactions between coastal storms and salt marshes, including the dissipation of extreme water levels and wind waves across marsh surfaces, the geomorphic impact of storms on salt marshes, the preservation of hurricanes signals and deposits into the sedimentary records, and the importance of storms for the long term survival of salt marshes to sea level rise. A review of weaknesses, and strengths of coastal defences incorporating the use of salt marshes including natural, and hybrid infrastructures in comparison to standard built solutions is then presented.Salt marshes are effective in dissipating wave energy, and storm surges, especially when the marsh is highly elevated, and continuous. This buffering action reduces for storms lasting more than one day. Storm surge attenuation rates range from 1.7 to 25 cm/km depending on marsh and storms characteristics. In terms of vegetation properties, the more flexible stems tend to flatten during powerful storms, and to dissipate less energy but they are also more resilient to structural damage, and their flattening helps to protect the marsh surface from erosion, while stiff plants tend to break, and could increase the turbulence level and the scour. From a morphological point of view, salt marshes are generally able to withstand violent storms without collapsing, and violent storms are responsible for only a small portion of the long term marsh erosion.Our considerations highlight the necessity to focus on the indirect long term impact that large storms exerts on the whole marsh complex rather than on sole after-storm periods. The morphological consequences of storms, even if not dramatic, might in fact influence the response of the system to normal weather conditions during following inter-storm periods. For instance, storms can cause tidal flats deepening which in turn promotes wave energy propagation, and exerts a long term

  18. Perturbation of bacterial ice nucleation activity by a grass antifreeze protein.

    PubMed

    Tomalty, Heather E; Walker, Virginia K

    2014-09-26

    Certain plant-associating bacteria produce ice nucleation proteins (INPs) which allow the crystallization of water at high subzero temperatures. Many of these microbes are considered plant pathogens since the formed ice can damage tissues, allowing access to nutrients. Intriguingly, certain plants that host these bacteria synthesize antifreeze proteins (AFPs). Once freezing has occurred, plant AFPs likely function to inhibit the growth of large damaging ice crystals. However, we postulated that such AFPs might also serve as defensive mechanisms against bacterial-mediated ice nucleation. Recombinant AFP derived from the perennial ryegrass Lolium perenne (LpAFP) was combined with INP preparations originating from the grass epiphyte, Pseudomonas syringae. The presence of INPs had no effect on AFP activity, including thermal hysteresis and ice recrystallization inhibition. Strikingly, the ice nucleation point of the INP was depressed up to 1.9°C in the presence of LpAFP, but a recombinant fish AFP did not lower the INP-imposed freezing point. Assays with mutant LpAFPs and the visualization of bacterially-displayed fluorescent plant AFP suggest that INP and LpAFP can interact. Thus, we postulate that in addition to controlling ice growth, plant AFPs may also function as a defensive strategy against the damaging effects of ice-nucleating bacteria. Crown Copyright © 2014. Published by Elsevier Inc. All rights reserved.

  19. Aerial sketchmapping for monitoring forest conditions in Southern Brazil

    Treesearch

    Y. M. Malheiros de Oliveira; M. A. Doetzer Rosot; N. B. da Luz; W. M. Ciesla; E.W. Johnson; R. Rhea; J.F. Jr. Penteado

    2006-01-01

    Aerial sketchmapping is a simple, low cost remote sensing method used for detection and mapping of forest damage caused by biotic agents (insects, pathogens and other pests) and abiotic agents (wind, fire, storms, hurricane, ice storms) in North America. This method was introduced to Brazil in 2001/2002 via a USDA Forest Service/EMBRAPA technical exchange program,...

  20. Astrobiology of Antarctic ice Covered Lakes

    NASA Astrophysics Data System (ADS)

    Doran, P. T.; Fritsen, C. H.

    2005-12-01

    Antarctica contains a number of permanently ice-covered lakes which have often been used as analogs of purported lakes on Mars in the past. Antarctic subglacial lakes, such as Lake Vostok, have also been viewed as excellent analogs for an ice covered ocean on the Jovian moon Europa, and to a lesser extend on Mars. Lakes in the McMurdo Dry Valleys of East Antarctica have ice covers that range from 3 to 20 meters thick. Water salinities range from fresh to hypersaline. The thinner ice-covered lakes have a well-documented ecology that relies on the limited available nutrients and the small amount of light energy that penetrates the ice covers. The thickest ice-covered lake (Lake Vida in Victoria Valley) has a brine beneath 20 m of ice that is 7 times sea water and maintains a temperature below -10 degrees Celsius. This lake is vastly different from the thinner ice-covered lakes in that there is no communication with the atmosphere. The permanent ice cover is so thick, that summer melt waters can not access the sub-ice brine and so the ice grows from the top up, as well as from the bottom down. Brine trapped beneath the ice is believed to be ancient, stranded thousands of years ago when the ice grew thick enough to isolate it from the surface. We view Lake Vida as an excellent analog for the last aquatic ecosystem to have existed on Mars under a planetary cooling. If, as evidence is now increasingly supporting, standing bodies of water existed on Mars in the past, their fate under a cooling would be to go through a stage of permanent ice cover establishment, followed by a thickening of that ice cover until the final stage just prior to a cold extinction would be a Lake Vida-like lake. If dust storms or mass movements covered these ancient lakes, remnants may well be in existence in the subsurface today. A NASA Astrobiology Science and Technology for Exploring Planets (ASTEP) project will drill the Lake Vida ice cover and access the brine and sediments beneath in

  1. NACA Researcher Measures Ice on a Turbojet Engine Inlet

    NASA Image and Video Library

    1948-11-21

    The National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory conducted an extensive icing research program in the late 1940s that included studies in the Icing Research Tunnel and using specially modified aircraft. One facet of this program was the investigation of the effects of icing on turbojets. Although jet engines allowed aircraft to pass through inclement weather at high rates of speed, ice accumulation was still a concern. The NACA’s B-24M Liberator was initially reconfigured with a General Electric I-16 engine installed in the aircraft’s waist compartment with an air scoop and spray nozzles to produce the artificial icing conditions. The centrifugal engine appeared nearly impervious to the effects of icing. Axial-flow jet engines, however, were much more susceptible to icing damage. The inlet guide vanes were particularly vulnerable, but the cowling’s leading edge, the main bearing supports, and accessory housing could also ice up. If pieces of ice reached the engine’s internal components, the compressor blades could be damaged. To study this phenomenon, a Westinghouse 24C turbojet, seen in this photograph, was installed under the B-24M’s right wing. In January 1948 flight tests of the 24C in icing conditions began. Despite ice buildup into the second stage of the compressor, the engine was able to operate at takeoff speeds. Researchers found the ice on the inlet vanes resulted in half of the engine’s decreased performance.

  2. Radar and microphysical characteristics of convective storms simulated from a numerical model using a new microphysical parameterization

    NASA Technical Reports Server (NTRS)

    Ferrier, Brad S.; Tao, Wei-Kuo; Simpson, Joanne

    1991-01-01

    The basic features of a new and improved bulk-microphysical parameterization capable of simulating the hydrometeor structure of convective systems in all types of large-scale environments (with minimal adjustment of coefficients) are studied. Reflectivities simulated from the model are compared with radar observations of an intense midlatitude convective system. Simulated reflectivities using the novel four-class ice scheme with a microphysical parameterization rain distribution at 105 min are illustrated. Preliminary results indicate that this new ice scheme works efficiently in simulating midlatitude continental storms.

  3. Ice-Release and Erosion Resistant Materials for Wind Turbines

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Brinn, Cameron; Cook, Alex; Pascual-Marquez, Fernando

    2017-11-01

    Icing conditions may cause wind turbine generators to partially lose productivity or to be completely shut down to avoid structural damage. At present, commercially available technologies to mitigate this problem consist of expensive, energy hungry heating elements, which costs roughly 70,000 euro per medium size turbine. Conventional passive ice protection coating systems heavily rely on delicate surface structures and expensive materials to create water repellent superhydrophobic / low surface energy surfaces, which have been proven to be ineffective against ice accumulation. The lack of performance among conventional ice protection materials stems from a flaw in the approach to the problem: failure to recognize that water in its liquid form (WATER) and water in its solid form (ICE) are two different things. Something that works for WATER does not automatically work for ICE. Another reason is that many superhydrophobic materials are often reliant upon often fragile micro-structured surfaces to achieve their intended effects. This paper discusses a fundamentally different approach to the creation of a robust, low cost, durable, and multifunctional materials for ice release and erosion resistance. This National Science Foundation sponsored ice-release coating technology holds promise for protecting wind turbine blades and towers, thus potentially increasing reliability for power generation under icing conditions. Because of the vulnerability of wind turbine blades to ice buildup and erosion damages, wind farm facilities stand to reap considerable benefits.

  4. Coupled effects of wind-storms and drought on tree mortality across 115 forest stands from the Western Alps and the Jura mountains.

    PubMed

    Csilléry, Katalin; Kunstler, Georges; Courbaud, Benoît; Allard, Denis; Lassègues, Pierre; Haslinger, Klaus; Gardiner, Barry

    2017-12-01

    Damage due to wind-storms and droughts is increasing in many temperate forests, yet little is known about the long-term roles of these key climatic factors in forest dynamics and in the carbon budget. The objective of this study was to estimate individual and coupled effects of droughts and wind-storms on adult tree mortality across a 31-year period in 115 managed, mixed coniferous forest stands from the Western Alps and the Jura mountains. For each stand, yearly mortality was inferred from management records, yearly drought from interpolated fields of monthly temperature, precipitation and soil water holding capacity, and wind-storms from interpolated fields of daily maximum wind speed. We performed a thorough model selection based on a leave-one-out cross-validation of the time series. We compared different critical wind speeds (CWSs) for damage, wind-storm, and stand variables and statistical models. We found that a model including stand characteristics, drought, and storm strength using a CWS of 25 ms -1 performed the best across most stands. Using this best model, we found that drought increased damage risk only in the most southerly forests, and its effect is generally maintained for up to 2 years. Storm strength increased damage risk in all forests in a relatively uniform way. In some stands, we found positive interaction between drought and storm strength most likely because drought weakens trees, and they became more prone to stem breakage under wind-loading. In other stands, we found negative interaction between drought and storm strength, where excessive rain likely leads to soil water saturation making trees more susceptible to overturning in a wind-storm. Our results stress that temporal data are essential to make valid inferences about ecological impacts of disturbance events, and that making inferences about disturbance agents separately can be of limited validity. Under projected future climatic conditions, the direction and strength of these

  5. On the mid-latitude ionospheric storm association with intense geomagnetic storms

    NASA Astrophysics Data System (ADS)

    Okpala, Kingsley Chukwudi; Ogbonna, Chinasa Edith

    2018-04-01

    The bulk association between ionospheric storms and geomagnetic storms has been studied. Hemispheric features of seasonal variation of ionospheric storms in the mid-latitude were also investigated. 188 intense geomagnetic storms (Dst ≤ 100 nT) that occurred during solar cycles 22 and 23 were considered, of which 143 were observed to be identified with an ionospheric storm. Individual ionospheric storms were identified as maximum deviations of the F2 layer peak electron density from quiet time values. Only ionospheric storms that could clearly be associated with the peak of a geomagnetic storm were considered. Data from two mid-latitude ionosonde stations; one in the northern hemisphere (i.e. Moscow) and the other in the southern hemisphere (Grahamstown) were used to study ionospheric conditions at the time of the individual geomagnetic storms. Results show hemispheric and latitudinal differences in the intensity and nature of ionospheric storms association with different types of geomagnetic storms. These results are significant for our present understanding of the mechanisms which drive the changes in electron density during different types of ionospheric storms.

  6. Mass Balance Changes and Ice Dynamics of Greenland and Antarctic Ice Sheets from Laser Altimetry

    NASA Astrophysics Data System (ADS)

    Babonis, G. S.; Csatho, B.; Schenk, T.

    2016-06-01

    During the past few decades the Greenland and Antarctic ice sheets have lost ice at accelerating rates, caused by increasing surface temperature. The melting of the two big ice sheets has a big impact on global sea level rise. If the ice sheets would melt down entirely, the sea level would rise more than 60 m. Even a much smaller rise would cause dramatic damage along coastal regions. In this paper we report about a major upgrade of surface elevation changes derived from laser altimetry data, acquired by NASA's Ice, Cloud and land Elevation Satellite mission (ICESat) and airborne laser campaigns, such as Airborne Topographic Mapper (ATM) and Land, Vegetation and Ice Sensor (LVIS). For detecting changes in ice sheet elevations we have developed the Surface Elevation Reconstruction And Change detection (SERAC) method. It computes elevation changes of small surface patches by keeping the surface shape constant and considering the absolute values as surface elevations. We report about important upgrades of earlier results, for example the inclusion of local ice caps and the temporal extension from 1993 to 2014 for the Greenland Ice Sheet and for a comprehensive reconstruction of ice thickness and mass changes for the Antarctic Ice Sheets.

  7. Clustering of European winter storms: A multi-model perspective

    NASA Astrophysics Data System (ADS)

    Renggli, Dominik; Buettner, Annemarie; Scherb, Anke; Straub, Daniel; Zimmerli, Peter

    2016-04-01

    The storm series over Europe in 1990 (Daria, Vivian, Wiebke, Herta) and 1999 (Anatol, Lothar, Martin) are very well known. Such clusters of severe events strongly affect the seasonally accumulated damage statistics. The (re)insurance industry has quantified clustering by using distribution assumptions deduced from the historical storm activity of the last 30 to 40 years. The use of storm series simulated by climate models has only started recently. Climate model runs can potentially represent 100s to 1000s of years, allowing a more detailed quantification of clustering than the history of the last few decades. However, it is unknown how sensitive the representation of clustering is to systematic biases. Using a multi-model ensemble allows quantifying that uncertainty. This work uses CMIP5 decadal ensemble hindcasts to study clustering of European winter storms from a multi-model perspective. An objective identification algorithm extracts winter storms (September to April) in the gridded 6-hourly wind data. Since the skill of European storm predictions is very limited on the decadal scale, the different hindcast runs are interpreted as independent realizations. As a consequence, the available hindcast ensemble represents several 1000 simulated storm seasons. The seasonal clustering of winter storms is quantified using the dispersion coefficient. The benchmark for the decadal prediction models is the 20th Century Reanalysis. The decadal prediction models are able to reproduce typical features of the clustering characteristics observed in the reanalysis data. Clustering occurs in all analyzed models over the North Atlantic and European region, in particular over Great Britain and Scandinavia as well as over Iberia (i.e. the exit regions of the North Atlantic storm track). Clustering is generally weaker in the models compared to reanalysis, although the differences between different models are substantial. In contrast to existing studies, clustering is driven by weak

  8. Assessing Hurricane Katrina Vegetation Damage at Stennis Space Center using IKONOS Image Classification Techniques

    NASA Technical Reports Server (NTRS)

    Spruce, Joseph P.; Ross, Kenton W.; Graham, William D.

    2007-01-01

    Hurricane Katrina hit southwestern Mississippi on August 29, 2005, at 9:45 a.m. CDT as a category 3 storm with surges up to approx. 9 m and sustained winds of approx. 120 mph. The hurricane's wind, rain, and flooding devastated several coastal towns, from New Orleans through Mobile. The storm also caused significant damage to infrastructure and vegetation of NASA's SSC (Stennis Space Center). Storm recovery at SSC involved not only repairs of critical infrastructure but also forest damage mitigation (via timber harvests and control burns to reduce fire risk). This presentation discusses an effort to use commercially available high spatial resolution multispectral IKONOS data for vegetation damage assessment, based on data collected over SSC on September 2, 2005.

  9. Storms over the Urban Forest: Planning, Responding, and Regreening-- A community Guide to Natural Disaster Relief

    Treesearch

    Lisa L. Burban; John W. Andresen

    1994-01-01

    Natural disasters which can occur in the United States include floods, hurricanes, tornadoes, and related high-velocity winds, as well as ice storms. Preparing for these natural disasters, which strike urban forests in large cities and small communities, should involve the cooperative effort of a wide array of municipal agencies, private arboricultural companies,...

  10. Laser-induced plasma cloud interaction and ice multiplication under cirrus cloud conditions.

    PubMed

    Leisner, Thomas; Duft, Denis; Möhler, Ottmar; Saathoff, Harald; Schnaiter, Martin; Henin, Stefano; Stelmaszczyk, Kamil; Petrarca, Massimo; Delagrange, Raphaëlle; Hao, Zuoqiang; Lüder, Johannes; Petit, Yannick; Rohwetter, Philipp; Kasparian, Jérôme; Wolf, Jean-Pierre; Wöste, Ludger

    2013-06-18

    Potential impacts of lightning-induced plasma on cloud ice formation and precipitation have been a subject of debate for decades. Here, we report on the interaction of laser-generated plasma channels with water and ice clouds observed in a large cloud simulation chamber. Under the conditions of a typical storm cloud, in which ice and supercooled water coexist, no direct influence of the plasma channels on ice formation or precipitation processes could be detected. Under conditions typical for thin cirrus ice clouds, however, the plasma channels induced a surprisingly strong effect of ice multiplication. Within a few minutes, the laser action led to a strong enhancement of the total ice particle number density in the chamber by up to a factor of 100, even though only a 10(-9) fraction of the chamber volume was exposed to the plasma channels. The newly formed ice particles quickly reduced the water vapor pressure to ice saturation, thereby increasing the cloud optical thickness by up to three orders of magnitude. A model relying on the complete vaporization of ice particles in the laser filament and the condensation of the resulting water vapor on plasma ions reproduces our experimental findings. This surprising effect might open new perspectives for remote sensing of water vapor and ice in the upper troposphere.

  11. Mapping and Visualization of Storm-Surge Dynamics for Hurricane Katrina and Hurricane Rita

    USGS Publications Warehouse

    Gesch, Dean B.

    2009-01-01

    The damages caused by the storm surges from Hurricane Katrina and Hurricane Rita were significant and occurred over broad areas. Storm-surge maps are among the most useful geospatial datasets for hurricane recovery, impact assessments, and mitigation planning for future storms. Surveyed high-water marks were used to generate a maximum storm-surge surface for Hurricane Katrina extending from eastern Louisiana to Mobile Bay, Alabama. The interpolated surface was intersected with high-resolution lidar elevation data covering the study area to produce a highly detailed digital storm-surge inundation map. The storm-surge dataset and related data are available for display and query in a Web-based viewer application. A unique water-level dataset from a network of portable pressure sensors deployed in the days just prior to Hurricane Rita's landfall captured the hurricane's storm surge. The recorded sensor data provided water-level measurements with a very high temporal resolution at surveyed point locations. The resulting dataset was used to generate a time series of storm-surge surfaces that documents the surge dynamics in a new, spatially explicit way. The temporal information contained in the multiple storm-surge surfaces can be visualized in a number of ways to portray how the surge interacted with and was affected by land surface features. Spatially explicit storm-surge products can be useful for a variety of hurricane impact assessments, especially studies of wetland and land changes where knowledge of the extent and magnitude of storm-surge flooding is critical.

  12. Atmospheric impacts of the strongest known solar particle storm of 775 AD.

    PubMed

    Sukhodolov, Timofei; Usoskin, Ilya; Rozanov, Eugene; Asvestari, Eleanna; Ball, William T; Curran, Mark A J; Fischer, Hubertus; Kovaltsov, Gennady; Miyake, Fusa; Peter, Thomas; Plummer, Christopher; Schmutz, Werner; Severi, Mirko; Traversi, Rita

    2017-03-28

    Sporadic solar energetic particle (SEP) events affect the Earth's atmosphere and environment, in particular leading to depletion of the protective ozone layer in the Earth's atmosphere, and pose potential technological and even life hazards. The greatest SEP storm known for the last 11 millennia (the Holocene) occurred in 774-775 AD, serving as a likely worst-case scenario being 40-50 times stronger than any directly observed one. Here we present a systematic analysis of the impact such an extreme event can have on the Earth's atmosphere. Using state-of-the-art cosmic ray cascade and chemistry-climate models, we successfully reproduce the observed variability of cosmogenic isotope 10 Be, around 775 AD, in four ice cores from Greenland and Antarctica, thereby validating the models in the assessment of this event. We add to prior conclusions that any nitrate deposition signal from SEP events remains too weak to be detected in ice cores by showing that, even for such an extreme solar storm and sub-annual data resolution, the nitrate deposition signal is indistinguishable from the seasonal cycle. We show that such a severe event is able to perturb the polar stratosphere for at least one year, leading to regional changes in the surface temperature during northern hemisphere winters.

  13. Hindcast storm events in the Bering Sea for the St. Lawrence Island and Unalakleet Regions, Alaska

    USGS Publications Warehouse

    Erikson, Li H.; McCall, Robert T.; van Rooijen, Arnold; Norris, Benjamin

    2015-01-01

    This study provides viable estimates of historical storm-induced water levels in the coastal communities of Gambell and Savoonga situated on St. Lawrence Island in the Bering Sea, as well as Unalakleet located at the head of Norton Sound on the western coast of Alaska. Gambell, Savoonga, and Unalakleet are small Native Villages that are regularly impacted by coastal storms but where little quantitative information about these storms exists. The closest continuous water-level gauge is at Nome, located more than 200 kilometers from both St. Lawrence Island and Unalakleet. In this study, storms are identified and quantified using historical atmospheric and sea-ice data and then used as boundary conditions for a suite of numerical models. The work includes storm-surge (temporary rise in water levels due to persistent strong winds and low atmospheric pressures) modeling in the Bering Strait region, as well as modeling of wave runup along specified sections of the coast in Gambell and Unalakleet. Modeled historical water levels are used to develop return periods of storm surge and storm surge plus wave runup at key locations in each community. It is anticipated that the results will fill some of the data void regarding coastal flood data in western Alaska and be used for production of coastal vulnerability maps and community planning efforts.

  14. Ice and anti-nucleating activities of an ice-binding protein from the annual grass, Brachypodium distachyon.

    PubMed

    Bredow, Melissa; Tomalty, Heather E; Smith, Lindsay; Walker, Virginia K

    2018-05-01

    Plants exposed to sub-zero temperatures face unique challenges that threaten their survival. The growth of ice crystals in the extracellular space can cause cellular dehydration, plasma membrane rupture and eventual cell death. Additionally, some pathogenic bacteria cause tissue damage by initiating ice crystal growth at high sub-zero temperatures through the use of ice-nucleating proteins (INPs), presumably to access nutrients from lysed cells. An annual species of brome grass, Brachypodium distachyon (Bd), produces an ice-binding protein (IBP) that shapes ice with a modest depression of the freezing point (~0.1 °C at 1 mg/mL), but high ice-recrystallization inhibition (IRI) activity, allowing ice crystals to remain small at near melting temperatures. This IBP, known as BdIRI, is unlike other characterized IBPs with a single ice-binding face, as mutational analysis indicates that BdIRI adsorbs to ice on two faces. BdIRI also dramatically attenuates the nucleation of ice by bacterial INPs (up to -2.26 °C). This 'anti-nucleating' activity is significantly higher than previously documented for any IBP. © 2016 John Wiley & Sons Ltd.

  15. Geomagnetic storm forecasting service StormFocus: 5 years online

    NASA Astrophysics Data System (ADS)

    Podladchikova, Tatiana; Petrukovich, Anatoly; Yermolaev, Yuri

    2018-04-01

    Forecasting geomagnetic storms is highly important for many space weather applications. In this study, we review performance of the geomagnetic storm forecasting service StormFocus during 2011-2016. The service was implemented in 2011 at SpaceWeather.Ru and predicts the expected strength of geomagnetic storms as measured by Dst index several hours ahead. The forecast is based on L1 solar wind and IMF measurements and is updated every hour. The solar maximum of cycle 24 is weak, so most of the statistics are on rather moderate storms. We verify quality of selection criteria, as well as reliability of real-time input data in comparison with the final values, available in archives. In real-time operation 87% of storms were correctly predicted while the reanalysis running on final OMNI data predicts successfully 97% of storms. Thus the main reasons for prediction errors are discrepancies between real-time and final data (Dst, solar wind and IMF) due to processing errors, specifics of datasets.

  16. Impacts on the deep-sea ecosystem by a severe coastal storm.

    PubMed

    Sanchez-Vidal, Anna; Canals, Miquel; Calafat, Antoni M; Lastras, Galderic; Pedrosa-Pàmies, Rut; Menéndez, Melisa; Medina, Raúl; Company, Joan B; Hereu, Bernat; Romero, Javier; Alcoverro, Teresa

    2012-01-01

    Major coastal storms, associated with strong winds, high waves and intensified currents, and occasionally with heavy rains and flash floods, are mostly known because of the serious damage they can cause along the shoreline and the threats they pose to navigation. However, there is a profound lack of knowledge on the deep-sea impacts of severe coastal storms. Concurrent measurements of key parameters along the coast and in the deep-sea are extremely rare. Here we present a unique data set showing how one of the most extreme coastal storms of the last decades lashing the Western Mediterranean Sea rapidly impacted the deep-sea ecosystem. The storm peaked the 26(th) of December 2008 leading to the remobilization of a shallow-water reservoir of marine organic carbon associated with fine particles and resulting in its redistribution across the deep basin. The storm also initiated the movement of large amounts of coarse shelf sediment, which abraded and buried benthic communities. Our findings demonstrate, first, that severe coastal storms are highly efficient in transporting organic carbon from shallow water to deep water, thus contributing to its sequestration and, second, that natural, intermittent atmospheric drivers sensitive to global climate change have the potential to tremendously impact the largest and least known ecosystem on Earth, the deep-sea ecosystem.

  17. Advances in Understanding the Role of Aerosols on Ice Clouds from the Fifth International Ice Nucleation (FIN) Workshops

    NASA Astrophysics Data System (ADS)

    Cziczo, D. J.; Moehler, O.; DeMott, P. J.

    2015-12-01

    The relationship of ambient aerosol particles to the formation of ice-containing clouds is one of the largest uncertainties in understanding climate. This is due to several poorly understood processes including the microphysics of how particles nucleate ice, the number of effective heterogeneous ice nuclei and their atmospheric distribution, the role of anthropogenic activities in producing or changing the behavior of ice forming particles and the interplay between effective heterogeneous ice nuclei and homogeneous ice formation. Our team recently completed a three-part international workshop to improve our understanding of atmospheric ice formation. Termed the Fifth International Ice Nucleation (FIN) Workshops, our motivation was the limited number of measurements and a lack of understanding of how to compare data acquired by different groups. The first activity, termed FIN1, addressed the characterization of ice nucleating particle size, number and chemical composition. FIN2 addressed the determination of ice nucleating particle number density. Groups modeling ice nucleation joined FIN2 to provide insight on measurements critically needed to model atmospheric ice nucleation and to understand the performance of ice chambers. FIN1 and FIN2 took place at the Aerosol Interaction and Dynamics in the Atmosphere (AIDA) chamber at the Karlsruhe Institute of Technology. A particular emphasis of FIN1 and FIN2 was the use of 'blind' intercomparisons using a highly characterized, but unknown to the instrument operators, aerosol sample. The third activity, FIN3, took place at the Desert Research Institute's Storm Peak Laboratory (SPL). A high elevation site not subject to local emissions, SPL allowed for a comparison of ice chambers and subsequent analysis of the ice residuals under the challenging conditions of low particle loading, temperature and pressure found in the atmosphere. The presentation focuses on the improvement in understanding how mass spectra from different

  18. Recent Atlantic Hurricanes, Pacific Super Typhoons, and Tropical Storm Awareness in Underdeveloped Island and Coastal Regions

    NASA Astrophysics Data System (ADS)

    Plondke, D. L.

    2017-12-01

    Hurricane Harvey was the first major hurricane to make landfall in the continental U.S. in 12 years. The next tropical storm in the 2017 Atlantic Hurricane Season was Hurricane Irma, a category 5 storm and the strongest storm to strike the U.S. mainland since Hurricane Wilma in 2005. These two storms were the third and fourth in a sequence of 10 consecutive storms to reach hurricane status in this season that ranks at least seventh among the most active seasons as measured by the Accumulate Cyclone Energy (ACE) index. Assessment of damage from Harvey may prove it to be the costliest storm in U.S. history, approaching $190 billion. Irma was the first category 5 hurricane to hit the Leeward Islands, devastating island environments including Puerto Rico, the Virgin Islands, Barbuda, Saint Barthelemy, and Anguilla with sustained winds reaching at times 185 mph. Together with the two super typhoons of the 2017 Pacific season, Noru and Lan, the two Atlantic hurricanes rank among the strongest, longest-lasting tropical cyclones on record. How many more billions of dollars will be expended in recovery and reconstruction efforts following future mega-disasters comparable to those of Hurricanes Harvey and Irma? Particularly on Caribbean and tropical Pacific islands with specialized and underdeveloped economies, aging and substandard infrastructure often cannot even partially mitigate against the impacts of major hurricanes. The most frequently used measurements of storm impact are insufficient to assess the economic impact. Analysis of the storm tracks and periods of greatest storm intensity of Hurricanes Harvey and Irma, and Super Typhoons Lan and Noru, in spatial relationship with island and coastal administrative regions, shows that rainfall totals, flooded area estimates, and property/infrastructure damage dollar estimates are all quantitative indicators of storm impact, but do not measure the costs that result from lack of storm preparedness and education of residents

  19. Wet scavenging of soluble gases in DC3 deep convective storms using WRF-Chem simulations and aircraft observations: DEEP CONVECTIVE WET SCAVENGING OF GASES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bela, Megan M.; Barth, Mary C.; Toon, Owen B.

    We examine wet scavenging of soluble trace gases in storms observed during the Deep Convective Clouds and Chemistry (DC3) field campaign. We conduct high-resolution simulations with the Weather Research and Forecasting model with Chemistry (WRF-Chem) of a severe storm in Oklahoma. The model represents well the storm location, size, and structure as compared with Next Generation Weather Radar reflectivity, and simulated CO transport is consistent with aircraft observations. Scavenging efficiencies (SEs) between inflow and outflow of soluble species are calculated from aircraft measurements and model simulations. Using a simple wet scavenging scheme, we simulate the SE of each soluble speciesmore » within the error bars of the observations. The simulated SEs of all species except nitric acid (HNO3) are highly sensitive to the values specified for the fractions retained in ice when cloud water freezes. To reproduce the observations, we must assume zero ice retention for formaldehyde (CH2O) and hydrogen peroxide (H2O2) and complete retention for methyl hydrogen peroxide (CH3OOH) and sulfur dioxide (SO2), likely to compensate for the lack of aqueous chemistry in the model. We then compare scavenging efficiencies among storms that formed in Alabama and northeast Colorado and the Oklahoma storm. Significant differences in SEs are seen among storms and species. More scavenging of HNO3 and less removal of CH3OOH are seen in storms with higher maximum flash rates, an indication of more graupel mass. Graupel is associated with mixed-phase scavenging and lightning production of nitrogen oxides (NOx ), processes that may explain the observed differences in HNO3 and CH3OOH scavenging.« less

  20. Formation processes of sea ice floe size distribution in the interior pack and its relationship to the marginal ice zone off East Antarctica

    NASA Astrophysics Data System (ADS)

    Toyota, Takenobu; Kohout, Alison; Fraser, Alexander D.

    2016-09-01

    To understand the behavior of the Seasonal Ice Zone (SIZ), which is composed of sea-ice floes of various sizes, knowledge of the floe size distribution (FSD) is important. In particular, FSD in the Marginal Ice Zone (MIZ), controlled by wave-ice interaction, plays an important role in determining the retreating rates of sea-ice extent on a global scale because the cumulative perimeter of floes enhances melting. To improve the understanding of wave-ice interaction and subsequent effects on FSD in the MIZ, FSD measurements were conducted off East Antarctica during the second Sea Ice Physics and Ecosystems eXperiment (SIPEX-2) in late winter 2012. Since logistical reasons limited helicopter operations to two interior ice regions, FSD in the interior ice region was determined using a combination of heli-photos and MODIS satellite visible images. The possible effect of wave-ice interaction in the MIZ was examined by comparison with past results obtained in the same MIZ, with our analysis showing: (1) FSD in the interior ice region is basically scale invariant for both small- (<100 m) and large- (>1 km) scale regimes; (2) although fractal dimensions are quite different between these two regimes, they are both rather close to that in the MIZ; and (3) for floes <100 m in diameter, a regime shift which appeared at 20-40 m in the MIZ is absent. These results indicate that one role of wave-ice interaction is to modulate the FSD that already exists in the interior ice region, rather than directly determine it. The possibilities of floe-floe collisions and storm-induced lead formation are considered as possible formation processes of FSD in the interior pack.

  1. Hurricane Harvey: Infrastructure Damage Assessment of Texas' Central Gulf Coast Region

    NASA Astrophysics Data System (ADS)

    Mooney, W. D.; Fovenyessy, S.; Patterson, S. F.

    2017-12-01

    We report a detailed ground-based damage survey for Hurricane Harvey, the first major hurricane to make landfall along the central Texas coast since the 1970 Category 3 Hurricane Celia. Harvey, a Category 4 storm, made landfall near Rockport, Texas on August 25th, 2017 at 10 PM local time. From September 2nd to 5th we visited Rockport and 22 nearby cities to assess the severity of the damage. Nearly all damage observed occurred as a direct result of the hurricane-force winds, rather than a storm surge. This observation is in contrast to the severe damage caused by both high winds and a significant storm surge, locally 3 to 5 m in height, in the 2013 Category 5 Hurricane Haiyan, that devastated the Philippines. We have adopted a damage scale and have given an average damage score for each of the areas investigated. Our damage contour map illustrates the areal variation in damage. The damage observed was widespread with a high degree of variability. Different types of damage included: (1) fallen fences and utility poles; (2) trees with branches broken or completely snapped in half; (3) business signs that were either partially or fully destroyed; (4) partially sunken or otherwise damaged boats; (5) and sheet metal sheds either completely or partially destroyed. There was also varying degrees of damage to both residential and commercial structures. Many homes had (6) roof damage, ranging from minor damage to complete destruction of the roof and second story, and (7) siding damage, where parts or whole sections of the homes siding had been removed. The area that had the lowest average damage score was Corpus Christi, and the areas that had the highest average damage score was both Fulton and Holiday Beach. There is no simple, uniform pattern of damage distribution. Rather, the damage was scattered, revealing hot spots of areas that received more damage than the surrounding area. However, when compared to the NOAA wind swath map, all of the damage was contained within

  2. Empirical STORM-E Model. [I. Theoretical and Observational Basis

    NASA Technical Reports Server (NTRS)

    Mertens, Christopher J.; Xu, Xiaojing; Bilitza, Dieter; Mlynczak, Martin G.; Russell, James M., III

    2013-01-01

    Auroral nighttime infrared emission observed by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument onboard the Thermosphere-Ionosphere-Mesosphere Energetics and Dynamics (TIMED) satellite is used to develop an empirical model of geomagnetic storm enhancements to E-region peak electron densities. The empirical model is called STORM-E and will be incorporated into the 2012 release of the International Reference Ionosphere (IRI). The proxy for characterizing the E-region response to geomagnetic forcing is NO+(v) volume emission rates (VER) derived from the TIMED/SABER 4.3 lm channel limb radiance measurements. The storm-time response of the NO+(v) 4.3 lm VER is sensitive to auroral particle precipitation. A statistical database of storm-time to climatological quiet-time ratios of SABER-observed NO+(v) 4.3 lm VER are fit to widely available geomagnetic indices using the theoretical framework of linear impulse-response theory. The STORM-E model provides a dynamic storm-time correction factor to adjust a known quiescent E-region electron density peak concentration for geomagnetic enhancements due to auroral particle precipitation. Part II of this series describes the explicit development of the empirical storm-time correction factor for E-region peak electron densities, and shows comparisons of E-region electron densities between STORM-E predictions and incoherent scatter radar measurements. In this paper, Part I of the series, the efficacy of using SABER-derived NO+(v) VER as a proxy for the E-region response to solar-geomagnetic disturbances is presented. Furthermore, a detailed description of the algorithms and methodologies used to derive NO+(v) VER from SABER 4.3 lm limb emission measurements is given. Finally, an assessment of key uncertainties in retrieving NO+(v) VER is presented

  3. Mars Global Surveyor TES Results: Observations of Water Ice Clouds

    NASA Technical Reports Server (NTRS)

    Pearl, John C.; Smith, M. D.; Conrath, B. J.; Bandfield, J. L.; Christensen, P. R.

    1999-01-01

    On July 31, 1999, Mars Global Surveyor completed its first martian year in orbit. During this time, the Thermal Emission Spectrometer (TES) experiment gathered extensive data on water ice clouds. We report here on three types of martian clouds. 1) Martian southern summer has long been characterized as the season when the most severe dust storms occur. It is now apparent that northern spring/summer is characterized as a time of substantial low latitude ice clouds [1]. TES observations beginning in the northern summer (Lsubs=107) show a well developed cloud belt between 10S and 30N latitude; 12 micron opacities were typically 0.15. This system decreased dramatically after Lsubs= 130. Thereafter, remnants were most persistent over the Tharsis ridge. 2) Clouds associated with major orographic features follow a different pattern [2]. Clouds of this type were present prior to the regional Noachis dust storm of 1997. They disappeared with the onset of the storm, but reappeared rather quickly following its decay. Typical infrared opacities were near 0.5. 3) Extensive, very thin clouds are also widespread [3]. Found at high altitudes (above 35 km), their opacities are typically a few hundredths. At times, such as in northern spring, these clouds are limited in their northern extent only by the southern edge of the polar vortex. We describe the distribution, infrared optical properties, and seasonal trends of these systems during the first martian year of TES operations.

  4. The cytokine storm of severe influenza and development of immunomodulatory therapy.

    PubMed

    Liu, Qiang; Zhou, Yuan-hong; Yang, Zhan-qiu

    2016-01-01

    Severe influenza remains unusual in its virulence for humans. Complications or ultimately death arising from these infections are often associated with hyperinduction of proinflammatory cytokine production, which is also known as 'cytokine storm'. For this disease, it has been proposed that immunomodulatory therapy may improve the outcome, with or without the combination of antiviral agents. Here, we review the current literature on how various effectors of the immune system initiate the cytokine storm and exacerbate pathological damage in hosts. We also review some of the current immunomodulatory strategies for the treatment of cytokine storms in severe influenza, including corticosteroids, peroxisome proliferator-activated receptor agonists, sphingosine-1-phosphate receptor 1 agonists, cyclooxygenase-2 inhibitors, antioxidants, anti-tumour-necrosis factor therapy, intravenous immunoglobulin therapy, statins, arbidol, herbs, and other potential therapeutic strategies.

  5. Subtropical Storm Andrea

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The circling clouds of an intense low-pressure system sat off the southeast coast of the United States on May 8, 2007, when the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA's Terra satellite captured this image. By the following morning, the storm developed enough to be classified as a subtropical storm, a storm that forms outside of the tropics, but has many of the characteristics--hurricane-force winds, driving rains, low pressure, and sometimes an eye--of a tropical storm. Although it arrived several weeks shy of the official start of the hurricane season (June 1), Subtropical Storm Andrea became the first named storm of the 2007 Atlantic hurricane season. The storm has the circular shape of a tropical cyclone in this image, but lacks the tight organization seen in more powerful storms. By May 9, the storm's winds reached 75 kilometers per hour (45 miles per hour), and the storm was not predicted to get any stronger, said the National Hurricane Center. Though Subtropical Storm Andrea was expected to remain offshore, its strong winds and high waves pummeled coastal states, prompting a tropical storm watch. The winds fueled wild fires (marked with red boxes) in Georgia and Florida. The wind-driven flames generated thick plumes of smoke that concentrated in a gray-brown mass over Tampa Bay, Florida. Unfortunately for Georgia and Florida, which are experiencing moderate to severe drought, Subtropical Storm Andrea was not predicted to bring significant rain to the region right away, according to reports on the Washington Post Website.

  6. Measurements and Calculations of Microwave Radiance and Reflectivity for Storm-Associated Frozen Hydrometeors

    NASA Technical Reports Server (NTRS)

    Wang, James R.; Sfokronick, Gail; Meneghini, Robert; Heymsfield, Gerald; Manning, Will

    2000-01-01

    During the TEFLUN-B (Texas-Florida under-flights for TRMM) field experiment of August-September, 1998, a number of ER-2 aircraft flights with a host of microwave instruments were conducted over many convective storms, including some hurricanes, in the coastal region of Florida and Texas. These instruments include MIR (Millimeter-wave Imaging Radiometer), AMPR (Advanced Microwave Precipitation Radiometer), and EDOP (ER-2 Doppler Radar). EDOP is operated at the frequency of 9.7 GHz, while the AMPR and the MIR together give eleven channels of radiometric measurements in the frequency range of 10-340 GHz. The concurrent measurements from these instruments provide unique data sets for studying the details of the microphysics of hydrometeors. Preliminary examination of these data sets shows features that are generally well understood; i.e., radiometric measurements at frequencies less than or equal to 37 GHz mainly respond to rain, while those at frequencies greater than or equal to 150 GHz, to ice particles above the freezing level. Model calculations of brightness temperature and radar reflectivity are performed and results compared with these measurements. For simplicity the analysis is limited to the anvil region of the storms where hydrometeors are predominantly frozen. Only one ice particle size distribution is examined in the calculations of brightness temperature and radar reflectivity in this initial study. Estimation of ice water path is made based on the best agreement between the measurements and calculations of brightness temperature and reflectivity. Problems associated with these analyses and measurement accuracy will be discussed.

  7. STORMVEX. Ice Nuclei and Cloud Condensation Nuclei Characterization Field Campaign Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cziczo, D.

    2016-03-01

    The relationship between aerosol particles and the formation of clouds is among the most uncertain aspects in our current understanding of climate change. Warm clouds have been the most extensively studied, in large part because they are normally close to the Earth’s surface and only contain large concentrations of liquid droplets. Ice and mixed-phase clouds have been less studied even though they have extensive global coverage and dominate precipitation formation. Because they require low temperatures to form, both cloud types are infrequently found at ground level, resulting in more difficult field studies. Complex mixtures of liquid and ice elements, normallymore » at much lower concentrations than found in warm clouds, require precise separation techniques and accurate identification of phase. Because they have proved so difficult to study, the climatic impact of ice-containing clouds remains unresolved. In this study, cloud condensation nuclei (CCN) concentrations and associated single particles’ composition and size were measured at a high-elevation research site—Storm Peak Lab, east of Steamboat Springs, Colorado, operated by the Desert Research Institute. Detailed composition analyses were presented to compare CCN activation with single-particle composition. In collaboration with the scientists of the Storm Peak Lab Cloud Property Validation Experiment (STORMVEX), our goal was to relate these findings to the cloud characteristics and the effect of anthropogenic activities.« less

  8. Shoreline recovery from storms on the east coast of Southern Africa

    NASA Astrophysics Data System (ADS)

    Corbella, S.; Stretch, D. D.

    2012-01-01

    Episodic extreme waves due to sea storms can cause severe coastal erosion. The recovery times of such events are important for the analysis of risk and coastal vulnerability. The recovery period of a storm damaged coastline represents a time when the coastline is most vulnerable and nearby infrastructure is at the greatest risk. We propose that identification of the beach recovery period can be used as a coastal management tool when determining beach usage. As a case study, we analyse 37 yr of beach profile data on the east coast of South Africa. Considering beach length and cross-sectional area, we establish a global recovery period and rate and identify the physical characteristics of the coastlines that either accelerate or retard recovery. The beaches in the case study were found to take an average of two years to recover at a rate of approximately 90 m3 m-1 yr-1. Beach profiles with vegetated dunes recovered faster than urbanized beaches. Perpendicular beach structures have both positive and negative effects on beach recovery. Coastlines with rock outcrops in the surf zone tend to recover slowly and long-term sediment loss was identified in cases where storm damaged beaches have not recovered to pre-erosion levels.

  9. A Maxwell elasto-brittle rheology for sea ice modelling

    NASA Astrophysics Data System (ADS)

    Dansereau, Véronique; Weiss, Jérôme; Saramito, Pierre; Lattes, Philippe

    2016-07-01

    A new rheological model is developed that builds on an elasto-brittle (EB) framework used for sea ice and rock mechanics, with the intent of representing both the small elastic deformations associated with fracturing processes and the larger deformations occurring along the faults/leads once the material is highly damaged and fragmented. A viscous-like relaxation term is added to the linear-elastic constitutive law together with an effective viscosity that evolves according to the local level of damage of the material, like its elastic modulus. The coupling between the level of damage and both mechanical parameters is such that within an undamaged ice cover the viscosity is infinitely large and deformations are strictly elastic, while along highly damaged zones the elastic modulus vanishes and most of the stress is dissipated through permanent deformations. A healing mechanism is also introduced, counterbalancing the effects of damaging over large timescales. In this new model, named Maxwell-EB after the Maxwell rheology, the irreversible and reversible deformations are solved for simultaneously; hence drift velocities are defined naturally. First idealized simulations without advection show that the model reproduces the main characteristics of sea ice mechanics and deformation: strain localization, anisotropy, intermittency and associated scaling laws.

  10. Rapid assessment of household needs in the Houston area after Tropical Storm Allison.

    PubMed

    Waring, Stephen C; Reynolds, Kaye M; D'Souza, Gypsyamber; Arafat, Raouf R

    2002-09-01

    Tropical Storm Allison, which hit landfall near Galveston, Texas, on June 5, 2001, caused the most severe flood-related damage ever recorded in the Houston metropolitan area. The main goal of the public health response to tropical storm Allison was to evaluate the immediate health needs of the community. To estimate damage and household needs, we conducted a rapid needs assessment in the areas most affected by flooding with use of a modified cluster sampling method facilitated by Geographical Information Systems methodology. A total of 420 households participated in the survey, 210 each from the 2 sampling areas. We found a 4-fold increase in illness among persons living in flooded homes compared with those living in nonflooded homes. These findings suggest a need for rapid resolution of flood-related damage and the possibility that residents should seek temporary housing during clean-up and repair. In addition, we obtained reliable estimates of damage and household needs to help guide relief efforts. The findings underscore the usefulness of a rapid-needs assessment as a tool to identify actual health threats and to facilitate delivery of resources to those with the greatest and most immediate need.

  11. Laser-induced plasma cloud interaction and ice multiplication under cirrus cloud conditions

    PubMed Central

    Leisner, Thomas; Duft, Denis; Möhler, Ottmar; Saathoff, Harald; Schnaiter, Martin; Henin, Stefano; Stelmaszczyk, Kamil; Petrarca, Massimo; Delagrange, Raphaëlle; Hao, Zuoqiang; Lüder, Johannes; Petit, Yannick; Rohwetter, Philipp; Kasparian, Jérôme; Wolf, Jean-Pierre; Wöste, Ludger

    2013-01-01

    Potential impacts of lightning-induced plasma on cloud ice formation and precipitation have been a subject of debate for decades. Here, we report on the interaction of laser-generated plasma channels with water and ice clouds observed in a large cloud simulation chamber. Under the conditions of a typical storm cloud, in which ice and supercooled water coexist, no direct influence of the plasma channels on ice formation or precipitation processes could be detected. Under conditions typical for thin cirrus ice clouds, however, the plasma channels induced a surprisingly strong effect of ice multiplication. Within a few minutes, the laser action led to a strong enhancement of the total ice particle number density in the chamber by up to a factor of 100, even though only a 10−9 fraction of the chamber volume was exposed to the plasma channels. The newly formed ice particles quickly reduced the water vapor pressure to ice saturation, thereby increasing the cloud optical thickness by up to three orders of magnitude. A model relying on the complete vaporization of ice particles in the laser filament and the condensation of the resulting water vapor on plasma ions reproduces our experimental findings. This surprising effect might open new perspectives for remote sensing of water vapor and ice in the upper troposphere. PMID:23733936

  12. Measurement of Attenuation with Airborne and Ground-Based Radar in Convective Storms Over Land Its Microphysical Implications

    NASA Technical Reports Server (NTRS)

    Tian, Lin; Heymsfield, G. M.; Srivastava, R. C.; O'C.Starr, D. (Technical Monitor)

    2001-01-01

    Observations by the airborne X-band Doppler radar (EDOP) and the NCAR S-band polarimetric (S-Pol) radar from two field experiments are used to evaluate the surface reference technique (SRT) for measuring the path integrated attenuation (PIA) and to study attenuation in deep convective storms. The EDOP, flying at an altitude of 20 km, uses a nadir beam and a forward pointing beam. It is found that over land, the surface scattering cross-section is highly variable at nadir incidence but relatively stable at forward incidence. It is concluded that measurement by the forward beam provides a viable technique for measuring PIA using the SRT. Vertical profiles of peak attenuation coefficient are derived in two deep convective storms by the dual-wavelength method. Using the measured Doppler velocity, the reflectivities at the two wavelengths, the differential reflectivity and the estimated attenuation coefficients, it is shown that: supercooled drops and (dry) ice particles probably co-existed above the melting level in regions of updraft, that water-coated partially melted ice particles probably contributed to high attenuation below the melting level.

  13. Impacts on the Deep-Sea Ecosystem by a Severe Coastal Storm

    PubMed Central

    Sanchez-Vidal, Anna; Canals, Miquel; Calafat, Antoni M.; Lastras, Galderic; Pedrosa-Pàmies, Rut; Menéndez, Melisa; Medina, Raúl; Company, Joan B.; Hereu, Bernat; Romero, Javier; Alcoverro, Teresa

    2012-01-01

    Major coastal storms, associated with strong winds, high waves and intensified currents, and occasionally with heavy rains and flash floods, are mostly known because of the serious damage they can cause along the shoreline and the threats they pose to navigation. However, there is a profound lack of knowledge on the deep-sea impacts of severe coastal storms. Concurrent measurements of key parameters along the coast and in the deep-sea are extremely rare. Here we present a unique data set showing how one of the most extreme coastal storms of the last decades lashing the Western Mediterranean Sea rapidly impacted the deep-sea ecosystem. The storm peaked the 26th of December 2008 leading to the remobilization of a shallow-water reservoir of marine organic carbon associated with fine particles and resulting in its redistribution across the deep basin. The storm also initiated the movement of large amounts of coarse shelf sediment, which abraded and buried benthic communities. Our findings demonstrate, first, that severe coastal storms are highly efficient in transporting organic carbon from shallow water to deep water, thus contributing to its sequestration and, second, that natural, intermittent atmospheric drivers sensitive to global climate change have the potential to tremendously impact the largest and least known ecosystem on Earth, the deep-sea ecosystem. PMID:22295084

  14. Genetic variation for susceptibility to storm-induced stem breakage in Solidago altissima: The role of stem height and morphology

    NASA Astrophysics Data System (ADS)

    Wise, Michael J.; Abrahamson, Warren G.

    2010-07-01

    While storms can have obvious ecological impacts on plants, plants' potential to respond evolutionarily to selection for increased resistance to storm damage has received little study. We took advantage of a thunderstorm with strong wind and hail to examine genetic variation for resistance to stem breakage in the herbaceous perennial Solidago altissima. The storm broke the apex of nearly 10% of 1883 marked ramets in a common-garden plot containing 26 genets of S. altissima. Plant genets varied 20-fold in resistance to breakage. Stem height was strongly correlated with resistance to breakage, with taller stems being significantly more susceptible. A stem's growth form (erect versus nodding) had no detectable effect on its resistance to breakage. Therefore, we rejected the hypothesis that a function of the nodding, or "candy-cane," morphology is protection of the apex from storm damage. The significant genetic variation in S. altissima for stem breakage suggests that this plant has the capacity to respond to selection imposed by storms - particularly through changes in mean stem height. Tradeoffs between breakage resistance and competition for light and pollinators may act to maintain a large amount of genetic variation in stem height.

  15. Mitigating the health impacts of a natural disaster--the June 2007 long-weekend storm in the Hunter region of New South Wales.

    PubMed

    Cretikos, Michelle A; Merritt, Tony D; Main, Kelly; Eastwood, Keith; Winn, Linda; Moran, Lucille; Durrheim, David N

    A severe storm that began on Thursday, 7 June 2007 brought heavy rains and gale-force winds to Newcastle, Gosford, Wyong, Sydney, and the Hunter Valley region of New South Wales. The storm caused widespread flooding and damage to houses, businesses, schools and health care facilities, and damaged critical infrastructure. Ten people died as a result of the storm, and approximately 6000 residents were evacuated. A natural disaster was declared in 19 local government areas, with damage expected to reach $1.5 billion. Additional demands were made on clinical health services, and interruption of the electricity supply to over 200,000 homes and businesses, interruption of water and gas supplies, and sewerage system pump failures presented substantial public health threats. A public health emergency operations centre was established by the Hunter New England Area Health Service to coordinate surveillance activities, respond to acute public health issues and prevent disease outbreaks. Public health activities focused on providing advice, cooperating with emergency service agencies, monitoring water quality and availability, preventing illness from sewage-contaminated flood water, assessing environmental health risks, coordinating the local government public health response, and surveillance for storm-related illness and disease outbreaks, including gastroenteritis. The local ABC (Australian Broadcasting Corporation) radio station played a key role in disseminating public health advice. A household survey conducted within a fortnight of the storm established that household preparedness and storm warning systems could be improved.

  16. Benthic habitat and fish assemblage structure from shallow to mesophotic depths in a storm-impacted marine protected area

    NASA Astrophysics Data System (ADS)

    Abesamis, Rene A.; Langlois, Tim; Birt, Matthew; Thillainath, Emma; Bucol, Abner A.; Arceo, Hazel O.; Russ, Garry R.

    2018-03-01

    Baseline ecological studies of mesophotic coral ecosystems are lacking in the equatorial Indo-West Pacific region where coral reefs are highly threatened by anthropogenic and climate-induced disturbances. Here, we used baited remote underwater video to describe benthic habitat and fish assemblage structure from 10 to 80 m depth at Apo Island, a well-managed marine protected area in the Philippines. We conducted surveys 2 yr after two storms (in 2011 and 2012) caused severe damage to shallow coral communities within the no-take marine reserve (NTMR) of Apo Island, which led to declines in fish populations that had built up over three decades. We found that hard coral cover was restricted to < 40 m deep in the storm-impacted NTMR and a nearby fished area not impacted by storms. Benthic cover at mesophotic depths (> 30 m) was dominated by sand/rubble and rock (dead coral) with low cover of soft corals, sponges and macroalgae. Storm damage appeared to have reached the deepest limit of the fringing reef (40 m) and reduced variability in benthic structure within the NTMR. Species richness and/or abundance of most trophic groups of fish declined with increasing depth regardless of storm damage. There were differences in taxonomic and trophic structure and degree of targeting by fisheries between shallow and mesophotic fish assemblages. Threatened shark species and a fish species previously unreported in the Philippines were recorded at mesophotic depths. Our findings provide a first glimpse of the benthic and fish assemblage structure of Philippine coral reef ecosystems across a wide depth gradient. This work also underscores how a combination of limited coral reef development at mesophotic depths close to shallow reefs and severe habitat loss caused by storms would result in minimal depth refuge for reef fish populations.

  17. Long-term and storm-related shoreline change trends in the Florida Gulf Islands National Seashore

    USGS Publications Warehouse

    Hapke, C.J.; Christiano, M.

    2007-01-01

    Coastal erosion on Northern Gulf of Mexico barrier islands is an ongoing issue that was exacerbated by the storm seasons of 2004 and 2005 when several hurricanes made landfall in the Gulf of Mexico. Two units of the Gulf Islands National Seashore (GUIS), located on Santa Rosa Island, a barrier island off the Panhandle coast of Florida, were highly impacted during the hurricanes of 2004 (Ivan) and 2005 (Cindy, Dennis, Katrina and Rita). In addition to the loss of or damage to natural and cultural resources within the park, damage to park infrastructure, including park access roads and utilities, occurred in areas experiencing rapid shoreline retreat. The main park road was located as close as 50 m to the pre-storm (2001) shoreline and was still under repair from damage incurred during Hurricane Ivan when the 2005 hurricanes struck. A new General Management Plan is under development for the Gulf Islands National Seashore. This plan, like the existing General Management Plan, strives to incorporate natural barrier island processes, and will guide future efforts to provide access to units of Gulf Islands National Seashore on Santa Rosa Island. To assess changes in island geomorphology and provide data for park management, the National Park Service and the U.S. Geological Survey are currently analyzing shoreline change to better understand long-term (100+ years) shoreline change trends as well as short-term shoreline impact and recovery to severe storm events. Results show that over an ~140-year period from the late 1800s to May 2004, the average shoreline erosion rates in the Fort Pickens and Santa Rosa units of GUIS were -0.7m/yr and -0.1 m/yr, respectively. Areas of historic erosion, reaching a maximum rate of -1.3 m/yr, correspond to areas that experienced overwash and road damage during the 2004 hurricane season. The shoreline eroded as much as ~60 m during Hurricane Ivan, and as much as ~88 m over the course of the 2005 storm season. The shoreline erosion rates in

  18. Long-term and Storm-related Shoreline Change Trends in the Florida Gulf Islands National Seashore

    USGS Publications Warehouse

    Hapke, Cheryl J.; Christiano, Mark

    2007-01-01

    EXECUTIVE SUMMARY Coastal erosion on Northern Gulf of Mexico barrier islands is an ongoing issue that was exacerbated by the storm seasons of 2004 and 2005 when several hurricanes made landfall in the Gulf of Mexico. Two units of the Gulf Islands National Seashore (GUIS), located on Santa Rosa Island, a barrier island off the Panhandle coast of Florida, were highly impacted during the hurricanes of 2004 (Ivan) and 2005 (Cindy, Dennis, Katrina and Rita). In addition to the loss of or damage to natural and cultural resources within the park, damage to park infrastructure, including park access roads and utilities, occurred in areas experiencing rapid shoreline retreat. The main park road was located as close as 50 m to the pre-storm (2001) shoreline and was still under repair from damage incurred during Hurricane Ivan when the 2005 hurricanes struck. A new General Management Plan is under development for the Gulf Islands National Seashore. This plan, like the existing General Management Plan, strives to incorporate natural barrier island processes, and will guide future efforts to provide access to units of Gulf Islands National Seashore on Santa Rosa Island. To assess changes in island geomorphology and provide data for park management, the National Park Service and the U.S. Geological Survey are currently analyzing shoreline change to better understand long-term (100+ years) shoreline change trends as well as short-term shoreline impact and recovery to severe storm events. Results show that over an ~140-year period from the late 1800s to May 2004, the average shoreline erosion rates in the Fort Pickens and Santa Rosa units of GUIS were -0.7m/yr and -0.1 m/yr, respectively. Areas of historic erosion, reaching a maximum rate of -1.3 m/yr, correspond to areas that experienced overwash and road damage during the 2004 hurricane season.. The shoreline eroded as much as ~60 m during Hurricane Ivan, and as much as ~88 m over the course of the 2005 storm season. The

  19. Using wind setdown and storm surge on Lake Erie to calibrate the air-sea drag coefficient.

    PubMed

    Drews, Carl

    2013-01-01

    The air-sea drag coefficient controls the transfer of momentum from wind to water. In modeling storm surge, this coefficient is a crucial parameter for estimating the surge height. This study uses two strong wind events on Lake Erie to calibrate the drag coefficient using the Coupled Ocean Atmosphere Wave Sediment Transport (COAWST) modeling system and the the Regional Ocean Modeling System (ROMS). Simulated waves are generated on the lake with Simulating WAves Nearshore (SWAN). Wind setdown provides the opportunity to eliminate wave setup as a contributing factor, since waves are minimal at the upwind shore. The study finds that model results significantly underestimate wind setdown and storm surge when a typical open-ocean formulation without waves is used for the drag coefficient. The contribution of waves to wind setdown and storm surge is 34.7%. Scattered lake ice also increases the effective drag coefficient by a factor of 1.1.

  20. Development of targeted STORM for super resolution imaging of biological samples using digital micro-mirror device

    NASA Astrophysics Data System (ADS)

    Valiya Peedikakkal, Liyana; Steventon, Victoria; Furley, Andrew; Cadby, Ashley J.

    2017-12-01

    We demonstrate a simple illumination system based on a digital mirror device which allows for fine control over the power and pattern of illumination. We apply this to localization microscopy (LM), specifically stochastic optical reconstruction microscopy (STORM). Using this targeted STORM, we were able to image a selected area of a labelled cell without causing photo-damage to the surrounding areas of the cell.

  1. Effects of the May 5-6, 1973, storm in the Greater Denver area, Colorado

    USGS Publications Warehouse

    Hansen, Wallace R.

    1973-01-01

    Rain began falling on the Greater Denver area the evening of Saturday, May 5, 1973, and continued through most of Sunday, May 6. Below about 7,000 feet altitude, the precipitation was mostly rain; above that altitude, it was mostly snow. Although the rate of fall was moderate, at least 4 inches of rain or as much as 4 feet of snow accumulated in some places. Sustained precipitation falling at a moderate rate thoroughly saturated the ground and by midday Sunday sent most of the smaller streams into flood stage. The South Platte River and its major tributaries began to flood by late Sunday evening and early Monday morning. Geologic and hydrologic processes activated by the May 5-6 storm caused extensive damage to lands and to manmade structures in the Greater Denver area. Damage was generally most intense in areas where man had modified the landscape--by channel constrictions, paving, stripping of vegetation and topsoil, and oversteepening of hillslopes. Roads, bridges, culverts, dams, canals, and the like were damaged or destroyed by erosion and sedimentation. Streambanks and structures along them were scoured. Thousands of acres of croplands, pasture, and developed urban lands were coated with mud and sand. Flooding was intensified by inadequate storm sewers, blocked drains, and obstructed drainage courses. Saturation of hillslopes along the Front Range caused rockfalls, landslides, and mudflows as far west as Berthoud Pass. Greater attention to geologic conditions in land-use planning, design, and construction would minimize storm damage in the future.

  2. The Dragon Storm

    NASA Image and Video Library

    2005-02-24

    A large, bright and complex convective storm that appeared in Saturn's southern hemisphere in mid-September 2004 was the key in solving a long-standing mystery about the ringed planet. Saturn's atmosphere and its rings are shown here in a false color composite made from Cassini images taken in near infrared light through filters that sense different amounts of methane gas. Portions of the atmosphere with a large abundance of methane above the clouds are red, indicating clouds that are deep in the atmosphere. Grey indicates high clouds, and brown indicates clouds at intermediate altitudes. The rings are bright blue because there is no methane gas between the ring particles and the camera. The complex feature with arms and secondary extensions just above and to the right of center is called the Dragon Storm. It lies in a region of the southern hemisphere referred to as "storm alley" by imaging scientists because of the high level of storm activity observed there by Cassini in the last year. The Dragon Storm was a powerful source of radio emissions during July and September of 2004. The radio waves from the storm resemble the short bursts of static generated by lightning on Earth. Cassini detected the bursts only when the storm was rising over the horizon on the night side of the planet as seen from the spacecraft; the bursts stopped when the storm moved into sunlight. This on/off pattern repeated for many Saturn rotations over a period of several weeks, and it was the clock-like repeatability that indicated the storm and the radio bursts are related. Scientists have concluded that the Dragon Storm is a giant thunderstorm whose precipitation generates electricity as it does on Earth. The storm may be deriving its energy from Saturn's deep atmosphere. One mystery is why the radio bursts start while the Dragon Storm is below the horizon on the night side and end when the storm is on the day side, still in full view of the Cassini spacecraft. A possible explanation is

  3. Ice nucleation properties of atmospheric aerosol particles collected during a field campaign in Cyprus

    NASA Astrophysics Data System (ADS)

    Yordanova, Petya; Maier, Stefanie; Lang-Yona, Naama; Tamm, Alexandra; Meusel, Hannah; Pöschl, Ulrich; Weber, Bettina; Fröhlich-Nowoisky, Janine

    2017-04-01

    Atmospheric aerosol particles, including desert and soil dust as well as marine aerosols, are well known to act as ice nuclei (IN) and thus have been investigated in numerous ice nucleation studies. Based on their cloud condensation nuclei potential and their impacts on radiative properties of clouds (via scattering and absorption of solar radiation), aerosol particles may significantly affect the cloud and precipitation development. Atmospheric aerosols of the Eastern Mediterranean have been described to be dominated by desert dust, but only little is known on their composition and ice nucleating properties. In this study we investigated the ice nucleating ability of total suspended particles (TSP), collected at the remote site Agia Marina Xyliatou on Cyprus during a field campaign in April 2016. Airborne TSP samples containing air masses of various types such as African (Saharan) and Arabian dust and European and Middle Eastern pollution were collected on glass fiber filters at 24 h intervals. Sampling was performed ˜5 m above ground level and ˜521 m above sea level. During the sampling period, two major dust storms (PM 10max 118 μg/m3 and 66 μg/m3) and a rain event (rainfall amount: 3.4 mm) were documented. Chemical and physical characterizations of the particles were analyzed experimentally through filtration, thermal, chemical and enzyme treatments. Immersion freezing experiments were performed at relatively high subzero temperatures (-1 to -15˚ C) using the mono ice nucleation array. Preliminary results indicate that highest IN particle numbers (INPs) occurred during the second dust storm event with lower particle concentrations. Treatments at 60˚ C lead to a gradual IN deactivation, indicating the presence of biological INPs, which were observed to be larger than 300 kDa. Additional results originating from this study will be shown. Acknowledgement: This work was funded by the DFG Ice Nuclei Research Unit (INUIT).

  4. Extensive Ice Fractures in the Beaufort Sea

    NASA Image and Video Library

    2017-12-08

    The Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi NPP satellite captured this view of extensive sea-ice fracturing off the northern coast of Alaska. The event began in late-January and spread west toward Banks Island throughout February and March 2013. Visualizations of the Arctic often give the impression that the ice cap is a continuous sheet of stationary, floating ice. In fact, it is a collection of smaller pieces that constantly shift, crack, and grind against one another as they are jostled by winds and ocean currents. Especially during the summer—but even during the height of winter—cracks—or leads—open up between pieces of ice. That was what was happening on the left side of the animation (seen here: bit.ly/10kE7sh) in late January. A high-pressure weather system was parked over the region, producing warmer temperatures and winds that flowed in a southwesterly direction. That fueled the Beaufort Gyre, a wind-driven ocean current that flows clockwise. The gyre was the key force pulling pieces of ice west past Point Barrow, the northern nub of Alaska that protrudes into the Beaufort Sea. “A fracturing event in this area is not unusual because the Beaufort Gyre tends to push ice away from Banks Island and the Canadian Archipelago,” explained Walt Meier of the National Snow & Ice Data Center (NSIDC). “Point Barrow can act like a ‘pin point’ where the ice catches and fractures to the north and east.” In February, however, a series of storms passing over central Alaska exacerbated the fracturing. Strong westerly winds prompted several large pieces of ice to break away in an arc-shaped wave that moved progressively east. By the end of February, large pieces of ice had fractured all the way to the western coast of Banks Island, a distance of about 1,000 kilometers (600 miles). The data used to create the animation came from the longwave infrared (thermal) portion of the electromagnetic spectrum, so the animation illustrates how

  5. Iceberg Scour and Shell Damage in the Antarctic Bivalve Laternula elliptica

    PubMed Central

    Harper, Elizabeth M.; Clark, Melody S.; Hoffman, Joseph I.; Philipp, Eva E. R.; Peck, Lloyd S.; Morley, Simon A.

    2012-01-01

    We document differences in shell damage and shell thickness in a bivalve mollusc (Laternula elliptica) from seven sites around Antarctica with differing exposures to ice movement. These range from 60% of the sea bed impacted by ice per year (Hangar Cove, Antarctic Peninsula) to those protected by virtually permanent sea ice cover (McMurdo Sound). Patterns of shell damage consistent with blunt force trauma were observed in populations where ice scour frequently occurs; damage repair frequencies and the thickness of shells correlated positively with the frequency of iceberg scour at the different sites with the highest repair rates and thicker shells at Hangar Cove (74.2% of animals damaged) compared to the other less impacted sites (less than 10% at McMurdo Sound). Genetic analysis of population structure using Amplified Fragment Length Polymorphisms (AFLPs) revealed no genetic differences between the two sites showing the greatest difference in shell morphology and repair rates. Taken together, our results suggest that L. elliptica exhibits considerable phenotypic plasticity in response to geographic variation in physical disturbance. PMID:23029484

  6. Study of Extreme Weather Hazards Using GRACE

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Shum, C. K.; Shang, K.; Guo, J.; Schwartz, F. W.; Akyılmaz, O.; Feng, W.; Forootan, E.; LIU, G.; Zhong, M.

    2017-12-01

    Extreme weather events significantly affect humans and economics in the region. Synoptic and timely observations of these abrupt meteoro-hydrological hazards would benefit disaster management and improve storm forecasting. Contemporary processing of the Gravity Recovery and Climate Experiment (GRACE) twin-satellite data at monthly sampling would miss or under-sample abrupt events such as large ice storms with durations much shorter than a month. Here, we employ the energy balance approach processing GRACE Level 1 data, which is flexible to allow sub-monthly solutions at daily sampling covering the genesis and evolution of large winter storms. We studied the 2008 Southeast China snow and ice storm, which lasted from mid-January to mid-February, and affected 21 out of China's 34 provinces with heavy snows, ice and freezing rains, caused extensive damage and transportation disruption, displaced nearly 1.7 million people, and claimed 129 lives. We also investigated the devastating North America blizzard which occurred during late January through mid-February 2010. The massive accumulations of snow and ice in both storms slightly changed the gravity field of the Earth, and were sensitive to the GRACE satellite measurements, manifested as transient terrestrial water storage (TWS) change. We compared our solutions with other available high temporal frequency GRACE solutions. The GRACE observed total storage change for both storms are in good agreement with in situ precipitation measurements, and with GRACE observations clearly show the complex genesis, decline, strengthening and melting phases depicting the detailed evolution of these example large snow storms.

  7. Heavy snowfall damage Virginia pine

    Treesearch

    Richard H. Fenton

    1959-01-01

    In the Coastal Plain from Virginia to Pennsylvania, snowstorms heavy enough to damage trees are unusual. Weather Bureau records for the general area show that heavy snowfall - 8 to 25 inches in a single storm - occurs at an average frequency of about once in 7 years.

  8. Recent Changes in High-Latitude Glaciers, Ice Caps, and Ice Sheets

    NASA Technical Reports Server (NTRS)

    Abdalati, Waleed

    2006-01-01

    The glaciers and ice sheets of the world contain enough ice to raise sea level by approximately 70 meters if they were to disappear entirely, and most of this ice is located in the climatically sensitive polar regions. Fortunately changes of this magnitude would probably take many thousands of years to occur, but recent discoveries indicate that these ice masses are responding to changes in today s climate more rapidly than previously thought. These responses are likely to be of great societal significance, primarily in terms of their implications for sea level, but also in terms of how their discharge of freshwater, through melting or calving, may impact ocean circulation. For millions of years, oceans have risen and fallen as the Earth has warmed and cooled, and ice on land has shrunk and grown. Today is no different in that respect, as sea levels have been rising at a rate of nearly 2 m per year during the last century (Miller and Douglas 2004), and 3 mm/yr in the last 12 years (Leuliette et al. 2004). What is different today, however, is that tens - perhaps hundreds - of millions of people live in coastal areas that are vulnerable to changes in sea level. Rising seas erode beaches, increase flood potential, and reduce the ability of barrier islands and coastal wetlands to mitigate the effects of major storms and hurricanes. The costs associated with a one-meter rise in sea level are estimated to be in the hundreds of billions of dollars in the United States alone. The worldwide costs in human terms would be far greater as some vulnerable low-lying coastal regions would become inundated, especially in poorer nations that do not have the resources to deal with such changes. Such considerations are particularly important in light of the fact that a one meter sea level rise is not significantly outside the 0.09 to 0.88 range of predictions for this century (IPCC 2001), and rises of this magnitude have occurred in the past in as little as 20 years (Fairbanks 1989

  9. Physical and Dynamical Linkages Between Lightning Jumps and Storm Conceptual Models

    NASA Technical Reports Server (NTRS)

    Schultz, Christopher J.; Carey, Lawrence D.; Schultz, Elise V.; Blakeslee, Richard J.; Goodman, Steven J.

    2014-01-01

    The presence and rates of total lightning are both correlated to and physically dependent upon storm updraft strength, mixed phase precipitation volume and the size of the charging zone. The updraft modulates the ingredients necessary for electrification within a thunderstorm, while the updraft also plays a critical role in the development of severe and hazardous weather. Therefore utilizing this relationship, the monitoring of lightning rates and jumps provides an additional piece of information on the evolution of a thunderstorm, more often than not, at higher temporal resolution than current operational radar systems. This correlation is the basis for the total lightning jump algorithm that has been developed in recent years. Currently, the lightning jump algorithm is being tested in two separate but important efforts. Schultz et al. (2014; this conference) is exploring the transition of the algorithm from its research based formulation to a fully objective algorithm that includes storm tracking, Geostationary Lightning Mapper (GLM) Proxy data and the lightning jump algorithm. Chronis et al. (2014) provides context for the transition to current operational forecasting using lightning mapping array based products. However, what remains is an end-to-end physical and dynamical basis for coupling total lightning flash rates to severe storm manifestation, so the forecaster has a reason beyond simple correlation to utilize the lightning jump algorithm within their severe storm conceptual models. Therefore, the physical basis for the lightning jump algorithm in relation to severe storm dynamics and microphysics is a key component that must be further explored. Many radar studies have examined flash rates and their relationship to updraft strength, updraft volume, precipitation-sized ice mass, etc.; however, their relationship specifically to lightning jumps is fragmented within the literature. Thus the goal of this study is to use multiple Doppler and polarimetric

  10. Physical and Dynamical Linkages between Lightning Jumps and Storm Conceptual Models

    NASA Technical Reports Server (NTRS)

    Schultz, Christopher J.; Carey, Lawrence D.; Schultz, Elise V.; Blakeslee, Richard J.; Goodman, Steven J.

    2014-01-01

    The presence and rates of total lightning are both correlated to and physically dependent upon storm updraft strength, mixed phase precipitation volume and the size of the charging zone. The updraft modulates the ingredients necessary for electrification within a thunderstorm, while the updraft also plays a critical role in the development of severe and hazardous weather. Therefore utilizing this relationship, the monitoring of lightning rates and jumps provides an additional piece of information on the evolution of a thunderstorm, more often than not, at higher temporal resolution than current operational radar systems. This correlation is the basis for the total lightning jump algorithm that has been developed in recent years. Currently, the lightning jump algorithm is being tested in two separate but important efforts. Schultz et al. (2014; this conference) is exploring the transition of the algorithm from its research based formulation to a fully objective algorithm that includes storm tracking, Geostationary Lightning Mapper (GLM) Proxy data and the lightning jump algorithm. Chronis et al. (2014; this conference) provides context for the transition to current operational forecasting using lightning mapping array based products. However, what remains is an end-to-end physical and dynamical basis for coupling total lightning flash rates to severe storm manifestation, so the forecaster has a reason beyond simple correlation to utilize the lightning jump algorithm within their severe storm conceptual models. Therefore, the physical basis for the lightning jump algorithm in relation to severe storm dynamics and microphysics is a key component that must be further explored. Many radar studies have examined flash rates and their relationship to updraft strength, updraft volume, precipitation-sized ice mass, etc.; however, their relationship specifically to lightning jumps is fragmented within the literature. Thus the goal of this study is to use multiple Doppler and

  11. Storms in Space

    NASA Astrophysics Data System (ADS)

    Freeman, John W.

    2012-11-01

    Introduction; The cast of characters; Vignettes of the storm; 1. Two kinds of weather; 2. The saga of the storm; 3. Weather stations in space; 4. Lights in the night: the signature of the storm; 5. A walking tour of the magnetosphere; 6. The sun: where it all begins; 7. Nowcasting and forecasting storms in space; 8. Technology and the risks from storms in space; 9. A conversation with Joe Allen; 10. Manned exploration and space weather hazards; 11. The present and future of space weather forecasting; Mathematical appendix. A closer look; Glossary; Figure captions.

  12. Understanding Poly(vinyl alcohol)-Mediated Ice Recrystallization Inhibition through Ice Adsorption Measurement and pH Effects.

    PubMed

    Burkey, Aaron A; Riley, Christopher L; Wang, Lyndsey K; Hatridge, Taylor A; Lynd, Nathaniel A

    2018-01-08

    The development of improved cryopreservative materials is necessary to enable complete recovery of living cells and tissue after frozen storage. Remarkably, poly(vinyl alcohol) (PVA) displays some of the same cryoprotective properties as many antifreeze proteins found in cold tolerant organisms. In particular, PVA is very effective at halting the Ostwald ripening of ice, a process that mechanically damages cells and tissue. Despite the large practical importance of such a property, the mechanism by which PVA interacts with ice is poorly understood, hindering the development of improved cryoprotective materials. Herein, we quantitatively evaluated ice growth kinetics in the presence of PVA at different pH conditions and in the presence of a range of neutral salts. We demonstrated that pH, but not salt identity, alters the ability of PVA to halt ice grain coarsening. These observations are consistent with hydrogen-bonding playing a crucial role in PVA-mediated ice recrystallization inhibition. The evolution of the size distribution of ice crystals with annealing was consistent with incomplete surface coverage of ice with PVA. Binding assay measurements of dissolved fluorescently labeled PVA in an ice slurry showed that PVA interacts with ice through weak adsorption (<9%) to the ice crystal surface, which stands in contrast to fluorescently tagged type III antifreeze peptide, which binds strongly (ca. 64%) under the same conditions.

  13. Waterway Ice Thickness Measurements

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The ship on the opposite page is a U. S. Steel Corporation tanker cruising through the ice-covered waters of the Great Lakes in the dead of winter. The ship's crew is able to navigate safely by plotting courses through open water or thin ice, a technique made possible by a multi-agency technology demonstration program in which NASA is a leading participant. Traditionally, the Great Lakes-St. Lawrence Seaway System is closed to shipping for more than three months of winter season because of ice blockage, particularly fluctuations in the thickness and location of ice cover due to storms, wind, currents and variable temperatures. Shippers have long sought a system of navigation that would allow year-round operation on the Lakes and produce enormous economic and fuel conservation benefits. Interrupted operations require that industrial firms stockpile materials to carry them through the impassable months, which is costly. Alternatively, they must haul cargos by more expensive overland transportation. Studies estimate the economic benefits of year-round Great Lakes shipping in the hundreds of millions of dollars annually and fuel consumption savings in the tens of millions of gallons. Under Project Icewarn, NASA, the U.S. Coast Guard and the National Oceanic Atmospheric Administration collaborated in development and demonstration of a system that permits safe year-round operations. It employs airborne radars, satellite communications relay and facsimile transmission to provide shippers and ships' masters up-to-date ice charts. Lewis Research Center contributed an accurate methods of measuring ice thickness by means of a special "short-pulse" type of radar. In a three-year demonstration program, Coast Guard aircraft equipped with Side-Looking Airborne Radar (SLAR) flew over the Great Lakes three or four times a week. The SLAR, which can penetrate clouds, provided large area readings of the type and distribution of ice cover. The information was supplemented by short

  14. Damage Mechanics Approach to Penetration of Water-filled Surface Crevasses

    NASA Astrophysics Data System (ADS)

    Duddu, R.; Jimenez, S. K.; Bassis, J. N.

    2017-12-01

    Iceberg calving is a natural process that occurs when crevasses penetrate the entire thickness of an ice shelf or a glacier leading to the detachment (birth) of icebergs. Calving from marine-terminating glaciers and floating ice shelves accounts for nearly 50% of the mass lost from both the Greenland and Antarctic ice sheets, which can directly or indirectly contribute to sealevel rise. A widely-accepted hypothesis is that crevasses in ice form due to brittle mode I fracture under the action of tensile stresses. Existing theoretical approaches for modeling crevasse propagation based on the above hypothesis include the Nye zero stress and fracture mechanics approaches. These theoretical approaches assume idealized geometry and boundary conditions, and ignore the effects of viscous creep deformations in ice over longer time scales; however, they still produced interesting results that matched well with sparse field observations available. An alternative is to use the continuum damage mechanics approach for modeling crevasse propagation, which is more easily incorporated into numerical ice sheet models that consider realistic geometries, boundary conditions and viscous creep effects. In this presentation, we describe the damage mechanics approach to penetration of dry and water-filled surface crevasses using the principles of poromechanics and compare our results with those from existing theoretical approaches. We investigate the upper limits on crevasse penetration depth in relation to ice thickness, water depth in the surface crevasse, seawater depth at the ice terminus and ice rheology (i.e., elastic vs. viscous). Our studies on idealized glaciers show that the damage mechanics approach is consistent with the fracture mechanics approach when the seawater depth at the ice terminus is low, but is inconsistent with the theoretical approaches when the seawater depth at the ice terminus is high (i.e., near floatation). Our studies also indicate that the upper limit on

  15. Satellite Video Shows Movement of Major U.S. Winter Storm

    NASA Image and Video Library

    2014-02-12

    View a video of the storm here: bit.ly/1m9aJFY This visible image of the winter storm over the U.S. south and East Coast was taken by NOAA's GOES-13 satellite on Feb. 12 at 1855 UTC/1:55 p.m. EST. Snow covered ground can be seen over the Great Lakes region and Ohio Valley. On February 12 at 10 a.m. EST, NOAA's National Weather Service or NWS continued to issue watches and warnings from Texas to New England. Specifically, NWS cited Winter Storm Warnings and Winter Weather Advisories were in effect from eastern Texas eastward across the interior section of southeastern U.S. states and across much of the eastern seaboard including the Appalachians. Winter storm watches are in effect for portions of northern New England as well as along the western slopes of northern and central Appalachians. For updates on local forecasts, watches and warnings, visit NOAA's www.weather.gov webpage. NOAA's Weather Prediction Center or WPC noted the storm is expected to bring "freezing rain spreading into the Carolinas, significant snow accumulations are expected in the interior Mid-Atlantic states tonight into Thursday and ice storm warnings and freezing rain advisories are in effect across much of central Georgia. GOES satellites provide the kind of continuous monitoring necessary for intensive data analysis. Geostationary describes an orbit in which a satellite is always in the same position with respect to the rotating Earth. This allows GOES to hover continuously over one position on Earth's surface, appearing stationary. As a result, GOES provide a constant vigil for the atmospheric "triggers" for severe weather conditions such as tornadoes, flash floods, hail storms and hurricanes. For updated information about the storm system, visit NOAA's WPC website; www.hpc.ncep.noaa.gov/ For more information about GOES satellites, visit: www.goes.noaa.gov/ or goes.gsfc.nasa.gov/ Rob Gutro NASA's Goddard Space Flight Center Credit: NOAA/NASA GOES Project NASA image use policy. NASA Goddard

  16. Modelling the economic losses of historic and present-day high-impact winter storms in Switzerland

    NASA Astrophysics Data System (ADS)

    Welker, Christoph; Stucki, Peter; Bresch, David; Dierer, Silke; Martius, Olivia; Brönnimann, Stefan

    2014-05-01

    Severe winter storms such as "Vivian" in February 1990 and "Lothar" in December 1999 are among the most destructive meteorological hazards in Switzerland. Disaster severity resulting from such windstorms is attributable, on the one hand, to hazardous weather conditions such as high wind gust speeds; and on the other hand to socio-economic factors such as population density, distribution of values at risk, and damage susceptibility. For present-day winter storms, the data basis is generally good to describe the meteorological development and wind forces as well as the associated socio-economic impacts. In contrast, the information on historic windstorms is overall sparse and the available historic weather and loss reports mostly do not provide quantitative information. This study illustrates a promising technique to simulate the economic impacts of both historic and present winter storms in Switzerland since end of the 19th century. Our approach makes use of the novel Twentieth Century Reanalysis (20CR) spanning 1871-present. The 2-degree spatial resolution of the global 20CR dataset is relatively coarse. Thus, the complex orography of Switzerland is not realistically represented, which has considerable ramifications for the representation of wind systems that are strongly influenced by the local orography, such as Föhn winds. Therefore, a dynamical downscaling of the 20CR to 3 km resolution using the Weather Research and Forecasting (WRF) model was performed, for in total 40 high-impact winter storms in Switzerland since 1871. Based on the downscaled wind gust speeds and the climada loss model, the estimated economic losses were calculated at municipality level for current economic and social conditions. With this approach, we find an answer to the question what would be the economic losses of e.g. a hazardous Föhn storm - which occurred in northern Switzerland in February 1925 - today, i.e. under current socio-economic conditions. Encouragingly, the pattern of

  17. Major storm periods and climate forcing in the Western Mediterranean during the Late Holocene

    NASA Astrophysics Data System (ADS)

    Degeai, Jean-Philippe; Devillers, Benoît; Dezileau, Laurent; Oueslati, Hamza; Bony, Guénaëlle

    2015-12-01

    Big storm events represent a major risk for populations and infrastructures settled on coastal lowlands. In the Western Mediterranean, where human societies colonized and occupied the coastal areas since the Ancient times, the variability of storm activity for the past three millennia was investigated with a multi-proxy sedimentological and geochemical study from a lagoonal sequence. Mappings of the geochemistry and magnetic susceptibility of detrital sources in the watershed of the lagoon and from the coastal barriers were undertaken in order to track the terrestrial or coastal/marine origin of sediments deposited into the lagoon. The multi-proxy analysis shows that coarser material, low magnetic susceptibility, and high strontium content characterize the sedimentological signature of the paleostorm levels identified in the lagoonal sequence. A comparison with North Atlantic and Western Mediterranean paleoclimate proxies shows that the phases of high storm activity occurred during cold periods, suggesting a climatically-controlled mechanism for the occurrence of these storm periods. Besides, an in-phase storm activity pattern is found between the Western Mediterranean and Northern Europe. Spectral analyses performed on the Sr content revealed a new 270-year solar-driven pattern of storm cyclicity. For the last 3000 years, this 270-year cycle defines a succession of ten major storm periods (SP) with a mean duration of 96 ± 54 yr. Periods of higher storm activity are recorded from >680 to 560 cal yr BC (SP10, end of the Iron Age Cold Period), from 140 to 820 cal yr AD (SP7 to SP5) with a climax of storminess between 400 and 800 cal yr AD (Dark Ages Cold Period), and from 1230 to >1800 cal yr AD (SP3 to SP1, Little Ice Age). Periods of low storm activity occurred from 560 cal yr BC to 140 cal yr AD (SP9 and SP8, Roman Warm Period) and from 820 to 1230 cal yr AD (SP4, Medieval Warm Period).

  18. Seamless Modeling for Research & Predictability of Severe Tropical Storms from Weather-to-Climate Timescales

    NASA Astrophysics Data System (ADS)

    Ramaswamy, V.; Chen, J. H.; Delworth, T. L.; Knutson, T. R.; Lin, S. J.; Murakami, H.; Vecchi, G. A.

    2017-12-01

    Damages from catastrophic tropical storms such as the 2017 destructive hurricanes compel an acceleration of scientific advancements to understand the genesis, underlying mechanisms, frequency, track, intensity, and landfall of these storms. The advances are crucial to provide improved early information for planners and responders. We discuss the development and utilization of a global modeling capability based on a novel atmospheric dynamical core ("Finite-Volume Cubed Sphere or FV3") which captures the realism of the recent tropical storms and is a part of the NOAA Next-Generation Global Prediction System. This capability is also part of an emerging seamless modeling system at NOAA/ Geophysical Fluid Dynamics Laboratory for simulating the frequency of storms on seasonal and longer timescales with high fidelity e.g., Atlantic hurricane frequency over the past decades. In addition, the same modeling system has also been employed to evaluate the nature of projected storms on the multi-decadal scales under the influence of anthropogenic factors such as greenhouse gases and aerosols. The seamless modeling system thus facilitates research into and the predictability of severe tropical storms across diverse timescales of practical interest to several societal sectors.

  19. Studies of Dark Spots and Their Companion Clouds on the Ice Giant Planets

    NASA Astrophysics Data System (ADS)

    Bhure, Sakhee; Sankar, Ramanakumar; Hadland, Nathan; Palotai, Csaba J.; Le Beau, Raymond P.; Koutas, Nikko

    2017-10-01

    Observations of ice giant planets in our Solar System have shown several large-scale dark spots with varying lifespans. Some of these features were directly observed, others were diagnosed from their orographic companion clouds. Historically, numerical simulations have been able to model certain characteristics of these storms such as the shape variability of the Neptune Great Dark Spot (GDS-89) (Deng and Le Beau, 2006), but have not been able to match observed drift rates and lifespans using the standard zonal wind profiles (Hammel et al. 2009). Common amongst these studies has been the lack of condensable species in the atmosphere and an explicit treatment of cloud microphysics. Yet, observations show that dark spots can affect neighboring cloud features, such as in the case of bright companion clouds or the “Berg” on Uranus. An analysis of the cloud structure is therefore required to gain a better understanding of the underlying atmospheric physics and dynamics of these vortices.For our simulations, we use the Explicit Planetary Isentropic Coordinate (EPIC) general circulation model (Dowling et al. 1998, 2006) and adapt its jovian cloud microphysics module which successfully reproduced the cloud structure of jovian storms, such as the Great Red Spot and the Oval BA (Palotai and Dowling 2008, Palotai et al. 2014). EPIC was recently updated to account for the condensation of methane and hydrogen sulfide (Palotai et al. 2016), which allows us to account for both the high-altitude methane ice-cloud and the deep atmosphere hydrogen sulfide ice-cloud layers.In this work, we simulate large-scale vortices on Uranus and Neptune with varying cloud microphysical parameters such as the deep abundance and the ambient supersaturation. We examine the effect of cloud formation on their lifespan and drift rates to better understand the underlying processes which drive these storms.

  20. Assessing economic impact of storm surge under projected sea level rise scenarios

    NASA Astrophysics Data System (ADS)

    Del Angel, D. C.; Yoskowitz, D.

    2017-12-01

    Global sea level is expected to rise 0.2-2m by the year 2100. Rising sea level is expected to have a number of impacts such as erosion, saltwater intrusion, and decline in coastal wetlands; all which have direct and indirect socio-economic impact to coastal communities. By 2050, 25% of the world's population will reside within flood-prone areas. These statistics raise a concern for the economic cost that sea level and flooding has on the growing coastal communities. Economic cost of storm surge inundation and rising seas may include loss or damage to public facilities and infrastructure that may become temporarily inaccessible, as well as disruptions to business and services. This goal of this project is to assess economic impacts of storms under four SLR scenarios including low, intermediate-low, intermediate-high, and high (0.2m, 0.5m, 1.2m and 2m, respectively) in the Northern Gulf of Mexico region. To assess flooding impact on communities from storm surge, this project utilizes HAZUS-MH software - a Geographic Information System (GIS)-based modeling tool developed by the Federal Emergency Management Agency - to estimate physical, economic, and social impacts of natural disasters such as floods, earthquakes and hurricanes. The HAZUS database comes integrated with aggregate and site specific inventory which includes: demographic data, general building stock, agricultural statistics, vehicle inventory, essential facilities, transportation systems, utility systems (among other sensitive facilities). User-defined inundation scenarios will serve to identify assets at risk and damage estimates will be generated using the Depth Damage Function included in the HAZUS software. Results will focus on 3 communities in the Gulf and highlight changes in storm flood impact. This approach not only provides a method for economic impact assessment but also begins to create a link between ecosystem services and natural and nature-based features such as wetlands, beaches and dunes

  1. Using Wind Setdown and Storm Surge on Lake Erie to Calibrate the Air-Sea Drag Coefficient

    PubMed Central

    Drews, Carl

    2013-01-01

    The air-sea drag coefficient controls the transfer of momentum from wind to water. In modeling storm surge, this coefficient is a crucial parameter for estimating the surge height. This study uses two strong wind events on Lake Erie to calibrate the drag coefficient using the Coupled Ocean Atmosphere Wave Sediment Transport (COAWST) modeling system and the the Regional Ocean Modeling System (ROMS). Simulated waves are generated on the lake with Simulating WAves Nearshore (SWAN). Wind setdown provides the opportunity to eliminate wave setup as a contributing factor, since waves are minimal at the upwind shore. The study finds that model results significantly underestimate wind setdown and storm surge when a typical open-ocean formulation without waves is used for the drag coefficient. The contribution of waves to wind setdown and storm surge is 34.7%. Scattered lake ice also increases the effective drag coefficient by a factor of 1.1. PMID:23977309

  2. Use of Vertically Integrated Ice in WRF-Based Forecasts of Lightning Threat

    NASA Technical Reports Server (NTRS)

    McCaul, E. W., jr.; Goodman, S. J.

    2008-01-01

    Previously reported methods of forecasting lightning threat using fields of graupel flux from WRF simulations are extended to include the simulated field of vertically integrated ice within storms. Although the ice integral shows less temporal variability than graupel flux, it provides more areal coverage, and can thus be used to create a lightning forecast that better matches the areal coverage of the lightning threat found in observations of flash extent density. A blended lightning forecast threat can be constructed that retains much of the desirable temporal sensitivity of the graupel flux method, while also incorporating the coverage benefits of the ice integral method. The graupel flux and ice integral fields contributing to the blended forecast are calibrated against observed lightning flash origin density data, based on Lightning Mapping Array observations from a series of case studies chosen to cover a wide range of flash rate conditions. Linear curve fits that pass through the origin are found to be statistically robust for the calibration procedures.

  3. A study of severe storm electricity via storm intercept

    NASA Technical Reports Server (NTRS)

    Arnold, Roy T.; Horsburgh, Steven D.; Rust, W. David; Burgess, Don

    1985-01-01

    Storm electricity data, radar data, and visual observations were used both to present a case study for a supercell thunderstorm that occurred in the Texas Panhandle on 19 June 1980 and to search for insight into how lightning to ground might be related to storm dynamics in the updraft/downdraft couplet in supercell storms. It was observed that two-thirds of the lightning ground-strike points in the developing and maturing stages of a supercell thunderstorm occurred within the region surrounding the wall cloud (a cloud feature often characteristic of a supercell updraft) and on the southern flank of the precipitation. Electrical activity in the 19 June 1980 storm was atypical in that it was a right-mover. Lightning to ground reached a peak rate of 18/min and intracloud flashes were as frequent as 176/min in the final stages of the storm's life.

  4. SURVIVAL DEPTH OF ORGANICS IN ICES UNDER LOW-ENERGY ELECTRON RADIATION ({<=}2 keV)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnett, Irene Li; Lignell, Antti; Gudipati, Murthy S., E-mail: gudipati@jpl.nasa.gov

    2012-03-01

    Icy surfaces in our solar system are continually modified and sputtered with electrons, ions, and photons from solar wind, cosmic rays, and local magnetospheres in the cases of Jovian and Saturnian satellites. In addition to their prevalence, electrons specifically are expected to be a principal radiolytic agent on these satellites. Among energetic particles (electrons and ions), electrons penetrate by far the deepest into the ice and could cause damage to organic material of possible prebiotic and even biological importance. To determine if organic matter could survive and be detected through remote sensing or in situ explorations on these surfaces, suchmore » as water ice-rich Europa, it is important to obtain accurate data quantifying electron-induced chemistry and damage depths of organics at varying incident electron energies. Experiments reported here address the quantification issue at lower electron energies (100 eV-2 keV) through rigorous laboratory data analysis obtained using a novel methodology. A polycyclic aromatic hydrocarbon molecule, pyrene, embedded in amorphous water ice films of controlled thicknesses served as an organic probe. UV-VIS spectroscopic measurements enabled quantitative assessment of organic matter survival depths in water ice. Eight ices of various thicknesses were studied to determine damage depths more accurately. The electron damage depths were found to be linear, approximately 110 nm keV{sup -1}, in the tested range which is noticeably higher than predictions by Monte Carlo simulations by up to 100%. We conclude that computational simulations underestimate electron damage depths in the energy region {<=}2 keV. If this trend holds at higher electron energies as well, present models utilizing radiation-induced organic chemistry in icy solar system bodies need to be revisited. For interstellar ices of a few micron thicknesses, we conclude that low-energy electrons generated through photoionization processes in the interstellar

  5. Beyond debuttressing: Mechanics of paraglacial rock slope damage during repeat glacial cycles

    NASA Astrophysics Data System (ADS)

    Grämiger, Lorenz M.; Moore, Jeffrey R.; Gischig, Valentin S.; Ivy-Ochs, Susan; Loew, Simon

    2017-04-01

    Cycles of glaciation impose mechanical stresses on underlying bedrock as glaciers advance, erode, and retreat. Fracture initiation and propagation constitute rock mass damage and act as preparatory factors for slope failures; however, the mechanics of paraglacial rock slope damage remain poorly characterized. Using conceptual numerical models closely based on the Aletsch Glacier region of Switzerland, we explore how in situ stress changes associated with fluctuating ice thickness can drive progressive rock mass failure preparing future slope instabilities. Our simulations reveal that glacial cycles as purely mechanical loading and unloading phenomena produce relatively limited new damage. However, ice fluctuations can increase the criticality of fractures in adjacent slopes, which may in turn increase the efficacy of fatigue processes. Bedrock erosion during glaciation promotes significant new damage during first deglaciation. An already weakened rock slope is more susceptible to damage from glacier loading and unloading and may fail completely. We find that damage kinematics are controlled by discontinuity geometry and the relative position of the glacier; ice advance and retreat both generate damage. We correlate model results with mapped landslides around the Great Aletsch Glacier. Our result that most damage occurs during first deglaciation agrees with the relative age of the majority of identified landslides. The kinematics and dimensions of a slope failure produced in our models are also in good agreement with characteristics of instabilities observed in the field. Our results extend simplified assumptions of glacial debuttressing, demonstrating in detail how cycles of ice loading, erosion, and unloading drive paraglacial rock slope damage.

  6. Modeled Variations of Precipitation over the Greenland Ice Sheet.

    NASA Astrophysics Data System (ADS)

    Bromwich, David H.; Robasky, Frank M.; Keen, Richard A.; Bolzan, John F.

    1993-07-01

    A parameterization of the synoptic activity at 500 hPa and a simple orographic scheme are used to model the spatial and temporal variations of precipitation over the Greenland Ice Sheet for 1963-88 from analyzed geopotential height fields produced by the National Meteorological Center (NMC). Model coefficients are fitted to observed accumulation data, primarily from the summit area of the ice sheet. All major spatial characteristics of the observed accumulation distribution are reproduced apart from the orographic accumulation maximum over the northwestern coastal slopes. The modeled time-averaged total precipitation amount over Greenland is within the range of values determined by other investigators from surface-based observations. A realistic degree of interannual variability in precipitation is also simulated.A downward trend in simulated ice sheet precipitation over the 26 years is found. This is supported by a number of lines of evidence. It matches the accumulation trends during this period from ice cores drilled in south-central Greenland. The lower tropospheric specific humidifies at two south coastal radiosonde stations also decrease over this interval. A systematic shift away from Greenland and a decrease in activity of the dominant storm track are found for relatively low precipitation periods as compared to relatively high precipitation periods. This negative precipitation trend would mean that the Greenland Ice Sheet, depending on its 1963 mass balance state, has over the 1963-88 period either decreased its negative, or increased its positive, contribution to recently observed global sea level rise.Superimposed on the declining simulated precipitation rate for the entire ice sheet is a pronounced 3-5-yr periodicity. This is prominent in the observed and modeled precipitation time series from Summit, Greenland. This cycle shows some aspects in common with the Southern Oscillation.Some deficiencies in the NMC analysts were highlighted by this work. A

  7. Impact of storms on coastlines: preparing for the future without forgetting the past? Examples from European coastlines using a Storm Impact Database

    NASA Astrophysics Data System (ADS)

    Ciavola, Paolo; Garnier, Emmanuel; Ferreira, Oscar; Spencer, Thomas; Armaroli, Clara

    2017-04-01

    Severe storms have historically affected many European coastlines but the impact of each storm has been evaluated in different ways in different countries, often using local socio-economic impact criteria (e.g. loss of lives and damage to properties). Although the Xynthia (2010) storm, Atlantic coast of France, was the largest coastal disaster of the last 50 years, similar events have previously impacted Europe. The 1953 storm surge in the southern North Sea, resulted in over 2000 deaths and extensive flooding and was the catalyst for post WWII improvements in flood defences and storm early warning systems. On a longer timescale, the very extreme storm of 1634 AD re-configured Wadden Sea coastlines, accompanied by thousands of deaths. Establishing patterns of coastal risk and vulnerability is greatly helped by the use of historical sources, as these allow the development of more complete time series of storm events and their impacts. The work to be presented was supported by the EU RISC-KIT (Resilience-Increasing Strategies for Coasts - toolKIT) Project. RISC-KIT (http://www.risckit.eu/np4/home.html) is a EU FP7 Collaborative project that has developed methods, tools and management approaches to reduce risk and increase resilience to low frequency, high-impact hydro-meteorological events in the coastal zone. These products will enhance forecasting, prediction and early warning capabilities, improve the assessment of long-term coastal risk and optimize the mix of prevention, mitigation and preparedness measures. We analyse historical large-scale events occurred from The Middle Ages to the 1960s at the case study sites of North Norfolk Coast (UK), the Charente-Maritime and Vendée coast (France), the Cinque Terre-Liguria (Italy), the Emilia-Romagna coast (Italy), and the Ria Formosa coast (Portugal). The work presented here uses a database of events built by the project, examining records for the last 300 years, including the characteristics of the storms as well as

  8. Impact of hurricanes storm surges on the groundwater resources

    USGS Publications Warehouse

    Van Biersel, T. P.; Carlson, D.A.; Milner, L.R.

    2007-01-01

    Ocean surges onto coastal lowlands caused by tropical and extra tropical storms, tsunamis, and sea level rise affect all coastal lowlands and present a threat to drinking water resources of many coastal residents. In 2005, two such storms, Hurricanes Katrina and Rita struck the Gulf Coast of the US. Since September 2005, water samples have been collected from water wells impacted by the hurricanes' storm surges along the north shore of Lake Pontchartrain in southeastern Louisiana. The private and public water wells tested were submerged by 0.6-4.5 m of surging saltwater for several hours. The wells' casing and/or the associated plumbing were severely damaged. Water samples were collected to determine if storm surge water inundated the well casing and, if so, its effect on water quality within the shallow aquifers of the Southern Hills Aquifer System. In addition, the samples were used to determine if the impact on water quality may have long-term implication for public health. Laboratory testing for several indicator parameters (Ca/Mg, Cl/Si, chloride, boron, specific conductance and bacteria) indicates that surge water entered water wells' casing and the screened aquifer. Analysis of the groundwater shows a decrease in the Ca/Mg ratio right after the storm and then a return toward pre-Katrina values. Chloride concentrations were elevated right after Katrina and Rita, and then decreased downward toward pre-Katrina values. From September 2005 to June 2006, the wells showed improvement in all the saltwater intrusion indicators. ?? 2007 Springer-Verlag.

  9. Satellite remote sensing and cloud modeling of St. Anthony, Minnesota storm clouds and dew point depression

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Tsao, Y. D.

    1988-01-01

    Rawinsonde data and geosynchronous satellite imagery were used to investigate the life cycles of St. Anthony, Minnesota's severe convective storms. It is found that the fully developed storm clouds, with overshooting cloud tops penetrating above the tropopause, collapsed about three minutes before the touchdown of the tornadoes. Results indicate that the probability of producing an outbreak of tornadoes causing greater damage increases when there are higher values of potential energy storage per unit area for overshooting cloud tops penetrating the tropopause. It is also found that there is less chance for clouds with a lower moisture content to be outgrown as a storm cloud than clouds with a higher moisture content.

  10. Extensive Ice Fractures in the Beaufort Sea [detail

    NASA Image and Video Library

    2017-12-08

    The Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi NPP satellite captured this view of extensive sea-ice fracturing off the northern coast of Alaska. The event began in late-January and spread west toward Banks Island throughout February and March 2013. Visualizations of the Arctic often give the impression that the ice cap is a continuous sheet of stationary, floating ice. In fact, it is a collection of smaller pieces that constantly shift, crack, and grind against one another as they are jostled by winds and ocean currents. Especially during the summer—but even during the height of winter—cracks—or leads—open up between pieces of ice. That was what was happening on the left side of the animation (seen here: bit.ly/10kE7sh) in late January. A high-pressure weather system was parked over the region, producing warmer temperatures and winds that flowed in a southwesterly direction. That fueled the Beaufort Gyre, a wind-driven ocean current that flows clockwise. The gyre was the key force pulling pieces of ice west past Point Barrow, the northern nub of Alaska that protrudes into the Beaufort Sea. “A fracturing event in this area is not unusual because the Beaufort Gyre tends to push ice away from Banks Island and the Canadian Archipelago,” explained Walt Meier of the National Snow & Ice Data Center (NSIDC). “Point Barrow can act like a ‘pin point’ where the ice catches and fractures to the north and east.” In February, however, a series of storms passing over central Alaska exacerbated the fracturing. Strong westerly winds prompted several large pieces of ice to break away in an arc-shaped wave that moved progressively east. By the end of February, large pieces of ice had fractured all the way to the western coast of Banks Island, a distance of about 1,000 kilometers (600 miles). The data used to create the animation came from the longwave infrared (thermal) portion of the electromagnetic spectrum, so the animation illustrates how

  11. Extensive Ice Fractures in the Beaufort Sea [annotated

    NASA Image and Video Library

    2017-12-08

    The Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi NPP satellite captured this view of extensive sea-ice fracturing off the northern coast of Alaska. The event began in late-January and spread west toward Banks Island throughout February and March 2013. Visualizations of the Arctic often give the impression that the ice cap is a continuous sheet of stationary, floating ice. In fact, it is a collection of smaller pieces that constantly shift, crack, and grind against one another as they are jostled by winds and ocean currents. Especially during the summer—but even during the height of winter—cracks—or leads—open up between pieces of ice. That was what was happening on the left side of the animation (seen here: bit.ly/10kE7sh) in late January. A high-pressure weather system was parked over the region, producing warmer temperatures and winds that flowed in a southwesterly direction. That fueled the Beaufort Gyre, a wind-driven ocean current that flows clockwise. The gyre was the key force pulling pieces of ice west past Point Barrow, the northern nub of Alaska that protrudes into the Beaufort Sea. “A fracturing event in this area is not unusual because the Beaufort Gyre tends to push ice away from Banks Island and the Canadian Archipelago,” explained Walt Meier of the National Snow & Ice Data Center (NSIDC). “Point Barrow can act like a ‘pin point’ where the ice catches and fractures to the north and east.” In February, however, a series of storms passing over central Alaska exacerbated the fracturing. Strong westerly winds prompted several large pieces of ice to break away in an arc-shaped wave that moved progressively east. By the end of February, large pieces of ice had fractured all the way to the western coast of Banks Island, a distance of about 1,000 kilometers (600 miles). The data used to create the animation came from the longwave infrared (thermal) portion of the electromagnetic spectrum, so the animation illustrates how

  12. Shrinking Sea Ice, Thawing Permafrost, Bigger Storms, and Extremely Limited Data - Addressing Information Needs of Stakeholders in Western Alaska Through Participatory Decisions and Collaborative Science.

    NASA Astrophysics Data System (ADS)

    Murphy, K. A.; Reynolds, J.

    2015-12-01

    Communities, Tribes, and decision makers in coastal western Alaska are being impacted by declining sea ice, sea level rise, changing storm patterns and intensities, and increased rates of coastal erosion. Relative to their counterparts in the contiguous USA, their ability to plan for and respond to these changes is constrained by the region's generally meager or non-existent information base. Further, the information needs and logistic challenges are of a scale that perhaps can be addressed only through strong, strategic collaboration. Landscape Conservation Cooperatives (LCCs) are fundamentally about applied science and collaboration, especially collaborative decision making. The Western Alaska LCC has established a process of participatory decision making that brings together researchers, agency managers, local experts from Tribes and field specialists to identify and prioritize shared information needs; develop a course of action to address them by using the LCC's limited resources to catalyze engagement, overcome barriers to progress, and build momentum; then ensure products are delivered in a manner that meets decision makers' needs. We briefly review the LCC's activities & outcomes from the stages of (i) collaborative needs assessment (joint with the Alaska Climate Science Center and the Alaska Ocean Observing System), (ii) strategic science activities, and (iii) product refinement and delivery. We discuss lessons learned, in the context of our recent program focused on 'Changes in Coastal Storms and Their Impacts' and current collaborative efforts focused on delivery of Coastal Resiliency planning tools and results from applied science projects. Emphasis is given to the various key interactions between scientists and decision makers / managers that have been promoted by this process to ensure alignment of final products to decision maker needs.

  13. Long-term effects of livestock loss caused by dust storm on mongolian inhabitants: a survey 1 year after the dust storm.

    PubMed

    Mu, Haosheng; Otani, Shinji; Shinoda, Masato; Yokoyama, Yae; Onishi, Kazunari; Hosoda, Takenobu; Okamoto, Mikizo; Kurozawa, Youichi

    2013-03-01

    Every spring, windblown dust storms damage human health and cause many domestic animal deaths in Mongolia. In particular, mass livestock death results in severe, direct economic loss to inhabitants. However, there is little empirical evidence to demonstrate the long-term effects of dust storm, especially in terms of health-related quality of life (HRQoL) secondary to livestock loss. We evaluated the long-term effects of livestock loss on Mongolian inhabitants. We performed a cross-sectional survey of HRQoL using 36-item short-form health survey (SF-36, an index of the health condition) 1 year after a dust storm. The study subjects were 64 inhabitants of stricken areas of Mongolia. The data collection method was a face-to-face interview with a questionnaire. A total of 64 subjects were interviewed, 81% in the victims group and 19% in the non-victims group. The mean number of livestock victims was 83.3, s = 128.3. The SF-36 subscale scores were lower among people who lost livestock than among those who did not. Multiple regression analysis displayed a significant association between livestock loss and HRQoL (general health: = -0.476, P = 0.021; vitality: = -0.359, P = 0.013). Our results provide preliminary evidence that livestock loss has long-term effects on HRQoL. Thus, it is necessary to conduct epidemiologic surveys on disorders associated with dust storms and devise countermeasures for the future.

  14. Severe Autumn storms in future Western Europe with a warmer Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Baatsen, Michiel; Haarsma, Reindert J.; Van Delden, Aarnout J.; de Vries, Hylke

    2015-08-01

    Simulations with a very high resolution (~25 km) global climate model indicate that more severe Autumn storms will impact Europe in a warmer future climate. The observed increase is mainly attributed to storms with a tropical origin, especially in the later part of the twentyfirst century. As their genesis region expands, tropical cyclones become more intense and their chances of reaching Europe increase. This paper investigates the properties and evolution of such storms and clarifies the future changes. The studied tropical cyclones feature a typical evolution of tropical development, extratropical transition and a re-intensification. A reduction of the transit area between regions of tropical and extratropical cyclogenesis increases the probability of re-intensification. Many of the modelled storms exhibit hybrid properties in a considerable part of their life cycle during which they exhibit the hazards of both tropical and extratropical systems. In addition to tropical cyclones, other systems such as cold core extratropical storms mainly originating over the Gulf Stream region also increasingly impact Western Europe. Despite their different history, all of the studied storms have one striking similarity: they form a warm seclusion. The structure, intensity and frequency of storms in the present climate are compared to observations using the MERRA and IBTrACS datasets. Damaging winds associated with the occurrence of a sting jet are observed in a large fraction of the cyclones during their final stage. Baroclinic instability is of great importance for the (re-)intensification of the storms. Furthermore, so-called atmospheric rivers providing tropical air prove to be vital for the intensification through diabatic heating and will increase considerably in strength in the future, as will the associated flooding risks.

  15. Atmospheric components of the surface energy budget over young sea ice: Results from the N-ICE2015 campaign

    NASA Astrophysics Data System (ADS)

    Walden, Von P.; Hudson, Stephen R.; Cohen, Lana; Murphy, Sarah Y.; Granskog, Mats A.

    2017-08-01

    The Norwegian young sea ice campaign obtained the first measurements of the surface energy budget over young, thin Arctic sea ice through the seasonal transition from winter to summer. This campaign was the first of its kind in the North Atlantic sector of the Arctic. This study describes the atmospheric and surface conditions and the radiative and turbulent heat fluxes over young, thin sea ice. The shortwave albedo of the snow surface ranged from about 0.85 in winter to 0.72-0.80 in early summer. The near-surface atmosphere was typically stable in winter, unstable in spring, and near neutral in summer once the surface skin temperature reached 0°C. The daily average radiative and turbulent heat fluxes typically sum to negative values (-40 to 0 W m-2) in winter but then transition toward positive values of up to nearly +60 W m-2 as solar radiation contributes significantly to the surface energy budget. The sensible heat flux typically ranges from +20-30 W m-2 in winter (into the surface) to negative values between 0 and -20 W m-2 in spring and summer. A winter case study highlights the significant effect of synoptic storms and demonstrates the complex interplay of wind, clouds, and heat and moisture advection on the surface energy components over sea ice in winter. A spring case study contrasts a rare period of 24 h of clear-sky conditions with typical overcast conditions and highlights the impact of clouds on the surface radiation and energy budgets over young, thin sea ice.

  16. Economic Impact Analyses of Interdisciplinary Multi-hazard Scenarios: ShakeOut and ARkStorm

    NASA Astrophysics Data System (ADS)

    Wein, A. M.; Rose, A.; Sue Wing, I.; Wei, D.

    2011-12-01

    U. S. Geological Survey (USGS) scientists are using an interdisciplinary strategy to develop and analyze multi-hazard scenarios to help communities enhance resilience to natural hazard disasters. Two such scenarios are the southern California ShakeOut earthquake and the California ARkStorm winter storm. Both scenarios are multi-hazard: Shakeout ground motions trigger landslides and liquefaction and ARkStorm involves wind, flood, landslide, and coastal hazards. A collaborative scenario-process engages partners and stakeholders throughout the development and use of the scenarios, In doing so, community resilience is enhanced by educating communities about hazards and hazard interdependencies, building networks from scientists to decision makers, exercising emergency management strategies, identifying emergency management issues, and motivating solutions prior to an event. In addition, interdisciplinary scenarios stimulate research on the various steps of analysis (e.g., natural hazard processes, physical damages, societal consequences, and policy connections). In particular, USGS scientists have collaborated with economists to advance methods to estimate the economic impacts (business interruption losses) of disasters. Our economic impact analyses evolved from the economic module in the Federal Emergency Management Agency's loss-estimation tool, HAZUS-MH, to a more encompassing input-output analysis for ShakeOut, to a more sophisticated Computable General Equilibrium model for ARkStorm. The analyses depend on physical damage and restoration time estimates from engineers and geographic analyses of economic assets in hazard zones. Economic resilience strategies are incorporated to represent resourcefulness and ingenuity that avoids potential losses during and after an event. Such strategies operate at three levels of the economy: micro (e.g., ability to catch up on lost production time), meso (e.g., coordination within a sector to share resources), and macro (e

  17. Lightning Activity Relative to the Microphysical and Kinematic Structure of Storms during a Thunder-Snow Episode on 29-30 November 2006

    NASA Astrophysics Data System (ADS)

    Emersic, C.; Macgorman, D.; Schuur, T.; Lund, N.; Payne, C.; Bruning, E.

    2007-12-01

    We have examined lightning activity relative to the microphysical and kinematic structure of a winter thunderstorm complex (a thunder-snow episode) observed east of Norman, Oklahoma during the evening of 29-30 November 2006. Polarimetric radar provided information about the type of particles present in various regions of the storms. The Lightning Mapping Array (LMA) recorded VHF signals produced by developing lightning channels. The times of arrival of these lightning signals across the array were then used to reconstruct the location and structure of lightning, and these reconstructions were overlaid with radar data to examine the relationship between lightning properties and storm particle types. Four storms in this winter complex have been examined. It was inferred from lightning structure that, in their mature stage, all cells we examined had a positive tripole electrical structure (an upper positive charge center, a midlevel negative charge center, and a lower positive charge center). The storms began with lightning activity in the lower dipole (lower positive and midlevel negative regions), but this evolved into lightning activity throughout the tripole structure within approximately 15-20 minutes. In the longer lived storms, the mature stage lasted for approximately 1.5-2 hours. During this stage, the lower positive charge region was situated less than 5 km above ground, the midlevel negative charge region was typically above 5 km, and the upper positive charge region was located at an altitude of less than 10 km in all the storm cells analyzed. The charge regions descended over approximately the last 30 minutes of lightning activity, the lower charge regions eventually reaching ground. This resulted in the loss of the lower positive charge center and the subsequent diminishment of the lower negative charge center. Lightning initiation usually coincided with the edges of regions of high reflectivity and was coincident with the presence of graupel and ice

  18. Towards robust optimal design of storm water systems

    NASA Astrophysics Data System (ADS)

    Marquez Calvo, Oscar; Solomatine, Dimitri

    2015-04-01

    In this study the focus is on the design of a storm water or a combined sewer system. Such a system should be capable to handle properly most of the storm to minimize the damages caused by flooding due to the lack of capacity of the system to cope with rain water at peak times. This problem is a multi-objective optimization problem: we have to take into account the minimization of the construction costs, the minimization of damage costs due to flooding, and possibly other criteria. One of the most important factors influencing the design of storm water systems is the expected amount of water to deal with. It is common that this infrastructure is developed with the capacity to cope with events that occur once in, say 10 or 20 years - so-called design rainfall events. However, rainfall is a random variable and such uncertainty typically is not taken explicitly into account in optimization. Rainfall design data is based on historical information of rainfalls, but many times this data is based on unreliable measures; or in not enough historical information; or as we know, the patterns of rainfall are changing regardless of historical information. There are also other sources of uncertainty influencing design, for example, leakages in the pipes and accumulation of sediments in pipes. In the context of storm water or combined sewer systems design or rehabilitation, robust optimization technique should be able to find the best design (or rehabilitation plan) within the available budget but taking into account uncertainty in those variables that were used to design the system. In this work we consider various approaches to robust optimization proposed by various authors (Gabrel, Murat, Thiele 2013; Beyer, Sendhoff 2007) and test a novel method ROPAR (Solomatine 2012) to analyze robustness. References Beyer, H.G., & Sendhoff, B. (2007). Robust optimization - A comprehensive survey. Comput. Methods Appl. Mech. Engrg., 3190-3218. Gabrel, V.; Murat, C., Thiele, A. (2014

  19. Design and quantification of an extreme winter storm scenario for emergency preparedness and planning exercises in California

    USGS Publications Warehouse

    Dettinger, M.D.; Martin, Ralph F.; Hughes, M.; Das, T.; Neiman, P.; Cox, D.; Estes, G.; Reynolds, D.; Hartman, R.; Cayan, D.; Jones, L.

    2012-01-01

    The USGS Multihazards Project is working with numerous agencies to evaluate and plan for hazards and damages that could be caused by extreme winter storms impacting California. Atmospheric and hydrological aspects of a hypothetical storm scenario have been quantified as a basis for estimation of human, infrastructure, economic, and environmental impacts for emergency-preparedness and flood-planning exercises. In order to ensure scientific defensibility and necessary levels of detail in the scenario description, selected historical storm episodes were concatentated to describe a rapid arrival of several major storms over the state, yielding precipitation totals and runoff rates beyond those occurring during the individual historical storms. This concatenation allowed the scenario designers to avoid arbitrary scalings and is based on historical occasions from the 19th and 20th Centuries when storms have stalled over the state and when extreme storms have arrived in rapid succession. Dynamically consistent, hourly precipitation, temperatures, barometric pressures (for consideration of storm surges and coastal erosion), and winds over California were developed for the so-called ARkStorm scenario by downscaling the concatenated global records of the historical storm sequences onto 6- and 2-km grids using a regional weather model of January 1969 and February 1986 storm conditions. The weather model outputs were then used to force a hydrologic model to simulate ARkStorm runoff, to better understand resulting flooding risks. Methods used to build this scenario can be applied to other emergency, nonemergency and non-California applications. ?? 2011 The Author(s).

  20. Magnetic Storms

    NASA Technical Reports Server (NTRS)

    Tsurutani, Bruce T.; Gonzalez, Walter D.

    1998-01-01

    One of the oldest mysteries in geomagnetism is the linkage between solar and geomagnetic activity. The 11-year cycles of both the numbers of sunspots and Earth geomagnetic storms were first noted by Sabine. A few years later, speculation on a causal relationship between flares and storms arose when Carrington reported that a large magnetic storm followed the great September 1859 solar flare. However, it was not until this century that a well-accepted statistical survey on large solar flares and geomagnetic storms was performed, and a significant correlation between flares and geomagnetic storms was noted. Although the two phenomena, one on the Sun and the other on the Earth, were statistically correlated, the exact physical linkage was still an unknown at this time. Various hypotheses were proposed, but it was not until interplanetary spacecraft measurements were available that a high-speed plasma stream rich in helium was associated with an intense solar flare. The velocity of the solar wind increased just prior to and during the helium passage, identifying the solar ejecta for the first time. Space plasma measurements and Skylab's coronagraph images of coronal mass elections (CMES) from the Sun firmly established the plasma link between the Sun and the Earth. One phenomenon associated with magnetic storms is brilliant "blood" red auroras, as shown.

  1. Applications of Earth Remote Sensing for Identifying Tornado and Severe Weather Damage

    NASA Technical Reports Server (NTRS)

    Schultz, Lori; Molthan, Andrew; Burks, Jason E.; Bell, Jordan; McGrath, Kevin; Cole, Tony

    2016-01-01

    NASA SPoRT (Short-term Prediction Research and Transition Center) provided MODIS (Moderate Resolution Imaging Spectrometer) and ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) imagery to WFOs (Weather Forecast Offices) in Alabama to support April 27th, 2011 damage assessments across the state. SPoRT was awarded a NASA Applied Science: Disasters Feasibility award to investigate the applicability of including remote sensing imagery and derived products into the NOAA/NWS (National Oceanic and Atmospheric Administration/National Weather System) Damage Assessment Toolkit (DAT). Proposal team was awarded the 3-year proposal to implement a web mapping service and associate data feeds from the USGS (U.S. Geological Survey) to provide satellite imagery and derived products directly to the NWS thru the DAT. In the United States, NOAA/NWS is charged with performing damage assessments when storm or tornado damage is suspected after a severe weather event. This has led to the development of the Damage Assessment Toolkit (DAT), an application for smartphones, tablets and web browsers that allows for the collection, geo-location, and aggregation of various damage indicators collected during storm surveys.

  2. Klaus, an exceptional winter storm over Northern Iberia and Southern France - a comparison between storm diagnostics

    NASA Astrophysics Data System (ADS)

    Liberato, M. L. R.; Pinto, J. G.; Trigo, I. F.; Trigo, R. M.

    2010-05-01

    The synoptic evolution and dynamical characteristics of storm "Klaus" (23 and 24 January 2009) are analysed. "Klaus" was an extratropical cyclone which developed over the subtropical North Atlantic Ocean on the 21st January 2009, then moved eastward embedded in the strong westerly flow and experienced a notorious strengthening on the 23rd January. The storm moved into the Bay of Biscay and deepened further before hitting Northern Spain and Southwestern France with gusts of up to 198 km/h. Afterwards, it steered southeastwards across Southern France into Northern Italy and the Adriatic. "Klaus" was the most intense and damaging wind storm in the region in a decade, provoked more than 20 casualties and insured losses of several billion Euros. The evolution of "Klaus" is analysed using two standard cyclone detecting and tracking schemes: a) the vorticity maxima based algorithm originally developed by Murray and Simmonds [1991], adapted for Northern Hemisphere cyclone characteristics [Pinto et al. 2005]; and b) the pressure minima based algorithm first developed for the Mediterranean region [Trigo et al. 1999; 2002] and later extended to a larger Euro-Atlantic region [Trigo 2006]. Additionally, the synoptic and mesoscale features of the storm are analysed. The vorticity based method detects the storm earlier than the pressure minima one. Results show that both tracks exhibited similar features and positions throughout almost all of their lifecycles, with minor discrepancies being probably related to different ways of both methods handling the spatio-temporal evolution of multiple candidates for cyclonic centres. In its strengthening phase, "Klaus" presents deepening rates above 37 hPa/24h, a value that after geostrophically adjusted to the reference latitude of 60°N increases to 44 hPa/24h, implying an exceptional event with bomb characteristics. During maximum intensity change within 24 hours was 1.165hPa/(deglat)2. References: Murray RJ, Simmonds I (1991) Aust

  3. Effects of Hurricane Katrina’s storm surge on the quality of shallow aquifers near the northern shoreline of Lake Pontchartrain, southeastern Louisiana: Chapter 7D in Science and the storms-the USGS response to the hurricanes of 2005

    USGS Publications Warehouse

    Tomaszewski, Dan J.; Lovelace, John K.

    2007-01-01

    The U.S. Geological Survey (USGS) sampled 13 wells on the northern shoreline of Lake Pontchartrain to determine the effect of Hurricane Katrina-induced storm surge water on the shallow groundwater resources. Surge water entering damaged wells did not contaminate the entire aquifer; however, contamination did occur locally at well sites. Because the storm surge from Katrina lasted only a few hours, surge water entering the aquifer will probably have only a short-term effect.

  4. The View from the Top: CALIOP Ice Water Content in the Uppermost Layer of Tropical Cyclones

    NASA Technical Reports Server (NTRS)

    Avery, Melody A.; Deng, Min; Garnier, Anne; Heymsfield, Andrew; Pelon, Jacques; Powell, Kathleen A.; Trepte, Charles R.; Vaughan, Mark A.; Winker, David M.; Young, Stuart

    2012-01-01

    NASA's CALIPSO satellite carries both the Cloud and Aerosol Lidar with Orthogonal Polarization (CALIOP) and the Imaging Infrared Radiometer (IIR). The lidar is ideally suited to viewing the very top of tropical cyclones, and the IIR provides critical optical and microphysical information. The lidar and the IIR data work together to understand storm clouds since they are perfectly co-located, and big tropical cyclones provide an excellent complex target for comparing the observations. There is a lot of information from these case studies for understanding both the observations and the tropical cyclones, and we are just beginning to scratch the surface of what can be learned. Many tropical cyclone cloud particle measurements are focused on the middle and lower regions of storms, but characterization of cyclone interaction with the lowermost stratosphere at the upper storm boundary may be important for determining the total momentum and moisture transport budget, and perhaps for predicting storm intensity as well. A surprising amount of cloud ice is to be found at the very top of these big storms.

  5. Winter ocean-ice interactions under thin sea ice observed by IAOOS platforms during NICE2015:salty surface mixed layer and active basal melt

    NASA Astrophysics Data System (ADS)

    Provost, C.; Koenig, Z.; Villacieros-Robineau, N.; Sennechael, N.; Meyer, A.; Lellouche, J. M.; Garric, G.

    2016-12-01

    IAOOS platforms, measuring physical parameters at the atmosphere-snow-ice-ocean interface deployed as part of the N-ICE2015 campaign, provide new insights on winter conditions North of Svalbard. The three regions crossed during the drifts, the Nansen Basin, the Sofia Deep and the Svalbard northern continental slope featured distinct hydrographic properties and ice-ocean exchanges. In the Nansen Basin the quiescent warm layer was capped by a stepped halocline (60 and 110 m) and a deep thermocline (110 m). Ice was forming and the winter mixed layer salinity was larger by 0.1 g/kg than previously observed. Over the Svalbard continental slope, the Atlantic Water (AW) was very shallow (20 m from the surface) and extended offshore from the 500 m isobath by a distance of about 70 km, sank along the slope (40 m from the surface) and probably shedded eddies into the Sofia Deep. In the Sofia Deep, relatively warm waters of Atlantic origin extended from 90 m downward. Resulting from different pathways, these waters had a wide range of hydrographic characteristics. Sea-ice melt was widespread over the Svalbard continental slope and ocean-to-ice heat fluxes reached values of 400 Wm-2 (mean of 150 Wm-2 over the continentalslope). Sea-ice melt events were associated with near 12-hour fluctuations in the mixed-layer temperature and salinity corresponding to the periodicity of tides and near-inertial waves potentially generated by winter storms, large barotropic tides over steep topography and/or geostrophic adjustments.

  6. Intercomparison of mid latitude storm diagnostics (IMILAST)

    NASA Astrophysics Data System (ADS)

    Neu, U.

    2009-04-01

    Diagnostics of the observed and projection of the future changes of extratropical storms are a key issue e.g. for insurance companies, risk management and adaptation planning. Storm-associated damages are amongst the highest losses due to natural disasters in the mid-latitudes. Therefore the knowledge of the future variability and change in extratropical cyclone frequency, intensity and track locations is crucial for the strategic planning and minimization of the disaster impacts. Future changes in the total number of storms might be small but major signals could occur in the characteristics of cyclone life cycle such as intensity, life time, track locations. The quantification of such trends is not independent from the methodologies for storm track detection applied to observational data and models. Comparison of differences in cyclone characteristics obtained using different methods from a single data set may be as large as or even exceed the differences between the results derived from different data sets using a single methodology. Even more, the metrics used become particularly sensitive, resulting in the fact that scientific studies may find seemingly contradictory results based on the same datasets. For users of storm track analyses and projections the results are very difficult to interprete. Thus, it would be very helpful if the research community would provide information in a kind of "handbook" which contains definitions and a description of the available different identification and tracking schemes as well as of the parameters used for the quantification of cyclone activity. It cannot be expected that there is an optimum or standard scheme that fulfills all needs. Rather, a proper knowledge about advantages and restrictions of different schemes must be obtained to be able to provide a synthesis of results rather than puzzling the scientific and the general public with apparently contradicing statements. The project IMILAST aims at providing a

  7. Back-to-Back Martian Dust Storms

    NASA Image and Video Library

    2017-03-09

    dark gaps appear where data are missing. It isn't easy to see the actual dust motion in the atmosphere in these images, owing to the apparent motion of these artifacts. However, by concentrating on specific surface features (craters, prominent ice deposits, etc.) and looking for the tan clouds of dust, it is possible to see where the storms start and how they grow, move and eventually dissipate. Movies are available at http://photojournal.jpl.nasa.gov/catalog/PIA21484

  8. Health Effects of Coastal Storms and Flooding in Urban Areas: A Review and Vulnerability Assessment

    PubMed Central

    Charles-Guzman, Kizzy; Matte, Thomas

    2013-01-01

    Coastal storms can take a devastating toll on the public's health. Urban areas like New York City (NYC) may be particularly at risk, given their dense population, reliance on transportation, energy infrastructure that is vulnerable to flood damage, and high-rise residential housing, which may be hard-hit by power and utility outages. Climate change will exacerbate these risks in the coming decades. Sea levels are rising due to global warming, which will intensify storm surge. These projections make preparing for the health impacts of storms even more important. We conducted a broad review of the health impacts of US coastal storms to inform climate adaptation planning efforts, with a focus on outcomes relevant to NYC and urban coastal areas, and incorporated some lessons learned from recent experience with Superstorm Sandy. Based on the literature, indicators of health vulnerability were selected and mapped within NYC neighborhoods. Preparing for the broad range of anticipated effects of coastal storms and floods may help reduce the public health burden from these events. PMID:23818911

  9. Health effects of coastal storms and flooding in urban areas: a review and vulnerability assessment.

    PubMed

    Lane, Kathryn; Charles-Guzman, Kizzy; Wheeler, Katherine; Abid, Zaynah; Graber, Nathan; Matte, Thomas

    2013-01-01

    Coastal storms can take a devastating toll on the public's health. Urban areas like New York City (NYC) may be particularly at risk, given their dense population, reliance on transportation, energy infrastructure that is vulnerable to flood damage, and high-rise residential housing, which may be hard-hit by power and utility outages. Climate change will exacerbate these risks in the coming decades. Sea levels are rising due to global warming, which will intensify storm surge. These projections make preparing for the health impacts of storms even more important. We conducted a broad review of the health impacts of US coastal storms to inform climate adaptation planning efforts, with a focus on outcomes relevant to NYC and urban coastal areas, and incorporated some lessons learned from recent experience with Superstorm Sandy. Based on the literature, indicators of health vulnerability were selected and mapped within NYC neighborhoods. Preparing for the broad range of anticipated effects of coastal storms and floods may help reduce the public health burden from these events.

  10. Sea ice protects the embryos of the Antarctic sea urchin Sterechinus neumayeri from oxidative damage due to naturally enhanced levels of UV-B radiation.

    PubMed

    Lister, Kathryn N; Lamare, Miles D; Burritt, David J

    2010-06-01

    The 'ozone hole' has caused an increase in ultraviolet B radiation (UV-B, 280-320 nm) penetrating Antarctic coastal marine ecosystems, however the direct effect of this enhanced UV-B on pelagic organisms remains unclear. Oxidative stress, the in vivo production of reactive oxygen species to levels high enough to overcome anti-oxidant defences, is a key outcome of exposure to solar radiation, yet to date few studies have examined this physiological response in Antarctic marine species in situ or in direct relation to the ozone hole. To assess the biological effects of UV-B, in situ experiments were conducted at Cape Armitage in McMurdo Sound, Antarctica (77.06 degrees S, 164.42 degrees E) on the common Antarctic sea urchin Sterechinus neumayeri Meissner (Echinoidea) over two consecutive 4-day periods in the spring of 2008 (26-30 October and 1-5 November). The presence of the ozone hole, and a corresponding increase in UV-B exposure, resulted in unequivocal increases in oxidative damage to lipids and proteins, and developmental abnormality in embryos of S. neumayeri growing in open waters. Results also indicate that embryos have only a limited capacity to increase the activities of protective antioxidant enzymes, but not to levels sufficient to prevent severe oxidative damage from occurring. Importantly, results show that the effect of the ozone hole is largely mitigated by sea ice coverage. The present findings suggest that the coincidence of reduced stratospheric ozone and a reduction in sea ice coverage may produce a situation in which significant damage to Antarctic marine ecosystems may occur.

  11. Proxy records of Holocene storm events in coastal barrier systems: Storm-wave induced markers

    NASA Astrophysics Data System (ADS)

    Goslin, Jérôme; Clemmensen, Lars B.

    2017-10-01

    Extreme storm events in the coastal zone are one of the main forcing agents of short-term coastal system behavior. As such, storms represent a major threat to human activities concentrated along the coasts worldwide. In order to better understand the frequency of extreme events like storms, climate science must rely on longer-time records than the century-scale records of instrumental weather data. Proxy records of storm-wave or storm-wind induced activity in coastal barrier systems deposits have been widely used worldwide in recent years to document past storm events during the last millennia. This review provides a detailed state-of-the-art compilation of the proxies available from coastal barrier systems to reconstruct Holocene storm chronologies (paleotempestology). The present paper aims (I) to describe the erosional and depositional processes caused by storm-wave action in barrier and back-barrier systems (i.e. beach ridges, storm scarps and washover deposits), (ii) to understand how storm records can be extracted from barrier and back-barrier sedimentary bodies using stratigraphical, sedimentological, micro-paleontological and geochemical proxies and (iii) to show how to obtain chronological control on past storm events recorded in the sedimentary successions. The challenges that paleotempestology studies still face in the reconstruction of representative and reliable storm-chronologies using these various proxies are discussed, and future research prospects are outlined.

  12. Investigating the Sensitivity of Nucleation Parameterization on Ice Growth

    NASA Astrophysics Data System (ADS)

    Gaudet, L.; Sulia, K. J.

    2017-12-01

    The accurate prediction of precipitation from lake-effect snow events associated with the Great Lakes region depends on the parameterization of thermodynamic and microphysical processes, including the formation and subsequent growth of frozen hydrometeors. More specifically, the formation of ice hydrometeors has been represented through varying forms of ice nucleation parameterizations considering the different nucleation modes (e.g., deposition, condensation-freezing, homogeneous). These parameterizations have been developed from in-situ measurements and laboratory observations. A suite of nucleation parameterizations consisting of those published in Meyers et al. (1992) and DeMott et al. (2010) as well as varying ice nuclei data sources are coupled with the Adaptive Habit Model (AHM, Harrington et al. 2013), a microphysics module where ice crystal aspect ratio and density are predicted and evolve in time. Simulations are run with the AHM which is implemented in the Weather Research and Forecasting (WRF) model to investigate the effect of ice nucleation parameterization on the non-spherical growth and evolution of ice crystals and the subsequent effects on liquid-ice cloud-phase partitioning. Specific lake-effect storms that were observed during the Ontario Winter Lake-Effect Systems (OWLeS) field campaign (Kristovich et al. 2017) are examined to elucidate this potential microphysical effect. Analysis of these modeled events is aided by dual-polarization radar data from the WSR-88D in Montague, New York (KTYX). This enables a comparison of the modeled and observed polarmetric and microphysical profiles of the lake-effect clouds, which involves investigating signatures of reflectivity, specific differential phase, correlation coefficient, and differential reflectivity. Microphysical features of lake-effect bands, such as ice, snow, and liquid mixing ratios, ice crystal aspect ratio, and ice density are analyzed to understand signatures in the aforementioned modeled

  13. Improved predictions of atmospheric icing in Norway

    NASA Astrophysics Data System (ADS)

    Engdahl, Bjørg Jenny; Nygaard, Bjørn Egil; Thompson, Gregory; Bengtsson, Lisa; Berntsen, Terje

    2017-04-01

    Atmospheric icing of ground structures is a problem in cold climate locations such as Norway. During the 2013/2014 winter season two major power lines in southern Norway suffered severe damage due to ice loads exceeding their design values by two to three times. Better methods are needed to estimate the ice loads that affect various infrastructure, and better models are needed to improve the prediction of severe icing events. The Wind, Ice and Snow loads Impact on Infrastructure and the Natural Environment (WISLINE) project, was initiated to address this problem and to explore how a changing climate may affect the ice loads in Norway. Creating better forecasts of icing requires a proper simulation of supercooled liquid water (SLW). Preliminary results show that the operational numerical weather prediction model (HARMONIE-AROME) at MET-Norway generates considerably lower values of SLW as compared with the WRF model when run with the Thompson microphysics scheme. Therefore, we are piecewise implementing specific processes found in the Thompson scheme into the AROME model and testing the resulting impacts to prediction of SLW and structural icing. Both idealized and real icing cases are carried out to test the newly modified AROME microphysics scheme. Besides conventional observations, a unique set of specialized instrumentation for icing measurements are used for validation. Initial results of this investigation will be presented at the conference.

  14. Hydrogen escape from Mars enhanced by deep convection in dust storms

    NASA Astrophysics Data System (ADS)

    Heavens, Nicholas G.; Kleinböhl, Armin; Chaffin, Michael S.; Halekas, Jasper S.; Kass, David M.; Hayne, Paul O.; McCleese, Daniel J.; Piqueux, Sylvain; Shirley, James H.; Schofield, John T.

    2018-02-01

    Present-day water loss from Mars provides insight into Mars's past habitability1-3. Its main mechanism is thought to be Jeans escape of a steady hydrogen reservoir sourced from odd-oxygen reactions with near-surface water vapour2, 4,5. The observed escape rate, however, is strongly variable and correlates poorly with solar extreme-ultraviolet radiation flux6-8, which was predicted to modulate escape9. This variability has recently been attributed to hydrogen sourced from photolysed middle atmospheric water vapour10, whose vertical and seasonal distribution is only partly characterized and understood11-13. Here, we report multi-annual observational estimates of water content and dust and water transport to the middle atmosphere from Mars Climate Sounder data. We provide strong evidence that the transport of water vapour and ice to the middle atmosphere by deep convection in Martian dust storms can enhance hydrogen escape. Planet-encircling dust storms can raise the effective hygropause (where water content rapidly decreases to effectively zero) from 50 to 80 km above the areoid (the reference equipotential surface). Smaller dust storms contribute to an annual mode in water content at 40-50 km that may explain seasonal variability in escape. Our results imply that Martian atmospheric chemistry and evolution can be strongly affected by the meteorology of the lower and middle atmosphere of Mars.

  15. Measurement of Attenuation with Airborne and Ground-Based Radar in Convective Storms Over Land and Its Microphysical Implications

    NASA Technical Reports Server (NTRS)

    Tian, Lin; Heymsfield, G. M.; Srivastava, R. C.; Starr, D. OC. (Technical Monitor)

    2001-01-01

    Observations by the airborne X-band Doppler radar (EDOP) and the NCAR S-band polarimetric (S-POL) radar from two field experiments are used to evaluate the Surface ref'ercnce technique (SRT) for measuring the path integrated attenuation (PIA) and to study attenuation in deep convective storms. The EDOP, flying at an altitude of 20 km, uses a nadir beam and a forward pointing beam. It is found that over land, the surface scattering cross-section is highly variable at nadir incidence but relatively stable at forward incidence. It is concluded that measurement by the forward beam provides a viable technique for measuring PIA using the SRT. Vertical profiles of peak attenuation coefficient are derived in vxo deep convective storms by the dual-wavelength method. Using the measured Doppler velocity, the reflectivities at. the two wavelengths, the differential reflectivity and the estimated attenuation coefficients, it is shown that: supercooled drops and dry ice particles probably co-existed above the melting level in regions of updraft, that water-coated partially melted ice particles probably contributed to high attenuation below the melting level, and that the data are not readil explained in terms of a gamma function raindrop size distribution.

  16. Using Continuum Damage Mechanics to Simulate Iceberg Calving from Tidewater Outlet Glaciers

    NASA Astrophysics Data System (ADS)

    Mercenier, R.; Lüthi, M.; Vieli, A.

    2017-12-01

    Many ocean terminating glaciers in the Arctic are currently undergoingrapid retreat, thinning and strong accelerations in flow. The processof iceberg calving plays a crucial role for the related dynamical masslosses and occurs when the stresses at the calving front exceed thefracture strength of ice, driving the propagation of cracks andeventually leading to the detachment of ice blocks from the glacierfront. However, the understanding of the processes involved in icebergcalving as well as the capability of flow models to represent thecalving mechanism remain limited.Here, we use a time-dependent two-dimensional finite-element flowmodel coupled to a damage model to simulate the break-off of ice atthe front of idealized tidewater outlet glaciers. The flow modelcomputes flow velocities and the resulting stresses, which are in turnused to calculate the evolution of the glacier geometry anddamage. Damage is defined as a change of rheological properties, e.g.viscosity, due to increasing material degradation. Elements of ice areremoved when the damage variable reaches a critical threshold. Theeffects of material properties and of geometrical parameters such aswater depth, ice thickness and submarine frontal melting on thesimulated calving rates are explored through systematic sensitivityanalyses.The coupled ice flow/damage model allows for successful reproductionof calving front geometries typically observed for different waterdepths. We further use detailed observations from real glaciergeometries to better constrain the model parameters. Theproposed model approach should be applicable to simulate icebergcalving on arbitrary glaciers, and thus be used to analyse theevolution of tidewater glacier variations from the past to the future.

  17. On the Storm Surge and Sea Level Rise Projections for Infrastructure Risk Analysis and Adaptation

    EPA Science Inventory

    Storm surge can cause coastal hydrology changes, flooding, water quality changes, and even inundation of low-lying terrain. Strong wave actions and disruptive winds can damage water infrastructure and other environmental assets (hazardous and solid waste management facilities, w...

  18. Development of Inundation Map for Bantayan Island, Cebu Using Delft3D-Flow Storm Surge Simulations of Typhoon Haiyan

    NASA Astrophysics Data System (ADS)

    Cuadra, Camille; Suarez, John Kenneth; Biton, Nophi Ian; Cabacaba, Krichi May; Lapidez, John Phillip; Santiago, Joy; Mahar Francisco Lagmay, Alfredo; Malano, Vicente

    2014-05-01

    On average, 20 typhoons enter the Philippine area of responsibility annually, making it vulnerable to different storm hazards. Apart from the frequency of tropical cyclones, the archipelagic nature of the country makes it particularly prone to storm surges. On 08 November 2013, Haiyan, a Category 5 Typhoon with maximum one-minute sustained wind speed of 315 kph, hit the central region of the Philippines. In its path, the howler devastated Bantayan Island, a popular tourist destination. The island is located north of Cebu City, the second largest metropolis of the Philippines in terms of populace. Having been directly hit by Typhoon Haiyan, Bantayan Island was severely damaged by strong winds and storm surges, with more than 11,000 houses totally destroyed while 5,000 more suffered minor damage. The adverse impacts of possible future storm surge events in the island can only be mitigated if hazard maps that depict inundation of the coastal areas of Bantayan are generated. To create such maps, Delft3D-Flow, a hydrodynamic model was used to simulate storm surges. These simulations were made over a 10-m per pixel resolution Digital Elevation Model (DEM) and the General Bathymetric Chart of the Oceans (GEBCO) bathymetry. The results of the coastal inundation model for Typhoon Haiyan's storm surges were validated using data collected from field work and local government reports. The hydrodynamic model of Bantayan was then calibrated using the field data and further simulations were made with varying typhoon tracks. This was done to generate scenarios on the farthest possible inland incursion of storm surges. The output of the study is a detailed storm surge inundation map that depicts safe zones for development of infrastructure near coastal areas and for construction of coastal protection structures. The storm surge inundation map can also be used as basis for disaster preparedness plans of coastal communities threatened by approaching typhoons.

  19. Anthropogenic Changes in Mid-latitude Storm and Blocking Activities from Observations and Climate Models

    NASA Astrophysics Data System (ADS)

    Li, D.

    2017-12-01

    Fingerprints of anthropogenic climate change can be most readily detected in the high latitudes of Northern Hemisphere, where temperature has been rising faster than the rest of the globe and sea ice cover has shrunk dramatically over recent decades. Reducing the meridional temperature gradient, this amplified warming over the high latitudes influences weather in the middle latitudes by modulating the jet stream, storms, and atmospheric blocking activities. Whether observational records have revealed significant changes in mid-latitude storms and blocking activities, however, has remained a subject of much debate. Buried deep in strong year-to-year variations, the long-term dynamic responses of the atmosphere are more difficult to identify, compared with its thermodynamic responses. Variabilities of decadal and longer timescales further obscure any trends diagnosed from satellite observations, which are often shorter than 40 years. Here, new metrics reflecting storm and blocking activities are developed using surface air temperature and pressure records, and their variations and long-term trends are examined. This approach gives an inkling of the changes in storm and blocking activities since the Industrial Revolution in regions with abundant long-term observational records, e.g. Europe and North America. The relationship between Atlantic Multi-decadal Oscillation and variations in storm and blocking activities across the Atlantic is also scrutinized. The connection between observed centennial trends and anthropogenic forcings is investigated using a hierarchy of numerical tools, from highly idealized to fully coupled atmosphere-ocean models. Pre-industrial control simulations and a set of large ensemble simulations forced by increased CO2 are analyzed to evaluate the range of natural variabilities, which paves the way to singling out significant anthropogenic changes from observational records, as well as predicting future changes in mid-latitude storm and

  20. Ice/frost/debris assessment for space shuttle mission STS-26R

    NASA Technical Reports Server (NTRS)

    Stevenson, Charles G.; Katnik, Gregory N.; Higginbotham, Scott A.

    1988-01-01

    An Ice/Frost/Debris Assessment was conducted for Space Shuttle Mission STS-26R. Debris inspections of the flight elements and launch pad are performed before and after launch. Ice/Frost conditions are assessed by use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by an on-pad visual inspection. High speed photography is viewed after launch to identify ice/debris sources and evaluate potential vehicle damage. The Ice/Frost/Debris conditions of Mission 26R and their effect on the Space Shuttle Program is documented.

  1. Tonga Cyclone Damage Mapped by NASA's ARIA Team

    NASA Image and Video Library

    2018-02-21

    The Advanced Rapid Imaging and Analysis (ARIA) team at NASA's Jet Propulsion Laboratory created this Damage Proxy Map (DPM) of Tongatapu, the main island of Tonga, following the landfall of Cyclone Gita, a Category 4 storm that hit Tonga on Feb. 12-13, 2018. The map depicts areas that are likely damaged from the storm, shown by red and yellow pixels. The map was produced by comparing two pairs of interferometric synthetic aperture radar (InSAR) images from the COSMO-SkyMed satellites, operated by the Italian Space Agency (ASI). The pre- and post-cyclone images were acquired on Jan. 19 and Feb. 13, 2018, respectively. The later image was acquired just 4-1/2 hours after the peak damage by the cyclone. The map covers the entire island of Tongatapu (the 25-by-25-mile, or 40-by-40 kilometer SAR image footprint indicated with the large red polygon). Each pixel measures about 98 feet (30 meters) across. The color variation from yellow to red indicates increasingly more significant ground surface change. Preliminary validation of the SAR data was done by comparing them with high-resolution optical imagery acquired by DigitalGlobe. This Damage Proxy Map should be used as guidance to identify damaged areas and may be less reliable over vegetated and flooded areas. https://photojournal.jpl.nasa.gov/catalog/PIA22257

  2. Toward an integrated storm surge application: ESA Storm Surge project

    NASA Astrophysics Data System (ADS)

    Lee, Boram; Donlon, Craig; Arino, Olivier

    2010-05-01

    Storm surges and their associated coastal inundation are major coastal marine hazards, both in tropical and extra-tropical areas. As sea level rises due to climate change, the impact of storm surges and associated extreme flooding may increase in low-lying countries and harbour cities. Of the 33 world cities predicted to have at least 8 million people by 2015, at least 21 of them are coastal including 8 of the 10 largest. They are highly vulnerable to coastal hazards including storm surges. Coastal inundation forecasting and warning systems depend on the crosscutting cooperation of different scientific disciplines and user communities. An integrated approach to storm surge, wave, sea-level and flood forecasting offers an optimal strategy for building improved operational forecasts and warnings capability for coastal inundation. The Earth Observation (EO) information from satellites has demonstrated high potential to enhanced coastal hazard monitoring, analysis, and forecasting; the GOCE geoid data can help calculating accurate positions of tide gauge stations within the GLOSS network. ASAR images has demonstrated usefulness in analysing hydrological situation in coastal zones with timely manner, when hazardous events occur. Wind speed and direction, which is the key parameters for storm surge forecasting and hindcasting, can be derived by using scatterometer data. The current issue is, although great deal of useful EO information and application tools exist, that sufficient user information on EO data availability is missing and that easy access supported by user applications and documentation is highly required. Clear documentation on the user requirements in support of improved storm surge forecasting and risk assessment is also needed at the present. The paper primarily addresses the requirements for data, models/technologies, and operational skills, based on the results from the recent Scientific and Technical Symposium on Storm Surges (www

  3. The observed clustering of damaging extratropical cyclones in Europe

    NASA Astrophysics Data System (ADS)

    Cusack, Stephen

    2016-04-01

    The clustering of severe European windstorms on annual timescales has substantial impacts on the (re-)insurance industry. Our knowledge of the risk is limited by large uncertainties in estimates of clustering from typical historical storm data sets covering the past few decades. Eight storm data sets are gathered for analysis in this study in order to reduce these uncertainties. Six of the data sets contain more than 100 years of severe storm information to reduce sampling errors, and observational errors are reduced by the diversity of information sources and analysis methods between storm data sets. All storm severity measures used in this study reflect damage, to suit (re-)insurance applications. The shortest storm data set of 42 years provides indications of stronger clustering with severity, particularly for regions off the main storm track in central Europe and France. However, clustering estimates have very large sampling and observational errors, exemplified by large changes in estimates in central Europe upon removal of one stormy season, 1989/1990. The extended storm records place 1989/1990 into a much longer historical context to produce more robust estimates of clustering. All the extended storm data sets show increased clustering between more severe storms from return periods (RPs) of 0.5 years to the longest measured RPs of about 20 years. Further, they contain signs of stronger clustering off the main storm track, and weaker clustering for smaller-sized areas, though these signals are more uncertain as they are drawn from smaller data samples. These new ultra-long storm data sets provide new information on clustering to improve our management of this risk.

  4. Storm surge evolution and its relationship to climate oscillations at Duck, NC

    NASA Astrophysics Data System (ADS)

    Munroe, Robert; Curtis, Scott

    2017-07-01

    Coastal communities experience increased vulnerability during storm surge events through the risk of damage to coastal infrastructure, erosion/deposition, and the endangerment of human life. Policy and planning measures attempt to avoid or mitigate storm surge consequences through building codes and setbacks, beach stabilization, insurance rates, and coastal zoning. The coastal emergency management community and public react and respond on shorter time scales, through temporary protection, emergency stockpiling, and evacuation. This study utilizes time series analysis, the Kolmogorov-Smirnov (K-S) test, Pearson's correlation, and the generalized extreme value (GEV) theorem to make the connection between climate oscillation indices and storm surge characteristics intra-seasonally to inter-annually. Results indicate that an El Niño (+ENSO), negative phase of the NAO, and positive phase of the PNA pattern all support longer duration and hence more powerful surge events, especially in winter. Increased surge duration increases the likelihood of extensive erosion, inland inundation, among other undesirable effects of the surge hazard.

  5. Healthcare4VideoStorm: Making Smart Decisions Based on Storm Metrics.

    PubMed

    Zhang, Weishan; Duan, Pengcheng; Chen, Xiufeng; Lu, Qinghua

    2016-04-23

    Storm-based stream processing is widely used for real-time large-scale distributed processing. Knowing the run-time status and ensuring performance is critical to providing expected dependability for some applications, e.g., continuous video processing for security surveillance. The existing scheduling strategies' granularity is too coarse to have good performance, and mainly considers network resources without computing resources while scheduling. In this paper, we propose Healthcare4Storm, a framework that finds Storm insights based on Storm metrics to gain knowledge from the health status of an application, finally ending up with smart scheduling decisions. It takes into account both network and computing resources and conducts scheduling at a fine-grained level using tuples instead of topologies. The comprehensive evaluation shows that the proposed framework has good performance and can improve the dependability of the Storm-based applications.

  6. A qualitative and quantitative assessment of the reproductive litter from Posidonia oceanica accumulated on a sand beach following a storm

    NASA Astrophysics Data System (ADS)

    Balestri, E.; Vallerini, F.; Lardicci, C.

    2006-01-01

    The biomass of reproductive litter from Posidonia oceanica deposited on a 3.5 km stretch of beach in the north-western Mediterranean, as a consequence of a storm in May 2004, was quantified. The damage caused by this storm to the meadow from which fruits originated was evaluated in terms of loss of seed production. Intermediate fruits (i.e., developing fruits) were the most important reproductive component, followed by immature and damaged fruits. No fully mature fruits were found. No significant differences in the average number of fruits and biomass accumulated were detected among beach sections hundreds of metres apart. Extrapolation of the results at four beach sections indicated that about 1 million fruits were deposited on the entire (3.5 km) beach. This was equivalent to the seed production potential of about 313,217 inflorescences, or a flowered area of 1500 m 2. The organic input to the beach was 224 kg ash-free dry weight (AFDM). These results suggest that storms may provide an unpredictable source of seed mortality in P. oceanica. The reproductive material produced by storms, however, may constitute an important source of allochthonous organic matter to the beach.

  7. The observed clustering of damaging extra-tropical cyclones in Europe

    NASA Astrophysics Data System (ADS)

    Cusack, S.

    2015-12-01

    The clustering of severe European windstorms on annual timescales has substantial impacts on the re/insurance industry. Management of the risk is impaired by large uncertainties in estimates of clustering from historical storm datasets typically covering the past few decades. The uncertainties are unusually large because clustering depends on the variance of storm counts. Eight storm datasets are gathered for analysis in this study in order to reduce these uncertainties. Six of the datasets contain more than 100~years of severe storm information to reduce sampling errors, and the diversity of information sources and analysis methods between datasets sample observational errors. All storm severity measures used in this study reflect damage, to suit re/insurance applications. It is found that the shortest storm dataset of 42 years in length provides estimates of clustering with very large sampling and observational errors. The dataset does provide some useful information: indications of stronger clustering for more severe storms, particularly for southern countries off the main storm track. However, substantially different results are produced by removal of one stormy season, 1989/1990, which illustrates the large uncertainties from a 42-year dataset. The extended storm records place 1989/1990 into a much longer historical context to produce more robust estimates of clustering. All the extended storm datasets show a greater degree of clustering with increasing storm severity and suggest clustering of severe storms is much more material than weaker storms. Further, they contain signs of stronger clustering in areas off the main storm track, and weaker clustering for smaller-sized areas, though these signals are smaller than uncertainties in actual values. Both the improvement of existing storm records and development of new historical storm datasets would help to improve management of this risk.

  8. Precipitation Impacts of a Shrinking Arctic Sea Ice Cover

    NASA Astrophysics Data System (ADS)

    Stroeve, J. C.; Frei, A.; Gong, G.; Ghatak, D.; Robinson, D. A.; Kindig, D.

    2009-12-01

    enhanced cyclone associated precipitation in autumn over Siberia for anomalously low ice years compared with anomalously high ice years along with a strengthening of the North Atlantic Storm track.

  9. Ice-Binding Proteins in Plants.

    PubMed

    Bredow, Melissa; Walker, Virginia K

    2017-01-01

    Sub-zero temperatures put plants at risk of damage associated with the formation of ice crystals in the apoplast. Some freeze-tolerant plants mitigate this risk by expressing ice-binding proteins (IBPs), that adsorb to ice crystals and modify their growth. IBPs are found across several biological kingdoms, with their ice-binding activity and function uniquely suited to the lifestyle they have evolved to protect, be it in fishes, insects or plants. While IBPs from freeze-avoidant species significantly depress the freezing point, plant IBPs typically have a reduced ability to lower the freezing temperature. Nevertheless, they have a superior ability to inhibit the recrystallization of formed ice. This latter activity prevents ice crystals from growing larger at temperatures close to melting. Attempts to engineer frost-hardy plants by the controlled transfer of IBPs from freeze-avoiding fish and insects have been largely unsuccessful. In contrast, the expression of recombinant IBP sequences from freeze-tolerant plants significantly reduced electrolyte leakage and enhanced freezing survival in freeze-sensitive plants. These promising results have spurred additional investigations into plant IBP localization and post-translational modifications, as well as a re-evaluation of IBPs as part of the anti-stress and anti-pathogen axis of freeze-tolerant plants. Here we present an overview of plant freezing stress and adaptation mechanisms and discuss the potential utility of IBPs for the generation of freeze-tolerant crops.

  10. Original deep convection in the atmosphere of Mars driven by the radiative impact of dust and water-ice particles

    NASA Astrophysics Data System (ADS)

    Spiga, A.; Madeleine, J. B.; Hinson, D.; Millour, E.; Forget, F.; Navarro, T.; Määttänen, A.; Montmessin, F.

    2017-09-01

    We unveil two examples of deep convection on Mars - in dust storms and water-ice clouds - to demonstrate that the radiative effect of aerosols and clouds can lead to powerful convective motions just as much as the release of latent heat in moist convection

  11. A Global Geographic Information System Data Base of Storm Occurrences and Other Climatic Phenomena Affecting Coastal Zones (1991) (NDP-035)

    DOE Data Explorer

    Birdwell, Kevub R. [Murray State University, Kentucky; Daniels, Richard C.

    2012-01-01

    This NDP is unique in that it represents CDIAC's first offering of ARC/INFOTM export data files and equivalent flat ASCII data files that may be used by raster or vector geographic information systems (GISs). The data set contains 61 variables, including information on tropical storms, hurricanes, super typhoons, extratropical cyclogeneses, polar lows, cyclonicity, influence of winds in monsoon regions, and sea-ice concentrations. Increased availability of source data has made it possible to extend the area of these data variables to regional or global coverages. All data variables except five are referenced to 1° × 1° or 5° × 5° grid cells of latitude and longitude. These data help meet the demand for new and improved climatologies of storm events and may be used in climate research studies, including the verification of general circulation models and the calculation of storm-recurrence intervals.

  12. XBeach-G: a tool for predicting gravel barrier response to extreme storm conditions

    NASA Astrophysics Data System (ADS)

    Masselink, Gerd; Poate, Tim; McCall, Robert; Roelvink, Dano; Russell, Paul; Davidson, Mark

    2014-05-01

    Gravel beaches protect low-lying back-barrier regions from flooding during storm events and their importance to society is widely acknowledged. Unfortunately, breaching and extensive storm damage has occurred at many gravel sites and this is likely to increase as a result of sea-level rise and enhanced storminess due to climate change. Limited scientific guidance is currently available to provide beach managers with operational management tools to predict the response of gravel beaches to storms. The New Understanding and Prediction of Storm Impacts on Gravel beaches (NUPSIG) project aims to improve our understanding of storm impacts on gravel coastal environments and to develop a predictive capability by modelling these impacts. The NUPSIG project uses a 5-pronged approach to address its aim: (1) analyse hydrodynamic data collected during a proto-type laboratory experiment on a gravel beach; (2) collect hydrodynamic field data on a gravel beach under a range of conditions, including storm waves with wave heights up to 3 m; (3) measure swash dynamics and beach response on 10 gravel beaches during extreme wave conditions with wave heights in excess of 3 m; (4) use the data collected under 1-3 to develop and validate a numerical model to model hydrodynamics and morphological response of gravel beaches under storm conditions; and (5) develop a tool for end-users, based on the model formulated under (4), for predicting storm response of gravel beaches and barriers. The aim of this presentation is to present the key results of the NUPSIG project and introduce the end-user tool for predicting storm response on gravel beaches. The model is based on the numerical model XBeach, and different forcing scenarios (wave and tides), barrier configurations (dimensions) and sediment characteristics are easily uploaded for model simulations using a Graphics User Interface (GUI). The model can be used to determine the vulnerability of gravel barriers to storm events, but can also be

  13. Development of Real-Time System for Urban Flooding by Surcharge of Storm Drainge and River Inundation

    NASA Astrophysics Data System (ADS)

    Shim, J. B.; Won, C. Y.; Park, J.; Lee, K.

    2017-12-01

    Korea experiences frequent flood disasters, which cause considerable economic losses and damages to towns and farms. Especially, a regional torrential storm is about 98.5mm/hr on September 21, 2010 in Seoul. The storm exceeds the capacity of urban drainage system of 75mm/hr, and 9,419 houses. How to monitor and control the urban flood disasters is an important issue in Korea. To mitigate the flood damage, a customizing system was developed to estimate urban floods and inundation using by integrating drainage system data and river information database which are managed by local governments and national agencies. In the case of Korean urban city, there are a lot of detention ponds and drainage pumping stations on end of drainage system and flow is going into river. The drainage pumping station, it is very important hydraulic facility for flood control between river and drainage system. So, it is possible to occur different patterns of flood inundation according to operation rule of drainage pumping station. A flood disaster is different damage as how to operate drainage pumping station and plan operation rule.

  14. The role of ice dynamics in shaping vegetation in flowing waters.

    PubMed

    Lind, Lovisa; Nilsson, Christer; Polvi, Lina E; Weber, Christine

    2014-11-01

    Ice dynamics is an important factor affecting vegetation in high-altitude and high-latitude streams and rivers. During the last few decades, knowledge about ice in streams and rivers has increased significantly and a respectable body of literature is now available. Here we review the literature on how ice dynamics influence riparian and aquatic vegetation. Traditionally, plant ecologists have focused their studies on the summer period, largely ignoring the fact that processes during winter also impact vegetation dynamics. For example, the freeze-up period in early winter may result in extensive formation of underwater ice that can restructure the channel, obstruct flow, and cause flooding and thus formation of more ice. In midwinter, slow-flowing reaches develop a surface-ice cover that accumulates snow, protecting habitats under the ice from formation of underwater ice but also reducing underwater light, thus suppressing photosynthesis. Towards the end of winter, ice breaks up and moves downstream. During this transport, ice floes can jam up and cause floods and major erosion. The magnitudes of the floods and their erosive power mainly depend on the size of the watercourse, also resulting in different degrees of disturbance to the vegetation. Vegetation responds both physically and physiologically to ice dynamics. Physical action involves the erosive force of moving ice and damage caused by ground frost, whereas physiological effects - mostly cell damage - happen as a result of plants freezing into the ice. On a community level, large magnitudes of ice dynamics seem to favour species richness, but can be detrimental for individual plants. Human impacts, such as flow regulation, channelisation, agriculturalisation and water pollution have modified ice dynamics; further changes are expected as a result of current and predicted future climate change. Human impacts and climate change can both favour and disfavour riverine vegetation dynamics. Restoration of streams

  15. Swashed away? Storm impacts on sandy beach macrofaunal communities

    NASA Astrophysics Data System (ADS)

    Harris, Linda; Nel, Ronel; Smale, Malcolm; Schoeman, David

    2011-09-01

    Storms can have a large impact on sandy shores, with powerful waves eroding large volumes of sand off the beach. Resulting damage to the physical environment has been well-studied but the ecological implications of these natural phenomena are less known. Since climate change predictions suggest an increase in storminess in the near future, understanding these ecological implications is vital if sandy shores are to be proactively managed for resilience. Here, we report on an opportunistic experiment that tests the a priori expectation that storms impact beach macrofaunal communities by modifying natural patterns of beach morphodynamics. Two sites at Sardinia Bay, South Africa, were sampled for macrofauna and physical descriptors following standard sampling methods. This sampling took place five times at three- to four-month intervals between April 2008 and August 2009. The second and last sampling events were undertaken after unusually large storms, the first of which was sufficiently large to transform one site from a sandy beach into a mixed shore for the first time in living memory. A range of univariate (linear mixed-effects models) and multivariate (e.g. non-metric multidimensional scaling, PERMANOVA) methods were employed to describe trends in the time series, and to explore the likelihood of possible explanatory mechanisms. Macrofaunal communities at the dune-backed beach (Site 2) withstood the effects of the first storm but were altered significantly by the second storm. In contrast, macrofauna communities at Site 1, where the supralittoral had been anthropogenically modified so that exchange of sediments with the beach was limited, were strongly affected by the first storm and showed little recovery over the study period. In line with predictions from ecological theory, beach morphodynamics was found to be a strong driver of temporal patterns in the macrofaunal community structure, with the storm events also identified as a significant factor, likely

  16. Merging Saturnian Storms

    NASA Image and Video Library

    2004-04-08

    Three months before its scheduled arrival at Saturn, the Cassini spacecraft has observed two storms in the act of merging. With diameters close to 1,000 kilometers (621 miles), both storms, which appear as spots in the southern hemisphere, were seen moving west, relative to the rotation of Saturn's interior, for about a month before they merged on March 19 through 20, 2004. This set of eight images was taken between Feb. 22 and March 22, 2004. The top four frames span 26 days. They are portions of images from the narrow angle camera taken through a filter accepting light in the near-infrared region of the spectrum centered at 619 nanometers, and they show two storms approaching each other. Both storms are located at 36 degrees south latitude and sit in an anti-cyclonic shear zone, which means that the flow to the north is westward relative to the flow to the south. Consequently, the northern storm moves westward at a slightly greater rate than the southern one, 11 meters versus 6 meters per second (25 and 13 mph), respectively. The storms drift with these currents and engage in a counterclockwise dance before merging with each other. The bottom four frames are from images taken on March 19, 20, 21 and 22, in a region of the spectrum visible to the human eye; they illustrate the storms' evolution. Just after the merger, on March 20, the new feature is elongated in the north-south direction, with bright clouds on either end. Two days later, on March 22, the storm has settled into a more circular shape, and the bright clouds have spread around the circumference to form a halo. Whether the bright clouds are particles of a different composition or simply at a different altitude is uncertain. The new storm is a few tenths of a degree farther south than either of its progenitors. There, its westward velocity is weaker, and it is almost stationary relative to the planet's rotation. Although these particular storms move slowly west, storms at Saturn's equator move east at

  17. Using Bayesian Network as a tool for coastal storm flood impact prediction at Varna Bay (Bulgaria, Western Black Sea)

    NASA Astrophysics Data System (ADS)

    Valchev, Nikolay; Eftimova, Petya; Andreeva, Nataliya; Prodanov, Bogdan

    2017-04-01

    Coastal zone is among the fastest evolving areas worldwide. Ever increasing population inhabiting coastal settlements develops often conflicting economic and societal activities. The existing imbalance between the expansion of these activities, on one hand, and the potential to accommodate them in a sustainable manner, on the other, becomes a critical problem. Concurrently, coasts are affected by various hydro-meteorological phenomena such as storm surges, heavy seas, strong winds and flash floods, which intensities and occurrence frequency is likely to increase due to the climate change. This implies elaboration of tools capable of quick prediction of impact of those phenomena on the coast and providing solutions in terms of disaster risk reduction measures. One such tool is Bayesian network. Proposed paper describes the set-up of such network for Varna Bay (Bulgaria, Western Black Sea). It relates near-shore storm conditions to their onshore flood potential and ultimately to relevant impact as relative damage on coastal and manmade environment. Methodology for set-up and training of the Bayesian network was developed within RISC-KIT project (Resilience-Increasing Strategies for Coasts - toolKIT). Proposed BN reflects the interaction between boundary conditions, receptors, hazard, and consequences. Storm boundary conditions - maximum significant wave height and peak surge level, were determined on the basis of their historical and projected occurrence. The only hazard considered in this study is flooding characterized by maximum inundation depth. BN was trained with synthetic events created by combining estimated boundary conditions. Flood impact was modeled with the process-based morphodynamical model XBeach. Restaurants, sport and leisure facilities, administrative buildings, and car parks were introduced in the network as receptors. Consequences (impact) are estimated in terms of relative damage caused by given inundation depth. National depth-damage

  18. Development of the Coastal Storm Modeling System (CoSMoS) for predicting the impact of storms on high-energy, active-margin coasts

    USGS Publications Warehouse

    Barnard, Patrick; Maarten van Ormondt,; Erikson, Li H.; Jodi Eshleman,; Hapke, Cheryl J.; Peter Ruggiero,; Peter Adams,; Foxgrover, Amy C.

    2014-01-01

    The Coastal Storm Modeling System (CoSMoS) applies a predominantly deterministic framework to make detailed predictions (meter scale) of storm-induced coastal flooding, erosion, and cliff failures over large geographic scales (100s of kilometers). CoSMoS was developed for hindcast studies, operational applications (i.e., nowcasts and multiday forecasts), and future climate scenarios (i.e., sea-level rise + storms) to provide emergency responders and coastal planners with critical storm hazards information that may be used to increase public safety, mitigate physical damages, and more effectively manage and allocate resources within complex coastal settings. The prototype system, developed for the California coast, uses the global WAVEWATCH III wave model, the TOPEX/Poseidon satellite altimetry-based global tide model, and atmospheric-forcing data from either the US National Weather Service (operational mode) or Global Climate Models (future climate mode), to determine regional wave and water-level boundary conditions. These physical processes are dynamically downscaled using a series of nested Delft3D-WAVE (SWAN) and Delft3D-FLOW (FLOW) models and linked at the coast to tightly spaced XBeach (eXtreme Beach) cross-shore profile models and a Bayesian probabilistic cliff failure model. Hindcast testing demonstrates that, despite uncertainties in preexisting beach morphology over the ~500 km alongshore extent of the pilot study area, CoSMoS effectively identifies discrete sections of the coast (100s of meters) that are vulnerable to coastal hazards under a range of current and future oceanographic forcing conditions, and is therefore an effective tool for operational and future climate scenario planning.

  19. Storm surges in the White and Barents Seas: formation, statistics, analysis

    NASA Astrophysics Data System (ADS)

    Korablina, Anastasia; Arkhipkin, Victor

    2017-04-01

    Arctic seas storm surges investigation are high priority in Russia due to the active development of offshore oil and gas, construction of facilities in the coastal zone, as well as for the navigation safety. It is important to study the surges variability, to predict this phenomena and subsequent economic losses, thus including such information into the Russian Arctic Development Program 2020. White and Barents Seas storm surges are caused mainly by deep cyclones of two types: "diving" from the north (88% of all cyclones) and Atlantic from the west. The surge height was defined as the excess of the level that was obtained as the difference between the observed level and subtracting tide level and low-frequency level. The period of low-frequency level oscillation was determined by spectral analysis of the in-situ data. ADCIRC model is used for calculating the storm surge height. We did the calculations on unstructured grid with variable step from 50 to 5000 m. The ADCIRC model was based on the data on wind field, the sea level pressure, the concentration of ice reanalysis CFSR (1979-2010) in increments 0.3°, CFSv2 (2011-2015) in increments 0.2°. On the boundary conditions harmonic constants from Finite Element Solution tide model 2004 (FES2004) in increments 1/8° were set. The following stations on the coast Varandey, Pechora Bay, Chosha Bay, Severodvinsk, Onega, Solovki and other were selected for the storm surges statistical analysis in the period 1979-2015. The number of storm surges (> 0.3 m) long-term variability was obtained, the number of surges at a height (m) range (0.3-0.6, 0.6-0.9, 0.9-1.2, >1.2) was estimated. It shows that 1980 and 1998 are the years with the fewest number storms. For example, the largest number of storm surge (53) was observed in 1995 in Varandey. The height of the surge, possible only once in 100 years, is counted. This maximum height (m) of the surge was noted in Varandey (4.1), Chosha Bay (3.4), Barents Sea, Onega Bay (2

  20. Storming ahead

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    Fourteen tropical storms, nine hurricanes, and four intense hurricanes with winds above 111 mph. That's the forecast for hurricane activity in the Atlantic Basin for the upcoming hurricane season which extends from June 1 through November 30, 1999, according to a Colorado State Hurricane Forecast team led by William Gray, professor of atmospheric science. The forecast supports an earlier report by the team.Hurricane activity, said Gray will be similar to 1998—which yielded 14 tropical storms, 10 hurricanes, and 3 intense storms. These numbers are significantly higher than the long-term statistical averages of 9.3, 5.8, and 2.2, annually.

  1. Synoptic Traveling Weather Systems on Mars: Effects of Radiatively-Active Water Ice Clouds

    NASA Astrophysics Data System (ADS)

    Hollingsworth, Jeffery L.; Kahre, Melinda A.; Haberle, Robert; Atsuki Urata, Richard

    2016-10-01

    Atmospheric aerosols on Mars are critical in determining the nature of its thermal structure, its large-scale circulation, and hence the overall climate of the planet. We conduct multi-annual simulations with the latest version of the NASA Ames Mars global climate model (GCM), gcm2.3+, that includes a modernized radiative-transfer package and complex water-ice cloud microphysics package which permit radiative effects and interactions of suspended atmospheric aerosols (e.g., water ice clouds, water vapor, dust, and mutual interactions) to influence the net diabatic heating. Results indicate that radiatively active water ice clouds profoundly affect the seasonal and annual mean climate. The mean thermal structure and balanced circulation patterns are strongly modified near the surface and aloft. Warming of the subtropical atmosphere at altitude and cooling of the high latitude atmosphere at low levels takes place, which increases the mean pole-to-equator temperature contrast (i.e., "baroclinicity"). With radiatively active water ice clouds (RAC) compared to radiatively inert water ice clouds (nonRAC), significant changes in the intensity of the mean state and forced stationary Rossby modes occur, both of which affect the vigor and intensity of traveling, synoptic period weather systems. Such weather systems not only act as key agents in the transport of heat and momentum beyond the extent of the Hadley circulation, but also the transport of trace species such as water vapor, water ice-clouds, dust and others. The northern hemisphere (NH) forced Rossby waves and resultant wave train are augmented in the RAC case: the modes are more intense and the wave train is shifted equatorward. Significant changes also occur within the subtropics and tropics. The Rossby wave train sets up, combined with the traveling synoptic-period weather systems (i.e., cyclones and anticyclones), the geographic extent of storm zones (or storm tracks) within the NH. A variety of circulation

  2. Synoptic Traveling Weather Systems on Mars: Effects of Radiatively-Active Water Ice Clouds

    NASA Technical Reports Server (NTRS)

    Hollingsworth, Jeffery; Kahre, Melinda; Haberle, Robert; Urata, Richard

    2017-01-01

    Atmospheric aerosols on Mars are critical in determining the nature of its thermal structure, its large-scale circulation, and hence the overall climate of the planet. We conduct multi-annual simulations with the latest version of the NASA Ames Mars global climate model (GCM), gcm2.3+, that includes a modernized radiative-transfer package and complex water-ice cloud microphysics package which permit radiative effects and interactions of suspended atmospheric aerosols (e.g., water ice clouds, water vapor, dust, and mutual interactions) to influence the net diabatic heating. Results indicate that radiatively active water ice clouds profoundly affect the seasonal and annual mean climate. The mean thermal structure and balanced circulation patterns are strongly modified near the surface and aloft. Warming of the subtropical atmosphere at altitude and cooling of the high latitude atmosphere at low levels takes place, which increases the mean pole-to-equator temperature contrast (i.e., "baroclinicity"). With radiatively active water ice clouds (RAC) compared to radiatively inert water ice clouds (nonRAC), significant changes in the intensity of the mean state and forced stationary Rossby modes occur, both of which affect the vigor and intensity of traveling, synoptic period weather systems. Such weather systems not only act as key agents in the transport of heat and momentum beyond the extent of the Hadley circulation, but also the transport of trace species such as water vapor, water ice-clouds, dust and others. The northern hemisphere (NH) forced Rossby waves and resultant wave train are augmented in the RAC case: the modes are more intense and the wave train is shifted equatorward. Significant changes also occur within the subtropics and tropics. The Rossby wave train sets up, combined with the traveling synoptic period weather systems (i.e., cyclones and anticyclones), the geographic extent of storm zones (or storm tracks) within the NH. A variety of circulation

  3. Synoptic Traveling Weather Systems on Mars: Effects of Radiatively-Active Water Ice Clouds

    NASA Technical Reports Server (NTRS)

    Hollingsworth, Jeffery; Kahre, Melinda; Haberle, Robert; Urata, Richard

    2017-01-01

    Atmospheric aerosols on Mars are critical in determining the nature of its thermal structure, its large-scale circulation, and hence the overall climate of the planet. We conduct multi-annual simulations with the latest version of the NASA Ames Mars global climate model (GCM), gcm2.3+, that includes a modernized radiative-transfer package and complex water-ice cloud microphysics package which permit radiative effects and interactions of suspended atmospheric aerosols (e.g., water ice clouds, water vapor, dust, and mutual interactions) to influence the net diabatic heating. Results indicate that radiatively active water ice clouds profoundly affect the seasonal and annual mean climate. The mean thermal structure and balanced circulation patterns are strongly modified near the surface and aloft. Warming of the subtropical atmosphere at altitude and cooling of the high latitude atmosphere at low levels takes place, which increases the mean pole-to-equator temperature contrast (i.e., "baroclinicity"). With radiatively active water ice clouds (RAC) compared to radiatively inert water ice clouds (nonRAC), significant changes in the intensity of the mean state and forced stationary Rossby modes occur, both of which affect the vigor and intensity of traveling, synoptic period weather systems.Such weather systems not only act as key agents in the transport of heat and momentum beyond the extent of the Hadley circulation, but also the transport of trace species such as water vapor, water ice-clouds, dust and others. The northern hemisphere (NH) forced Rossby waves and resultant wave train are augmented in the RAC case: the modes are more intense and the wave train is shifted equatorward. Significant changes also occur within the subtropics and tropics. The Rossby wave train sets up, combined with the traveling synoptic period weather systems (i.e., cyclones and anticyclones), the geographic extent of storm zones (or storm tracks) within the NH. A variety of circulation

  4. Maps of Structured Aerosol Activity During the MY 25 Planet-encircling Dust Storm on Mars

    NASA Astrophysics Data System (ADS)

    Noble, J.; Wilson, R. J.; Cantor, B. A.; Kahre, M. A.; Hollingsworth, J. L.; Bridger, A. F. C.; Haberle, R. M.; Barnes, J.

    2016-12-01

    We have produced a sequence of 42 global maps from Ls=165.1-187.7° that delimit the areal extent of structured aerosol activity based on a synthesis of Mars Global Surveyor (MGS) data, including Mars Orbiter Camera (MOC) daily global maps (DGMs) and wide angle imagery, Thermal Emission Spectrometer (TES) dust and H2O ice opacity, and Mars general circulation model (MGCM) derived dust opacity. The primary motivation of this work is to examine the temporal and spatial relationship between dust storms observed by MOC and baroclinic eddies inferred from Fast Fourier Synoptic Mapping (FFSM) of TES temperatures in order to study the initiation and evolution of Mars year (MY) 25 planet-encircling dust storm (PDS) precursor phase dust storms. A secondary motivation is to provide improved input to MGCM simulations. Assuming that structured dust storms indicate active dust lifting, these maps allow us to define potential dust lifting regions. This work has two implications for martian atmospheric science. First, integration of MGS data has enabled us to develop improved quantitative and qualitative descriptions of storm evolution that may be used to constrain estimates of dust lifting regions, horizontal dust distribution, and to infer associated circulations. Second, we believe that these maps provide better bases and constraints for modeling storm initiation. Based on our analysis of these MGS data, we propose the following working hypothesis to explain the dynamical processes responsible for PDS initiation and expansion. Six eastward-traveling transient baroclinic eddies triggered the MY 25 precursor storms in Hellas during Ls=176.2-184.6° due to the enhanced dust lifting associated with their low-level wind and stress fields. This was followed by a seventh eddy that contributed to expansion on Ls=186.3°. Increased opacity and temperatures from dust lifting associated with the first three eddies enhanced thermal tides which supported further storm initiation and

  5. In the Eye of the Storm: A Participatory Course on Coastal Storms

    ERIC Educational Resources Information Center

    Curtis, Scott

    2013-01-01

    Storm disasters are amplified in the coastal environment due to population pressures and the power of the sea. The upper-division/graduate university course "Coastal Storms" was designed to equip future practitioners with the skills necessary to understand, respond to, and mitigate for these natural disasters. To accomplish this, "Coastal Storms"…

  6. Water Ice Clouds over the Northern Plains

    NASA Technical Reports Server (NTRS)

    2002-01-01

    (Released 14 May 2002) The Science This image, centered near 48.5 N and 240.5 W, displays splotchy water ice clouds that obscure the northern lowland plains in the region where the Viking 2 spacecraft landed. This image is far enough north to catch the edge of the north polar hood that develops during the northern winter. This is a cap of water and carbon dioxide ice clouds that form over the Martian north pole. As Mars progresses into northern spring, the persistent north polar hood ice clouds will dissipate and the surface viewing conditions will improve greatly. As the season develops, an equatorial belt of water ice clouds will form. This belt of water ice clouds is as characteristic of the Martian climate as the southern hemisphere summer dust storm season. Seasons on Mars have a dramatic effect on the state of the dynamic Martian atmosphere. The Story Muted in an almost air-brushed manner, this image doesn't have the crispness that most THEMIS images have. That's because clouds were rising over the surface of the red planet on the day this picture was taken. Finding clouds on Mars might remind us of conditions here on Earth, but these Martian clouds are made of frozen water and frozen carbon dioxide -- in other words, clouds of ice and 'dry ice.' Strange as that may sound, the clouds seen here form on a pretty regular basis at the north Martian pole during its winter season. As springtime comes to the northern hemisphere of Mars (and fall comes to the southern), these clouds will slowly disappear, and a nice belt of water ice clouds will form around the equator. So, if you were a THEMIS camera aimer, that might tell you when your best viewing conditions for different areas on Mars would be. As interesting as clear pictures of Martian landforms are, however, you wouldn't want to bypass the weather altogether. Pictures showing seasonal shifts are great for scientists to study, because they reveal a lot about the patterns of the Martian climate and the

  7. Future loss of Arctic sea-ice cover could drive a substantial decrease in California's rainfall.

    PubMed

    Cvijanovic, Ivana; Santer, Benjamin D; Bonfils, Céline; Lucas, Donald D; Chiang, John C H; Zimmerman, Susan

    2017-12-05

    From 2012 to 2016, California experienced one of the worst droughts since the start of observational records. As in previous dry periods, precipitation-inducing winter storms were steered away from California by a persistent atmospheric ridging system in the North Pacific. Here we identify a new link between Arctic sea-ice loss and the North Pacific geopotential ridge development. In a two-step teleconnection, sea-ice changes lead to reorganization of tropical convection that in turn triggers an anticyclonic response over the North Pacific, resulting in significant drying over California. These findings suggest that the ability of climate models to accurately estimate future precipitation changes over California is also linked to the fidelity with which future sea-ice changes are simulated. We conclude that sea-ice loss of the magnitude expected in the next decades could substantially impact California's precipitation, thus highlighting another mechanism by which human-caused climate change could exacerbate future California droughts.

  8. Multiple ice-binding proteins of probable prokaryotic origin in an Antarctic lake alga, Chlamydomonas sp. ICE-MDV (Chlorophyceae).

    PubMed

    Raymond, James A; Morgan-Kiss, Rachael

    2017-08-01

    Ice-associated algae produce ice-binding proteins (IBPs) to prevent freezing damage. The IBPs of the three chlorophytes that have been examined so far share little similarity across species, making it likely that they were acquired by horizontal gene transfer (HGT). To clarify the importance and source of IBPs in chlorophytes, we sequenced the IBP genes of another Antarctic chlorophyte, Chlamydomonas sp. ICE-MDV (Chlamy-ICE). Genomic DNA and total RNA were sequenced and screened for known ice-associated genes. Chlamy-ICE has as many as 50 IBP isoforms, indicating that they have an important role in survival. The IBPs are of the DUF3494 type and have similar exon structures. The DUF3494 sequences are much more closely related to prokaryotic sequences than they are to sequences in other chlorophytes, and the chlorophyte IBP and ribosomal 18S phylogenies are dissimilar. The multiple IBP isoforms found in Chlamy-ICE and other algae may allow the algae to adapt to a greater variety of ice conditions than prokaryotes, which typically have a single IBP gene. The predicted structure of the DUF3494 domain has an ice-binding face with an orderly array of hydrophilic side chains. The results indicate that Chlamy-ICE acquired its IBP genes by HGT in a single event. The acquisitions of IBP genes by this and other species of Antarctic algae by HGT appear to be key evolutionary events that allowed algae to extend their ranges into polar environments. © 2017 Phycological Society of America.

  9. Two Pairs of Storms

    NASA Image and Video Library

    2004-06-04

    Two pairs of dark spots, or storms, in Saturn atmosphere squeeze past each other as they dance around the planet. In this group of four storms, the top left and lower right storms are fringed with white clouds as seen by NASA Cassini spacecraft.

  10. Numerical Study of Solar Storms from the Sun to Earth

    NASA Astrophysics Data System (ADS)

    Feng, Xueshang; Jiang, Chaowei; Zhou, Yufen

    2017-04-01

    As solar storms are sweeping the Earth, adverse changes occur in geospace environment. How human can mitigate and avoid destructive damages caused by solar storms becomes an important frontier issue that we must face in the high-tech times. It is of both scientific significance to understand the dynamic process during solar storm's propagation in interplanetary space and realistic value to conduct physics-based numerical researches on the three-dimensional process of solar storms in interplanetary space with the aid of powerful computing capacity to predict the arrival times, intensities, and probable geoeffectiveness of solar storms at the Earth. So far, numerical studies based on magnetohydrodynamics (MHD) have gone through the transition from the initial qualitative principle researches to systematic quantitative studies on concrete events and numerical predictions. Numerical modeling community has a common goal to develop an end-to-end physics-based modeling system for forecasting the Sun-Earth relationship. It is hoped that the transition of these models to operational use depends on the availability of computational resources at reasonable cost and that the models' prediction capabilities may be improved by incorporating the observational findings and constraints into physics-based models, combining the observations, empirical models and MHD simulations in organic ways. In this talk, we briefly focus on our recent progress in using solar observations to produce realistic magnetic configurations of CMEs as they leave the Sun, and coupling data-driven simulations of CMEs to heliospheric simulations that then propagate the CME configuration to 1AU, and outlook the important numerical issues and their possible solutions in numerical space weather modeling from the Sun to Earth for future research.

  11. Ice/frost/debris assessment for space shuttle Mission STS-32 (61-C)

    NASA Technical Reports Server (NTRS)

    Stevenson, Charles G.; Katnik, Gregory N.; Speece, Robert F.

    1986-01-01

    An Ice/Frost/Debris assessment was conducted for Space Shuttle Mission STS-32 (61-C). This assessment begins with debris inspections of the flight elements and launch facilities before and after launch. Ice/Frost formations are calculated during cryogenic loading of the external tank followed by an on-pad assessment of the Shuttle vehicle and pad at T-3 hours in the countdown. High speed films are reviewed after launch to identify Ice/Frost/Debris sources and investigate potential vehicle damage. The Ice/Frost/Debris conditions and their effects on the Space Shuttle are documented.

  12. Adolescent storm and stress, reconsidered.

    PubMed

    Arnett, J J

    1999-05-01

    G. S. Hall's (1904) view that adolescence is a period of heightened "storm and stress" is reconsidered in light of contemporary research. The author provides a brief history of the storm-and-stress view and examines 3 key aspects of this view: conflict with parents, mood disruptions, and risk behavior. In all 3 areas, evidence supports a modified storm-and-stress view that takes into account individual differences and cultural variations. Not all adolescents experience storm and stress, but storm and stress is more likely during adolescence than at other ages. Adolescent storm and stress tends to be lower in traditional cultures than in the West but may increase as globalization increases individualism. Similar issues apply to minority cultures in American society. Finally, although the general public is sometimes portrayed by scholars as having a stereotypical view of adolescent storm and stress, both scholars and the general public appear to support a modified storm-and-stress view.

  13. Ice-Binding Proteins in Plants

    PubMed Central

    Bredow, Melissa; Walker, Virginia K.

    2017-01-01

    Sub-zero temperatures put plants at risk of damage associated with the formation of ice crystals in the apoplast. Some freeze-tolerant plants mitigate this risk by expressing ice-binding proteins (IBPs), that adsorb to ice crystals and modify their growth. IBPs are found across several biological kingdoms, with their ice-binding activity and function uniquely suited to the lifestyle they have evolved to protect, be it in fishes, insects or plants. While IBPs from freeze-avoidant species significantly depress the freezing point, plant IBPs typically have a reduced ability to lower the freezing temperature. Nevertheless, they have a superior ability to inhibit the recrystallization of formed ice. This latter activity prevents ice crystals from growing larger at temperatures close to melting. Attempts to engineer frost-hardy plants by the controlled transfer of IBPs from freeze-avoiding fish and insects have been largely unsuccessful. In contrast, the expression of recombinant IBP sequences from freeze-tolerant plants significantly reduced electrolyte leakage and enhanced freezing survival in freeze-sensitive plants. These promising results have spurred additional investigations into plant IBP localization and post-translational modifications, as well as a re-evaluation of IBPs as part of the anti-stress and anti-pathogen axis of freeze-tolerant plants. Here we present an overview of plant freezing stress and adaptation mechanisms and discuss the potential utility of IBPs for the generation of freeze-tolerant crops. PMID:29312400

  14. INL's Data Center

    ScienceCinema

    Idaho National Laboratory - Brent Stacey, John Grossenbacher, Shane Johnson

    2017-12-09

    ICE STORM is a super computer procured by INL from a well-knowncomputer vendor, SGI. ICE STORM is rated as No. 64 on the list of ICE STORM is a super computer procured by INL from a well-knowncomputer vendor, SGI. ICE STORM is rated as No. 64 on the lis

  15. The NASA F-106B Storm Hazards Program

    NASA Technical Reports Server (NTRS)

    Neely, W. R., Jr.; Fisher, B. D.

    1983-01-01

    During the NASA LRC Storm Hazards Program, 698 thunderstorm precipitations were made from 1980 to 1983 with an F-106B aircraft in order to record direct lightning strike data and the associated flight conditions. It was found that each of the three composite fin caps tested experienced multiple lightning attachments with only minor cosmetic damage. The maximum current level was only 20 ka, which is well below the design standard of 200 ka; however, indications are that the current rate of rise standard has been approached and may be exceeded in a major strike. The peak lightning strike rate occurred at ambient temperatures between -40 and -45 C, while most previously reported strikes have occurred at or near the freezing level. No significant operational difficulties or major aircraft damage resulting from the thunderstorm penetrations have been found.

  16. Separation of ice crystals from interstitial aerosol particles using virtual impaction at the Fifth International Ice Nucleation Workshop FIN-3

    NASA Astrophysics Data System (ADS)

    Roesch, M.; Garimella, S.; Roesch, C.; Zawadowicz, M. A.; Katich, J. M.; Froyd, K. D.; Cziczo, D. J.

    2016-12-01

    In this study, a parallel-plate ice chamber, the SPectrometer for Ice Nuclei (SPIN, DMT Inc.) was combined with a pumped counterflow virtual impactor (PCVI, BMI Inc.) to separate ice crystals from interstitial aerosol particles by their aerodynamic size. These measurements were part of the FIN-3 workshop, which took place in fall 2015 at Storm Peak Laboratory (SPL), a high altitude mountain top facility (3220 m m.s.l.) in the Rocky Mountains. The investigated particles were sampled from ambient air and were exposed to cirrus-like conditions inside SPIN (-40°C, 130% RHice). Previous SPIN experiments under these conditions showed that ice crystals were found to be in the super-micron range. Connected to the outlet of the ice chamber, the PCVI was adjusted to separate all particulates aerodynamically larger than 3.5 micrometer to the sample flow while smaller ones were rejected and removed by a pump flow. Using this technique reduces the number of interstitial aerosol particles, which could bias subsequent ice nucleating particle (INP) analysis. Downstream of the PCVI, the separated ice crystals were evaporated and the flow with the remaining INPs was split up to a particle analysis by laser mass spectrometry (PALMS) instrument a laser aerosol spectrometer (LAS, TSI Inc.) and a single particle soot photometer (SP2, DMT Inc.). Based on the sample flow and the resolution of the measured particle data, the lowest concentration threshold for the SP2 instrument was 294 INP L-1 and for the LAS instrument 60 INP L-1. Applying these thresholds as filters to the measured PALMS time series 944 valid INP spectra using the SP2 threshold and 445 valid INP spectra using the LAS threshold were identified. A sensitivity study determining the number of good INP spectra as a function of the filter threshold concentration showed a two-phase linear growth when increasing the threshold concentration showing a breakpoint around 100 INP L-1.

  17. Disentangling factors that control the vulnerability of forests to catastrophic wind damage

    NASA Astrophysics Data System (ADS)

    Dracup, E.; Taylor, A.; MacLean, D.; Boulanger, Y.

    2017-12-01

    Wind is an important driver of forest dynamics along North America's north-eastern coastal forests, but also damages many commercially managed forests which society relies as an important source of wood fiber. Although the influence of wind on north-eastern forests is well recognized, knowledge of factors predisposing trees to wind damage is less known, especially in the context of large, powerful wind storm events. This is of particular concern as climate change is expected to alter the frequency and severity of strong wind storms affecting this region. On 29 September 2003, Hurricane Juan made landfall over Nova Scotia, Canada as a Category 2 hurricane with sustained winds of 158 km/h, and gusts of up to 185 km/h. Hurricane Juan variously damaged a swath of over 600,000 ha of forest. The damaged forest area was surveyed using aerial photography and LandSAT imagery and categorized according to level of wind damage sustained (none, low, moderate, severe) at a resolution of 15 x 15 m square cells. We used Random Forest to analyze and compare level of wind damage in each cell with a myriad of abiotic (exposure, depth to water table, soil composition, etc.) and biotic (tree species composition, canopy closure, canopy height, etc.) factors known or expected to predispose trees to windthrow. From our analysis, we identified topographic exposure, precipitation, and maximum gust speed as the top predictors of windthrow during Hurricane Juan. To our surprise, forest stand factors, such as tree species composition and height, had minimal effects on level of windthrow. These results can be used to construct predictive risk maps which can help society to assess the vulnerability of forests to future wind storm events.

  18. Maine coastal storm and flood of February 2, 1976

    USGS Publications Warehouse

    Morrill, Richard Arthur; Chin, Edwin H.; Richardson, W.S.

    1979-01-01

    A business section of Bangor, Maine, was flooded with 12 feet (3.7 m) of water on February 2, 1976. The water surface elevation reached 17.46 feet (5.32 m) above national geodetic vertical datum of 1929 (NGVD), approximately 10.5 feet (3.2 m) above the predicted astronomical tide at Bangor. The unusually high water resulted from a tidal storm surge caused by prolonged strong, south-southeasterly winds which occurred near the time of astronomical high tide. Winds exceeded 64 knots off the New England coast. The resulting flood was the third highest since 1846 and is the first documented tidal flood at Bangor. This report documents the meteorological and hydrologic conditions associated with the flooding and also contains a brief description of storm damage from Eastport to Brunswick, Maine. Included are flood elevations in the city of Bangor and along the coast of Maine east of the Kennebec River. (Kosco-USGS)

  19. Probability of occurrence of planetary ionosphere storms associated with the magnetosphere disturbance storm time events

    NASA Astrophysics Data System (ADS)

    Gulyaeva, T. L.; Arikan, F.; Stanislawska, I.

    2014-11-01

    The ionospheric W index allows to distinguish state of the ionosphere and plasmasphere from quiet conditions (W = 0 or ±1) to intense storm (W = ±4) ranging the plasma density enhancements (positive phase) or plasma density depletions (negative phase) regarding the quiet ionosphere. The global W index maps are produced for a period 1999-2014 from Global Ionospheric Maps of Total Electron Content, GIM-TEC, designed by Jet Propulson Laboratory, converted from geographic frame (-87.5:2.5:87.5° in latitude, -180:5:180° in longitude) to geomagnetic frame (-85:5:85° in magnetic latitude, -180:5:180° in magnetic longitude). The probability of occurrence of planetary ionosphere storm during the magnetic disturbance storm time, Dst, event is evaluated with the superposed epoch analysis for 77 intense storms (Dst ≤ -100 nT) and 230 moderate storms (-100 < Dst ≤ -50 nT) with start time, t0, defined at Dst storm main phase onset. It is found that the intensity of negative storm, iW-, exceeds the intensity of positive storm, iW+, by 1.5-2 times. An empirical formula of iW+ and iW- in terms of peak Dst is deduced exhibiting an opposite trends of relation of intensity of ionosphere-plasmasphere storm with regard to intensity of Dst storm.

  20. Signatures of cosmic-ray increase attributed to exceptional solar storms inferred from multiple cosmogenic radionuclide records

    NASA Astrophysics Data System (ADS)

    Mekhaldi, Florian; Muscheler, Raimund; Adolphi, Florian; Svensson, Anders; Aldahan, Ala; Possnert, Göran; McConnell, Joseph R.; Sigl, Michael; Welten, Kees C.; Woodruff, Thomas E.

    2014-05-01

    Miyake et al. (2012, 2013) discovered rapid increases of 14C content in tree rings dated to AD 774-5 and AD 993-4 which they have attributed to cosmic-ray events. These extreme particle events have no counterparts in the instrumental record and have been tentatively associated with solar proton events, supernovae and short gamma-ray bursts, which have very different energy spectra. Cosmogenic radionuclides such as 14C, 10Be and 36Cl arise from the interaction of cosmic rays with atmospheric nitrogen, oxygen and argon. These radio-isotopes are produced through different reaction pathways and vary with different energy dependencies of the production rate cross section. Owing to this, yield functions can be used to determine the energy level of incident particles. However, only 14C has been measured at high resolution to quantify the energy and thus the origin of the outbursts. We present an annually resolved record of 10Be from the NGRIP ice core for the two events. In addition, we also utilized the GRIP ice core 36Cl record in our analysis. Our results show that the differential production of cosmogenic 14C, 10Be and 36Cl is consistent with a solar energy spectrum. Considering the notable increase in radionuclides, the solar storms would have had to be substantially greater than the largest recorded geomagnetic storm, the so-called Carrington event. This challenges our understanding of the sun's dynamics. Furthermore, the events could possibly be of interest for the investigation of potential cosmic ray-cloud linkages (Svensmark & Friis-Christensen, 1997). Alternatively, such outbursts of energetic particles have the potential to deplete atmospheric ozone and alter atmospheric circulation. Ultimately, the magnitude of such particle events draws attention to the perhaps underestimated potential of the sun to cause great damage to modern technologies. References Miyake, F., Masuda, K. & Nakamura, T. Another rapid event in the carbon-14 content of tree rings. Nature

  1. Storm-generated coral fragments - A viable source of transplants for reef rehabilitation

    USGS Publications Warehouse

    Garrison, V.; Ward, G.

    2008-01-01

    Coral reefs throughout the world have been damaged by storms, diseases, coral predators, temperature anomalies, and human activities. During the past three decades, recovery has been limited and patchy. Although a damaged coral reef cannot be restored to its original condition, interest in reef restoration is increasing. In a pilot project in the Caribbean (US Virgin Islands), storm-produced fragments of Acropora palmata, A. cervicornis, and Porites porites were collected from donor reefs and transplanted to nearby degraded reefs. Sixty coral fragments were attached to dead-coral substrate (usually A. palmata skeletons), at similar depths from which they had been collected (1-3.5 m), using nylon cable ties. Seventy-five intact colonies were designated as controls. Study colonies were assessed at 6-month intervals for 2 years (1999-2001) and annually thereafter (through 2004). One-fourth of the 135 colonies and fragments monitored were alive at the conclusion of the 5-year study. Survival of control and transplanted A. cervicornis and P. porites was very low (median survival 2.4 and 1.8 years, respectively), with no significant differences between transplant and control colonies. Site and depth did not contribute significantly to A. palmata colony survival, but colony size and transplant/control status did. Probability of survival increased with colony size. Median survival for A. palmata was 1.3 years for transplant and 4.3 years for natural colonies when not controlled for size. A. palmata was the only viable candidate for reef rehabilitation. Storm swells were the primary cause of mortality.

  2. Holocene sea surface temperature and sea ice extent in the Okhotsk and Bering Seas

    USGS Publications Warehouse

    Harada, Naomi; Katsuki, Kota; Nakagawa, Mitsuhiro; Matsumoto, Akiko; Seki, Osamu; Addison, Jason A.; Finney, Bruce P.; Sato, Miyako

    2014-01-01

    Accurate prediction of future climate requires an understanding of the mechanisms of the Holocene climate; however, the driving forces, mechanisms, and processes of climate change in the Holocene associated with different time scales remain unclear. We investigated the drivers of Holocene sea surface temperature (SST) and sea ice extent in the North Pacific Ocean, and the Okhotsk and Bering Seas, as inferred from sediment core records, by using the alkenone unsaturation index as a biomarker of SST and abundances of sea ice-related diatoms (F. cylindrus and F. oceanica) as an indicator of sea ice extent to explore controlling mechanisms in the high-latitude Pacific. Temporal changes in alkenone content suggest that alkenone production was relatively high during the middle Holocene in the Okhotsk Sea and the western North Pacific, but highest in the late Holocene in the eastern Bering Sea and the eastern North Pacific. The Holocene variations of alkenone-SSTs at sites near Kamchatka in the Northwest Pacific, as well as in the western and eastern regions of the Bering Sea, and in the eastern North Pacific track the changes of Holocene summer insolation at 50°N, but at other sites in the western North Pacific, in the southern Okhotsk Sea, and the eastern Bering Sea they do not. In addition to insolation, other atmosphere and ocean climate drivers, such as sea ice distribution and changes in the position and activity of the Aleutian Low, may have systematically influenced the timing and magnitude of warming and cooling during the Holocene within the subarctic North Pacific. Periods of high sea ice extent in both the Okhotsk and Bering Seas may correspond to some periods of frequent or strong winter–spring dust storms in the Mongolian Gobi Desert, particularly one centered at ∼4–3 thousand years before present (kyr BP). Variation in storm activity in the Mongolian Gobi Desert region may reflect changes in the strength and positions of the Aleutian Low and Siberian

  3. Observational analysis of the interaction between a baroclinic boundary and supercell storms on 27 April 2011

    NASA Astrophysics Data System (ADS)

    Sherrer, Adam Thomas

    A thermal boundary developed during the morning to early afternoon hours on 27 April as a result of rainfall evaporation and shading from reoccurring deep convection. This boundary propagated to the north during the late afternoon to evening hours. The presence of the boundary produced an area more conducive for the formation of strong violent tornadoes through several processes. These processes included the production of horizontally generated baroclinic vorticity, increased values in storm-relative helicity, and decreasing lifting condensation level heights. Five supercell storms formed near and/or propagated alongside this boundary. Supercells that interacted with this boundary typically produced significant tornadic damage over long distances. Two of these supercells formed to the south (warm) side of the boundary and produced a tornado prior to crossing to the north (cool) side of the boundary. These two storms exhibited changes in appearance, intensity, and structure. Two other supercells formed well south of the boundary. These two storms remained relatively weak until they interacted with the boundary. These storms then rapidly intensified and produced tornadoes. Supercells that formed well into the cool side of the boundary either did not produce tornadoes or the tornadoes were determined to be weak in nature.

  4. Comparison of silvicultural and natural disturbance effects on terrestrial salamanders in northern hardwood forests

    Treesearch

    Daniel J. Hocking; Kimberly J. Babbitt; Mariko Yamasaki

    2013-01-01

    In forested ecosystems timber harvesting has the potential to emulate natural disturbances, thereby maintaining the natural communities adapted to particular disturbances. We compared the effects of even-aged (clearcut and patch cut) and uneven-aged (group cut, single-tree selection) timber management techniques with natural ice-storm damage and unmanipulated reference...

  5. Synoptic analysis and hindcast of an intense bow echo in Western Europe: The 09 June 2014 storm

    NASA Astrophysics Data System (ADS)

    Mathias, Luca; Ermert, Volker; Kelemen, Fanni D.; Ludwig, Patrick; Pinto, Joaquim G.

    2017-04-01

    On Pentecost Monday of 09 June 2014, a severe mesoscale convective system (MCS) hit Belgium and Western Germany. This storm was one of the most severe thunderstorms in Germany for decades. The synoptic-scale and mesoscale characteristics of this storm are analyzed based on remote sensing data and in-situ measurements. Moreover, the forecast potential of the storm is evaluated using sensitivity experiments with a regional climate model. The key ingredients for the development of the Pentecost storm were the concurrent presence of low-level moisture, atmospheric conditional instability and wind shear. The synoptic and mesoscale analysis shows that the outflow of a decaying MCS above northern France triggered the storm, which exhibited the typical features of a bow echo like a mesovortex and rear inflow jet. This resulted in hurricane-force wind gusts (reaching 40 m/s) along a narrow swath in the Rhine-Ruhr region leading to substantial damage. Operational numerical weather predictions models mostly failed to forecast the storm, but high-resolution regional model hindcasts enable a realistic simulation of the storm. The model experiments reveal that the development of the bow echo is particularly sensitive to the initial wind field and the lower tropospheric moisture content. Correct initial and boundary conditions are therefore necessary for realistic numerical forecasts of such a bow echo event. We conclude that the Pentecost storm exhibited a comparable structure and a similar intensity to the observed bow echo systems in the United States.

  6. IRI STORM validation over Europe

    NASA Astrophysics Data System (ADS)

    Haralambous, Haris; Vryonides, Photos; Demetrescu, Crişan; Dobrică, Venera; Maris, Georgeta; Ionescu, Diana

    2014-05-01

    The International Reference Ionosphere (IRI) model includes an empirical Storm-Time Ionospheric Correction Model (STORM) extension to account for storm-time changes of the F layer peak electron density (NmF2) during increased geomagnetic activity. This model extension is driven by past history values of the geomagnetic index ap (The magnetic index applied is the integral of ap over the previous 33 hours with a weighting function deduced from physically based modeling) and it adjusts the quiet-time F layer peak electron density (NmF2) to account for storm-time changes in the ionosphere. In this investigation manually scaled hourly values of NmF2 measured during the main and recovery phases of selected storms for the maximum solar activity period of the current solar cycle are compared with the predicted IRI-2012 NmF2 over European ionospheric stations using the STORM model option. Based on the comparison a subsequent performance evaluation of the STORM option during this period is quantified.

  7. KSC ice/frost/debris assessment for space shuttle mission STS-29R

    NASA Technical Reports Server (NTRS)

    Stevenson, Charles G.; Katnik, Gregory N.; Higginbotham, Scott A.

    1989-01-01

    An ice/frost/debris assessment was conducted for Space Shuttle Mission STS-29R. Debris inspections of the flight elements and launch pad are performed before and after launch. Ice/frost conditions on the external tank are assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by an on-pad visual inspection. High speed photography is analyzed after launch to identify ice/debris sources and evaluate potential vehicle damage. The ice/frost/debris conditions of Mission STS-29R and their effect on the Space Shuttle Program are documented.

  8. KSC ice/frost/debris assessment for Space Shuttle Mission STS-30R

    NASA Technical Reports Server (NTRS)

    Stevenson, Charles G.; Katnik, Gregory N.; Higginbotham, Scott A.

    1989-01-01

    An ice/frost/debris assessment was conducted for Space Shuttle Mission STS-30R. Debris inspections of the flight elements and launch pad are performed before and after launch. Ice/frost conditions on the external tank are assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by an on-pad visual inspection. High speed photography is analyzed after launch to identify ice/debris sources and evaluate potential vehicle damage. The ice/frost/debris conditions of Mission STS-30R and their overall effect on the Space Shuttle Program is documented.

  9. Impacts of Storm Surge Mitigation Strategies on Aboveground Storage Tank Chemical Spill Transport

    NASA Astrophysics Data System (ADS)

    Do, C.; Bass, B. J.; Bernier, C.; Samii, A.; Dawson, C.; Bedient, P. B.

    2017-12-01

    The Houston Ship Channel (HSC), located in the hurricane-prone Houston-Galveston region of the upper Texas Coast, is one of the busiest waterways in the United States and is home to one of the largest petrochemical complexes in the world. Due to the proximity of the HSC to Galveston Bay and the Gulf of Mexico, chemical spills resulting from storm surge damage to aboveground storage tanks (ASTs) pose serious threats to the environment, residential communities, and national/international markets whose activities in the HSC generate billions of dollars annually. In an effort to develop a comprehensive storm surge mitigation strategy for Galveston Bay and its constituents, Rice University's Severe Storm Prediction, Education, and Evacuation from Disasters Center proposed two structural storm surge mitigation concepts, the Mid Bay Structure (MBS) and the Lower Bay Structure (LBS) as components of the Houston-Galveston Area Protection System (H-GAPS) project. The MBS consists of levees along the HSC and a navigational gate across the channel, and the LBS consists of a navigation gate and environmental gates across Bolivar Road. The impacts of these two barrier systems on the fate of AST chemical spills in the HSC have previously been unknown. This study applies the coupled 2D SWAN+ADCIRC model to simulate hurricane storm surge circulation within the Gulf of Mexico and Galveston Bay due to a synthetic storm which results in approximately 250-year surge levels in Galveston Bay. The SWAN+ADCIRC model is run using high-resolution computational meshes that incorporate the MBS and LBS scenarios, separately. The resulting wind and water velocities are then fed into a Lagrangian particle transport model to simulate the spill trajectories of the ASTs most likely to fail during the 250-year proxy storm. Results from this study illustrate how each storm surge mitigation strategy impacts the transport of chemical spills (modeled as Lagrangian particles) during storm surge as

  10. Spatial and temporal distributions of Martian north polar cold spots before, during, and after the global dust storm of 2001

    USGS Publications Warehouse

    Cornwall, C.; Titus, T.N.

    2009-01-01

    In the 1970s, Mariner and Viking observed features in the Mars northern polar region that were a few hundred kilometers in diameter with 20 fj,m brightness temperatures as low as 130 K (considerably below C02 ice sublimation temperatures). Over the past decade, studies have shown that these areas (commonly called "cold spots") are usually due to emissivity effects of frost deposits and occasionally to active C02 snowstorms. Three Mars years of Mars Global Surveyor Thermal Emission Spectrometer data were used to observe autumn and wintertime cold spot activity within the polar regions. Many cold spots formed on or near scarps of the perennial cap, probably induced by adiabatic cooling due to orographic lifting. These topographically associated cold spots were often smaller than those that were not associated with topography. We determined that initial grain sizes within the cold spots were on the order of a few millimeters, assuming the snow was uncontaminated by dust or water ice. On average, the half-life of the cold spots was 5 Julian days. The Mars global dust storm in 2001 significantly affected cold spot activity in the north polar region. Though overall perennial cap cold spot activity seemed unaffected, the distribution of cold spots did change by a decrease in the number of topographically associated cold spots and an increase in those not associated with topography. We propose that the global dust storm affected the processes that form cold spots and discuss how the global dust storm may have affected these processes. ?? 2009 by the American Geophysical Union.

  11. Damage to offshore infrastructure in the Gulf of Mexico by hurricanes Katrina and Rita

    NASA Astrophysics Data System (ADS)

    Cruz, A. M.; Krausmann, E.

    2009-04-01

    The damage inflicted by hurricanes Katrina and Rita to the Gulf-of-Mexico's (GoM) oil and gas production, both onshore and offshore, has shown the proneness of industry to Natech accidents (natural hazard-triggered hazardous-materials releases). In order to contribute towards a better understanding of Natech events, we assessed the damage to and hazardous-materials releases from offshore oil and natural-gas platforms and pipelines induced by hurricanes Katrina and Rita. Data was obtained through a review of published literature and interviews with government officials and industry representatives from the affected region. We also reviewed over 60,000 records of reported hazardous-materials releases from the National Response Center's (NRC) database to identify and analyze the hazardous-materials releases directly attributed to offshore oil and gas platforms and pipelines affected by the two hurricanes. Our results show that hurricanes Katrina and Rita destroyed at least 113 platforms, and severely damaged at least 53 others. Sixty percent of the facilities destroyed were built 30 years ago or more prior to the adoption of the more stringent design standards that went into effect after 1977. The storms also destroyed 5 drilling rigs and severely damaged 19 mobile offshore drilling units (MODUs). Some 19 MODUs lost their moorings and became adrift during the storms which not only posed a danger to existing facilities but the dragging anchors also damaged pipelines and other infrastructure. Structural damage to platforms included toppling of sections, and tilting or leaning of platforms. Possible causes for failure of structural and non-structural components of platforms included loading caused by wave inundation of the deck. Failure of rigs attached to platforms was also observed resulting in significant damage to the platform or adjacent infrastructure, as well as damage to equipment, living quarters and helipads. The failures are attributable to tie-down components

  12. Lightning Evolution In Two North Central Florida Summer Multicell Storms and Three Winter/Spring Frontal Storms

    NASA Astrophysics Data System (ADS)

    Caicedo, J. A.; Uman, M. A.; Pilkey, J. T.

    2018-01-01

    We present the first lightning evolution studies, via the Lightning Mapping Array (LMA) and radar, performed in North Central Florida. Parts of three winter/spring frontal storms (cold season) and two complete summer (warm season) multicell storms are studied. Storm parameters measured are as follows: total number of flashes, flash-type classification, first flashes, flash initiation altitude, flash initiation power, flash rate (flashes per minute), charge structure, altitude and temperature ranges of the inferred charge regions, atmospheric isotherm altitude, radar base reflectivity (dBZ), and radar echo tops (EET). Several differences were found between summer multicell and winter/spring frontal storms in North Central Florida: (1) in winter/spring storms, the range of altitudes that all charge regions occupy is up to 1 km lower in altitude than in summer storms, as are the 0°C, -10°C, and -20°C isotherms; (2) lightning activity in summer storms is highly correlated with changes in radar signatures, in particular, echo tops; and (3) the LMA average initiation power of all flash types in winter/frontal storms is about an order of magnitude larger than that for summer storms. In relation to storms in other geographical locations, North Central Florida seasonal storms were found to have similarities in most parameters studied with a few differences, examples in Florida being (1) colder initiation altitudes for intracloud flashes, (2) charge regions occupying larger ranges of atmospheric temperatures, and (3) winter/spring frontal storms not having much lightning activity in the stratiform region.

  13. Observations of Martian ice clouds by the Mars Global Surveyor Thermal Emission Spectrometer: The first Martian year

    NASA Astrophysics Data System (ADS)

    Pearl, John C.; Smith, Michael D.; Conrath, Barney J.; Bandfield, Joshua L.; Christensen, Philip R.

    2001-06-01

    Successful operation of the Mars Global Surveyor spacecraft, beginning in September 1997 (Ls=184°), has permitted extensive observations over more than a Martian year. Initially, thin (normal optical depth <0.06 at 825 cm-1) ice clouds and hazes were widespread, showing a distinct latitudinal gradient. With the onset of a regional dust storm at Ls=224°, ice clouds vanished in the southern hemisphere, to reappear gradually after the decay of the storm. The zonally averaged cloud opacities show little difference between the beginning and end of the first Martian year. A broad low-latitude cloud belt with considerable longitudinal structure was present in early northern summer. Apparently characteristic of the northern summer season, it vanished between Ls=140° and 150°. The latitudinal extent of this feature is apparently controlled by the ascending branch of the Hadley circulation. The most opaque clouds (optical depth ~0.6) were found above the summits of major volcanic features; these showed spatial structure possibly associated with wave activity. Variety among low-lying late morning clouds suggests localized differences in circulation and microclimates. Limb observations showed extensive optically thin (optical depth <0.04) stratiform clouds at altitudes up to 55 km. Considerable latitude and altitude variations were evident in ice clouds in early northern spring (Ls=25°) near 30 km, thin clouds extended from just north of the equator to ~45°N, nearly to the north polar vortex. A water ice haze was present in the north polar night (Ls=30°) at altitudes up to 40 km. Because little dust was present this probably provided heterogeneous nucleation sites for the formation of CO2 clouds and snowfall at altitudes below ~20 km, where atmospheric temperatures dropped to the CO2 condensation point. The relatively invariant spectral shape of the water ice cloud feature over space and time indicates that ice particle radii are generally between 1 and 4 μm.

  14. Communicating Storm Surge Forecast Uncertainty

    NASA Astrophysics Data System (ADS)

    Troutman, J. A.; Rhome, J.

    2015-12-01

    When it comes to tropical cyclones, storm surge is often the greatest threat to life and property along the coastal United States. The coastal population density has dramatically increased over the past 20 years, putting more people at risk. Informing emergency managers, decision-makers and the public about the potential for wind driven storm surge, however, has been extremely difficult. Recently, the Storm Surge Unit at the National Hurricane Center in Miami, Florida has developed a prototype experimental storm surge watch/warning graphic to help communicate this threat more effectively by identifying areas most at risk for life-threatening storm surge. This prototype is the initial step in the transition toward a NWS storm surge watch/warning system and highlights the inundation levels that have a 10% chance of being exceeded. The guidance for this product is the Probabilistic Hurricane Storm Surge (P-Surge) model, which predicts the probability of various storm surge heights by statistically evaluating numerous SLOSH model simulations. Questions remain, however, if exceedance values in addition to the 10% may be of equal importance to forecasters. P-Surge data from 2014 Hurricane Arthur is used to ascertain the practicality of incorporating other exceedance data into storm surge forecasts. Extracting forecast uncertainty information through analyzing P-surge exceedances overlaid with track and wind intensity forecasts proves to be beneficial for forecasters and decision support.

  15. Collapse of the 2017 Winter Beaufort High: A Response to Thinning Sea Ice?

    NASA Astrophysics Data System (ADS)

    Moore, G. W. K.; Schweiger, A.; Zhang, J.; Steele, M.

    2018-03-01

    The winter Arctic atmosphere is under the influence of two very different circulation systems: extratropical cyclones travel along the primary North Atlantic storm track from Iceland toward the eastern Arctic, while the western Arctic is characterized by a quasi-stationary region of high pressure known as the Beaufort High. The winter (January through March) of 2017 featured an anomalous reversal of the normally anticyclonic surface winds and sea ice motion in the western Arctic. This reversal can be traced to a collapse of the Beaufort High as the result of the intrusion of low-pressure systems from the North Atlantic, along the East Siberian Coast, into the Arctic Basin. Thin sea ice as the result of an extremely warm autumn (October through December) of 2016 contributed to the formation of an anomalous thermal low over the Barents Sea that, along with a northward shift of the tropospheric polar vortex, permitted this intrusion. The collapse of the Beaufort High during the winter of 2017 was associated with simultaneous 2-sigma sea level pressure, surface wind, and sea ice circulation anomalies in the western Arctic. As the Arctic sea ice continues to thin, such reversals may become more common and impact ocean circulation, sea ice, and biology.

  16. De-icing salt contamination reduces urban tree performance in structural soil cells.

    PubMed

    Ordóñez-Barona, Camilo; Sabetski, Vadim; Millward, Andrew A; Steenberg, James

    2018-03-01

    Salts used for de-icing roads and sidewalks in northern climates can have a significant impact on water quality and vegetation. Sub-surface engineering systems, such as structural soil cells, can regulate water runoff and pollutants, and provide the necessary soil volume and irrigation to grow trees. However, the ability of such systems to manage de-icing salt contamination, and the impact of this contamination on the trees growing in them, have not been evaluated. We report on an field investigation of de-icing salt contamination in structural cells in two street-revitalization projects in Toronto, Canada, and the impact of this contamination on tree performance. We analyzed soil chemistry and collected tree attributes; these data were examined together to understand the effect of salinity on tree mortality rates and foliar condition. Data collected from continuous soil salinity loggers from April to June for one of the two sites were used to determine whether there was a long-term accumulation of salts in the soils. Results for both sites indicate that both sites displayed high salinity and alkalinity, with levels elevated beyond those suggested before those reported to cause negative tree effects. For one site, trees that were alive and trees that had a better foliar condition had significantly lower levels of soil salinity and alkalinity than other trees. High salinity and alkalinity in the soil were also associated with lower nutrient levels for both sites. Although tests for salinity accumulation in the soils of one site were negative, a longer monitoring of the soil conditions within the soil cells is warranted. Despite structural cells being increasingly utilized for their dual role in storm-water management and tree establishment, there may be a considerable trade-off between storm-water management and urban-forest function in northern climates where de-icing salt application continues to be commonplace. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. GOES-West Satellite Eyes Soggy Storm Approaching California

    NASA Image and Video Library

    2014-02-28

    next week, as this system moves east, this powerful system will wreak havoc causing snow and ice storms through the Midwest into the Northeast." GOES satellites provide the kind of continuous monitoring necessary for intensive data analysis. Geostationary describes an orbit in which a satellite is always in the same position with respect to the rotating Earth. This allows GOES to hover continuously over one position on Earth's surface, appearing stationary. As a result, GOES provide a constant vigil for the atmospheric "triggers" for severe weather conditions such as tornadoes, flash floods, hail storms and hurricanes. On a positive note, Patzert noted, "This is a nice down payment on drought recovery in the parched Western U.S." For updated information about the storm system, visit NOAA's National Weather Service website: www.weather.gov For more information about GOES satellites, visit: www.goes.noaa.gov/ or goes.gsfc.nasa.gov/ Rob Gutro NASA's Goddard Space Flight Center NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  18. Ice Shelf-Ocean Interactions Near Ice Rises and Ice Rumples

    NASA Astrophysics Data System (ADS)

    Lange, M. A.; Rückamp, M.; Kleiner, T.

    2013-12-01

    The stability of ice shelves depends on the existence of embayments and is largely influenced by ice rises and ice rumples, which act as 'pinning-points' for ice shelf movement. Of additional critical importance are interactions between ice shelves and the water masses underlying them in ice shelf cavities, particularly melting and refreezing processes. The present study aims to elucidate the role of ice rises and ice rumples in the context of climate change impacts on Antarctic ice shelves. However, due to their smaller spatial extent, ice rumples react more sensitively to climate change than ice rises. Different forcings are at work and need to be considered separately as well as synergistically. In order to address these issues, we have decided to deal with the following three issues explicitly: oceanographic-, cryospheric and general topics. In so doing, we paid particular attention to possible interrelationships and feedbacks in a coupled ice-shelf-ocean system. With regard to oceanographic issues, we have applied the ocean circulation model ROMBAX to ocean water masses adjacent to and underneath a number of idealized ice shelf configurations: wide and narrow as well as laterally restrained and unrestrained ice shelves. Simulations were performed with and without small ice rises located close to the calving front. For larger configurations, the impact of the ice rises on melt rates at the ice shelf base is negligible, while for smaller configurations net melting rates at the ice-shelf base differ by a factor of up to eight depending on whether ice rises are considered or not. We employed the thermo-coupled ice flow model TIM-FD3 to simulate the effects of several ice rises and one ice rumple on the dynamics of ice shelf flow. We considered the complete un-grounding of the ice shelf in order to investigate the effect of pinning points of different characteristics (interior or near calving front, small and medium sized) on the resulting flow and stress fields

  19. Preliminary assessment of post-Haiyan mangrove damage and short-term recovery in Eastern Samar, central Philippines.

    PubMed

    Primavera, J H; Dela Cruz, M; Montilijao, C; Consunji, H; Dela Paz, M; Rollon, R N; Maranan, K; Samson, M S; Blanco, A

    2016-08-30

    Strong winds and storm surges from Typhoon Haiyan caused damage of US$12-15billion and >10,000 human casualties in central Philippines in November 2013. To validate a proposed government US$22million mangrove replanting program, mangrove damage and short-term recovery were surveyed in seven natural and planted mangrove sites in Eastern Samar province at 2.5month and 4.5month post-Haiyan. The preliminary assessment showed that natural mangroves (except for those directly hit by the storm) were recovering by means of tree sprouts and surviving seedlings and saplings compared to the devastated plantation. Likewise, tree mortality was higher in the plantation and natural forests hit by the storm surge, compared to more undamaged and partially damaged trees in natural mangroves. Hence the main recommendations to government are (1) to protect recovering mangroves by not releasing rehabilitation funds (that will inadvertently pay for clearing of live trees and for removal of seedlings), (2) to only plant in totally damaged sites (e.g., plantations), and (3) to only plant naturally dominant species, e.g., Sonneratia alba and Avicennia marina (instead of the popular Rhizophora apiculata, R. mucronata and R. stylosa). Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. TRMM precipitation analysis of extreme storms in South America: Bias and climatological contribution

    NASA Astrophysics Data System (ADS)

    Rasmussen, K. L.; Houze, R.; Zuluaga, M. D.; Choi, S. L.; Chaplin, M.

    2013-12-01

    The TRMM (Tropical Rainfall Measuring Mission) satellite was designed both to measure spatial and temporal variation of tropical rainfall around the globe and to understand the factors controlling the precipitation. TRMM observations have led to the realization that storms just east of the Andes in southeastern South America are among the most intense deep convection in the world. For a complete perspective of the impact of intense precipitation systems on the hydrologic cycle in South America, it is necessary to assess the contribution from various forms of extreme storms to the climatological rainfall. However, recent studies have suggested that the TRMM Precipitation Radar (PR) algorithm significantly underestimates surface rainfall in deep convection over land. Prior to investigating the climatological behavior, this research first investigates the range of the rain bias in storms containing four different types of extreme radar echoes: deep convective cores, deep and wide convective cores, wide convective cores, and broad stratiform regions over South America. The TRMM PR algorithm exhibits bias in all four extreme echo types considered here when the algorithm rates are compared to a range of conventional Z-R relations. Storms with deep convective cores, defined as high reflectivity echo volumes that extend above 10 km in altitude, show the greatest underestimation, and the bias is unrelated to their echo top height. The bias in wide convective cores, defined as high reflectivity echo volumes that extend horizontally over 1,000 km2, relates to the echo top, indicating that storms with significant mixed phase and ice hydrometeors are similarly affected by assumptions in the TRMM PR algorithm. The subtropical region tends to have more intense precipitating systems than the tropics, but the relationship between the TRMM PR rain bias and storm type is the same regardless of the climatological regime. The most extreme storms are typically not collocated with

  1. Tropical Storm Toraji Spawns Tornadoes in Japan

    NASA Image and Video Library

    2017-12-08

    The outflow from Tropical Storm Toraji spawned tornadoes that caused injuries and property damage in Koshigaya, Saitama Prefecture, Japan, just northeast of Tokyo, on September 2, 2013. This image was taken by the Suomi NPP satellite's VIIRS instrument around 0425Z on September 2, 2013. Credit: NASA/NOAA NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  2. Damage and recovery assessment of the Philippines' mangroves following Super Typhoon Haiyan.

    PubMed

    Long, Jordan; Giri, Chandra; Primavera, Jurgenne; Trivedi, Mandar

    2016-08-30

    We quantified mangrove disturbance resulting from Super Typhoon Haiyan using a remote sensing approach. Mangrove areas were mapped prior to Haiyan using 30m Landsat imagery and a supervised decision-tree classification. A time sequence of 250m eMODIS data was used to monitor mangrove condition prior to, and following, Haiyan. Based on differences in eMODIS NDVI observations before and after the storm, we classified mangrove into three damage level categories: minimal, moderate, or severe. Mangrove damage in terms of extent and severity was greatest where Haiyan first made landfall on Eastern Samar and Western Samar provinces and lessened westward corresponding with decreasing storm intensity as Haiyan tracked from east to west across the Visayas region of the Philippines. However, within 18months following Haiyan, mangrove areas classified as severely, moderately, and minimally damaged decreased by 90%, 81%, and 57%, respectively, indicating mangroves resilience to powerful typhoons. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Damage and recovery assessment of the Philippines' mangroves following Super Typhoon Haiyan

    USGS Publications Warehouse

    Long, Jordan; Giri, Chandra; Primavera, Jurgene H.; Trivedi, Mandar

    2016-01-01

    We quantified mangrove disturbance resulting from Super Typhoon Haiyan using a remote sensing approach. Mangrove areas were mapped prior to Haiyan using 30 m Landsat imagery and a supervised decision-tree classification. A time sequence of 250 m eMODIS data was used to monitor mangrove condition prior to, and following, Haiyan. Based on differences in eMODIS NDVI observations before and after the storm, we classified mangrove into three damage level categories: minimal, moderate, or severe. Mangrove damage in terms of extent and severity was greatest where Haiyan first made landfall on Eastern Samar and Western Samar provinces and lessened westward corresponding with decreasing storm intensity as Haiyan tracked from east to west across the Visayas region of the Philippines. However, within 18 months following Haiyan, mangrove areas classified as severely, moderately, and minimally damaged decreased by 90%, 81%, and 57%, respectively, indicating mangroves resilience to powerful typhoons.

  4. Storms in Ancient Egypt: the Examples of Historical Natural Disasters Impacts on the Society

    NASA Astrophysics Data System (ADS)

    Petrova, Anastasia

    2013-04-01

    Though rain storms are infrequent in Egypt, which is normally a rainless country, some Ancient Egyptian texts give accounts of violent storms and rains. Actually, even small amounts of rain in that area could cause huge impact, as none of the water was absorbed by soil, and, running off, it could create dangerous torrents. The Tempest stele, circa 1550 BC, recounts a highly destructive storm happened during the reign of Ahmose I, the king of Egypt's 18 dynasty. The catastrophy is described in details, including the specific noise, overall darkness, torrent so that no torch could be lit. Many houses were washed into the river, temples, tombs and pyramids damaged and collapsed. The stele commemorates the restoration works made by the king who was able to cope with this great disaster and "re-establish the Two Lands". Some egyptologists believe that this event is related to the Minoan eruption of Thera, but this is unlikely given the description in the stele.

  5. Wildlife and habitat damage assessment from Hurricane Charley: recommendations for recovery of the J. N. "Ding" Darling National Wildlife Refuge Complex

    USGS Publications Warehouse

    Meyers, J. Michael; Langtimm, Catherine A.; Smith, Thomas J.; Pednault-Willett, Kendra

    2006-01-01

    • On 13 August 2004, the first of four hurricanes to strike Florida in <6 weeks came ashore near J. N. “Ding” Darling National Wildlife Refuge (JNDDNWR) Complex, Sanibel Island, Florida. The eye of Category 4 Hurricane Charley passed just north of Sanibel Island with maximum sustained winds of 145 mph (123 knots) and a storm surge of 0.3-2.7 m (1-9 ft). Three USGS-BRD scientists (coastal ecologist and research wildlife biologists) and a USFWS wildlife biologist surveyed the storm damage to JNDDNWR Complex on the ground from 20-24 September 2004. • At the request of United States Fish and Wildlife Service refuge staff, the USGS team concentrated on assessing damage to wetlands and habitat for selected bird populations (especially mangrove forests, Mangrove Cuckoos [Coccyzus minor], and Black-whiskered Vireo [Vireo altiloquus]), waterbird rookeries (mangrove islands), impoundments (waterbirds and waterfowl), sea grass beds (manatees), and upland hardwood hammocks and ridges (threatened eastern indigo snake [Drymarchon couperi]). • The refuge complex sustained moderate to catastrophic damage to vegetation, especially mangrove forests and waterbird nesting or roosting islands. Lumpkin Island, Hemp Island, and Bird Key waterbird nesting areas had >50% and sometimes 90% of their vegetation severely damaged (dead, broken tree stems, and tipped trees). The Shell Mound Trail area of JNDDNWR sustained catastrophic damage to its old growth mangrove forests. Direct storm mortality and injury to manatees in the area of the JNDDNWR Complex was probably slight as manatees may have several strategies to reduce storm mortality. Damage to seagrass beds, an important habitat for manatees, fishes and invertebrates, is believed to be limited to the breach at North Captiva Island. At this breach, refuge staff documented inundation of beds by sand and scarring by trees dragged by winds. • Because seagrass beads and manatee habitat extend beyond refuge boundaries (see p. 28

  6. Tropical Storm Allison rapid needs assessment--Houston, Texas, June 2001.

    PubMed

    2002-05-03

    On June 5, 2001, Tropical Storm Allison made landfall on Galveston Island, Texas. During the next 2 days, the system soaked much of southeast Texas and south-central Louisiana with more than 10 inches of rain as it moved slowly northward. On June 7, the storm made a clockwise loop back to the southwest, bringing even more rain to already drenched areas. The record rainfall caused billions of dollars in flood-related damage and approximately 25 deaths and led to a presidential disaster, declaration covering 31 Texas counties (Figure 1) and 28 Louisiana parishes. Harris County, Texas (2000 population: 3,400,578), center of the Houston metropolitan area, was among the hardest hit with some areas receiving up to 37 inches of rain in 24 hours (Figure 2). To evaluate the community's immediate public health needs, the City of Houston Department of Health and Human Services (HDHHS) conducted a rapid needs assessment in the areas most affected by flooding. This report summarizes assessment results, which identified increased illness in persons living in flooded homes, suggesting a need for rapid resolution of flood-related damage and the possibility that residents should seek temporary housing during clean-up and repair. The findings underscore the usefulness of rapid needs assessment as a tool to minimize misinformation, identify actual health threats, and ensure delivery of resources to those with the greatest and most immediate need.

  7. Observing the advection of sea ice in the Weddell Sea using buoy and satellite passive microwave data

    NASA Technical Reports Server (NTRS)

    Massom, Robert A.

    1992-01-01

    Data from four buoys tracked by Nimbus 6 and concurrent ice concentrations retrieved from Nimbus 7 scanning multichannel microwave radiometer data are used to investigate the progress and behavior of an area of sea ice as it drifts from the southwestern Weddell Sea. The overall drift characteristics and their relationship to ice edge displacement are examined within the framework of four zones. Three phases are identified in the large-scale behavior of the Weddell Sea ice cover, namely, a rapid equatorward and eastward advance, a quasi-equilibrium phase, and a period of rapid recession. Outbreaks of cold continental air alternate with incursions of relatively warm air from the north; warm conditions are recorded as far as 1200 km in from the ice edge in winter. Closed loops in the buoy trajectories, which are clockwise to the south of 63 deg S, reverse to become anticlockwise to the north. A coherence is observed in the response of the buoys to the passage of storms, even though the buoys separated by a distance of over 100 km.

  8. [Diagnosis and treatment of thyroid storm].

    PubMed

    Akamizu, Takashi

    2012-11-01

    Thyrotoxic storm is a life-threatening condition requiring emergency treatment. Neither its epidemiological data nor diagnostic criteria have been fully established. We clarified the clinical and epidemiological characteristics of thyroid storm using nationwide surveys and then formulate diagnostic criteria for thyroid storm. To perform the nationwide survey on thyroid storm, we first developed tentative diagnostic criteria for thyroid storm, mainly based upon the literature (the first edition). We analyzed the relationship of the major features of thyroid storm to mortality and to certain other features. Finally, based upon the findings of these surveys, we revised the diagnostic criteria. Thyrotoxic storm is still a life-threatening disorder with over 10% mortality in Japan.

  9. Satellite Video Shows Movement of Major U.S. Winter Storm

    NASA Image and Video Library

    2014-02-12

    A new NASA video of NOAA's GOES satellite imagery shows three days of movement of the massive winter storm that stretches from the southern U.S. to the northeast. Visible and infrared imagery from NOAA's GOES-East or GOES-13 satellite from Feb. 10 at 1815 UTC/1:15 p.m. EST to Feb. 12 to 1845 UTC/1:45 p.m. EST were compiled into a video made by NASA/NOAA's GOES Project at NASA's Goddard Space Flight Center in Greenbelt, Md. In the video, viewers can see the development and movement of the clouds associated with the progression of the frontal system and related low pressure areas that make up the massive storm. The video also shows the snow covered ground over the Great Lakes region and Ohio Valley that stretches to northern New England. The clouds and fallen snow data from NOAA's GOES-East satellite were overlaid on a true-color image of land and ocean created by data from the Moderate Resolution Imaging Spectroradiometer or MODIS instrument that flies aboard NASA's Aqua and Terra satellites. On February 12 at 10 a.m. EST, NOAA's National Weather Service or NWS continued to issue watches and warnings from Texas to New England. Specifically, NWS cited Winter Storm Warnings and Winter Weather Advisories were in effect from eastern Texas eastward across the interior section of southeastern U.S. states and across much of the eastern seaboard including the Appalachians. Winter storm watches are in effect for portions of northern New England as well as along the western slopes of northern and central Appalachians. For updates on local forecasts, watches and warnings, visit NOAA's www.weather.gov webpage. NOAA's Weather Prediction Center or WPC noted the storm is expected to bring "freezing rain spreading into the Carolinas, significant snow accumulations are expected in the interior Mid-Atlantic states tonight into Thursday and ice storm warnings and freezing rain advisories are in effect across much of central Georgia. GOES satellites provide the kind of continuous

  10. Tsunami damage in the southern Kanto region from the 1703 Genroku Kanto earthquake

    NASA Astrophysics Data System (ADS)

    Muragishi, J.; Satake, K.

    2014-12-01

    The Genroku Kanto earthquake occurred on Dec. 31th, 1703 along the Sagami Trough where the Philippine Sea plate subducts beneath the continental plate. Hatori (1976) reported significant tsunami damage with estimated tsunami heights of 5 m along Kujukuri coast on the Pacific Ocean, and estimated the tsunami heights in the inner Tokyo Bay as approximately 2 m. In Tokyo Bay, there are no records that indicate the tsunami inundated residential areas, while some descriptions of tsunami are recorded in Edo, the former Tokyo. The notice from Edo City Commissioners to residences in Edo described that the tsunami came up to the upper-limit of Sumida River in Tokyo, where four major arrivals of tsunamis were reported. According to Saihen-onkoroku, tsunami came to Fukagawa, where one person was killed by throwing away from a boat affected by the tsunami. In Ichikawa along the coast of Chiba Prefecture in Tokyo Bay, there are historical records about the salt farm. The embankments were collapsed and the salt farm was ruined, while the tsunami damage is not described. At this location, the damage due to storm surge in 1680 is recorded in the same document. Although storm surge damage is recorded in detail, there are no records about the Genroku tsunami, suggesting that the tsunami damage, if any, is slighter than the storm surge. Along the Kujukui coast outside the Tokyo bay, the descriptions are not only damage to buildings or deaths but also an influx of sand brought by the tsunami which damaged the agricultural land. In summary, it became certain that the Genroku tsunami caused some damage in the inner Tokyo Bay area. In addition, we found that a wide range of farmland was suffered by influx of sand and crops could not grow well. Such a description may be able to contribute to the tsunami deposits in future research. This study was supported by the Special Project for Reducing Vulnerability for Urban Mega Earthquake Disasters from the MEXT of Japan.

  11. Ice-nucleating bacteria control the order and dynamics of interfacial water

    DOE PAGES

    Pandey, Ravindra; Usui, Kota; Livingstone, Ruth A.; ...

    2016-04-22

    Ice-nucleating organisms play important roles in the environment. With their ability to induce ice formation at temperatures just below the ice melting point, bacteria such as Pseudomonas syringae attack plants through frost damage using specialized ice-nucleating proteins. Besides the impact on agriculture and microbial ecology, airborne P. syringae can affect atmospheric glaciation processes, with consequences for cloud evolution, precipitation, and climate. Biogenic ice nucleation is also relevant for artificial snow production and for biomimetic materials for controlled interfacial freezing. We use interface-specific sum frequency generation (SFG) spectroscopy to show that hydrogen bonding at the water-bacteria contact imposes structural ordering onmore » the adjacent water network. Experimental SFG data and molecular dynamics simulations demonstrate that ice active sites within P. syringae feature unique hydrophilic-hydrophobic patterns to enhance ice nucleation. Finally, the freezing transition is further facilitated by the highly effective removal of latent heat from the nucleation site, as apparent from time-resolved SFG spectroscopy.« less

  12. Ice-nucleating bacteria control the order and dynamics of interfacial water

    PubMed Central

    Pandey, Ravindra; Usui, Kota; Livingstone, Ruth A.; Fischer, Sean A.; Pfaendtner, Jim; Backus, Ellen H. G.; Nagata, Yuki; Fröhlich-Nowoisky, Janine; Schmüser, Lars; Mauri, Sergio; Scheel, Jan F.; Knopf, Daniel A.; Pöschl, Ulrich; Bonn, Mischa; Weidner, Tobias

    2016-01-01

    Ice-nucleating organisms play important roles in the environment. With their ability to induce ice formation at temperatures just below the ice melting point, bacteria such as Pseudomonas syringae attack plants through frost damage using specialized ice-nucleating proteins. Besides the impact on agriculture and microbial ecology, airborne P. syringae can affect atmospheric glaciation processes, with consequences for cloud evolution, precipitation, and climate. Biogenic ice nucleation is also relevant for artificial snow production and for biomimetic materials for controlled interfacial freezing. We use interface-specific sum frequency generation (SFG) spectroscopy to show that hydrogen bonding at the water-bacteria contact imposes structural ordering on the adjacent water network. Experimental SFG data and molecular dynamics simulations demonstrate that ice-active sites within P. syringae feature unique hydrophilic-hydrophobic patterns to enhance ice nucleation. The freezing transition is further facilitated by the highly effective removal of latent heat from the nucleation site, as apparent from time-resolved SFG spectroscopy. PMID:27152346

  13. Research Opportunities at Storm Peak Laboratory

    NASA Astrophysics Data System (ADS)

    Hallar, A. G.; McCubbin, I. B.

    2006-12-01

    The Desert Research Institute (DRI) operates a high elevation facility, Storm Peak Laboratory (SPL), located on the west summit of Mt. Werner in the Park Range near Steamboat Springs, Colorado at an elevation of 3210 m MSL (Borys and Wetzel, 1997). SPL provides an ideal location for long-term research on the interactions of atmospheric aerosol and gas- phase chemistry with cloud and natural radiation environments. The ridge-top location produces almost daily transition from free tropospheric to boundary layer air which occurs near midday in both summer and winter seasons. Long-term observations at SPL document the role of orographically induced mixing and convection on vertical pollutant transport and dispersion. During winter, SPL is above cloud base 25% of the time, providing a unique capability for studying aerosol-cloud interactions (Borys and Wetzel, 1997). A comprehensive set of continuous aerosol measurements was initiated at SPL in 2002. SPL includes an office-type laboratory room for computer and instrumentation setup with outside air ports and cable access to the roof deck, a cold room for precipitation and cloud rime ice sample handling and ice crystal microphotography, a 150 m2 roof deck area for outside sampling equipment, a full kitchen and two bunk rooms with sleeping space for nine persons. The laboratory is currently well equipped for aerosol and cloud measurements. Particles are sampled from an insulated, 15 cm diameter manifold within approximately 1 m of its horizontal entry point through an outside wall. The 4 m high vertical section outside the building is capped with an inverted can to exclude large particles.

  14. Local ice melting by an antifreeze protein.

    PubMed

    Calvaresi, Matteo; Höfinger, Siegfried; Zerbetto, Francesco

    2012-07-09

    Antifreeze proteins, AFP, impede freezing of bodily fluids and damaging of cellular tissues by low temperatures. Adsorption-inhibition mechanisms have been developed to explain their functioning. Using in silico Molecular Dynamics, we show that type I AFP can also induce melting of the local ice surface. Simulations of antifreeze-positive and antifreeze-negative mutants show a clear correlation between melting induction and antifreeze activity. The presence of local melting adds a function to type I AFPs that is unique to these proteins. It may also explain some apparently conflicting experimental results where binding to ice appears both quasipermanent and reversible.

  15. Ultrasonic emissions during ice nucleation and propagation in plant xylem.

    PubMed

    Charrier, Guillaume; Pramsohler, Manuel; Charra-Vaskou, Katline; Saudreau, Marc; Améglio, Thierry; Neuner, Gilbert; Mayr, Stefan

    2015-08-01

    Ultrasonic acoustic emission analysis enables nondestructive monitoring of damage in dehydrating or freezing plant xylem. We studied acoustic emissions (AE) in freezing stems during ice nucleation and propagation, by combining acoustic and infrared thermography techniques and controlling the ice nucleation point. Ultrasonic activity in freezing samples of Picea abies showed two distinct phases: the first on ice nucleation and propagation (up to 50 AE s(-1) ; reversely proportional to the distance to ice nucleation point), and the second (up to 2.5 AE s(-1) ) after dissipation of the exothermal heat. Identical patterns were observed in other conifer and angiosperm species. The complex AE patterns are explained by the low water potential of ice at the ice-liquid interface, which induced numerous and strong signals. Ice propagation velocities were estimated via AE (during the first phase) and infrared thermography. Acoustic activity ceased before the second phase probably because the exothermal heating and the volume expansion of ice caused decreasing tensions. Results indicate cavitation events at the ice front leading to AE. Ultrasonic emission analysis enabled new insights into the complex process of xylem freezing and might be used to monitor ice propagation in natura. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  16. Putting life on ice: bacteria that bind to frozen water

    PubMed Central

    Bernheim, Reut; Guo, Shuaiqi; Davies, Peter L.; Braslavsky, Ido

    2016-01-01

    Ice-binding proteins (IBPs) are typically small, soluble proteins produced by cold-adapted organisms to help them avoid ice damage by either resisting or tolerating freezing. By contrast, the IBP of the Antarctic bacterium Marinomonas primoryensis is an extremely long, 1.5 MDa protein consisting of five different regions. The fourth region, a 34 kDa domain, is the only part that confers ice binding. Bioinformatic studies suggest that this IBP serves as an adhesin that attaches the bacteria to ice to keep it near the top of the water column, where oxygen and nutrients are available. Using temperature-controlled cells and a microfluidic apparatus, we show that M. primoryensis adheres to ice and is only released when melting occurs. Binding is dependent on the mobility of the bacterium and the functionality of the IBP domain. A polyclonal antibody raised against the IBP region blocks bacterial ice adhesion. This concept may be the basis for blocking biofilm formation in other bacteria, including pathogens. Currently, this IBP is the only known example of an adhesin that has evolved to bind ice. PMID:27534698

  17. Influence of storm characteristics on soil erosion and storm runoff

    Treesearch

    Johnny M. III Grace

    2008-01-01

    Unpaved forest roads can be major sources of sediment from forested watersheds. Storm runoff from forest roads are a concern due to their potential delivery of sediments and nutrients to stream systems resulting in degraded water quality. The volume and sediment concentrations of stormwater runoff emanating from forest roads can be greatly influenced by storm...

  18. Test and Analysis Correlation of High Speed Impacts of Ice Cylinders

    NASA Technical Reports Server (NTRS)

    Fasanella, Edwin L.; Boitnott, Richard L.; Kellas, Sotiris

    2006-01-01

    During the space shuttle return-to-flight preparations following the Columbia accident, finite element models were needed that could predict the threshold of critical damage to the orbiter s wing leading edge from ice debris impacts. Hence, an experimental program was initiated to provide crushing data from impacted ice for use in dynamic finite element material models. A high-speed drop tower was configured to capture force time-histories of ice cylinders for impacts up to approximately 100 ft/s. At low velocity, the force-time history depended heavily on the internal crystalline structure of the ice. However, for velocities of 100 ft/s and above, the ice fractured on impact, behaved more like a fluid, and the subsequent force-time history curves were much less dependent on the internal crystalline structure.

  19. 76 FR 7238 - Pipeline Safety: Dangers of Abnormal Snow and Ice Build-Up on Gas Distribution Systems

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-09

    ... been related to either the stress of snow and ice or the malfunction of pressure control equipment due... to have been related to either the stress of snow and ice or malfunction of pressure control... from the stresses imposed by the additional loading of the snow or ice. Damage to facilities may also...

  20. Ice Melt, Sea Level Rise and Superstorms: Evidence from Paleoclimate Data, Climate Modeling, and Modern Observations that 2C Global Warming Could Be Dangerous

    NASA Technical Reports Server (NTRS)

    Hansen, J.; Sato, Makiko; Hearty, Paul; Ruedy, Reto; Kelley, Maxwell; Masson-Delmotte, Valerie; Russell, Gary; Tselioudis, George; Cao, Junji; Rignot, Eric; hide

    2016-01-01

    We use numerical climate simulations, paleoclimate data, and modern observations to study the effect of growing ice melt from Antarctica and Greenland. Meltwater tends to stabilize the ocean column, inducing amplifying feedbacks that increase subsurface ocean warming and ice shelf melting. Cold meltwater and induced dynamical effects cause ocean surface cooling in the Southern Ocean and North Atlantic, thus increasing Earth's energy imbalance and heat flux into most of the global ocean's surface. Southern Ocean surface cooling, while lower latitudes are warming, increases precipitation on the Southern Ocean, increasing ocean stratification, slowing deepwater formation, and increasing ice sheet mass loss. These feedbacks make ice sheets in contact with the ocean vulnerable to accelerating disintegration. We hypothesize that ice mass loss from the most vulnerable ice, sufficient to raise sea level several meters, is better approximated as exponential than by a more linear response. Doubling times of 10, 20 or 40 years yield multi-meter sea level rise in about 50, 100 or 200 years. Recent ice melt doubling times are near the lower end of the 10-40-year range, but the record is too short to confirm the nature of the response. The feedbacks, including subsurface ocean warming, help explain paleoclimate data and point to a dominant Southern Ocean role in controlling atmospheric CO2, which in turn exercised tight control on global temperature and sea level. The millennial (500-2000-year) timescale of deep-ocean ventilation affects the timescale for natural CO2 change and thus the timescale for paleo-global climate, ice sheet, and sea level changes, but this paleo-millennial timescale should not be misinterpreted as the timescale for ice sheet response to a rapid, large, human-made climate forcing. These climate feedbacks aid interpretation of events late in the prior interglacial, when sea level rose to C6-9m with evidence of extreme storms while Earth was less than 1 C

  1. Fundamental Ice Crystal Accretion Physics Studies

    NASA Technical Reports Server (NTRS)

    Struk, Peter M.; Broeren, Andy P.; Tsao, Jen-Ching; Vargas, Mario; Wright, William B.; Currie, Tom; Knezevici, Danny; Fuleki, Dan

    2012-01-01

    Due to numerous engine power-loss events associated with high-altitude convective weather, ice accretion within an engine due to ice crystal ingestion is being investigated. The National Aeronautics and Space Administration (NASA) and the National Research Council (NRC) of Canada are starting to examine the physical mechanisms of ice accretion on surfaces exposed to ice-crystal and mixed-phase conditions. In November 2010, two weeks of testing occurred at the NRC Research Altitude Facility utilizing a single wedge-type airfoil designed to facilitate fundamental studies while retaining critical features of a compressor stator blade or guide vane. The airfoil was placed in the NRC cascade wind tunnel for both aerodynamic and icing tests. Aerodynamic testing showed excellent agreement compared with CFD data on the icing pressure surface and allowed calculation of heat transfer coefficients at various airfoil locations. Icing tests were performed at Mach numbers of 0.2 to 0.3, total pressures from 93 to 45 kPa, and total temperatures from 5 to 15 C. Ice and liquid water contents ranged up to 20 and 3 g/m3, respectively. The ice appeared well adhered to the surface in the lowest pressure tests (45 kPa) and, in a particular case, showed continuous leading-edge ice growth to a thickness greater than 15 mm in 3 min. Such widespread deposits were not observed in the highest pressure tests, where the accretions were limited to a small area around the leading edge. The suction surface was typically ice-free in the tests at high pressure, but not at low pressure. The icing behavior at high and low pressure appeared to be correlated with the wet-bulb temperature, which was estimated to be above 0 C in tests at 93 kPa and below 0 C in tests at lower pressure, the latter enhanced by more evaporative cooling of water. The authors believe that the large ice accretions observed in the low pressure tests would undoubtedly cause the aerodynamic performance of a compressor component

  2. Fundamental Ice Crystal Accretion Physics Studies

    NASA Technical Reports Server (NTRS)

    Currie, Tom; Knezevici, Danny; Fuleki, Dan; Struk, Peter M.; Broeren, Andy P.; Tsao, Jen-ching; Vargas, Mario; Wright, William

    2011-01-01

    Due to numerous engine power-loss events associated with high-altitude convective weather, ice accretion within an engine due to ice-crystal ingestion is being investigated. The National Aeronautics and Space Administration (NASA) and the National Research Council (NRC) of Canada are starting to examine the physical mechanisms of ice accretion on surfaces exposed to ice-crystal and mixed-phase conditions. In November 2010, two weeks of testing occurred at the NRC Research Altitude Facility utilizing a single wedge-type airfoil designed to facilitate fundamental studies while retaining critical features of a compressor stator blade or guide vane. The airfoil was placed in the NRC cascade wind tunnel for both aerodynamic and icing tests. Aerodynamic testing showed excellent agreement compared with CFD data on the icing pressure surface and allowed calculation of heat transfer coefficients at various airfoil locations. Icing tests were performed at Mach numbers of 0.2 to 0.3, total pressures from 93 to 45 kPa, and total temperatures from 5 to 15 C. Ice and liquid water contents ranged up to 20 and 3 grams per cubic meter, respectively. The ice appeared well adhered to the surface in the lowest pressure tests (45 kPa) and, in a particular case, showed continuous leading-edge ice growth to a thickness greater than 15 millimeters in 3 minutes. Such widespread deposits were not observed in the highest pressure tests, where the accretions were limited to a small area around the leading edge. The suction surface was typically ice-free in the tests at high pressure, but not at low pressure. The icing behavior at high and low pressure appeared to be correlated with the wet-bulb temperature, which was estimated to be above 0 C in tests at 93 kPa and below 0 C in tests at lower pressure, the latter enhanced by more evaporative cooling of water. The authors believe that the large ice accretions observed in the low pressure tests would undoubtedly cause the aerodynamic

  3. Numerical simulations of icing in turbomachinery

    NASA Astrophysics Data System (ADS)

    Das, Kaushik

    Safety concerns over aircraft icing and the high experimental cost of testing have spurred global interest in numerical simulations of the ice accretion process. Extensive experimental and computational studies have been carried out to understand the icing on external surfaces. No parallel initiatives were reported for icing on engine components. However, the supercooled water droplets in moist atmosphere that are ingested into the engine can impinge on the component surfaces and freeze to form ice deposits. Ice accretion could block the engine passage causing reduced airflow. It raises safety and performance concerns such as mechanical damage from ice shedding as well as slow acceleration leading to compressor stall. The current research aims at developing a computational methodology for prediction of icing phenomena on turbofan compression system. Numerical simulation of ice accretion in aircraft engines is highly challenging because of the complex 3-D unsteady turbomachinery flow and the effects of rotation on droplet trajectories. The aim of the present research focuses on (i) Developing a computational methodology for ice accretion in rotating turbomachinery components; (ii) Investigate the effect of inter-phase heat exchange; (iii) Characterize droplet impingement pattern and ice accretion at different operating conditions. The simulations of droplet trajectories are based on a Eulerian-Lagrangian approach for the continuous and discrete phases. The governing equations are solved in the rotating blade frame of reference. The flow field is computed by solving the 3-D solution of the compressible Reynolds Averaged Navier Stokes (RANS) equations. One-way interaction models simulate the effects of aerodynamic forces and the energy exchange between the flow and the droplets. The methodology is implemented in the cool, TURBODROP and applied to the flow field and droplet trajectories in NASA Roto-67r and NASA-GE E3 booster rotor. The results highlight the variation

  4. Prediction and mitigation of scour and scour damage to Vermont bridges.

    DOT National Transportation Integrated Search

    2017-02-20

    Over 300 Vermont bridges were damaged in the 2011 Tropical Storm Irene and many experienced significant scour. Successfully mitigating bridge scour in future flooding events depends on our ability to reliably estimate scour potential, design safe and...

  5. A Legacy for IPY: The Global Snowflake Network (GSN) Together With Art and Ice, and Music and Ice; Unique new Features for Science Education.

    NASA Astrophysics Data System (ADS)

    Wasilewski, P. J.

    2007-12-01

    The Global Snowflake Network (GSN) is a program that is simultaneously a science program and an education program. When the validation of the procedures (collection and identification of the type of snowflakes and the associated satellite image archive, as a serial record of a storm), is achieved, then the program becomes a scientific resource. This latter is the ultimate goal. That's why NASA has launched the Global Snowflake Network, a massive project that aims to involve the general public to "collect and classify" falling snowflakes. The data will be compiled into a massive database, along with satellite images, that will help climatologists and others who study climate-related phenomena gain a better understanding of wintry meteorology as they track various snowstorms around the globe. A great deal of information about the atmosphere dynamics and cloud microphysics can be derived from the serial collection and identification of the types of snow crystals and the degree of riming of the snow crystals during the progress of a snow storm. Forecasting winter weather depends in part on cloud physics, which deals with precipitation type, and if it happens to be snow- the crystal type, size, and density of the snowflake population. The History of Winter website will host the evolving snow and ice features for the IPY. Type "Global Snowflake Network" into the search engine (such as GOOGLE) and you will receive a demonstration of the operation of the preliminary GSN by the Indigenous community. The expeditions FINNMARK2007 and the POLAR Husky GoNorth 2007 expedition took the complement of Thermochrons with multimedia instructions for the Global Snowflake Network. This approach demonstrates the continuous Thermochron monitoring of expedition temperature and provides otherwise inaccessible snowflake information to NASA and others interested in the Polar region snow. In addition, reindeer herder and Ph.D. student, Inger Marie G. Eira, will incorporate the HOW, GSN

  6. The threshold between storm overwash and inundation and the implication to paleo-storm records and climate signatures.

    NASA Astrophysics Data System (ADS)

    Smith, C. G.; Long, J.; Osterman, L. E.; Plant, N. G.; Marot, M. E.; Bernier, J.; Flocks, J. G.; Adams, C. S.

    2014-12-01

    In modern coastal systems, the sensitivity of a coastal site to erosion or deposition during storm conditions depends largely on the geomorphic configuration (e.g. dune or beach height and width) and the storm-induced oceanographic processes (surge and waves). Depending on the magnitude of these variables, coastal systems may be eroded, overwashed, breached, and/or inundated during the storm. To date, there has been no attempt to evaluate how these observable modern differences in storm-impact regimes might be utilized to interpret paleo-storm intensities and frequencies. Time-series of sediment texture, radioisotopic, and foraminiferal data from back-barrier environments along the Chandeleur Islands (Louisiana, USA) document the emplacement of a storm event deposit from Hurricane Isaac and we use this event to test paleo-storm intensity reconstruction methods. Water level reconstructed for the event layer using an advection (grain-size) settling model are 2 - 3 times greater than measured during the storm. The over-estimation is linked to the reconstruction model's assumptions concerning sediment transport during storms (i.e., overwash only), while actual processes included inundation as well. These contrasts may result in misidentification (i.e., presence/absence) and/or misclassification (i.e., intensity) of storms in the geologic record (e.g., low geomorphic conditions and high water levels) that would in turn affect the ability to link storm frequency or intensity to climatic drivers.

  7. Total Lightning and Radar Storm Characteristics Associated with Severe Storms in Central Florida

    NASA Technical Reports Server (NTRS)

    Goodman, Steven J.; Raghavan, Ravi; Ramachandran, Rahul; Buechler, Dennis; Hodanish, Stephen; Sharp, David; Williams, Earle; Boldi, Bob; Matlin, Anne; Weber, Mark

    1998-01-01

    A number of prior studies have examined the association of lightning activity with the occurrence of severe weather and tornadoes, in particular. High flash rates are often observed in tornadic storms (Taylor, 1973; Johnson, 1980; Goodman and Knupp, 1993) but not always. Taylor found that 23% of nontornadic storms and 1% of non-severe storms had sferics rates comparable to the tornadic storms. MacGorman (1993) found that storms with mesocyclones produced more frequent intracloud (IC) lightning than cloud-to-ground (CG) lightning. MacGorman (1993) and others suggest that the lightning activity accompanying tomadic storms will be dominated by intracloud lightning-with an increase in intracloud and total flash rates as the updraft increases in depth, size, and velocity. In a recent study, Perez et al. (1998) found that CG flash rates alone are too variable to be a useful predictor of (F4, F5) tornado formation. Studies of non-tomadic storms have also shown that total lightning flash rates track the updraft, with rates increasing as the updraft intensities and decreasing rapidly with cessation of vertical growth or downburst onset (Goodman et al., 1988; Williams et al., 1989). Such relationships result from the development of mixed phase precipitation and increased hydrometer collisions that lead to the efficient separation of charge. Correlations between updraft strength and other variables such as cloud-top height, cloud water mass, and hail size have also been observed.

  8. Debris/Ice/TPS Assessment and Photographic Analysis for Shuttle Mission STS-38

    NASA Technical Reports Server (NTRS)

    Higginbotham, Scott A.; Davis, J. Bradley

    1991-01-01

    A debris/ice/TPS assessment and photographic analysis was conducted for the Space Shuttle Mission STS-38. Debris inspection of the flight elements and launch pad were performed before and after launch. Ice/frost conditions on the external tank were assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography was analyzed after launch to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. The debris/ice/TPS conditions and photographic analysis of Mission STS-38, and their overall effect on the Space Shuttle Program are documented.

  9. Debris/ice/TPS assessment and photographic analysis of shuttle mission STS-48

    NASA Technical Reports Server (NTRS)

    Higginbotham, Scott A.; Davis, J. Bradley

    1991-01-01

    A Debris/Ice/TPS assessment and photographic analysis was conducted for Space Shuttle Mission STS-48. Debris inspection of the flight elements and launch pad were performed before and after launch. Ice/frost conditions on the External Tank were assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography was analyzed after launch to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. The debris/ice/TPS conditions and photographic analysis of Mission STS-48 are documented, along with their overall effect on the Space Shuttle Program.

  10. Debris/Ice/TPS Assessment and Photographic Analysis for Shuttle Mission STS-37

    NASA Technical Reports Server (NTRS)

    Katnik, Gregory N.; Higginbotham, Scott A.; Davis, J. Bradley

    1991-01-01

    A Debris/Ice/TPS assessment and photographic analysis was conducted for Space Shuttle Mission STS-37. Debris inspections of the flight elements and launch pad were performed before and after launch. Ice/frost conditions on the External Tank were assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography of launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or inflight anomalies. The debris/ice/TPS conditions and photographic analysis of Mission STS-37 are documented, along with their overall effect on the Space Shuttle Program.

  11. Debris/ice/TPS assessment and photographic analysis for Shuttle Mission STS-36

    NASA Technical Reports Server (NTRS)

    Stevenson, Charles G.; Katnik, Gregory N.; Higginbotham, Scott A.

    1990-01-01

    A Debris/Ice/TPS (Thermal Protection System) assessment and photographic analysis was conducted for Space Shuttle Mission STS-36. Debris inspections of the flight elements and launch pad are performed before and after launch. Ice/frost conditions on the External Tank are assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography is analyzed after launch to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. The debris/ice/TPS conditions and photographic analysis of Mission STS-36, and their overall effect on the Space Shuttle Program are documented.

  12. Debris/ice/TPS assessment and photographic analysis for Shuttle Mission STS-42

    NASA Technical Reports Server (NTRS)

    Katnik, Gregory N.; Higginbotham, Scott A.; Davis, J. Bradley

    1992-01-01

    A Debris/Ice/TPS (Thermal Protection System) assessment and photographic analysis was conducted for Shuttle Mission STS-42. Debris inspection of the flight elements and launch pad were performed before and after launch. Ice/frost conditions on the External Tank were assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography was analyzed after launch to identify ice/debris sources and evaluate potential vehicle damage and/or in-flighr anomalies. The debris/ice/TPS conditions are documented along with photographic analysis of Mission STS-42, and their overall effect on the Space Shuttle Program.

  13. Debris/ice/TPS assessment and photographic analysis for Shuttle Mission STS-34

    NASA Technical Reports Server (NTRS)

    Stevenson, Charles G.; Katnik, Gregory N.; Higginbotham, Scott A.

    1989-01-01

    A Debris/Ice/Thermal Protection System (TPS) assessment and photographic analysis was conducted for Space Shuttle Mission STS-34. Debris inspections of the flight elements and launch pad are performed before and after launch. Ice/frost conditions on the External Tank are assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography is analyzed after launch to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. The debris/ice/TPS conditions and photographic analysis of Mission STS-34, and their overall effect on the Space Shuttle Program are documented.

  14. Ice/frost/debris assessment for space shuttle mission STS-27R, December 2, 1988

    NASA Technical Reports Server (NTRS)

    Katnik, Gregory N.; Higginbotham, Scott A.

    1989-01-01

    An Ice/Frost/Debris assessment was conducted for Space Shuttle Mission STS-27R. Debris inspections of the flight elements and launch pad are performed before and after launch. Ice/frost conditions are assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by an on-pad visual inspection. High speed photography is viewed after launch to identify ice/debris sources and evaluate potential vehicle damage. The Ice/Frost/Debris conditions of Mission STS-27R and their effect on the Space Shuttle Program are documented.

  15. Comparison of Probabilistic Coastal Inundation Maps Based on Historical Storms and Statistically Modeled Storm Ensemble

    NASA Astrophysics Data System (ADS)

    Feng, X.; Sheng, Y.; Condon, A. J.; Paramygin, V. A.; Hall, T.

    2012-12-01

    A cost effective method, JPM-OS (Joint Probability Method with Optimal Sampling), for determining storm response and inundation return frequencies was developed and applied to quantify the hazard of hurricane storm surges and inundation along the Southwest FL,US coast (Condon and Sheng 2012). The JPM-OS uses piecewise multivariate regression splines coupled with dimension adaptive sparse grids to enable the generation of a base flood elevation (BFE) map. Storms are characterized by their landfall characteristics (pressure deficit, radius to maximum winds, forward speed, heading, and landfall location) and a sparse grid algorithm determines the optimal set of storm parameter combinations so that the inundation from any other storm parameter combination can be determined. The end result is a sample of a few hundred (197 for SW FL) optimal storms which are simulated using a dynamically coupled storm surge / wave modeling system CH3D-SSMS (Sheng et al. 2010). The limited historical climatology (1940 - 2009) is explored to develop probabilistic characterizations of the five storm parameters. The probability distributions are discretized and the inundation response of all parameter combinations is determined by the interpolation in five-dimensional space of the optimal storms. The surge response and the associated joint probability of the parameter combination is used to determine the flood elevation with a 1% annual probability of occurrence. The limited historical data constrains the accuracy of the PDFs of the hurricane characteristics, which in turn affect the accuracy of the BFE maps calculated. To offset the deficiency of limited historical dataset, this study presents a different method for producing coastal inundation maps. Instead of using the historical storm data, here we adopt 33,731 tracks that can represent the storm climatology in North Atlantic basin and SW Florida coasts. This large quantity of hurricane tracks is generated from a new statistical model

  16. Dominica Hurricane Damage Mapped by NASA's ARIA Team

    NASA Image and Video Library

    2017-09-29

    The Advanced Rapid Imaging and Analysis (ARIA) team at NASA's Jet Propulsion Laboratory in Pasadena, California, and Caltech, also in Pasadena, created this Damage Proxy Map (DPM) depicting areas including the Commonwealth of Dominica, that are likely damaged (shown by red and yellow pixels) as a result of Hurricane Maria (a Category 5 storm at landfall in Dominica on Sept. 18, 2017). The map is derived from synthetic aperture radar (SAR) images from the Copernicus Sentinel-1 satellites, operated by the European Space Agency (ESA). The images were taken before (March 27, 2017) and after (Sept. 23, 2017) the landfall of the storm. The map covers the area within the large red polygon, which measures 53 by 106 miles (85 by 170 kilometers). Each pixel measures about 98 feet (30 meters) across. The color variation from yellow to red indicates increasingly more significant ground surface change. Preliminary validation was done by comparing the data to a crowdsourced map by Clemson Center for Geospatial Technologies and optical satellite imagery feom DigitalGlobe. This damage proxy map should be used as guidance to identify damaged areas, and may be less reliable over vegetated areas. Sentinel-1 data were accessed through the Copernicus Open Access Hub. The image contains modified Copernicus Sentinel data (2017), processed by ESA and analyzed by the NASA/JPL-Caltech ARIA team. This research was carried out at JPL under a contract with NASA. https://photojournal.jpl.nasa.gov/catalog/PIA22037

  17. Thromboembolic complications of thyroid storm.

    PubMed

    Min, T; Benjamin, S; Cozma, L

    2014-01-01

    Thyroid storm is a rare but potentially life-threatening complication of hyperthyroidism. Early recognition and prompt treatment are essential. Atrial fibrillation can occur in up to 40% of patients with thyroid storm. Studies have shown that hyperthyroidism increases the risk of thromboembolic events. There is no consensus with regard to the initiation of anticoagulation for atrial fibrillation in severe thyrotoxicosis. Anticoagulation is not routinely initiated if the risk is low on a CHADS2 score; however, this should be considered in patients with thyroid storm or severe thyrotoxicosis with impending storm irrespective of the CHADS2 risk, as it appears to increase the risk of thromboembolic episodes. Herein, we describe a case of thyroid storm complicated by massive pulmonary embolism. Diagnosis of thyroid storm is based on clinical findings. Early recognition and prompt treatment could lead to a favourable outcome.Hypercoagulable state is a recognised complication of thyrotoxicosis.Atrial fibrillation is strongly associated with hyperthyroidism and thyroid storm.Anticoagulation should be considered for patients with severe thyrotoxicosis and atrial fibrillation irrespective of the CHADS2 score.Patients with severe thyrotoxicosis and clinical evidence of thrombosis should be immediately anticoagulated until hyperthyroidism is under control.

  18. Measurements and Calculations of Microwave Radiance and Reflectivity for Storm-Associated Frozen Hydrometeors

    NASA Technical Reports Server (NTRS)

    Wang, James R.; Skofronick-Jackson, Gail; Meneghini, Robert; Heymsfield, Gerald; Manning, Will; Busalacchi, Antonio J. (Technical Monitor)

    2000-01-01

    During the TEFLUN-B (Texas-Florida under-flights for the Tropical Rainfall Measuring Mission (TRMM)) field experiment of August-September, 1998, a number of ER-2 aircraft flights with a host of microwave instruments were conducted over many convective storms, including some hurricanes, in the coastal region of Florida and Texas. These instruments include MIR (Millimeter-wave Imaging Radiometer), AMPR (Advanced Microwave Precipitation Radiometer), and EDOP (ER-2 Doppler Radar). EDOP is operated at the frequency of 9.7 GHz, while the AMPR and the MIR together give eleven channels of radiometric measurements in the frequency range of 10-340 GHz. The concurrent measurements from these instruments provide unique data sets for studying the details of the microphysics of hydrometeors. Preliminary examination of these data sets shows features that are generally well understood; i.e., radiometric measurements at frequencies <= 37 GHz mainly respond to rain, while those at frequencies >= 150 GHz, to snow and ice clouds above the freezing level. In this paper we present results of comparisons between these measurements and model calculations of brightness temperature and radar reflectivity. For simplicity the analysis is limited to the anvil region of the storms where only frozen hydrometeors are present. Various models of particle size distribution (e.g., Gunn-Marshall, Sekhon-Srivastava, and the Central Equatorial Pacific Experiment (CEPEX)) are examined in the calculations of brightness temperatures at the MIR frequencies and radar reflectivity at the EDOP frequency. Estimation of ice water path is made based on the best agreement between the measurements and calculations of brightness temperature and reflectivity. Problems associated with these analyses and measurement accuracy will be discussed.

  19. Tropical Storm Sam, Eastern Indian Ocean

    NASA Image and Video Library

    1990-01-20

    STS032-80-036 (9-20 Jan. 1990) --- This oblique view of Tropical Storm Sam in the eastern Indian Ocean off the western coast of Australia was photographed with a 70mm camera by the astronauts. Tropical Storm Sam (known as Willy-Willy in Australia) was born in the eastern Indian Ocean near the islands of Timor and Sumba in Indonesia. The storm tracked southwestward attaining sustained winds in excess of 60 knots (70 miles per hour). Other than on Christmas Island and the Cocos (Keeling) Islands south of Java, and for strong swells along the western Australia coast, the storm had little impact on land areas. At the time this photograph was taken, the storm was beginning to dissipate in the south Indian Ocean. The eye of the storm is still visible near center, with the swirling bands of the storm propagating in a clockwise direction toward the center. Winds aloft have begun to shear the tops of thunderstorms associated with the storm, forming a high cirrus cloud cover over the center portions of the storm. This picture was used by the crew at their January 30, 1990 Post-Flight Press Conference (PFPC).

  20. Assessing Hurricane Katrina Vegetation Damage at Stennis Space Center using IKONOS Image Classification Techniques

    NASA Technical Reports Server (NTRS)

    Spruce, Joseph P.; Ross, Kenton W.; Graham, William D.

    2006-01-01

    Hurricane Katrina inflicted widespread damage to vegetation in southwestern coastal Mississippi upon landfall on August 29, 2005. Storm damage to surface vegetation types at the NASA John C. Stennis Space Center (SSC) was mapped and quantified using IKONOS data originally acquired on September 2, 2005, and later obtained via a Department of Defense ClearView contract. NASA SSC management required an assessment of the hurricane s impact to the 125,000-acre buffer zone used to mitigate rocket engine testing noise and vibration impacts and to manage forestry and fire risk. This study employed ERDAS IMAGINE software to apply traditional classification techniques to the IKONOS data. Spectral signatures were collected from multiple ISODATA classifications of subset areas across the entire region and then appended to a master file representative of major targeted cover type conditions. The master file was subsequently used with the IKONOS data and with a maximum likelihood algorithm to produce a supervised classification later refined using GIS-based editing. The final results enabled mapped, quantitative areal estimates of hurricane-induced damage according to general surface cover type. The IKONOS classification accuracy was assessed using higher resolution aerial imagery and field survey data. In-situ data and GIS analysis indicate that the results compare well to FEMA maps of flooding extent. The IKONOS classification also mapped open areas with woody storm debris. The detection of such storm damage categories is potentially useful for government officials responsible for hurricane disaster mitigation.