Sample records for ice stream system

  1. Stochastic ice stream dynamics

    PubMed Central

    Bertagni, Matteo Bernard; Ridolfi, Luca

    2016-01-01

    Ice streams are narrow corridors of fast-flowing ice that constitute the arterial drainage network of ice sheets. Therefore, changes in ice stream flow are key to understanding paleoclimate, sea level changes, and rapid disintegration of ice sheets during deglaciation. The dynamics of ice flow are tightly coupled to the climate system through atmospheric temperature and snow recharge, which are known exhibit stochastic variability. Here we focus on the interplay between stochastic climate forcing and ice stream temporal dynamics. Our work demonstrates that realistic climate fluctuations are able to (i) induce the coexistence of dynamic behaviors that would be incompatible in a purely deterministic system and (ii) drive ice stream flow away from the regime expected in a steady climate. We conclude that environmental noise appears to be crucial to interpreting the past behavior of ice sheets, as well as to predicting their future evolution. PMID:27457960

  2. Basal melt beneath whillans ice stream and ice streams A and C

    NASA Technical Reports Server (NTRS)

    Joughin, I.; Teluezyk, S.; Engelhardt, H.

    2002-01-01

    We have used a recently derived map of the velocity of Whillans Ice Stream and Ice Streams A and C to help estimate basal melt. Temperature was modeled with a simple vertical advection-diffusion equation, 'tuned' to match temperature profiles. We find that most of the melt occurs beneath the tributaries where larger basal shear stresses and thicker ice favors greater melt (e.g., 10-20 mm/yr). The occurrence of basal freezing is predicted beneath much of the ice plains of Ice Stream C and Whillans Ice Stream. Modelled melt rates for when Ice Stream C was active suggest there was just enough melt water generated in its tributaries to balance basal freezing on its ice plain. Net basal melt for Whillans Ice Stream is positive due to smaller basal temperature gradients. Modelled temperatures on Whillans Ice Stream, however, were constrained by a single temperature profile at UpB. Basal temperature gradients for Whillans B1 and Ice Stream A may have conditions more similar to those beneath Ice Streams C and D, in which case, there may not be sufficient melt to sustain motion. This would be consistent with the steady deceleration of Whillans stream over the last few decades.

  3. Dynamic behaviour of ice streams: the North East Greenland Ice Stream

    NASA Astrophysics Data System (ADS)

    Bons, Paul D.; Jansen, Daniela; Schaufler, Svenja; de Riese, Tamara; Sachau, Till; Weikusat, Ilka

    2017-04-01

    The flow of ice towards the margins of ice sheets is far from homogeneous. Ice streams show much higher flow velocities than their surroundings and may extend, for example the North East Greenland Ice Stream (NEGIS), towards the centre of the sheet. The elevated flow velocity inside an ice stream causes marginal shearing and convergent flow, which in turn leads to folding of ice layers. Such folding was documented in the Petermann Glacier in northern Greenland (Bons et al., 2016). 3-dimensional structural modelling using radargrams shows that folding is more intense adjacent to NEGIS than inside it, despite the strong flow perturbation at NEGIS. Analysis of fold amplitude as a function of stratigraphic level indicates that folding adjacent to NEGIS ceased in the early Holocene, while it is currently active inside NEGIS. The presence of folds adjacent of NEGIS, but also at other sites far in the interior of the Greenland Ice Sheet with no direct connection to the present-day surface velocity field, indicates that ice flow is not only heterogeneous in space (as the present-day flow velocity field shows), but also in time. The observations suggest that ice streams are dynamic, ephemeral structures that emerge and die out, and may possibly shift during their existence, but leave traces within the stratigraphic layering of the ice. The dynamic nature of ice streams such as NEGIS speaks against deterministic models for their accelerated flow rates, such as bedrock topography or thermal perturbations at their base. Instead, we suggest that ice streams can also result from strain localisation induced inside the ice sheet by the complex coupling of rheology, anisotropy, grain-size changes and possibly shear heating. Bons, P.D., Jansen, D., Mundel, F., Bauer, C.C., Binder, T., Eisen, O., Jessell, M.W., Llorens, M.-G, Steinbach, F., Steinhage, D. & Weikusat, I. 2016. Converging flow and anisotropy cause large-scale folding in Greenland's ice sheet. Nature Communications 7

  4. Ice Flow in the North East Greenland Ice Stream

    NASA Technical Reports Server (NTRS)

    Joughin, Ian; Kwok, Ron; Fahnestock, M.; MacAyeal, Doug

    1999-01-01

    Early observations with ERS-1 SAR image data revealed a large ice stream in North East Greenland (Fahnestock 1993). The ice stream has a number of the characteristics of the more closely studied ice streams in Antarctica, including its large size and gross geometry. The onset of rapid flow close to the ice divide and the evolution of its flow pattern, however, make this ice stream unique. These features can be seen in the balance velocities for the ice stream (Joughin 1997) and its outlets. The ice stream is identifiable for more than 700 km, making it much longer than any other flow feature in Greenland. Our research goals are to gain a greater understanding of the ice flow in the northeast Greenland ice stream and its outlet glaciers in order to assess their impact on the past, present, and future mass balance of the ice sheet. We will accomplish these goals using a combination of remotely sensed data and ice sheet models. We are using satellite radar interferometry data to produce a complete maps of velocity and topography over the entire ice stream. We are in the process of developing methods to use these data in conjunction with existing ice sheet models similar to those that have been used to improve understanding of the mechanics of flow in Antarctic ice streams.

  5. Discharge of New Subglacial Lake on Whillians Ice Stream: Implication for Ice Stream Flow Dynamics.

    NASA Astrophysics Data System (ADS)

    Sergienko, O. V.; Fricker, H. A.; Bindschadler, R. A.; Vornberger, P. L.; Macayeal, D. R.

    2006-12-01

    One of the surprise discoveries made possible by the ICESat laser altimeter mission of 2004-2006 is the presence of a large subglacial lake below the grounding zone of Whillians Ice Stream (dubbed here `Lake Helen' after the discoverer, Helen Fricker). What is even more surprising is the fact that this lake discharged a substantial portion of its volume during the ICESat mission, and changes in lake volume and surface elevation of the ice stream are documented in exquisite detail [Fricker et al., in press]. The presence and apparent dynamism of large subglacial lakes in the grounding zone of a major ice stream raises questions about their effects on ice-stream dynamics. Being liquid and movable, water modifies basal friction spatially and temporally. Melting due to shear heating and geothermal flux reduces basal traction, making the ice stream move fast. However, when water collects in a depression to form a lake, it potentially deprives the surrounding bed of lubricating water, and additionally makes the ice surface flat, thereby locally decreasing the ice stream driving stress. We study the effect of formation and discharge of a subglacial lake at the mouth of and ice stream using a two dimensional, vertically integrated, ice-stream model. The model is forced by the basal friction, ice thickness and surface elevation. The basal friction is obtained by inversion of the ice surface velocity, ice thickness and surface elevation come from observations. To simulate the lake formation we introduce zero basal friction and "inflate" the basal elevation of the ice stream at the site of the lake. Sensitivity studies of the response of the surrounding ice stream and ice shelf flow are performed to delineate the influence of near-grounding-line subglacial water storage for ice streams in general.

  6. The dynamics of climate-induced deglacial ice stream acceleration

    NASA Astrophysics Data System (ADS)

    Robel, A.; Tziperman, E.

    2015-12-01

    Geological observations indicate that ice streams were a significant contributor to ice flow in the Laurentide Ice Sheet during the Last Glacial Maximum. Conceptual and simple model studies have also argued that the gradual development of ice streams increases the sensitivity of large ice sheets to weak climate forcing. In this study, we use an idealized configuration of the Parallel Ice Sheet Model to explore the role of ice streams in rapid deglaciation. In a growing ice sheet, ice streams develop gradually as the bed warms and the margin expands outward onto the continental shelf. Then, a weak change in equilibrium line altitude commensurate with Milankovitch forcing results in a rapid deglacial response, as ice stream acceleration leads to enhanced calving and surface melting at low elevations. We explain the dynamical mechanism that drives this ice stream acceleration and its broader applicability as a feedback for enhancing ice sheet decay in response to climate forcing. We show how our idealized ice sheet simulations match geomorphological observations of deglacial ice stream variability and previous model-data analyses. We conclude with observations on the potential for interaction between ice streams and other feedback mechanisms within the earth system.

  7. Switch of flow direction in an Antarctic ice stream.

    PubMed

    Conway, H; Catania, G; Raymond, C F; Gades, A M; Scambos, T A; Engelhardt, H

    2002-10-03

    Fast-flowing ice streams transport ice from the interior of West Antarctica to the ocean, and fluctuations in their activity control the mass balance of the ice sheet. The mass balance of the Ross Sea sector of the West Antarctic ice sheet is now positive--that is, it is growing--mainly because one of the ice streams (ice stream C) slowed down about 150 years ago. Here we present evidence from both surface measurements and remote sensing that demonstrates the highly dynamic nature of the Ross drainage system. We show that the flow in an area that once discharged into ice stream C has changed direction, now draining into the Whillans ice stream (formerly ice stream B). This switch in flow direction is a result of continuing thinning of the Whillans ice stream and recent thickening of ice stream C. Further abrupt reorganization of the activity and configuration of the ice streams over short timescales is to be expected in the future as the surface topography of the ice sheet responds to the combined effects of internal dynamics and long-term climate change. We suggest that caution is needed when using observations of short-term mass changes to draw conclusions about the large-scale mass balance of the ice sheet.

  8. Ice stream activity scaled to ice sheet volume during Laurentide Ice Sheet deglaciation.

    PubMed

    Stokes, C R; Margold, M; Clark, C D; Tarasov, L

    2016-02-18

    The contribution of the Greenland and West Antarctic ice sheets to sea level has increased in recent decades, largely owing to the thinning and retreat of outlet glaciers and ice streams. This dynamic loss is a serious concern, with some modelling studies suggesting that the collapse of a major ice sheet could be imminent or potentially underway in West Antarctica, but others predicting a more limited response. A major problem is that observations used to initialize and calibrate models typically span only a few decades, and, at the ice-sheet scale, it is unclear how the entire drainage network of ice streams evolves over longer timescales. This represents one of the largest sources of uncertainty when predicting the contributions of ice sheets to sea-level rise. A key question is whether ice streams might increase and sustain rates of mass loss over centuries or millennia, beyond those expected for a given ocean-climate forcing. Here we reconstruct the activity of 117 ice streams that operated at various times during deglaciation of the Laurentide Ice Sheet (from about 22,000 to 7,000 years ago) and show that as they activated and deactivated in different locations, their overall number decreased, they occupied a progressively smaller percentage of the ice sheet perimeter and their total discharge decreased. The underlying geology and topography clearly influenced ice stream activity, but--at the ice-sheet scale--their drainage network adjusted and was linked to changes in ice sheet volume. It is unclear whether these findings can be directly translated to modern ice sheets. However, contrary to the view that sees ice streams as unstable entities that can accelerate ice-sheet deglaciation, we conclude that ice streams exerted progressively less influence on ice sheet mass balance during the retreat of the Laurentide Ice Sheet.

  9. Laurentide glacial landscapes: the role of ice streams

    USGS Publications Warehouse

    Patterson, C.J.

    1998-01-01

    Glacial landforms of the North American prairie can be divided into two suites that result from different styles of ice flow: 1) a lowland suite of level-to-streamlined till consistent with formation beneath ice streams, and 2) an upland and lobe-margin suite of thick, hummocky till and glacial thrust blocks consistent with formation at ice-stream and ice-lobe margins. Southern Laurentide ice lobes hypothetically functioned as outlets of ice streams. Broad branching lowlands bounded by escarpments mark the stable positions of the ice streams that fed the lobes. If the lobes and ice streams were similar to modern ice streams, their fast flow was facilitated by high subglacial water pressure. Favorable geology and topography in the midcontinent encouraged nonuniform ice flow and controlled the location of ice streams and outlet lobes.

  10. Subglacial hydrology and the formation of ice streams

    PubMed Central

    Kyrke-Smith, T. M; Katz, R. F; Fowler, A. C

    2014-01-01

    Antarctic ice streams are associated with pressurized subglacial meltwater but the role this water plays in the dynamics of the streams is not known. To address this, we present a model of subglacial water flow below ice sheets, and particularly below ice streams. The base-level flow is fed by subglacial melting and is presumed to take the form of a rough-bedded film, in which the ice is supported by larger clasts, but there is a millimetric water film which submerges the smaller particles. A model for the film is given by two coupled partial differential equations, representing mass conservation of water and ice closure. We assume that there is no sediment transport and solve for water film depth and effective pressure. This is coupled to a vertically integrated, higher order model for ice-sheet dynamics. If there is a sufficiently small amount of meltwater produced (e.g. if ice flux is low), the distributed film and ice sheet are stable, whereas for larger amounts of melt the ice–water system can become unstable, and ice streams form spontaneously as a consequence. We show that this can be explained in terms of a multi-valued sliding law, which arises from a simplified, one-dimensional analysis of the coupled model. PMID:24399921

  11. The northern Uummannaq Ice Stream System, West Greenland: ice dynamics and and controls upon deglaciation

    NASA Astrophysics Data System (ADS)

    Lane, Timothy; Roberts, David; Rea, Brice; Cofaigh, Colm Ó.; Vieli, Andreas

    2013-04-01

    At the Last Glacial Maximum (LGM), the Uummannaq Ice Stream System comprised a series coalescent outlet glaciers which extended along the trough to the shelf edge, draining a large proportion of the West Greenland Ice Sheet. Geomorphological mapping, terrestrial cosmogenic nuclide (TCN) exposure dating, and radiocarbon dating constrain warm-based ice stream activity in the north of the system to 1400 m a.s.l. during the LGM. Intervening plateaux areas (~ 2000 m a.s.l.) either remained ice free, or were covered by cold-based icefields, preventing diffluent or confluent flow throughout the inner to outer fjord region. Beyond the fjords, a topographic sill north of Ubekendt Ejland prevented the majority of westward ice flow, forcing it south through Igdlorssuit Sund, and into the Uummannaq Trough. Here it coalesced with ice from the south, forming the trunk zone of the UISS. Deglaciation of the UISS began at 14.9 cal. ka BP, rapidly retreating through the overdeepened Uummannaq Trough. Once beyond Ubekendt Ejland, the northern UISS retreated northwards, separating from the south. Retreat continued, and ice reached the present fjord confines in northern Uummannaq by 11.6 kyr. Both geomorphological (termino-lateral moraines) and geochronological (14C and TCN) data provide evidence for an ice marginal stabilisation at within Karrat-Rink Fjord, at Karrat Island, from 11.6-6.9 kyr. The Karrat moraines appear similar in both fjord position and form to 'Fjord Stade' moraines identified throughout West Greenland. Though chronologies constraining moraine formation are overlapping (Fjord Stade moraines - 9.3-8.2 kyr, Karrat moraines - 11.6-6.9 kyr), these moraines have not been correlated. This ice margin stabilisation was able to persist during the Holocene Thermal Maximum (~7.2 - 5 kyr). It overrode climatic and oceanic forcings, remaining on Karrat Island throughout peaks of air temperature and relative sea-level, and during the influx of the warm West Greenland Current into

  12. West-Antarctic Ice Streams: Analog to Ice Flow in Channels on Mars

    NASA Technical Reports Server (NTRS)

    Lucchitta, B. K.

    1997-01-01

    Sounding of the sea floor in front of the Ross Ice Shelf in Antarctica recently revealed large persistent patterns of longitudinal megaflutes and drumlinoid forms, which are interpreted to have formed at the base of ice streams during the list glacial advance. The flutes bear remarkable resemblance to longitudinal grooves and highly elongated streamlined islands found on the floors of some large martian channels, called outflow channels. ln addition, other similarities exist between Antarctic ice streams and outflow channels. Ice streams are 30 to 80 km wide and hundreds of kilometers long, as are the martian channels. Ice stream beds are below sea level. Floors of many martian outflow channels lie below martian datum, which may have been close to or below past martian sea levels. The Antarctic ice stream bed gradient is flat and locally may go uphill, and surface slopes are exceptionally low. So are gradients of martian channels. The depth to the bed in ice streams is 1 to 1.5 km. At bankful stage, the depth of the fluid in outflow channels would have been 1 to 2 km. These similarities suggest that the martian outflow channels, whose origin is commonly attributed to gigantic catastrophic floods, were locally filled by ice that left a conspicuous morphologic imprint. Unlike the West-Antarctic-ice streams, which discharge ice from an ice sheet, ice in the martian channels came from water erupting from the ground. In the cold martian environment, this water, if of moderate volume, would eventually freeze. Thus it may have formed icings on springs, ice dams and jams on constrictions in the channel path, or frozen pools. Given sufficient thickness and downhill surface gradient, these ice masses would have moved; and given the right conditions, they could have moved like Antarctic ice streams.

  13. Ice Streams as the Critical Link Between the Interior Ice Reservoir of the Antarctic Ice Sheet and the Global Climate System - a WISSARD Perspective (Invited)

    NASA Astrophysics Data System (ADS)

    Tulaczyk, S. M.; Beem, L.; Walter, J. I.; Hossainzadeh, S.; Mankoff, K. D.

    2010-12-01

    Fast flowing ice streams represent crucial features of the Antarctic ice sheet because they provide discharge ‘valves’ for the interior ice reservoir and because their grounding lines are exposed to ocean thermal forcing. Even with no/little topographic control ice flow near the perimeter of a polar ice sheet self-organizes into discrete, fast-flowing ice streams. Within these features basal melting (i.e. lubrication for ice sliding) is sustained through elevated basal shear heating in a region of thin ice that would otherwise be characterized by basal freezing and slow ice motion. Because faster basal ice motion is typically associated with faster subglacial erosion, ice streams tend to localize themselves over time by carving troughs into underlying rocks and sediments. Debris generated by this erosional activity is carried to the continental shelf and/or continental slope where it may be deposited at very high rates, rivaling these associated with deposition by some of the largest rivers on Earth. In terms of their hydrologic and geological functions, Antarctic ice streams play pretty much the same role as rivers do on non-glaciated continents. However, understanding of their dynamics is still quite rudimentary, largely because of the relative inaccessibility of the key basal and marine boundaries of ice streams where pertinent measurements need to be made. The present elevated interest in predicting future contribution of Antarctica to global sea level changes is driving ambitious research programs aimed at scientific exploration of these poorly investigated environments that will play a key role in defining the response of the ice sheet to near future climate changes. We will review one of these programs, the Whillans Ice Stream Subglacial Access Research Drilling (WISSARD) with particular focus on its planned contributions to understanding of ice stream dynamics.

  14. Bedrock structure and the interpretation of palaeo ice stream footprints: examples from the Pleistocene British Ice Sheet

    NASA Astrophysics Data System (ADS)

    Krabbendam, M.; Bradwell, T.

    2009-04-01

    To model past and future behaviour of ice sheets, a good understanding of both modern and ancient ice streams is required. The study of present-day ice streams provides detailed data of short-term dynamic changes, whilst the study of Pleistocene palaeo-ice streams can provide crucial constraints on the longer-term evolution of ice sheets. To date, palaeo-ice streams, such as the classical Dubawnt Lake palaeo-ice stream of the former Laurentide Ice Sheet, have been recognised largely on the basis of extremely elongate drumlins and megascale glacial lineations; all soft-sediment features. Whilst it appears that topographically unconstrained ice streams (eg. within the West Antarctic Ice Sheet) are generally underlain by deformable till, topographically constrained ice streams such as Jakobshavn Isbrae do not require deformable sediment and may occur on a bedrock-dominated bed. Analysis of DEM data and geomorphology and structural geology fieldwork in Northern Scotland and Northern England has shown the occurrence of highly streamlined bedforms in bedrock of the former base of topographically controlled palaeo-ice streams, which drained parts of the British Ice Sheet. The bedforms are predominantly bedrock megagrooves with asymmetric cross-profiles. In the Ullapool tributary of the Minch palaeo ice stream, bedrock megagrooves form the dominant evidence for ice streaming. The megagrooves are typically 5-15 m deep, 10-30 m wide and 500 - 3000 m long. Spacing of megagrooves is typically 100 - 200 m. In both study areas, the bedrock is strongly anisotropic, either consisting of thin-bedded strata or strongly foliated metasedimentary rocks, with the strata or foliation having a gentle dip. Megagrooves are best developed where the strike of the anisotropy is sub-parallel (within 10 - 20°) with palaeo ice flow. The bedrock in both areas has a well-developed, relatively densely spaced (< 1m), conjugate joint system. We suggest that asymmetric megagrooves are formed by

  15. Ice stream motion facilitated by a shallow-deforming and accreting bed

    PubMed Central

    Spagnolo, Matteo; Phillips, Emrys; Piotrowski, Jan A.; Rea, Brice R.; Clark, Chris D.; Stokes, Chris R.; Carr, Simon J.; Ely, Jeremy C.; Ribolini, Adriano; Wysota, Wojciech; Szuman, Izabela

    2016-01-01

    Ice streams drain large portions of ice sheets and play a fundamental role in governing their response to atmospheric and oceanic forcing, with implications for sea-level change. The mechanisms that generate ice stream flow remain elusive. Basal sliding and/or bed deformation have been hypothesized, but ice stream beds are largely inaccessible. Here we present a comprehensive, multi-scale study of the internal structure of mega-scale glacial lineations (MSGLs) formed at the bed of a palaeo ice stream. Analyses were undertaken at macro- and microscales, using multiple techniques including X-ray tomography, thin sections and ground penetrating radar (GPR) acquisitions. Results reveal homogeneity in stratigraphy, kinematics, granulometry and petrography. The consistency of the physical and geological properties demonstrates a continuously accreting, shallow-deforming, bed and invariant basal conditions. This implies that ice stream basal motion on soft sediment beds during MSGL formation is accommodated by plastic deformation, facilitated by continuous sediment supply and an inefficient drainage system. PMID:26898399

  16. Satellite imagery of the onset of streaming flow of ice streams C and D, West Antarctica

    USGS Publications Warehouse

    Hodge, S.M.; Doppelhammer, S.K.

    1996-01-01

    Five overlapping Landsat multispectral scanner satellite images of the interior of the West Antarctic ice sheet were enhanced with principal component analysis, high-pass filtering, and linear contrast stretching and merged into a mosaic by aligning surface features in the overlap areas. The mosaic was registered to geodetic coordinates, to an accuracy of about 1 km, using the five scene centers as control points. The onset of streaming flow of two tributaries of ice stream C and one tributary of ice stream D is visible in the mosaic. The onset appears to occur within a relatively short distance, less than the width of the ice stream, typically at a subglacial topographic feature such as a step or ridge. The ice streams extend farther up into the interior than previously mapped. Ice stream D starts about 150 km from the ice divide, at an altitude of about 1500 m, approximately halfway up the convex-upward dome shape of the interior ice sheet. Ice stream D is relatively much longer than ice stream C, possibly because ice stream D is currently active whereas ice stream C is currently inactive. The grounded portion of the West Antarctic ice sheet is perhaps best conceptualized as an ice sheet in which ice streams are embedded over most of its area, with slow moving ice converging into fast moving ice streams in a widely distributed pattern, much like that of streams and rivers in a hydrologic basin. A relic margin appears to parallel most of the south margin of the tributary of ice stream D, separated from the active shear margin by about 10 km or less for a distance of over 200 km. This means there is now evidence for recent changes having occurred in three of the five major ice streams which drain most of West Antarctica (B, C, and D), two of which (B and D) are currently active.

  17. Ice-Shelf Flexure and Tidal Forcing of Bindschadler Ice Stream, West Antarctica

    NASA Technical Reports Server (NTRS)

    Walker, Ryan T.; Parizek, Bryron R.; Alley, Richard B.; Brunt, Kelly M.; Anandakrishnan, Sridhar

    2014-01-01

    Viscoelastic models of ice-shelf flexure and ice-stream velocity perturbations are combined into a single efficient flowline model to study tidal forcing of grounded ice. The magnitude and timing of icestream response to tidally driven changes in hydrostatic pressure and/or basal drag are found to depend significantly on bed rheology, with only a perfectly plastic bed allowing instantaneous velocity response at the grounding line. The model can reasonably reproduce GPS observations near the grounding zone of Bindschadler Ice Stream (formerly Ice Stream D) on semidiurnal time scales; however, other forcings such as tidally driven ice-shelf slope transverse to the flowline and flexurally driven till deformation must also be considered if diurnal motion is to be matched

  18. Using the glacial geomorphology of palaeo-ice streams to understand mechanisms of ice sheet collapse

    NASA Astrophysics Data System (ADS)

    Stokes, Chris R.; Margold, Martin; Clark, Chris; Tarasov, Lev

    2017-04-01

    Processes which bring about ice sheet deglaciation are critical to our understanding of glacial-interglacial cycles and ice sheet sensitivity to climate change. The precise mechanisms of deglaciation are also relevant to our understanding of modern-day ice sheet stability and concerns over global sea level rise. Mass loss from ice sheets can be broadly partitioned between melting and a 'dynamic' component whereby rapidly-flowing ice streams/outlet glaciers transfer ice from the interior to the oceans. Surface and basal melting (e.g. of ice shelves) are closely linked to atmospheric and oceanic conditions, but the mechanisms that drive dynamic changes in ice stream discharge are more complex, which generates much larger uncertainties about their future contribution to ice sheet mass loss and sea level rise. A major problem is that observations of modern-day ice streams typically span just a few decades and, at the ice-sheet scale, it is unclear how the entire drainage network of ice streams evolves during deglaciation. A key question is whether ice streams might increase and sustain rates of mass loss over centuries or millennia, beyond those expected for a given ocean-climate forcing. To address this issue, numerous workers have sought to understand ice stream dynamics over longer time-scales using their glacial geomorphology in the palaeo-record. Indeed, our understanding of their geomorphology has grown rapidly in the last three decades, from almost complete ignorance to a detailed knowledge of their geomorphological products. Building on this body of work, this paper uses the glacial geomorphology of 117 ice streams in the North American Laurentide Ice Sheet to reconstruct their activity during its deglaciation ( 22,000 to 7,000 years ago). Ice stream activity was characterised by high variability in both time and space, with ice streams switching on and off in different locations. During deglaciation, we find that their overall number decreased, they occupied a

  19. Melting beneath Greenland outlet glaciers and ice streams

    NASA Astrophysics Data System (ADS)

    Alexander, David; Perrette, Mahé; Beckmann, Johanna

    2015-04-01

    Basal melting of fast-flowing Greenland outlet glaciers and ice streams due to frictional heating at the ice-bed interface contributes significantly to total glacier mass balance and subglacial meltwater flux, yet modelling this basal melt process in Greenland has received minimal research attention. A one-dimensional dynamic ice-flow model is calibrated to the present day longitudinal profiles of 10 major Greenland outlet glaciers and ice streams (including the Jakobshavn Isbrae, Petermann Glacier and Helheim Glacier) and is validated against published ice flow and surface elevation measurements. Along each longitudinal profile, basal melt is calculated as a function of ice flow velocity and basal shear stress. The basal shear stress is dependent on the effective pressure (difference between ice overburden pressure and water pressure), basal roughness and a sliding parametrization. Model output indicates that where outlet glaciers and ice streams terminate into the ocean with either a small floating ice tongue or no floating tongue whatsoever, the proportion of basal melt to total melt (surface, basal and submarine melt) is 5-10% (e.g. Jakobshavn Isbrae; Daugaard-Jensen Glacier). This proportion is, however, negligible where larger ice tongues lose mass mostly by submarine melt (~1%; e.g. Nioghalvfjerdsfjorden Glacier). Modelled basal melt is highest immediately upvalley of the grounding line, with contributions typically up to 20-40% of the total melt for slippery beds and up to 30-70% for resistant beds. Additionally, modelled grounding line and calving front migration inland for all outlet glaciers and ice streams of hundreds of metres to several kilometres occurs. Including basal melt due to frictional heating in outlet glacier and ice stream models is important for more accurately modelling mass balance and subglacial meltwater flux, and therefore, more accurately modelling outlet glacier and ice stream dynamics and responses to future climate change.

  20. Terrestrial ice streams-a view from the lobe

    USGS Publications Warehouse

    Jennings, C.E.

    2006-01-01

    The glacial landforms of Minnesota are interpreted as the products of the lobate extensions of ice streams that issued from various ice sheds within the Laurentide Ice Sheet. Low-relief till plains, trough-shaped lowlands, boulder pavements, and streamlined forms make up the subglacial landsystem in Minnesota that is interpreted as having been formed by streaming ice. Extremely uniform tills are created subglacially in a way that remains somewhat mysterious. At the ice margins, thrust moraines and hummocky stagnation topography are more common than single-crested, simple moraines if the ice lobes had repeated advances. Subglacial drainage features are obscure up-ice but are present down-ice in the form of tunnel valleys, eskers, Spooner hills, and associated ice-marginal fans. Ice streaming may occur when basal shear stress is lowered as a result of high subglacial water pressure. Subglacial conditions that allow the retention of water will allow an ice lobe to extend far beyond the ice sheet as long as the ice shed also supports the advance by supplying adequate ice. Even with adequate ice flux, however, the advance of an ice lobe may be terminated, at least temporarily, if the subglacial water is drained, through tunnel valleys or perhaps a permeable substrate. Thrust moraines, and ice stagnation topography will result from sudden drainage. Although climate change is ultimately responsible for the accumulation of ice in the Laurentide Ice Sheet, the asynchronous advances and retreats of the ice lobes in the mid-continent are strongly overprinted by the internal dynamics of individual ice streams as well as the interaction of ice sheds, which obscure the climate signal. ?? 2005 Elsevier B.V. All rights reserved.

  1. Atmospherically-driven collapse of a marine-based ice stream

    NASA Astrophysics Data System (ADS)

    Greenwood, S. L.; Clason, C. C.

    2016-12-01

    Marine-terminating glaciers and the sectors of ice sheets that are grounded below sea level are widely considered to be vulnerable to unstable retreat. The southern sector of the retreating Fennoscandian Ice Sheet comprised a large, aqueous-terminating ice sheet catchment grounded well below sea level throughout its deglaciation. However, the behaviour, timing of and controls upon ice sheet retreat through the Baltic and Bothnian basins have thus far been inferred only indirectly from peripheral, terrestrial-based geological archives. Recent acquisition of high-resolution multibeam bathymetry opens these basins up, for the first time, to direct investigation of their glacial footprint and palaeo-ice sheet behaviour. Multibeam data reveal a rich glacial landform legacy of the Bothnian Sea deglaciation. A late-stage palaeo-ice stream formed a narrow corridor of fast flow. Its pathway is overprinted by a vast field of basal crevasse squeeze ridges, while abundant traces of high subglacial meltwater volumes call for considerable input of surface meltwater to the subglacial system. We interpret a short-lived ice stream event under high extension, precipitating large-scale hydrofracture-driven collapse of the ice sheet sector under conditions of high surface melting. Experiments with a physically-based numerical flowline model indicate that the rate and pattern of Bothnian Sea ice stream retreat are most sensitive to surface mass balance change and crevasse propagation, while remarkably insensitive to submarine melting and sea level change. We interpret strongly atmospherically-driven retreat of this marine-based ice sheet sector.

  2. Southern Laurentide ice lobes were created by ice streams: Des Moines Lobe in Minnesota, USA

    USGS Publications Warehouse

    Patterson, C.J.

    1997-01-01

    Regional mapping in southern Minnesota has illuminated a suite of landforms developed by the Des Moines Lobe that delimit the position of the lobe at its maximum and at lesser readvances. The ice lobe repeatedly advanced, discharged its subglacial water, and subsequently stagnated. Recent glaciological research on Antarctic ice streams has led some glacial geologists to postulate that ice streams drained parts of the marine-based areas of the Laurentide Ice Sheet. I postulate that such ice streams may develop in land-based areas of an ice sheet as well, and that the Des Moines Lobe, 200 km wide and 900 km long, was an outlet glacier of an ice stream. It appears to have been able to advance beyond the Laurentide Ice Sheet as long as adequate water pressure was maintained. However, the outer part of the lobe stagnated because subglacial water that facilitated the flow was able to drain away through tunnel valleys. Stagnation of the lobe is not equivalent to stoppage of the ice stream, because ice repeatedly advanced into and onto the stagnant margins, stacking ice and debris. Similar landforms are also seen in other lobes of the upper midwestern United States.

  3. Reconciling records of ice streaming and ice margin retreat to produce a palaeogeographic reconstruction of the deglaciation of the Laurentide Ice Sheet

    NASA Astrophysics Data System (ADS)

    Margold, Martin; Stokes, Chris R.; Clark, Chris D.

    2018-06-01

    This paper reconstructs the deglaciation of the Laurentide Ice Sheet (LIS; including the Innuitian Ice Sheet) from the Last Glacial Maximum (LGM), with a particular focus on the spatial and temporal variations in ice streaming and the associated changes in flow patterns and ice divides. We build on a recent inventory of Laurentide ice streams and use an existing ice margin chronology to produce the first detailed transient reconstruction of the ice stream drainage network in the LIS, which we depict in a series of palaeogeographic maps. Results show that the drainage network at the LGM was similar to modern-day Antarctica. The majority of the ice streams were marine terminating and topographically-controlled and many of these continued to function late into the deglaciation, until the ice sheet lost its marine margin. Ice streams with a terrestrial ice margin in the west and south were more transient and ice flow directions changed with the build-up, peak-phase and collapse of the Cordilleran-Laurentide ice saddle. The south-eastern marine margin in Atlantic Canada started to retreat relatively early and some of the ice streams in this region switched off at or shortly after the LGM. In contrast, the ice streams draining towards the north-western and north-eastern marine margins in the Beaufort Sea and in Baffin Bay appear to have remained stable throughout most of the Late Glacial, and some of them continued to function until after the Younger Dryas (YD). The YD influenced the dynamics of the deglaciation, but there remains uncertainty about the response of the ice sheet in several sectors. We tentatively ascribe the switching-on of some major ice streams during this period (e.g. M'Clintock Channel Ice Stream at the north-west margin), but for other large ice streams whose timing partially overlaps with the YD, the drivers are less clear and ice-dynamical processes, rather than effects of climate and surface mass balance are viewed as more likely drivers. Retreat

  4. Increased Water Storage at Ice-stream Onsets: A Critical Mechanism?

    NASA Technical Reports Server (NTRS)

    Bindschadler, Robert; Choi, Hyeungu

    2007-01-01

    The interdependence of rapid ice flow, surface topography and the spatial distribution of subglacial water are examined by linking existing theories. The motivation is to investigate whether the acceleration of an ice-stream tributary contains a positive feedback that encourages the retention of subglacial water that leads to faster flow. Periodically varying surface and bed topographies are related through a linear ice-flow perturbation theory for various values of mean surface slope, perturbation amplitude and basal sliding speeds. The topographic variations lead to a periodic variation in hydraulic potential that is used to infer the tendency for subglacial water to be retained in local hydraulic potential minima. If water retention leads to enhanced basal sliding, a positive feedback loop is closed that could explain the transition from slower tributary flow to faster-streaming flow and the sustained downstream acceleration along the tributary-ice-stream system. A sensitivity study illustrates that the same range of topographic wavelengths most effectively transmitted from the bed to the surface also strongly influences the behavior of subglacial water. A lubrication index is defined to qualitatively measure the heterogeneity of the subglacial hydrologic system. Application of this index to field data shows that the transition from tributary to ice stream closely agrees with the location where subglacial water may be first stored.

  5. Reactivation of Kamb Ice Stream tributaries triggers century-scale reorganization of Siple Coast ice flow in West Antarctica

    DOE PAGES

    Bougamont, M.; Christoffersen, P.; Price, S. F.; ...

    2015-10-21

    Ongoing, centennial-scale flow variability within the Ross ice streams of West Antarctica suggests that the present-day positive mass balance in this region may reverse in the future. Here we use a three-dimensional ice sheet model to simulate ice flow in this region over 250 years. The flow responds to changing basal properties, as a subglacial till layer interacts with water transported in an active subglacial hydrological system. We show that a persistent weak bed beneath the tributaries of the dormant Kamb Ice Stream is a source of internal ice flow instability, which reorganizes all ice streams in this region, leadingmore » to a reduced (positive) mass balance within decades and a net loss of ice within two centuries. This hitherto unaccounted for flow variability could raise sea level by 5 mm this century. Furthermore, better constraints on future sea level change from this region will require improved estimates of geothermal heat flux and subglacial water transport.« less

  6. Stick-slip Cycles and Tidal Modulation of Ice Stream Flow

    NASA Astrophysics Data System (ADS)

    Lipovsky, B.; Dunham, E. M.

    2016-12-01

    The reactivation of a single dormant Antarctic ice stream would double the continent's mass imbalance. Despite importance of understanding the likelihood of such an event, direct observation of the basal processes that lead to the activation and stagnation of streaming ice are minimal. As the only ice stream undergoing stagnation, the Whillans Ice Plain (WIP) occupies a central role in our understanding of these subglacial processes. Complicating matters is the observation, from GPS records, that the WIP experiences most of its motion during episodes of rapid sliding. These sliding events are tidally modulated and separated by 12 hour periods of quiescence. We conduct numerical simulations of ice stream stick-slip cycles. Our simulations include rate- and state-dependent frictional sliding, tidal forcing, inertia, upstream loading in a cross-stream, thickness-averaged formulation. Our principal finding is that ice stream motion may respond to ocean tidal forcing with one of two end member behaviors. In one limit, tidally modulated slip events have rupture velocities that approach the shear wave speed and slip events have a duration that scales with the ice stream width divided by the shear wave speed. In the other limit, tidal modulation results in ice stream sliding velocities with lower amplitude variation but at much longer timescales, i.e. semi-diurnal and longer. This latter behavior more closely mimics the behavior of several active ice streams (Bindschadler, Rutford). We find that WIP slip events exist between these two end member behaviors: rupture velocities are far below the inertial limit yet sliding occurs only episodically. The continuum of sliding behaviors is governed by a critical ice stream width over which slip event nucleate. When the critical width is much longer than the ice stream width, slip events are unable to nucleate. The critical width depends on the subglacial effective pressure, ice thickness, and frictional and elastic constitutive

  7. Bed roughness of palaeo-ice streams: insights and implications for contemporary ice sheet dynamics

    NASA Astrophysics Data System (ADS)

    Falcini, Francesca; Rippin, David; Selby, Katherine; Krabbendam, Maarten

    2017-04-01

    Bed roughness is the vertical variation of elevation along a horizontal transect. It is an important control on ice stream location and dynamics, with a correspondingly important role in determining the behaviour of ice sheets. Previous studies of bed roughness have been limited to insights derived from Radio Echo Sounding (RES) profiles across parts of Antarctica and Greenland. Such an approach has been necessary due to the inaccessibility of the underlying bed. This approach has led to important insights, such as identifying a general link between smooth beds and fast ice flow, as well as rough beds and slow ice flow. However, these insights are mainly derived from relatively coarse datasets, so that links between roughness and flow are generalised and rather simplistic. Here, we explore the use of DTMs from the well-preserved footprints of palaeo-ice streams, coupled with high resolution models of palaeo-ice flow, as a tool for investigating basal controls on the behaviour of contemporary, active ice streams in much greater detail. Initially, artificial transects were set up across the Minch palaeo-ice stream (NW Scotland) to mimic RES flight lines from past studies in Antarctica. We then explored how increasing data-resolution impacted upon the roughness measurements that were derived. Our work on the Minch palaeo-ice stream indicates that different roughness signatures are associated with different glacial landforms, and we discuss the potential for using these insights to infer, from RES-based roughness measurements, the occurrence of particular landform assemblages that may exist beneath contemporary ice sheets.

  8. Satellite radar interferometry for monitoring ice sheet motion: application to an antarctic ice stream.

    PubMed

    Goldstein, R M; Engelhardt, H; Kamb, B; Frolich, R M

    1993-12-03

    Satellite radar interferometry (SRI) provides a sensitive means of monitoring the flow velocities and grounding-line positions of ice streams, which are indicators of response of the ice sheets to climatic change or internal instability. The detection limit is about 1.5 millimeters for vertical motions and about 4 millimeters for horizontal motions in the radar beam direction. The grounding line, detected by tidal motions where the ice goes afloat, can be mapped at a resolution of approximately 0.5 kilometer. The SRI velocities and grounding line of the Rutford Ice Stream, Antarctica, agree fairly well with earlier ground-based data. The combined use of SRI and other satellite methods is expected to provide data that will enhance the understanding of ice stream mechanics and help make possible the prediction of ice sheet behavior.

  9. Geomorphology of ice stream beds: recent progress and future challenges

    NASA Astrophysics Data System (ADS)

    Stokes, Chris R.

    2016-04-01

    Ice sheets lose mass primarily by melting and discharge via rapidly-flowing ice streams. Surface and basal melting (e.g. of ice shelves) are closely linked to atmospheric and oceanic conditions, but the mechanisms that drive changes in ice stream discharge are more complex; and are influenced by conditions at their bed which can sustain, enhance or inhibit their motion. Although explicit comparisons are rare, the ice-bed interface is similar to the 'boundary layer' in fluvial and aeolian environments, where shear stresses (both basal and lateral in the case of ice streams) oppose the flow of the overlying medium. The analogy extends further because processes within the boundary layer create a distinctive geomorphology (and roughness) that is characterised by subglacial bedforms that resemble features in fluvial and aeolian environments. Their creation results from erosion, transport and deposition of sediment which is poorly constrained, but which is intimately linked to the mechanisms through which ice streams are able to flow rapidly. The study of ice stream geomorphology is, therefore, critical to our understanding of their dynamics. Despite difficulty in observing the subglacial environment of active ice streams, our understanding of their geomorphology has grown rapidly in the last three decades, from almost complete ignorance to a detailed knowledge of their geomorphological products. This has been brought about by two main approaches: (i) geophysical investigation of modern (active) ice streams, and (ii) sedimentological and geomorphological investigation of palaeo-ice stream beds. The aim of this paper is to review progress in these two areas, highlight the key questions that remain, and discuss the opportunities that are likely to arise that will enable them to be addressed. It is clear that whilst these two main approaches have led to important advances, they have often been viewed as separate sub-disciplines, with minimal cross-pollination of ideas and

  10. Physical conditions at the base of a fast moving antarctic ice stream.

    PubMed

    Engelhardt, H; Humphrey, N; Kamb, B; Fahnestock, M

    1990-04-06

    Boreholes drilled to the bottom of ice stream B in the West Antarctic Ice Sheet reveal that the base of the ice stream is at the melting point and the basal water pressure is within about 1.6 bars of the ice overburden pressure. These conditions allow the rapid ice streaming motion to occur by basal sliding or by shear deformation of unconsolidated sediments that underlie the ice in a layer at least 2 meters thick. The mechanics of ice streaming plays a role in the response of the ice sheet to climatic change.

  11. Ice in Channels and Ice-Rock Mixtures in Valleys on Mars: Did They Slide on Deformable Rubble Like Antarctic Ice Streams?

    NASA Technical Reports Server (NTRS)

    Lucchitta, B. K.

    1997-01-01

    Recent studies of ice streams in Antarctica reveal a mechanism of basal motion that may apply to channels and valleys on Mars. The mechanism is sliding of the ice on deformable water-saturated till under high pore pressures. It has been suggested by Lucchitta that ice was present in outflow channels on Mars and gave them their distinctive morphology. This ice may have slid like Antarctic ice streams but on rubbly weathering products rather than till. However, to generate water under high pore pressures, elevated heatflow is needed to melt the base of the ice. Either volcanism or higher heatflow more than 2 b.y. ago could have raised the basal temperature. Regarding valley networks, higher heatflow 3 b.y. ago could have allowed sliding of ice-saturated overburden at a few hundred meters depth. If the original, pristine valleys were somewhat deeper than they are now, they could have formed by the same mechanism. Recent sounding of the seafloor in front of the Ross Ice Shelf in Antarctica reveals large persistent patterns of longitudinal megaflutes and drumlinoid forms, which bear remarkable resemblance to longitudinal grooves and highly elongated streamlined islands found on the floors of martian outflow channels. The flutes are interpreted to have formed at the base of ice streams during the last glacial advance. Additional similarities of Antarctic ice streams with martian outflow channels are apparent. Antarctic ice streams are 30 to 80 km wide and hundreds of kilometers long. Martian outflow channels have similar dimensions. Ice stream beds are below sea level. Carr determined that most common floor elevations of martian outflow channels lie below martian datum, which may have been close to or below past martian sea levels. The Antarctic ice stream bed gradient is flat and locally may go uphill, and surface slopes are exceptionally. Martian channels also have floor gradients that are shallow or go uphill locally and have low surface gradients. The depth to the

  12. Simulating LGM retreat of the Uummannaq Ice Stream and Rinks Isbrae, Western Greenland using a 1-D ice-stream model constrained by a suite of marine and terrestrial data

    NASA Astrophysics Data System (ADS)

    Jamieson, Stewart; Roberts, Dave; Rea, Brice; Lane, Timothy; Vieli, Andreas; Cofaigh, Colm Ó.

    2014-05-01

    We aim to understand what controlled the retreat pattern of the Uummannaq Ice Stream (UIS) during the last deglaciation. Evidence for the pattern of retreat is found in both the marine and terrestrial realms, but because the evidence is temporally and spatially discontinuous, it is challenging to coherently reconstruct both grounding-line retreat and ice-surface thinning such that they are in agreement. Marine stratigraphic and geophysical evidence indicates that the ice stream was grounded close to the continental shelf edge at the Last Glacial Maximum, and retreated rapidly and nonlinearly after 14.8 ka. Cosmogenic nuclide exposure dating on Ubekendt Island at the convergence zone of multiple feeder ice streams show that the ice surface thinned progressively and that the island became ice-free by ca. 12.4 ka. The ice stream then collapsed over the next 1-1.6 kyrs and the ice stream separated into a series of distinct inland arms. In the northernmost Rinks system, there is a 'staircase' of evidence showing ice surface thinning over time, but it is unclear where the grounding line was located during this phase of thinning. Furthermore, it is currently unclear what controlled the nonlinear retreat pattern identified in the Uummannaq system. We develop a numerical model of ice-stream retreat using the marine geophysical data and measurements of sediment strength on the continental shelf to control the boundary conditions. The model has the capability to dynamically and robustly simulate grounding line-retreat behaviour over millennial timescales. We simulate the retreat of the UIS grounding line into the northernmost Rinks system in response to enhanced ocean warming, rising sea level and warming climate. We compare the simulated dynamic behaviour of the UIS against the geomorphological and cosmogenic exposure evidence for ice surface thinning onshore and against dated marine grounding line positions. Our model results enable us to match grounding-line positions in

  13. Did ice streams carve martian outflow channels?

    USGS Publications Warehouse

    Lucchitta, B.K.; Anderson, D.M.; Shoji, H.

    1981-01-01

    Outflow channels on Mars1 are long sinuous linear depressions that occur mostly in the equatorial area (??30?? lat.). They differ from small valley networks2 by being larger and arising full born from chaotic terrains. Outflow channels resemble terrestrial stream beds, and their origin has generally been attributed to water3-5 in catastrophic floods6,7 or mudflows8. The catastrophic-flood hypothesis is derived primarily from the morphological similarities of martian outflow channels and features created by the catastrophic Spokane flood that formed the Washington scablands. These similarities have been documented extensively3,6,7, but differences of scale remain a major problemmartian channel features are on the average much larger than their proposed terrestrial analogues. We examine here the problem of channel origin from the perspective of erosional characteristics and the resultant landf orms created by former and present-day ice streams and glaciers on Earth. From morphologic comparisons, an ice-stream origin seems equally well suited to explain the occurrences and form of the outflow channels on Mars, and in contrast with the hydraulic hypothesis, ice streams and ice sheets produce terrestrial features of the same scale as those observed on Mars. ?? 1981 Nature Publishing Group.

  14. Controls on the early Holocene collapse of the Bothnian Sea Ice Stream

    NASA Astrophysics Data System (ADS)

    Clason, Caroline C.; Greenwood, Sarah L.; Selmes, Nick; Lea, James M.; Jamieson, Stewart S. R.; Nick, Faezeh M.; Holmlund, Per

    2016-12-01

    New high-resolution multibeam data in the Gulf of Bothnia reveal for the first time the subglacial environment of a Bothnian Sea Ice Stream. The geomorphological record suggests that increased meltwater production may have been important in driving rapid retreat of Bothnian Sea Ice during deglaciation. Here we apply a well-established, one-dimensional flow line model to simulate ice flow through the Gulf of Bothnia and investigate controls on retreat of the ice stream during the post-Younger Dryas deglaciation of the Fennoscandian Ice Sheet. The relative influence of atmospheric and marine forcings are investigated, with the modeled ice stream exhibiting much greater sensitivity to surface melting, implemented through surface mass balance and hydrofracture-induced calving, than to submarine melting or relative sea level change. Such sensitivity is supported by the presence of extensive meltwater features in the geomorphological record. The modeled ice stream does not demonstrate significant sensitivity to changes in prescribed ice stream width or overall bed slope, but local variations in basal topography and ice stream width result in nonlinear retreat of the grounding line, notably demonstrating points of short-lived retreat slowdown on reverse bed slopes. Retreat of the ice stream was most likely governed by increased ice surface meltwater production, with the modeled retreat rate less sensitive to marine forcings despite the marine setting.

  15. New insights into West Greenland ice sheet/stream dynamics during the last glacial cycle.

    NASA Astrophysics Data System (ADS)

    Roberts, David; Lane, Tim; Rea, Brice; Cofaigh, Colm O.; Jamieson, Stewart; Vieli, Andreas; Rodes, Angel

    2015-04-01

    Onshore and offshore geomorphological mapping and deglacial chronologies from West Greenland constrain the nature and magnitude of ice advance and decay of the Greenland Ice Sheet (GrIS) during the last glacial cycle. Several ice stream troughs are known to have fed ice to the shelf edge during the last glacial cycle. Their offshore expression suggests that many were coalescent systems fed by smaller outlet glaciers and ice streams onshore but their central flow pathways were also controlled by geology and preglacial topography. The bed morphology of these large ice streams shows they operated over soft, deforming beds with drumlins, mega-scale glacial lineations and grounding zone wedges marking an offshore transition from predominant areal scour onshore. Records of offshore deglacial chronology remain sparse but the Uummannaq and Disko Bugt ice stream corridors are now well constrained. The Uummannaq ice stream (UIS) completely deglaciated from the continental shelf between 14.8 ka and 11.0 ka in response to rising air temperatures, increasing JJA solar radiation and sea-level rise, but temporary standstills and the asynchronous retreat history of its feeder zones suggest that topography/bathymetry strongly modulated retreat rates as ice became 'locked' back into the coastal fjord system. Initial reconstructions of behaviour UIS discounted an oceanic role in early deglaciation and favoured retreat from the mid-shelf and inner-shelf prior to the Younger Dryas but both these concepts remain under investigation. In Disko Bugt, Jakobshavn Isbrae deglaciated later than the UIS and remained on the outer shelf during the Younger Dyras stadial (12.8 - 11.7 cal. kyrs BP) only reaching in the inner coast fjords at approximately 10.0 ka. The later deglaciation of the Disko system (despite similar external forcing mechanisms) was controlled by regional topographic/bathymetric contrasts in their respective trough morphologies. This hypothesis is supported by recent model

  16. Ice cover affects the growth of a stream-dwelling fish.

    PubMed

    Watz, Johan; Bergman, Eva; Piccolo, John J; Greenberg, Larry

    2016-05-01

    Protection provided by shelter is important for survival and affects the time and energy budgets of animals. It has been suggested that in fresh waters at high latitudes and altitudes, surface ice during winter functions as overhead cover for fish, reducing the predation risk from terrestrial piscivores. We simulated ice cover by suspending plastic sheeting over five 30-m-long stream sections in a boreal forest stream and examined its effects on the growth and habitat use of brown trout (Salmo trutta) during winter. Trout that spent the winter under the artificial ice cover grew more than those in the control (uncovered) sections. Moreover, tracking of trout tagged with passive integrated transponders showed that in the absence of the artificial ice cover, habitat use during the day was restricted to the stream edges, often under undercut banks, whereas under the simulated ice cover condition, trout used the entire width of the stream. These results indicate that the presence of surface ice cover may improve the energetic status and broaden habitat use of stream fish during winter. It is therefore likely that reductions in the duration and extent of ice cover due to climate change will alter time and energy budgets, with potentially negative effects on fish production.

  17. An Imaging System capable of monitoring en-glacial and sub-glacial processes of glaciers, streaming ice and ice margins

    NASA Astrophysics Data System (ADS)

    Frearson, N.

    2012-12-01

    Columbia University in New York is developing a geophysical instrumentation package that is capable of monitoring dynamic en-glacial and sub-glacial processes. The instruments include a Riegl Scanning Laser for precise measurements of the ice surface elevation, Stereo photogrammetry from a high sensitivity (~20mK) Infra-Red camera and a high resolution Visible Imaging camera (2456 x 2058 pixels) to document fine scale ice temperature changes and surface features, near surface ice penetrating radar and an ice depth measuring radar that can be used to study interior and basal processes of ice shelves, glaciers, ice streams and ice-sheets. All instrument data sets will be time-tagged and geo-referenced using precision GPS satellite data. Aircraft orientation will be corrected using inertial measurement technology integrated into the pod. This instrumentation will be flown across some of the planets largest outlet glaciers in Antarctica and Greenland. However, a key aspect of the design is that at the conclusion of the program, the Pod, Deployment Arm, Data Acquisition and Power and Environmental Management system will become available for use by the science community at large to install their own instruments onto. It will also be possible to mount the Icepod onto other airframes. The sensor system will become part of a research facility operated for the science community, and data will be maintained at and made available through a Polar Data Center.

  18. The mass balance of the ice plain of Ice Stream B and Crary Ice Rise

    NASA Technical Reports Server (NTRS)

    Bindschadler, Robert

    1993-01-01

    The region in the mouth of Ice Stream B (the ice plain) and that in the vicinity of Crary Ice Rise are experiencing large and rapid changes. Based on velocity, ice thickness, and accumulation rate data, the patterns of net mass balance in these regions were calculated. Net mass balance, or the rate of ice thickness change, was calculated as the residual of all mass fluxes into and out of subregions (or boxes). Net mass balance provides a measure of the state of health of the ice sheet and clues to the current dynamics.

  19. The Influence of Subglacial Hydrology on Ice Stream Velocity in a Physical Model

    NASA Astrophysics Data System (ADS)

    Wagman, B. M.; Catania, G.; Buttles, J. L.

    2011-12-01

    We use a physical model to investigate how changes in subglacial hydrology affect ice motion in ice streams found in the West Antarctic Ice Sheet. Ice streams are modeled using silicone polymer placed over a thin water layer to simulate ice flow dominated by basal sliding. Dynamic similarity between modeled and natural ice streams is achieved through direct comparison of the glacier force balance using the conditions on Whillans Ice Stream (WIS) as our goal.This ice stream has a force balance that has evolved through time due to increased basal resistance. Currently, between 50-90% of the driving stress is supported by the ice stream shear margins [Stearns et al., JGlac 2005]. A similar force balance can be achieved in our model with a surface slope of 0.025. We test two hypotheses; 1) the distribution and thickness of the subglacial water layer influences the ice flow speed and thus the force balance and can reproduce the observed slowdown of WIS and; 2) shear margins are locations where transitions in water layer thickness occur.

  20. Geomorphology and till architecture of terrestrial palaeo-ice streams of the southwest Laurentide Ice Sheet: A borehole stratigraphic approach

    NASA Astrophysics Data System (ADS)

    Norris, Sophie L.; Evans, David J. A.; Cofaigh, Colm Ó.

    2018-04-01

    A multidimensional study, utilising geomorphological mapping and the analysis of regional borehole stratigraphy, is employed to elucidate the regional till architecture of terrestrial palaeo-ice streams relating to the Late Wisconsinan southwest Laurentide Ice Sheet. Detailed mapping over a 57,400 km2 area of southwestern Saskatchewan confirms previous reconstructions of a former southerly flowing ice stream, demarcated by a 800 km long corridor of megaflutes and mega-scale glacial lineations (Ice Stream 1) and cross cut by three, formerly southeast flowing ice streams (Ice Streams 2A, B and C). Analysis of the lithologic and geophysical characteristics of 197 borehole samples within these corridors reveals 17 stratigraphic units comprising multiple tills and associated stratified sediments overlying preglacial deposits, the till thicknesses varying with both topography and distance down corridor. Reconciling this regional till architecture with the surficial geomorphology reveals that surficial units are spatially consistent with a dynamic switch in flow direction, recorded by the cross cutting corridors of Ice Streams 1, 2A, B and C. The general thickening of tills towards lobate ice stream margins is consistent with subglacial deformation theory and variations in this pattern on a more localised scale are attributed to influences of subglacial topography including thickening at buried valley margins, thinning over uplands and thickening in overridden ice-marginal landforms.

  1. Palaeo-ice stream pathways in the easternmost Amundsen Sea Embayment, West Antarctica

    NASA Astrophysics Data System (ADS)

    Klages, Johann P.; Kuhn, Gerhard; Graham, Alastair G. C.; Smith, James A.; Hillenbrand, Claus-Dieter; Nitsche, Frank O.; Larter, Rob D.; Gohl, Karsten

    2015-04-01

    Multibeam swath bathymetry datasets collected over the past two decades have been compiled to identify palaeo-ice stream pathways in the easternmost Amundsen Sea Embayment. We mapped 3010 glacial landforms to reconstruct palaeo-ice flow in the ~250 km-long Abbot Glacial Trough that was occupied by a large palaeo-ice stream, fed by two tributaries (Cosgrove and Abbot) that reached the continental shelf edge during the last maximum ice-sheet advance. The mapping has enabled a clear differentiation between glacial landforms interpreted as indicative of wet- (e.g. mega-scale glacial lineations) and cold-based ice (e.g. hill-hole pairs) during the last glaciation of the continental shelf. Both the regions of fast palaeo-ice flow within the palaeo-ice stream troughs, and the regions of slow palaeo-ice flow on adjacent seafloor highs (referred to as inter-ice stream ridges) additionally record glacial landforms such as grounding-zone wedges and recessional moraines that indicate grounding line stillstands of the ice sheet during the last deglaciation from the shelf. As the palaeo-ice stream flowed along a trough with variable geometry and variable subglacial substrate, it appears that trough sections characterized by constrictions and outcropping hard substrate that changes the bed gradient, led the pace of grounding-line retreat to slow and subsequently pause, resulting in the deposition of grounding-zone wedges. The stepped retreat recorded within the Abbot Glacial Trough corresponds well to post-glacial stepped retreat interpreted for the neighbouring Pine Island-Thwaites Palaeo-Ice Stream trough, thus suggesting a uniform pattern of episodic retreat across the eastern Amundsen Sea Embayment. The correlation of episodic retreat features with geological boundaries further emphasises the significance of subglacial geology in steering ice stream flow. Our new geomorphological map of the easternmost Amundsen Sea Embayment resolves the pathways of palaeo-ice streams that

  2. Patterned basal seismicity shows sub-ice stream bedforms

    NASA Astrophysics Data System (ADS)

    Barcheck, C. G.; Tulaczyk, S. M.; Schwartz, S. Y.

    2017-12-01

    Patterns in seismicity emanating from the bottom of fast-moving ice streams and glaciers may indicate localized patches of higher basal resistance— sometimes called 'sticky spots', or otherwise varying basal properties. These seismogenic basal areas resist an unknown portion of the total driving stress of the Whillans Ice Plain (WIP), in West Antarctica, but may play an important role in the WIP stick-slip cycle and ice stream slowdown. To better understand the mechanism and importance of basal seismicity beneath the WIP, we analyze seismic data collected by a small aperture (< 3km) network of 8 surface and 5 borehole seismometers installed in the main central sticky spot of the WIP. We use a network beamforming technique to detect and roughly locate thousands of small (magnitude < 0), local basal micro-earthquakes in Dec 2014, and we compare the resulting map of seismicity to ice bottom depth measured by airborne radar. The number of basal earthquakes per area within the network is spatially heterogeneous, but a pattern of two 400m wide streaks of high seismicity rates is evident, with >50-500 earthquakes detected per 50x50m grid cell in 2 weeks. These seismically active streaks are elongated approximately in the ice flow direction with a spacing of 750m. Independent airborne radar measurements of ice bottom depth from Jan 2013 show a low-amplitude ( 5m) undulation in the basal topography superposed on a regional gradient in ice bottom depth. The flow-perpendicular wavelength of these low-amplitude undulations is comparable to the spacing of the high seismicity bands, and the streaks of high seismicity intersect local lows in the undulating basal topography. We interpret these seismic and radar observations as showing seismically active sub-ice stream bedforms that are low amplitude and elongated in the direction of ice flow, comparable to the morphology of mega scale glacial lineations (MSGLs), with high basal seismicity rates observed in the MSGL troughs

  3. Initial results from geophysical surveys and shallow coring of the Northeast Greenland Ice Stream (NEGIS)

    NASA Astrophysics Data System (ADS)

    Vallelonga, P.; Christianson, K.; Alley, R. B.; Anandakrishnan, S.; Christian, J. E. M.; Dahl-Jensen, D.; Gkinis, V.; Holme, C.; Jacobel, R. W.; Karlsson, N. B.; Keisling, B. A.; Kipfstuhl, S.; Kjær, H. A.; Kristensen, M. E. L.; Muto, A.; Peters, L. E.; Popp, T.; Riverman, K. L.; Svensson, A. M.; Tibuleac, C.; Vinther, B. M.; Weng, Y.; Winstrup, M.

    2014-07-01

    The Northeast Greenland Ice Stream (NEGIS) is the sole interior Greenlandic ice stream. Fast flow initiates near the summit dome, and the ice stream terminates approximately 1000 km downstream in three large outlet glaciers that calve into the Greenland Sea. To better understand this important system, in the summer of 2012 we drilled a 67 m firn core and conducted ground-based radio-echo sounding (RES) and active-source seismic surveys at a site approximately 150 km downstream from the onset of streaming flow (NEGIS firn core, 75°37.61' N, 35°56.49' W). The site is representative of the upper part of the ice stream, while also being in a crevasse-free area for safe surface operations. Annual cycles were observed for insoluble dust, sodium and ammonium concentrations and for electrolytic conductivity, allowing a seasonally resolved chronology covering the past 400 yr. Annual layer thicknesses averaged 0.11 m ice equivalent (i.e.) for the period 1607-2011, although accumulation varied between 0.08 and 0.14 m i.e., likely due to flow-related changes in surface topography. Tracing of RES layers from the NGRIP (North Greenland Ice Core Project) ice core site shows that the ice at NEGIS preserves a climatic record of at least the past 51 kyr. We demonstrate that deep ice core drilling in this location can provide a reliable Holocene and late-glacial climate record, as well as helping to constrain the past dynamics and ice-lithosphere interactions of the Greenland Ice Sheet.

  4. Ice streams of the Late Wisconsin Cordilleran Ice Sheet in western North America

    NASA Astrophysics Data System (ADS)

    Eyles, Nick; Arbelaez Moreno, Lina; Sookhan, Shane

    2018-01-01

    The Late Wisconsin Cordilleran Ice Sheet (CIS) of western North America is thought to have reached its maximum extent (∼2.5 × 106 km2) as late at c. 14.5 ka. Most (80%) of the ice sheet's bed consists of high mountains but its 'core zone' sited on plateaux of the Intermontane Belt of British Columbia and coterminous parts of the USA, shows broad swaths of subglacially-streamlined rock and sediment. Broad scale mapping from new digital imagery data identifies three subglacial bed types: 1) 'hard beds' of variably streamlined bedrock; 2) drumlinized 'soft beds' of deformation till reworked from antecedent sediment, and 3) 'mixed beds' of variably-streamlined bedrock protruding through drumlinized sediment. Drumlins on soft beds appear to be erosional features cut into till and antecedent sediments, and identify the catchment areas of paleo ice streams expressed downglacier as flow sets of megascale glacial lineations (MSGLs). 'Grooved' and 'cloned' drumlins appear to record the transition from drumlins to MSGLs. The location of paleo ice streams reflects topographic funneling of ice from plateau surfaces through outlet valleys and a soft bed that sustained fast flow; rock-cut MSGLs are also present locally on the floors of outlet valleys. CIS disintegrated in <1000 years shortly after c. 13.0 ka releasing very large volumes of meltwater and sediment to the Pacific coast. Abrupt deglaciation may reflect unsustainable calving of marine-based ice streams along the glacio-isostatically depressed coast; large deep 'fiord lakes' in the ice sheet's interior may have played an analogous role. Mapping of the broad scale distribution of bed types across the Cordilleran Ice Sheet provides key information for paleoglaciological modelling and also for understanding the beds of modern ice masses such as the Greenland Ice Sheet which is of a comparable topographic setting.

  5. Discharge of water and sediment from ice-streams on the southeastern Laurentide Ice Sheet during Heinrich events: timing and magnitude

    NASA Astrophysics Data System (ADS)

    Rashid, H.; Piper, D.

    2017-12-01

    Several ice-streams on the southeastern sector of the Laurentide Ice Sheet discharged icebergs, meltwater, and fine-grained sediments into the North Atlantic during Heinrich (H) events. The principal contribution was through Hudson Strait, which is the only source clearly identified in H ice-rafted layers in the central North Atlantic. The role of direct supply of meltwater in modifying the Atlantic meridional circulation generally has been regarded as secondary. The relative chronology of discharge in different ice-streams is poorly known. Here, we re-assess these questions using continental margin cores constrained by high-resolution seismic profiles and multibeam bathymetry data. Relative importance of ice streams likely scales with cross-sectional area of their erosional troughs. On that basis, the Hudson Strait ice stream was twice as large as that in the Laurentian Channel and 3-4 times larger than smaller troughs. Several ice streams supplied petrographically and geochemically distinct sediment including black shales from Cumberland Sound, limestone and dolomite in particular proportions from Frobisher Bay and Hudson Strait, and red sandstones and shales ± carbonates from NE Newfoundland and Laurentian Channel. In several cases, detrital carbonate H layers derived predominantly from Hudson Strait are preceded by enhanced IRD deposition from smaller ice streams, e.g. deposits from Cumberland Sound on the Labrador slope, from NE Newfoundland in Orphan Basin, and from Laurentian Channel on the Nova Scotian margin. Gravel petrology indicates that Hudson Strait sources make up >90% of the ice-rafted component of distal H layers. H layers proximal to the Hudson Strait ice-streams are 4 to 12 meters thick compared to a few centimeters thick seaward of the Trinity Trough and Laurentian ice-streams, comparable to the thickness of the North Atlantic. This underscores the great importance of meltwater and suspended sediment close to ice stream outlets. Morphological

  6. Islands in the ice stream: were spawning habitats for native salmonids in the Great Lakes created by paleo-ice streams?

    USGS Publications Warehouse

    Riley, Stephen; Binder, Thomas R.; Tucker, Taaja R.; Menzies, John; Eyles, Nick; Janssen, John; Muir, Andrew M.; Esselman, Peter C.; Wattrus, Nigel J.; Krueger, Charles C.

    2016-01-01

    Lake trout Salvelinus namaycush, lake whitefish Coregonus clupeaformis and cisco Coregonus artedi are salmonid fishes native to the Laurentian Great Lakes that spawn on rocky substrates in the fall and early winter. After comparing the locations of spawning habitat for these species in the main basin of Lake Huron with surficial substrates and the hypothesized locations of fast-flowing Late Wisconsinan paleo-ice streams, we hypothesize that much of the spawning habitat for these species in Lake Huron is the result of deposition and erosion by paleo-ice streams. This hypothesis may represent a new framework for the identification and protection of spawning habitat for these native species, some of which are currently rare or extirpated in some of the Great Lakes. We further suggest that paleo-ice streams may have been responsible for the creation of native salmonid spawning habitat elsewhere in the Great Lakes and in other glaciated landscapes.

  7. Initial results from geophysical surveys and shallow coring of the Northeast Greenland Ice Stream (NEGIS)

    NASA Astrophysics Data System (ADS)

    Vallelonga, P.; Christianson, K.; Alley, R. B.; Anandakrishnan, S.; Christian, J. E. M.; Dahl-Jensen, D.; Gkinis, V.; Holme, C.; Jacobel, R. W.; Karlsson, N.; Keisling, B. A.; Kipfstuhl, S.; Kjær, H. A.; Kristensen, M. E. L.; Muto, A.; Peters, L. E.; Popp, T.; Riverman, K. L.; Svensson, A. M.; Tibuleac, C.; Vinther, B. M.; Weng, Y.; Winstrup, M.

    2014-01-01

    The Northeast Greenland Ice Stream (NEGIS) is the sole interior Greenlandic ice stream. Fast flow initiates near the summit dome, and the ice stream terminates approximately 1000 km downstream in three large outlet glaciers that calve into the Greenland Sea. To better understand this important system, in the summer of 2012 we drilled a 67 m firn core and conducted ground-based radio-echo sounding (RES) and active-source seismic surveys at a site approximately 150 km downstream from the onset of streaming flow (NEGIS firn core, 75° 37.61' N, 35°56.49' W). The site is representative of the upper part of the ice stream, while also being in a crevasse-free area for safe surface operations. Annual cycles were observed for insoluble dust, sodium and ammonium concentrations and for electrolytic conductivity, allowing a seasonally resolved chronology covering the past 400 yr. Annual layer thicknesses averaged 0.11 m ice equivalent (i.e.) for the period 1607-2011, although accumulation varied between 0.08 and 0.14 m i.e., likely due to flow-related changes in surface topography. Tracing of RES layers from the NGRIP ice core site shows that the ice at NEGIS preserves a climatic record of at least the past 51 kyr. We demonstrate that a deep ice core drilling in this location can provide a reliable Holocene and late-glacial climate record, as well as helping to constrain the past dynamics and ice-lithosphere interactions of the Greenland Ice Sheet.

  8. Using Sediment Provenance to Study Ice Streams in the Weddell Sea Embayment of Antarctica

    NASA Astrophysics Data System (ADS)

    Hemming, S. R.; Williams, T.; Boswell, S.; Licht, K.; Agrios, L.; Brachfeld, S. A.; van de Flierdt, T.; Kuhn, G.; Hillenbrand, C. D.; Zhai, X.

    2016-12-01

    The geochemical and geochronological fingerprint of rock debris eroded and carried by ice streams may be used to identify the provenance of iceberg-rafted debris (IRD) in the marine sediment record. During deglacial times it has been shown that there is an increase in IRD accumulation in marine sediments underlying the western limb of the Weddell Gyre. We seek to find the provenance of this IRD, identify the ice streams contributing to the IRD load, and interpret the geographic sequence of ice sheet retreat in the Weddell Sea embayment for the last three deglaciations. In December 2014 we conducted fieldwork to collect samples of rock and sediment debris carried by three of the major ice streams draining the Weddell Sea embayment: the Foundation Ice Stream, the Academy Glacier, and the Recovery Glacier. We sampled both modern moraines at the edges of the ice streams and older till on hillsides next to the ice streams. In addition to rocks representing the geology of local outcrops, we found that each of the three ice streams carries a characteristic set of erratic lithologies from further upstream, giving clues to the geology hidden under the ice sheet. Downstream, subglacial till and proximal glaciomarine sediment from existing core sites located at the edge of the Filchner and Ronne Ice Shelves, collected on past expeditions of the RV Polarstern, characterize the geochemical and geochronological fingerprint along ice flow lines extending from the ice streams. Finally, two deep-water RV Polarstern sites contain a continuous record of IRD sourced from the set of Weddell embayment ice streams over the last few glacial cycles. Here we present new 40Ar/39Ar hornblende and biotite thermochronological data from individual mineral grains, K-Ar from the silt fraction, and U-Pb zircon geochronology from the onshore tills and offshore sediments. Using this data we will discuss provenance matching between the IRD and the ice streams, and the possibilities for using

  9. Slow-slip events on the Whillans Ice Plain, Antarctica, described using rate-and-state friction as an ice stream sliding law

    NASA Astrophysics Data System (ADS)

    Lipovsky, Bradley Paul; Dunham, Eric M.

    2017-04-01

    The Whillans Ice Plain (WIP), Antarctica, experiences twice daily tidally modulated stick-slip cycles. Slip events last about 30 min, have sliding velocities as high as ˜0.5 mm/s (15 km/yr), and have total slip ˜0.5 m. Slip events tend to occur during falling ocean tide: just after high tide and just before low tide. To reproduce these characteristics, we use rate-and-state friction, which is commonly used to simulate tectonic faulting, as an ice stream sliding law. This framework describes the evolving strength of the ice-bed interface throughout stick-slip cycles. We present simulations that resolve the cross-stream dimension using a depth-integrated treatment of an elastic ice layer loaded by tides and steady ice inflow. Steady sliding with rate-weakening friction is conditionally stable with steady sliding occurring for sufficiently narrow ice streams relative to a nucleation length. Stick-slip cycles occur when the ice stream is wider than the nucleation length or, equivalently, when effective pressures exceed a critical value. Ice streams barely wider than the nucleation length experience slow-slip events, and our simulations suggest that the WIP is in this slow-slip regime. Slip events on the WIP show a sense of propagation, and we reproduce this behavior by introducing a rate-strengthening region in the center of the otherwise rate-weakening ice stream. If pore pressures are raised above a critical value, our simulations predict that the WIP would exhibit quasi-steady tidally modulated sliding as observed on other ice streams. This study validates rate-and-state friction as a sliding law to describe ice stream sliding styles.

  10. From cyclic ice streaming to Heinrich-like events: the grow-and-surge instability in the Parallel Ice Sheet Model

    NASA Astrophysics Data System (ADS)

    Feldmann, Johannes; Levermann, Anders

    2017-08-01

    Here we report on a cyclic, physical ice-discharge instability in the Parallel Ice Sheet Model, simulating the flow of a three-dimensional, inherently buttressed ice-sheet-shelf system which periodically surges on a millennial timescale. The thermomechanically coupled model on 1 km horizontal resolution includes an enthalpy-based formulation of the thermodynamics, a nonlinear stress-balance-based sliding law and a very simple subglacial hydrology. The simulated unforced surging is characterized by rapid ice streaming through a bed trough, resulting in abrupt discharge of ice across the grounding line which is eventually calved into the ocean. We visualize the central feedbacks that dominate the subsequent phases of ice buildup, surge and stabilization which emerge from the interaction between ice dynamics, thermodynamics and the subglacial till layer. Results from the variation of surface mass balance and basal roughness suggest that ice sheets of medium thickness may be more susceptible to surging than relatively thin or thick ones for which the surge feedback loop is damped. We also investigate the influence of different basal sliding laws (ranging from purely plastic to nonlinear to linear) on possible surging. The presented mechanisms underlying our simulations of self-maintained, periodic ice growth and destabilization may play a role in large-scale ice-sheet surging, such as the surging of the Laurentide Ice Sheet, which is associated with Heinrich events, and ice-stream shutdown and reactivation, such as observed in the Siple Coast region of West Antarctica.

  11. Ice-dammed lateral lake and epishelf lake insights into Holocene dynamics of Marguerite Trough Ice Stream and George VI Ice Shelf, Alexander Island, Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    Davies, Bethan J.; Hambrey, Michael J.; Glasser, Neil F.; Holt, Tom; Rodés, Angél; Smellie, John L.; Carrivick, Jonathan L.; Blockley, Simon P. E.

    2017-12-01

    We present new data regarding the past dynamics of Marguerite Trough Ice Stream, George VI Ice Shelf and valley glaciers from Ablation Point Massif on Alexander Island, Antarctic Peninsula. This ice-free oasis preserves a geological record of ice stream lateral moraines, ice-dammed lakes, ice-shelf moraines and valley glacier moraines, which we dated using cosmogenic nuclide ages. We provide one of the first detailed sediment-landform assemblage descriptions of epishelf lake shorelines. Marguerite Trough Ice Stream imprinted lateral moraines against eastern Alexander Island at 120 m at Ablation Point Massif. During deglaciation, lateral lakes formed in the Ablation and Moutonnée valleys, dammed against the ice stream in George VI Sound. Exposure ages from boulders on these shorelines yielded ages of 13.9 to 9.7 ka. Following recession of the ice stream, George VI Ice Shelf formed in George VI Sound. An epishelf lake formed at 15-20 m asl in Ablation and Moutonnée valleys, dated from 9.4 to 4.6 ka, suggesting that the lake was stable and persistent for some 5000 years. Lake-level lowering occurred after this, with the lake level at 12 m at 3.1 ± 0.4 ka and at 5 m asl today. A readvance of the valley glaciers on Alexander Island at 4.4 ± 0.7 ka is recorded by valley glacier moraines overlying epishelf lake sediments. We speculate that the glacier readvance, which occurred during a period of warmth, may have been caused by a dynamic response of the glaciers to a lowering in surface elevation of George VI Ice Shelf.

  12. Basal hydraulic conditions of Ice Stream B

    NASA Technical Reports Server (NTRS)

    Engelhardt, Hermann; Kamb, Barclay

    1993-01-01

    Fifteen boreholes have been drilled to the base of Ice Stream B in the vicinity of UpB Camp. The boreholes are spread over an area of about 500 x 1000 m. Several till cores were retrieved from the bottom of the 1000-m-deep holes. Laboratory tests using a simple shear box revealed a yield strength of basal till of 2 kPa. This agrees well with in-situ measurements using a shear vane. Since the average basal shear stress of Ice Stream B with a surface slope of 0.1 degree is about 20 kPa, the ice stream cannot be supported by till that weak. Additional support for this conclusion comes from the basal water pressure that has been measured in all boreholes as soon as the hot water drill reached bottom. In several boreholes, the water pressure has been continuously monitored; in two of them, over several years. The water pressure varies but stays within 1 bar of flotation where ice overburden pressure and water pressure are equal. The ratio of water and overburden pressure lies between 0.986 and 1.002. This is an extremely high value as compared to other fast-moving ice masses; e.g., Variegated Glacier in surge has a ratio of 0.8, and Columbia Glacier - a fast-moving tidewater glacier - has a ratio of 0.9. It implies that water flow under the glacier occurs in a thin film and not in conduits that would drain away water too rapidly. It also implies that basal sliding must be very effective. Water flow under the glacier was measured in a salt-injection experiment where a salt pulse was released at the bottom of a borehole while 60 m down-glacier, the electrical resistance was measured between two other boreholes. A flow velocity of 7 mm/s was obtained.

  13. Rapid grounding line migration induced by internal variability of a marine-terminating ice stream

    NASA Astrophysics Data System (ADS)

    Robel, A.; Schoof, C.; Tziperman, E.

    2013-12-01

    Numerous studies have found significant variability in the velocity of ice streams to be a prominent feature of geomorphologic records in the Siple Coast (Catania et al. 2012) and other regions in West Antarctica (Dowdeswell et al. 2008). Observations indicate that grounding line position is strongly influenced by ice stream variability, producing rapid grounding line migration in the recent past (Catania et al. 2006) and the modern (Joughin & Tulaczyk 2002). We analyze the interaction of grounding line mass flux and position in a marine-terminating ice stream using a stretch-coordinate flowline model. This model is based on that described in Schoof (2007), with a mesh refined near the grounding line to ensure accurate resolution of the mechanical transition zone. Here we have added lateral shear stress (Dupont & Alley 2005) and an undrained plastic bed (Tulaczyk et al. 2000). The parameter dependence of ice stream variability seen in this model compares favorably to both simpler (Robel et al. 2013) and more complex (van der Wel et al. 2013) models, though with some key differences. We find that thermally-induced internal ice stream variability can cause very rapid grounding line migration even in the absence of retrograde bed slopes or external forcing. Activation waves propagate along the ice stream length and trigger periods of rapid grounding line migration. We compare the behavior of the grounding line due to internal ice stream variability to changes triggered externally at the grounding line such as the rapid disintegration of buttressing ice shelves. Implications for Heinrich events and the Marine Ice Sheet Instability are discussed.

  14. How dynamic are ice-stream beds?

    NASA Astrophysics Data System (ADS)

    Davies, Damon; Bingham, Robert G.; King, Edward C.; Smith, Andrew M.; Brisbourne, Alex M.; Spagnolo, Matteo; Graham, Alastair G. C.; Hogg, Anna E.; Vaughan, David G.

    2018-05-01

    Projections of sea-level rise contributions from West Antarctica's dynamically thinning ice streams contain high uncertainty because some of the key processes involved are extremely challenging to observe. An especially poorly observed parameter is sub-decadal stability of ice-stream beds, which may be important for subglacial traction, till continuity and landform development. Only two previous studies have made repeated geophysical measurements of ice-stream beds at the same locations in different years, but both studies were limited in spatial extent. Here, we present the results from repeat radar measurements of the bed of Pine Island Glacier, West Antarctica, conducted 3-6 years apart, along a cumulative ˜ 60 km of profiles. Analysis of the correlation of bed picks between repeat surveys shows that 90 % of the bed displays no significant change despite the glacier increasing in speed by up to 40 % over the last decade. We attribute the negligible detection of morphological change at the bed of Pine Island Glacier to the ubiquitous presence of a deforming till layer, wherein sediment transport is in steady state, such that sediment is transported along the basal interface without inducing morphological change to the radar-sounded basal interface. Given the precision of our measurements, the upper limit of subglacial erosion observed here is 500 mm a-1, far exceeding erosion rates reported for glacial settings from proglacial sediment yields, but substantially below subglacial erosion rates of 1.0 m a-1 previously reported from repeat geophysical surveys in West Antarctica.

  15. Grounding Zones, Subglacial Lakes, and Dynamics of an Antarctic Ice Stream: The WISSARD Glaciological Experiment

    NASA Astrophysics Data System (ADS)

    Tulaczyk, S. M.; Schwartz, S. Y.; Fisher, A. T.; Powell, R. D.; Fricker, H. A.; Anandakrishnan, S.; Horgan, H. J.; Scherer, R. P.; Walter, J. I.; Siegfried, M. R.; Mikucki, J.; Christianson, K.; Beem, L.; Mankoff, K. D.; Carter, S. P.; Hodson, T. O.; Marsh, O.; Barcheck, C. G.; Branecky, C.; Neuhaus, S.; Jacobel, R. W.

    2015-12-01

    Interactions of West Antarctic ice streams with meltwater at their beds, and with seawater at their grounding lines, are widely considered to be the primary drivers of ice stream flow variability on different timescales. Understanding of processes controlling ice flow variability is needed to build quantitative models of the Antarctic Ice Sheet that can be used to help predict its future behavior and to reconstruct its past evolution. The ice plain of Whillans Ice Stream provides a natural glaciological laboratory for investigations of Antarctic ice flow dynamics because of its highly variable flow rate modulated by tidal processes and fill-drain cycles of subglacial lakes. Moreover, this part of Antarctica has one of the longest time series of glaciological observations, which can be used to put recently acquired datasets in a multi-decadal context. Since 2007 Whillans Ice Stream has been the focus of a regional glaciological experiment, which included surface GPS and passive-source seismic sensors, radar and seismic imaging of subglacial properties, as well as deep borehole geophysical sensors. This experiment was possible thanks to the NSF-funded multidisciplinary WISSARD project (Whillans Ice Stream Subglacial Access Research Drilling). Here we will review the datasets collected during the WISSARD glaciological experiment and report on selected results pertaining to interactions of this ice stream with water at its bed and its grounding line.

  16. Large subglacial lakes in East Antarctica at the onset of fast-flowing ice streams.

    PubMed

    Bell, Robin E; Studinger, Michael; Shuman, Christopher A; Fahnestock, Mark A; Joughin, Ian

    2007-02-22

    Water plays a crucial role in ice-sheet stability and the onset of ice streams. Subglacial lake water moves between lakes and rapidly drains, causing catastrophic floods. The exact mechanisms by which subglacial lakes influence ice-sheet dynamics are unknown, however, and large subglacial lakes have not been closely associated with rapidly flowing ice streams. Here we use satellite imagery and ice-surface elevations to identify a region of subglacial lakes, similar in total area to Lake Vostok, at the onset region of the Recovery Glacier ice stream in East Antarctica and predicted by ice-sheet models. We define four lakes through extensive, flat, featureless regions of ice surface bounded by upstream troughs and downstream ridges. Using ice velocities determined using interferometric synthetic aperture radar (InSAR), we find the onset of rapid flow (moving at 20 to 30 m yr(-1)) of the tributaries to the Recovery Glacier ice stream in a 280-km-wide segment at the downslope margins of these four subglacial lakes. We conclude that the subglacial lakes initiate and maintain rapid ice flow through either active modification of the basal thermal regime of the ice sheet by lake accretion or through scouring bedrock channels in periodic drainage events. We suggest that the role of subglacial lakes needs to be considered in ice-sheet mass balance assessments.

  17. Subglacial conditions at a sticky spot along Kamb Ice Stream, West Antarctica

    USGS Publications Warehouse

    Peters, L.E.; Anandakrishnan, S.

    2007-01-01

    We present the results of a seismic reflection experiment performed transverse to flow a few tens of kilometers above the main trunk of Kamb Ice Stream, West Antarctica, where we image a basal high surrounded by variable subglacial conditions. This high rises as much as 200 m above the surrounding bed, acting as a major sticking point that resists fast flow. Application of the amplitude variation with offset (AVO) seismic technique has highlighted regions of frozen sediments along our profile, suggesting that the ice stream is experiencing basal freeze-on in the region. The bedrock high appears to be at least partially draped in sediment cover, with a concentrated area of weak, dilatant till flanking one edge. This dilatant till is further dispersed along our profile, though it does not possess enough continuity to maintain streaming ice conditions. These results support the hypothesis that the ongoing shutdown of Kamb Ice Stream is due to a loss in continuous basal lubrication.

  18. Whillans Ice Stream Subglacial Access Research Drilling (WISSARD): Integrative Study of Marine Ice Sheet Stability and Subglacial Life Habitats (Invited)

    NASA Astrophysics Data System (ADS)

    Tulaczyk, S. M.; Anandakrishnan, S.; Behar, A. E.; Christner, B. C.; Fisher, A. T.; Fricker, H. A.; Holland, D. M.; Jacobel, R. W.; Mikucki, J.; Mitchell, A. C.; Powell, R. D.; Priscu, J. C.; Scherer, R. P.; Severinghaus, J. P.

    2009-12-01

    The WISSARD project is a large, NSF-funded, interdisciplinary initiative focused on scientific drilling, exploration, and investigation of Antarctic subglacial aquatic environments. The project consists of three interrelated components: (1) LISSARD - Lake and Ice Stream Subglacial Access Research Drilling, (2) RAGES - Robotic Access to Grounding-zones for Exploration and Science, and (3) GBASE - GeomicroBiology of Antarctic Subglacial Environments). A number of previous studies in West Antarctica highlighted the importance of understanding ice sheet interactions with water, either at the basal boundary where ice streams come in contact with active subglacial hydrologic and geological systems or at the marine margin where the ice sheet is exposed to forcing from the global ocean and sedimentation. Recent biological investigations of Antarctic subglacial environments show that they provide a significant habitat for life and source of bacterial carbon in a setting that was previously thought to be inhospitable. Subglacial microbial ecosystems also enhance biogeochemical weathering, mobilizing elements from long term geological storage. The overarching scientific objective of WISSARD is to examine the subglacial hydrological system of West Antarctica in glaciological, geological, microbiological, geochemical, and oceanographic contexts. Direct sampling will yield seminal information on these systems and test the overarching hypothesis that active hydrological systems connect various subglacial environments and exert major control on ice sheet dynamics, subglacial sediment transfer, geochemistry, metabolic and phylogenetic diversity, and biogeochemical transformations and geological records of ice sheet history. Technological advances during WISSARD will provide the US-science community with a capability to access and study sub-ice sheet environments. Developing this technological infrastructure will benefit the broader science community and it will be available for

  19. Seismic Excitation of the Ross Ice Shelf by Whillans Ice Stream Stick-Slip Events

    NASA Astrophysics Data System (ADS)

    Wiens, D.; Pratt, M. J.; Aster, R. C.; Nyblade, A.; Bromirski, P. D.; Stephen, R. A.; Gerstoft, P.; Diez, A.; Cai, C.; Anthony, R. E.; Shore, P.

    2015-12-01

    Rapid variations in the flow rate of upstream glaciers and ice streams may cause significant deformation of ice shelves. The Whillans Ice Stream (WIS) represents an extreme example of rapid variations in velocity, with motions near the grounding line consisting almost entirely of once or twice-daily stick-slip events with a displacement of up to 0.7 m (Winberry et al, 2014). Here we report observations of compressional waves from the WIS slip events propagating hundreds of kilometers across the Ross Ice Shelf (RIS) detected by broadband seismographs deployed on the ice shelf. The WIS slip events consist of rapid basal slip concentrated at three high friction regions (often termed sticky-spots or asperities) within a period of about 25 minutes (Pratt et al, 2014). Compressional displacement pulses from the second and third sticky spots are detected across the entire RIS up to about 600 km away from the source. The largest pulse results from the third sticky spot, located along the northwestern grounding line of the WIS. Propagation velocities across the ice shelf are significantly slower than the P wave velocity in ice, as the long period displacement pulse is also sensitive to velocities of the water and sediments beneath the ice shelf. Particle motions are, to the limit of resolution, entirely within the horizontal plane and roughly radial with respect to the WIS sticky-spots, but show significant complexity, presumably due to differences in ice velocity, thickness, and the thickness of water and sediment beneath. Study of this phenomenon should lead to greater understanding of how the ice shelf responds to sudden forcing around the periphery.

  20. Seafloor features delineate Late Wisconsinan ice stream configurations in eastern Parry Channel, Canadian Arctic Archipelago

    NASA Astrophysics Data System (ADS)

    MacLean, B.; Blasco, S.; Bennett, R.; Lakeman, T.; Pieńkowski, A. J.; Furze, M. F. A.; Hughes Clarke, J.; Patton, E.

    2017-03-01

    Multibeam imagery and 3.5 kHz sub-bottom profiles acquired from CCGS Amundsen between 2003 and 2013 by ArcticNet and the Ocean Mapping Group at the University of New Brunswick provide information on seafloor features, geology, bathymetry and morphology in eastern Parry Channel and the adjoining large channels in the Canadian Arctic Archipelago. Together these include Peel Sound, Barrow Strait, Lancaster Sound, Wellington Channel, Prince Regent Inlet, Admiralty Inlet and Navy Board Inlet. Those data are in part complemented by high resolution single channel seismic reflection profiles acquired by the Geological Survey of Canada in the 1970s and 1980s and by sediment cores that provide chronological and depositional information. The occurrence and pattern of streamlined mega-scale ridge and groove lineations (MSGLs) indicate that these waterways were occupied by glacial ice streams in the past. Chronological information from marine and adjoining terrestrial areas suggests a long history of glacial events ranging in time from Early Pleistocene to Late Wisconsinan. Seafloor morphology and MSGL trends together with terrestrial ice flow patterns indicate that ice streams flowed into Barrow Strait from Peel Sound and Wellington Channel, and ice streams in Prince Regent, Admiralty and Navy Board inlets flowed northward into and eastward along Lancaster Sound. Recession of the ice stream westward along Parry Channel occurred ∼16 cal ka BP to 10.8 cal ka BP. Thick ice-contact sediments deposited by a late ice advance from Prince Regent Inlet constitute the seabed across a large area of western Lancaster Sound. Timing for that late ice advance appears to be bracketed between the 11.5 cal ka BP lift-off of the eastern Parry ice stream north of Prince Leopold Island and the ∼10.0 cal ka BP deglaciation of Prince Regent Inlet. Seafloor morphology and lineation trends suggest that ice delivered by the ice stream in Peel Sound was the westernmost tributary to the ice stream

  1. Rate and style of ice stream retreat constrained by new surface-exposure ages: The Minch, NW Scotland

    NASA Astrophysics Data System (ADS)

    Bradwell, Tom; Small, David; Fabel, Derek; Dove, Dayton; Cofaigh, Colm O.; Clark, Chris; Consortium, Britice-Chrono

    2016-04-01

    Chronologically constrained studies of former ice-sheet extents and dynamics are important for understanding past cryospheric responses and modelling future ice-sheet and sea-level change. As part of the BRITICE-CHRONO project, we present new geomorphological and chronological data from a marine-terminating ice stream system in NW Europe that operated during the Late Weichselian Glaciation. A suite of 51 cosmogenic-nuclide exposure ages from ice sheet moraines and glacially transported boulders constrain the maximum extent of the ice sheet on the continental shelf (~28 ka BP) and its subsequent retreat, between ~27 and 16 ka BP, into a large marine embayment (ca. 7000 km2; the Minch, NW Scotland). Recently acquired swath bathymetry and acoustic sub-bottom profiler data reveal several large transverse grounding-zone wedges up to 40 m thick and 5 km wide with diagnostic acoustic-facies architecture. These seabed sediment wedges mark former quasi-stable positions of grounded marine-terminating ice-stream fronts; their size and thickness suggest long-lived stillstands of the order of centuries. Statistically significant clusters of exposure ages from glacial deposits on islands and intervening headlands shed important new light on the age of these marine grounding-zone wedges and, by inference, the rate and timing of Minch palaeo-ice stream retreat. We find strong evidence for episodic ice stream retreat on the continental shelf between ~28-24 ka BP, in the outer Minch between ~24-22 ka BP, and in the central Minch between 22-18.5 ka BP. In contrast, final ice stream deglaciation (<18 ka) across the deepest parts of the inner Minch embayment, was probably rapid and uninterrupted - with the ice sheet margin at or close to the present-day coastline in NW Scotland by 16.1 ka BP. It is hoped that these results will form the empirical basis for future ice-sheet modelling of this dynamically sensitive sector of the British-Irish Ice Sheet.

  2. The role of the margins in ice stream dynamics

    NASA Technical Reports Server (NTRS)

    Echelmeyer, Keith; Harrison, William

    1993-01-01

    At first glance, it would appear that the bed of the active ice stream plays a much more important role in the overall force balance than do the margins, especially because the ratio of the half-width to depth for a typical ice stream is large (15:1 to 50:1). On the other hand, recent observations indicate that at least part of the ice stream is underlain by a layer of very weak till (shear strength about 2 kPa), and this weak basal layer would then imply that some or all of the resistive drag is transferred to the margins. In order to address this question, a detailed velocity profile near Upstream B Camp, which extends from the center of the ice stream, across the chaotic shear margin, and onto the Unicorn, which is part of the slow-moving ice sheet was measured. Comparison of this observed velocity profile with finite-element models of flow shows several interesting features. First, the shear stress at the margin is on the order of 130 kPa, while the mean value along the bed is about 15 kPa. Integration of these stresses along the boundaries indicates that the margins provide 40 to 50 percent, and the bed, 60 to 40 percent of the total resistive drag needed to balance the gravitational driving stress in this region. (The range of values represents calculations for different values of surface slope.) Second, the mean basal stress predicted by the models shows that the entire bed cannot be blanketed by the weak till observed beneath upstream B - instead there must be a distribution of weak till and 'sticky spots' (e.g., 85 percent till and 15 percent sticky spots of resistive stress equal to 100 kPa). If more of the bed were composed of weak till, then the modeled velocity would not match that observed. Third, the ice must exhibit an increasing enhancement factor as the margins are approached (E equals 10 in the chaotic zone), in keeping with laboratory measurements on ice under prolonged shear strain. Also, there is either a narrow zone of somewhat stiffer ice (E

  3. The role of the margins in ice stream dynamics

    NASA Astrophysics Data System (ADS)

    Echelmeyer, Keith; Harrison, William

    1993-07-01

    At first glance, it would appear that the bed of the active ice stream plays a much more important role in the overall force balance than do the margins, especially because the ratio of the half-width to depth for a typical ice stream is large (15:1 to 50:1). On the other hand, recent observations indicate that at least part of the ice stream is underlain by a layer of very weak till (shear strength about 2 kPa), and this weak basal layer would then imply that some or all of the resistive drag is transferred to the margins. In order to address this question, a detailed velocity profile near Upstream B Camp, which extends from the center of the ice stream, across the chaotic shear margin, and onto the Unicorn, which is part of the slow-moving ice sheet was measured. Comparison of this observed velocity profile with finite-element models of flow shows several interesting features. First, the shear stress at the margin is on the order of 130 kPa, while the mean value along the bed is about 15 kPa. Integration of these stresses along the boundaries indicates that the margins provide 40 to 50 percent, and the bed, 60 to 40 percent of the total resistive drag needed to balance the gravitational driving stress in this region. (The range of values represents calculations for different values of surface slope.) Second, the mean basal stress predicted by the models shows that the entire bed cannot be blanketed by the weak till observed beneath upstream B - instead there must be a distribution of weak till and 'sticky spots' (e.g., 85 percent till and 15 percent sticky spots of resistive stress equal to 100 kPa). If more of the bed were composed of weak till, then the modeled velocity would not match that observed. Third, the ice must exhibit an increasing enhancement factor as the margins are approached (E equals 10 in the chaotic zone), in keeping with laboratory measurements on ice under prolonged shear strain. Also, there is either a narrow zone of somewhat stiffer ice (E

  4. Interplay of grounding-line dynamics and sub-shelf melting during retreat of the Bjørnøyrenna Ice Stream.

    PubMed

    Petrini, Michele; Colleoni, Florence; Kirchner, Nina; Hughes, Anna L C; Camerlenghi, Angelo; Rebesco, Michele; Lucchi, Renata G; Forte, Emanuele; Colucci, Renato R; Noormets, Riko

    2018-05-08

    The Barents Sea Ice Sheet was a marine-based ice sheet, i.e., it rested on the Barents Sea floor during the Last Glacial Maximum (21 ky BP). The Bjørnøyrenna Ice Stream was the largest ice stream draining the Barents Sea Ice Sheet and is regarded as an analogue for contemporary ice streams in West Antarctica. Here, the retreat of the Bjørnøyrenna Ice Stream is simulated by means of two numerical ice sheet models and results assessed against geological data. We investigate the sensitivity of the ice stream to changes in ocean temperature and the impact of grounding-line physics on ice stream retreat. Our results suggest that the role played by sub-shelf melting depends on how the grounding-line physics is represented in the models. When an analytic constraint on the ice flux across the grounding line is applied, the retreat of Bjørnøyrenna Ice Stream is primarily driven by internal ice dynamics rather than by oceanic forcing. This suggests that implementations of grounding-line physics need to be carefully assessed when evaluating and predicting the response of contemporary marine-based ice sheets and individual ice streams to ongoing and future ocean warming.

  5. New aerogeophysical data reveal the extent of the Weddell Sea Rift beneath the Institute and Möller ice streams

    NASA Astrophysics Data System (ADS)

    Jordan, T. A.; Ferraccioli, F.; Siegert, M. J.; Ross, N.; Corr, H.; Bingham, R. G.; Rippin, D. M.; Le Brocq, A. M.

    2011-12-01

    Significant continental rifting associated with Gondwana breakup has been widely recognised in the Weddell Sea region. However, plate reconstructions and the extent of this rift system onshore beneath the West Antarctic Ice Sheet (WAIS) are ambiguous, due to the paucity of modern geophysical data across the Institute and Möller ice stream catchments. Understanding this region is key to unravelling Gondwana breakup and the possible kinematic links between the Weddell Sea and the West Antarctic Rift System. The nature of the underlying tectonic structure is also critical, as it provides the template for ice-flow draining ~20% of the West Antarctic Ice Sheet (WAIS). During the 2010/11 Antarctic field season ~25,000 km of new airborne radar, aerogravity and aeromagnetic data were collected to help unveil the crustal structure and geological boundary conditions beneath the Institute and Möller ice streams. Our new potential field maps delineate varied subglacial geology beneath the glacial catchments, including Jurassic intrusive rocks, sedimentary basins, and Precambrian basement rocks of the Ellsworth Mountains. Inversion of airborne gravity data reveal significant crustal thinning directly beneath the faster flowing coastal parts of the Institute and Möller ice streams. We suggest that continental rifting focussed along the Weddell Sea margin of the Ellsworth-Whitmore Mountains block, providing geological controls for the fast flowing ice streams of the Weddell Sea Embayment. Further to the south we suggest that strike-slip motion between the East Antarctica and the Ellsworth-Whitmore Mountains block may provide a kinematic link between Cretaceous-Cenozoic extension in the West Antarctic Rift System and deformation in the Weddell Sea Embayment.

  6. Using U-Pb Detrital Zircon Geochronology to Study Ice Streams in the Weddell Sea Embayment, Antarctica

    NASA Astrophysics Data System (ADS)

    Agrios, L.; Licht, K.; Hemming, S. R.; Williams, T.

    2016-12-01

    Till from major ice streams of the Weddell Sea Embayment contain detrital zircons with distinct U-Pb age populations that can be used as a provenance tool to better understand ice stream dynamics. The ice streams in this study include the Foundation Ice Stream, and Academy, Slessor, and Recovery glaciers, all of which drain ice from the continent's interior into the Weddell Sea. Characterizing the U-Pb detrital zircon ages in till and rocks will (1) provide the zircon provenance signatures of the material carried by the ice stream - when these signatures are found in LGM and older deposits downstream they can enable interpretation of past ice flow history; and (2) constrain ice-covered upstream bedrock geology that supplies the till carried by ice streams and glaciers. U-Pb ages of detrital zircons were measured in 21 samples of onshore till, erratics, and bedrock of potential source rocks. Grains were analyzed by LA-ICPMS at the University of Arizona (n=300). Relative probability U-Pb age density plots of till in moraines along the Foundation Ice Stream and Academy Glacier show prominent peaks at 500-530 and 615-650 Ma, which overlap with the timing of the Ross and Pan-African orogenies. Zircon ages of 1000-1095 Ma are also present. Local bedrock in the Patuxent Range has the most prominent peak at 510 Ma, suggesting the till is predominantly derived from local Patuxent Formation. However, local bedrock also has fewer grains at 1030 Ma which suggests that this age population is carried in the till as well. Prominent peaks in U-Pb ages from till transported by the Recovery Glacier are 530, 635, 1610 and 1770 Ma. Bedrock of this area contains similar age peaks, with the exception of the 635 Ma peak, suggesting that this ice stream is carrying a signature from an unexposed source of this age completely buried by ice. The Slessor Glacier carries zircons with prominent populations at 1710 and 2260-2420 Ma, which overlap with a high-grade metamorphic event in the

  7. Simultaneous teleseismic and geodetic observations of the stick-slip motion of an Antarctic ice stream.

    PubMed

    Wiens, Douglas A; Anandakrishnan, Sridhar; Winberry, J Paul; King, Matt A

    2008-06-05

    Long-period seismic sources associated with glacier motion have been recently discovered, and an increase in ice flow over the past decade has been suggested on the basis of secular changes in such measurements. Their significance, however, remains uncertain, as a relationship to ice flow has not been confirmed by direct observation. Here we combine long-period surface-wave observations with simultaneous Global Positioning System measurements of ice displacement to study the tidally modulated stick-slip motion of the Whillans Ice Stream in West Antarctica. The seismic origin time corresponds to slip nucleation at a region of the bed of the Whillans Ice Stream that is likely stronger than in surrounding regions and, thus, acts like an 'asperity' in traditional fault models. In addition to the initial pulse, two seismic arrivals occurring 10-23 minutes later represent stopping phases as the slip terminates at the ice stream edge and the grounding line. Seismic amplitude and average rupture velocity are correlated with tidal amplitude for the different slip events during the spring-to-neap tidal cycle. Although the total seismic moment calculated from ice rigidity, slip displacement, and rupture area is equivalent to an earthquake of moment magnitude seven (M(w) 7), seismic amplitudes are modest (M(s) 3.6-4.2), owing to the source duration of 20-30 minutes. Seismic radiation from ice movement is proportional to the derivative of the moment rate function at periods of 25-100 seconds and very long-period radiation is not detected, owing to the source geometry. Long-period seismic waves are thus useful for detecting and studying sudden ice movements but are insensitive to the total amount of slip.

  8. Cosmogenic exposure age constraints on deglaciation and flow behaviour of a marine-based ice stream in western Scotland, 21-16 ka

    NASA Astrophysics Data System (ADS)

    Small, David; Benetti, Sara; Dove, Dayton; Ballantyne, Colin K.; Fabel, Derek; Clark, Chris D.; Gheorghiu, Delia M.; Newall, Jennifer; Xu, Sheng

    2017-07-01

    Understanding how marine-based ice streams operated during episodes of deglaciation requires geochronological data that constrain both timing of deglaciation and changes in their flow behaviour, such as that from unconstrained ice streaming to topographically restricted flow. We present seventeen new 10Be exposure ages from glacial boulders and bedrock at sites in western Scotland within the area drained by the Hebrides Ice Stream, a marine-based ice stream that drained a large proportion of the former British-Irish Ice Sheet. Exposure ages from Tiree constrain deglaciation of a topographic high within the central zone of the ice stream, from which convergent flowsets were produced during ice streaming. These ages thus constrain thinning of the Hebrides Ice Stream, which, on the basis of supporting information, we infer to represent cessation of ice streaming at 20.6 ± 1.2 ka, 3-4 ka earlier than previously inferred. A period of more topographically restricted flow produced flow indicators superimposed on those relating to full ice stream conditions, and exposure ages from up-stream of these constrain deglaciation to 17.5 ± 1.0 ka. Complete deglaciation of the marine sector of the Hebrides Ice Stream occurred by 17-16 ka at which time the ice margin was located near the present coastline. Exposure ages from the southernmost Outer Hebrides (Mingulay and Barra) indicate deglaciation at 18.9 ± 1.0 and 17.1 ± 1.0 ka respectively, demonstrating that an independent ice cap persisted on the southern Outer Hebrides for 3-4 ka after initial ice stream deglaciation. This suggests that deglaciation of the Hebrides Ice Stream was focused along major submarine troughs. Collectively, our data constrain initial deglaciation and changes in flow regime of the Hebrides Ice Stream, final deglaciation of its marine sector, and deglaciation of the southern portion of the independent Outer Hebrides Ice Cap, providing chronological constraints on future numerical reconstructions of

  9. Improved age constraints for the retreat of the Irish Sea Ice Stream

    NASA Astrophysics Data System (ADS)

    Smedley, Rachel; Chiverrell, Richard; Duller, Geoff; Scourse, James; Small, David; Fabel, Derek; Burke, Matthew; Clarke, Chris; McCarroll, Danny; McCarron, Stephen; O'Cofaigh, Colm; Roberts, David

    2016-04-01

    BRITICE-CHRONO is a large (> 45 researchers) consortium project working to provide an extensive geochronological dataset constraining the rate of retreat of a number of ice streams of the British-Irish Ice Sheet following the Last Glacial Maximum. When complete, the large empirical dataset produced by BRITICE-CHRONO will be integrated into model simulations to better understand the behaviour of the British-Irish Ice Sheet in response to past climate change, and provide an analogue for contemporary ice sheets. A major feature of the British-Irish Ice Sheet was the dynamic Irish Sea Ice Stream, which drained a large proportion of the ice sheet and extended to the proposed southern limit of glaciation upon the Isles of Scilly (Scourse, 1991). This study will focus on a large suite of terrestrial samples that were collected along a transect of the Irish Sea basin, covering the line of ice retreat from the Isles of Scilly (50°N) in the south, to the Isle of Man (54°N) in the north; a distance of 500 km. Ages are determined for both the eastern and western margins of the Irish Sea using single-grain luminescence dating (39 samples) and terrestrial cosmogenic nuclide dating (10 samples). A Bayesian sequence model is then used in combination with the prior information determined for deglaciation to integrate the geochronological datasets, and assess retreat rates for the Irish Sea Ice Stream. Scourse, J.D., 1991. Late Pleistocene stratigraphy and palaeobotany of the Isles of Scilly. Philosophical Transactions of the Royal Society of London B334, 405 - 448.

  10. The feasibility of imaging subglacial hydrology beneath ice streams with ground-based electromagnetics

    NASA Astrophysics Data System (ADS)

    Siegfried, M. R.; Key, K.

    2017-12-01

    Subglacial hydrologic systems in Antarctica and Greenland play a fundamental role in ice-sheet dynamics, yet critical aspects of these systems remain poorly understood due to a lack of observations. Ground-based electromagnetic (EM) geophysical methods are established for mapping groundwater in many environments, but have never been applied to imaging lakes beneath ice sheets. Here we study the feasibility of passive and active source EM imaging for quantifying the nature of subglacial water systems beneath ice streams, with an emphasis on the interfaces between ice and basal meltwater, as well as deeper groundwater in the underlying sediments. Specifically, we look at the passive magnetotelluric method and active-source EM methods that use a large loop transmitter and receivers that measure either frequency-domain or transient soundings. We describe a suite of model studies that exam the data sensitivity as a function of ice thickness, water conductivity and hydrologic system geometry for models representative of a subglacial lake and a grounding zone estuary. We show that EM data are directly sensitive to groundwater and can image its lateral and depth extent. By combining the conductivity obtained from EM data with ice thickness and geological structure from conventional geophysical techniques such as ground-penetrating radar and active seismic techniques, EM data have the potential to provide new insights on the interaction between ice, rock, and water at critical ice-sheet boundaries.

  11. Provenance of Des Moines lobe till records ice-stream catchment evolution during Laurentide deglaciation

    USGS Publications Warehouse

    Lusardi, B.A.; Jennings, C.E.; Harris, K.L.

    2011-01-01

    Mapping and analysis of deposits of the Des Moines lobe of the Laurentide Ice Sheet, active after the Last Glacial Maximum (LGM), reveal several texturally and lithologically distinct tills within what had been considered to be a homogeneous deposit. Although the differences between tills are subtle, minor distinctions are predictable and mappable, and till sheets within the area covered by the lobe can be correlated for hundreds of kilometres parallel to ice flow. Lateral till-sheet contacts are abrupt or overlap in a narrow zone, coincident with a geomorphic discontinuity interpreted to be a shear margin. Till sheets 10 to 20m thick show mixing in their lower 2 to 3m. We suggest that: (i) lithologically distinct till sheets correspond to unique ice-stream source areas; (ii) the sequence of tills deposited by the Des Moines lobe was the result of the evolution and varying dominance of nearby and competing ice streams and their tributaries; and (iii) in at least one instance, more than one ice stream simultaneously contributed to the lobe. Therefore the complex sequence of tills of subtly different provenances, and the unconformities between them record the evolution of an ice-catchment area during Laurentide Ice Sheet drawdown. Till provenance data suggest that, after till is created in the ice-stream source area, the subglacial conditions required for transporting till decline and incorporation of new material is limited. ?? 2011 The Authors. Boreas ?? 2011 The Boreas Collegium.

  12. Disintegration of a marine-based ice stream - evidence from the Norwegian Channel, north-eastern North Sea

    NASA Astrophysics Data System (ADS)

    Morén, Björn M.; Petter Sejrup, Hans; Hjelstuen, Berit O.; Haflidason, Haflidi; Schäuble, Cathrina; Borge, Marianne

    2014-05-01

    The Norwegian Channel Ice Stream repeatedly drained large part of the Fennoscandian Ice Sheet through Mid and Late Pleistocene glacial stages. During parts of Marine Isotope Stages 2 and 3, glacial ice from Fennoscandia and the British Isles coalesced in the central North Sea and the Norwegian Channel Ice Stream reached the shelf edge on multiple occasions. Through the last decades a large amount of acoustic and sediment core data have been collected from the Norwegian Channel, providing a good background for studies focussing on stability- and development-controlling parameters for marine-based ice streams, the retreat rate of the Norwegian Channel Ice Stream, and the behaviour of the Fennoscandian Ice Sheet. Further, this improved understanding can be used to develop more accurate numerical climate models and models which can be used to model ice-sheet behaviour of the past as well as the future. This study presents new acoustic records and data from sediment cores which contribute to a better understanding of the retreat pattern and the retreat rate of the last ice stream that occupied the Norwegian Channel. From bathymetric and TOPAS seismic data, mega-scale glacial lineations, grounding-zone wedges, and end moraines have been mapped, thereby allowing us to reconstruct the pro- and subglacial conditions at the time of the creation of these landforms. It is concluded that the whole Norwegian Channel was deglaciated in just over 1 000 years and that for most of this time the ice margin was located at positions reflected by depositional grounding-zone wedges. Further work will explore the influence of channel shape and feeding of ice from western Norwegian fjords on this retreat pattern through numerical modelling.

  13. New marine geophysical and sediment record of the Northeast Greenland Ice Stream.

    NASA Astrophysics Data System (ADS)

    Callard, L.; Roberts, D. H.; O'Cofaigh, C.; Lloyd, J. M.; Smith, J. A.; Dorschel, B.

    2017-12-01

    The NE Greenland Ice Stream (NEGIS) drains 16% of the Greenland Ice Sheet (GrIS) and has a sea-level equivalent of 1.1-1.4 m. Stabilised by two floating ice shelves, 79N and Zachariae Isstrom, until recently it has shown little response to increased atmospheric and oceanic warming. However, since 2010 it has experienced an accelerated rate of grounding line retreat ( 4 km) and significant ice shelf loss that indicates that this sector of the GrIS is now responding to current oceanic and/or climatic change and has the potential to be a major contributor to future global sea-level rise. The project `NEGIS', a collaboration between Durham University and AWI, aims to reconstruct the history of the NE Greenland Ice Stream from the Last Glacial Maximum (LGM) to present using both onshore and offshore geological archives to better understand past ice stream response to a warming climate. This contribution presents results and interpretations from an offshore dataset collected on the RV Polarstern, cruises PS100 and PS109 in 2016 and 2017. Gravity and box cores, supplemented by swath bathymetric and sub-bottom profiler data, were acquired and initial core analysis including x-radiographs and MSCL data logging has been performed. Data collection focused principally in the Norske Trough and the area directly in front of the 79N ice shelf, a sub-ice shelf environment as recently as two years ago. On the outer shelf streamlined subglacial bedforms, grounding-zone wedges and moraines as well as overconsolidated subglacial tills, record an extensive ice sheet advance to the shelf edge. On the inner shelf and in front of the 79N ice shelf, deep, glacially-eroded bedrock basins are infilled with stratified sediment. The stratified muds represent deglacial and Holocene glacimarine sedimentation, and capture the recent transition from sub-ice shelf to shelf free conditions. Multiproxy palaeoenvironmental reconstructions, including foraminifera and diatom analysis, and radiocarbon

  14. Controls on bedrock bedform development at the base of the Uummannaq Ice Stream System, West Greenland

    NASA Astrophysics Data System (ADS)

    Lane, Tim; Roberts, David; Rea, Brice; Cofaigh, Colm Ó.

    2014-05-01

    This research investigates the glacial and non-glacial controls on glacially eroded bedrock bedforms beneath the topographically confined upstream fjord region of the Uummannaq Ice Stream (UIS), West Greenland. The UIS was a cross-shelf ice stream system that operated during the Last Glacial Maximum (LGM), formed of 10 coalescent outlet glaciers. Reconstructions suggest that palaeo-glaciological conditions were similar for all sites in the study, characterised by thick, fast flowing ice moving over a rigid bedrock bed. Areally scoured terrain were mapped using remotely sensed imagery to assess regional-scale patterns of glacial erosion and to select suitable field locations. In the field, bedform measurements were taken from four discrete areas within two neighbouring fjords in the northern Uummannaq region (Rink-Karrat and Ingia). Classic bedrock bedforms indicative of glacially eroded terrain were mapped, including p-forms, roche moutonnées, and whalebacks. Bedform long axes and plucked face orientations display close correlation with palaeo-ice flow directions inferred from striae measurements. Across all sites, elongation ratios (length to width) varied by an order of magnitude between 0.8:1 and 8.4:1. Bedform properties (length, height, width, and long axis orientation) from the four sample areas form individual morphometrically distinct populations. However, bedform populations display high inter-area variability despite their close proximity, and hypothesised similarity in palaeo-glaciological conditions. The relationship of bedforms to palaeo-glaciological conditions in this study is not simple, having been complicated by bedrock properties. Geological structures including: joint frequency; joint dip; joint orientation; bedding plane thickness; and bedding plane dip have provided lines of geological weakness along which glacial erosion has been able to focus, controlling bedform length and width. Lateral plucking, a mechanism previously described for the

  15. A Terminal Area Icing Remote Sensing System

    NASA Technical Reports Server (NTRS)

    Reehorst, Andrew L.; Serke, David J.

    2014-01-01

    NASA and the National Center for Atmospheric Research (NCAR) have developed an icing remote sensing technology that has demonstrated skill at detecting and classifying icing hazards in a vertical column above an instrumented ground station. This technology is now being extended to provide volumetric coverage surrounding an airport. With volumetric airport terminal area coverage, the resulting icing hazard information will be usable by aircrews, traffic control, and airline dispatch to make strategic and tactical decisions regarding routing when conditions are conducive to airframe icing. Building on the existing vertical pointing system, the new method for providing volumetric coverage will utilize cloud radar, microwave radiometry, and NEXRAD radar. This terminal area icing remote sensing system will use the data streams from these instruments to provide icing hazard classification along the defined approach paths into an airport. Strategies for comparison to in-situ instruments on aircraft and weather balloons for a planned NASA field test are discussed, as are possible future applications into the NextGen airspace system.

  16. Firn thickness variations across the Northeast Greenland Ice Stream margins indicating nonlinear densification rates

    NASA Astrophysics Data System (ADS)

    Riverman, K. L.; Anandakrishnan, S.; Alley, R. B.; Peters, L. E.; Christianson, K. A.; Muto, A.

    2013-12-01

    Northeast Greenland Ice Stream (NEGIS) is the largest ice stream in Greenland, draining approximately 8.4% of the ice sheet's area. The flow pattern and stability mechanism of this ice stream are unique to others in Greenland and Antarctica, and merit further study to ascertain the sensitivity of this ice stream to future climate change. Geophysical methods are valuable tools for this application, but their results are sensitive to the structure of the firn and any spatial variations in firn properties across a given study region. Here we present firn data from a 40-km-long seismic profile across the upper reaches of NEGIS, collected in the summer of 2012 as part of an integrated ground-based geophysical survey. We find considerable variations in firn thickness that are coincident with the ice stream shear margins, where a thinner firn layer is present within the margins, and a thicker, more uniform firn layer is present elsewhere in our study region. Higher accumulation rates in the marginal surface troughs due to drift-snow trapping can account for some of this increased densification; however, our seismic results also highlight enhanced anisotropy within the firn and upper ice column that is confined to narrow bands within the shear margins. We thus interpret these large firn thickness variations and abrupt changes in anisotropy as indicators of firn densification dependent on the effective stress state as well as the overburden pressure, suggesting that the strain rate increases nonlinearly with stress across the shear margins. A GPS strain grid maintained for three weeks across both margins observed strong side shearing, with rapid stretching and then compression along particle paths, indicating large deviatoric stresses in the margins. This work demonstrates the importance of developing a high-resolution firn densification model when conducting geophysical field work in regions possessing a complex ice flow history; it also motivates the need for a more

  17. CO2 (dry ice) cleaning system

    NASA Technical Reports Server (NTRS)

    Barnett, Donald M.

    1995-01-01

    Tomco Equipment Company has participated in the dry ice (solid carbon dioxide, CO2) cleaning industry for over ten years as a pioneer in the manufacturer of high density, dry ice cleaning pellet production equipment. For over four years Tomco high density pelletizers have been available to the dry ice cleaning industry. Approximately one year ago Tomco introduced the DI-250, a new dry ice blast unit making Tomco a single source supplier for sublimable media, particle blast, cleaning systems. This new blast unit is an all pneumatic, single discharge hose device. It meters the insertion of 1/8 inch diameter (or smaller), high density, dry ice pellets into a high pressure, propellant gas stream. The dry ice and propellant streams are controlled and mixed from the blast cabinet. From there the mixture is transported to the nozzle where the pellets are accelerated to an appropriate blasting velocity. When directed to impact upon a target area, these dry ice pellets have sufficient energy to effectively remove most surface coatings through dry, abrasive contact. The meta-stable, dry ice pellets used for CO2 cleaning, while labeled 'high density,' are less dense than alternate, abrasive, particle blast media. In addition, after contacting the target surface, they return to their equilibrium condition: a superheated gas state. Most currently used grit blasting media are silicon dioxide based, which possess a sharp tetrahedral molecular structure. Silicon dioxide crystal structures will always produce smaller sharp-edged replicas of the original crystal upon fracture. Larger, softer dry ice pellets do not share the same sharp-edged crystalline structures as their non-sublimable counterparts when broken. In fact, upon contact with the target surface, dry ice pellets will plastically deform and break apart. As such, dry ice cleaning is less harmful to sensitive substrates, workers and the environment than chemical or abrasive cleaning systems. Dry ice cleaning system

  18. Implications of 36Cl exposure ages from Skye, northwest Scotland for the timing of ice stream deglaciation and deglacial ice dynamics

    NASA Astrophysics Data System (ADS)

    Small, David; Rinterknecht, Vincent; Austin, William E. N.; Bates, Richard; Benn, Douglas I.; Scourse, James D.; Bourlès, Didier L.; Hibbert, Fiona D.

    2016-10-01

    Geochronological constraints on the deglaciation of former marine based ice streams provide information on the rates and modes by which marine based ice sheets have responded to external forcing factors such as climate change. This paper presents new 36Cl cosmic ray exposure dating from boulders located on two moraines (Glen Brittle and Loch Scavaig) in southern Skye, northwest Scotland. Ages from the Glen Brittle moraines constrain deglaciation of a major marine terminating ice stream, the Barra-Donegal Ice Stream that drained the former British-Irish Ice Sheet, depending on choice of production method and scaling model this occurred 19.9 ± 1.5-17.6 ± 1.3 ka ago. We compare this timing of deglaciation to existing geochronological data and changes in a variety of potential forcing factors constrained through proxy records and numerical models to determine what deglaciation age is most consistent with existing evidence. Another small section of moraine, the Scavaig moraine, is traced offshore through multibeam swath-bathymetry and interpreted as delimiting a later stillstand/readvance stage following ice stream deglaciation. Additional cosmic ray exposure dating from the onshore portion of this moraine indicate that it was deposited 16.3 ± 1.3-15.2 ± 0.9 ka ago. When calculated using the most up-to-date scaling scheme this time of deposition is, within uncertainty, the same as the timing of a widely identified readvance, the Wester Ross Readvance, observed elsewhere in northwest Scotland. This extends the area over which this readvance has potentially occurred, reinforcing the view that it was climatically forced.

  19. Geological control of flow in the Institute and Möller Ice Streams, West Antarctica

    NASA Astrophysics Data System (ADS)

    Jordan, T. A.; Ferraccioli, F.; Ross, N.; Corr, H.; Bingham, R. G.; Rippin, D. M.; Le Brocq, A.; Siegert, M. J.

    2012-12-01

    The conditions at the base of an ice sheet influence its flow, and reflect the ongoing interaction between moving ice and the underlying geology. Critical influences on ice flow include subglacial topography, bed lithology, and geothermal heat flux. These factors are influenced either directly by local geology, or by the regional tectonic setting. Geophysical methods have been used in many parts of Antarctica, such as the Siple Coast, to reveal the role subglacial geology plays in influencing ice flow. Until recently, however, the Institute and Möller Ice Streams, which drain ~20% of the West Antarctic Ice Sheet into the Weddell Sea, were only covered by sparse airborne radar (~50 km line spacing), and reconnaissance aeromagnetic data, limiting our understanding of the geological template for this sector of the West Antarctic Ice Sheet. Here we present our geological interpretation of the first integrated aerogeophysical survey over the catchments of the Institute and Möller Ice Streams, which collected ~25,000 km of new aerogeophysical data during the 2010/11 field season. These new airborne radar, magnetic and gravity data reveals both the subglacial topography, and the subglacial geology. Our maps show the fastest flowing coastal part of the Institute Ice Stream crosses a sedimentary basin underlain by thinned continental crust. Further inland two distinct ice flow provinces are recognised: the Pagano Ice Flow Province, which follows the newly identified, ~75 km wide, sinistral strike-slip Pagano Fault Zone at the boundary between East and West Antarctica; and the Ellsworth Ice Flow Province, which is controlled by the Permo-Triassic structural grain of folded Middle Cambrian-Permian meta-sediments, and Jurassic granitic rocks which form significant subglacial highlands. Our new data highlight the importance of understanding subglacial geology when explaining the complex pattern of ice flow observed in the ice sheet interior.

  20. Geoengineering Outlet Glaciers and Ice Streams

    NASA Astrophysics Data System (ADS)

    Wolovick, Michael

    2017-04-01

    Mass loss from Greenland and Antarctica is highly sensitive to the presence of warm ocean water that drives melting of ice shelves and marine terminated glaciers. This warm water resides offshore at depth and accesses the grounding line through deep but narrow troughs and fjords. Here, we investigate the possibility of blocking warm water transport through these choke points with an artificial sill. Using a simple width-averaged model of ice stream flow coupled to a buoyant-plume model of submarine melt, we find that grounding line retreat and sea level rise can be delayed or reversed for hundreds of years if warm water is prevented from accessing outlet glaciers and ice-shelf cavities. Glaciers with a floating shelf exhibit a strong response to the presence of the artificial sill regardless of our choice of calving law, while tidewater glaciers require a strong linkage between submarine melt and iceberg calving for the artificial sill to have an effect. As a result of this difference and as a result of differing degrees of overdeepening in the basal topography, Antarctica and Greenland present very different societal cost-benefit analyses. Intervention in Greenland would be low-cost and low-reward: the volume of the artificial sill is comparable to existing large public works projects such as the Dubai Islands or the Suez Canal, but the magnitude of averted sea-level rise is small, the success of the intervention depends on the choice of calving law, and the glaciers return to their non-geoengineered trajectories within one to two centuries. Intervention in Antarctica, on the other hand, would be high-cost and high-reward: the volume of the artificial sill is one to two orders of magnitude greater, but the averted sea level rise is much larger, the intervention is successful regardless of the choice of calving law, and the ice streams remain far from their non-geoengineered trajectories throughout the 1000 year duration of our model runs. In both cases, an

  1. Ice stream behaviour in the western sector of the North Sea during the end of the last glacial cycle

    NASA Astrophysics Data System (ADS)

    Roberts, David; Evans, David; Clark, Chris; Bateman, Mark; Livingstone, Stephen; Medialdea, Alicia; Cofaigh, Colm O.; Grimoldi, Elena; Callard, Louise; Dove, Dayton; Stewart, Heather; Davies, Bethan; Chiverell, Richard

    2016-04-01

    During the last glacial cycle the East coast of the UK was overrun by the British-Irish Ice Sheet (BIIS) flowing eastwards and southwards. In recent years it has become evident that several ice streams including the Tweed, Tyne, and Stainmore Gap ice streams, as well as the late stage North Sea Lobe (NSL), all played a role in shaping the glacial landscape during this period, but understanding the flow phasing of these ice streams during advance and collapse has proved challenging. Here we present new data from the seafloor collected during recent work undertaken by the Britice Chrono and Glanam project teams during cruise JC123 in the North Sea. Sub-bottom seafloor data together with new swath data clearly show that the final phases of the collapse of the NSL were controlled by ice sourced from the Firth of Forth ice stream which deglaciated in a NNW trajectory. Other ice streams being fed from the west (e.g. Stainmore, Tyne, Tweed) were not influential in final phase ice retreat from the southern North Sea. The Forth ice imprint is characterised by several grounding zone/till wedges marking dynamic, oscillatory retreat of the ice as it retreated along an offshore corridor between North Yorkshire and Northumberland. Repeated packages of tills, ice marginal and glaciomarine sediments, which drape glacially scoured bedrock terrain and drumlins along this corridor, point to marine inundation accompanying ice retreat. New TCN ages suggest decoupling of the Tyne Gap ice stream and NSL between 17.8 and 16.5 ka and this coincides with rapid, regional collapse of the NSL between 17.2 and 16.0 ka along the Yorkshire and Durham coasts (new OSL ages; Britice Chrono). Hence, both the central and northern sectors of the BIIS were being strongly influenced by marine margin instability during the latter phases of the last glacial cycle.

  2. Active volcanism beneath the West Antarctic ice sheet and implications for ice-sheet stability

    USGS Publications Warehouse

    Blankenship, D.D.; Bell, R.E.; Hodge, S.M.; Brozena, J.M.; Behrendt, John C.; Finn, C.A.

    1993-01-01

    IT is widely understood that the collapse of the West Antarctic ice sheet (WAIS) would cause a global sea level rise of 6 m, yet there continues to be considerable debate about the detailed response of this ice sheet to climate change1-3. Because its bed is grounded well below sea level, the stability of the WAIS may depend on geologically controlled conditions at the base which are independent of climate. In particular, heat supplied to the base of the ice sheet could increase basal melting and thereby trigger ice streaming, by providing the water for a lubricating basal layer of till on which ice streams are thought to slide4,5. Ice streams act to protect the reservoir of slowly moving inland ice from exposure to oceanic degradation, thus enhancing ice-sheet stability. Here we present aerogeophysical evidence for active volcanism and associated elevated heat flow beneath the WAIS near the critical region where ice streaming begins. If this heat flow is indeed controlling ice-stream formation, then penetration of ocean waters inland of the thin hot crust of the active portion of the West Antarctic rift system could lead to the disappearance of ice streams, and possibly trigger a collapse of the inland ice reservoir.

  3. Can Seismic Observations of Bed Conditions on Ice Streams Help Constrain Parameters in Ice Flow Models?

    NASA Astrophysics Data System (ADS)

    Kyrke-Smith, Teresa M.; Gudmundsson, G. Hilmar; Farrell, Patrick E.

    2017-11-01

    We investigate correlations between seismically derived estimates of basal acoustic impedance and basal slipperiness values obtained from a surface-to-bed inversion using a Stokes ice flow model. Using high-resolution measurements along several seismic profiles on Pine Island Glacier (PIG), we find no significant correlation at kilometer scale between acoustic impedance and either retrieved basal slipperiness or basal drag. However, there is a stronger correlation when comparing average values along the individual profiles. We hypothesize that the correlation appears at the length scales over which basal variations are important to large-scale ice sheet flow. Although the seismic technique is sensitive to the material properties of the bed, at present there is no clear way of incorporating high-resolution seismic measurements of bed properties on ice streams into ice flow models. We conclude that more theoretical work needs to be done before constraints on mechanical conditions at the ice-bed interface from acoustic impedance measurements can be of direct use to ice sheet models.

  4. Microbial processes at the beds of glaciers and ice sheets: a look at life below the Whillans Ice Stream

    NASA Astrophysics Data System (ADS)

    Mikucki, J.; Campen, R.; Vancleave, S.; Scherer, R. P.; Coenen, J. J.; Powell, R. D.; Tulaczyk, S. M.

    2017-12-01

    Groundwater, saturated sediments and hundreds of subglacial lakes exist below the ice sheets of Antarctica. The few Antarctic subglacial environments sampled to date all contain viable microorganisms. This is a significant finding because microbes are known to be key in mediating biogeochemical cycles. In sediments, microbial metabolic activity can also result in byproducts or direct interactions with sediment particles that influence the physical and geochemical characteristics of the matrix they inhabit. Subglacial Lake Whillans (SLW), a fresh water lake under the Whillans Ice Stream that drains into the Ross Sea at its grounding zone, was recently sampled as part of the NSF-funded Whillans Ice Stream Subglacial Access Research Drilling (WISSARD) project. Sediments from both SLW and its grounding zone contain microbial taxa related to iron, sulfur, nitrogen and methane oxidizers. In addition to molecular data, biogeochemical measurements and culture based experiments on Whillans sediments support the notion that the system is chemosynthetic with energy derived in part by cycling inorganic compounds. Etch pitting and mineral precipitates on fossil sponge spicules suggest that spicules may also provide microbial nutrients in these environments. Perhaps the most widespread microbial process that affects sediment structure and mineral weathering is the production of extra polymeric substances (EPS). Several phylogenetic groups detected in Whillans sediments are known to produce EPS and we have observed its production in pure cultures enriched directly from these sediments. Our data sheds light on how microbial life persists below the Antarctic Ice Sheet despite extended isolation in icy darkness, and how these microbes may be shaping their environment.

  5. SPOT satellite mapping of Ice Stream B

    NASA Technical Reports Server (NTRS)

    Merry, Carolyn J.

    1993-01-01

    Numerous features of glaciological significance appear on two adjoining SPOT High Resolution Visible (HRV) images that cover the onset region of ice stream B. Many small-scale features, such as crevasses and drift plumes, have been previously observed in aerial photography. Subtle features, such as long flow traces that have not been mapped previously, are also clear in the satellite imagery. Newly discovered features include ladder-like runners and rungs within certain shear margins, flow traces that are parallel to ice flow, unusual crevasse patterns, and flow traces originating within shear margins. An objective of our work is to contribute to an understanding of the genesis of the features observed in satellite imagery. The genetic possibilities for flow traces, other lineations, bands of transverse crevasses, shear margins, mottles, and lumps and warps are described.

  6. Effects of ice and floods on vegetation in streams in cold regions: implications for climate change

    PubMed Central

    Lind, Lovisa; Nilsson, Christer; Weber, Christine

    2014-01-01

    Riparian zones support some of the most dynamic and species-rich plant communities in cold regions. A common conception among plant ecologists is that flooding during the season when plants are dormant generally has little effect on the survival and production of riparian vegetation. We show that winter floods may also be of fundamental importance for the composition of riverine vegetation. We investigated the effects of ice formation on riparian and in-stream vegetation in northern Sweden using a combination of experiments and observations in 25 reaches, spanning a gradient from ice-free to ice-rich reaches. The ice-rich reaches were characterized by high production of frazil and anchor ice. In a couple of experiments, we exposed riparian vegetation to experimentally induced winter flooding, which reduced the dominant dwarf-shrub cover and led to colonization of a species-rich forb-dominated vegetation. In another experiment, natural winter floods caused by anchor-ice formation removed plant mimics both in the in-stream and in the riparian zone, further supporting the result that anchor ice maintains dynamic plant communities. With a warmer winter climate, ice-induced winter floods may first increase in frequency because of more frequent shifts between freezing and thawing during winter, but further warming and shortening of the winter might make them less common than today. If ice-induced winter floods become reduced in number because of a warming climate, an important disturbance agent for riparian and in-stream vegetation will be removed, leading to reduced species richness in streams and rivers in cold regions. Given that such regions are expected to have more plant species in the future because of immigration from the south, the distribution of species richness among habitats can be expected to show novel patterns. PMID:25505542

  7. Effects of ice and floods on vegetation in streams in cold regions: implications for climate change.

    PubMed

    Lind, Lovisa; Nilsson, Christer; Weber, Christine

    2014-11-01

    Riparian zones support some of the most dynamic and species-rich plant communities in cold regions. A common conception among plant ecologists is that flooding during the season when plants are dormant generally has little effect on the survival and production of riparian vegetation. We show that winter floods may also be of fundamental importance for the composition of riverine vegetation. We investigated the effects of ice formation on riparian and in-stream vegetation in northern Sweden using a combination of experiments and observations in 25 reaches, spanning a gradient from ice-free to ice-rich reaches. The ice-rich reaches were characterized by high production of frazil and anchor ice. In a couple of experiments, we exposed riparian vegetation to experimentally induced winter flooding, which reduced the dominant dwarf-shrub cover and led to colonization of a species-rich forb-dominated vegetation. In another experiment, natural winter floods caused by anchor-ice formation removed plant mimics both in the in-stream and in the riparian zone, further supporting the result that anchor ice maintains dynamic plant communities. With a warmer winter climate, ice-induced winter floods may first increase in frequency because of more frequent shifts between freezing and thawing during winter, but further warming and shortening of the winter might make them less common than today. If ice-induced winter floods become reduced in number because of a warming climate, an important disturbance agent for riparian and in-stream vegetation will be removed, leading to reduced species richness in streams and rivers in cold regions. Given that such regions are expected to have more plant species in the future because of immigration from the south, the distribution of species richness among habitats can be expected to show novel patterns.

  8. Tracer gauge: An automated dye dilution gauging system for ice‐affected streams

    USGS Publications Warehouse

    Clow, David W.; Fleming, Andrea C.

    2008-01-01

    In‐stream flow protection programs require accurate, real‐time streamflow data to aid in the protection of aquatic ecosystems during winter base flow periods. In cold regions, however, winter streamflow often can only be estimated because in‐channel ice causes variable backwater conditions and alters the stage‐discharge relation. In this study, an automated dye dilution gauging system, a tracer gauge, was developed for measuring discharge in ice‐affected streams. Rhodamine WT is injected into the stream at a constant rate, and downstream concentrations are measured with a submersible fluorometer. Data loggers control system operations, monitor key variables, and perform discharge calculations. Comparison of discharge from the tracer gauge and from a Cipoletti weir during periods of extensive ice cover indicated that the root‐mean‐square error of the tracer gauge was 0.029 m3 s−1, or 6.3% of average discharge for the study period. The tracer gauge system can provide much more accurate data than is currently available for streams that are strongly ice affected and, thus, could substantially improve management of in‐stream flow protection programs during winter in cold regions. Care must be taken, however, to test for the validity of key assumptions, including complete mixing and conservative behavior of dye, no changes in storage, and no gains or losses of water to or from the stream along the study reach. These assumptions may be tested by measuring flow‐weighted dye concentrations across the stream, performing dye mass balance analyses, and evaluating breakthrough curve behavior.

  9. Tidally induced variations in vertical and horizontal motion on Rutford Ice Stream, West Antarctica, inferred from remotely sensed observations

    NASA Astrophysics Data System (ADS)

    Minchew, B. M.; Simons, M.; Riel, B.; Milillo, P.

    2017-01-01

    To better understand the influence of stress changes over floating ice shelves on grounded ice streams, we develop a Bayesian method for inferring time-dependent 3-D surface velocity fields from synthetic aperture radar (SAR) and optical remote sensing data. Our specific goal is to observe ocean tide-induced variability in vertical ice shelf position and horizontal ice stream flow. Thus, we consider the special case where observed surface displacement at a given location can be defined by a 3-D secular velocity vector, a family of 3-D sinusoidal functions, and a correction to the digital elevation model used to process the SAR data. Using nearly 9 months of SAR data collected from multiple satellite viewing geometries with the COSMO-SkyMed 4-satellite constellation, we infer the spatiotemporal response of Rutford Ice Stream, West Antarctica, to ocean tidal forcing. Consistent with expected tidal uplift, inferred vertical motion over the ice shelf is dominated by semidiurnal and diurnal tidal constituents. Horizontal ice flow variability, on the other hand, occurs primarily at the fortnightly spring-neap tidal period (Msf). We propose that periodic grounding of the ice shelf is the primary mechanism for translating vertical tidal motion into horizontal flow variability, causing ice flow to accelerate first and most strongly over the ice shelf. Flow variations then propagate through the grounded ice stream at a mean rate of ˜29 km/d and decay quasi-linearly with distance over ˜85 km upstream of the grounding zone.

  10. Geological and paleontological results from the WISSARD (Whillans Ice Stream Subglacial Access Research Drilling) Project

    NASA Astrophysics Data System (ADS)

    Scherer, R. P.; Powell, R. D.; Coenen, J. J.; Hodson, T. O.; Puttkammer, R.; Tulaczyk, S. M.

    2015-12-01

    The WISSARD project recovered sediment cores and other geological materials from beneath the Whillans Ice Stream in West Antarctica during two drilling seasons; Subglacial Lake Whillans (SLW) in 2013 and 100km downstream at the ice stream grounding-zone (WGZ) in 2015. SLW is characterized by 2 m of freshwater with a high suspended-sediment load, whereas WGZ has a 10 m column of clear, fully marine water with an active community of marine organisms. Three coring devices were deployed as part of WISSARD, including (1) a multicorer, which recovers 3 unaltered sediment-water interface cores, up to 0.5m, (2) a piston corer, also deployed as a gravity corer, with a 3m core barrel, and (3) a percussion coring system with a 5m core barrel. Sediments recovered from SLW are muddy diamicton with minimal stratification. The sediments are characteristic of active till, not water-column deposition. The till is weak and effective stresses very low, thus till flux from deformation must also be low. Water through flow is sufficient to carry suspended clays and silts, but not transfer large volumes of sediment in the current glaciological regime. Microfossils and geochemical tracers (e.g., biomarkers, 10Be and 14C) in SLW sediments indicate Pleistocene input from open water conditions, plus input and mixing of components derived from older Cenozoic strata. Diatoms and other sedimentary characteristics of SLW are entirely consistent with material previously recovered from upstream sites on the Whillans Ice Stream (UpB), but show evidence of further cumulative subglacial shear strain, suggesting downstream translation as deforming till. Sedimentary components from WGZ indicate significant input from sources other than from the Whillans Ice Stream. Sediment cores include distinct stratigraphic variability, with differing geochemical and sedimentary components indicative of input from changing source beds. Components indicate a mixture of Quaternary and older components. The lower ca

  11. Implications of basal micro-earthquakes and tremor for ice stream mechanics: Stick-slip basal sliding and till erosion

    NASA Astrophysics Data System (ADS)

    Barcheck, C. Grace; Tulaczyk, Slawek; Schwartz, Susan Y.; Walter, Jacob I.; Winberry, J. Paul

    2018-03-01

    The Whillans Ice Plain (WIP) is unique among Antarctic ice streams because it moves by stick-slip. The conditions allowing stick-slip and its importance in controlling ice dynamics remain uncertain. Local basal seismicity previously observed during unstable slip is a clue to the mechanism of ice stream stick-slip and a window into current basal conditions, but the spatial extent and importance of this basal seismicity are unknown. We analyze data from a 2010-2011 ice-plain-wide seismic and GPS network to show that basal micro-seismicity correlates with large-scale patterns in ice stream slip behavior: Basal seismicity is common where the ice moves the least between unstable slip events, with small discrete basal micro-earthquakes happening within 10s of km of the central stick-slip nucleation area and emergent basal tremor occurring downstream of this area. Basal seismicity is largely absent in surrounding areas, where inter-slip creep rates are high. The large seismically active area suggests that a frictional sliding law that can accommodate stick-slip may be appropriate for ice stream beds on regional scales. Variability in seismic behavior over inter-station distances of 1-10 km indicates heterogeneity in local bed conditions and frictional complexity. WIP unstable slips may nucleate when stick-slip basal earthquake patches fail over a large area. We present a conceptual model in which basal seismicity results from slip-weakening frictional failure of over-consolidated till as it is eroded and mobilized into deforming till.

  12. Global ice sheet/RSL simulations using the higher-order Ice Sheet System Model.

    NASA Astrophysics Data System (ADS)

    Larour, E. Y.; Ivins, E. R.; Adhikari, S.; Schlegel, N.; Seroussi, H. L.; Morlighem, M.

    2017-12-01

    Relative sea-level rise is driven by processes that are intimately linked to the evolution ofglacial areas and ice sheets in particular. So far, most Earth System models capable of projecting theevolution of RSL on decadal to centennial time scales have relied on offline interactions between RSL andice sheets. In particular, grounding line and calving front dynamics have not been modeled in a way that istightly coupled with Elasto-Static Adjustment (ESA) and/or Glacial-Isostatic Adjustment (GIA). Here, we presenta new simulation of the entire Earth System in which both Greenland and Antarctica ice sheets are tightly coupledto an RSL model that includes both ESA and GIA at resolutions and time scales compatible with processes suchas grounding line dynamics for Antarctica ice shelves and calving front dynamics for Greenland marine-terminatingglaciers. The simulations rely on the Ice Sheet System Model (ISSM) and show the impact of higher-orderice flow dynamics and coupling feedbacks between ice flow and RSL. We quantify the exact impact of ESA andGIA inclusion on grounding line evolution for large ice shelves such as the Ronne and Ross ice shelves, as well asthe Agasea Embayment ice streams, and demonstate how offline vs online RSL simulations diverge in the long run,and the consequences for predictions of sea-level rise.This work was performed at the California Institute of Technology's Jet Propulsion Laboratory undera contract with the National Aeronautics and Space Administration's Cryosphere Science Program.

  13. Investigation of Controls on Ice Dynamics in Northeast Greenland from Ice-Thickness Change Record Using Ice Sheet System Model (ISSM)

    NASA Astrophysics Data System (ADS)

    Csatho, B. M.; Larour, E. Y.; Schenk, A. F.; Schlegel, N.; Duncan, K.

    2015-12-01

    We present a new, complete ice thickness change reconstruction of the NE sector of the Greenland Ice Sheet for 1978-2014, partitioned into changes due to surface processes and ice dynamics. Elevation changes are computed from all available stereoscopic DEMs, and laser altimetry data (ICESat, ATM, LVIS). Surface Mass Balance and firn-compaction estimates are from RACMO2.3. Originating nearly at the divide of the Greenland Ice Sheet (GrIS), the dynamically active North East Ice Stream (NEGIS) is capable of rapidly transmitting ice-marginal forcing far inland. Thus, NEGIS provides a possible mechanism for a rapid drawdown of ice from the ice sheet interior as marginal warming, thinning and retreat continues. Our altimetry record shows accelerating dynamic thinning of Zachariæ Isstrom, initially limited to the deepest part of the fjord near the calving front (1978-2000) and then extending at least 75 km inland. At the same time, changes over the Nioghalvfjerdsfjorden (N79) Glacier are negligible. We also detect localized large dynamic changes at higher elevations on the ice sheet. These thickness changes, often occurring at the onset of fast flow, could indicate rapid variations of basal lubrication due to rerouting of subglacial drainage. We investigate the possible causes of the observed spatiotemporal pattern of ice sheet elevation changes using the Ice Sheet System Model (ISSM). This work build on our previous studies examining the sensitivity of ice flow within the Northeast Greenland Ice Stream (NEGIS) to key fields, including ice viscosity, basal drag. We assimilate the new altimetry record into ISSM to improve the reconstruction of basal friction and ice viscosity. Finally, airborne geophysical (gravity, magnetic) and ice-penetrating radar data is examined to identify the potential geologic controls on the ice thickness change pattern. Our study provides the first comprehensive reconstruction of ice thickness changes for the entire NEGIS drainage basin during

  14. Glacially-megalineated limestone terrain of Anticosti Island, Gulf of St. Lawrence, Canada; onset zone of the Laurentian Channel Ice Stream

    NASA Astrophysics Data System (ADS)

    Eyles, Nick; Putkinen, Niko

    2014-03-01

    Anticosti is a large elongate island (240 km long, 60 km wide) in eastern Canada within the northern part of a deep water trough (Gulf of St. Lawrence) that terminates at the Atlantic continental shelf edge. The island's Pleistocene glaciological significance is that its long axis lay transverse to ice from the Quebec and Labrador sectors of the Laurentide Ice Sheet moving south from the relatively high-standing Canadian Shield. Recent glaciological reconstructions place a fast-flowing ice stream along the axis of the Gulf of St. Lawrence but supporting geologic evidence in terms of recognizing its hard-bedded onset zone and downstream streamlined soft bed is limited. Anticosti Island consists of gently southward-dipping limestone plains composed of Ordovician and Silurian limestones (Vaureal, Becscie and Jupiter formations) with north-facing escarpments transverse to regional ice flow. Glacial deposits are largely absent and limestone plains in the higher central plateau of the island retain a relict apparently ‘preglacial’ drainage system consisting of deeply-incised dendritic bedrock valleys. In contrast, the bedrock geomorphology of the lower lying western and eastern limestone plains of the island is strikingly different having been extensively modified by glacial erosion. Escarpments are glacially megalineated with a distinct ‘zig-zag’ planform reflecting northward-projecting bullet-shaped ‘noses’ (identified as rock drumlins) up to 2 km wide at their base and 4 km in length with rare megagrooved upper surfaces. Drumlins are separated by southward-closing, funnel-shaped ‘through valleys’ where former dendritic valleys have been extensively altered by the streaming of basal ice through gaps in the escarpments. Glacially-megalineated bedrock terrain such as on the western and eastern flanks of Anticosti Island is elsewhere associated with the hard-bedded onset zones of fast flowing ice streams and provides important ground truth for the

  15. Poro-elastic Properties of Whillan's Ice Stream Till: Implications for Basal Stick-Slip

    NASA Astrophysics Data System (ADS)

    Leeman, J.; Valdez, R. D.; Alley, R. B.; Anandakrishnan, S.; Saffer, D. M.

    2016-12-01

    Whillans ice stream, West Antarctica, flows rapidly from the West Antarctic ice sheet into the Ross Ice Shelf. Regions of highly compacted till, termed sticky-spots, pin the ice in place. Upstream ice flow increases driving stress, until minor changes in buttressing stresses from tides affecting the ice shelf cause the main sticky-spot to fail, triggering diurnal or semidiurnal stick-slip events. The mechanical and hydrological properties of the till partially control the basal conditions, generation and persistence of the sticky spots, and thus the dynamics of the rupture and healing processes. Here we present laboratory tests on core samples of the till beneath Whillan's Ice Stream collected in the 1989-1993 field seasons. Two types of tests were performed on till cores: stepped loading and cyclic loading. In the stepped loading test, the effective stress was increased from 0.1 to 10 MPa in a series of steps, and the permeability measured at each step. Cyclic loading tests consisted of a series of effective stress oscillations with 24 h period lasting 5-10 d each, increasing in amplitude from 20-150 kPa. The permeability was measured after each set of oscillations to investigate the role of cyclic loading in driving enhanced compaction. Compressional wave velocity (Vp) was also measured during both test sequences. We observe sample initial porosities of 30% and permeabilities of 3x10-17 m2. During stepped loading tests, porosity is reduced to 20% and permeability to 8x10-18 m2. Vp ranged from 2.2-2.95 km s-1 and was well fit by an effective medium model. Application of this model to Vp obtained by field seismic surveys is consistent with low ( 50 kPa) effective vertical stresses in the uppermost till. Cyclic loading sequences reduced porosity by 4% and permeability by an order of magnitude. A transient numerical model based on our data shows that over the tidal timescale, a layer of stiffened till 10 cm thick should develop. We suggest that this provides one

  16. Earthquake-induced deformations on ice-stream landforms in Kuusamo, eastern Finnish Lapland

    NASA Astrophysics Data System (ADS)

    Sutinen, Raimo; Hyvönen, Eija; Middleton, Maarit; Airo, Meri-Liisa

    2018-01-01

    Kuusamo in eastern Finnish Lapland is characterized by ice-streamlined landforms as well as clusters of historical and recent earthquakes (Mw < 4). Since recent earthquakes are often found to be located on the traces of postglacial faults (PGFs) within the Fennoscandian shield we postulate that some part of the ice-stream landforms have been deformed by the past earthquakes in Kuusamo. Airborne LiDAR (Light Detection And Ranging) DEMs (digital elevation models) revealed significant numbers of postglacial deformations, such as liquefaction deformations, rotational landslides, earth flows as well as kettle holes (craters), on the fluted surfaces within the Kuusamo ice-stream fan. We found these deformations to be a common feature on the Archean granitoid gneisses and within a 20 km wide and NW-SE oriented corridor between the major intrusives, the Iivaara nepheline syenite and the Näränkävaara gabbro. Of the paleolandslides, liquefaction morphologies were generally developed on the distal slopes (1.3-2.8%; 0.75-1.6°) of the streamlined forms. Sedimentary anisotropy, obtained with azimuthal electrical conductivity (σa; skin depth down to 3-6 m), of the deformed flutes significantly deviated from the non-deformed (clean) ones. The fields of the Pulju moraine, a subglacial landform, formed a grounding zone for the ice-streaming SW of the paleolandslide cluster. We therefore propose that both subglacial and postglacial earthquake-induced landforms are present in Kuusamo. No PGFs could be verified in the Kuusamo area, yet gravity, airborne magnetic, and LiDAR morphological lineaments suggest that the old Paleoproterozoic structures have been reactivated as strike-slip faults, due to the lithospheric plate stresses and glacio-isostatic adjustment (GIA).

  17. Timing, variability and sediment provenance of the Norwegian Channel Ice Stream during the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Becker, L. W. M.; Sejrup, H. P.; Hjelstuen, B. O. B.; Haflidason, H.

    2016-12-01

    The extent of the NW European ice sheet during the Last Glacial Maximum is fairly well constrained to, at least in periods, the shelf edge. However, the exact timing and varying activity of the largest ice stream, the Norwegian Channel Ice Stream (NCIS), remains uncertain. We here present three sediment records, recovered proximal and distal to the upper NW European continental slope. All age models for the cores are constructed in the same way and based solely on 14C dating of planktonic foraminifera. The sand-sized sediments in the discussed cores is believed to be primarily transported by ice rafting. All records suggest ice streaming activity between 25.8 and 18.5 ka BP. However, the core proximal to the mouth of the Norwegian Channel (NC) shows distinct periods of activity and periods of very little coarse sediment input. Out of this there appear to be at least three well-defined periods of ice streaming activity which lasted each for 1.5 to 2 ka, with "pauses" of several hundred years in between. The same core shows a conspicuous variation in several proxies and sediment colour within the first peak of ice stream activity, compared to the second and third peak. The light grey colour of the sediment was earlier attributed to Triassic chalk grains, yet all "chalk" grains are in fact mollusc fragments. The low magnetic susceptibility values, the high Ca, high Sr and low Fe content compared to the other peaks suggests a different provenance for the material of the first peak. We suggest therefore, that the origin of this material is rather the British Irish Ice Sheet (BIIS) and not the Fennoscandian Ice Sheet (FIS). Earlier studies have shown an extent of the BIIS at least to the NC, whereas ice from the FIS likely stayed within the boundaries of the NC. A possible scenario for the different provenance could therefore be the build-up of the BIIS into the NC until it merged with the FIS. At this point the BIIS calved off the shelf edge southwest of the mouth of

  18. Role of stream ice on fall and winter movements and habitat use by bull trout and cutthroat trout in Montana headwater streams

    Treesearch

    Michael J. Jakober; Thomas E. McMahon; Russell F. Thurow; Christopher G. Clancy

    1998-01-01

    We used radiotelemetry and underwater observation to assess fall and winter movements and habitat use by bull trout Salvelinus confluentus and westslope cutthroat trout Oncorhynchus clarki lewisi in two headwater streams in the Bitterroot River drainage, Montana, that varied markedly in habitat availability and stream ice conditions. Bull trout and cutthroat trout made...

  19. Spray System Trials in the Icing Research Tunnel

    NASA Image and Video Library

    1949-09-21

    The spray bar system introduces water droplets into the Icing Research Tunnel’s air stream at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory. The icing tunnel was designed in the early 1940s to study ice accretion on airfoils and models. The Carrier Corporation designed a refrigeration system that reduced temperatures to -45° F. The tunnel’s drive fan generated speeds up to 400 miles per hour. The uniform injection of water droplets to the air was a key element of the facility’s operation. The system had to generate small droplets, distribute them uniformly throughout the airstream, and resist freezing and blockage. The Icing Research Tunnel’s designers struggled to develop a realistic spray system because they did not have access to data on the size of naturally occurring water droplets. For five years a variety of different designs were painstakingly developed and tested before the system was perfected. This photograph shows one of the trials using eight air-atomizing nozzles placed 48 feet upstream from the test section. A multi-cylinder device measured the size, liquid content, and distribution of the water droplets. The final system that was put into operation in 1950 included six horizontal spray bars with 80 nozzles that produced a 4- by 4-foot cloud in the test section. The Icing Research Tunnel produced excellent data throughout the 1950s and provided the basis for a hot air anti-icing system used on many transport aircraft.

  20. High Resolution Continuous Flow Analysis System for Polar Ice Cores

    NASA Astrophysics Data System (ADS)

    Dallmayr, Remi; Azuma, Kumiko; Yamada, Hironobu; Kjær, Helle Astrid; Vallelonga, Paul; Azuma, Nobuhiko; Takata, Morimasa

    2014-05-01

    In the last decades, Continuous Flow Analysis (CFA) technology for ice core analyses has been developed to reconstruct the past changes of the climate system 1), 2). Compared with traditional analyses of discrete samples, a CFA system offers much faster and higher depth resolution analyses. It also generates a decontaminated sample stream without time-consuming sample processing procedure by using the inner area of an ice-core sample.. The CFA system that we have been developing is currently able to continuously measure stable water isotopes 3) and electrolytic conductivity, as well as to collect discrete samples for the both inner and outer areas with variable depth resolutions. Chemistry analyses4) and methane-gas analysis 5) are planned to be added using the continuous water stream system 5). In order to optimize the resolution of the current system with minimal sample volumes necessary for different analyses, our CFA system typically melts an ice core at 1.6 cm/min. Instead of using a wire position encoder with typical 1mm positioning resolution 6), we decided to use a high-accuracy CCD Laser displacement sensor (LKG-G505, Keyence). At the 1.6 cm/min melt rate, the positioning resolution was increased to 0.27mm. Also, the mixing volume that occurs in our open split debubbler is regulated using its weight. The overflow pumping rate is smoothly PID controlled to maintain the weight as low as possible, while keeping a safety buffer of water to avoid air bubbles downstream. To evaluate the system's depth-resolution, we will present the preliminary data of electrolytic conductivity obtained by melting 12 bags of the North Greenland Eemian Ice Drilling (NEEM) ice core. The samples correspond to different climate intervals (Greenland Stadial 21, 22, Greenland Stadial 5, Greenland Interstadial 5, Greenland Interstadial 7, Greenland Stadial 8). We will present results for the Greenland Stadial -8, whose depths and ages are between 1723.7 and 1724.8 meters, and 35.520 to

  1. Continental-scale transport of sediments by the Baltic Ice Stream elucidated by coupled grain size and Nd provenance analyses

    NASA Astrophysics Data System (ADS)

    Boswell, Steven M.; Toucanne, Samuel; Creyts, Timothy T.; Hemming, Sidney R.

    2018-05-01

    We introduce a methodology for determining the transport distance of subglacially comminuted and entrained sediments. We pilot this method on sediments from the terminal margin of the Baltic Ice Stream, the largest ice stream of the Fennoscandian Ice Sheet during the Last Glacial Maximum. A strong correlation (R2 = 0.83) between the εNd and latitudes of circum-Baltic river sediments enables us to use εNd as a calibrated measure of distance. The proportion of subglacially transported sediments in a sample is estimated from grain size ratios in the silt fraction (<63 μm). Coupled εNd and grain size analyses reveal a common erosion source for the Baltic Ice Stream sediments located near the Åland sill, more than 850 km upstream from the terminal moraines. This result is in agreement with both numerical modeling and geomorphological investigations of Fennoscandinavian erosion, and is consistent with rapid ice flow into the Baltic basins prior to the Last Glacial Maximum. The methodology introduced here could be used to infer the distances of glacigenic sediment transport from Late Pleistocene and earlier glaciations.

  2. Efficient meltwater drainage through supraglacial streams and rivers on the southwest Greenland ice sheet.

    PubMed

    Smith, Laurence C; Chu, Vena W; Yang, Kang; Gleason, Colin J; Pitcher, Lincoln H; Rennermalm, Asa K; Legleiter, Carl J; Behar, Alberto E; Overstreet, Brandon T; Moustafa, Samiah E; Tedesco, Marco; Forster, Richard R; LeWinter, Adam L; Finnegan, David C; Sheng, Yongwei; Balog, James

    2015-01-27

    Thermally incised meltwater channels that flow each summer across melt-prone surfaces of the Greenland ice sheet have received little direct study. We use high-resolution WorldView-1/2 satellite mapping and in situ measurements to characterize supraglacial water storage, drainage pattern, and discharge across 6,812 km(2) of southwest Greenland in July 2012, after a record melt event. Efficient surface drainage was routed through 523 high-order stream/river channel networks, all of which terminated in moulins before reaching the ice edge. Low surface water storage (3.6 ± 0.9 cm), negligible impoundment by supraglacial lakes or topographic depressions, and high discharge to moulins (2.54-2.81 cm⋅d(-1)) indicate that the surface drainage system conveyed its own storage volume every <2 d to the bed. Moulin discharges mapped inside ∼52% of the source ice watershed for Isortoq, a major proglacial river, totaled ∼41-98% of observed proglacial discharge, highlighting the importance of supraglacial river drainage to true outflow from the ice edge. However, Isortoq discharges tended lower than runoff simulations from the Modèle Atmosphérique Régional (MAR) regional climate model (0.056-0.112 km(3)⋅d(-1) vs. ∼0.103 km(3)⋅d(-1)), and when integrated over the melt season, totaled just 37-75% of MAR, suggesting nontrivial subglacial water storage even in this melt-prone region of the ice sheet. We conclude that (i) the interior surface of the ice sheet can be efficiently drained under optimal conditions, (ii) that digital elevation models alone cannot fully describe supraglacial drainage and its connection to subglacial systems, and (iii) that predicting outflow from climate models alone, without recognition of subglacial processes, may overestimate true meltwater export from the ice sheet to the ocean.

  3. Efficient meltwater drainage through supraglacial streams and rivers on the southwest Greenland ice sheet

    PubMed Central

    Smith, Laurence C.; Chu, Vena W.; Yang, Kang; Gleason, Colin J.; Pitcher, Lincoln H.; Rennermalm, Asa K.; Legleiter, Carl J.; Behar, Alberto E.; Overstreet, Brandon T.; Moustafa, Samiah E.; Tedesco, Marco; Forster, Richard R.; LeWinter, Adam L.; Finnegan, David C.; Sheng, Yongwei; Balog, James

    2015-01-01

    Thermally incised meltwater channels that flow each summer across melt-prone surfaces of the Greenland ice sheet have received little direct study. We use high-resolution WorldView-1/2 satellite mapping and in situ measurements to characterize supraglacial water storage, drainage pattern, and discharge across 6,812 km2 of southwest Greenland in July 2012, after a record melt event. Efficient surface drainage was routed through 523 high-order stream/river channel networks, all of which terminated in moulins before reaching the ice edge. Low surface water storage (3.6 ± 0.9 cm), negligible impoundment by supraglacial lakes or topographic depressions, and high discharge to moulins (2.54–2.81 cm⋅d−1) indicate that the surface drainage system conveyed its own storage volume every <2 d to the bed. Moulin discharges mapped inside ∼52% of the source ice watershed for Isortoq, a major proglacial river, totaled ∼41–98% of observed proglacial discharge, highlighting the importance of supraglacial river drainage to true outflow from the ice edge. However, Isortoq discharges tended lower than runoff simulations from the Modèle Atmosphérique Régional (MAR) regional climate model (0.056–0.112 km3⋅d−1 vs. ∼0.103 km3⋅d−1), and when integrated over the melt season, totaled just 37–75% of MAR, suggesting nontrivial subglacial water storage even in this melt-prone region of the ice sheet. We conclude that (i) the interior surface of the ice sheet can be efficiently drained under optimal conditions, (ii) that digital elevation models alone cannot fully describe supraglacial drainage and its connection to subglacial systems, and (iii) that predicting outflow from climate models alone, without recognition of subglacial processes, may overestimate true meltwater export from the ice sheet to the ocean. PMID:25583477

  4. The effect of sea ice on the solar energy budget in the astmosphere-sea ice-ocean system: A model study

    NASA Technical Reports Server (NTRS)

    Jin, Z.; Stamnes, Knut; Weeks, W. F.; Tsay, Si-Chee

    1994-01-01

    A coupled one-dimensional multilayer and multistream radiative transfer model has been developed and applied to the study of radiative interactions in the atmosphere, sea ice, and ocean system. The consistent solution of the radiative transfer equation in this coupled system automatically takes into account the refraction and reflection at the air-ice interface and allows flexibility in choice of stream numbers. The solar radiation spectrum (0.25 micron-4.0 micron) is divided into 24 spectral bands to account adequately for gaseous absorption in the atmosphere. The effects of ice property changes, including salinity and density variations, as well as of melt ponds and snow cover variations over the ice on the solar energy distribution in the entire system have been studied quantitatively. The results show that for bare ice it is the scattering, determined by air bubbles and brine pockets, in just a few centimeters of the top layer of ice that plays the most important role in the solar energy absorption and partitioning in the entire system. Ice thickness is important to the energy distribution only when the ice is thin, while the absorption in the atmosphere is not sensitive to ice thickness exceeds about 70 cm. The presence of clouds moderates all the sensitivities of the absorptive amounts in each layer to the variations in the ice properties and ice thickness. Comparisons with observational spectral albedo values for two simple ice types are also presented.

  5. Duality of Ross Ice Shelf systems: crustal boundary, ice sheet processes and ocean circulation from ROSETTA-Ice surveys

    NASA Astrophysics Data System (ADS)

    Tinto, K. J.; Siddoway, C. S.; Padman, L.; Fricker, H. A.; Das, I.; Porter, D. F.; Springer, S. R.; Siegfried, M. R.; Caratori Tontini, F.; Bell, R. E.

    2017-12-01

    ice stream behavior. The crustal boundary governs the interaction between these systems exerts a fundamental control on the stability of the Ross Ice Shelf.

  6. Investigation of land ice-ocean interaction with a fully coupled ice-ocean model: 1. Model description and behavior

    NASA Astrophysics Data System (ADS)

    Goldberg, D. N.; Little, C. M.; Sergienko, O. V.; Gnanadesikan, A.; Hallberg, R.; Oppenheimer, M.

    2012-06-01

    Antarctic ice shelves interact closely with the ocean cavities beneath them, with ice shelf geometry influencing ocean cavity circulation, and heat from the ocean driving changes in the ice shelves, as well as the grounded ice streams that feed them. We present a new coupled model of an ice stream-ice shelf-ocean system that is used to study this interaction. The model is capable of representing a moving grounding line and dynamically responding ocean circulation within the ice shelf cavity. Idealized experiments designed to investigate the response of the coupled system to instantaneous increases in ocean temperature show ice-ocean system responses on multiple timescales. Melt rates and ice shelf basal slopes near the grounding line adjust in 1-2 years, and downstream advection of the resulting ice shelf thinning takes place on decadal timescales. Retreat of the grounding line and adjustment of grounded ice takes place on a much longer timescale, and the system takes several centuries to reach a new steady state. During this slow retreat, and in the absence of either an upward-or downward-sloping bed or long-term trends in ocean heat content, the ice shelf and melt rates maintain a characteristic pattern relative to the grounding line.

  7. Characterizing the Siple Coast Ice Stream System using Satellite Images, Improved Topography, and Integrated Aerogeophysical Measurements

    NASA Technical Reports Server (NTRS)

    Scambos, Ted

    2003-01-01

    A technique for improving elevation maps of the polar ice sheets has been developed using AVHRR images. The technique is based on 'photoclinometry' or 'shape from shading', a technique used in the past for mapping planetary surfaces where little elevation information was available. The fundamental idea behind photoclinometry is using the brightness of imaged areas to infer their surface slope in the sun-illuminated direction. Our version of the method relies on a calibration of the images based on an existing lower-resolution digital elevation model (DEM), and then using the images to improve the input DEM resolution to the scale of the image data. Most current DEMs covering the ice sheets are based on Radar altimetry data, and have an inherent resolution of 10 to 25 km at best - although the grid scale of the DEM is often finer. These DEMs are highly accurate (to less than 1 meter); but they report the mean elevation of a broad area, thus erasing smaller features of glaciological interest. AVHRR image data, when accurately geolocated and calibrated, provides surface slope measurements (based on the pixel brightness under known lighting conditions) every approximately 1.1 km. The limitations of the technique are noisiness in the image data, small variations in the albedo of the snow surface, and the integration technique used to create an elevation field from the image-derived slopes. Our study applied the technique to several ice sheet areas having some elevation data; Greenland, the Amery Ice Shelf, the Institute Ice Stream, and the Siple Coast. For the latter, the input data set was laser-altimetry data collected under NSF's SOAR Facility (Support Office for Aerogeophysical Research) over the onset area of the Siple Coast. Over the course of the grant, the technique was greatly improved and modified, significantly improving accuracy and reducing noise from the images. Several publications resulted from the work, and a follow-on proposal to NASA has been

  8. Irish Ice Sheet dynamics during deglaciation of the central Irish Midlands: Evidence of ice streaming and surging from airborne LiDAR

    NASA Astrophysics Data System (ADS)

    Delaney, Catherine A.; McCarron, Stephen; Davis, Stephen

    2018-04-01

    High resolution digital terrain models (DTMs) generated from airborne LiDAR data and supplemented by field evidence are used to map glacial landform assemblages dating from the last glaciation (Midlandian glaciation; OI stages 2-3) in the central Irish Midlands. The DTMs reveal previously unrecognised low-amplitude landforms, including crevasse-squeeze ridges and mega-scale glacial lineations overprinted by conduit fills leading to ice-marginal subaqueous deposits. We interpret this landform assemblage as evidence for surging behaviour during ice recession. The data indicate that two separate phases of accelerated ice flow were followed by ice sheet stagnation during overall deglaciation. The second surge event was followed by a subglacial outburst flood, forming an intricate esker and crevasse-fill network. The data provide the first clear evidence that ice flow direction was eastward along the eastern watershed of the Shannon River basin, at odds with previous models, and raise the possibility that an ice stream existed in this area. Our work demonstrates the potential for airborne LiDAR surveys to produce detailed paleoglaciological reconstructions and to enhance our understanding of complex palaeo-ice sheet dynamics.

  9. Sedimentary response to ice stream advance and retreat on the Storfjorden Trough Mouth Fan (NW Barents Sea), during Late Weichselian

    NASA Astrophysics Data System (ADS)

    Pedrosa, Mayte; Camerlengui, Angelo; de Mol, Ben; Lucchi, Renata. G.; Úrgeles, Roger; Rebesco, Michele; Winsborrow, Monica; Laberg, Jan. S.; Andreassen, Karin; Accettella, Daniela

    2010-05-01

    This seafloor morphological study of the Storfjorden Trough Mouth Fan (TMF) (offshore Svalbard, NW Barents Sea) is based on new multibeam bathymetry and chirp sub-bottom profiler data acquired in 2007 during the BIO Hespérides cruise SVAIS that provides an unprecedented image of the sedimentary processes that accompanied the last advance and retreat of the Storfjorden Ice Stream. Compared to other glacial-marine sedimentary systems (such as the adjacent Bjørnøyrenna TMF), the Storfjorden TMF system is small and associated to a relatively small terrestrial ice sheet, approximately 40.000 km2, with local provenance from Svalbard and the Spitsbergen Bank. Due to this short distance from the ice source to the calving areas and the resulting short residence time of ice in the ice sheet, therefore the glacio -marine system of the Storfjorden reacts rapidly to climatic changes. The Storfjorden continental slope is characterized by three depositional lobes, produced by focused sedimentation at the terminus of ice streams that have changed their location with time. The superficial morphology features associated to the two northernmost lobes are straight gullies in the upper slope, and debris lobes starting from the midslope onwards. The seafloor expression of the southernmost lobe, adjacent to the much smaller Kveithola TMF, demonstrate almost no gully incisions and is dominated by the widespread occurrence of small-scale submarine landslides. The subbottom profiles illustrate that sediment failures occurred throughout the Late Neogene evolution of the southern Storfjorden and Kveithola margin, including large-scale mass transport deposits of up to 200 m thick. Seismic facies of the Neogene sequence shows an alternation of glacigenic debris flows and laminated sediment drape inferred to be plumites. Gullies incising glacigenic debris flows at the surface and subsurface and are filled by an interglacial drape sequence. The gullies are formed during each deglaciation phase

  10. Ice processes affect habitat use and movements of adult cutthroat trout and brook trout in a Wyoming foothills stream

    USGS Publications Warehouse

    Lindstrom, J.W.; Hubert, W.A.

    2004-01-01

    Habitat use and movements of 25 adult cutthroat trout Oncorhynchus clarkii and 25 adult brook trout Salvelinus fontinalis from fall through winter 2002-2003 were assessed by means of radiotelemetry in a 7-km reach of a Rocky Mountains foothills stream. Temporal dynamics of winter habitat conditions were evaluated by regularly measuring the features of 30 pools and 5 beaver Castor canadensis ponds in the study reach. Groundwater inputs at three locations raised mean daily water temperatures in the stream channel during winter to 0.2-0.6??C and kept at least 250 m of the downstream channel free of ice, but the lack of surface ice further downstream led to the occurrence of frazil ice and anchor ice in pools and unstable habitat conditions for trout. Pools in segments that were not affected by groundwater inputs and beaver ponds tended to be stable and snow accumulated on the surface ice. Pools throughout the study reach tended to become more stable as snow accumulated. Both cutthroat trout and brook trout selected beaver ponds as winter progressed but tended to use lateral scour pools in proportion to their availability. Tagged fish not in beaver ponds selected lateral scour pools that were deeper than average and stable during winter. Movement frequencies by tagged fish decreased from fall through winter, but some individuals of both species moved during winter. Ice processes affected both the habitat use and movement patterns of cutthroat trout and brook trout in this foothills stream.

  11. Ice Stream Slowdown Will Drive Long-Term Thinning of the Ross Ice Shelf, With or Without Ocean Warming

    NASA Astrophysics Data System (ADS)

    Campbell, Adam J.; Hulbe, Christina L.; Lee, Choon-Ki

    2018-01-01

    As time series observations of Antarctic change proliferate, it is imperative that mathematical frameworks through which they are understood keep pace. Here we present a new method of interpreting remotely sensed change using spatial statistics and apply it to the specific case of thickness change on the Ross Ice Shelf. First, a numerical model of ice shelf flow is used together with empirical orthogonal function analysis to generate characteristic patterns of response to specific forcings. Because they are continuous and scalable in space and time, the patterns allow short duration observations to be placed in a longer time series context. Second, focusing only on changes that are statistically significant, the synthetic response surfaces are used to extract magnitude and timing of past events from the observational data. Slowdown of Kamb and Whillans Ice Streams is clearly detectable in remotely sensed thickness change. Moreover, those past events will continue to drive thinning into the future.

  12. High geothermal heat flux in close proximity to the Northeast Greenland Ice Stream.

    PubMed

    Rysgaard, Søren; Bendtsen, Jørgen; Mortensen, John; Sejr, Mikael K

    2018-01-22

    The Greenland ice sheet (GIS) is losing mass at an increasing rate due to surface melt and flow acceleration in outlet glaciers. Currently, there is a large disagreement between observed and simulated ice flow, which may arise from inaccurate parameterization of basal motion, subglacial hydrology or geothermal heat sources. Recently it was suggested that there may be a hidden heat source beneath GIS caused by a higher than expected geothermal heat flux (GHF) from the Earth's interior. Here we present the first direct measurements of GHF from beneath a deep fjord basin in Northeast Greenland. Temperature and salinity time series (2005-2015) in the deep stagnant basin water are used to quantify a GHF of 93 ± 21 mW m -2 which confirm previous indirect estimated values below GIS. A compilation of heat flux recordings from Greenland show the existence of geothermal heat sources beneath GIS and could explain high glacial ice speed areas such as the Northeast Greenland ice stream.

  13. Iceberg Ploughmarks Indicate Past Rapid Iceberg Calving and Retreat of Pine Island-Thwaites Ice Stream due to Marine Ice-Cliff Instability Processes

    NASA Astrophysics Data System (ADS)

    Wise, M.; Dowdeswell, J. A.; Larter, R. D.; Jakobsson, M.

    2016-12-01

    Seafloor ploughmarks provide evidence of past and present iceberg dimensions and drift direction. Today, Pine Island and Thwaites glaciers, which account for 35% of mass loss from the West Antarctic Ice Sheet (WAIS), calve mainly large, tabular icebergs, which, when grounded, produce `toothcomb-like' multi-keeled ploughmarks. High-resolution multi-beam swath bathymetry of the mid-shelf Pine Island Trough and adjacent banks, reveals many linear-curvilinear depressions interpreted as iceberg-keel ploughmarks, the majority of which are single-keeled in form. From measurements of ploughmark planform and cross-sections, we find iceberg calving from the palaeo-Pine Island-Thwaites Ice Stream was not characterised by small numbers of large, tabular icebergs, but instead, by a large number of `smaller' icebergs with v-shaped keels. Geological evidence of ploughmark form and water-depth distribution indicates calving-margin thicknesses ( 950 m) and subaerial ice-cliff elevations ( 100 m) equivalent to the theoretical threshold recently predicted to trigger ice-cliff structural collapse through Marine Ice Cliff Instability (MICI) processes. Significantly, our proposed period of iceberg ploughing predates the early Holocene climate optimum, and likely occurred in an absence of widespread surface melt. We therefore provide the first observational evidence of rapid retreat of the Palaeo-Pine Island-Thwaites ice stream from the crest of a large, mid-shelf sedimentary depocentre or grounding-zone wedge, to a restabilising position 112 km offshore of the December 2013 calving line, driven by MICI processes commencing 12.3 cal. ka BP. We emphasise the effective operation of MICI processes without extensive surface melt and induced hydrofracture, and conclude that such processes are unlikely to be confined to the past, given the steep, retrograde bed-slope which the modern grounding lines of Pine Island and Thwaites Glaciers are approaching, and the absence of any discernible

  14. Data assimilation of surface altimetry on the North-Easter Ice Stream using the Ice Sheet System Model (ISSM)

    NASA Astrophysics Data System (ADS)

    Larour, Eric; Utke, Jean; Morlighem, Mathieu; Seroussi, Helene; Csatho, Beata; Schenk, Anton; Rignot, Eric; Khazendar, Ala

    2014-05-01

    Extensive surface altimetry data has been collected on polar ice sheets over the past decades, following missions such as Envisat and IceSat. This data record will further increase in size with the new CryoSat mission, the ongoing Operation IceBridge Mission and the soon to launch IceSat-2 mission. In order to make the best use of these dataset, ice flow models need to improve on the way they ingest surface altimetry to infer: 1) parameterizations of poorly known physical processes such as basal friction; 2) boundary conditions such as Surface Mass Balance (SMB). Ad-hoc sensitivity studies and adjoint-based inversions have so far been the way ice sheet models have attempted to resolve the impact of 1) on their results. As for boundary conditions or the lack thereof, most studies assume that they are a fixed quantity, which, though prone to large errors from the measurement itself, is not varied according to the simulated results. Here, we propose a method based on automatic differentiation to improve boundary conditions at the base and surface of the ice sheet during a short-term transient run for which surface altimetry observations are available. The method relies on minimizing a cost-function, the best fit between modeled surface evolution and surface altimetry observations, using gradients that are computed for each time step from automatic differentiation of the ISSM (Ice Sheet System Model) code. The approach relies on overloaded operators using the ADOLC (Automatic Differentiation by OverLoading in C++) package. It is applied to the 79 North Glacier, Greenland, for a short term transient spanning a couple of decades before the start of the retreat of the Zachariae Isstrom outlet glacier. Our results show adjustments required on the basal friction and the SMB of the whole basin to best fit surface altimetry observations, along with sensitivities each one of these parameters has on the overall cost function. Our approach presents a pathway towards assimilating

  15. Ice-Shelf Tidal Flexure and Subglacial Pressure Variations

    NASA Technical Reports Server (NTRS)

    Walker, Ryan T.; Parizek, Byron R.; Alley, Richard B.; Anandakrishnan, Sridhar; Riverman, Kiya L.; Christianson, Knut

    2013-01-01

    We develop a model of an ice shelf-ice stream system as a viscoelastic beam partially supported by an elastic foundation. When bed rock near the grounding line acts as a fulcrum, leverage from the ice shelf dropping at low tide can cause significant (approx 1 cm) uplift in the first few kilometers of grounded ice.This uplift and the corresponding depression at high tide lead to basal pressure variations of sufficient magnitude to influence subglacial hydrology.Tidal flexure may thus affect basal lubrication, sediment flow, and till strength, all of which are significant factors in ice-stream dynamics and grounding-line stability. Under certain circumstances, our results suggest the possibility of seawater being drawn into the subglacial water system. The presence of sea water beneath grounded ice would significantly change the radar reflectivity of the grounding zone and complicate the interpretation of grounded versus floating ice based on ice-penetrating radar observations.

  16. Reconstructing the post-LGM decay of the Eurasian Ice Sheets with Ice Sheet Models; data-model comparison and focus on the Storfjorden (Svalbard) ice stream dynamics history

    NASA Astrophysics Data System (ADS)

    Petrini, Michele; Kirchner, Nina; Colleoni, Florence; Camerlenghi, Angelo; Rebesco, Michele; Lucchi, Renata G.; Forte, Emanuele; Colucci, Renato R.

    2017-04-01

    The challenge of reconstructing palaeo-ice sheets past growth and decay represent a critical task to better understand mechanisms of present and future global climate change. Last Glacial Maximum (LGM), and the subsequent deglaciation until Pre-Industrial time (PI) represent an excellent testing ground for numerical Ice Sheet Models (ISMs), due to the abundant data available that can be used in an ISM as boundary conditions, forcings or constraints to test the ISMs results. In our study, we simulate with ISMs the post-LGM decay of the Eurasian Ice Sheets, with a focus on the marine-based Svalbard-Barents Sea-Kara Sea Ice Sheet. In particular, we aim to reconstruct the Storfjorden ice stream dynamics history by comparing the model results with the marine geological data (MSGLs, GZWs, sediment cores analysis) available from the area, e.g., Pedrosa et al. 2011, Rebesco et al. 2011, 2013, Lucchi et al. 2013. Two hybrid SIA/SSA ISMs are employed, GRISLI, Ritz et al. 2001, and PSU, Pollard&DeConto 2012. These models differ mainly in the complexity with which grounding line migration is treated. Climate forcing is interpolated by means of climate indexes between LGM and PI climate. Regional climate indexes are constructed based on the non-accelerated deglaciation transient experiment carried out with CCSM3, Liu et al. 2009. Indexes representative of the climate evolution over Siberia, Svalbard and Scandinavia are employed. The impact of such refined representation as opposed to the common use of the NGRIP δ18O index for transient experiments is analysed. In this study, the ice-ocean interaction is crucial to reconstruct the Storfjorden ice stream dynamics history. To investigate the sensitivity of the ice shelf/stream retreat to ocean temperature, we allow for a space-time variation of basal melting under the ice shelves by testing two-equations implementations based on Martin et al. 2011 forced with simulated ocean temperature and salinity from the TraCE-21ka coupled

  17. Fire beneath the ice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monastersky, R.

    1993-02-13

    A volcano discovered six years ago by researchers Blankenship and Bell under Antarctica poses questions about a potential climatic catastrophe. The researchers claim that the volcano is still active, erupting occasionally and growing. A circular depression on the surface of the ice sheet has ice flowing into it and is used to provide a portrait of the heat source. The volcano is on a critical transition zone within West Antarctica with fast flowing ice streams directly downhill. Work by Blankenship shows that a soft layer of water-logged sediments called till provide the lubricating layer on the underside of the icemore » streams. Volcanos may provide the source of this till. The ice streams buffer the thick interior ice from the ocean and no one know what will happen if the ice streams continue to shorten. These researchers believe their results indicate that the stability of West Antarctica ultimately depends less on the current climate than on the location of heat and sediments under the ice and the legacy of past climatic changes.« less

  18. Reconstructing the last Irish Ice Sheet 2: a geomorphologically-driven model of ice sheet growth, retreat and dynamics

    NASA Astrophysics Data System (ADS)

    Greenwood, Sarah L.; Clark, Chris D.

    2009-12-01

    The ice sheet that once covered Ireland has a long history of investigation. Much prior work focussed on localised evidence-based reconstructions and ice-marginal dynamics and chronologies, with less attention paid to an ice sheet wide view of the first order properties of the ice sheet: centres of mass, ice divide structure, ice flow geometry and behaviour and changes thereof. In this paper we focus on the latter aspect and use our new, countrywide glacial geomorphological mapping of the Irish landscape (>39 000 landforms), and our analysis of the palaeo-glaciological significance of observed landform assemblages (article Part 1), to build an ice sheet reconstruction yielding these fundamental ice sheet properties. We present a seven stage model of ice sheet evolution, from initiation to demise, in the form of palaeo-geographic maps. An early incursion of ice from Scotland likely coalesced with local ice caps and spread in a south-westerly direction 200 km across Ireland. A semi-independent Irish Ice Sheet was then established during ice sheet growth, with a branching ice divide structure whose main axis migrated up to 140 km from the west coast towards the east. Ice stream systems converging on Donegal Bay in the west and funnelling through the North Channel and Irish Sea Basin in the east emerge as major flow components of the maximum stages of glaciation. Ice cover is reconstructed as extending to the continental shelf break. The Irish Ice Sheet became autonomous (i.e. separate from the British Ice Sheet) during deglaciation and fragmented into multiple ice masses, each decaying towards the west. Final sites of demise were likely over the mountains of Donegal, Leitrim and Connemara. Patterns of growth and decay of the ice sheet are shown to be radically different: asynchronous and asymmetric in both spatial and temporal domains. We implicate collapse of the ice stream system in the North Channel - Irish Sea Basin in driving such asymmetry, since rapid

  19. Seafloor Morphology And Sediment Discharge Of The Storfjorden And Kveithola Palaeo-Ice Streams (NW Barents Sea) During The Last Deglaciation

    NASA Astrophysics Data System (ADS)

    Camerlenghi, Angelo; Rebesco, Michele; Pedrosa, Mayte; Demol, Ben; Giulia Lucchi, Renata; Urgeles, Roger; Colmenero-Hidalgo, Elena; Andreassen, Karin; Sverre Laberg, Jan; Winsborrow, Monica

    2010-05-01

    IPY Activity N. 367 focusing on Neogene ice streams and sedimentary processes on high- latitude continental margins (NICE-STREAMS) resulted in two coordinated cruises on the adjacent Storfjorden and Kveithola trough-mouth fans in the NW Barents Sea: SVAIS Cruise of BIO Hespérides, summer 2007, and EGLACOM Cruise of Cruise R/V OGS-Explora, summer 2008. The objectives were to acquire a high-resolution set of bathymetric, seismic and sediment core data in order to decipher the Neogene architectural development of the glacially-dominated NW Barents Sea continental margin in response to natural climate change. The paleo-ice streams drained ice from southern Spitsbergen, Spitsbergen Bank, and Bear Island. The short distance from the ice source to the calving front produced a short residence time of ice, and therefore a rapid response to climatic changes. In the outer trough of southern Storfjorden, lobate moraines superimpose and are cut by very large linear features attributed to mega-iceberg scours. In the adjacent Kveithola trough, a fresh morphology includes mega-scale glacial lineations overprinted by transverse grounding-zone wedges, diagnostic of episodic ice stream retreat. A 15 m thick glacimarine drape suggests an high post-deglaciation sedimentation rate. Preliminary interpretation suggests that the retreat of the Svalbard/Barents Sea Ice Sheet was highly dynamic and that grounded ice persisted on Spitsbergen Bank for some thousands years after the main Barents Sea deglaciation.The Storfjorden continental slope is divided into three wide lobes. Opposite the two northernmost lobes the slope is dominated by straight gullies in the upper part, and deposition of debris lobes on the mid and lower parts. In contrast, the southernmost lobe is characterized by widespread occurrence of submarine landslides. Sediment failure has accompanied the evolution of the southern Storfjorden and Kveithola margin throughout the Late Neogene, with very large mass transport

  20. Receiving and use of streams of monodisperse ice granules for cleaning and deactivation of surfaces

    NASA Astrophysics Data System (ADS)

    Boukharov, A.; Balashov, A.; Timohin, A.; Ivanov, A.; Holin, B.

    2017-11-01

    The most generally useful methods for cleaning and processing of surfaces are the sand-jets and shot blasting jets. Installations of this kind are used for cleaning of corrosion surfaces, the oil-dirt deposits, paint coatings. However the use of these installations follows to high investment and operational expenditure, larger risk of operators disease, the negative affect for a environment. These problems can be solved with the use of new cleaning method through application of mono-disperse (identical by the size and the form) ice granules of 300 - 1000 microns, accelerated by air stream in the nozzle device to the speed of 10 - 100 m/s. In view of the extreme complexity of the receiving such particles by means of cooling and the subsequent freezing of water drops are necessary additional experimental researches. For study of thermal processes of receiving mono-disperse ice granules the experimental installation was created and experiments on deactivation and cleaning of surfaces with pollution of various types are made. Experiments showed that by means of a stream of the accelerated ice granules it is rather successfully possible to delete oil-dirt deposits, outdated paint coats and rust. Besides, efficient deactivation of radioactive surfaces is possible. The coefficient deactivation of γ activity is highest.

  1. Europa Kinetic Ice Penetrator System for Hyper Velocity Instrument Deposition

    NASA Astrophysics Data System (ADS)

    Robinson, Tessa

    Landing of a payload on any celestial body has only used a soft landing system. These systems use retro rockets and atmospheric components to match velocity and then overcome local gravity in order to land on the surface. This is a proposed system for depositing instrumentation on an icy surface at hypervelocity using the properties of different projectiles and ejecta properties that would negate the need for a soft landing system. This system uses two projectiles, a cylinder with inner aerodynamic surfaces and a payload section with a conical nose and aerodynamic surfaces. The cylinder lands first, creates a region of fractured ice, and directs that fractured material into a collimated ejecta stream. The payload travels through the ejecta and lands in the fractured region. The combination of the ejecta stream and the softened target material reduces the impact acceleration to within survivable levels.

  2. Radar Interferometry Detection of Hinge Line Migration on Rutford Ice Stream and Carlson Inlet, Antarctica

    NASA Technical Reports Server (NTRS)

    Rignot, Eric

    1997-01-01

    Satellite synthetic-aperture radar (SAR) Interferometry is employed to map the hinge line, or limit of tidal flexing, of Rutford Ice Stream and Carlson Inlet, Antarctica, and detect its migration between 1992 and 1996. The hinge line is mapped using a model fit from an elastic beam theory.

  3. Ice-Borehole Probe

    NASA Technical Reports Server (NTRS)

    Behar, Alberto; Carsey, Frank; Lane, Arthur; Engelhardt, Herman

    2006-01-01

    An instrumentation system has been developed for studying interactions between a glacier or ice sheet and the underlying rock and/or soil. Prior borehole imaging systems have been used in well-drilling and mineral-exploration applications and for studying relatively thin valley glaciers, but have not been used for studying thick ice sheets like those of Antarctica. The system includes a cylindrical imaging probe that is lowered into a hole that has been bored through the ice to the ice/bedrock interface by use of an established hot-water-jet technique. The images acquired by the cameras yield information on the movement of the ice relative to the bedrock and on visible features of the lower structure of the ice sheet, including ice layers formed at different times, bubbles, and mineralogical inclusions. At the time of reporting the information for this article, the system was just deployed in two boreholes on the Amery ice shelf in East Antarctica and after successful 2000 2001 deployments in 4 boreholes at Ice Stream C, West Antarctica, and in 2002 at Black Rapids Glacier, Alaska. The probe is designed to operate at temperatures from 40 to +40 C and to withstand the cold, wet, high-pressure [130-atm (13.20-MPa)] environment at the bottom of a water-filled borehole in ice as deep as 1.6 km. A current version is being outfitted to service 2.4-km-deep boreholes at the Rutford Ice Stream in West Antarctica. The probe (see figure) contains a sidelooking charge-coupled-device (CCD) camera that generates both a real-time analog video signal and a sequence of still-image data, and contains a digital videotape recorder. The probe also contains a downward-looking CCD analog video camera, plus halogen lamps to illuminate the fields of view of both cameras. The analog video outputs of the cameras are converted to optical signals that are transmitted to a surface station via optical fibers in a cable. Electric power is supplied to the probe through wires in the cable at a

  4. A Microbial Community in Sediments Beneath the Western Antarctic Ice Sheet, Ice Stream C (Kamb)

    NASA Astrophysics Data System (ADS)

    Skidmore, M.; Han, S.; Foo, W.; Bui, D.; Lanoil, B.

    2004-12-01

    In 2000, an ice-drilling project focusing on the "sticky spot" of Ice Stream C recovered cores of sub-glacial sediments from beneath the Western Antarctic Ice Sheet. We have characterized several chemical and microbiological parameters of the sole intact sediment core. Pore waters extracted from these sediments were brackish and some were supersaturated with respect to calcite. Ion chromatography demonstrated the presence of several organic acids at low, but detectable, levels in the pore water. DAPI direct cell counts were approximately 107 cells g-1. Aerobic viable plate counts were much lower than direct cell counts; however, they were two orders of magnitude higher on plates incubated at low temperature (4 ° C; 3.63 x 105 CFU ml-1) than at higher temperatures (ca. 22° C; 1.5 x 103 CFU ml-1); no colonies were detected on plates incubated anaerobically at either temperature. 16S rDNA clone library analysis indicates extremely limited bacterial diversity in these samples: six phylogenetic clades were detected. The three dominant bacterial phylogenetic clades in the clone libraries (252 clones total) were most closely related to Thiobacillus thioparus (180 clones), Polaromonas vacuolata (34 clones), and Gallionella ferruginea (35 clones) and their relatives; one clone each represented the other three phylogenetic clades (most closely related to Ralstonia pickettii, Lysobacter antibioticus, and Xylella fastidiosa, respectively). These sequences match closely with sequences previously obtained from other subglacial environments in Alaska, Ellesmere Island, Canada and New Zealand. Implications of this microbial community to subglacial chemistry and microbial biogeography will be discussed.

  5. Ice sheet systems and sea level change.

    NASA Astrophysics Data System (ADS)

    Rignot, E. J.

    2015-12-01

    Modern views of ice sheets provided by satellites, airborne surveys, in situ data and paleoclimate records while transformative of glaciology have not fundamentally changed concerns about ice sheet stability and collapse that emerged in the 1970's. Motivated by the desire to learn more about ice sheets using new technologies, we stumbled on an unexplored field of science and witnessed surprising changes before realizing that most were coming too fast, soon and large. Ice sheets are integrant part of the Earth system; they interact vigorously with the atmosphere and the oceans, yet most of this interaction is not part of current global climate models. Since we have never witnessed the collapse of a marine ice sheet, observations and exploration remain critical sentinels. At present, these observations suggest that Antarctica and Greenland have been launched into a path of multi-meter sea level rise caused by rapid climate warming. While the current loss of ice sheet mass to the ocean remains a trickle, every mm of sea level change will take centuries of climate reversal to get back, several major marine-terminating sectors have been pushed out of equilibrium, and ice shelves are irremediably being lost. As glaciers retreat from their salty, warm, oceanic margins, they will melt away and retreat slower, but concerns remain about sea level change from vastly marine-based sectors: 2-m sea level equivalent in Greenland and 23-m in Antarctica. Significant changes affect 2/4 marine-based sectors in Greenland - Jakobshavn Isb. and the northeast stream - with Petermann Gl. not far behind. Major changes have affected the Amundsen Sea sector of West Antarctica since the 1980s. Smaller yet significant changes affect the marine-based Wilkes Land sector of East Antarctica, a reminder that not all marine-based ice is in West Antarctica. Major advances in reducing uncertainties in sea level projections will require massive, interdisciplinary efforts that are not currently in place

  6. Geostatistical Methods For Determination of Roughness, Topography, And Changes of Antarctic Ice Streams From SAR And Radar Altimeter Data

    NASA Technical Reports Server (NTRS)

    Herzfeld, Ute C.

    2002-01-01

    The central objective of this project has been the development of geostatistical methods fro mapping elevation and ice surface characteristics from satellite radar altimeter (RA) and Syntheitc Aperture Radar (SAR) data. The main results are an Atlas of elevation maps of Antarctica, from GEOSAT RA data and an Atlas from ERS-1 RA data, including a total of about 200 maps with 3 km grid resolution. Maps and digital terrain models are applied to monitor and study changes in Antarctic ice streams and glaciers, including Lambert Glacier/Amery Ice Shelf, Mertz and Ninnis Glaciers, Jutulstraumen Glacier, Fimbul Ice Shelf, Slessor Glacier, Williamson Glacier and others.

  7. Looking Into and Through the Ross Ice Shelf - ROSETTA-ICE

    NASA Astrophysics Data System (ADS)

    Bell, R. E.

    2015-12-01

    Our current understanding of the structure and stability of the Ross Ice Shelf is based on satellite studies of the ice surface and the 1970's RIGGS program. The study of the flowlines evident in the MODIS imagery combined with surface geophysics has revealed a complex history with ice streams Mercer, Whillans and Kamb changing velocity over the past 1000 years. Here, we present preliminary IcePod and IceBridge radar data acquired in December 2014 and November 2013 across the Ross Ice Shelf that show clearly, for the first time, the structure of the ice shelf and provide insights into ice-ocean interaction. The three major layers of the ice shelf are (1) the continental meteoric ice layer), ice formed on the grounded ice sheet that entered the ice shelf where ice streams and outlet glaciers crossed the grounding line (2) the locally accumulating meteoric ice layer, ice and snow that forms from snowfall on the floating ice shelf and (3) a basal marine ice layer. The locally accumulating meteoric ice layer contains well-defined internal layers that are generally parallel to the ice surface and thickens away from the grounding line and reaches a maximum thickness of 220m along the line crossing Roosevelt Island. The continental meteoric layer is located below a broad irregular internal reflector, and is characterized by irregular internal layers. These internal layers are often folded, likely a result of deformation as the ice flowed across the grounding line. The basal marine ice layer, up to 50m thick, is best resolved in locations where basal crevasses are present, and appears to thicken along the flow at rates of decimeters per year. Each individual flowband of the ice shelf contains layers that are distinct in their structure. For example, the thickness of the locally accumulated layer is a function of both the time since crossing the grounding line and the thickness of the incoming ice. Features in the meteoric ice, such as distinct folds, can be traced between

  8. New age constraints for the Saalian glaciation in northern central Europe: Implications for the extent of ice sheets and related proglacial lake systems

    NASA Astrophysics Data System (ADS)

    Lang, Jörg; Lauer, Tobias; Winsemann, Jutta

    2018-01-01

    A comprehensive palaeogeographic reconstruction of ice sheets and related proglacial lake systems for the older Saalian glaciation in northern central Europe is presented, which is based on the integration of palaeo-ice flow data, till provenance, facies analysis, geomorphology and new luminescence ages of ice-marginal deposits. Three major ice advances with different ice-advance directions and source areas are indicated by palaeo-ice flow directions and till provenance. The first ice advance was characterised by a southwards directed ice flow and a dominance of clasts derived from southern Sweden. The second ice advance was initially characterised by an ice flow towards the southwest. Clasts are mainly derived from southern and central Sweden. The latest stage in the study area (third ice advance) was characterised by ice streaming (Hondsrug ice stream) in the west and a re-advance in the east. Clasts of this stage are mainly derived from eastern Fennoscandia. Numerical ages for the first ice advance are sparse, but may indicate a correlation with MIS 8 or early MIS 6. New pIRIR290 luminescence ages of ice-marginal deposits attributed to the second ice advance range from 175 ± 10 to 156 ± 24 ka and correlate with MIS 6. The ice sheets repeatedly blocked the main river-drainage pathways and led to the formation of extensive ice-dammed lakes. The formation of proglacial lakes was mainly controlled by ice-damming of river valleys and major bedrock spillways; therefore the lake levels and extends were very similar throughout the repeated ice advances. During deglaciation the lakes commonly increased in size and eventually drained successively towards the west and northwest into the Lower Rhine Embayment and the North Sea. Catastrophic lake-drainage events occurred when large overspill channels were suddenly opened. Ice-streaming at the end of the older Saalian glaciation was probably triggered by major lake-drainage events.

  9. Dynamic-Type Ice Thermal Storage Systems

    NASA Astrophysics Data System (ADS)

    Ohira, Akiyoshi

    This paper deals with reviews for research and development of a dynamic-type ice thermal storage system. This system has three main features. First, the ice thermal storage tank and the ice generator are separate. Second, ice is transported to the tank from the ice generator by water or air. Third, the ice making and melting processes are operated at the same time. Outlet water temperature from the dynamic-type ice thermal storage tank remains low for a longer time. In this paper, dynamic-Type ice thermal storage systems are divided into three parts: the ice making part, the ice transport part, and the cold energy release part. Each part is reviewed separately.

  10. The wide-spread presence of rib-like patterns in basal shear of ice streams detected by surface data inversion

    NASA Astrophysics Data System (ADS)

    Sergienko, O. V.

    2013-12-01

    The direct observations of the basal conditions under continental-scale ice sheets are logistically impossible. A possible approach to estimate conditions at the ice - bed interface is from surface observations by means of inverse methods. The recent advances in remote and ground-based observations have allowed to acquire a wealth observations from Greenland and Antarctic ice sheets. Using high-resolution data sets of ice surface and bed elevations and surface velocities, inversions for basal conditions have been performed for several ice streams in Greenland and Antarctica. The inversion results reveal the wide-spread presence of rib-like spatial structures in basal shear. The analysis of the hydraulic potential distribution shows that these rib-like structures co-locate with highs of the gradient of hydraulic potential. This suggests that subglacial water plays a role in the development and evolution of the basal shear ribs.

  11. The Patterned Topography of Ice Stream Beds; Insight from the Spatial Frequency of Mega-Scale Glacial Lineations

    NASA Astrophysics Data System (ADS)

    Spagnolo, M.; Bartholomaus, T. C.; Clark, C.; Stokes, C.; Atkinson, N.; Dowdeswell, J. A.; Ely, J.; Graham, A. G. C.; Hogan, K.; King, E. C.; Livingstone, S. J.; Pritchard, H. D.

    2016-12-01

    The formation of Mega-Scale Glacial Lineations (MSGLs), key to the understanding of how fast flowing ice streams interact with, and are controlled by, their beds is unresolved. Here we present a contribution to this debate based on a technique applied for the first time to these subglacial landscapes. 2D Fourier spectra were obtained from 22 datasets extracted from various offshore and terrestrial settings in Antarctica and Canada, including 11 samples from ice stream beds rich in MSGLs, both palaeo and extant, as well as terrains characterised by iceberg furrows, shelf-break canyons, streamlined bedrock, crag-and-tails and fluvial landforms. The Fourier analyses produces amplitude vs. wavelength plots for all possible orientations across all sampled datasets, thus allowing us to quantify which wavelengths are dominant and how strong their Fourier signal is. Uniquely amongst all other analysed terrains, MSGLs are characterised by amplitudes that are generally low along most orientations, but much higher than average along the consistent orientation of the landform's long axis. This is especially evident within a range of wavelengths between 300 and 1100 m, where a few dominant wavelengths show much higher amplitudes than all others. This distinct spectral signature could serve as a guide for models of ice stream flow and landscape evolution and allow for the automatic identification of MSGLs. The small number of dominant wavelengths also indicates that MSGLs represent a patterned topography in the sense that they are characterised by a regular lateral spacing and should be considered as a spatially self-organised phenomenon. Taken together, these results support the idea that some form(s) of instability is a key ingredient in the formation of the MSGLs.

  12. Aerogeophysical evidence for active volcanism beneath the West Antarctic Ice Sheet

    NASA Technical Reports Server (NTRS)

    Blankenship, Donald D.; Bell, Robin E.; Hodge, Steven M.; Brozena, John M.; Behrendt, John C.

    1993-01-01

    Although it is widely understood that the collapse of the West Antarctic Ice Sheet (WAIS) would cause a global sea-level rise of 6 m, there continues to be considerable debate about the response of this ice sheet to climate change. The stability of the WAIS, which is characterized by a bed grounded well below sea level, may depend on geologically controlled conditions at the base, which are independent of climate. Ice streams moving up to 750 m/yr disperse material from the interior through to the oceans. As these ice streams tend to buffer the reservoir of slow-moving inland ice from exposure to oceanic degradation, understanding the ice-streaming process is important for evaluating WAIS stability. There is strong evidence that ice streams slide on a lubricating layer of water-saturated till. Development of this basal layer requires both water and easily eroded sediments. Active lithospheric extension may elevate regional heat flux, increase basal melting, and trigger ice streaming. If a geologically defined boundary with a sharp contrast in geothermal flux exists beneath the WAIS, ice streams may only be capable of operating as a buffer over a restricted region. Should ocean waters penetrate beyond this boundary, the ice-stream buffer would disappear, possibly triggering a collapse of the inland ice reservoir. Aerogeophysical evidence for active volcanism and elevated heat flux beneath the WAIS near the critical region where ice streaming begins is presented.

  13. Preliminary Findings of Inflight Icing Field Test to Support Icing Remote Sensing Technology Assessment

    NASA Technical Reports Server (NTRS)

    King, Michael; Reehorst, Andrew; Serke, Dave

    2015-01-01

    NASA and the National Center for Atmospheric Research have developed an icing remote sensing technology that has demonstrated skill at detecting and classifying icing hazards in a vertical column above an instrumented ground station. This technology has recently been extended to provide volumetric coverage surrounding an airport. Building on the existing vertical pointing system, the new method for providing volumetric coverage will utilize a vertical pointing cloud radar, a multifrequency microwave radiometer with azimuth and elevation pointing, and a NEXRAD radar. The new terminal area icing remote sensing system processes the data streams from these instruments to derive temperature, liquid water content, and cloud droplet size for each examined point in space. These data are then combined to ultimately provide icing hazard classification along defined approach paths into an airport.

  14. The geomorphic signature of past ice sheets in the marine record

    NASA Astrophysics Data System (ADS)

    Dowdeswell, J. A.

    2016-12-01

    The deglaciation of high-latitude continental shelves since the Last Glacial Maximum has revealed suites of subglacial and ice-contact landforms that have remained well-preserved beneath tens to hundreds of metres of water. Once ice has retreated, sedimentation is generally low on polar shelves during interglacials and the submarine landforms have not, therefore, been buried by subsequent sedimentation. By contrast, the beds of modern ice sheets are hidden by several thousand metres of ice, which is much more difficult than water to penetrate using geophysical methods. These submarine glacial landforms provide insights into past ice-sheet form and flow, and information on the processes that have taken place beneath former ice sheets. Examples will be shown of streamlined subglacial landforms that indicate the distribution and dimensions of former ice streams on high-latitde continental margins. Distinctive landform assemblages characterise ice stream and inter-ice stream areas. Landforms, including subglacially formed channel systems in inner- and mid-shelf areas, and the lack of them on sedimentary outer shelves, allow inferences to be made about subglacial hydrology. The distribution of grounding-zone wedges and other transverse moraine ridges also provides evidence on the nature of ice-sheet retreat - whether by rapid collapse, episodic retreat or by the slow retreat of grounded ice. Such information can be used to test the predictive capability of ice-sheet numerical models. These marine geophysical and geological observations of submarine glacial landforms enhance our understanding of the form and flow of past ice masses at scales ranging from ice sheets (1000s of km in flow-line and margin length), through ice streams (100s of km long), to surge-type glaciers (10s of km long).

  15. ISSM: Ice Sheet System Model

    NASA Technical Reports Server (NTRS)

    Larour, Eric; Schiermeier, John E.; Seroussi, Helene; Morlinghem, Mathieu

    2013-01-01

    In order to have the capability to use satellite data from its own missions to inform future sea-level rise projections, JPL needed a full-fledged ice-sheet/iceshelf flow model, capable of modeling the mass balance of Antarctica and Greenland into the near future. ISSM was developed with such a goal in mind, as a massively parallelized, multi-purpose finite-element framework dedicated to ice-sheet modeling. ISSM features unstructured meshes (Tria in 2D, and Penta in 3D) along with corresponding finite elements for both types of meshes. Each finite element can carry out diagnostic, prognostic, transient, thermal 3D, surface, and bed slope simulations. Anisotropic meshing enables adaptation of meshes to a certain metric, and the 2D Shelfy-Stream, 3D Blatter/Pattyn, and 3D Full-Stokes formulations capture the bulk of the ice-flow physics. These elements can be coupled together, based on the Arlequin method, so that on a large scale model such as Antarctica, each type of finite element is used in the most efficient manner. For each finite element referenced above, ISSM implements an adjoint. This adjoint can be used to carry out model inversions of unknown model parameters, typically ice rheology and basal drag at the ice/bedrock interface, using a metric such as the observed InSAR surface velocity. This data assimilation capability is crucial to allow spinning up of ice flow models using available satellite data. ISSM relies on the PETSc library for its vectors, matrices, and solvers. This allows ISSM to run efficiently on any parallel platform, whether shared or distrib- ISSM: Ice Sheet System Model NASA's Jet Propulsion Laboratory, Pasadena, California uted. It can run on the largest clusters, and is fully scalable. This allows ISSM to tackle models the size of continents. ISSM is embedded into MATLAB and Python, both open scientific platforms. This improves its outreach within the science community. It is entirely written in C/C++, which gives it flexibility in its

  16. The response of grounded ice to ocean temperature forcing in a coupled ice sheet-ice shelf-ocean cavity model

    NASA Astrophysics Data System (ADS)

    Goldberg, D. N.; Little, C. M.; Sergienko, O. V.; Gnanadesikan, A.

    2010-12-01

    Ice shelves provide a pathway for the heat content of the ocean to influence continental ice sheets. Changes in the rate or location of basal melting can alter their geometry and effect changes in stress conditions at the grounding line, leading to a grounded ice response. Recent observations of ice streams and ice shelves in the Amundsen Sea sector of West Antarctica have been consistent with this story. On the other hand, ice dynamics in the grounding zone control flux into the shelf and thus ice shelf geometry, which has a strong influence on the circulation in the cavity beneath the shelf. Thus the coupling between the two systems, ocean and ice sheet-ice shelf, can be quite strong. We examine the response of the ice sheet-ice shelf-ocean cavity system to changes in ocean temperature using a recently developed coupled model. The coupled model consists a 3-D ocean model (GFDL's Generalized Ocean Layered Dynamics model, or GOLD) to a two-dimensional ice sheet-ice shelf model (Goldberg et al, 2009), and allows for changing cavity geometry and a migrating grounding line. Steady states of the coupled system are found even under considerable forcing. The ice shelf morphology and basal melt rate patterns of the steady states exhibit detailed structure, and furthermore seem to be unique and robust. The relationship between temperature forcing and area-averaged melt rate is influenced by the response of ice shelf morphology to thermal forcing, and is found to be sublinear in the range of forcing considered. However, results suggest that area-averaged melt rate is not the best predictor of overall system response, as grounding line stability depends on local aspects of the basal melt field. Goldberg, D N, D M Holland and C G Schoof, 2009. Grounding line movement and ice shelf buttressing in marine ice sheets, Journal of Geophysical Research-Earth Surfaces, 114, F04026.

  17. Timing of the Northern Prince Gustav Ice Stream retreat and the deglaciation of northern James Ross Island, Antarctic Peninsula during the last glacial-interglacial transition

    NASA Astrophysics Data System (ADS)

    Nývlt, Daniel; Braucher, Régis; Engel, Zbyněk; Mlčoch, Bedřich

    2014-09-01

    The Northern Prince Gustav Ice Stream located in Prince Gustav Channel, drained the northeastern portion of the Antarctic Peninsula Ice Sheet during the last glacial maximum. Here we present a chronology of its retreat based on in situ produced cosmogenic 10Be from erratic boulders at Cape Lachman, northern James Ross Island. Schmidt hammer testing was adopted to assess the weathering state of erratic boulders in order to better interpret excess cosmogenic 10Be from cumulative periods of pre-exposure or earlier release from the glacier. The weighted mean exposure age of five boulders based on Schmidt hammer data is 12.9 ± 1.2 ka representing the beginning of the deglaciation of lower-lying areas (< 60 m a.s.l.) of the northern James Ross Island, when Northern Prince Gustav Ice Stream split from the remaining James Ross Island ice cover. This age represents the minimum age of the transition from grounded ice stream to floating ice shelf in the middle continental shelf areas of the northern Prince Gustav Channel. The remaining ice cover located at higher elevations of northern James Ross Island retreated during the early Holocene due to gradual decay of terrestrial ice and increase of equilibrium line altitude. Schmidt hammer R-values are inversely correlated with 10Be exposure ages and could be used as a proxy for exposure history of individual granite boulders in this region and favour the hypothesis of earlier release of boulders with excessive 10Be concentrations from glacier directly at this site. These data provide evidences for an earlier deglaciation of northern James Ross Island when compared with other recently presented cosmogenic nuclide based deglaciation chronologies, but this timing coincides with rapid increase of atmospheric temperature in this marginal part of Antarctica.

  18. Comparison of glacial and non-glacial-fed streams to evaluate the loading of persistent organic pollutants through seasonal snow/ice melt.

    PubMed

    Bizzotto, E C; Villa, S; Vaj, C; Vighi, M

    2009-02-01

    The release of persistent organic pollutants (PCBs, HCB, HCHs and DDTs) accumulated in Alpine glaciers, was studied during spring-summer 2006 on the Frodolfo glacial-fed stream (Italian Alps). Samples were also taken on a non-glacial stream in the same valley, to compare POP contribution from different water sources (glacier ice, recent snow and spring). In late spring and early summer (May, June) recent snow melting is the most important process. POP contamination is more affected by local emissions and transport, and comparable levels have been measured in both streams for all studied compounds. In late summer and autumn (July-October), the contribution of ice melting strongly increases. In the glacial-fed stream the concentration of chlorinated pesticides (HCHs and DDTs) is about one order of magnitude higher than in the non-glacial-fed. A different behaviour was observed for PCBs, characterised by a peak in June showing, in both streams, concentrations three orders of magnitude higher than the background levels measured in May and in October. This result should be attributed to local emissions rather than long range atmospheric transport (LRAT). This hypothesis is supported by the PCB congener profile in June strictly comparable to the most commonly used Aroclor technical mixtures. The different seasonal behaviour observed for the different groups of chemicals indicates the POP loading in glacial streams is a combined role of long range atmospheric transport and local emission.

  19. IceVal DatAssistant: An Interactive, Automated Icing Data Management System

    NASA Technical Reports Server (NTRS)

    Levinson, Laurie H.; Wright, William B.

    2008-01-01

    As with any scientific endeavor, the foundation of icing research at the NASA Glenn Research Center (GRC) is the data acquired during experimental testing. In the case of the GRC Icing Branch, an important part of this data consists of ice tracings taken following tests carried out in the GRC Icing Research Tunnel (IRT), as well as the associated operational and environmental conditions documented during these tests. Over the years, the large number of experimental runs completed has served to emphasize the need for a consistent strategy for managing this data. To address the situation, the Icing Branch has recently elected to implement the IceVal DatAssistant automated data management system. With the release of this system, all publicly available IRT-generated experimental ice shapes with complete and verifiable conditions have now been compiled into one electronically-searchable database. Simulation software results for the equivalent conditions, generated using the latest version of the LEWICE ice shape prediction code, are likewise included and are linked to the corresponding experimental runs. In addition to this comprehensive database, the IceVal system also includes a graphically-oriented database access utility, which provides reliable and easy access to all data contained in the database. In this paper, the issues surrounding historical icing data management practices are discussed, as well as the anticipated benefits to be achieved as a result of migrating to the new system. A detailed description of the software system features and database content is also provided; and, finally, known issues and plans for future work are presented.

  20. IceVal DatAssistant: An Interactive, Automated Icing Data Management System

    NASA Technical Reports Server (NTRS)

    Levinson, Laurie H.; Wright, William B.

    2008-01-01

    As with any scientific endeavor, the foundation of icing research at the NASA Glenn Research Center (GRC) is the data acquired during experimental testing. In the case of the GRC Icing Branch, an important part of this data consists of ice tracings taken following tests carried out in the GRC Icing Research Tunnel (IRT), as well as the associated operational and environmental conditions during those tests. Over the years, the large number of experimental runs completed has served to emphasize the need for a consistent strategy to manage the resulting data. To address this situation, the Icing Branch has recently elected to implement the IceVal DatAssistant automated data management system. With the release of this system, all publicly available IRT-generated experimental ice shapes with complete and verifiable conditions have now been compiled into one electronically-searchable database; and simulation software results for the equivalent conditions, generated using the latest version of the LEWICE ice shape prediction code, are likewise included and linked to the corresponding experimental runs. In addition to this comprehensive database, the IceVal system also includes a graphically-oriented database access utility, which provides reliable and easy access to all data contained in the database. In this paper, the issues surrounding historical icing data management practices are discussed, as well as the anticipated benefits to be achieved as a result of migrating to the new system. A detailed description of the software system features and database content is also provided; and, finally, known issues and plans for future work are presented.

  1. Deglaciation of the Western Margin of the Barents Sea Ice Sheet - a Swath Bathymetric and Sub-Bottom Seismic Study from Eglacom Nice-Streams Data in the Kveithola Trough

    NASA Astrophysics Data System (ADS)

    Rebesco, M.; Liu, Y.; Camerlenghi, A.; Winsborrow, M. C.; Laberg, J.; Caburlotto, A.; Diviacco, P.; Accettella, D.; Sauli, C.; Wardell, N.

    2010-12-01

    IPY Activity N. 367 focusing on Neogene ice streams and sedimentary processes on high- latitude continental margins (NICE-STREAMS) resulted in two coordinated cruises on the adjacent Storfjorden and Kveithola trough-mouth fans in the NW Barents Sea: SVAIS Cruise of BIO Hespérides, summer 2007, and EGLACOM Cruise of Cruise R/V OGS-Explora, summer 2008. The objectives were to acquire a high-resolution set of bathymetric, seismic and sediment core data in order to decipher the Neogene architectural development of the glacially-dominated NW Barents Sea continental margin in response to natural climate change. The paleo-ice streams drained ice from southern Spitsbergen, Spitsbergen Bank, and Bear Island. The short distance from the ice source to the calving front produced a short residence time of ice, and therefore a rapid response to climatic changes. We describe here the EGLACOM data collected within the Kveithola Trough, an E-W trending glacial trough in the NW Barents Sea, NW of the Bear Island. Swath bathymetry shows that the seafloor is characterised by E-W trending mega-scale glacial lineations (MSGL) that record a fast flowing ice stream draining the Svalbard/Barents Sea Ice Sheet (SBIS) during the Last Glacial Maximum (LGM). MSGL are overprinted by transverse sediment ridges about 15 km apart which give rise to a staircase axial profile of the trough. Such transverse ridges are interpreted as grounding-zone wedges (GZW) formed by deposition of unconsolidated, saturated subglacial till during episodic ice stream retreat. Sub-bottom (CHIRP) and multi-channel reflection seismic data show that present-day morphology is largely inherited from the palaeo-seafloor topography at the time of deposition of the transverse ridges, overlain by a draping glaciomarine unit up to over 15 m thick. Our data allow the reconstruction of depositional processes that accompanied the deglaciation of the Spitsbergen Bank area. The sedimentary drape deposited on top of the GZWs which

  2. Aerodynamic heating and the deflection of drops by an obstacle in an air stream in relation to aircraft icing

    NASA Technical Reports Server (NTRS)

    Kantrowitz, Arthur

    1940-01-01

    Two topics of interest to persons attempting to apply the heat method of preventing ice formation on aircraft are considered. Surfaces moving through air at high speed are shown, both theoretically and experimentally, to be subject to important aerodynamic heating effects that will materially reduce the heat required to prevent ice. Numerical calculations of the path of water drops in an air stream around a circular cylinder are given. From these calculations, information is obtained on the percentage of the swept area cleared of drops.

  3. Post-LGM Grounding-Line Positions of the Bindschadler Paleo Ice Stream in the Ross Sea Embayment, Antarctica

    NASA Astrophysics Data System (ADS)

    Bart, Philip J.; Anderson, John B.; Nitsche, Frank

    2017-10-01

    The West Antarctic Ice Sheet (WAIS) retreated more than 1,000 km since last grounding at the Ross Sea outer continental shelf. Here we show an interpretation of former grounding line positions from a new large-area multibeam survey and a regional grid of chirp cross-sectional data from the Whales Deep Basin in eastern Ross Sea. The basin is a paleo-glacial trough that was occupied by the Bindschadler Ice Stream when grounded ice advanced to the shelf edge during the Last Glacial Maximum. These new geophysical data provide unambiguous evidence that the WAIS occupied at least seven grounding line positions within 60 km of the shelf edge. Four of seven grounding zone wedges (GZWs) are partly exposed over large areas of the trough. The overlapping stratal arrangement created a large-volume compound GZW. Some of the groundings involved local readvance of the grounding line. Subsequent to these seven outer continental shelf groundings, the ice sheet retreated more than 200 km towards Roosevelt Island on the middle continental shelf. The major retreat across the middle continental shelf is recorded by small-scale moraine ridges that mantle the top of GZW7, and these are suggestive of relatively continuous grounding line recession. The results indicate that retreat was considerably more complex than was possible to reconstruct with reconnaissance-level data. The added details are important to climate models, which must first be able to reproduce the recent retreat pattern in all of its complexities to improve confidence in model predictions of the system's future response.

  4. Fuel-cell engine stream conditioning system

    DOEpatents

    DuBose, Ronald Arthur

    2002-01-01

    A stream conditioning system for a fuel cell gas management system or fuel cell engine. The stream conditioning system manages species potential in at least one fuel cell reactant stream. A species transfer device is located in the path of at least one reactant stream of a fuel cell's inlet or outlet, which transfer device conditions that stream to improve the efficiency of the fuel cell. The species transfer device incorporates an exchange media and a sorbent. The fuel cell gas management system can include a cathode loop with the stream conditioning system transferring latent and sensible heat from an exhaust stream to the cathode inlet stream of the fuel cell; an anode humidity retention system for maintaining the total enthalpy of the anode stream exiting the fuel cell related to the total enthalpy of the anode inlet stream; and a cooling water management system having segregated deionized water and cooling water loops interconnected by means of a brazed plate heat exchanger.

  5. Road icing forecasting and detecting system

    NASA Astrophysics Data System (ADS)

    Xu, Hongke; Zheng, Jinnan; Li, Peiqi; Wang, Qiucai

    2017-05-01

    Regard for the facts that the low accuracy and low real-time of the artificial observation to determine the road icing condition, and it is difficult to forecast icing situation, according to the main factors influencing the road-icing, and the electrical characteristics reflected by the pavement ice layer, this paper presents an innovative system, that is, ice-forecasting of the highway's dangerous section. The system bases on road surface water salinity measurements and pavement temperature measurement to calculate the freezing point of water and temperature change trend, and then predicts the occurrence time of road icing; using capacitance measurements to verdict the road surface is frozen or not; This paper expounds the method of using single chip microcomputer as the core of the control system and described the business process of the system.

  6. Observed ices in the Solar System

    USGS Publications Warehouse

    Clark, Roger N.; Grundy, Will; Carlson, Robert R.; Noll, Keith; Gudipati, Murthy; Castillo-Rogez, Julie C.

    2013-01-01

    Ices have been detected and mapped on the Earth and all planets and/or their satellites further from the sun. Water ice is the most common frozen volatile observed and is also unambiguously detected or inferred in every planet and/or their moon(s) except Venus. Carbon dioxide is also extensively found in all systems beyond the Earth except Pluto although it sometimes appears to be trapped rather than as an ice on some objects. The largest deposits of carbon dioxide ice is on Mars. Sulfur dioxide ice is found in the Jupiter system. Nitrogen and methane ices are common beyond the Uranian system. Saturn’s moon Titan probably has the most complex active chemistry involving ices, with benzene (C6H6) and many tentative or inferred compounds including ices of Cyanoacetylene (HC3N), Toluene (C7H8), Cyanogen (C2N2), Acetonitrile (CH3CN), H2O, CO2, and NH3. Confirming compounds on Titan is hampered by its thick smoggy atmosphere. Ammonia was predicted on many icy moons but is notably absent among the definitively detected ices with the possible exception of Enceladus. Comets, storehouses of many compounds that could exist as ices in their nuclei, have only had small amounts of water ice definitively detected on their surfaces. Only one asteroid has had a direct detection of surface water ice, although its presence can be inferred in others. This chapter reviews some of the properties of ices that lead to their detection, and surveys the ices that have been observed on solid surfaces throughout the Solar System.

  7. Analysis of a jet stream induced gravity wave associated with an observed ice cloud over Greenland

    NASA Astrophysics Data System (ADS)

    Buss, S.; Hertzog, A.; Hostettler, C.; Bui, T. P.; Lüthi, T.; Wernli, H.

    2003-11-01

    A polar stratospheric ice cloud (PSC type II) was observed by airborne lidar above Greenland on 14 January 2000. Is was the unique observation of an ice cloud over Greenland during the SOLVE/THESEO 2000 campaign. Mesoscale simulations with the hydrostatic HRM model are presented which, in contrast to global analyses, are capable to produce a vertically propagating gravity wave that induces the low temperatures at the level of the PSC afforded for the ice formation. The simulated minimum temperature is ~8 K below the driving analyses and ~3 K below the frost point, exactly coinciding with the location of the observed ice cloud. Despite the high elevations of the Greenland orography the simulated gravity wave is not a mountain wave. Analyses of the horizontal wind divergence, of the background wind profiles, of backward gravity wave ray-tracing trajectories, of HRM experiments with reduced Greenland topography and of several instability diagnostics near the tropopause level provide consistent evidence that the wave is emitted by the geostrophic adjustment of a jet instability associated with an intense, rapidly evolving, anticyclonically curved jet stream. In order to evaluate the potential frequency of such non-orographic polar stratospheric cloud events, an approximate jet instability diagnostic is performed for the winter 1999/2000. It indicates that ice-PSCs are only occasionally generated by gravity waves emanating from an unstable jet.

  8. Balance of the West Antarctic Ice Sheet

    NASA Technical Reports Server (NTRS)

    2002-01-01

    For several decades, measurements of the West Antarctic Ice Sheet showed it to be retreating rapidly. But new data derived from satellite-borne radar sensors show the ice sheet to be growing. Changing Antarctic ice sheets remains an area of high scientific interest, particularly in light of recent global warming concerns. These new findings are significant because scientists estimate that sea level would rise 5-6 meters (16-20 feet) if the ice sheet collapsed into the sea. Do these new measurements signal the end of the ice sheet's 10,000-year retreat? Or, are these new satellite data simply much more accurate than the sparse ice core and surface measurements that produced the previous estimates? Another possibility is that the ice accumulation may simply indicate that the ice sheet naturally expands and retreats in regular cycles. Cryologists will grapple with these questions, and many others, as they examine the new data. The image above depicts the region of West Antarctica where scientists measured ice speed. The fast-moving central ice streams are shown in red. Slower tributaries feeding the ice streams are shown in blue. Green areas depict slow-moving, stable areas. Thick black lines depict the areas that collect snowfall to feed their respective ice streams. Reference: Ian Joughin and Slawek Tulaczyk Science Jan 18 2002: 476-480. Image courtesy RADARSAT Antarctic Mapping Project

  9. Ice Sheet and Sea Ice Observations from Unmanned Aircraft Systems

    NASA Astrophysics Data System (ADS)

    Crocker, R. I.; Maslanik, J. A.

    2011-12-01

    A suite of sensors has been assembled to map ice sheet and sea ice surface topography with fine-resolution from small unmanned aircraft systems (UAS). This payload is optimized to provide coincident surface elevation and imagery data, and with its low cost and ease of reproduction, it has the potential to become a widely-distributed observational resource to complement polar manned-aircraft and satellite missions. To date, it has been deployed to map ice sheet elevations near Jakobshavn Isbræ in Greenland, and to measure sea ice freeboard and roughness in Fram Strait off the coast of Svalbard. Data collected during these campaigns have facilitate a detailed assessment of the system's surface elevation measurement accuracy, and provide a glimpse of the summer 2009 Fram Strait sea ice conditions. These findings are presented, along with a brief overview of our future Arctic UAS operations.

  10. Role of ice sheet dynamics in the collapse of the early-Holocene Laurentide Ice Sheet

    NASA Astrophysics Data System (ADS)

    Matero, I. S. O.; Gregoire, L. J.; Cornford, S. L.; Ivanovic, R. F.

    2017-12-01

    The last stage of the deglaciation of the Laurentide Ice Sheet (LIS) during the early Holocene Thermal Maximum ( 9000 to 7000 years ago) provides an analogy and insight to the possible responses of contemporary ice sheets in a warming climate. What makes LIS particularly interesting is that meltwater from the collapse of an ice saddle over Hudson Bay was recently shown to be the primary forcing for the period of abrupt northern hemisphere cooling known as the 8.2 ka event. The evolution of the LIS during this period was likely influenced by its interaction with marginal lakes and the ocean, and its major ice stream, which exported ice towards Hudson Strait. Accurately simulating the early Holocene LIS evolution thus requires a model such as BISICLES, capable of accurately and efficiently resolving ice stream dynamics and grounding line migration thanks to the combined use of higher order physics and adaptive mesh refinement. We drive the BISICLES model using a positive degree day mass balance scheme with monthly precipitation and temperature from the HadCM3 climate model under climatic conditions from 10,000 to 8,000 years ago. We test the effect of varying the initial topographies and ice thicknesses from different timeslices in the ICE-6Gc reconstruction. We also test different parameterisations for the basal friction based on the thicknesses of the underlying sediments. These simulations evaluate the role of the Hudson Strait ice stream, ice sheet dynamics and interactions with the adjacent proglacial Lake Agassiz and North Atlantic Ocean in the collapse of the LIS. Our results highlight that the choice of parameterisation for basal friction has major effects on ice sheet dynamics and evolution.

  11. Advanced ice protection systems test in the NASA Lewis icing research tunnel

    NASA Technical Reports Server (NTRS)

    Bond, Thomas H.; Shin, Jaiwon; Mesander, Geert A.

    1991-01-01

    Tests of eight different deicing systems based on variations of three different technologies were conducted in the NASA Lewis Research Center Icing Research Tunnel (IRT) in June and July 1990. The systems used pneumatic, eddy current repulsive, and electro-expulsive means to shed ice. The tests were conducted on a 1.83 m span, 0.53 m chord NACA 0012 airfoil operated at a 4 degree angle of attack. The models were tested at two temperatures: a glaze condition at minus 3.9 C and a rime condition at minus 17.2 C. The systems were tested through a range of icing spray times and cycling rates. Characterization of the deicers was accomplished by monitoring power consumption, ice shed particle size, and residual ice. High speed video motion analysis was performed to quantify ice particle size.

  12. Assimilation of old carbon by stream food webs in arctic Alaska

    NASA Astrophysics Data System (ADS)

    O'Donnell, J. A.; Carey, M.; Xu, X.; Koch, J. C.; Walker, J. C.; Zimmerman, C. E.

    2017-12-01

    Permafrost thaw in arctic and sub-arctic region is mobilizing old carbon (C) from perennially frozen soils, driving the release of old C to the atmosphere and to aquatic ecosystems. Much research has focused on the transport and lability of old dissolved organic C (DOC) as a possible feedback to the climate system following thaw. However, little is known about the role of old C as a source to aquatic food webs in watersheds underlain by thawing permafrost. To quantify the contributions of old C to Arctic stream food-webs, we measured the radiocarbon (Δ14C) and stable isotope (δ13C, δ15N) contents of periphyton, macroinvertebrates, and resident fish species (Arctic Grayling (Thymallus arcticus) and Dolly Varden (Salvelinus malma)). We also characterized the isotopic composition of possible C sources, including DOC, dissolved inorganic carbon (DIC), and soil organic matter. Samples were collected across 10 streams in Arctic Alaska, draining watersheds underlain by varying parent material and ground-ice content, from ice-poor bedrock to ice-rich loess (i.e. Yedoma). Fraction modern (FM) values for Arctic Grayling and Dolly Varden ranged from 0.6720 to 1.0101 (3195 years BP to modern) across all streams, and closely tracked spatial variation in Δ14C content of periphyton. Parent material and ground-ice content appear to govern the age and form of dissolved C sources to stream biota. For instance, in watersheds underlain by ice-poor bedrock, old DIC (< 5000 years BP) was the dominant C source to stream biota, reflecting contributions from carbonate weathering and soil respiration. In streams draining ice-rich Yedoma, high concentrations of younger DOC were the primary C source to stream biota, reflecting leaching of DOC from saturated, peaty soils of the active layer. These findings highlight the importance of permafrost characteristics as a control on subsurface hydrology and the delivery of aged C to surface waters. Given the large stores Pleistocene-aged organic

  13. Wave-Ice interaction in the Marginal Ice Zone: Toward a Wave-Ocean-Ice Coupled Modeling System

    DTIC Science & Technology

    2015-09-30

    MIZ using WW3 (3 frequency bins, ice retreat in August and ice advance in October); Blue (solid): Based on observations near Antarctica by Meylan...1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Wave- Ice interaction in the Marginal Ice Zone: Toward a...Wave-Ocean- Ice Coupled Modeling System W. E. Rogers Naval Research Laboratory, Code 7322 Stennis Space Center, MS 39529 phone: (228) 688-4727

  14. New Icing Cloud Simulation System at the NASA Glenn Research Center Icing Research Tunnel

    NASA Technical Reports Server (NTRS)

    Irvine, Thomas B.; Oldenburg, John R.; Sheldon, David W.

    1999-01-01

    A new spray bar system was designed, fabricated, and installed in the NASA Glenn Research Center's Icing Research Tunnel (IRT). This system is key to the IRT's ability to do aircraft in-flight icing cloud simulation. The performance goals and requirements levied on the design of the new spray bar system included increased size of the uniform icing cloud in the IRT test section, faster system response time, and increased coverage of icing conditions as defined in Appendix C of the Federal Aviation Regulation (FAR), Part 25 and Part 29. Through significant changes to the mechanical and electrical designs of the previous-generation spray bar system, the performance goals and requirements were realized. Postinstallation aerodynamic and icing cloud calibrations were performed to quantify the changes and improvements made to the IRT test section flow quality and icing cloud characteristics. The new and improved capability to simulate aircraft encounters with in-flight icing clouds ensures that the 1RT will continue to provide a satisfactory icing ground-test simulation method to the aeronautics community.

  15. New Constraints on Post-LGM WAIS Retreat from the Whales Deep Paleo-ice-stream Trough in Eastern Ross Sea

    NASA Astrophysics Data System (ADS)

    DeCesare, M.; Bart, P. J.; Rosenheim, B. E.

    2016-02-01

    New multibeam and seismic data acquired during NBP1502 show that a back-stepping cluster containing at least four grounding zone wedges (GZWs) define a bathymetric saddle on the middle shelf of the Whales Deep paleo-ice-stream trough in eastern Ross Sea. Our synthesis of geophysical data with jumbo piston/kasten cores show that we penetrated diamict, sub-ice shelf and open marine sediments associated with four temporally distinct grounding events. A high number of well-preserved benthic and planktonic foraminifera were found in sediments we interpret to have been deposited in sub-ice shelf and open marine environments. A low number of similarly well-preserved benthic foraminifera were recovered from the underlying ice proximal diamict that was deposited on the GZW foreset. We tentatively propose that the pristine foraminifera are in situ and that these specimens provide a unique opportunity to constrain the retreat of grounded and floating ice from the eastern Ross Sea outer continental shelf. Our ongoing synthesis of new radiocarbon dates, stable isotope (δ18O and δ13C) and element/calcium ratios (e.g., Mg/Ca, B/Ca) will be presented.

  16. Sea Ice in the NCEP Seasonal Forecast System

    NASA Astrophysics Data System (ADS)

    Wu, X.; Saha, S.; Grumbine, R. W.; Bailey, D. A.; Carton, J.; Penny, S. G.

    2017-12-01

    Sea ice is known to play a significant role in the global climate system. For a weather or climate forecast system (CFS), it is important that the realistic distribution of sea ice is represented. Sea ice prediction is challenging; sea ice can form or melt, it can move with wind and/or ocean current; sea ice interacts with both the air above and ocean underneath, it influences by, and has impact on the air and ocean conditions. NCEP has developed coupled CFS (version 2, CFSv2) and also carried out CFS reanalysis (CFSR), which includes a coupled model with the NCEP global forecast system, a land model, an ocean model (GFDL MOM4), and a sea ice model. In this work, we present the NCEP coupled model, the CFSv2 sea ice component that includes a dynamic thermodynamic sea ice model and a simple "assimilation" scheme, how sea ice has been assimilated in CFSR, the characteristics of the sea ice from CFSR and CFSv2, and the improvements of sea ice needed for future seasonal prediction system, part of the Unified Global Coupled System (UGCS), which is being developed and under testing, including sea ice data assimilation with the Local Ensemble Transform Kalman Filter (LETKF). Preliminary results from the UGCS testing will also be presented.

  17. Significance of Thermal Fluvial Incision and Bedrock Transfer due to Ice Advection on Greenland Ice Sheet Topography

    NASA Astrophysics Data System (ADS)

    Crozier, J. A.; Karlstrom, L.; Yang, K.

    2017-12-01

    Ice sheet surface topography reflects a complicated combination of processes that act directly upon the surface and that are products of ice advection. Using recently-available high resolution ice velocity, imagery, ice surface elevation, and bedrock elevation data sets, we seek to determine the domain of significance of two important processes - thermal fluvial incision and transfer of bedrock topography through the ice sheet - on controlling surface topography in the ablation zone. Evaluating such controls is important for understanding how melting of the GIS surface during the melt season may be directly imprinted in topography through supraglacial drainage networks, and indirectly imprinted through its contribution to basal sliding that affects bedrock transfer. We use methods developed by (Karlstrom and Yang, 2016) to identify supraglacial stream networks on the GIS, and use high resolution surface digital elevation models as well as gridded ice velocity and melt rate models to quantify surface processes. We implement a numerically efficient Fourier domain bedrock transfer function (Gudmundsson, 2003) to predict surface topography due to ice advection over bedrock topography obtained from radar. Despite a number of simplifying assumptions, the bedrock transfer function predicts the observed ice sheet surface in most regions of the GIS with ˜90% accuracy, regardless of the presence or absence of supraglacial drainage networks. This supports the hypothesis that bedrock is the most significant driver of ice surface topography on wavelengths similar to ice thickness. Ice surface topographic asymmetry on the GIS is common, with slopes in the direction of ice flow steeper than those faced opposite to ice flow, consistent with bedrock transfer theory. At smaller wavelengths, topography consistent with fluvial erosion by surface hydrologic features is evident. We quantify the effect of ice advection versus fluvial thermal erosion on supraglacial longitudinal stream

  18. Investigation of land ice-ocean interaction with a fully coupled ice-ocean model: 2. Sensitivity to external forcings

    NASA Astrophysics Data System (ADS)

    Goldberg, D. N.; Little, C. M.; Sergienko, O. V.; Gnanadesikan, A.; Hallberg, R.; Oppenheimer, M.

    2012-06-01

    A coupled ice stream-ice shelf-ocean cavity model is used to assess the sensitivity of the coupled system to far-field ocean temperatures, varying from 0.0 to 1.8°C, as well as sensitivity to the parameters controlling grounded ice flow. A response to warming is seen in grounding line retreat and grounded ice loss that cannot be inferred from the response of integrated melt rates alone. This is due to concentrated thinning at the ice shelf lateral margin, and to processes that contribute to this thinning. Parameters controlling the flow of grounded ice have a strong influence on the response to sub-ice shelf melting, but this influence is not seen until several years after an initial perturbation in temperatures. The simulated melt rates are on the order of that observed for Pine Island Glacier in the 1990s. However, retreat rates are much slower, possibly due to unrepresented bedrock features.

  19. Tidal Modulation of Ice-shelf Flow: a Viscous Model of the Ross Ice Shelf

    NASA Technical Reports Server (NTRS)

    Brunt, Kelly M.; MacAyeal, Douglas R.

    2014-01-01

    Three stations near the calving front of the Ross Ice Shelf, Antarctica, recorded GPS data through a full spring-neap tidal cycle in November 2005. The data revealed a diurnal horizontal motion that varied both along and transverse to the long-term average velocity direction, similar to tidal signals observed in other ice shelves and ice streams. Based on its periodicity, it was hypothesized that the signal represents a flow response of the Ross Ice Shelf to the diurnal tides of the Ross Sea. To assess the influence of the tide on the ice-shelf motion, two hypotheses were developed. The first addressed the direct response of the ice shelf to tidal forcing, such as forces due to sea-surface slopes or forces due to sub-ice-shelf currents. The second involved the indirect response of ice-shelf flow to the tidal signals observed in the ice streams that source the ice shelf. A finite-element model, based on viscous creep flow, was developed to test these hypotheses, but succeeded only in falsifying both hypotheses, i.e. showing that direct tidal effects produce too small a response, and indirect tidal effects produce a response that is not smooth in time. This nullification suggests that a combination of viscous and elastic deformation is required to explain the observations.

  20. Planetary Ice-Oceans: Numerical Modeling Study of Ice-Shell Growth in Convecting Two-Phase Systems

    NASA Astrophysics Data System (ADS)

    Allu Peddinti, Divya; McNamara, Allen

    2017-04-01

    Several icy bodies in the Solar system such as the icy moons Europa and Enceladus exhibit signs of subsurface oceans underneath an ice-shell. For Europa, the geologically young surface, the presence of surface features and the aligned surface chemistry pose interesting questions about formation of the ice-shell and its interaction with the ocean below. This also ties in with its astrobiological potential and implications for similar ice-ocean systems elsewhere in the cosmos. The overall thickness of the H2O layer on Europa is estimated to be 100-150 km while the thickness of the ice-shell is debated. Additionally, Europa is subject to tidal heating due to interaction with Jupiter's immense gravity field. It is of interest to understand how the ice-shell thickness varies in the presence of tidal internal heating and the localization of heating in different regions of the ice-shell. Thus this study aims to determine the effect of tidal internal heating on the growth rate of the ice-shell over time. We perform geodynamic modeling of the ice-ocean system in order to understand how the ice-shell thickness changes with time. The convection code employs the ice Ih-water phase diagram in order to model the two-phase convecting ice-ocean system. All the models begin from an initial warm thick ocean that cools from the top. The numerical experiments analyze three cases: case 1 with no tidal internal heating in the system, case 2 with constant tidal internal heating in the ice and case 3 with viscosity-dependent tidal internal heating in the ice. We track the ice-shell thickness as a function of time as the system cools. Modeling results so far have identified that the shell growth rate changes substantially at a point in time that coincides with a change in the planform of ice-convection cells. Additionally, the velocity vs depth plots indicate a shift from a conduction dominant to a convection dominant ice regime. We compare the three different cases to provide a

  1. Analysis of a jet stream induced gravity wave associated with an observed stratospheric ice cloud over Greenland

    NASA Astrophysics Data System (ADS)

    Buss, S.; Hertzog, A.; Hostettler, C.; Bui, T. B.; Lüthi, D.; Wernli, H.

    2004-08-01

    A polar stratospheric ice cloud (PSC type II) was observed by airborne lidar above Greenland on 14 January 2000. It was the unique observation of an ice cloud over Greenland during the SOLVE/THESEO 2000 campaign. Mesoscale simulations with the hydrostatic HRM model are presented which, in contrast to global analyses, are capable to produce a vertically propagating gravity wave that induces the low temperatures at the level of the PSC afforded for the ice formation. The simulated minimum temperature is ~8 K below the driving analyses and ~4.5 K below the frost point, exactly coinciding with the location of the observed ice cloud. Despite the high elevations of the Greenland orography the simulated gravity wave is not a mountain wave. Analyses of the horizontal wind divergence, of the background wind profiles, of backward gravity wave ray-tracing trajectories, of HRM experiments with reduced Greenland topography and of several diagnostics near the tropopause level provide evidence that the wave is emitted from an intense, rapidly evolving, anticyclonically curved jet stream. The precise physical process responsible for the wave emission could not be identified definitely, but geostrophic adjustment and shear instability are likely candidates.

    In order to evaluate the potential frequency of such non-orographic polar stratospheric cloud events, the non-linear balance equation diagnostic is performed for the winter 1999/2000. It indicates that ice-PSCs are only occasionally generated by gravity waves emanating from spontaneous adjustment.

  2. Ice electrode electrolytic cell

    DOEpatents

    Glenn, D.F.; Suciu, D.F.; Harris, T.L.; Ingram, J.C.

    1993-04-06

    This invention relates to a method and apparatus for removing heavy metals from waste water, soils, or process streams by electrolytic cell means. The method includes cooling a cell cathode to form an ice layer over the cathode and then applying an electric current to deposit a layer of the heavy metal over the ice. The metal is then easily removed after melting the ice. In a second embodiment, the same ice-covered electrode can be employed to form powdered metals.

  3. Ice electrode electrolytic cell

    DOEpatents

    Glenn, David F.; Suciu, Dan F.; Harris, Taryl L.; Ingram, Jani C.

    1993-01-01

    This invention relates to a method and apparatus for removing heavy metals from waste water, soils, or process streams by electrolytic cell means. The method includes cooling a cell cathode to form an ice layer over the cathode and then applying an electric current to deposit a layer of the heavy metal over the ice. The metal is then easily removed after melting the ice. In a second embodiment, the same ice-covered electrode can be employed to form powdered metals.

  4. Icing-Protection Requirements for Reciprocating-Engine Induction System

    NASA Technical Reports Server (NTRS)

    Coles, Willard D; Rollin, Vern G; Mulholland, Donald R

    1950-01-01

    Despite the development of relatively ice-free fuel-metering systems, the widespread use of alternate and heated-air intakes, and the use of alcohol for emergency de-icing, icing of aircraft-engine induction systems is a serious problem. Investigations have been made to study and to combat all phases of this icing problem. From these investigations, criterions for safe operation and for design of new induction systems have been established. The results were obtained from laboratory investigations of carburetor-supercharger combinations, wind-tunnel investigations of air scoops, multicylinder-engine studies, and flight investigations. Characteristics of three forms of ice, impact, throttling, and fuel evaporation were studied. The effects of several factors on the icing characteristics were also studied and included: (1) atmospheric conditions, (2) engine and air-scoop configurations, including light-airplane system, (3) type fuel used, and (4) operating variables, such as power condition, use of a manifold pressure regulator, mixture setting, carburetor heat, and water-alcohol injection. In addition, ice-detection methods were investigated and methods of preventing and removing induction-system ice were studied. Recommendations are given for design and operation with regard to induction-system design.

  5. Antarctic ice shelf potentially stabilized by export of meltwater in surface river.

    PubMed

    Bell, Robin E; Chu, Winnie; Kingslake, Jonathan; Das, Indrani; Tedesco, Marco; Tinto, Kirsty J; Zappa, Christopher J; Frezzotti, Massimo; Boghosian, Alexandra; Lee, Won Sang

    2017-04-19

    Meltwater stored in ponds and crevasses can weaken and fracture ice shelves, triggering their rapid disintegration. This ice-shelf collapse results in an increased flux of ice from adjacent glaciers and ice streams, thereby raising sea level globally. However, surface rivers forming on ice shelves could potentially export stored meltwater and prevent its destructive effects. Here we present evidence for persistent active drainage networks-interconnected streams, ponds and rivers-on the Nansen Ice Shelf in Antarctica that export a large fraction of the ice shelf's meltwater into the ocean. We find that active drainage has exported water off the ice surface through waterfalls and dolines for more than a century. The surface river terminates in a 130-metre-wide waterfall that can export the entire annual surface melt over the course of seven days. During warmer melt seasons, these drainage networks adapt to changing environmental conditions by remaining active for longer and exporting more water. Similar networks are present on the ice shelf in front of Petermann Glacier, Greenland, but other systems, such as on the Larsen C and Amery Ice Shelves, retain surface water at present. The underlying reasons for export versus retention remain unclear. Nonetheless our results suggest that, in a future warming climate, surface rivers could export melt off the large ice shelves surrounding Antarctica-contrary to present Antarctic ice-sheet models, which assume that meltwater is stored on the ice surface where it triggers ice-shelf disintegration.

  6. Antarctic Ice Shelf Potentially Stabilized by Export of Meltwater in Surface River

    NASA Technical Reports Server (NTRS)

    Bell, Robin E.; Chu, Winnie; Kingslake, Jonathan; Das, Indrani; Tedesco, Marco; Tinto, Kirsty J.; Zappa, Christopher J.; Frezzotti, Massimo; Boghosian, Alexandra; Lee, Won Sang

    2017-01-01

    Meltwater stored in ponds and crevasses can weaken and fracture ice shelves, triggering their rapid disintegration. This ice-shelf collapse results in an increased flux of ice from adjacent glaciers and ice streams, thereby raising sea level globally. However, surface rivers forming on ice shelves could potentially export stored meltwater and prevent its destructive effects. Here we present evidence for persistent active drainage networks-interconnected streams, ponds and rivers-on the Nansen Ice Shelf in Antarctica that export a large fraction of the ice shelf's meltwater into the ocean. We find that active drainage has exported water off the ice surface through waterfalls and dolines for more than a century. The surface river terminates in a 130-metre-wide waterfall that can export the entire annual surface melt over the course of seven days. During warmer melt seasons, these drainage networks adapt to changing environmental conditions by remaining active for longer and exporting more water. Similar networks are present on the ice shelf in front of Petermann Glacier, Greenland, but other systems, such as on the Larsen C and Amery Ice Shelves, retain surface water at present. The underlying reasons for export versus retention remain unclear. Nonetheless our results suggest that, in a future warming climate, surface rivers could export melt off the large ice shelves surrounding Antarctica-contrary to present Antarctic ice-sheet models, which assume that meltwater is stored on the ice surface where it triggers ice-shelf disintegration.

  7. Antarctic ice shelf potentially stabilized by export of meltwater in surface river

    NASA Astrophysics Data System (ADS)

    Bell, Robin E.; Chu, Winnie; Kingslake, Jonathan; Das, Indrani; Tedesco, Marco; Tinto, Kirsty J.; Zappa, Christopher J.; Frezzotti, Massimo; Boghosian, Alexandra; Lee, Won Sang

    2017-04-01

    Meltwater stored in ponds and crevasses can weaken and fracture ice shelves, triggering their rapid disintegration. This ice-shelf collapse results in an increased flux of ice from adjacent glaciers and ice streams, thereby raising sea level globally. However, surface rivers forming on ice shelves could potentially export stored meltwater and prevent its destructive effects. Here we present evidence for persistent active drainage networks—interconnected streams, ponds and rivers—on the Nansen Ice Shelf in Antarctica that export a large fraction of the ice shelf’s meltwater into the ocean. We find that active drainage has exported water off the ice surface through waterfalls and dolines for more than a century. The surface river terminates in a 130-metre-wide waterfall that can export the entire annual surface melt over the course of seven days. During warmer melt seasons, these drainage networks adapt to changing environmental conditions by remaining active for longer and exporting more water. Similar networks are present on the ice shelf in front of Petermann Glacier, Greenland, but other systems, such as on the Larsen C and Amery Ice Shelves, retain surface water at present. The underlying reasons for export versus retention remain unclear. Nonetheless our results suggest that, in a future warming climate, surface rivers could export melt off the large ice shelves surrounding Antarctica—contrary to present Antarctic ice-sheet models, which assume that meltwater is stored on the ice surface where it triggers ice-shelf disintegration.

  8. Geoengineering Marine Ice Sheets

    NASA Astrophysics Data System (ADS)

    Wolovick, M.

    2017-12-01

    existing large public works, while in Antarctica they are one to two orders of magnitude larger. However, this is still small in comparison to the global disruption that would be caused by a collapse of West Antarctica. Marine-terminating ice streams are high-leverage points in the climate system, where global impacts can be achieved through local intervention.

  9. ICE stereocamera system - photogrammetric setup for retrieval and analysis of small scale sea ice topography

    NASA Astrophysics Data System (ADS)

    Divine, Dmitry; Pedersen, Christina; Karlsen, Tor Ivan; Aas, Harald; Granskog, Mats; Renner, Angelika; Spreen, Gunnar; Gerland, Sebastian

    2013-04-01

    A new thin-ice Arctic paradigm requires reconsideration of the set of parameterizations of mass and energy exchange within the ocean-sea-ice-atmosphere system used in modern CGCMs. Such a reassessment would require a comprehensive collection of measurements made specifically on first-year pack ice with a focus on summer melt season when the difference from typical conditions for the earlier multi-year Arctic sea ice cover becomes most pronounced. Previous in situ studies have demonstrated a crucial importance of smaller (i.e. less than 10 m) scale surface topography features for the seasonal evolution of pack ice. During 2011-2012 NPI developed a helicopter borne ICE stereocamera system intended for mapping the sea ice surface topography and aerial photography. The hardware component of the system comprises two Canon 5D Mark II cameras, combined GPS/INS unit by "Novatel" and a laser altimeter mounted in a single enclosure outside the helicopter. The unit is controlled by a PXI chassis mounted inside the helicopter cabin. The ICE stereocamera system was deployed for the first time during the 2012 summer field season. The hardware setup has proven to be highly reliable and was used in about 30 helicopter flights over Arctic sea-ice during July-September. Being highly automated it required a minimal human supervision during in-flight operation. The deployment of the camera system was mostly done in combination with the EM-bird, which measures sea-ice thickness, and this combination provides an integrated view of sea ice cover along the flight track. During the flight the cameras shot sequentially with a time interval of 1 second each to ensure sufficient overlap between subsequent images. Some 35000 images of sea ice/water surface captured per camera sums into 6 Tb of data collected during its first field season. The reconstruction of the digital elevation model of sea ice surface will be done using SOCET SET commercial software. Refraction at water/air interface can

  10. Antarctic subglacial groundwater: measurement concept and potential influence on ice flow

    NASA Astrophysics Data System (ADS)

    Kulessa, Bernd; Siegert, Martin; Bougamont, Marion; Christoffersen, Poul; Key, Kerry; Andersen, Kristoffer; Booth, Adam; Smith, Andrew

    2017-04-01

    Is groundwater abundant in Antarctica and does it modulate ice flow? Answering this question matters because ice streams flow by gliding over a wet substrate of till. Water fed to ice-stream beds thus influences ice-sheet dynamics and, potentially, sea-level rise. It is recognised that both till and the sedimentary basins from which it originates are porous and could host a reservoir of mobile groundwater that interacts with the subglacial interfacial system. According to recent numerical modelling up to half of all water available for basal lubrication, and time lags between hydrological forcing and ice-sheet response as long as millennia, may have been overlooked in models of ice flow. Here, we review evidence in support of Antarctic groundwater and propose how it can be measured to ascertain the extent to which it modulates ice flow. We present new seismoelectric soundings of subglacial till, and new magnetotelluric and transient electromagnetic forward models of subglacial groundwater reservoirs. We demonstrate that multi-facetted and integrated geophysical datasets can detect, delineate and quantify the groundwater contents of subglacial sedimentary basins and, potentially, monitor groundwater exchange rates between subglacial till layers. We thus describe a new area of glaciological investigation and how it should progress in future.

  11. The Potsdam Parallel Ice Sheet Model (PISM-PIK) - Part 2: Dynamic equilibrium simulation of the Antarctic ice sheet

    NASA Astrophysics Data System (ADS)

    Martin, M. A.; Winkelmann, R.; Haseloff, M.; Albrecht, T.; Bueler, E.; Khroulev, C.; Levermann, A.

    2010-08-01

    We present a dynamic equilibrium simulation of the ice sheet-shelf system on Antarctica with the Potsdam Parallel Ice Sheet Model (PISM-PIK). The simulation is initialized with present-day conditions for topography and ice thickness and then run to steady state with constant present-day surface mass balance. Surface temperature and basal melt distribution are parameterized. Grounding lines and calving fronts are free to evolve, and their modeled equilibrium state is compared to observational data. A physically-motivated dynamic calving law based on horizontal spreading rates allows for realistic calving fronts for various types of shelves. Steady-state dynamics including surface velocity and ice flux are analyzed for whole Antarctica and the Ronne-Filchner and Ross ice shelf areas in particular. The results show that the different flow regimes in sheet and shelves, and the transition zone between them, are captured reasonably well, supporting the approach of superposition of SIA and SSA for the representation of fast motion of grounded ice. This approach also leads to a natural emergence of streams in this new 3-D marine ice sheet model.

  12. Decadal-scale sensitivity of Northeast Greenland ice flow to errors in surface mass balance using ISSM

    NASA Astrophysics Data System (ADS)

    Schlegel, N.-J.; Larour, E.; Seroussi, H.; Morlighem, M.; Box, J. E.

    2013-06-01

    The behavior of the Greenland Ice Sheet, which is considered a major contributor to sea level changes, is best understood on century and longer time scales. However, on decadal time scales, its response is less predictable due to the difficulty of modeling surface climate, as well as incomplete understanding of the dynamic processes responsible for ice flow. Therefore, it is imperative to understand how modeling advancements, such as increased spatial resolution or more comprehensive ice flow equations, might improve projections of ice sheet response to climatic trends. Here we examine how a finely resolved climate forcing influences a high-resolution ice stream model that considers longitudinal stresses. We simulate ice flow using a two-dimensional Shelfy-Stream Approximation implemented within the Ice Sheet System Model (ISSM) and use uncertainty quantification tools embedded within the model to calculate the sensitivity of ice flow within the Northeast Greenland Ice Stream to errors in surface mass balance (SMB) forcing. Our results suggest that the model tends to smooth ice velocities even when forced with extreme errors in SMB. Indeed, errors propagate linearly through the model, resulting in discharge uncertainty of 16% or 1.9 Gt/yr. We find that mass flux is most sensitive to local errors but is also affected by errors hundreds of kilometers away; thus, an accurate SMB map of the entire basin is critical for realistic simulation. Furthermore, sensitivity analyses indicate that SMB forcing needs to be provided at a resolution of at least 40 km.

  13. 14 CFR 125.181 - Induction system ice prevention.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Induction system ice prevention. 125.181... Requirements § 125.181 Induction system ice prevention. A means for preventing the malfunctioning of each engine due to ice accumulation in the engine air induction system must be provided for each airplane. ...

  14. 14 CFR 125.181 - Induction system ice prevention.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Induction system ice prevention. 125.181... Requirements § 125.181 Induction system ice prevention. A means for preventing the malfunctioning of each engine due to ice accumulation in the engine air induction system must be provided for each airplane. ...

  15. 14 CFR 125.181 - Induction system ice prevention.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Induction system ice prevention. 125.181... Requirements § 125.181 Induction system ice prevention. A means for preventing the malfunctioning of each engine due to ice accumulation in the engine air induction system must be provided for each airplane. ...

  16. 14 CFR 125.181 - Induction system ice prevention.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Induction system ice prevention. 125.181... Requirements § 125.181 Induction system ice prevention. A means for preventing the malfunctioning of each engine due to ice accumulation in the engine air induction system must be provided for each airplane. ...

  17. 14 CFR 125.181 - Induction system ice prevention.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Induction system ice prevention. 125.181... Requirements § 125.181 Induction system ice prevention. A means for preventing the malfunctioning of each engine due to ice accumulation in the engine air induction system must be provided for each airplane. ...

  18. SEASAT views oceans and sea ice with synthetic aperture radar

    NASA Technical Reports Server (NTRS)

    Fu, L. L.; Holt, B.

    1982-01-01

    Fifty-one SEASAT synthetic aperture radar (SAR) images of the oceans and sea ice are presented. Surface and internal waves, the Gulf Stream system and its rings and eddies, the eastern North Pacific, coastal phenomena, bathymetric features, atmospheric phenomena, and ship wakes are represented. Images of arctic pack and shore-fast ice are presented. The characteristics of the SEASAT SAR system and its image are described. Maps showing the area covered, and tables of key orbital information, and listing digitally processed images are provided.

  19. Modelling water flow under glaciers and ice sheets.

    PubMed

    Flowers, Gwenn E

    2015-04-08

    Recent observations of dynamic water systems beneath the Greenland and Antarctic ice sheets have sparked renewed interest in modelling subglacial drainage. The foundations of today's models were laid decades ago, inspired by measurements from mountain glaciers, discovery of the modern ice streams and the study of landscapes evacuated by former ice sheets. Models have progressed from strict adherence to the principles of groundwater flow, to the incorporation of flow 'elements' specific to the subglacial environment, to sophisticated two-dimensional representations of interacting distributed and channelized drainage. Although presently in a state of rapid development, subglacial drainage models, when coupled to models of ice flow, are now able to reproduce many of the canonical phenomena that characterize this coupled system. Model calibration remains generally out of reach, whereas widespread application of these models to large problems and real geometries awaits the next level of development.

  20. Modelling water flow under glaciers and ice sheets

    PubMed Central

    Flowers, Gwenn E.

    2015-01-01

    Recent observations of dynamic water systems beneath the Greenland and Antarctic ice sheets have sparked renewed interest in modelling subglacial drainage. The foundations of today's models were laid decades ago, inspired by measurements from mountain glaciers, discovery of the modern ice streams and the study of landscapes evacuated by former ice sheets. Models have progressed from strict adherence to the principles of groundwater flow, to the incorporation of flow ‘elements’ specific to the subglacial environment, to sophisticated two-dimensional representations of interacting distributed and channelized drainage. Although presently in a state of rapid development, subglacial drainage models, when coupled to models of ice flow, are now able to reproduce many of the canonical phenomena that characterize this coupled system. Model calibration remains generally out of reach, whereas widespread application of these models to large problems and real geometries awaits the next level of development. PMID:27547082

  1. Ice flow in the Weddell Sea sector of West Antarctica as elucidated by radar-imaged internal layering

    NASA Astrophysics Data System (ADS)

    Bingham, R. G.; Rippin, D. M.; Karlsson, N. B.; Corr, H.; Ferraccioli, F.; Jordan, T. A.; Le Brocq, A.; Ross, N.; Wright, A.; Siegert, M. J.

    2012-12-01

    Radio-echo sounding (RES) across polar ice sheets reveals extensive, isochronous internal layers, whose stratigraphy, and especially their degree of continuity over multi-km distances, can inform us about both present ice flow and past ice-flow histories. Here, we bring together for the first time two recent advances in this field of cryospheric remote sensing to analyse ice flow into the Weddell Sea sector of West Antarctica. Firstly, we have developed a new quantitative routine for analysing the continuity of internal layers obtained over large areas of ice by airborne RES surveys - we term this routine the "Internal-Layering Continuity-Index (ILCI)". Secondly, in the austral season 2010-11 we acquired, by airborne RES survey, the first comprehensive dataset of deep internal layering across Institute and Möller Ice Streams, two of the more significant feeders of ice into the Filchner-Ronne Ice Shelf. Applying the ILCI to SAR-processed (migrated) RES profiles across Institute Ice Stream's catchment reveals two contrasting regions of internal-layering continuity behaviour. In the western portion of the catchment, where ice-stream tributaries incise deeply through the Ellsworth Subglacial Highlands, the continuity of internal layers is most disrupted across the present ice streams. We therefore interpret the ice-flow configuration in this western region as predominantly spatially stable over the lifetime of the ice. Further east, towards Möller Ice Stream, and towards the interior of the ice sheet, the ILCI does not closely match the present ice flow configuration, while across most of present-day Möller Ice Stream itself, the continuity of internal layers is generally low. We propose that the variation in continuity of internal layering across eastern Institute Ice Stream and the neighbouring Möller results primarily from two factors. Firstly, the noncorrespondence of some inland tributaries with internal-layering continuity acts as evidence for past spatial

  2. Engineer Measures Ice Formation on an Instrument Antenna Model

    NASA Image and Video Library

    1945-05-21

    A National Advisory Committee for Aeronautics (NACA) researcher measures the ice thickness on a landing antenna model in the Icing Research Tunnel at the Aircraft Engine Research Laboratory. NACA design engineers added the Icing Research Tunnel to the original layout of the new Aircraft Engine Research Laboratory to take advantage of the massive refrigeration system being built for the Altitude Wind Tunnel. The Icing Research Tunnel was built to study the formation of ice on aircraft surfaces and methods of preventing or eradicating that ice. Ice buildup adds extra weight, effects aerodynamics, and sometimes blocks air flow through engines. The Icing Research Tunnel is a closed-loop atmospheric wind tunnel with a 6- by 9-foot test section. Carrier Corporation refrigeration equipment reduced the internal air temperature to -45 degrees F and a spray bar system injected water droplets into the air stream. The 24-foot diameter drive fan, seen in this photograph, created air flows velocities up to 400 miles per hour. The Icing Research Tunnel began testing in June of 1944. Early testing, seen in this photograph, studied ice accumulation on propellers and antenna of a military aircraft. The Icing Research Tunnel’s designers, however, struggled to develop a realistic spray system since they did not have access to data on the size of naturally occurring water droplets. The system would have to generate small droplets, distribute them uniformly throughout the airstream, and resist freezing and blockage. For five years a variety of different designs were painstakingly developed and tested before the system was perfected.

  3. Greenland ice cores tell tales on past sea level changes

    NASA Astrophysics Data System (ADS)

    Dahl-Jensen, D.

    2017-12-01

    All the deep ice cores drilled to the base of the Greenland ice sheet contain ice from the previous warm climate period, the Eemian 130-115 thousand years before present. This demonstrates the resilience of the Greenland ice sheet to a warming of 5 oC. Studies of basal material further reveal the presence of boreal forest over Greenland before ice covered Greenland. Conditions for Boreal forest implies temperatures at this time has been more than 10 oC warmer than the present. To compare the paleo-behavior of the Greenland ice sheet to the present in relation to sea level rise knowledge gabs include the reaction of ice streams to climate changes. To address this the international EGRIP-project is drilling an ice core in the center of the North East Greenland Ice Stream (NEGIS). The first results will be presented.

  4. Evaluation of Alternative Altitude Scaling Methods for Thermal Ice Protection System in NASA Icing Research Tunnel

    NASA Technical Reports Server (NTRS)

    Lee, Sam; Addy, Harold E. Jr.; Broeren, Andy P.; Orchard, David M.

    2017-01-01

    A test was conducted at NASA Icing Research Tunnel to evaluate altitude scaling methods for thermal ice protection system. Two new scaling methods based on Weber number were compared against a method based on Reynolds number. The results generally agreed with the previous set of tests conducted in NRCC Altitude Icing Wind Tunnel where the three methods of scaling were also tested and compared along with reference (altitude) icing conditions. In those tests, the Weber number-based scaling methods yielded results much closer to those observed at the reference icing conditions than the Reynolds number-based icing conditions. The test in the NASA IRT used a much larger, asymmetric airfoil with an ice protection system that more closely resembled designs used in commercial aircraft. Following the trends observed during the AIWT tests, the Weber number based scaling methods resulted in smaller runback ice than the Reynolds number based scaling, and the ice formed farther upstream. The results show that the new Weber number based scaling methods, particularly the Weber number with water loading scaling, continue to show promise for ice protection system development and evaluation in atmospheric icing tunnels.

  5. Post-LGM grounding line and calving front translations of the West Antarctic Ice Sheet in the Whales Deep paleo-ice-stream trough, eastern Ross Sea, Antarctica

    NASA Astrophysics Data System (ADS)

    McGlannan, A. J.; Bart, P. J.; Chow, J.

    2016-12-01

    A large-area (2500 km2) multibeam survey of the Whales Deep paleo-ice-stream trough, eastern Ross Sea, Antarctica was acquired during NBP1502B. This sector of the continental shelf is important as it was covered by grounded and floating ice, which drained the central part of an expanded West Antarctic Ice Sheet (WAIS) during the last glacial cycle. The seafloor geomorphology shows a well-defined cluster of four back stepping grounding zone wedges (GZWs) that were deposited in a partly overlapping fashion on the middle continental shelf during WAIS retreat. These observations permit two end-member possibilities for how the WAIS grounding line and calving front vacated the trough. In the first scenario, each GZW represents successive landward shifts of the grounding line and calving front. In the second scenario, each GZW represents a large-scale retreat and re-advance of grounded and floating ice. To determine which of these two end-member scenarios most accurately describes WAIS retreat from this sector of Ross Sea, we evaluated a grid of kasten and piston cores. The core stations were selected on the basis of backstepping GZWs along the trough axis. Our core data analyses included an integration of visual core descriptions, x-ray images, grain size, water content, total organic carbon, shear strengths, and diatom assemblage data. Core data reveal a single transgressive succession from proximal diamict overlain by sub-ice-shelf and/or open-marine sediments. These data strongly support the first scenario, suggesting that an ice shelf remained continuously intact during the time that the grounding line successively moved from the shelf edge to the middle shelf by small-scale landward translations until the end of the fourth grounding event. Sedimentologic and diatom-assemblage data from the inner shelf show that only the last middle shelf grounding event ended with a long-distance retreat of grounded and then floating ice to south of the modern calving front.

  6. Ice-sheet dynamics through the Quaternary on the mid-Norwegian continental margin inferred from 3D seismic data.

    PubMed

    Montelli, A; Dowdeswell, J A; Ottesen, D; Johansen, S E

    2017-02-01

    Reconstructing the evolution of ice sheets is critical to our understanding of the global environmental system, but most detailed palaeo-glaciological reconstructions have hitherto focused on the very recent history of ice sheets. Here, we present a three-dimensional (3D) reconstruction of the changing nature of ice-sheet derived sedimentary architecture through the Quaternary Ice Age of almost 3 Ma. An extensive geophysical record documents a marine-terminating, calving Fennoscandian Ice Sheet (FIS) margin present periodically on the mid-Norwegian shelf since the beginning of the Quaternary. Spatial and temporal variability of the FIS is illustrated by the gradual development of fast-flowing ice streams and associated intensification of focused glacial erosion and sedimentation since that time. Buried subglacial landforms reveal a complex and dynamic ice sheet, with converging palaeo-ice streams and several flow-switching events that may reflect major changes in topography and basal thermal regime. Lack of major subglacial meltwater channels suggests a largely distributed drainage system beneath the marine-terminating part of the FIS. This palaeo-environmental examination of the FIS provides a useful framework for ice-sheet modelling and shows that fragmentary preservation of buried surfaces and variability of ice-sheet dynamics should be taken into account when reconstructing glacial history from spatially limited datasets.

  7. Seafloor glacial geomorphology in a cross shelf trough: insights into the deglaciation of the Melville Bay Ice Stream

    NASA Astrophysics Data System (ADS)

    Newton, Andrew; Huuse, Mads

    2016-04-01

    Compared to other glaciated margins such as offshore mid-Norway and Svalbard, the Greenland continental shelf has, until recently, been the subject of only a limited amount of academic and industry research. This has been mainly due to the difficulty and expense of obtaining data in such harsh and operationally complex settings. Climate amelioration and technological advance has, particularly in recent years, allowed both academics and industry to substantially increase data collection across the many glaciated continental shelves in the Northern Hemisphere. Baffin Bay has been one of the primary regions of interest for the hydrocarbon industry which has sought to operate in the frontier basins offshore Greenland. As a result of these industry operations, a large database of geophysical and geological data has been collected. Some of this data has been made available to glacial scientists and provides a unique opportunity to investigate the seafloor geomorphology for regions where the majority of previous work has been hypothetical rather than grounded in geological evidence. In the work presented here we present a landform record offshore NW Greenland in the Melville Bay cross-shelf trough. This is one of the largest troughs on the entire Greenland shelf and measures up to 140 km in width. Shallow-marine cores collected in the coastal part of the trough show bedrock of Miocene age and indicate that a significant cover has likely been removed from the shelf by ice streams operating through the Late Cenozoic. This material has then been deposited at the shelf edge as a trough mouth fan. Using multibeam and seismic reflection data a large number of glacial landforms are observed and mapped in the trough. These include mega-scale glacial lineations, grounding-zone wedges, iceberg scours, and iceberg grounding pits. These landforms are used to reconstruct the ice dynamics of the Melville Bugt Ice Stream at the last glacial maximum and during its deglaciation. The

  8. 14 CFR 121.283 - Induction system ice prevention.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Induction system ice prevention. 121.283 Section 121.283 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Induction system ice prevention. A means for preventing the malfunctioning of each engine due to ice...

  9. 14 CFR 121.283 - Induction system ice prevention.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Induction system ice prevention. 121.283 Section 121.283 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Induction system ice prevention. A means for preventing the malfunctioning of each engine due to ice...

  10. 14 CFR 121.283 - Induction system ice prevention.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Induction system ice prevention. 121.283 Section 121.283 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Induction system ice prevention. A means for preventing the malfunctioning of each engine due to ice...

  11. 14 CFR 121.283 - Induction system ice prevention.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Induction system ice prevention. 121.283 Section 121.283 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Induction system ice prevention. A means for preventing the malfunctioning of each engine due to ice...

  12. 14 CFR 121.283 - Induction system ice prevention.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Induction system ice prevention. 121.283 Section 121.283 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Induction system ice prevention. A means for preventing the malfunctioning of each engine due to ice...

  13. Mapping seabed geomorphology in the Inner Hebrides, Scotland; Bathymetric records of ice streaming and retreat

    NASA Astrophysics Data System (ADS)

    Dove, Dayton; Finlayson, Andrew; Bradwell, Tom; Arosio, Riccardo; Howe, John

    2014-05-01

    Approximately 7,000 km² of new bathymetry have been stitched together with onshore airborne radar data, both gridded at 5m resolution, to map and describe the submarine glacial landscape of the Inner Hebrides sector of the former British-Irish Ice Sheet (BIIS). As part of the MAREMAP Project (http://www.maremap.ac.uk), and to build on previous work (Howe et al., 2012), we are using recently acquired swath bathymetry data, collected primarily by the UKHO Civil Hydrography Programme, to characterise the geomorphology, sea-bed sediments, and bedrock geology of the Inner Hebrides region. Mapping has revealed an extensive array of well-preserved glacigenic landforms on the seabed associated with key stages of ice flow and retreat of the BIIS following the Last Glacial Maximum. On multiple submarine rock platforms and within overdeepened troughs, diverse assemblages of glacially streamlined landforms are present, forming a geomorphic continuum between rock drumlins and mega-flutes. Superimposed streamlined bedforms indicate different phases of fast flow at the ice sheet bed, and the convergence of flow sets suggest that ice sheet flow was organised into faster flowing topographically controlled corridors. Across the region, the streamlined landforms occur within a geographically controlled zone, semi-independent of the underlying geology. This is consistent with the onset zone of the Hebrides Ice Stream, as previously postulated (Howe et al., 2012). Submarine moraine ridges are observed widely across the survey area: within sea lochs, atop rock platforms and superimposed on glacially streamlined bedforms, as well as pinned to topographic highs (i.e. islands). Some retreat patterns reveal clear glacial recession towards respective catchments, while others are more ambiguous and are the focus of ongoing work. The bathymetry data notably reveal more geomorphic evidence of glaciation than adjacent land records, thus providing the opportunity to reassess onshore mapping

  14. Energy-Efficient Systems Eliminate Icing Danger for UAVs

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Ames Research Center engineer Leonard Haslim invented an anti-icing t echnology called an electroexpulsive separation system, which uses m echanical force to shatter potentially dangerous ice buildup on an ai rcraft surface. Temecula, California-based Ice Management Systems (no w known as IMS-ESS) licensed the technology from Ames and has discov ered a niche market for the lightweight, energy-efficient technology: unmanned aerial vehicles (UAVs). IMS-ESS systems now prevent damagi ng ice accumulation on military UAVs, allowing the vehicles to carry out crucial missions year round.

  15. Validation Ice Crystal Icing Engine Test in the Propulsion Systems Laboratory at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Oliver, Michael J.

    2014-01-01

    The Propulsion Systems Laboratory (PSL) is an existing altitude simulation jet engine test facility located at NASA Glenn Research Center in Cleveland, OH. It was modified in 2012 with the integration of an ice crystal cloud generation system. This paper documents the inaugural ice crystal cloud test in PSL--the first ever full scale, high altitude ice crystal cloud turbofan engine test to be conducted in a ground based facility. The test article was a Lycoming ALF502-R5 high bypass turbofan engine, serial number LF01. The objectives of the test were to validate the PSL ice crystal cloud calibration and engine testing methodologies by demonstrating the capability to calibrate and duplicate known flight test events that occurred on the same LF01 engine and to generate engine data to support fundamental and computational research to investigate and better understand the physics of ice crystal icing in a turbofan engine environment while duplicating known revenue service events and conducting test points while varying facility and engine parameters. During PSL calibration testing it was discovered than heated probes installed through tunnel sidewalls experienced ice buildup aft of their location due to ice crystals impinging upon them, melting and running back. Filtered city water was used in the cloud generation nozzle system to provide ice crystal nucleation sites. This resulted in mineralization forming on flow path hardware that led to a chronic degradation of performance during the month long test. Lacking internal flow path cameras, the response of thermocouples along the flow path was interpreted as ice building up. Using this interpretation, a strong correlation between total water content (TWC) and a weaker correlation between median volumetric diameter (MVD) of the ice crystal cloud and the rate of ice buildup along the instrumented flow path was identified. For this test article the engine anti-ice system was required to be turned on before ice crystal

  16. Validation Ice Crystal Icing Engine Test in the Propulsion Systems Laboratory at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Oliver, Michael J.

    2014-01-01

    The Propulsion Systems Laboratory (PSL) is an existing altitude simulation jet engine test facility located at NASA Glenn Research Center in Clevleand, OH. It was modified in 2012 with the integration of an ice crystal cloud generation system. This paper documents the inaugural ice crystal cloud test in PSLthe first ever full scale, high altitude ice crystal cloud turbofan engine test to be conducted in a ground based facility. The test article was a Lycoming ALF502-R5 high bypass turbofan engine, serial number LF01. The objectives of the test were to validate the PSL ice crystal cloud calibration and engine testing methodologies by demonstrating the capability to calibrate and duplicate known flight test events that occurred on the same LF01 engine and to generate engine data to support fundamental and computational research to investigate and better understand the physics of ice crystal icing in a turbofan engine environment while duplicating known revenue service events and conducting test points while varying facility and engine parameters. During PSL calibration testing it was discovered than heated probes installed through tunnel sidewalls experienced ice buildup aft of their location due to ice crystals impinging upon them, melting and running back. Filtered city water was used in the cloud generation nozzle system to provide ice crystal nucleation sites. This resulted in mineralization forming on flow path hardware that led to a chronic degradation of performance during the month long test. Lacking internal flow path cameras, the response of thermocouples along the flow path was interpreted as ice building up. Using this interpretation, a strong correlation between total water content (TWC) and a weaker correlation between median volumetric diameter (MVD) of the ice crystal cloud and the rate of ice buildup along the instrumented flow path was identified. For this test article the engine anti-ice system was required to be turned on before ice crystal icing

  17. Developing an Environmental Decision Support System for Stream Management: the STREAMES Experience

    NASA Astrophysics Data System (ADS)

    Riera, J.; Argerich, A.; Comas, J.; Llorens, E.; Martí, E.; Godé, L.; Pargament, D.; Puig, M.; Sabater, F.

    2005-05-01

    Transferring research knowledge to stream managers is crucial for scientifically sound management. Environmental decision support systems are advocated as an effective means to accomplish this. STREAMES (STream REAach Management: an Expert System) is a decision tree based EDSS prototype developed within the context of an European project as a tool to assist water managers in the diagnosis of problems, detection of causes, and selection of management strategies for coping with stream degradation issues related mostly to excess nutrient availability. STREAMES was developed by a team of scientists, water managers, and experts in knowledge engineering. Although the tool focuses on management at the stream reach scale, it also incorporates a mass-balance catchment nutrient emission model and a simple GIS module. We will briefly present the prototype and share our experience in its development. Emphasis will be placed on the process of knowledge acquisition, the design process, the pitfalls and benefits of the communication between scientists and managers, and the potential for future development of STREAMES, particularly in the context of the EU Water Framework Directive.

  18. 14 CFR 33.68 - Induction system icing.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.68 Induction system icing. Each engine, with all icing protection systems operating, must— (a) Operate throughout its flight power...

  19. 14 CFR 33.68 - Induction system icing.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.68 Induction system icing. Each engine, with all icing protection systems operating, must— (a) Operate throughout its flight power...

  20. The Potsdam Parallel Ice Sheet Model (PISM-PIK) - Part 2: Dynamic equilibrium simulation of the Antarctic ice sheet

    NASA Astrophysics Data System (ADS)

    Martin, M. A.; Winkelmann, R.; Haseloff, M.; Albrecht, T.; Bueler, E.; Khroulev, C.; Levermann, A.

    2011-09-01

    We present a dynamic equilibrium simulation of the ice sheet-shelf system on Antarctica with the Potsdam Parallel Ice Sheet Model (PISM-PIK). The simulation is initialized with present-day conditions for bed topography and ice thickness and then run to steady state with constant present-day surface mass balance. Surface temperature and sub-shelf basal melt distribution are parameterized. Grounding lines and calving fronts are free to evolve, and their modeled equilibrium state is compared to observational data. A physically-motivated calving law based on horizontal spreading rates allows for realistic calving fronts for various types of shelves. Steady-state dynamics including surface velocity and ice flux are analyzed for whole Antarctica and the Ronne-Filchner and Ross ice shelf areas in particular. The results show that the different flow regimes in sheet and shelves, and the transition zone between them, are captured reasonably well, supporting the approach of superposition of SIA and SSA for the representation of fast motion of grounded ice. This approach also leads to a natural emergence of sliding-dominated flow in stream-like features in this new 3-D marine ice sheet model.

  1. Design of analytical systems based on functionality of doped ice.

    PubMed

    Okada, Tetsuo

    2014-01-01

    Ice plays an important role for the circulations of some compounds in the global environment. Both the ice surface and the liquid phase developed in a frozen solution are involved in such reactions of the molecules of environmental importance. This leads to the idea that ice can be used to design novel analytical reaction systems. We devised ice chromatography, in which ice particles are used as the liquid chromatographic stationary phase, and have subsequently developed various analytical systems utilizing the functionality of ice. This review focuses our attention on the analytical facets of ice containing impurities such as salts; hereinafter, we call this "doped ice". The design of novel separation systems and use as microreactors with doped ice are mainly discussed.

  2. Airborne Tomographic Swath Ice Sounding Processing System

    NASA Technical Reports Server (NTRS)

    Wu, Xiaoqing; Rodriquez, Ernesto; Freeman, Anthony; Jezek, Ken

    2013-01-01

    Glaciers and ice sheets modulate global sea level by storing water deposited as snow on the surface, and discharging water back into the ocean through melting. Their physical state can be characterized in terms of their mass balance and dynamics. To estimate the current ice mass balance, and to predict future changes in the motion of the Greenland and Antarctic ice sheets, it is necessary to know the ice sheet thickness and the physical conditions of the ice sheet surface and bed. This information is required at fine resolution and over extensive portions of the ice sheets. A tomographic algorithm has been developed to take raw data collected by a multiple-channel synthetic aperture sounding radar system over a polar ice sheet and convert those data into two-dimensional (2D) ice thickness measurements. Prior to this work, conventional processing techniques only provided one-dimensional ice thickness measurements along profiles.

  3. New approaches to observation and modeling of fast-moving glaciers and ice streams

    NASA Astrophysics Data System (ADS)

    Herzfeld, U. C.; Trantow, T.; Markle, M. J.; Medley, G.; Markus, T.; Neumann, T.

    2016-12-01

    In this paper, we will give an overview of several new approaches to remote-sensing observations and analysis and to modeling of fast glacier flow. The approaches will be applied in case studies of different types of fast-moving glaciers: (1) The Bering-Bagley Glacier System, Alaska (a surge-type glacier system), (2) Jakobshavn Isbræ, Greenland (a tide-water terminating fjord glacier and outlet of the Greenland Inland Ice), and (3) Icelandic Ice Caps (manifestations of the interaction of volcanic and glaciologic processes). On the observational side, we will compare the capabilities of lidar and radar altimeters, including ICESat's Geoscience Laser Altimeter System (GLAS), CryoSat-2's Synthetic Aperture Interferometric Radar Altimeter (SIRAL) and the future ICESat-2 Advanced Topographic Laser Altimeter System (ATLAS), especially regarding retrieval of surface heights over crevassed regions as typical of spatial and temporal acceleration. Properties that can be expected from ICESat-2 ATLAS data will be illustrated based on analyses of data from ICESat-2 simulator instruments: the Slope Imaging Multi-polarization Photon-counting Lidar (SIMPL) and the Multiple Altimeter Beam Experimental Lidar (MABEL). Information from altimeter data will be augmented by an automated surface classification based on image data, which includes satellite imagery such as LANDSAT and WorldView as well as airborne video imagery of ice surfaces. Numerical experiments using Elmer/Ice will be employed to link parameters derived in observations to physical processes during the surge of the Bering Bagley Glacier System. This allows identification of processes that can be explained in an existing framework and processes that may require new concepts for glacier evolution. Topics include zonation of surge progression in a complex glacier system and crevassing as an indication, storage of glacial water, influence of basal topography and the role of friction laws.

  4. Maximizing Resource Utilization in Video Streaming Systems

    ERIC Educational Resources Information Center

    Alsmirat, Mohammad Abdullah

    2013-01-01

    Video streaming has recently grown dramatically in popularity over the Internet, Cable TV, and wire-less networks. Because of the resource demanding nature of video streaming applications, maximizing resource utilization in any video streaming system is a key factor to increase the scalability and decrease the cost of the system. Resources to…

  5. Short-term sea ice forecasting: An assessment of ice concentration and ice drift forecasts using the U.S. Navy's Arctic Cap Nowcast/Forecast System

    NASA Astrophysics Data System (ADS)

    Hebert, David A.; Allard, Richard A.; Metzger, E. Joseph; Posey, Pamela G.; Preller, Ruth H.; Wallcraft, Alan J.; Phelps, Michael W.; Smedstad, Ole Martin

    2015-12-01

    In this study the forecast skill of the U.S. Navy operational Arctic sea ice forecast system, the Arctic Cap Nowcast/Forecast System (ACNFS), is presented for the period February 2014 to June 2015. ACNFS is designed to provide short term, 1-7 day forecasts of Arctic sea ice and ocean conditions. Many quantities are forecast by ACNFS; the most commonly used include ice concentration, ice thickness, ice velocity, sea surface temperature, sea surface salinity, and sea surface velocities. Ice concentration forecast skill is compared to a persistent ice state and historical sea ice climatology. Skill scores are focused on areas where ice concentration changes by ±5% or more, and are therefore limited to primarily the marginal ice zone. We demonstrate that ACNFS forecasts are skilful compared to assuming a persistent ice state, especially beyond 24 h. ACNFS is also shown to be particularly skilful compared to a climatologic state for forecasts up to 102 h. Modeled ice drift velocity is compared to observed buoy data from the International Arctic Buoy Programme. A seasonal bias is shown where ACNFS is slower than IABP velocity in the summer months and faster in the winter months. In February 2015, ACNFS began to assimilate a blended ice concentration derived from Advanced Microwave Scanning Radiometer 2 (AMSR2) and the Interactive Multisensor Snow and Ice Mapping System (IMS). Preliminary results show that assimilating AMSR2 blended with IMS improves the short-term forecast skill and ice edge location compared to the independently derived National Ice Center Ice Edge product.

  6. Estimation of composite hydraulic resistance in ice-covered alluvial streams

    NASA Astrophysics Data System (ADS)

    Ghareh Aghaji Zare, Soheil; Moore, Stephanie A.; Rennie, Colin D.; Seidou, Ousmane; Ahmari, Habib; Malenchak, Jarrod

    2016-02-01

    Formation, propagation, and recession of ice cover introduce a dynamic boundary layer to the top of rivers during northern winters. Ice cover affects water velocity magnitude and distribution, water level and consequently conveyance capacity of the river. In this research, total resistance, i.e., "composite resistance," is studied for a 4 month period including stable ice cover, breakup, and open water stages in Lower Nelson River (LNR), northern Manitoba, Canada. Flow and ice characteristics such as water velocity and depth and ice thickness and condition were measured continuously using acoustic techniques. An Acoustic Doppler Current Profiler (ADCP) and Shallow Water Ice Profiling Sonar (SWIPS) were installed simultaneously on a bottom mount and deployed for this purpose. Total resistance to the flow and boundary roughness are estimated using measured bulk hydraulic parameters. A novel method is developed to calculate composite resistance directly from measured under ice velocity profiles. The results of this method are compared to the measured total resistance and to the calculated composite resistance using formulae available in literature. The new technique is demonstrated to compare favorably to measured total resistance and to outperform previously available methods.

  7. Experimental investigation of static ice refrigeration air conditioning system driven by distributed photovoltaic energy system

    NASA Astrophysics Data System (ADS)

    Xu, Y. F.; Li, M.; Luo, X.; Wang, Y. F.; Yu, Q. F.; Hassanien, R. H. E.

    2016-08-01

    The static ice refrigeration air conditioning system (SIRACS) driven by distributed photovoltaic energy system (DPES) was proposed and the test experiment have been investigated in this paper. Results revealed that system energy utilization efficiency is low because energy losses were high in ice making process of ice slide maker. So the immersed evaporator and co-integrated exchanger were suggested in system structure optimization analysis and the system COP was improved nearly 40%. At the same time, we have researched that ice thickness and ice super-cooled temperature changed along with time and the relationship between system COP and ice thickness was obtained.

  8. On the role of ice-nucleating aerosol in the formation of ice particles in tropical mesoscale convective systems

    NASA Astrophysics Data System (ADS)

    Ladino, Luis A.; Korolev, Alexei; Heckman, Ivan; Wolde, Mengistu; Fridlind, Ann M.; Ackerman, Andrew S.

    2017-02-01

    Over the decades, the cloud physics community has debated the nature and role of aerosol particles in ice initiation. The present study shows that the measured concentration of ice crystals in tropical mesoscale convective systems exceeds the concentration of ice nucleating particles (INPs) by several orders of magnitude. The concentration of INPs was assessed from the measured aerosol particle concentration in the size range of 0.5 to 1 µm. The observations from this study suggest that primary ice crystals formed on INPs make only a minor contribution to the total concentration of ice crystals in tropical mesoscale convective systems. This is found by comparing the predicted INP number concentrations with in situ ice particle number concentrations. The obtained measurements suggest that ice multiplication is the likely explanation for the observed high concentrations of ice crystals in this type of convective system.

  9. On the role of ice-nucleating aerosol in the formation of ice particles in tropical mesoscale convective systems

    PubMed Central

    Ladino, Luis A.; Korolev, Alexei; Heckman, Ivan; Wolde, Mengistu; Fridlind, Ann M.; Ackerman, Andrew S.

    2018-01-01

    Over decades, the cloud physics community has debated the nature and role of aerosol particles in ice initiation. The present study shows that the measured concentration of ice crystals in tropical mesoscale convective systems exceeds the concentration of ice nucleating particles (INPs) by several orders of magnitude. The concentration of INPs was assessed from the measured aerosol particles concentration in the size range of 0.5 to 1 µm. The observations from this study suggest that primary ice crystals formed on INPs make only a minor contribution to the total concentration of ice crystals in tropical mesoscale convective systems. This is found by comparing the predicted INP number concentrations with in-situ ice particle number concentrations. The obtained measurements suggest that ice multiplication is the likely explanation for the observed high concentrations of ice crystals in this type of convective system. PMID:29551842

  10. Spatial Patterns of Long-Term Erosion Rates Beneath the Marine West Antarctic Ice Sheet: Insights into the Physics of Continental Scale Glacial Erosion from a Comparison with the Ice-Velocity Field

    NASA Astrophysics Data System (ADS)

    Howat, I. M.; Tulaczyk, S.; Mac Gregor, K.; Joughin, I.

    2001-12-01

    with the steady state deforming till model of Cuffey and Alley (1997). Therefore, we hypothesize that the erosional system beneath the WAIS, which has overridden a thick layer of erodible, Tertiary marine sediments (Studinger et al., in press), is 'transport limited' and that the horizontal gradients in ice velocity and till flux have the predominant control over spatial patterns of subglacial erosion and deposition rates. In contrast, past studies of erosional systems have concentrated on mountain glaciers that derive their debris through erosion of hard bedrock. In those cases, the erosional system may be 'production limited' because erosion rates scale with dissipation of gravitational energy, represented by the velocity-times-constant equation. Thus, this concept of a 'transport limited' system represents a deviation from past thinking regarding the dynamics of bed erosion, and may be unique to marine-based ice sheets. Using this concept as a base, we will construct more accurately parameterized models to better define the relationship between the dynamics of ice streams and the character of the sub glacial bed.

  11. Icing research tunnel rotating bar calibration measurement system

    NASA Technical Reports Server (NTRS)

    Gibson, Theresa L.; Dearmon, John M.

    1993-01-01

    In order to measure icing patterns across a test section of the Icing Research Tunnel, an automated rotating bar measurement system was developed at the NASA Lewis Research Center. In comparison with the previously used manual measurement system, this system provides a number of improvements: increased accuracy and repeatability, increased number of data points, reduced tunnel operating time, and improved documentation. The automated system uses a linear variable differential transformer (LVDT) to measure ice accretion. This instrument is driven along the bar by means of an intelligent stepper motor which also controls data recording. This paper describes the rotating bar calibration measurement system.

  12. Air conditioning system with supplemental ice storing and cooling capacity

    DOEpatents

    Weng, Kuo-Lianq; Weng, Kuo-Liang

    1998-01-01

    The present air conditioning system with ice storing and cooling capacity can generate and store ice in its pipe assembly or in an ice storage tank particularly equipped for the system, depending on the type of the air conditioning system. The system is characterized in particular in that ice can be produced and stored in the air conditioning system whereby the time of supplying cooled air can be effectively extended with the merit that the operation cycle of the on and off of the compressor can be prolonged, extending the operation lifespan of the compressor in one aspect. In another aspect, ice production and storage in great amount can be performed in an off-peak period of the electrical power consumption and the stored ice can be utilized in the peak period of the power consumption so as to provide supplemental cooling capacity for the compressor of the air conditioning system whereby the shift of peak and off-peak power consumption can be effected with ease. The present air conditioning system can lower the installation expense for an ice-storing air conditioning system and can also be applied to an old conventional air conditioning system.

  13. Ice Storage System for School Complex.

    ERIC Educational Resources Information Center

    Montgomery, Ross D.

    1998-01-01

    Describes a project at the Manatee Education Center in Naples, Florida, which won an ASHRAE award. Project involved the implementation of ice-storage technology in 19 schools. Compares the performance of ice-storage systems with traditional chiller designs in two other schools. Tables illustrate costs for the campuses. Addresses the maintenance…

  14. Global ice-sheet system interlocked by sea level

    NASA Astrophysics Data System (ADS)

    Denton, George H.; Hughes, Terence J.; Karlén, Wibjörn

    1986-07-01

    Denton and Hughes (1983, Quaternary Research20, 125-144) postulated that sea level linked a global ice-sheet system with both terrestrial and grounded marine components during late Quaternary ice ages. Summer temperature changes near Northern Hemisphere melting margins initiated sea-level fluctuations that controlled marine components in both polar hemispheres. It was further proposed that variations of this ice-sheet system amplified and transmitted Milankovitch summer half-year insolation changes between 45 and 75°N into global climatic changes. New tests of this hypothesis implicate sea level as a major control of the areal extent of grounded portions of the Antarctic Ice Sheet, thus fitting the concept of a globally interlocked ice-sheet system. But recent atmospheric modeling results ( Manabe and Broccoli, 1985, Journal of Geophysical Research90, 2167-2190) suggest that factors other than areal changes of the grounded Antarctic Ice Sheet strongly influenced Southern Hemisphere climate and terminated the last ice age simultaneously in both polar hemispheres. Atmospheric carbon dioxide linked to high-latitude oceans is the most likely candidate ( Shackleton and Pisias, 1985, Atmospheric carbon dioxide, orbital forcing, and climate. In "The Carbon Cycle and Atmospheric CO 2: Natural Variations Archean to Present" (E. T. Sundquest and W. S. Broecker, Eds.), pp. 303-318. Geophysical Monograph 32, American Geophysical Union, Washington, D.C.), but another potential influence was high-frequency climatic oscillations (2500 yr). It is postulated that variations in atmospheric carbon dioxide acted through an Antarctic ice shelf linked to the grounded ice sheet to produce and terminate Southern Hemisphere ice-age climate. It is further postulated that Milankovitch summer insolation combined with a warm high-frequency oscillation caused marked recession of Northern Hemisphere ice-sheet melting margins and the North Atlantic polar front about 14,000 14C yr B.P. This

  15. The far reach of ice-shelf thinning in Antarctica

    NASA Astrophysics Data System (ADS)

    Reese, R.; Gudmundsson, G. H.; Levermann, A.; Winkelmann, R.

    2018-01-01

    Floating ice shelves, which fringe most of Antarctica's coastline, regulate ice flow into the Southern Ocean1-3. Their thinning4-7 or disintegration8,9 can cause upstream acceleration of grounded ice and raise global sea levels. So far the effect has not been quantified in a comprehensive and spatially explicit manner. Here, using a finite-element model, we diagnose the immediate, continent-wide flux response to different spatial patterns of ice-shelf mass loss. We show that highly localized ice-shelf thinning can reach across the entire shelf and accelerate ice flow in regions far from the initial perturbation. As an example, this `tele-buttressing' enhances outflow from Bindschadler Ice Stream in response to thinning near Ross Island more than 900 km away. We further find that the integrated flux response across all grounding lines is highly dependent on the location of imposed changes: the strongest response is caused not only near ice streams and ice rises, but also by thinning, for instance, well-within the Filchner-Ronne and Ross Ice Shelves. The most critical regions in all major ice shelves are often located in regions easily accessible to the intrusion of warm ocean waters10-12, stressing Antarctica's vulnerability to changes in its surrounding ocean.

  16. Patterns of variability in steady- and non steady-state Ross Ice Shelf flow

    NASA Astrophysics Data System (ADS)

    Campbell, A. J.; Hulbe, C. L.; Scambos, T. A.; Klinger, M. J.; Lee, C. K.

    2016-12-01

    Ice shelves are gateways through which climate change can be transmitted from the ocean or atmosphere to a grounded ice sheet. It is thus important to separate patterns of ice shelf change driven internally (from the ice sheet) and patterns driven externally (by the ocean or atmosphere) so that modern observations can be viewed in an appropriate context. Here, we focus on the Ross Ice Shelf (RIS), a major component of the West Antarctic Ice Sheet system and a feature known to experience variable ice flux from tributary ice streams and glaciers, for example, ice stream stagnation and glacier surges. We perturb a model of the Ross Ice Shelf with periodic influx variations, ice rise and ice plain grounding events, and iceberg calving in order to generate transients in the ice shelf flow and thickness. Characteristic patterns associated with those perturbations are identified using empirical orthogonal functions (EOFs). The leading EOFs reveal shelf-wide pattern of response to local perturbations that can be interpreted in terms of coupled mass and momentum balance. For example, speed changes on Byrd Glacier cause both thinning and thickening in a broad region that extends to Roosevelt Island. We calculate decay times at various locations for various perturbations and find that mutli-decadal to century time scales are typical. Unique identification of responses to particular forcings may thus be difficlult to achieve and flow divergence cannot be assumed to be constant when interpreting observed changes in ice thickness. In reality, perturbations to the ice shelf do not occur individually, rather the ice shelf contains a history of boundary perturbations. To explore the degree individual perturbations are seperable from their ensemble, EOFs from individual events are combined in pairs and compared against experiments with the same periodic perturbations pairs. Residuals between these EOFs reveal the degree interaction between between disctinct perturbations.

  17. ICE System: Interruptible control expert system. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Vezina, James M.

    1990-01-01

    The Interruptible Control Expert (ICE) System is based on an architecture designed to provide a strong foundation for real-time production rule expert systems. Three principles are adopted to guide the development of ICE. A practical delivery platform must be provided, no specialized hardware can be used to solve deficiencies in the software design. Knowledge of the environment and the rule-base is exploited to improve the performance of a delivered system. The third principle of ICE is to respond to the most critical event, at the expense of the more trivial tasks. Minimal time is spent on classifying the potential importance of environmental events with the majority of the time used for finding the responses. A feature of the system, derived from all three principles, is the lack of working memory. By using a priori information, a fixed amount of memory can be specified for the hardware platform. The absence of working memory removes the dangers of garbage collection during the continuous operation of the controller.

  18. Development of the improved helicopter icing spray system (IHISS)

    NASA Technical Reports Server (NTRS)

    Peterson, Andrew A.; Jenks, Mark D.; Gaitskill, William H.

    1989-01-01

    Boeing Helicopters has been awarded a contract by the U.S. Army to design, fabricate and test a replacement for the existing Helicopter Icing Spray System (HISS). The Improved Hiss (IHISS), capable of deployment from any CH-47D helicopter, will include new icing spray nozzles and pneumatic pressure source, and a significantly larger water tank and spray boom. Results are presented for extensive bench and icing tunnel test programs used to select and modify an improved spray nozzle and validate spray boom aerodynamic characteristics. The resulting system will provide a significantly larger icing cloud with droplet characteristics closely matching natural icing conditions.

  19. Monitoring Supraglacial Streams over Three Months in Southwest Greenland

    NASA Astrophysics Data System (ADS)

    Muthyala, R.; Rennermalm, A.; Leidman, S. Z.; Cooper, M. G.; Cooley, S. W.; Smith, L. C.; van As, D.

    2017-12-01

    Supraglacial river networks are the most efficient conduits for evacuation of meltwater runoff produced on Greenland ice sheet. These rivers are prominent features on the ablation zone of southwest Greenland. However, little is known about the transport of meltwater through supraglacial stream network and most of the in-situ observations only capture a few days of streamflow. Here we report three months of observations of water level and discharge collected during summer of 2016, in two small supraglacial streams near the ice sheet margin in southwest Greenland. We also compare streamflow observations with meteorological data from a nearby automatic weather station. The two sites are very different, with the lower basin relatively steep, smooth and dark while the upper basin has rugged terrain and deeply incised stream channels. These catchment characteristics propagate to different relationships with meteorological parameters. For example, upper basin stream water levels show a strong covariance with surface temperature while the lower basin water levels do not. We also find differences in temporal variation of supraglacial stream water level, with the upper basin having two distinct peaks, in mid-June and mid-July, while the lower basin shows gradual decrease from June to August. Long-term supraglacial stream observations such as these will ultimately help assess how well surface mass balance models can simulate ice sheet runoff.

  20. Drive Fan of the NACA's Icing Research Tunnel

    NASA Image and Video Library

    1956-10-21

    A researcher examines the drive fan inside the Icing Research Tunnel at the National Advisory Committee for Aeronautics (NACA) Flight Propulsion Research Laboratory in Cleveland, Ohio. The facility was built in the mid-1940s to simulate the atmospheric conditions that caused ice to build up on aircraft. Carrier Corporation refrigeration equipment reduced the internal air temperature to -45⁰ F, and a spray bar system injected water droplets into the air stream. The 24-foot diameter drive fan, seen in this photograph, created air flow velocities up to 400 miles per hour. The 1950s were prime years for the Icing Research Tunnel. NACA engineers had spent the 1940s trying to resolve the complexities of the spray bar system. The final system put into operation in 1950 included six horizontal spray bars with 80 nozzles that produced a 4- by 4-foot cloud in the test section. The icing tunnel was used for extensive testing of civilian and military aircraft components in the 1950s. The NACA also launched a major investigation of the various methods of heating leading edge surfaces. The hot-air anti-icing technology used on today’s commercial transports was largely developed in the facility during this period. Lewis researchers also made significant breakthroughs with icing on radomes and jet engines. Although the Icing Research Tunnel yielded major breakthroughs in the 1950s, the Lewis icing research program began tapering off as interest in the space program grew. The icing tunnel’s use declined in 1956 and 1957. The launch of Sputnik in October 1957 signaled the end of the facility’s operation. The icing staff was transferred to other research projects and the icing tunnel was temporarily mothballed.

  1. Behavioural and physiological responses of brook trout Salvelinus fontinalis to midwinter flow reduction in a small ice-free mountain stream.

    PubMed

    Krimmer, A N; Paul, A J; Hontela, A; Rasmussen, J B

    2011-09-01

    This study presents an experimental analysis of the effects of midwinter flow reduction (50-75%, reduction in discharge in 4 h daily pulses) on the physical habitat and on behaviour and physiology of overwintering brook trout Salvelinus fontinalis in a small mountain stream. Flow reduction did not result in significant lowering of temperature or formation of surface or subsurface ice. The main findings were (1) daily movement by S. fontinalis increased (c. 2·5-fold) during flow reduction, but was limited to small-scale relocations (<10 m). (2) Undercut banks were the preferred habitat and availability of these habitats was reduced during flow reduction. (3) Although both experimental and reference fish did lose mass and condition during the experiment, no effects of flow reduction on stress indicators (blood cortisol or glucose) or bioenergetics (total body fat, water content or mass loss) were detected, probably because access to the preferred type of cover remained available. Like other salmonids, S. fontinalis moves little and seeks physical cover during winter. Unlike many of the more studied salmonids, however, this species overwinters successfully in small groundwater-rich streams that often remain ice-free, and this study identifies undercut banks as the critical winter habitat rather than substratum cover. © 2011 The Authors. Journal of Fish Biology © 2011 The Fisheries Society of the British Isles.

  2. Eastern Ross Ice Sheet Deglacial History inferred from the Roosevelt Island Ice Core

    NASA Astrophysics Data System (ADS)

    Fudge, T. J.; Buizert, C.; Lee, J.; Waddington, E. D.; Bertler, N. A. N.; Conway, H.; Brook, E.; Severinghaus, J. P.

    2017-12-01

    The Ross Ice Sheet drains large portions of both West and East Antarctica. Understanding the retreat of the Ross Ice Sheet following the Last Glacial Maximum is particularly difficult in the eastern Ross area where there is no exposed rock and the Ross Ice Shelf prevents extensive bathymetric mapping. Coastal domes, by preserving old ice, can be used to infer the establishment of grounded ice and be used to infer past ice thickness. Here we focus on Roosevelt Island, in the eastern Ross Sea, where the Roosevelt Island Climate Evolution project recently completed an ice core to bedrock. Using ice-flow modeling constrained by the depth-age relationship and an independent estimate of accumulation rate from firn-densification measurements and modeling, we infer ice thickness histories for the LGM (20ka) to present. Preliminary results indicate thinning of 300m between 15ka and 12ka is required. This is similar to the amount and timing of thinning inferred at Siple Dome, in the central Ross Sea (Waddington et al., 2005; Price et al., 2007) and supports the presence of active ice streams throughout the Ross Ice Sheet advance during the LGM.

  3. Meteorological conditions in a thinner Arctic sea ice regime from winter to summer during the Norwegian Young Sea Ice expedition (N-ICE2015)

    NASA Astrophysics Data System (ADS)

    Cohen, Lana; Hudson, Stephen R.; Walden, Von P.; Graham, Robert M.; Granskog, Mats A.

    2017-07-01

    Atmospheric measurements were made over Arctic sea ice north of Svalbard from winter to early summer (January-June) 2015 during the Norwegian Young Sea Ice (N-ICE2015) expedition. These measurements, which are available publicly, represent a comprehensive meteorological data set covering the seasonal transition in the Arctic Basin over the new, thinner sea ice regime. Winter was characterized by a succession of storms that produced short-lived (less than 48 h) temperature increases of 20 to 30 K at the surface. These storms were driven by the hemispheric scale circulation pattern with a large meridional component of the polar jet stream steering North Atlantic storms into the high Arctic. Nonstorm periods during winter were characterized by strong surface temperature inversions due to strong radiative cooling ("radiatively clear state"). The strength and depth of these inversions were similar to those during the Surface Heat Budget of the Arctic Ocean (SHEBA) campaign. In contrast, atmospheric profiles during the "opaquely cloudy state" were different to those from SHEBA due to differences in the synoptic conditions and location within the ice pack. Storm events observed during spring/summer were the result of synoptic systems located in the Barents Sea and the Arctic Basin rather than passing directly over N-ICE2015. These synoptic systems were driven by a large-scale circulation pattern typical of recent years, with an Arctic Dipole pattern developing during June. Surface temperatures became near-constant 0°C on 1 June marking the beginning of summer. Atmospheric profiles during the spring and early summer show persistent lifted temperature and moisture inversions that are indicative of clouds and cloud processes.

  4. Stationary Solutions of A One-dimensional Thermodynamic Radiative Sea Ice Model

    NASA Astrophysics Data System (ADS)

    Taylor, P. D.; Feltham, D. L.

    A one-dimensional thermodynamic model of sea ice is coupled to a two-stream radi- ation model and the stationary (time-independent) solutions analysed. The stationary model represents the state of the sea ice subjected to persistent or slowly varying forc- ing. Two physically realisable stationary solutions (real and positive ice thickness) occur for a large range of positive oceanic heat flux ( 20,Wm-2). The two station- ary solutions are due to the two-stream radiation model, which allows radiation to be reflected at the ice-ocean interface. Thick ice ( 1,m) only absorbs radiation near its surface, whereas thin ice ( 0.1,m) absorbs radiation across its entire depth. The two stationary solutions are caused by these two different radiative regimes. The results of this analysis have relevance to the interpretation and implementation of thermody- namic models of sea ice and the interpretation of thickness data.

  5. Lake Ice Monitoring with Webcams

    NASA Astrophysics Data System (ADS)

    Xiao, M.; Rothermel, M.; Tom, M.; Galliani, S.; Baltsavias, E.; Schindler, K.

    2018-05-01

    Continuous monitoring of climate indicators is important for understanding the dynamics and trends of the climate system. Lake ice has been identified as one such indicator, and has been included in the list of Essential Climate Variables (ECVs). Currently there are two main ways to survey lake ice cover and its change over time, in-situ measurements and satellite remote sensing. The challenge with both of them is to ensure sufficient spatial and temporal resolution. Here, we investigate the possibility to monitor lake ice with video streams acquired by publicly available webcams. Main advantages of webcams are their high temporal frequency and dense spatial sampling. By contrast, they have low spectral resolution and limited image quality. Moreover, the uncontrolled radiometry and low, oblique viewpoints result in heavily varying appearance of water, ice and snow. We present a workflow for pixel-wise semantic segmentation of images into these classes, based on state-of-the-art encoder-decoder Convolutional Neural Networks (CNNs). The proposed segmentation pipeline is evaluated on two sequences featuring different ground sampling distances. The experiment suggests that (networks of) webcams have great potential for lake ice monitoring. The overall per-pixel accuracies for both tested data sets exceed 95 %. Furthermore, per-image discrimination between ice-on and ice-off conditions, derived by accumulating per-pixel results, is 100 % correct for our test data, making it possible to precisely recover freezing and thawing dates.

  6. Sustainable Capture: Concepts for Managing Stream-Aquifer Systems.

    PubMed

    Davids, Jeffrey C; Mehl, Steffen W

    2015-01-01

    Most surface water bodies (i.e., streams, lakes, etc.) are connected to the groundwater system to some degree so that changes to surface water bodies (either diversions or importations) can change flows in aquifer systems, and pumping from an aquifer can reduce discharge to, or induce additional recharge from streams, springs, and lakes. The timescales of these interactions are often very long (decades), making sustainable management of these systems difficult if relying only on observations of system responses. Instead, management scenarios are often analyzed based on numerical modeling. In this paper we propose a framework and metrics that can be used to relate the Theis concepts of capture to sustainable measures of stream-aquifer systems. We introduce four concepts: Sustainable Capture Fractions, Sustainable Capture Thresholds, Capture Efficiency, and Sustainable Groundwater Storage that can be used as the basis for developing metrics for sustainable management of stream-aquifer systems. We demonstrate their utility on a hypothetical stream-aquifer system where pumping captures both streamflow and discharge to phreatophytes at different amounts based on pumping location. In particular, Capture Efficiency (CE) can be easily understood by both scientists and non-scientist alike, and readily identifies vulnerabilities to sustainable stream-aquifer management when its value exceeds 100%. © 2014, National Ground Water Association.

  7. Common-midpoint radar surveys of ice sheets: a tool for better ice and bed property inversions

    NASA Astrophysics Data System (ADS)

    Holschuh, N.; Christianson, K.; Anandakrishnan, S.; Alley, R. B.; Jacobel, R. W.

    2016-12-01

    In response to the demand for observationally derived boundary conditions in ice-sheet models, geophysicists are striving to more quantitatively interpret the reflection amplitudes of ice penetrating radar data. Inversions for ice-flow parameters and basal properties typically use common-offset radar data, which contain a single observation of bed reflection amplitude at each location in the survey; however, the radar equation has more than one unknown - ice temperature, subglacial water content, and bedrock roughness cannot be uniquely determined without additional constraints. In this study, we adapt traditional seismic property inversion techniques to radar data, using additional information collected with a common-midpoint (CMP) radar survey geometry (which varies the source-receiver offset for each subsurface target). Using two of the first common-midpoint ice-penetrating radar data sets collected over thick ice in Antarctica and Greenland, we test the hypothesis that these data can be used to disentangle the contributions of ice conductivity and bed permittivity to the received reflection amplitudes. We focus specifically on the corrections for the angular dependence of antenna gain and surface reflectivity, refractive focusing effects, and surface scattering losses. Inferred temperature profiles, derived from the constrained ice conductivities at Kamb Ice Stream and the North East Greenland Ice Stream, suggest higher than expected depth-integrated temperatures, as well as non-physical depth trends (with elevated temperatures near the surface). We hypothesize that this is driven in part by offset-dependent interferences between the sub-wavelength layers that make up a single nadir reflection, and present a convolutional model that describes how this interference might systematically reduce reflection power with offset (thereby elevating the inferred attenuation rate). If these additional offset-dependent power losses can be isolated and removed, common

  8. An ice-motion tracking system at the Alaska SAR facility

    NASA Technical Reports Server (NTRS)

    Kwok, Ronald; Curlander, John C.; Pang, Shirley S.; Mcconnell, Ross

    1990-01-01

    An operational system for extracting ice-motion information from synthetic aperture radar (SAR) imagery is being developed as part of the Alaska SAR Facility. This geophysical processing system (GPS) will derive ice-motion information by automated analysis of image sequences acquired by radars on the European ERS-1, Japanese ERS-1, and Canadian RADARSAT remote sensing satellites. The algorithm consists of a novel combination of feature-based and area-based techniques for the tracking of ice floes that undergo translation and rotation between imaging passes. The system performs automatic selection of the image pairs for input to the matching routines using an ice-motion estimator. It is designed to have a daily throughput of ten image pairs. A description is given of the GPS system, including an overview of the ice-motion-tracking algorithm, the system architecture, and the ice-motion products that will be available for distribution to geophysical data users.

  9. A Systems-Level Perspective on Engine Ice Accretion

    NASA Technical Reports Server (NTRS)

    May, Ryan D.; Guo, Ten-Huei; Simon, Donald L.

    2013-01-01

    The accretion of ice in the compression system of commercial gas turbine engines operating in high ice water content conditions is a safety issue being studied by the aviation sector. While most of the research focuses on the underlying physics of ice accretion and the meteorological conditions in which accretion can occur, a systems-level perspective on the topic lends itself to potential near-term operational improvements. This work focuses on developing an accurate and reliable algorithm for detecting the accretion of ice in the low pressure compressor of a generic 40,000 lbf thrust class engine. The algorithm uses only the two shaft speed sensors and works regardless of engine age, operating condition, and power level. In a 10,000-case Monte Carlo simulation, the detection approach was found to have excellent capability at determining ice accretion from sensor noise with detection occurring when ice blocks an average of 6.8% of the low pressure compressor area. Finally, an initial study highlights a potential mitigation strategy that uses the existing engine actuators to raise the temperature in the low pressure compressor in an effort to reduce the rate at which ice accretes.

  10. Determination of Ice Water Path in Ice-over-Water Cloud Systems Using Combined MODIS and AMSR-E Measurements

    NASA Technical Reports Server (NTRS)

    Huang, Jianping; Minnis, Patrick; Lin, Bing; Yi, Yuhong; Fan, T.-F.; Sun-Mack, Sunny; Ayers, J. K.

    2006-01-01

    To provide more accurate ice cloud properties for evaluating climate models, the updated version of multi-layered cloud retrieval system (MCRS) is used to retrieve ice water path (IWP) in ice-over-water cloud systems over global ocean using combined instrument data from the Aqua satellite. The liquid water path (LWP) of lower layer water clouds is estimated from the Advanced Microwave Scanning Radiometer for EOS (AMSR-E) measurements. With the lower layer LWP known, the properties of the upper-level ice clouds are then derived from Moderate Resolution Imaging Spectroradiometer measurements by matching simulated radiances from a two-cloud layer radiative transfer model. Comparisons with single-layer cirrus systems and surface-based radar retrievals show that the MCRS can significantly improve the accuracy and reduce the over-estimation of optical depth and ice water path retrievals for ice over-water cloud systems. During the period from December 2004 through February 2005, the mean daytime ice cloud optical depth and IWP for overlapped ice-over-water clouds over ocean from Aqua are 7.6 and 146.4 gm(sup -2), respectively, significantly less than the initial single layer retrievals of 17.3 and 322.3 gm(sup -2). The mean IWP for actual single-layer clouds was 128.2 gm(sup -2).

  11. Wind tunnel evaluation of air-foil performance using simulated ice shapes

    NASA Technical Reports Server (NTRS)

    Bragg, M. B.; Zaguli, R. J.; Gregorek, G. M.

    1982-01-01

    A two-phase wind tunnel test was conducted in the 6 by 9 foot Icing Research Tunnel (IRT) at NASA Lewis Research Center to evaluate the effect of ice on the performance of a full scale general aviation wing. In the first IRT tests, rime and glaze shapes were carefully documented as functions of angle of attack and free stream conditions. Next, simulated ice shapes were constructed for two rime and two glaze shapes and used in the second IRT tunnel entry. The ice shapes and the clean airfoil were tapped to obtain surface pressures and a probe used to measure the wake characteristics. These data were recorded and processed, on-line, with a minicomputer/digital data acquisition system. The effect of both rime and glaze ice on the pressure distribution, Cl, Cd, and Cm are presented.

  12. Improving Arctic Sea Ice Edge Forecasts by Assimilating High Horizontal Resolution Sea Ice Concentration Data into the US Navy’s Ice Forecast Systems

    DTIC Science & Technology

    2016-06-13

    Global Ocean Forecast System 3.1 also showed a substantial improvement in ice edge location over a system using the SSMIS sea ice concentration product... Global Ocean Fore- cast System (GOFS 3.1). Prior to 2 February 2015, the ice concentration fields from both ACNFS and GOFS 3.1 had been updated with...Scanning Radiometer (AMSR2) on the Japan Aerospace Exploration Agency (JAXA) Global Change Observation Mission – Water (GCOM-W) platform became available

  13. Potential subglacial lake locations and meltwater drainage pathways beneath the Antarctic and Greenland ice sheets

    NASA Astrophysics Data System (ADS)

    Livingstone, S. J.; Clark, C. D.; Woodward, J.; Kingslake, J.

    2013-11-01

    We use the Shreve hydraulic potential equation as a simplified approach to investigate potential subglacial lake locations and meltwater drainage pathways beneath the Antarctic and Greenland ice sheets. We validate the method by demonstrating its ability to recall the locations of >60% of the known subglacial lakes beneath the Antarctic Ice Sheet. This is despite uncertainty in the ice-sheet bed elevation and our simplified modelling approach. However, we predict many more lakes than are observed. Hence we suggest that thousands of subglacial lakes remain to be found. Applying our technique to the Greenland Ice Sheet, where very few subglacial lakes have so far been observed, recalls 1607 potential lake locations, covering 1.2% of the bed. Our results will therefore provide suitable targets for geophysical surveys aimed at identifying lakes beneath Greenland. We also apply the technique to modelled past ice-sheet configurations and find that during deglaciation both ice sheets likely had more subglacial lakes at their beds. These lakes, inherited from past ice-sheet configurations, would not form under current surface conditions, but are able to persist, suggesting a retreating ice-sheet will have many more subglacial lakes than advancing ones. We also investigate subglacial drainage pathways of the present-day and former Greenland and Antarctic ice sheets. Key sectors of the ice sheets, such as the Siple Coast (Antarctica) and NE Greenland Ice Stream system, are suggested to have been susceptible to subglacial drainage switching. We discuss how our results impact our understanding of meltwater drainage, basal lubrication and ice-stream formation.

  14. Ice dynamics of Heinrich events: Insights and implications

    NASA Astrophysics Data System (ADS)

    Alley, R. B.; Parizek, B. R.; Anandakrishnan, S.

    2017-12-01

    Physical understanding of ice flow provides important constraints on Heinrich (H) events, which in turn provide lessons for ice dynamics and future sea-level change. Iceberg-rafted debris (IRD), the defining feature of H events, is a complex indicator; however, in cold climates with extensive marine-ending ice, increased IRD flux records ice-shelf loss. Ice shelves fed primarily by inflow from grounded ice experience net basal melting, giving sub-ice-sedimentation rather than open-ocean IRD. Ice-shelf loss has been observed recently in response to atmospheric warming increasing surface meltwater that wedged open crevasses (Larsen B), but also by break-off following thinning from warming of waters reaching the grounding line (Jakobshavn). The H events consistently occurred during cold times resulting from reduced North Atlantic overturning circulation ("conveyor"), but as argued by Marcott et al. (PNAS 2011), this was accompanied by delayed warming at grounding-line depths of the Hudson Strait ice stream, the source of the Heinrich layers, implicating oceanic control. As shown in a rich literature, additional considerations involving thermal state of the ice-stream bed, isostasy and probably other processes influenced why some reduced-conveyor events triggered H-events while others did not. Ice shelves, including the inferred Hudson Strait ice shelf, typically exist in high-salinity, cold waters produced by brine rejection from sea-ice formation, which are the coldest abundant waters in the world ocean. Thus, almost any change in air or ocean temperature, winds or currents can remove ice shelves, because "replacement" water masses are typically warmer. And, because ice shelves almost invariably slow flow of non-floating ice into the ocean, climatic perturbations to regions with ice shelves typically lead to sea-level rise, with important implications.

  15. The Effects of Sulfuric Acid on Mechanical Properties of Polycrystalline Ice

    NASA Astrophysics Data System (ADS)

    DeAngelis, M. K.; Lee, M. S.; Huang, K.

    2017-12-01

    The rates of flow for ice streams and glaciers are an important contributor to models of future sea level rise. Soluble impurities, such as sulfuric acid from acid rain, have been identified in ice cores, making it of utmost importance to understand the complete effects of such impurities on the mechanical properties of ice. While previous studies have provided insight into how sulfuric acid affects the viscosity in glaciers, the effects of sulfuric acid on elastic stiffness and friction has received less attention. In this study, we measured and compared the Young's Modulus and steady-state friction of 10 ppm sulfuric acid doped water ice samples to that of pure water ice samples. Microstructure characterization of the sample indicated that, even at such low concentration, the acid was located in small melt pockets at grain triple junctions. With an ultrasonic velocity testing system at -22 °C, primary waves and secondary waves were sent through each sample and wave velocities were recorded. These values and the density of the samples were used to calculate Young's Modulus. The sulfuric acid doped ice has an elastic stiffness that is less than that of pure ice. Reduced modulus could influence calving rates and other ice shelf processes. Using a custom cryo-biaxial apparatus, the friction of doped ice on rock was directly measured at several programmed velocities. The double direct shear configuration was employed, with a normal stress of 100 kPa and a temperature of -5 °C. Compared to previous studies on pure ice, the sulfuric acid doped ice sample experienced similar steady state friction. However, preliminary results indicate that doped samples exhibited velocity weakening behavior (i.e. as velocity increased, friction decreased) and stick slip events, while pure ice maintained a relatively neutral velocity dependence at this temperature. Field observations have reported stick slip motion at Whillans Ice Stream in Antarctica, but an explanation is unclear

  16. Reconstruction of the Final Phases of Activity and Retreat of the North Sea Lobe Ice Stream during the Late Devensian

    NASA Astrophysics Data System (ADS)

    Grimoldi, E.; Roberts, D. H.; Evans, D. J. A.; Stewart, H. A.; Sejrup, H. P.; Hjelstuen, B. O. B.; Haflidason, H.; Clark, C.

    2016-12-01

    The deglacial history of the former eastern margin of the last British and Irish Ice Sheet (BIIS) is still poorly understood, particularly in the western North Sea basin. The North Sea Lobe (NSL) affected the area, although gaps remain in our knowledge of the geomorphological and sedimentary imprint that the ice stream left on the seafloor and, more importantly, of its way of final retreat. In this work we analyse new high-resolution multibeam bathymetry, 2D seismic profiles and five vibro-cores, collected in the western North Sea in collaboration with the Britice-Chrono project, and provide new insights on the seafloor geomorphology and acoustic and lithological facies that characterize the Quaternary sediments of the area. The presence of bedrock-cored lineations orientated WNW-ESE to NW-SE indicates that the NSL was fed by the Forth ice stream which moved offshore from southern Scotland. Moraine ridges and two grounding zone wedges, perpendicular to the lineations, suggest that the NSL underwent different phases of stillstand/readvance and retreated towards the north-west. Five acoustic facies (AF) were identified, four of which are found on top of pre-Quaternary strata (AF 1), though their lateral extension is discontinuous. They are interpreted to represent glacigenic diamicts (AF 2 and 3), that are overlain by glacimarine (AF 4) and by Holocene deposits (AF 5). The vibro-cores penetrate in depth until reaching the top of AF 3. This facies correlates to the diamictic sediments observed in the cores, which are characterized by soft silts and clays and abundant clasts. The glacimarine sediments generally appear as highly laminated silts and clays with dropstones that usually become less frequent going upwards in the cores. These sediments are also characterized by foraminifera species associated with glacial environments. Foraminifera tests were dated within the galcimarine sequences in two cores and will help constrain the timing of ice retreat. By compiling

  17. Ice detection systems : experimental feature : final report.

    DOT National Transportation Integrated Search

    1986-01-01

    In the fall of 1980, an experimental ice detection system was installed on the Fremont Bridge in Portland, Oregon. this bridge, which caries I-405 over the Willamette River, has a history of icing problem when the deck is wet and the temperature hove...

  18. Tidal bending of ice shelves as a mechanism for large-scale temporal variations in ice flow

    NASA Astrophysics Data System (ADS)

    Rosier, Sebastian H. R.; Hilmar Gudmundsson, G.

    2018-05-01

    GPS measurements reveal strong modulation of horizontal ice shelf and ice stream flow at a variety of tidal frequencies, most notably a fortnightly (Msf) frequency not present in the vertical tides themselves. Current theories largely fail to explain the strength and prevalence of this signal over floating ice shelves. We show how well-known non-linear aspects of ice rheology can give rise to widespread, long-periodic tidal modulation in ice shelf flow, generated within ice shelves themselves through tidal flexure acting at diurnal and semidiurnal frequencies. Using full-Stokes viscoelastic modelling, we show that inclusion of tidal bending within the model accounts for much of the observed tidal modulation of ice shelf flow. Furthermore, our model shows that, in the absence of vertical tidal forcing, the mean flow of the ice shelf is reduced by almost 30 % for the geometry that we consider.

  19. Analysis of 2015 Winter In-Flight Icing Case Studies with Ground-Based Remote Sensing Systems Compared to In-Situ SLW Sondes

    NASA Technical Reports Server (NTRS)

    Serke, David J.; King, Michael Christopher; Hansen, Reid; Reehorst, Andrew L.

    2016-01-01

    National Aeronautics and Space Administration (NASA) and the National Center for Atmospheric Research (NCAR) have developed an icing remote sensing technology that has demonstrated skill at detecting and classifying icing hazards in a vertical column above an instrumented ground station. This technology has recently been extended to provide volumetric coverage surrounding an airport. Building on the existing vertical pointing system, the new method for providing volumetric coverage utilizes a vertical pointing cloud radar, a multi-frequency microwave radiometer with azimuth and elevation pointing, and a NEXRAD radar. The new terminal area icing remote sensing system processes the data streams from these instruments to derive temperature, liquid water content, and cloud droplet size for each examined point in space. These data are then combined to ultimately provide icing hazard classification along defined approach paths into an airport. To date, statistical comparisons of the vertical profiling technology have been made to Pilot Reports and Icing Forecast Products. With the extension into relatively large area coverage and the output of microphysical properties in addition to icing severity, the use of these comparators is not appropriate and a more rigorous assessment is required. NASA conducted a field campaign during the early months of 2015 to develop a database to enable the assessment of the new terminal area icing remote sensing system and further refinement of terminal area icing weather information technologies in general. In addition to the ground-based remote sensors listed earlier, in-situ icing environment measurements by weather balloons were performed to produce a comprehensive comparison database. Balloon data gathered consisted of temperature, humidity, pressure, super-cooled liquid water content, and 3-D position with time. Comparison data plots of weather balloon and remote measurements, weather balloon flight paths, bulk comparisons of

  20. Geodynamic Modeling of Planetary Ice-Oceans: Evolution of Ice-Shell Thickness in Convecting Two-Phase Systems

    NASA Astrophysics Data System (ADS)

    Allu Peddinti, D.; McNamara, A. K.

    2016-12-01

    Along with the newly unveiled icy surface of Pluto, several icy planetary bodies show indications of an active surface perhaps underlain by liquid oceans of some size. This augments the interest to explore the evolution of an ice-ocean system and its surface implications. The geologically young surface of the Jovian moon Europa lends much speculation to variations in ice-shell thickness over time. Along with the observed surface features, it suggests the possibility of episodic convection and conduction within the ice-shell as it evolved. What factors would control the growth of the ice-shell as it forms? If and how would those factors determine the thickness of the ice-shell and consequently the heat transfer? Would parameters such as tidal heating or initial temperature affect how the ice-shell grows and to what significance? We perform numerical experiments using geodynamical models of the two-phase ice-water system to study the evolution of planetary ice-oceans such as that of Europa. The models evolve self-consistently from an initial liquid ocean as it cools with time. The effects of presence, absence and magnitude of tidal heating on ice-shell thickness are studied in different models. The vigor of convection changes as the ice-shell continues to thicken. Initial modeling results track changes in the growth rate of the ice-shell as the vigor of the convection changes. The magnitude and temporal location of the rate change varies with different properties of tidal heating and values of initial temperature. A comparative study of models is presented to demonstrate how as the ice-shell is forming, its growth rate and convection are affected by processes such as tidal heating.

  1. Convection Models for Ice-Water System: Dynamical Investigation of Phase Transition

    NASA Astrophysics Data System (ADS)

    Allu Peddinti, D.; McNamara, A. K.

    2012-12-01

    Ever since planetary missions of Voyager and Galileo revealed a dynamically altered surface of the icy moon Europa, a possible subsurface ocean under an icy shell has been speculated and surface features have been interpreted from an interior dynamics perspective. The physics of convection in a two phase water-ice system is governed by a wide set of physical parameters that include melting viscosity of ice, the variation of viscosity due to pressure and temperature, temperature contrast across and tidal heating within the system, and the evolving thickness of each layer. Due to the extreme viscosity contrast between liquid water and solid ice, it is not feasible to model the entire system to study convection. However, using a low-viscosity proxy (higher viscosity than the liquid water but much lower than solid ice) for the liquid phase provides a convenient approximation of the system, and allows for a relatively realistic representation of convection within the ice layer while also providing a self-consistent ice layer thickness that is a function of the thermal state of the system. In order to apply this method appropriately, we carefully examine the upper bound of viscosity required for the low-viscosity proxy to adequately represent the liquid phase. We identify upper bounds on the viscosity of the proxy liquid such that convective dynamics of the ice are not affected by further reductions of viscosity. Furthermore, we investigate how the temperature contrast across the system and viscosity contrast between liquid and ice control ice layer thickness. We also investigate ice shell thickening as a function of cooling, particularly how viscosity affects the conduction-to-convection transition within the ice shell. Finally, we present initial results that investigate the effects that latent heat of fusion (due to the ice-water phase transition) has on ice convection.

  2. Evolution of Planetary Ice-Ocean Systems: Effects of Salinity

    NASA Astrophysics Data System (ADS)

    Allu Peddinti, D.; McNamara, A. K.

    2015-12-01

    Planetary oceanography is enjoying renewed attention thanks to not only the detection of several exoplanetary ocean worlds but also due to the expanding family of ocean worlds within our own star system. Our solar system is now believed to host about nine ocean worlds including Earth, some dwarf planets and few moons of Jupiter and Saturn. Amongst them, Europa, like Earth is thought to have an ice Ih-liquid water system. However, the thickness of the Europan ice-ocean system is much larger than that of the Earth. The evolution of this system would determine the individual thicknesses of the ice shell and the ocean. In turn, these thicknesses can alter the course of evolution of the system. In a pure H2O system, the thickness of the ice shell would govern if heat loss occurs entirely by conduction or if the shell begins to convect as it attains a threshold thickness. This switch between conduction-convection regimes could determine the longevity of the subsurface ocean and hence define the astrobiological potential of the planetary body at any given time. In reality, however, the system is not pure water ice. The detected induced magnetic field infers a saline ocean layer. Salts are expected to act as an anti-freeze allowing a subsurface ocean to persist over long periods but the amount of salts would determine the extent of that effect. In our current study, we use geodynamic models to examine the effect of salinity on the evolution of ice-ocean system. An initial ocean with different salinities is allowed to evolve. The effect of salinity on thickness of the two layers at any time is examined. We also track how salinity controls the switch between conductive-convective modes. The study shows that for a given time period, larger salinities can maintain a thick vigorously convecting ocean while the smaller salinities behave similar to a pure H2O system leading to a thick convecting ice-shell. A range of salinities identified can potentially predict the current state

  3. Stream protection with small cable yarding systems

    Treesearch

    Penn A. Peters; Chris B. LeDoux

    1984-01-01

    Small cable yarder systems that can be purchased and operated by independent logging contractors have less potential negative impact on water quality than ground-based systems operating on steep terrain because they do not require such an intense road system. Stream protection costs were estimated at $3.78 per lineal foot of stream when a typical small yarder (Koller K...

  4. AVHRR imagery reveals Antarctic ice dynamics

    NASA Technical Reports Server (NTRS)

    Bindschadler, Robert A.; Vornberger, Patricia L.

    1990-01-01

    A portion of AVHRR data taken on December 5, 1987 at 06:15 GMT over a part of Antarctica is used here to show that many of the most significant dynamic features of ice sheets can be identified by a careful examination of AVHRR imagery. The relatively low resolution of this instrument makes it ideal for obtaining a broad view of the ice sheets, while its wide swath allows coverage of areas beyond the reach of high-resolution imagers either currently in orbit or planned. An interpretation is given of the present data, which cover the area of ice streams that drain the interior of the West Antarctic ice sheet into the Ross Ice Shelf.

  5. Determination of ice water path in ice-over-water cloud systems using combined MODIS and AMSR-E measurements

    NASA Astrophysics Data System (ADS)

    Huang, Jianping; Minnis, Patrick; Lin, Bing; Yi, Yuhong; Fan, T.-F.; Sun-Mack, Sunny; Ayers, J. K.

    2006-11-01

    To provide more accurate ice cloud microphysical properties, the multi-layered cloud retrieval system (MCRS) is used to retrieve ice water path (IWP) in ice-over-water cloud systems globally over oceans using combined instrument data from Aqua. The liquid water path (LWP) of lower-layer water clouds is estimated from the Advanced Microwave Scanning Radiometer for EOS (AMSR-E) measurements. The properties of the upper-level ice clouds are then derived from Moderate Resolution Imaging Spectroradiometer (MODIS) measurements by matching simulated radiances from a two-cloud-layer radiative transfer model. The results show that the MCRS can significantly improve the accuracy and reduce the over-estimation of optical depth and IWP retrievals for ice-over-water cloud systems. The mean daytime ice cloud optical depth and IWP for overlapped ice-over-water clouds over oceans from Aqua are 7.6 and 146.4 gm-2, respectively, down from the initial single-layer retrievals of 17.3 and 322.3 gm-2. The mean IWP for actual single-layer clouds is 128.2 gm-2.

  6. Antarctic Glaciological Data at NSIDC: field data, temperature, and ice velocity

    NASA Astrophysics Data System (ADS)

    Bauer, R.; Bohlander, J.; Scambos, T.; Berthier, E.; Raup, B.; Scharfen, G.

    2003-12-01

    An extensive collection of many Antarctic glaciological parameters is available for the polar science community upon request. The National Science Foundation's Office of Polar Programs funds the Antarctic Glaciological Data Center (AGDC) at the National Snow and Ice Data Center (NSIDC) to archive and distribute Antarctic glaciological and cryospheric system data collected by the U.S. Antarctic Program. AGDC facilitates data exchange among Principal Investigators, preserves recently collected data useful to future research, gathers data sets from past research, and compiles continent-wide information useful for modeling and field work planning. Data sets are available via our web site, http://nsidc.org/agdc/. From here, users can access extensive documentation, citation information, locator maps, derived images and references, and the numerical data. More than 50 Antarctic scientists have contributed data to the archive. Among the compiled products distributed by AGDC are VELMAP and THERMAP. THERMAP is a compilation of over 600 shallow firn temperature measurements ('10-meter temperatures') collected since 1950. These data provide a record of mean annual temperature, and potentially hold a record of climate change on the continent. The data are represented with maps showing the traverse route, and include data sources, measurement technique, and additional measurements made at each site, i.e., snow density and accumulation. VELMAP is an archive of surface ice velocity measurements for the Antarctic Ice Sheet. The primary objective of VELMAP is to assemble a historic record of outlet glaciers and ice shelf ice motion over the Antarctic. The collection includes both PI-contributed measurements and data generated at NSIDC using Landsat and SPOT satellite imagery. Tabular data contain position, speed, bearing, and data quality information, and related references. Two new VELMAP data sets are highlighted: the Mertz Glacier and the Institute Ice Stream. Mertz Glacier ice

  7. Seasonal sea ice predictions for the Arctic based on assimilation of remotely sensed observations

    NASA Astrophysics Data System (ADS)

    Kauker, F.; Kaminski, T.; Ricker, R.; Toudal-Pedersen, L.; Dybkjaer, G.; Melsheimer, C.; Eastwood, S.; Sumata, H.; Karcher, M.; Gerdes, R.

    2015-10-01

    The recent thinning and shrinking of the Arctic sea ice cover has increased the interest in seasonal sea ice forecasts. Typical tools for such forecasts are numerical models of the coupled ocean sea ice system such as the North Atlantic/Arctic Ocean Sea Ice Model (NAOSIM). The model uses as input the initial state of the system and the atmospheric boundary condition over the forecasting period. This study investigates the potential of remotely sensed ice thickness observations in constraining the initial model state. For this purpose it employs a variational assimilation system around NAOSIM and the Alfred Wegener Institute's CryoSat-2 ice thickness product in conjunction with the University of Bremen's snow depth product and the OSI SAF ice concentration and sea surface temperature products. We investigate the skill of predictions of the summer ice conditions starting in March for three different years. Straightforward assimilation of the above combination of data streams results in slight improvements over some regions (especially in the Beaufort Sea) but degrades the over-all fit to independent observations. A considerable enhancement of forecast skill is demonstrated for a bias correction scheme for the CryoSat-2 ice thickness product that uses a spatially varying scaling factor.

  8. Topographic Steering of Enhanced Ice Flow at the Bottleneck Between East and West Antarctica

    NASA Astrophysics Data System (ADS)

    Winter, Kate; Ross, Neil; Ferraccioli, Fausto; Jordan, Tom A.; Corr, Hugh F. J.; Forsberg, René; Matsuoka, Kenichi; Olesen, Arne V.; Casal, Tania G.

    2018-05-01

    Hypothesized drawdown of the East Antarctic Ice Sheet through the "bottleneck" zone between East and West Antarctica would have significant impacts for a large proportion of the Antarctic Ice Sheet. Earth observation satellite orbits and a sparseness of radio echo sounding data have restricted investigations of basal boundary controls on ice flow in this region until now. New airborne radio echo sounding surveys reveal complex topography of high relief beneath the southernmost Weddell/Ross ice divide, with three subglacial troughs connecting interior Antarctica to the Foundation and Patuxent Ice Streams and Siple Coast ice streams. These troughs route enhanced ice flow through the interior of Antarctica but limit potential drawdown of the East Antarctic Ice Sheet through the bottleneck zone. In a thinning or retreating scenario, these topographically controlled corridors of enhanced flow could however drive ice divide migration and increase mass discharge from interior West Antarctica to the Southern Ocean.

  9. Heating the Ice-Covered Lakes of the McMurdo Dry Valleys, Antarctica - Decadal Trends in Heat Content, Ice Thickness, and Heat Exchange

    NASA Astrophysics Data System (ADS)

    Gooseff, M. N.; Priscu, J. C.; Doran, P. T.; Chiuchiolo, A.; Obryk, M.

    2014-12-01

    Lakes integrate landscape processes and climate conditions. Most of the permanently ice-covered lakes in the McMurdo Dry Valleys, Antarctica are closed basin, receiving glacial melt water from streams for 10-12 weeks per year. Lake levels rise during the austral summer are balanced by sublimation of ice covers (year-round) and evaporation of open water moats (summer only). Vertical profiles of water temperature have been measured in three lakes in Taylor Valley since 1988. Up to 2002, lake levels were dropping, ice covers were thickening, and total heat contents were decreasing. These lakes have been gaining heat since the mid-2000s, at rates as high as 19.5x1014 cal/decade). Since 2002, lake levels have risen substantially (as much as 2.5 m), and ice covers have thinned (1.5 m on average). Analyses of lake ice thickness, meteorological conditions, and stream water heat loads indicate that the main source of heat to these lakes is from latent heat released when ice-covers form during the winter. An aditional source of heat to the lakes is water inflows from streams and direct glacieal melt. Mean lake temperatures in the past few years have stabilized or cooled, despite increases in lake level and total heat content, suggesting increased direct inflow of meltwater from glaciers. These results indicate that McMurdo Dry Valley lakes are sensitive indicators of climate processes in this polar desert landscape and demonstrate the importance of long-term data sets when addressing the effects of climate on ecosystem processes.

  10. NASA Glenn Propulsion Systems Lab (PSL) Icing Facility Update

    NASA Technical Reports Server (NTRS)

    Thomas, Queito P.

    2015-01-01

    The NASA Glenn Research Center Propulsion Systems Lab (PSL) was recently upgraded to perform engine inlet ice crystal testing in an altitude environment. The system installed 10 spray bars in the inlet plenum for ice crystal generation using 222 spray nozzles. As an altitude test chamber, PSL is capable of simulation of in-flight icing events in a ground test facility. The system was designed to operate at altitudes from 4,000 ft. to 40,000 ft. at Mach numbers up to 0.8M and inlet total temperatures from -60F to +15F.

  11. A fiber-optic ice detection system for large-scale wind turbine blades

    NASA Astrophysics Data System (ADS)

    Kim, Dae-gil; Sampath, Umesh; Kim, Hyunjin; Song, Minho

    2017-09-01

    Icing causes substantial problems in the integrity of large-scale wind turbines. In this work, a fiber-optic sensor system for detection of icing with an arrayed waveguide grating is presented. The sensor system detects Fresnel reflections from the ends of the fibers. The transition in Fresnel reflection due to icing gives peculiar intensity variations, which categorizes the ice, the water, and the air medium on the wind turbine blades. From the experimental results, with the proposed sensor system, the formation of icing conditions and thickness of ice were identified successfully in real time.

  12. Quaternary evolution of the Fennoscandian Ice Sheet from 3D seismic data

    NASA Astrophysics Data System (ADS)

    Montelli, A.; Dowdeswell, J. A.; Ottesen, D.; Johansen, S. E.

    2016-12-01

    The Quaternary seismic stratigraphy and architecture of the mid-Norwegian continental shelf and slope are investigated using extensive grids of marine 2D and 3D seismic reflection data that cover more than 100,000 km2 of the continental margin. At least 26 distinct regional palaeo-surfaces have been interpreted within the stratigraphy of the Quaternary Naust Formation on the mid-Norwegian margin. Multiple assemblages of buried glacigenic landforms are preserved within the Naust Formation across most of the study area, facilitating detailed palaeo-glaciological reconstructions. We document a marine-terminating, calving Fennoscandian Ice Sheet (FIS) margin present periodically on the Norwegian shelf since at least the beginning of the Quaternary. Elongate, streamlined landforms interpreted as mega-scale glacial lineations (MSGLs) have been found within the upper part of the Naust sequence N ( 1.9-1.6 Ma), sugesting the development of fast-flowing ice streams since that time. Shifts in the location of depocentres and direction of features indicative of fast ice-flow suggest that several reorganisations in the FIS drainage have occurred since 1.5 Ma. Subglacial landforms reveal a complex and dynamic ice sheet, with converging palaeo-ice streams and several flow-switching events that may reflect major changes in topography and internal ice-sheet structure. Lack of subglacial meltwater channels suggests a largely distributed, low-volume meltwater system that drained the FIS through permeable subglacial till without leaving much erosional evidence. This regional palaeo-environmental examination of the FIS provides a useful framework for ice-sheet modelling and shows that fragmentary preservation of buried surfaces and variability of ice-sheet dynamics should be taken into account when reconstructing glacial history from spatially limited datasets.

  13. The IceCube Neutrino Observatory: instrumentation and online systems

    NASA Astrophysics Data System (ADS)

    Aartsen, M. G.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Andeen, K.; Anderson, T.; Ansseau, I.; Anton, G.; Archinger, M.; Argüelles, C.; Auer, R.; Auffenberg, J.; Axani, S.; Baccus, J.; Bai, X.; Barnet, S.; Barwick, S. W.; Baum, V.; Bay, R.; Beattie, K.; Beatty, J. J.; Becker Tjus, J.; Becker, K.-H.; Bendfelt, T.; BenZvi, S.; Berley, D.; Bernardini, E.; Bernhard, A.; Besson, D. Z.; Binder, G.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blot, S.; Boersma, D.; Bohm, C.; Börner, M.; Bos, F.; Bose, D.; Böser, S.; Botner, O.; Bouchta, A.; Braun, J.; Brayeur, L.; Bretz, H.-P.; Bron, S.; Burgman, A.; Burreson, C.; Carver, T.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Clark, K.; Classen, L.; Coenders, S.; Collin, G. H.; Conrad, J. M.; Cowen, D. F.; Cross, R.; Day, C.; Day, M.; de André, J. P. A. M.; De Clercq, C.; del Pino Rosendo, E.; Dembinski, H.; De Ridder, S.; Descamps, F.; Desiati, P.; de Vries, K. D.; de Wasseige, G.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; di Lorenzo, V.; Dujmovic, H.; Dumm, J. P.; Dunkman, M.; Eberhardt, B.; Edwards, W. R.; Ehrhardt, T.; Eichmann, B.; Eller, P.; Euler, S.; Evenson, P. A.; Fahey, S.; Fazely, A. R.; Feintzeig, J.; Felde, J.; Filimonov, K.; Finley, C.; Flis, S.; Fösig, C.-C.; Franckowiak, A.; Frère, M.; Friedman, E.; Fuchs, T.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Ghorbani, K.; Giang, W.; Gladstone, L.; Glauch, T.; Glowacki, D.; Glüsenkamp, T.; Goldschmidt, A.; Gonzalez, J. G.; Grant, D.; Griffith, Z.; Gustafsson, L.; Haack, C.; Hallgren, A.; Halzen, F.; Hansen, E.; Hansmann, T.; Hanson, K.; Haugen, J.; Hebecker, D.; Heereman, D.; Helbing, K.; Hellauer, R.; Heller, R.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Hoshina, K.; Huang, F.; Huber, M.; Hulth, P. O.; Hultqvist, K.; In, S.; Inaba, M.; Ishihara, A.; Jacobi, E.; Jacobsen, J.; Japaridze, G. S.; Jeong, M.; Jero, K.; Jones, A.; Jones, B. J. P.; Joseph, J.; Kang, W.; Kappes, A.; Karg, T.; Karle, A.; Katz, U.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kemp, J.; Kheirandish, A.; Kim, J.; Kim, M.; Kintscher, T.; Kiryluk, J.; Kitamura, N.; Kittler, T.; Klein, S. R.; Kleinfelder, S.; Kleist, M.; Kohnen, G.; Koirala, R.; Kolanoski, H.; Konietz, R.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krasberg, M.; Krings, K.; Kroll, M.; Krückl, G.; Krüger, C.; Kunnen, J.; Kunwar, S.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Laihem, K.; Landsman, H.; Lanfranchi, J. L.; Larson, M. J.; Lauber, F.; Laundrie, A.; Lennarz, D.; Leich, H.; Lesiak-Bzdak, M.; Leuermann, M.; Lu, L.; Ludwig, J.; Lünemann, J.; Mackenzie, C.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Mancina, S.; Mandelartz, M.; Maruyama, R.; Mase, K.; Matis, H.; Maunu, R.; McNally, F.; McParland, C. P.; Meade, P.; Meagher, K.; Medici, M.; Meier, M.; Meli, A.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Minor, R. H.; Montaruli, T.; Moulai, M.; Murray, T.; Nahnhauer, R.; Naumann, U.; Neer, G.; Newcomb, M.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke Pollmann, A.; Olivas, A.; O'Murchadha, A.; Palczewski, T.; Pandya, H.; Pankova, D. V.; Patton, S.; Peiffer, P.; Penek, Ö.; Pepper, J. A.; Pérez de los Heros, C.; Pettersen, C.; Pieloth, D.; Pinat, E.; Price, P. B.; Przybylski, G. T.; Quinnan, M.; Raab, C.; Rädel, L.; Rameez, M.; Rawlins, K.; Reimann, R.; Relethford, B.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Riedel, B.; Robertson, S.; Rongen, M.; Roucelle, C.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Rysewyk, D.; Sabbatini, L.; Sanchez Herrera, S. E.; Sandrock, A.; Sandroos, J.; Sandstrom, P.; Sarkar, S.; Satalecka, K.; Schlunder, P.; Schmidt, T.; Schoenen, S.; Schöneberg, S.; Schukraft, A.; Schumacher, L.; Seckel, D.; Seunarine, S.; Solarz, M.; Soldin, D.; Song, M.; Spiczak, G. M.; Spiering, C.; Stanev, T.; Stasik, A.; Stettner, J.; Steuer, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Ström, R.; Strotjohann, N. L.; Sulanke, K.-H.; Sullivan, G. W.; Sutherland, M.; Taavola, H.; Taboada, I.; Tatar, J.; Tenholt, F.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Thollander, L.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Toscano, S.; Tosi, D.; Tselengidou, M.; Turcati, A.; Unger, E.; Usner, M.; Vandenbroucke, J.; van Eijndhoven, N.; Vanheule, S.; van Rossem, M.; van Santen, J.; Vehring, M.; Voge, M.; Vogel, E.; Vraeghe, M.; Wahl, D.; Walck, C.; Wallace, A.; Wallraff, M.; Wandkowsky, N.; Weaver, Ch.; Weiss, M. J.; Wendt, C.; Westerhoff, S.; Wharton, D.; Whelan, B. J.; Wickmann, S.; Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams, D. R.; Wills, L.; Wisniewski, P.; Wolf, M.; Wood, T. R.; Woolsey, E.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zoll, M.

    2017-03-01

    The IceCube Neutrino Observatory is a cubic-kilometer-scale high-energy neutrino detector built into the ice at the South Pole. Construction of IceCube, the largest neutrino detector built to date, was completed in 2011 and enabled the discovery of high-energy astrophysical neutrinos. We describe here the design, production, and calibration of the IceCube digital optical module (DOM), the cable systems, computing hardware, and our methodology for drilling and deployment. We also describe the online triggering and data filtering systems that select candidate neutrino and cosmic ray events for analysis. Due to a rigorous pre-deployment protocol, 98.4% of the DOMs in the deep ice are operating and collecting data. IceCube routinely achieves a detector uptime of 99% by emphasizing software stability and monitoring. Detector operations have been stable since construction was completed, and the detector is expected to operate at least until the end of the next decade.

  14. Ice matrix in reconfigurable microfluidic systems

    NASA Astrophysics Data System (ADS)

    Bossi, A. M.; Vareijka, M.; Piletska, E. V.; Turner, A. P. F.; Meglinski, I.; Piletsky, S. A.

    2013-07-01

    Microfluidic devices find many applications in biotechnologies. Here, we introduce a flexible and biocompatible microfluidic ice-based platform with tunable parameters and configuration of microfluidic patterns that can be changed multiple times during experiments. Freezing and melting of cavities, channels and complex relief structures created and maintained in the bulk of ice by continuous scanning of an infrared laser beam are used as a valve action in microfluidic systems. We demonstrate that pre-concentration of samples and transport of ions and dyes through the open channels created can be achieved in ice microfluidic patterns by IR laser-assisted zone melting. The proposed approach can be useful for performing separation and sensing processes in flexible reconfigurable microfluidic devices.

  15. 40 CFR 63.2485 - What requirements must I meet for wastewater streams and liquid streams in open systems within an...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... wastewater streams and liquid streams in open systems within an MCPU? 63.2485 Section 63.2485 Protection of... Compliance Requirements § 63.2485 What requirements must I meet for wastewater streams and liquid streams in... to your wastewater streams and liquid streams in open systems within an MCPU, except as specified in...

  16. Ice stream reorganization and glacial retreat on the northwest Greenland shelf

    NASA Astrophysics Data System (ADS)

    Newton, A. M. W.; Knutz, P. C.; Huuse, M.; Gannon, P.; Brocklehurst, S. H.; Clausen, O. R.; Gong, Y.

    2017-08-01

    Understanding conditions at the grounding-line of marine-based ice sheets is essential for understanding ice sheet evolution. Offshore northwest Greenland, knowledge of the Last Glacial Maximum (LGM) ice sheet extent in Melville Bugt was previously based on sparse geological evidence. This study uses multibeam bathymetry, combined with 2-D and 3-D seismic reflection data, to present a detailed landform record from Melville Bugt. Seabed landforms include mega-scale glacial lineations, grounding-zone wedges, iceberg scours, and a lateral shear margin moraine, formed during the last glacial cycle. The geomorphology indicates that the LGM ice sheet reached the shelf edge before undergoing flow reorganization. After retreat of 80 km across the outer shelf, the margin stabilized in a mid-shelf position, possibly during the Younger Dryas (12.9-11.7 ka). The ice sheet then decoupled from the seafloor and retreated to a coast-proximal position. This landform record provides an important constraint on deglaciation history offshore northwest Greenland.

  17. Similarity of Stream Width Distributions Across Headwater Systems

    NASA Astrophysics Data System (ADS)

    Allen, G. H.; Pavelsky, T.; Barefoot, E. A.; Tashie, A.; Butman, D. E.

    2016-12-01

    The morphology and abundance of streams control the rates of hydraulic and biogeochemical exchange between streams, groundwater, and the atmosphere. In large river systems, studies have used remote sensing to quantify river morphology, and have found that the relationship between river width and abundance is fractal, such that narrow rivers are proportionally more common than wider rivers. However, in headwater systems (stream order 1-3), where many biogeochemical reactions are most rapid, the relationship between stream width and abundance is unknown, reducing the certainty of biogeochemical flux estimates. To constrain this uncertainty, we surveyed two components of stream morphology (wetted stream width and length) in seven physiographically contrasting stream networks in Kings Creek in Konza Prarie, KS; Sagehen Creek in the N. Sierra Nevada Mtns., CA; Elder Creek in Angelo Coast Range Preserve, CA; Caribou Creek in the Caribou Poker Creek Research Watershed, AK; V40 Stream, NZ; Blue Duck Creek, NZ; Stony Creek in Duke Forest, NC. To assess temporal variations, we also surveyed stream geometry in a subcatchment of Stony Creek six times over a range of moderate streamflow conditions (discharge less than 90 percentile of gauge record). Here we show a strikingly consistent gamma statistical distribution of stream width in all surveys and a characteristic most abundant stream width of 32±7 cm independent of flow conditions or basin size. This consistency is remarkable given the substantial physical diversity among the studied catchments. We propose a model that invokes network topology theory and downstream hydraulic geometry to show that, as active drainage networks expand and contract in response to changes in streamflow, the most abundant stream width remains approximately static. This framework can be used to better extrapolate stream size and abundance from large rivers to small headwater streams, with significant impact on understanding of the hydraulic

  18. The role of ice dynamics in shaping vegetation in flowing waters.

    PubMed

    Lind, Lovisa; Nilsson, Christer; Polvi, Lina E; Weber, Christine

    2014-11-01

    Ice dynamics is an important factor affecting vegetation in high-altitude and high-latitude streams and rivers. During the last few decades, knowledge about ice in streams and rivers has increased significantly and a respectable body of literature is now available. Here we review the literature on how ice dynamics influence riparian and aquatic vegetation. Traditionally, plant ecologists have focused their studies on the summer period, largely ignoring the fact that processes during winter also impact vegetation dynamics. For example, the freeze-up period in early winter may result in extensive formation of underwater ice that can restructure the channel, obstruct flow, and cause flooding and thus formation of more ice. In midwinter, slow-flowing reaches develop a surface-ice cover that accumulates snow, protecting habitats under the ice from formation of underwater ice but also reducing underwater light, thus suppressing photosynthesis. Towards the end of winter, ice breaks up and moves downstream. During this transport, ice floes can jam up and cause floods and major erosion. The magnitudes of the floods and their erosive power mainly depend on the size of the watercourse, also resulting in different degrees of disturbance to the vegetation. Vegetation responds both physically and physiologically to ice dynamics. Physical action involves the erosive force of moving ice and damage caused by ground frost, whereas physiological effects - mostly cell damage - happen as a result of plants freezing into the ice. On a community level, large magnitudes of ice dynamics seem to favour species richness, but can be detrimental for individual plants. Human impacts, such as flow regulation, channelisation, agriculturalisation and water pollution have modified ice dynamics; further changes are expected as a result of current and predicted future climate change. Human impacts and climate change can both favour and disfavour riverine vegetation dynamics. Restoration of streams

  19. Stream systems.

    Treesearch

    Jack E. Williams; Gordon H. Reeves

    2006-01-01

    Restored, high-quality streams provide innumerable benefits to society. In the Pacific Northwest, high-quality stream habitat often is associated with an abundance of salmonid fishes such as chinook salmon (Oncorhynchus tshawytscha), coho salmon (O. kisutch), and steelhead (O. mykiss). Many other native...

  20. Improved Detection of Supernovae with the IceCube Observatory

    NASA Astrophysics Data System (ADS)

    Köpke, Lutz; "IceCube Collaboration1, IceCube neutrino telescope monitors one cubic kilometer of deep Antarctic ice by detecting Cherenkov photons emitted from charged secondaries produced when neutrinos interact in the ice. The geometry of the detector, which comprises a lattice of 5160 photomultipliers, is optimized for the detection of neutrinos above 100 GeV. However, at subfreezing ice temperatures, dark noise rates are low enough that a high flux of MeV neutrinos streaming through the detector may be recognized by a collective rate enhancement in all photomultipliers. This method can be used to search for the signal of core collapse supernovae, providing sensitivity competitive to Mton neutrino detectors to a supernova in our Galaxy. An online data acquisition system dedicated to supernova detection has been running for several years, but its shortcomings include limited sampling frequency and the fact that the burst energy and direction cannot be reconstructed. A recently developed offline data acquisition system allows IceCube to buffer all registered photons in the detector in case of an alert with low probability to be erroneous. By analyzing such data offline, a precision determination of the burst onset time and the characteristics of rapidly varying fluxes, as well as estimates of the average neutrino energies may be obtained. For supernovae ending in a black hole, the IceCube data can also be used to determine the direction of the burst.

  1. A Study of the Effects of Altitude on Thermal Ice Protection System Performance

    NASA Technical Reports Server (NTRS)

    Addy, Gene; Oleskiw, Myron; Broeren, Andy P.; Orchard, David

    2013-01-01

    Thermal ice protection systems use heat energy to prevent a dangerous buildup of ice on an aircraft. As aircraft become more efficient, less heat energy is available to operate a thermal ice protections system. This requires that thermal ice protection systems be designed to more exacting standards so as to more efficiently prevent a dangerous ice buildup without adversely affecting aircraft safety. While the effects of altitude have always beeing taked into account in the design of thermal ice protection systems, a better understanding of these effects is needed so as to enable more exact design, testing, and evaluation of these systems.

  2. Radar studies of arctic ice and development of a real-time Arctic ice type identification system

    NASA Technical Reports Server (NTRS)

    Rouse, J. W., Jr.; Schell, J. A.; Permenter, J. A.

    1973-01-01

    Studies were conducted to develop a real-time Arctic ice type identification system. Data obtained by NASA Mission 126, conducted at Pt. Barrow, Alaska (Site 93) in April 1970 was analyzed in detail to more clearly define the major mechanisms at work affecting the radar energy illuminating a terrain cell of sea ice. General techniques for reduction of the scatterometer data to a form suitable for application of ice type decision criteria were investigated, and the electronic circuit requirements for implementation of these techniques were determined. Also, consideration of circuit requirements are extended to include the electronics necessary for analog programming of ice type decision algorithms. After completing the basic circuit designs a laboratory model was constructed and a preliminary evaluation performed. Several system modifications for improved performance are suggested. (Modified author abstract)

  3. Monstrous Ice Cloud System in Titan's Present South Polar Stratosphere

    NASA Astrophysics Data System (ADS)

    Anderson, Carrie; Samuelson, Robert; McLain, Jason; Achterberg, Richard; Flasar, F. Michael; Milam, Stefanie

    2015-11-01

    During southern autumn when sunlight was still available, Cassini's Imaging Science Subsystem discovered a cloud around 300 km near Titan's south pole (West, R. A. et al., AAS/DPS Abstracts, 45, #305.03, 2013); the cloud was later determined by Cassini's Visible and InfraRed Mapping Spectrometer to contain HCN ice (de Kok et al., Nature, 514, pp 65-67, 2014). This cloud has proven to be only the tip of an extensive ice cloud system contained in Titan's south polar stratosphere, as seen through the night-vision goggles of Cassini's Composite InfraRed Spectrometer (CIRS). As the sun sets and the gloom of southern winter approaches, evidence is beginning to accumulate from CIRS far-IR spectra that a massive system of nitrile ice clouds is developing in Titan's south polar stratosphere. Even during the depths of northern winter, nothing like the strength of this southern system was evident in corresponding north polar regions.From the long slant paths that are available from limb-viewing CIRS far-IR spectra, we have the first definitive detection of the ν6 band of cyanoacetylene (HC3N) ice in Titan’s south polar stratosphere. In addition, we also see a strong blend of nitrile ice lattice vibration features around 160 cm-1. From these data we are able to derive ice abundances. The most prominent (and still chemically unidentified) ice emission feature, the Haystack, (at 220 cm-1) is also observed. We establish the vertical distributions of the ice cloud systems associated with both the 160 cm-1 feature and the Haystack. The ultimate aim is to refine the physical and possibly the chemical relationships between the two. Transmittance thin film spectra of nitrile ice mixtures obtained in our Spectroscopy for Planetary ICes Environments (SPICE) laboratory are used to support these analyses.

  4. Methods and systems for detection of ice formation on surfaces

    NASA Technical Reports Server (NTRS)

    Alfano, Robert R. (Inventor); Wang, Wubao (Inventor); Sztul, Henry (Inventor); Budansky, Yury (Inventor)

    2007-01-01

    A system for detecting ice formation on metal, painted metal and other material surfaces can include a transparent window having an exterior surface upon which ice can form; a light source and optics configured and arranged to illuminate the exterior surface of the window from behind the exterior surface; and a detector and optics configured and arranged to receive light backscattered by the exterior surface and any ice disposed on the exterior surface and determine the thickness of the ice layer. For example, the system can be used with aircraft by placing one or more windows in the wings of the aircraft. The system is used for a novel optical method for real-time on-board detection and warning of ice formation on surfaces of airplanes, unmanned aerial vehicles (UAVs), and other vehicles and stationary structures to improve their safety and operation.

  5. 40 CFR 63.2485 - What requirements must I meet for wastewater streams and liquid streams in open systems within an...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... wastewater streams and liquid streams in open systems within an MCPU? 63.2485 Section 63.2485 Protection of... Standards, and Compliance Requirements § 63.2485 What requirements must I meet for wastewater streams and... subpart that applies to your wastewater streams and liquid streams in open systems within an MCPU, except...

  6. 40 CFR 63.2485 - What requirements must I meet for wastewater streams and liquid streams in open systems within an...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... wastewater streams and liquid streams in open systems within an MCPU? 63.2485 Section 63.2485 Protection of... Standards, and Compliance Requirements § 63.2485 What requirements must I meet for wastewater streams and... subpart that applies to your wastewater streams and liquid streams in open systems within an MCPU, except...

  7. 40 CFR 63.2485 - What requirements must I meet for wastewater streams and liquid streams in open systems within an...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... wastewater streams and liquid streams in open systems within an MCPU? 63.2485 Section 63.2485 Protection of... Standards, and Compliance Requirements § 63.2485 What requirements must I meet for wastewater streams and... subpart that applies to your wastewater streams and liquid streams in open systems within an MCPU, except...

  8. Evaluation of Alternative Altitude Scaling Methods for Thermal Ice Protection System in NASA Icing Research Tunnel

    NASA Technical Reports Server (NTRS)

    Lee, Sam; Addy, Harold; Broeren, Andy P.; Orchard, David M.

    2017-01-01

    A test was conducted at NASA Icing Research Tunnel to evaluate altitude scaling methods for thermal ice protection system. Two scaling methods based on Weber number were compared against a method based on the Reynolds number. The results generally agreed with the previous set of tests conducted in NRCC Altitude Icing Wind Tunnel. The Weber number based scaling methods resulted in smaller runback ice mass than the Reynolds number based scaling method. The ice accretions from the Weber number based scaling method also formed farther upstream. However there were large differences in the accreted ice mass between the two Weber number based scaling methods. The difference became greater when the speed was increased. This indicated that there may be some Reynolds number effects that isnt fully accounted for and warrants further study.

  9. Form and flow of the Academy of Sciences Ice Cap, Severnaya Zemlya, Russian High Arctic

    NASA Astrophysics Data System (ADS)

    Dowdeswell, J. A.; Bassford, R. P.; Gorman, M. R.; Williams, M.; Glazovsky, A. F.; Macheret, Y. Y.; Shepherd, A. P.; Vasilenko, Y. V.; Savatyuguin, L. M.; Hubberten, H.-W.; Miller, H.

    2002-04-01

    The 5,575-km2 Academy of Sciences Ice Cap is the largest in the Russian Arctic. A 100-MHz airborne radar, digital Landsat imagery, and satellite synthetic aperture radar (SAR) interferometry are used to investigate its form and flow, including the proportion of mass lost through iceberg calving. The ice cap was covered by a 10-km-spaced grid of radar flight paths, and the central portion was covered by a grid at 5-km intervals: a total of 1,657 km of radar data. Digital elevation models (DEMs) of ice surface elevation, ice thickness, and bed elevation data sets were produced (cell size 500 m). The DEMs were used in the selection of a deep ice core drill site. Total ice cap volume is 2,184 km3 (~5.5 mm sea level equivalent). The ice cap has a single dome reaching 749 m. Maximum ice thickness is 819 m. About 200 km, or 42%, of the ice margin is marine. About 50% of the ice cap bed is below sea level. The central divide of the ice cap and several major drainage basins, in the south and east of the ice cap and of up to 975 km2, are delimited from satellite imagery. There is no evidence of past surge activity on the ice cap. SAR interferometric fringes and phase-unwrapped velocities for the whole ice cap indicate slow flow in the interior and much of the margin, punctuated by four fast flowing features with lateral shear zones and maximum velocity of 140 m yr-1. These ice streams extend back into the slower moving ice to within 5-10 km of the ice cap crest. They have lengths of 17-37 km and widths of 4-8 km. Mass flux from these ice streams is ~0.54 km3 yr-1. Tabular icebergs up to ~1.7 km long are produced. Total iceberg flux from the ice cap is ~0.65 km3 yr-1 and probably represents ~40% of the overall mass loss, with the remainder coming from surface melting. Driving stresses are generally lowest (<40 kPa) close to the ice cap divides and in several of the ice streams. Ice stream motion is likely to include a significant basal component and may involve deformable

  10. Spray nozzle investigation for the Improved Helicopter Icing Spray System (IHISS)

    NASA Technical Reports Server (NTRS)

    Peterson, Andrew A.; Oldenburg, John R.

    1990-01-01

    A contract has been awarded by the U.S. Army to design, fabricate and test a replacement for the existing Helicopter Icing Spray System. Data are shown for extensive bench and icing tunnel test programs used to select and modify an improved spray nozzle. The IHISS, capable of deployment from any CH-47 helicopter, will include new icing spray nozzles and pneumatic pressure source, and a significantly larger water tank and spray boom. The resulting system will provide a significantly larger icing cloud with droplet characteristics closely matching natural icing conditions.

  11. The Response of Ice Sheets to Climate Variability

    NASA Astrophysics Data System (ADS)

    Snow, K.; Goldberg, D. N.; Holland, P. R.; Jordan, J. R.; Arthern, R. J.; Jenkins, A.

    2017-12-01

    West Antarctic Ice Sheet loss is a significant contributor to sea level rise. While the ice loss is thought to be triggered by fluctuations in oceanic heat at the ice shelf bases, ice sheet response to ocean variability remains poorly understood. Using a synchronously coupled ice-ocean model permitting grounding line migration, this study evaluates the response of an ice sheet to periodic variations in ocean forcing. Resulting oscillations in grounded ice volume amplitude is shown to grow as a nonlinear function of ocean forcing period. This implies that slower oscillations in climatic forcing are disproportionately important to ice sheets. The ice shelf residence time offers a critical time scale, above which the ice response amplitude is a linear function of ocean forcing period and below which it is quadratic. These results highlight the sensitivity of West Antarctic ice streams to perturbations in heat fluxes occurring at decadal time scales.

  12. Flow of ices in the Ammonia-Water System

    NASA Technical Reports Server (NTRS)

    Durham, W. B.; Kirby, S. H.; Stern, L. A.

    1993-01-01

    We have fabricated in the laboratory and subsequently deformed crystalline hydrates and partial melts of the water-rich end of the NH3-H2O system, with the aim of improving our understanding of physical processes occurring in icy moons of the outer solar system. Deformation experiments were carried out at constant strain rate. The range of experimental variables are given. Phase relationships in the NH3-H2O system indicate that water ice and ammonia dihydrate, NH3-2H2O, are the stable phases under our experiment conditions. X-ray diffraction of our samples usually revealed these as the dominant phases, but we have also observed an amorphous phase (in unpressurized samples only) and occasionally significant ammonia monohydrate, NH3-H2O. The onset of partial melting at the peritectic temperature at about 176 K appeared as a sharp transition in strength observed in samples of x(sub NH3) = 0.05 and 0.01, the effect of melt was less pronounced. For any given water ice + dihydrate alloy in the subsolidus region, we observed one rheological law over the entire temperature range from 175 K to about 140 K. Below 140 K, a shear instability similar to that occurring in pure water ice under the same conditions limited our ability to measure ductile flow. The rheological laws for the several alloys vary systematically from that of pure ice to that of dihydrate. Pure dihydrate is about 4 orders of magnitude less viscous than water ice just below the peritectic temperature, but because of a very pronounced temperature dependence in dihydrate (100 kJ/mol versus 43 kJ/mol for water ice) the viscosity of dihydrate equals or exceeds that of water ice at T less than 140 K. The large variation in viscosity of dihydrate with relatively small changes in temperature may be helpful in explaining the rich variety of tectonic and volcanic features seen on the surfaces of icy moons in the outer solar system.

  13. DEM, tide and velocity over sulzberger ice shelf, West Antarctica

    USGS Publications Warehouse

    Baek, S.; Shum, C.K.; Lee, H.; Yi, Y.; Kwoun, Oh-Ig; Lu, Z.; Braun, Andreas

    2005-01-01

    Arctic and Antarctic ice sheets preserve more than 77% of the global fresh water and could raise global sea level by several meters if completely melted. Ocean tides near and under ice shelves shifts the grounding line position significantly and are one of current limitations to study glacier dynamics and mass balance. The Sulzberger ice shelf is an area of ice mass flux change in West Antarctica and has not yet been well studied. In this study, we use repeat-pass synthetic aperture radar (SAR) interferometry data from the ERS-1 and ERS-2 tandem missions for generation of a high-resolution (60-m) Digital Elevation Model (DEM) including tidal deformation detection and ice stream velocity of the Sulzberger Ice Shelf. Other satellite data such as laser altimeter measurements with fine foot-prints (70-m) from NASA's ICESat are used for validation and analyses. The resulting DEM has an accuracy of-0.57??5.88 m and is demonstrated to be useful for grounding line detection and ice mass balance studies. The deformation observed by InSAR is found to be primarily due to ocean tides and atmospheric pressure. The 2-D ice stream velocities computed agree qualitatively with previous methods on part of the Ice Shelf from passive microwave remote-sensing data (i.e., LANDSAT). ?? 2005 IEEE.

  14. Radiostratigraphy and age structure of the Greenland Ice Sheet

    PubMed Central

    MacGregor, Joseph A; Fahnestock, Mark A; Catania, Ginny A; Paden, John D; Prasad Gogineni, S; Young, S Keith; Rybarski, Susan C; Mabrey, Alexandria N; Wagman, Benjamin M; Morlighem, Mathieu

    2015-01-01

    Several decades of ice-penetrating radar surveys of the Greenland and Antarctic ice sheets have observed numerous widespread internal reflections. Analysis of this radiostratigraphy has produced valuable insights into ice sheet dynamics and motivates additional mapping of these reflections. Here we present a comprehensive deep radiostratigraphy of the Greenland Ice Sheet from airborne deep ice-penetrating radar data collected over Greenland by The University of Kansas between 1993 and 2013. To map this radiostratigraphy efficiently, we developed new techniques for predicting reflection slope from the phase recorded by coherent radars. When integrated along track, these slope fields predict the radiostratigraphy and simplify semiautomatic reflection tracing. Core-intersecting reflections were dated using synchronized depth-age relationships for six deep ice cores. Additional reflections were dated by matching reflections between transects and by extending reflection-inferred depth-age relationships using the local effective vertical strain rate. The oldest reflections, dating to the Eemian period, are found mostly in the northern part of the ice sheet. Within the onset regions of several fast-flowing outlet glaciers and ice streams, reflections typically do not conform to the bed topography. Disrupted radiostratigraphy is also observed in a region north of the Northeast Greenland Ice Stream that is not presently flowing rapidly. Dated reflections are used to generate a gridded age volume for most of the ice sheet and also to determine the depths of key climate transitions that were not observed directly. This radiostratigraphy provides a new constraint on the dynamics and history of the Greenland Ice Sheet. Key Points Phase information predicts reflection slope and simplifies reflection tracing Reflections can be dated away from ice cores using a simple ice flow model Radiostratigraphy is often disrupted near the onset of fast ice flow PMID:26213664

  15. Ice Crystal Icing Engine Testing in the NASA Glenn Research Center's Propulsion Systems Laboratory (PSL): Altitude Investigation

    NASA Technical Reports Server (NTRS)

    Oliver, Michael J.

    2015-01-01

    The National Aeronautics and Space Administration conducted a full scale ice crystal icing turbofan engine test in the NASA Glenn Research Centers Propulsion Systems Laboratory (PSL) Facility in February 2013. Honeywell Engines supplied the test article, an obsolete, unmodified Lycoming ALF502-R5 turbofan engine serial number LF01 that experienced an un-commanded loss of thrust event while operating at certain high altitude ice crystal icing conditions. These known conditions were duplicated in the PSL for this testing.

  16. Ice Cloud Properties in Ice-Over-Water Cloud Systems Using TRMM VIRS and TMI Data

    NASA Technical Reports Server (NTRS)

    Minnis, Patrick; Huang, Jianping; Lin, Bing; Yi, Yuhong; Arduini, Robert F.; Fan, Tai-Fang; Ayers, J. Kirk; Mace, Gerald G.

    2007-01-01

    A multi-layered cloud retrieval system (MCRS) is updated and used to estimate ice water path in maritime ice-over-water clouds using Visible and Infrared Scanner (VIRS) and TRMM Microwave Imager (TMI) measurements from the Tropical Rainfall Measuring Mission spacecraft between January and August 1998. Lookup tables of top-of-atmosphere 0.65- m reflectance are developed for ice-over-water cloud systems using radiative transfer calculations with various combinations of ice-over-water cloud layers. The liquid and ice water paths, LWP and IWP, respectively, are determined with the MCRS using these lookup tables with a combination of microwave (MW), visible (VIS), and infrared (IR) data. LWP, determined directly from the TMI MW data, is used to define the lower-level cloud properties to select the proper lookup table. The properties of the upper-level ice clouds, such as optical depth and effective size, are then derived using the Visible Infrared Solar-infrared Split-window Technique (VISST), which matches the VIRS IR, 3.9- m, and VIS data to the multilayer-cloud lookup table reflectances and a set of emittance parameterizations. Initial comparisons with surface-based radar retrievals suggest that this enhanced MCRS can significantly improve the accuracy and decrease the IWP in overlapped clouds by 42% and 13% compared to using the single-layer VISST and an earlier simplified MW-VIS-IR (MVI) differencing method, respectively, for ice-over-water cloud systems. The tropical distribution of ice-over-water clouds is the same as derived earlier from combined TMI and VIRS data, but the new values of IWP and optical depth are slightly larger than the older MVI values, and exceed those of single-layered layered clouds by 7% and 11%, respectively. The mean IWP from the MCRS is 8-14% greater than that retrieved from radar retrievals of overlapped clouds over two surface sites and the standard deviations of the differences are similar to those for single-layered clouds. Examples

  17. N-ICE2015: Multi-disciplinary study of the young sea ice system north of Svalbard from winter to summer.

    NASA Astrophysics Data System (ADS)

    Steen, Harald; Granskog, Mats; Assmy, Philipp; Duarte, Pedro; Hudson, Stephen; Gerland, Sebastian; Spreen, Gunnar; Smedsrud, Lars H.

    2016-04-01

    The Arctic Ocean is shifting to a new regime with a thinner and smaller sea-ice area cover. Until now, winter sea ice extent has changed less than during summer, as the heat loss to the atmosphere during autumn and winter is large enough form an ice cover in most regions. The insulating snow cover also heavily influences the winter ice growth. Consequently, the older, thicker multi-year sea ice has been replace by a younger and thinner sea. These large changes in the sea ice cover may have dramatic consequences for ecosystems, energy fluxes and ultimately atmospheric circulation and the Northern Hemisphere climate. To study the effects of the changing Arctic the Norwegian Polar Institute, together with national and international partners, launched from January 11 to June 24, 2015 the Norwegian Young Sea ICE cruise 2015 (N-ICE2015). N-ICE2015 was a multi-disciplinary cruise aimed at simultaneously studying the effect of the Arctic Ocean changes in the sea ice, the atmosphere, in radiation, in ecosystems. as well as water chemistry. R/V Lance was frozen into the drift ice north of Svalbard at about N83 E25 and drifted passively southwards with the ice until she was broken loose. When she was loose, R/V Lance was brought back north to a similar starting position. While fast in the ice, she served as a living and working platform for 100 scientist and engineers from 11 countries. One aim of N-ICE2015 is to present a comprehensive data-set on the first year ice dominated system available for the scientific community describing the state and changes of the Arctic sea ice system from freezing to melt. Analyzing the data is progressing and some first results will be presented.

  18. Evaluation of changes in atmospheric and oceanic fluxes during continental ice sheet retreat

    NASA Astrophysics Data System (ADS)

    Martin, J.; Martin, E. E.; Deuerling, K. M.

    2017-12-01

    Extensive land areas were exposed across North America, Eurasia, and to a lesser extent Greenland as continental ice sheets retreated following the last glacial maximum. A transect of watersheds from the coast to the western Greenland Ice Sheet (GrIS) provides an opportunity to evaluate possible changes in oceanic solute fluxes and atmospheric CO2 exchange as ice sheets retreat. We evaluate these fluxes in one proglacial watershed (draining ice sheet runoff) and four deglaciated watersheds (draining local precipitation and permafrost melt). Sr isotope ratios indicate bedrock near the coast has experienced greater weathering than near the ice sheet. A mass balance model of the major element composition of stream water indicates weathering in deglaciated watersheds is dominated by carbonic acid dissolution of carbonate minerals near the ice sheet that switches to carbonic acid alteration of silicate minerals near the coast. In addition, weathering by sulfuric acid, derived from oxidative dissolution of sulfide minerals, increases from the ice sheet to the coast. These changes in the weathered minerals and weathering acids impact CO2 sequestration associated with weathering. Weathering consumes 350 to 550 µmol CO2/L in watersheds near the ice sheet, but close to the coast, consumes only 15 µmol CO2/L in one watershed and sources 140 µmol CO2/L to the atmosphere at another coastal watershed. The decreasing CO2 weathering sink from the GrIS to coast reflects decreased carbonic acid weathering and increased sulfuric acid weathering of carbonate minerals. The proglacial stream shows downstream variations in composition from mixing of two water sources, with only minor in-stream weathering, which consumes < 0.1 µmol CO2/L. Discharge from the deglaciated watersheds is currently unknown but their higher solute concentrations and CO2 exchange than proglacial systems suggest deglaciated watersheds dominate atmospheric fluxes of CO2 and oceanic solute fluxes. These results

  19. Aircraft Icing Weather Data Reporting and Dissemination System

    NASA Technical Reports Server (NTRS)

    Bass, Ellen J.; Minsk, Brian; Lindholm, Tenny; Politovich, Marcia; Reehorst, Andrew (Technical Monitor)

    2002-01-01

    The long-term operational concept of this research is to develop an onboard aircraft system that assesses and reports atmospheric icing conditions automatically and in a timely manner in order to improve aviation safety and the efficiency of aircraft operations via improved real-time and forecast weather products. The idea is to use current measurement capabilities on aircraft equipped with icing sensors and in-flight data communication technologies as a reporting source. Without requiring expensive avionics upgrades, aircraft data must be processed and available for downlink. Ideally, the data from multiple aircraft can then be integrated (along with other real-time and modeled data) on the ground such that aviation-centered icing hazard metrics for volumes of airspace can be assessed. As the effect of icing on different aircraft types can vary, the information should be displayed in meaningful ways such that multiple types of users can understand the information. That is, information must be presented in a manner to allow users to understand the icing conditions with respect to individual concerns and aircraft capabilities. This research provides progress toward this operational concept by: identifying an aircraft platform capable of digitally capturing, processing, and downlinking icing data; identifying the required in situ icing data processing; investigating the requirements for routing the icing data for use by weather products; developing an icing case study in order to gain insight into major air carrier needs; developing and prototyping icing display concepts based on the National Center for Atmospheric Research's existing diagnostic and forecast experimental icing products; and conducting a usability study for the prototyped icing display concepts.

  20. Using the tracer-dilution discharge method to develop streamflow records for ice-affected streams in Colorado

    USGS Publications Warehouse

    Capesius, Joseph P.; Sullivan, Joseph R.; O'Neill, Gregory B.; Williams, Cory A.

    2005-01-01

    Accurate ice-affected streamflow records are difficult to obtain for several reasons, which makes the management of instream-flow water rights in the wintertime a challenging endeavor. This report documents a method to improve ice-affected streamflow records for two gaging stations in Colorado. In January and February 2002, the U.S. Geological Survey, in cooperation with the Colorado Water Conservation Board, conducted an experiment using a sodium chloride tracer to measure streamflow under ice cover by the tracer-dilution discharge method. The purpose of this study was to determine the feasibility of obtaining accurate ice-affected streamflow records by using a sodium chloride tracer that was injected into the stream. The tracer was injected at two gaging stations once per day for approximately 20 minutes for 25 days. Multiple-parameter water-quality sensors at the two gaging stations monitored background and peak chloride concentrations. These data were used to determine discharge at each site. A comparison of the current-meter streamflow record to the tracer-dilution streamflow record shows different levels of accuracy and precision of the tracer-dilution streamflow record at the two sites. At the lower elevation and warmer site, Brandon Ditch near Whitewater, the tracer-dilution method overestimated flow by an average of 14 percent, but this average is strongly biased by outliers. At the higher elevation and colder site, Keystone Gulch near Dillon, the tracer-dilution method experienced problems with the tracer solution partially freezing in the injection line. The partial freezing of the tracer contributed to the tracer-dilution method underestimating flow by 52 percent at Keystone Gulch. In addition, a tracer-pump-reliability test was conducted to test how accurately the tracer pumps can discharge the tracer solution in conditions similar to those used at the gaging stations. Although the pumps were reliable and consistent throughout the 25-day study period

  1. Ancient Yedoma carbon loss: primed by ice wedge thaw?

    NASA Astrophysics Data System (ADS)

    Dowdy, K. L.; Vonk, J. E.; Mann, P. J.; Zimov, N.; Bulygina, E. B.; Davydova, A.; Spencer, R. G.; Holmes, R. M.

    2012-12-01

    Northeast Siberian permafrost is dominated by frozen Yedoma deposits containing ca. 500 Gt of carbon, nearly a quarter of northern permafrost organic carbon (OC). Yedoma deposits are Pleistocene-age alluvial and/or aeolian accumulations characterized by high ice wedge content (~50%), making them particularly vulnerable to a warming climate and to surface collapse upon thaw. Dissolved OC in streams originating primarily from Yedoma has been shown to be highly biolabile, relative to waters containing more modern OC. The cause of this biolability, however, remains speculative. Here we investigate the influence of ice wedge input upon the bioavailability of Yedoma within streams from as a potential cause of Yedoma carbon biolability upon release into the Kolyma River from the thaw-eroding river exposures of Duvannyi Yar, NE Siberia. We measured biolability on (1) ice wedge, Kolyma, and Yedoma leachate controls; (2) ice wedge and Kolyma plus Yedoma OC (8 g/L); and (3) varying ratios of ice wedge water to Kolyma river water. Biolability assays were conducted using both 5-day BOD (biological oxygen demand) and 11-day BDOC (biodegradable dissolved organic carbon) incubations. We found that ancient DOC in Yedoma soil leachate alone was highly biolabile with losses of 52±0.1% C over a 5-day BOD incubation. Similarly, DOC contained in pure ice wedge water was found to be biolabile, losing 21±0% C during a 5-day BOD incubation. Increased ice wedge contributions led to higher overall C losses in identical Yedoma soil leachates, with 8.9±0.6% losses of Yedoma C with 100% ice wedge water, 7.1±1% (50% ice wedge/ 50% Kolyma) and 5±0.3% with 100% Kolyma River water. We discuss potential mechanisms for the increased loss of ancient C using associated measurements of nutrient availability, carbon quality (CDOM/FDOM) and extracellular enzyme activity rates. Our initial results indicate that ice wedge meltwater forming Yedoma streams makes Yedoma OC more bioavailable than it would

  2. 40 CFR Table 7 to Subpart Ffff of... - Requirements for Wastewater Streams and Liquid Streams in Open Systems Within an MCPU

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 13 2012-07-01 2012-07-01 false Requirements for Wastewater Streams... to Subpart FFFF of Part 63—Requirements for Wastewater Streams and Liquid Streams in Open Systems... applies to your wastewater streams and liquid streams in open systems within an MCPU: For each . . . You...

  3. 40 CFR Table 7 to Subpart Ffff of... - Requirements for Wastewater Streams and Liquid Streams in Open Systems Within an MCPU

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 12 2011-07-01 2009-07-01 true Requirements for Wastewater Streams and... of Part 63—Requirements for Wastewater Streams and Liquid Streams in Open Systems Within an MCPU As... wastewater streams and liquid streams in open systems within an MCPU: For each . . . You must . . . 1...

  4. 40 CFR Table 7 to Subpart Ffff of... - Requirements for Wastewater Streams and Liquid Streams in Open Systems Within an MCPU

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Requirements for Wastewater Streams and... to Subpart FFFF of Part 63—Requirements for Wastewater Streams and Liquid Streams in Open Systems... applies to your wastewater streams and liquid streams in open systems within an MCPU: For each . . . You...

  5. 40 CFR Table 7 to Subpart Ffff of... - Requirements for Wastewater Streams and Liquid Streams in Open Systems Within an MCPU

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 13 2014-07-01 2014-07-01 false Requirements for Wastewater Streams... to Subpart FFFF of Part 63—Requirements for Wastewater Streams and Liquid Streams in Open Systems... applies to your wastewater streams and liquid streams in open systems within an MCPU: For each . . . You...

  6. Breaking Ice 2: A rift system on the Ross Ice Shelf as an analog for tidal tectonics on icy moons

    NASA Astrophysics Data System (ADS)

    Brunt, K. M.; Hurford, T., Jr.; Schmerr, N. C.; Sauber, J. M.; MacAyeal, D. R.

    2016-12-01

    Ice shelves are the floating regions of the polar ice sheets. Outside of the influence of the narrow region of their grounding zone, they are fully hydrostatic and strongly influenced by the ocean tides. Recent observational and modeling studies have assessed the effect of tides on ice shelves, including: the tidal influence on the ice-shelf surface height, which changes by as much as 6 to 7 m on the southern extreme of the Ronne-Filchner Ice Shelf; the tidal modulation of the ice-shelf horizontal flow velocities, which changes the mean ice-flow rate by as much as two fold on the Ross Ice Shelf; and the tidal contribution to fracture and rift propagation, which eventually leads to iceberg calving. Here, we present the analysis of 16 days of continuous GPS data from a rift system near the front of the Ross Ice Shelf. While the GPS sites were installed for a different scientific investigation, and not optimized to assess tidal rifting mechanics, they provide a first-order sense of the tidal evolution of the rift system. These analyses can be used as a terrestrial analog for tidal activity on icy satellites, such as Europa and Enceladus, moons of Jupiter and Saturn, respectively. Using remote sensing and modeling of the Ross Ice Shelf rift system, we can investigate the geological processes observed on icy satellites and advance modeling efforts of their tidal-tectonic evolution.

  7. Predicting uncertainty in future marine ice sheet volume using Bayesian statistical methods

    NASA Astrophysics Data System (ADS)

    Davis, A. D.

    2015-12-01

    The marine ice instability can trigger rapid retreat of marine ice streams. Recent observations suggest that marine ice systems in West Antarctica have begun retreating. However, unknown ice dynamics, computationally intensive mathematical models, and uncertain parameters in these models make predicting retreat rate and ice volume difficult. In this work, we fuse current observational data with ice stream/shelf models to develop probabilistic predictions of future grounded ice sheet volume. Given observational data (e.g., thickness, surface elevation, and velocity) and a forward model that relates uncertain parameters (e.g., basal friction and basal topography) to these observations, we use a Bayesian framework to define a posterior distribution over the parameters. A stochastic predictive model then propagates uncertainties in these parameters to uncertainty in a particular quantity of interest (QoI)---here, the volume of grounded ice at a specified future time. While the Bayesian approach can in principle characterize the posterior predictive distribution of the QoI, the computational cost of both the forward and predictive models makes this effort prohibitively expensive. To tackle this challenge, we introduce a new Markov chain Monte Carlo method that constructs convergent approximations of the QoI target density in an online fashion, yielding accurate characterizations of future ice sheet volume at significantly reduced computational cost.Our second goal is to attribute uncertainty in these Bayesian predictions to uncertainties in particular parameters. Doing so can help target data collection, for the purpose of constraining the parameters that contribute most strongly to uncertainty in the future volume of grounded ice. For instance, smaller uncertainties in parameters to which the QoI is highly sensitive may account for more variability in the prediction than larger uncertainties in parameters to which the QoI is less sensitive. We use global sensitivity

  8. Ice Crystal Icing Research at NASA

    NASA Technical Reports Server (NTRS)

    Flegel, Ashlie B.

    2017-01-01

    Ice crystals found at high altitude near convective clouds are known to cause jet engine power-loss events. These events occur due to ice crystals entering a propulsion system's core flowpath and accreting ice resulting in events such as uncommanded loss of thrust (rollback), engine stall, surge, and damage due to ice shedding. As part of a community with a growing need to understand the underlying physics of ice crystal icing, NASA has been performing experimental efforts aimed at providing datasets that can be used to generate models to predict the ice accretion inside current and future engine designs. Fundamental icing physics studies on particle impacts, accretion on a single airfoil, and ice accretions observed during a rollback event inside a full-scale engine in the Propulsion Systems Laboratory are summarized. Low fidelity code development using the results from the engine tests which identify key parameters for ice accretion risk and the development of high fidelity codes are described. These activities have been conducted internal to NASA and through collaboration efforts with industry, academia, and other government agencies. The details of the research activities and progress made to date in addressing ice crystal icing research challenges are discussed.

  9. Ice Crystal Icing Research at NASA

    NASA Technical Reports Server (NTRS)

    Flegel, Ashlie B.

    2017-01-01

    Ice crystals found at high altitude near convective clouds are known to cause jet engine power-loss events. These events occur due to ice crystals entering a propulsion systems core flowpath and accreting ice resulting in events such as uncommanded loss of thrust (rollback), engine stall, surge, and damage due to ice shedding. As part of a community with a growing need to understand the underlying physics of ice crystal icing, NASA has been performing experimental efforts aimed at providing datasets that can be used to generate models to predict the ice accretion inside current and future engine designs. Fundamental icing physics studies on particle impacts, accretion on a single airfoil, and ice accretions observed during a rollback event inside a full-scale engine in the Propulsion Systems Laboratory are summarized. Low fidelity code development using the results from the engine tests which identify key parameters for ice accretion risk and the development of high fidelity codes are described. These activities have been conducted internal to NASA and through collaboration efforts with industry, academia, and other government agencies. The details of the research activities and progress made to date in addressing ice crystal icing research challenges are discussed.

  10. Mass Balance of the West Antarctic Ice-Sheet from ICESat Measurements

    NASA Technical Reports Server (NTRS)

    Zwally, H. Jay; Li, Jun; Robins, John; Saba, Jack L.; Yi, Donghui

    2011-01-01

    Mass balance estimates for 2003-2008 are derived from ICESat laser altimetry and compared with estimates for 1992-2002 derived from ERS radar altimetry. The net mass balance of 3 drainage systems (Pine Island, Thwaites/Smith, and the coast of Marie Bryd) for 2003-2008 is a loss of 100 Gt/yr, which increased from a loss of 70 Gt/yr for the earlier period. The DS including the Bindschadler and MacAyeal ice streams draining into the Ross Ice Shelf has a mass gain of 11 Gt/yr for 2003-2008, compared to an earlier loss of 70 Gt/yr. The DS including the Whillans and Kamb ice streams has a mass gain of 12 Gt/yr, including a significant thickening on the upper part of the Kamb DS, compared to a earlier gain of 6 Gt/yr (includes interpolation for a large portion of the DS). The other two DS discharging into the Ronne Ice Shelf and the northern Ellsworth Coast have a mass gain of 39 Gt/yr, compared to a gain of 4 Gt/yr for the earlier period. Overall, the increased losses of 30 Gt/yr in the Pine Island, Thwaites/Smith, and the coast of Marie Bryd DSs are exceeded by increased gains of 59 Gt/yr in the other 4 DS. Overall, the mass loss from the West Antarctic ice sheet has decreased to 38 Gt/yr from the earlier loss of 67 Gt/yr, reducing the contribution to sea level rise to 0.11 mm/yr from 0.19 mm/yr

  11. Analogue modelling of the influence of ice shelf collapse on the flow of ice sheets grounded below sea-level

    NASA Astrophysics Data System (ADS)

    Corti, Giacomo; Zeoli, Antonio

    2016-04-01

    The sudden breakup of ice shelves is expected to result in significant acceleration of inland glaciers, a process related to the removal of the buttressing effect exerted by the ice shelf on the tributary glaciers. This effect has been tested in previous analogue models, which however applied to ice sheets grounded above sea level (e.g., East Antarctic Ice Sheet; Antarctic Peninsula and the Larsen Ice Shelf). In this work we expand these previous results by performing small-scale laboratory models that analyse the influence of ice shelf collapse on the flow of ice streams draining an ice sheet grounded below sea level (e.g., the West Antarctic Ice Sheet). The analogue models, with dimensions (width, length, thickness) of 120x70x1.5cm were performed at the Tectonic Modelling Laboratory of CNR-IGG of Florence, Italy, by using Polydimethilsyloxane (PDMS) as analogue for the flowing ice. This transparent, Newtonian silicone has been shown to well approximate the rheology of natural ice. The silicone was allowed to flow into a water reservoir simulating natural conditions in which ice streams flow into the sea, terminating in extensive ice shelves which act as a buttress for their glaciers and slow their flow. The geometric scaling ratio was 10(-5), such that 1cm in the models simulated 1km in nature; velocity of PDMS (a few mm per hour) simulated natural velocities of 100-1000 m/year. Instability of glacier flow was induced by manually removing a basal silicone platform (floating on water) exerting backstresses to the flowing analogue glacier: the simple set-up adopted in the experiments isolates the effect of the removal of the buttressing effect that the floating platform exerts on the flowing glaciers, thus offering insights into the influence of this parameter on the flow perturbations resulting from a collapse event. The experimental results showed a significant increase in glacier velocity close to its outlet following ice shelf breakup, a process similar to what

  12. Investigation of Icing Characteristics of Typical Light Airplane Engine Induction Systems

    NASA Technical Reports Server (NTRS)

    Coles, W. D.

    1949-01-01

    The icing characteristics of two typical light-airplane engine induction systems were investigated using the carburetors and manifolds of engines in the horsepower ranges from 65 to 85 and 165 to 185. The smaller system consisted of a float-type carburetor with an unheated manifold and the larger system consisted of a single-barrel pressure-type carburetor with an oil-jacketed manifold. Carburetor-air temperature and humidity limits of visible and serious Icing were determined for various engine power conditions. Several.methods of achieving ice-free induction systems are discussed along with estimates of surface heating requirements of the various induct ion-system components. A study was also made of the icing characteristics of a typical light-airplane air scoop with an exposed filter and a modified system that provided a normal ram inlet with the filter located in a position to Induce inertia separation of the free water from the charge air. The principle of operation of float-type carburetors is proved to make them inherently more susceptible to icing at the throttle plate than pressure-type carburetors.. The results indicated that proper jacketing and heating of all parts exposed to the fuel spray can satisfactorily reduce or eliminate icing in the float-type carburetor and the manifold. Pressure-type carburetors can be protected from serious Icing by proper location of the fuel-discharge nozzle combined with suitable application of heat to critical parts.

  13. Understanding Ice Shelf Basal Melting Using Convergent ICEPOD Data Sets: ROSETTA-Ice Study of Ross Ice Shelf

    NASA Astrophysics Data System (ADS)

    Bell, R. E.; Frearson, N.; Tinto, K. J.; Das, I.; Fricker, H. A.; Siddoway, C. S.; Padman, L.

    2017-12-01

    The future stability of the ice shelves surrounding Antarctica will be susceptible to increases in both surface and basal melt as the atmosphere and ocean warm. The ROSETTA-Ice program is targeted at using the ICEPOD airborne technology to produce new constraints on Ross Ice Shelf, the underlying ocean, bathymetry, and geologic setting, using radar sounding, gravimetry and laser altimetry. This convergent approach to studying the ice-shelf and basal processes enables us to develop an understanding of the fundamental controls on ice-shelf evolution. This work leverages the stratigraphy of the ice shelf, which is detected as individual reflectors by the shallow-ice radar and is often associated with surface scour, form close to the grounding line or pinning points on the ice shelf. Surface accumulation on the ice shelf buries these reflectors as the ice flows towards the calving front. This distinctive stratigraphy can be traced across the ice shelf for the major East Antarctic outlet glaciers and West Antarctic ice streams. Changes in the ice thickness below these reflectors are a result of strain and basal melting and freezing. Correcting the estimated thickness changes for strain using RIGGS strain measurements, we can develop decadal-resolution flowline distributions of basal melt. Close to East Antarctica elevated melt-rates (>1 m/yr) are found 60-100 km from the calving front. On the West Antarctic side high melt rates primarily develop within 10 km of the calving front. The East Antarctic side of Ross Ice Shelf is dominated by melt driven by saline water masses that develop in Ross Sea polynyas, while the melting on the West Antarctic side next to Hayes Bank is associated with modified Continental Deep Water transported along the continental shelf. The two sides of Ross Ice Shelf experience differing basal melt in part due to the duality in the underlying geologic structure: the East Antarctic side consists of relatively dense crust, with low amplitude

  14. Magnetospheric considerations for solar system ice state

    NASA Astrophysics Data System (ADS)

    Paranicas, C.; Hibbitts, C. A.; Kollmann, P.; Ligier, N.; Hendrix, A. R.; Nordheim, T. A.; Roussos, E.; Krupp, N.; Blaney, D.; Cassidy, T. A.; Clark, G.

    2018-03-01

    The current lattice configuration of the water ice on the surfaces of the inner satellites of Jupiter and Saturn is likely shaped by many factors. But laboratory experiments have found that energetic proton irradiation can cause a transition in the structure of pure water ice from crystalline to amorphous. It is not known to what extent this process is competitive with other processes in solar system contexts. For example, surface regions that are rich in water ice may be too warm for this effect to be important, even if the energetic proton bombardment rate is very high. In this paper, we make predictions, based on particle flux levels and other considerations, about where in the magnetospheres of Jupiter and Saturn the ∼MeV proton irradiation mechanism should be most relevant. Our results support the conclusions of Hansen and McCord (2004), who related relative level of radiation on the three outer Galilean satellites to the amorphous ice content within the top 1 mm of surface. We argue here that if magnetospheric effects are considered more carefully, the correlation is even more compelling. Crystalline ice is by far the dominant ice state detected on the inner Saturnian satellites and, as we show here, the flux of bombarding energetic protons onto these bodies is much smaller than at the inner Jovian satellites. Therefore, the ice on the Saturnian satellites also corroborates the correlation.

  15. Landsat TM image maps of the Shirase and Siple Coast ice streams, West Antarctica

    USGS Publications Warehouse

    Ferrigno, Jane G.; Mullins, Jerry L.; Stapleton, Jo Anne; Bindschadler, Robert; Scambos, Ted A.; Bellisime, Lynda B.; Bowell, Jo-Ann; Acosta, Alex V.

    1994-01-01

    Fifteen 1: 250000 and one 1: 1000 000 scale Landsat Thematic Mapper (TM) image mosaic maps are currently being produced of the West Antarctic ice streams on the Shirase and Siple Coasts. Landsat TM images were acquired between 1984 and 1990 in an area bounded approximately by 78°-82.5°S and 120°- 160° W. Landsat TM bands 2, 3 and 4 were combined to produce a single band, thereby maximizing data content and improving the signal-to-noise ratio. The summed single band was processed with a combination of high- and low-pass filters to remove longitudinal striping and normalize solar elevation-angle effects. The images were mosaicked and transformed to a Lambert conformal conic projection using a cubic-convolution algorithm. The projection transformation was controled with ten weighted geodetic ground-control points and internal image-to-image pass points with annotation of major glaciological features. The image maps are being published in two formats: conventional printed map sheets and on a CD-ROM.

  16. Ice-sheet sourced juxtaposed turbidite systems in Labrador Sea

    USGS Publications Warehouse

    Hesse, R.; Klaucke, I.; Ryan, William B. F.; Piper, D.J.W.

    1997-01-01

    Ice-sheet sourced Pleistocene turbidite systems of the Labrador Sea are different from non-glacially influenced systems in their facies distribution and depositional processes. Two large-scale sediment dispersal systems are juxtaposed, one mud-dominated and associated with the Northwest Atlantic Mid-Ocean Channel (NAMOC), the other sand-dominated and forming a huge submarine braided sandplain. Co-existence of the two systems reflects grain-size separation of the coarse and fine fractions on an enormous scale, caused by sediment winnowing at the entrance points of meltwater from the Laurentide Ice Sheet (LIS) to the sea (Hudson Strait, fiords) and involves a complex interplay of depositional and redepositional processes. The mud-rich NAMOC system is multisourced and represents a basinwide converging system of tributary canyons and channels. It focusses its sand load to the central trunk channel in basin centre, in the fashion of a "reverse" deep-sea fan. The sand plain received its sediment from the Hudson Strait by turbidity currents that were generated either by failure of glacial prodelta slopes at the ice margin, or by direct meltwater discharges with high bedload concentration. We speculate that the latter might have been related to subglacial-lake outburst flooding through the Hudson Strait, possibly associated with ice-rafting (Heinrich) events.

  17. Ice Crystal Icing Engine Testing in the NASA Glenn Research Center's Propulsion Systems Laboratory: Altitude Investigation

    NASA Technical Reports Server (NTRS)

    Oliver, Michael J.

    2014-01-01

    The National Aeronautics and Space Administration (NASA) conducted a full scale ice crystal icing turbofan engine test using an obsolete Allied Signal ALF502-R5 engine in the Propulsion Systems Laboratory (PSL) at NASA Glenn Research Center. The test article used was the exact engine that experienced a loss of power event after the ingestion of ice crystals while operating at high altitude during a 1997 Honeywell flight test campaign investigating the turbofan engine ice crystal icing phenomena. The test plan included test points conducted at the known flight test campaign field event pressure altitude and at various pressure altitudes ranging from low to high throughout the engine operating envelope. The test article experienced a loss of power event at each of the altitudes tested. For each pressure altitude test point conducted the ambient static temperature was predicted using a NASA engine icing risk computer model for the given ambient static pressure while maintaining the engine speed.

  18. Retrieving Ice Basal Motion Using the Hydrologically Coupled JPL/UCI Ice Sheet System Model (ISSM)

    NASA Astrophysics Data System (ADS)

    Khakbaz, B.; Morlighem, M.; Seroussi, H. L.; Larour, E. Y.

    2011-12-01

    The study of basal sliding in ice sheets requires coupling ice-flow models with subglacial water flow. In fact, subglacial hydrology models can be used to model basal water-pressure explicitly and to generate basal sliding velocities. This study addresses the addition of a thin-film-based subglacial hydrologic module to the Ice Sheet System Model (ISSM) developed by JPL in collaboration with the University of California Irvine (UCI). The subglacial hydrology model follows the study of J. Johnson (2002) who assumed a non-arborscent distributed drainage system in the form of a thin film beneath ice sheets. The differential equation that arises from conservation of mass in the water system is solved numerically with the finite element method in order to obtain the spatial distribution of basal water over the study domain. The resulting sheet water thickness is then used to model the basal water-pressure and subsequently the basal sliding velocity. In this study, an introduction and preliminary results of the subglacial water flow and basal sliding velocity will be presented for the Pine Island Glacier west Antarctica.This work was performed at the California Institute of Technology's Jet Propulsion Laboratory under a contract with the National Aeronautics and Space Administration's Modeling, Analysis and Prediction (MAP) Program.

  19. What can Subglacial Sediment Tell us About the Underlying Geology and the Dynamic of the West-Antarctic Ice Sheet?

    NASA Astrophysics Data System (ADS)

    Vogel, S. W.; Tulaczyk, S. M.; Carter, S.; Grunow, A.

    2003-12-01

    The West-Antarctic Ice Sheet (WAIS) is the second largest ice sheet in the world. Its dynamic is extensively studied due to the proposed threat of rapid disintegration and associated sea level rise (Mercer, 1971). Most of its ice drains through a few fast flowing (>100 m/yr) ice streams and outlet glaciers. Subglacial conditions in particular the distribution of basal water and the availability of subglacial sediment plays an important role for their location and extent. Subglacial geology in particular the distribution of sedimentary basin fill, providing material for a lubricating subglacial till layer, may pose a limit on the inland extent of the fast flowing ice stream. Subglacial volcanism and associated elevated geothermal heat fluxes may provide crucial subglacial melt water for ice stream lubrication. We have studied sediment from the base of the WAIS to elucidate questions about the existence of subglacial volcanism and to determine the provenance of the subglacial sediment. Within this study we measured clay mineralogy, sand petrography, magnetic and geochemical properties of subglacial and englacial sediment from different locations in the Ross Sea-catchment area of the WAIS. Our samples come from Whillans-, Kamb- and Bindschadler Ice Stream as well as from Siple Dome, Crary Ice Rise and Byrd Station. Most of our sediment samples represent samples of subglacial till, which in earlier studies have been characterized as reworked marine sediment of Cenozoic age. The englacial sediment samples come from basal ice. Our study so far has found no positive evidence for the existence of subglacial volcanism beneath the WAIS. The mineralogy as well as the REE-pattern of our samples correspond better with a crustal source for the sediment than Cenozoic basalts. The isotopic composition of our samples (Nd/Sm, Rb/Sr) show differences between individual ice streams locations as well as differences between different grain size fractions. TDM-ages range from ~900 Ma to

  20. A study of carburetor/induction system icing in general aviation accidents

    NASA Technical Reports Server (NTRS)

    Obermayer, R. W.; Roe, W. T.

    1975-01-01

    An assessment of the frequency and severity of carburetor/induction icing in general-aviation accidents was performed. The available literature and accident data from the National Transportation Safety Board were collected. A computer analysis of the accident data was performed. Between 65 and 90 accidents each year involve carburetor/induction system icing as a probable cause/factor. Under conditions conducive to carburetor/induction icing, between 50 and 70 percent of engine malfunction/failure accidents (exclusive of those due to fuel exhaustion) are due to carburetor/induction system icing. Since the evidence of such icing may not remain long after an accident, it is probable that the frequency of occurrence of such accidents is underestimated; therefore, some extrapolation of the data was conducted. The problem of carburetor/induction system icing is particularly acute for pilots with less than 1000 hours of total flying time. The severity of such accidents is about the same as any accident resulting from a forced landing or precautionary landing. About 144 persons, on the average, are exposed to death and injury each year in accidents involving carburetor/induction icing as a probable cause/factor.

  1. Two different streams form the dorsal visual system: anatomy and functions.

    PubMed

    Rizzolatti, Giacomo; Matelli, Massimo

    2003-11-01

    There are two radically different views on the functional role of the dorsal visual stream. One considers it as a system involved in space perception. The other is of a system that codes visual information for action organization. On the basis of new anatomical data and a reconsideration of previous functional and clinical data, we propose that the dorsal stream and its recipient parietal areas form two distinct functional systems: the dorso-dorsal stream (d-d stream) and the ventro-dorsal stream (v-d stream). The d-d stream is formed by area V6 (main d-d extrastriate visual node) and areas V6A and MIP of the superior parietal lobule. Its major functional role is the control of actions "on line". Its damage leads to optic ataxia. The v-d stream is formed by area MT (main v-d extrastriate visual node) and by the visual areas of the inferior parietal lobule. As the d-d stream, v-d stream is responsible for action organization. It, however, also plays a crucial role in space perception and action understanding. The putative mechanisms linking action and perception in the v-d stream is discussed.

  2. The frequency response of a coupled ice sheet-ice shelf-ocean system to climate forcing variability

    NASA Astrophysics Data System (ADS)

    Goldberg, D.; Snow, K.; Jordan, J. R.; Holland, P.; Arthern, R. J.

    2017-12-01

    Changes at the West Antarctic ice-ocean boundary in recent decades has triggered significant increases in the regions contribution to global sea-level rise, coincident with large scale, and in some cases potentially unstable, grounding line retreat. Much of the induced change is thought to be driven by fluctuations in the oceanic heat available at the ice-ocean boundary, transported on-shelf via warm Circumpolar Deep Water (CDW). However, the processes in which ocean heat drives ice-sheet loss remains poorly understood, with observational studies routinely hindered by the extreme environment notorious to the Antarctic region. In this study we apply a novel synchronous coupled ice-ocean model, developed within the MITgcm, and are thus able to provide detailed insight into the impacts of short time scale (interannual to decadal) climate variability and feedbacks within the ice-ocean system. Feedbacks and response are assessed in an idealised ice-sheet/ocean-cavity configuration in which the far field ocean condition is adjusted to emulate periodic climate variability patterns. We reveal a non-linear response of the ice-sheet to periodic variations in thermocline depth. These non-linearities illustrate the heightened sensitivity of fast flowing ice-shelves to periodic perturbations in heat fluxes occurring at interannual and decadal time scales. The results thus highlight how small perturbations in variable climate forcing, like that of ENSO, may trigger large changes in ice-sheet response.

  3. The IceCube data acquisition system: Signal capture, digitization, and timestamping

    NASA Astrophysics Data System (ADS)

    Abbasi, R.; Ackermann, M.; Adams, J.; Ahlers, M.; Ahrens, J.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Bay, R.; Bazo Alba, J. L.; Beattie, K.; Becka, T.; Becker, J. K.; Becker, K.-H.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Bingham, B.; Blaufuss, E.; Boersma, D. J.; Bohm, C.; Bolmont, J.; Böser, S.; Botner, O.; Braun, J.; Breeder, D.; Burgess, T.; Carithers, W.; Castermans, T.; Chen, H.; Chirkin, D.; Christy, B.; Clem, J.; Cowen, D. F.; D'Agostino, M. V.; Danninger, M.; Davour, A.; Day, C. T.; Depaepe, O.; De Clercq, C.; Demirörs, L.; Descamps, F.; Desiati, P.; de Vries-Uiterweerd, G.; DeYoung, T.; Diaz-Velez, J. C.; Dreyer, J.; Dumm, J. P.; Duvoort, M. R.; Edwards, W. R.; Ehrlich, R.; Eisch, J.; Ellsworth, R. W.; Engdegård, O.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Feusels, T.; Filimonov, K.; Finley, C.; Foerster, M. M.; Fox, B. D.; Franckowiak, A.; Franke, R.; Gaisser, T. K.; Gallagher, J.; Ganugapati, R.; Gerhardt, L.; Gladstone, L.; Glowacki, D.; Goldschmidt, A.; Goodman, J. A.; Gozzini, R.; Grant, D.; Griesel, T.; Groß, A.; Grullon, S.; Gunasingha, R. M.; Gurtner, M.; Ha, C.; Hallgren, A.; Halzen, F.; Han, K.; Hanson, K.; Hardtke, R.; Hasegawa, Y.; Haugen, J.; Hays, D.; Heise, J.; Helbing, K.; Hellwig, M.; Herquet, P.; Hickford, S.; Hill, G. C.; Hodges, J.; Hoffman, K. D.; Hoshina, K.; Hubert, D.; Huelsnitz, W.; Hughey, B.; Hülß, J.-P.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Imlay, R. L.; Inaba, M.; Ishihara, A.; Jacobsen, J.; Japaridze, G. S.; Johansson, H.; Jones, A.; Joseph, J. M.; Kampert, K.-H.; Kappes, A.; Karg, T.; Karle, A.; Kawai, H.; Kelley, J. L.; Kiryluk, J.; Kislat, F.; Klein, S. R.; Kleinfelder, S.; Klepser, S.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Kowalski, M.; Kowarik, T.; Krasberg, M.; Kuehn, K.; Kujawski, E.; Kuwabara, T.; Labare, M.; Laihem, K.; Landsman, H.; Lauer, R.; Laundrie, A.; Leich, H.; Leier, D.; Lewis, C.; Lucke, A.; Ludvig, J.; Lundberg, J.; Lünemann, J.; Madsen, J.; Maruyama, R.; Mase, K.; Matis, H. S.; McParland, C. P.; Meagher, K.; Meli, A.; Merck, M.; Messarius, T.; Mészáros, P.; Minor, R. H.; Miyamoto, H.; Mohr, A.; Mokhtarani, A.; Montaruli, T.; Morse, R.; Movit, S. M.; Münich, K.; Muratas, A.; Nahnhauer, R.; Nam, J. W.; Nießen, P.; Nygren, D. R.; Odrowski, S.; Olivas, A.; Olivo, M.; Ono, M.; Panknin, S.; Patton, S.; Pérez de los Heros, C.; Petrovic, J.; Piegsa, A.; Pieloth, D.; Pohl, A. C.; Porrata, R.; Potthoff, N.; Pretz, J.; Price, P. B.; Przybylski, G. T.; Rawlins, K.; Razzaque, S.; Redl, P.; Resconi, E.; Rhode, W.; Ribordy, M.; Rizzo, A.; Robbins, W. J.; Rodrigues, J. P.; Roth, P.; Rothmaier, F.; Rott, C.; Roucelle, C.; Rutledge, D.; Ryckbosch, D.; Sander, H.-G.; Sarkar, S.; Satalecka, K.; Sandstrom, P.; Schlenstedt, S.; Schmidt, T.; Schneider, D.; Schulz, O.; Seckel, D.; Semburg, B.; Seo, S. H.; Sestayo, Y.; Seunarine, S.; Silvestri, A.; Smith, A. J.; Song, C.; Sopher, J. E.; Spiczak, G. M.; Spiering, C.; Stanev, T.; Stezelberger, T.; Stokstad, R. G.; Stoufer, M. C.; Stoyanov, S.; Strahler, E. A.; Straszheim, T.; Sulanke, K.-H.; Sullivan, G. W.; Swillens, Q.; Taboada, I.; Tarasova, O.; Tepe, A.; Ter-Antonyan, S.; Tilav, S.; Tluczykont, M.; Toale, P. A.; Tosi, D.; Turčan, D.; van Eijndhoven, N.; Vandenbroucke, J.; Van Overloop, A.; Viscomi, V.; Vogt, C.; Voigt, B.; Vu, C. Q.; Wahl, D.; Walck, C.; Waldenmaier, T.; Waldmann, H.; Walter, M.; Wendt, C.; Westerhof, S.; Whitehorn, N.; Wharton, D.; Wiebusch, C. H.; Wiedemann, C.; Wikström, G.; Williams, D. R.; Wischnewski, R.; Wissing, H.; Woschnagg, K.; Xu, X. W.; Yodh, G.; Yoshida, S.; IceCube Collaboration

    2009-04-01

    IceCube is a km-scale neutrino observatory under construction at the South Pole with sensors both in the deep ice (InIce) and on the surface (IceTop). The sensors, called Digital Optical Modules (DOMs), detect, digitize and timestamp the signals from optical Cherenkov-radiation photons. The DOM Main Board (MB) data acquisition subsystem is connected to the central DAQ in the IceCube Laboratory (ICL) by a single twisted copper wire-pair and transmits packetized data on demand. Time calibration is maintained throughout the array by regular transmission to the DOMs of precisely timed analog signals, synchronized to a central GPS-disciplined clock. The design goals and consequent features, functional capabilities, and initial performance of the DOM MB, and the operation of a combined array of DOMs as a system, are described here. Experience with the first InIce strings and the IceTop stations indicates that the system design and performance goals have been achieved.

  4. Century-scale simulations of the response of the West Antarctic Ice Sheet to a warming climate

    DOE PAGES

    Cornford, S. L.; Martin, D. F.; Payne, A. J.; ...

    2015-03-23

    We use the BISICLES adaptive mesh ice sheet model to carry out one, two, and three century simulations of the fast-flowing ice streams of the West Antarctic Ice Sheet. Each of the simulations begins with a geometry and velocity close to present day observations, and evolves according to variation in meteoric ice accumulation, ice shelf melting, and mesh resolution. Future changes in accumulation and melt rates range from no change, through anomalies computed by atmosphere and ocean models driven by the E1 and A1B emissions scenarios, to spatially uniform melt rates anomalies that remove most of the ice shelves overmore » a few centuries. We find that variation in the resulting ice dynamics is dominated by the choice of initial conditions, ice shelf melt rate and mesh resolution, although ice accumulation affects the net change in volume above flotation to a similar degree. Given sufficient melt rates, we compute grounding line retreat over hundreds of kilometers in every major ice stream, but the ocean models do not predict such melt rates outside of the Amundsen Sea Embayment until after 2100. Sensitivity to mesh resolution is spurious, and we find that sub-kilometer resolution is needed along most regions of the grounding line to avoid systematic under-estimates of the retreat rate, although resolution requirements are more stringent in some regions – for example the Amundsen Sea Embayment – than others – such as the Möller and Institute ice streams.« less

  5. Effects of Induction-System Icing on Aircraft-Engine Operating Characteristics

    NASA Technical Reports Server (NTRS)

    Stevens, Howard C., Jr.

    1947-01-01

    An investigation was conducted on a multicylinder aircraft engine on a dynamometer stand to determine the effect of induction-system icing on engine operating characteristics and to compare the results with those of a previous laboratory investigation in which only the carburetor and the engine-stage supercharger assembly from the engine were used. The experiments were conducted at simulated glide power, low cruise power, and normal rated power through a range of humidity ratios and air temperatures at approximately sea-level pressure. Induction-system icing was found to occur within approximately the same limits as those established by the previous laboratory investigation after making suitable allowances for the difference in fuel volatility and throttle angles. Rough operation of the engine was experienced when ice caused a marked reduction in the air flow. Photographs of typical ice formations from this investigation indicate close similarity to icing previously observed in the laboratory.

  6. The Potsdam Parallel Ice Sheet Model (PISM-PIK) - Part 1: Model description

    NASA Astrophysics Data System (ADS)

    Winkelmann, R.; Martin, M. A.; Haseloff, M.; Albrecht, T.; Bueler, E.; Khroulev, C.; Levermann, A.

    2011-09-01

    We present the Potsdam Parallel Ice Sheet Model (PISM-PIK), developed at the Potsdam Institute for Climate Impact Research to be used for simulations of large-scale ice sheet-shelf systems. It is derived from the Parallel Ice Sheet Model (Bueler and Brown, 2009). Velocities are calculated by superposition of two shallow stress balance approximations within the entire ice covered region: the shallow ice approximation (SIA) is dominant in grounded regions and accounts for shear deformation parallel to the geoid. The plug-flow type shallow shelf approximation (SSA) dominates the velocity field in ice shelf regions and serves as a basal sliding velocity in grounded regions. Ice streams can be identified diagnostically as regions with a significant contribution of membrane stresses to the local momentum balance. All lateral boundaries in PISM-PIK are free to evolve, including the grounding line and ice fronts. Ice shelf margins in particular are modeled using Neumann boundary conditions for the SSA equations, reflecting a hydrostatic stress imbalance along the vertical calving face. The ice front position is modeled using a subgrid-scale representation of calving front motion (Albrecht et al., 2011) and a physically-motivated calving law based on horizontal spreading rates. The model is tested in experiments from the Marine Ice Sheet Model Intercomparison Project (MISMIP). A dynamic equilibrium simulation of Antarctica under present-day conditions is presented in Martin et al. (2011).

  7. Temperature dependence of ice-on-rock friction at realistic glacier conditions

    PubMed Central

    Savage, H.; Nettles, M.

    2017-01-01

    Using a new biaxial friction apparatus, we conducted experiments of ice-on-rock friction in order to better understand basal sliding of glaciers and ice streams. A series of velocity-stepping and slide–hold–slide tests were conducted to measure friction and healing at temperatures between −20°C and melting. Experimental conditions in this study are comparable to subglacial temperatures, sliding rates and effective pressures of Antarctic ice streams and other glaciers, with load-point velocities ranging from 0.5 to 100 µm s−1 and normal stress σn = 100 kPa. In this range of conditions, temperature dependences of both steady-state friction and frictional healing are considerable. The friction increases linearly with decreasing temperature (temperature weakening) from μ = 0.52 at −20°C to μ = 0.02 at melting. Frictional healing increases and velocity dependence shifts from velocity-strengthening to velocity-weakening behaviour with decreasing temperature. Our results indicate that the strength and stability of glaciers and ice streams may change considerably over the range of temperatures typically found at the ice–bed interface. This article is part of the themed issue ‘Microdynamics of ice’. PMID:28025297

  8. Ice Detector and Deicing Fluid Effectiveness Monitoring System

    NASA Technical Reports Server (NTRS)

    Seegmiller, H. Lee B. (Inventor)

    1996-01-01

    An ice detector and deicing fluid effectiveness monitoring system for an aircraft is disclosed. The ice detection portion is particularly suited for use in flight to notify the flight crew of an accumulation of ice on an aircraft lifting and control surfaces, or helicopter rotors, whereas the deicing fluid effectiveness monitoring portion is particularly suited for use on the ground to notify the flight crew of the possible loss of the effectiveness of the deicing fluid. The ice detection portion comprises a temperature sensor and a parallel arrangement of electrodes whose coefficient of coupling is indicative of the formation of the ice, as well as the thickness of the formed ice. The fluid effectiveness monitoring portion comprises a temperature sensor and an ionic-conduction cell array that measures the conductivity of the deicing fluid which is indicative of its concentration and, thus, its freezing point. By measuring the temperature and having knowledge of the freezing point of the deicing fluid, the fluid effectiveness monitoring portion predicts when the deicing fluid may lose its effectiveness because its freezing point may correspond to the temperature of the ambient.

  9. Arctic sea-ice syntheses: Charting across scope, scale, and knowledge systems

    NASA Astrophysics Data System (ADS)

    Druckenmiller, M. L.; Perovich, D. K.; Francis, J. A.

    2017-12-01

    Arctic sea ice supports and intersects a multitude of societal benefit areas, including regulating regional and global climates, structuring marine food webs, providing for traditional food provisioning by indigenous peoples, and constraining marine shipping and access. At the same time, sea ice is one of the most rapidly changing elements of the Arctic environment and serves as a source of key physical indicators for monitoring Arctic change. Before the present scientific interest in Arctic sea ice for climate research, it has long been, and remains, a focus of applied research for industry and national security. For generations, the icy coastal seas of the North have also provided a basis for the sharing of local and indigenous knowledge between Arctic residents and researchers, including anthropologists, biologists, and geoscientists. This presentation will summarize an ongoing review of existing synthesis studies of Arctic sea ice. We will chart efforts to achieve system-level understanding across geography, temporal scales, and the ecosystem services that Arctic sea ice supports. In doing so, we aim to illuminate the role of interdisciplinary science, together with local and indigenous experts, in advancing knowledge of the roles of sea ice in the Arctic system and beyond, reveal the historical and scientific evolution of sea-ice research, and assess current gaps in system-scale understanding.

  10. An Imminent Revolution in Modeling Interactions of Ice Sheets With Climate

    NASA Astrophysics Data System (ADS)

    Hughes, T.

    2008-12-01

    Modeling continental ice sheets was inaugurated by meteorologists William Budd and Uwe Radok, with mathematician Richard Jenssen, in 1971. Their model calculated the thermal and mechanical regime using measured surface accumulation rates, temperatures, and elevations, and bed topography. This top-down approach delivered a basal thermal regime of temperatures or melting rates for an assumed basal geothermal heat flux. When Philippe Huybrechts and others incorporated time, largely unknownpast surface conditions had a major effect on present basal thermal conditions. This approach produced ice-sheet models with only a slow response to external forcing, whereas the glacial geological record and climate records from ice and ocean cores show that ice sheets can have rapid changes in size and shape independent of external forcing. These top-down models were wholly inadequate for reconstructing former ice sheets at the LGM for CLIMAP in 1981. Ice-sheet areas,elevations, and volumes provided the albedo, surface topography, and sea-surface area as input to climate models. A bottom-up model based on dated glacial geology was developed to provide the areal extent and basal thermal regime of ice sheets at the LGM. Basal thermal conditions determined ice-bed coupling and therefore the elevation of ice sheets. High convex ice surfaces for slow sheet flow lower about 20 percent when a frozen bed becomes thawed. As further basal melting drowns bedrock bumps that "pin" basal ice, the ice surface becomes concave in fast stream flow that ends as low floating ice shelves at marine ice margins. A revolution in modeling interactions between glaciation, climate, and sea level is driven by new Greenland and Antarctic data from Earth-orbiting satellites, airborne and surface traverses, and deep drilling. We anticipate continuous data acquisition of surface albedo, accumulation/ablation rates, elevations, velocities, and temperatures over a whole ice sheet, mapping basal thermal conditions

  11. Ocean forcing of Ice Sheet retreat in central west Greenland from LGM to the early Holocene

    NASA Astrophysics Data System (ADS)

    Jennings, Anne E.; Andrews, John T.; Ó Cofaigh, Colm; Onge, Guillaume St.; Sheldon, Christina; Belt, Simon T.; Cabedo-Sanz, Patricia; Hillaire-Marcel, Claude

    2017-08-01

    Three radiocarbon dated sediment cores from trough mouth fans on the central west Greenland continental slope were studied to determine the timing and processes of Greenland Ice Sheet (GIS) retreat from the shelf edge during the last deglaciation and to test the role of ocean forcing (i.e. warm ocean water) thereon. Analyses of lithofacies, quantitative x-ray diffraction mineralogy, benthic foraminiferal assemblages, the sea-ice biomarker IP25, and δ18 O of the planktonic foraminifera Neogloboquadrina pachyderma sinistral from sediments in the interval from 17.5-10.8 cal ka BP provide consistent evidence for ocean and ice sheet interactions during central west Greenland (CWG) deglaciation. The Disko and Uummannaq ice streams both retreated from the shelf edge after the last glacial maximum (LGM) under the influence of subsurface, warm Atlantic Water. The warm subsurface water was limited to depths below the ice stream grounding lines during the LGM, when the GIS terminated as a floating ice shelf in a sea-ice covered Baffin Bay. The deeper Uummannaq ice stream retreated first (ca. 17.1 cal ka BP), while the shallower Disko ice stream retreated at ca. 16.2 cal ka BP. The grounding lines were protected from accelerating mass loss (calving) by a buttressing ice shelf and by landward shallowing bathymetry on the outer shelf. Calving retreat was delayed until ca. 15.3 cal ka BP in the Uummannaq Trough and until 15.1 cal ka BP in the Disko Trough, during another interval of ocean warming. Instabilities in the Laurentide, Innuitian and Greenland ice sheets with outlets draining into northern Baffin Bay periodically released cold, fresh water that enhanced sea ice formation and slowed GIS melt. During the Younger Dryas, the CWG records document strong cooling, lack of GIS meltwater, and an increase in iceberg rafted material from northern Baffin Bay. The ice sheet remained in the cross-shelf troughs until the early Holocene, when it retreated rapidly by calving and strong

  12. Inferring unknow boundary conditions of the Greenland Ice Sheet by assimilating ICESat-1 and IceBridge altimetry intothe Ice Sheet System Model.

    NASA Astrophysics Data System (ADS)

    Larour, E. Y.; Khazendar, A.; Seroussi, H. L.; Schlegel, N.; Csatho, B. M.; Schenk, A. F.; Rignot, E. J.; Morlighem, M.

    2014-12-01

    Altimetry signals from missions such as ICESat-1, CryoSat, EnviSat, as well as altimeters onboard Operation IceBridge provide vital insights into processes such as surface mass balance, mass transport and ice-flow dynamics. Historically however, ice-flow models have been focused on assimilating surface velocities from satellite-based radar observations, to infer properties such as basal friction or the position of the bedrock. Here, we leverage a new methodology based on automatic differentation of the Ice Sheet System Model to assimilate surface altimetry data into a reconstruction of the past decade of ice flow on the North Greenland area. We infer corrections to boundary conditions such as basal friction and surface mass balance, as well as corrections to the ice hardness, to best-match the observed altimetry record. We compare these corrections between glaciers such as Petermann Glacier, 79 North and Zacchariae Isstrom. The altimetry signals exhibit very different patterns between East and West, which translate into very different signatures for the inverted boundary conditions. This study gives us greater insights into what differentiates different basins, both in terms of mass transport and ice-flow dynamics, and what could bethe controlling mechanisms behind the very different evolutions of these basins.

  13. Physical State of Ices in the Outer Solar System. Revised

    NASA Technical Reports Server (NTRS)

    Roush, Ted L.; DeVincenzi, Donald (Technical Monitor)

    2001-01-01

    Comparison of the identity and abundances of ices observed around protostars and those associated with comets clearly suggests that comets preserve the heritage of the interstellar materials that aggregated to form them. However, the ability to identify these same species on icy satellites in the outer solar system is a complex function of the composition of the original ices, their subsequent thermal histories, and their exposure to various radiation environments. Our ability to identify the ices currently present on objects in the outer solar system relies upon observational and laboratory, and theoretical efforts. To date there is ample observational evidence for crystalline water ice throughout the outer solar system. In addition, there is growing evidence that amorphous ice may be present on some bodies. More volatile ices, e.g. N2, CH4. CO, and other species, e.g. ammonia hydrate, are identified on objects lying at and beyond Uranus. Both photolysis and radiolysis play important roles in altering the original surfaces due to chemical reactions and erosion of the surface. Ultraviolet photolysis appears to dominate alteration of the upper few hundred Angstroms, although sputtering the surface can sometimes be a significantly competitative process; dominating on icy surfaces embedded in a strong planetary magnetospheric field. There is growing observational evidence that the by-products of photolysis and radiolysis, suggested on a theoretical basis, are present on icy surfaces.

  14. The evolution of a coupled ice shelf-ocean system under different climate states

    NASA Astrophysics Data System (ADS)

    Grosfeld, Klaus; Sandhäger, Henner

    2004-07-01

    Based on a new approach for coupled applications of an ice shelf model and an ocean general circulation model, we investigate the evolution of an ice shelf-ocean system and its sensitivity to changed climatic boundary conditions. Combining established 3D models into a coupled model system enabled us to study the reaction and feedbacks of each component to changes at their interface, the ice shelf base. After calculating the dynamics for prescribed initial ice shelf and bathymetric geometries, the basal mass balance determines the system evolution. In order to explore possible developments for given boundary conditions, an idealized geometry has been chosen, reflecting basic features of the Filchner-Ronne Ice Shelf, Antarctica. The model system is found to be especially sensitive in regions where high ablation or accretion rates occur. Ice Shelf Water formation as well as the build up of a marine ice body, resulting from accretion of marine ice, is simulated, indicating strong interaction processes. To improve consistency between modeled and observed ice shelf behavior, we incorporate the typical cycle of steady ice front advance and sudden retreat due to tabular iceberg calving in our time-dependent simulations. Our basic hypothesis is that iceberg break off is associated with abrupt crack propagation along elongated anomalies of the inherent stress field of the ice body. This new concept yields glaciologically plausible results and represents an auspicious basis for the development of a thorough calving criterion. Experiments under different climatic conditions (ocean warming of 0.2 and 0.5 °C and doubled surface accumulation rates) show the coupled model system to be sensitive especially to ocean warming. Increased basal melt rates of 100% for the 0.5 °C ocean warming scenario and an asymmetric development of ice shelf thicknesses suggest a high vulnerability of ice shelf regions, which represent pivotal areas between the Antarctic Ice Sheet and the Southern

  15. High-precision GPS autonomous platforms for sea ice dynamics and physical oceanography

    NASA Astrophysics Data System (ADS)

    Elosegui, P.; Wilkinson, J.; Olsson, M.; Rodwell, S.; James, A.; Hagan, B.; Hwang, B.; Forsberg, R.; Gerdes, R.; Johannessen, J.; Wadhams, P.; Nettles, M.; Padman, L.

    2012-12-01

    Project "Arctic Ocean sea ice and ocean circulation using satellite methods" (SATICE), is the first high-rate, high-precision, continuous GPS positioning experiment on sea ice in the Arctic Ocean. The SATICE systems collect continuous, dual-frequency carrier-phase GPS data while drifting on sea ice. Additional geophysical measurements also collected include ocean water pressure, ocean surface salinity, atmospheric pressure, snow-depth, air-ice-ocean temperature profiles, photographic imagery, and others, enabling sea ice drift, freeboard, weather, ice mass balance, and sea-level height determination. Relatively large volumes of data from each buoy are streamed over a satellite link to a central computer on the Internet in near real time, where they are processed to estimate the time-varying buoy positions. SATICE system obtains continuous GPS data at sub-minute intervals with a positioning precision of a few centimetres in all three dimensions. Although monitoring of sea ice motions goes back to the early days of satellite observations, these autonomous platforms bring out a level of spatio-temporal detail that has never been seen before, especially in the vertical axis. These high-resolution data allows us to address new polar science questions and challenge our present understanding of both sea ice dynamics and Arctic oceanography. We will describe the technology behind this new autonomous platform, which could also be adapted to other applications that require high resolution positioning information with sustained operations and observations in the polar marine environment, and present results pertaining to sea ice dynamics and physical oceanography.

  16. An Investigation of the Icing and Heated-air De-icing Characteristics of the R-2600-13 Induction System

    NASA Technical Reports Server (NTRS)

    Chapman, Gilbert E.

    1946-01-01

    A laboratory investigation was made on a Holley 1685-HB carburetor mounted on an R-2600-13 supercharger assembly to determine the icing characteristics and the heated-air de-icing requirements of this portion of the B-25D airplane induction system. Icing has been found to be most prevalent at relatively small throttle openings and, consequently, all runs were made at simulated 60-percent normal rated power condition. Icing characteristics were determined during a series of 15-minute runs over a range of inlet-air conditions. For the de-icing investigation severe impact ice was allowed to form in the induction system and the time required for the recovery of 95 percent of the maximum possible air flow at the original throttle setting was then determined for a range of wet-bulb temperatures. Results of these runs showed that ice on the walls of the carburetor adapter and on the rim of the impeller-shroud portion of the supercharger diffuser plate did not affect engine operation at 60-percent normal rated power. Ice that adversely affected the air flow and the fuel-air ratio was formed only on the central web of the carburetor and then only when the inlet air was saturated or contained free moisture in excess of saturation. No serious ice formations were observed at inlet-air temperatures above 66 0 F or with an inlet-air enthalpy greater than 34 Btu per pound. The maximum temperature at. which any trace of icing could be detected was 1110 F with a relative humidity of approximately 28 percent, The air-flow recovery time for emergency de-icing was 0.3 minute for.an enthalpy of 35 Btu per pound or wet-bulb temperature of 68 0 F. Further increase in enthalpy and wet-bulb temperature above these values resulted in very slight improvement in recovery time. The fuel-air ratio restored by a 5-Minute application of heated air was approximately 7 percent less than the initial value for cold-air conditions.

  17. A dynamical-systems approach for computing ice-affected streamflow

    USGS Publications Warehouse

    Holtschlag, David J.

    1996-01-01

    A dynamical-systems approach was developed and evaluated for computing ice-affected streamflow. The approach provides for dynamic simulation and parameter estimation of site-specific equations relating ice effects to routinely measured environmental variables. Comparison indicates that results from the dynamical-systems approach ranked higher than results from 11 analytical methods previously investigated on the basis of accuracy and feasibility criteria. Additional research will likely lead to further improvements in the approach.

  18. Multiscale Observation System for Sea Ice Drift and Deformation

    NASA Astrophysics Data System (ADS)

    Lensu, M.; Haapala, J. J.; Heiler, I.; Karvonen, J.; Suominen, M.

    2011-12-01

    The drift and deformation of sea ice cover is most commonly followed from successive SAR images. The time interval between the images is seldom less than one day which provides rather crude approximation of the motion fields as ice can move tens of kilometers per day. This is particulary so from the viewpoint of operative services, seeking to provide real time information for ice navigating ships and other end users, as leads are closed and opened or ridge fields created in time scales of one hour or less. The ice forecast models are in a need of better temporal resolution for ice motion data as well. We present experiences from a multiscale monitoring system set up to the Bay of Bothnia, the northernmost basin of the Baltic Sea. The basin generates difficult ice conditions every winter while the ports are kept open with the help of an icebreaker fleet. The key addition to SAR imagery is the use of coastal radars for the monitoring of coastal ice fields. An independent server is used to tap the radar signal and process it to suit ice monitoring purposes. This is done without interfering the basic use of the radars, the ship traffic monitoring. About 20 images per minute are captured and sent to the headquarters for motion field extraction, website animation and distribution. This provides very detailed real time picture of the ice movement and deformation within 20 km range. The real time movements are followed in addition with ice drifter arrays, and using AIS ship identification data, from which the translation of ship cannels due to ice drift can be found out. To the operative setup is associated an extensive research effort that uses the data for ice drift model enhancement. The Baltic ice models seek to forecast conditions relevant to ship traffic, especilly hazardous ones like severe ice compression. The main missing link here is downscaling, or the relation of local scale ice dynamics and kinematics to the ice model scale behaviour. The data flow when

  19. Ice-sheet modelling accelerated by graphics cards

    NASA Astrophysics Data System (ADS)

    Brædstrup, Christian Fredborg; Damsgaard, Anders; Egholm, David Lundbek

    2014-11-01

    Studies of glaciers and ice sheets have increased the demand for high performance numerical ice flow models over the past decades. When exploring the highly non-linear dynamics of fast flowing glaciers and ice streams, or when coupling multiple flow processes for ice, water, and sediment, researchers are often forced to use super-computing clusters. As an alternative to conventional high-performance computing hardware, the Graphical Processing Unit (GPU) is capable of massively parallel computing while retaining a compact design and low cost. In this study, we present a strategy for accelerating a higher-order ice flow model using a GPU. By applying the newest GPU hardware, we achieve up to 180× speedup compared to a similar but serial CPU implementation. Our results suggest that GPU acceleration is a competitive option for ice-flow modelling when compared to CPU-optimised algorithms parallelised by the OpenMP or Message Passing Interface (MPI) protocols.

  20. A New Discrete Element Sea-Ice Model for Earth System Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turner, Adrian Keith

    Sea ice forms a frozen crust of sea water oating in high-latitude oceans. It is a critical component of the Earth system because its formation helps to drive the global thermohaline circulation, and its seasonal waxing and waning in the high north and Southern Ocean signi cantly affects planetary albedo. Usually 4{6% of Earth's marine surface is covered by sea ice at any one time, which limits the exchange of heat, momentum, and mass between the atmosphere and ocean in the polar realms. Snow accumulates on sea ice and inhibits its vertical growth, increases its albedo, and contributes to pooledmore » water in melt ponds that darken the Arctic ice surface in the spring. Ice extent and volume are subject to strong seasonal, inter-annual and hemispheric variations, and climatic trends, which Earth System Models (ESMs) are challenged to simulate accurately (Stroeve et al., 2012; Stocker et al., 2013). This is because there are strong coupled feedbacks across the atmosphere-ice-ocean boundary layers, including the ice-albedo feedback, whereby a reduced ice cover leads to increased upper ocean heating, further enhancing sea-ice melt and reducing incident solar radiation re ected back into the atmosphere (Perovich et al., 2008). A reduction in perennial Arctic sea-ice during the satellite era has been implicated in mid-latitude weather changes, including over North America (Overland et al., 2015). Meanwhile, most ESMs have been unable to simulate observed inter-annual variability and trends in Antarctic sea-ice extent during the same period (Gagne et al., 2014).« less

  1. A microbial ecosystem beneath the West Antarctic ice sheet.

    PubMed

    Christner, Brent C; Priscu, John C; Achberger, Amanda M; Barbante, Carlo; Carter, Sasha P; Christianson, Knut; Michaud, Alexander B; Mikucki, Jill A; Mitchell, Andrew C; Skidmore, Mark L; Vick-Majors, Trista J

    2014-08-21

    Liquid water has been known to occur beneath the Antarctic ice sheet for more than 40 years, but only recently have these subglacial aqueous environments been recognized as microbial ecosystems that may influence biogeochemical transformations on a global scale. Here we present the first geomicrobiological description of water and surficial sediments obtained from direct sampling of a subglacial Antarctic lake. Subglacial Lake Whillans (SLW) lies beneath approximately 800 m of ice on the lower portion of the Whillans Ice Stream (WIS) in West Antarctica and is part of an extensive and evolving subglacial drainage network. The water column of SLW contained metabolically active microorganisms and was derived primarily from glacial ice melt with solute sources from lithogenic weathering and a minor seawater component. Heterotrophic and autotrophic production data together with small subunit ribosomal RNA gene sequencing and biogeochemical data indicate that SLW is a chemosynthetically driven ecosystem inhabited by a diverse assemblage of bacteria and archaea. Our results confirm that aquatic environments beneath the Antarctic ice sheet support viable microbial ecosystems, corroborating previous reports suggesting that they contain globally relevant pools of carbon and microbes that can mobilize elements from the lithosphere and influence Southern Ocean geochemical and biological systems.

  2. Balance Velocities of the Greenland Ice Sheet

    NASA Technical Reports Server (NTRS)

    Joughin, Ian; Fahnestock, Mark; Ekholm, Simon; Kwok, Ron

    1997-01-01

    We present a map of balance velocities for the Greenland ice sheet. The resolution of the underlying DEM, which was derived primarily from radar altimetry data, yields far greater detail than earlier balance velocity estimates for Greenland. The velocity contours reveal in striking detail the location of an ice stream in northeastern Greenland, which was only recently discovered using satellite imagery. Enhanced flow associated with all of the major outlets is clearly visible, although small errors in the source data result in less accurate estimates of the absolute flow speeds. Nevertheless, the balance map is useful for ice-sheet modelling, mass balance studies, and field planning.

  3. Internet of Things Based Combustible Ice Safety Monitoring System Framework

    NASA Astrophysics Data System (ADS)

    Sun, Enji

    2017-05-01

    As the development of human society, more energy is requires to meet the need of human daily lives. New energies play a significant role in solving the problems of serious environmental pollution and resources exhaustion in the present world. Combustible ice is essentially frozen natural gas, which can literally be lit on fire bringing a whole new meaning to fire and ice with less pollutant. This paper analysed the advantages and risks on the uses of combustible ice. By compare to other kinds of alternative energies, the advantages of the uses of combustible ice were concluded. The combustible ice basic physical characters and safety risks were analysed. The developments troubles and key utilizations of combustible ice were predicted in the end. A real-time safety monitoring system framework based on the internet of things (IOT) was built to be applied in the future mining, which provide a brand new way to monitoring the combustible ice mining safety.

  4. Modeling the Gulf Stream System: How Far from Reality?

    NASA Technical Reports Server (NTRS)

    Choa, Yi; Gangopadhyay, Avijit; Bryan, Frank O.; Holland, William R.

    1996-01-01

    Analyses of a primitive equation ocean model simulation of the Atlantic Ocean circulation at 1/6 deg horizontal resolution are presented with a focus on the Gulf Stream region. Among many successful features of this simulation, this letter describes the Gulf Stream separation from the coast of North America near Cape Hatteras, meandering of the Gulf Stream between Cape Hatteras and the Grand Banks, and the vertical structure of temperature and velocity associated with the Gulf Stream. These results demonstrate significant improvement in modeling the Gulf Stream system using basin- to global scale ocean general circulation models. Possible reasons responsible for the realistic Gulf Stream simulation are discussed, contrasting the major differences between the present model configuration and those of previous eddy resolving studies.

  5. Quantitative measurement of stream respiration using the resazurin-resorufin system

    NASA Astrophysics Data System (ADS)

    Gonzalez Pinzon, R. A.; Acker, S.; Haggerty, R.; Myrold, D.

    2011-12-01

    After three decades of active research in hydrology and stream ecology, the relationship between stream solute transport, metabolism and nutrient dynamics is still unresolved. These knowledge gaps obscure the function of stream ecosystems and how they interact with other landscape processes. To date, measuring rates of stream metabolism is accomplished with techniques that have vast uncertainties and are not spatially representative. These limitations mask the role of metabolism in nutrient processing. Clearly, more robust techniques are needed to develop mechanistic relationships that will ultimately improve our fundamental understanding of in-stream processes and how streams interact with other ecosystems. We investigated the "metabolic window of detection" of the Resazurin (Raz)-Resorufin (Rru) system (Haggerty et al., 2008, 2009). Although previous results have shown that the transformation of Raz to Rru is strongly correlated with respiration, a quantitative relationship between them is needed. We investigated this relationship using batch experiments with pure cultures (aerobic and anaerobic) and flow-through columns with incubated sediments from four different streams. The results suggest that the Raz-Rru system is a suitable approach that will enable hydrologists and stream ecologists to measure in situ and in vivo respiration at different scales, thus opening a reliable alternative to investigate how solute transport and stream metabolism control nutrient processing.

  6. The Potsdam Parallel Ice Sheet Model (PISM-PIK) - Part 1: Model description

    NASA Astrophysics Data System (ADS)

    Winkelmann, R.; Martin, M. A.; Haseloff, M.; Albrecht, T.; Bueler, E.; Khroulev, C.; Levermann, A.

    2010-08-01

    We present the Potsdam Parallel Ice Sheet Model (PISM-PIK), developed at the Potsdam Institute for Climate Impact Research to be used for simulations of large-scale ice sheet-shelf systems. It is derived from the Parallel Ice Sheet Model (Bueler and Brown, 2009). Velocities are calculated by superposition of two shallow stress balance approximations within the entire ice covered region: the shallow ice approximation (SIA) is dominant in grounded regions and accounts for shear deformation parallel to the geoid. The plug-flow type shallow shelf approximation (SSA) dominates the velocity field in ice shelf regions and serves as a basal sliding velocity in grounded regions. Ice streams naturally emerge through this approach and can be identified diagnostically as regions with a significant contribution of membrane stresses to the local momentum balance. All lateral boundaries in PISM-PIK are free to evolve, including the grounding line and ice fronts. Ice shelf margins in particular are modeled using Neumann boundary conditions for the SSA equations, reflecting a hydrostatic stress imbalance along the vertical calving face. The ice front position is modeled using a subgrid scale representation of calving front motion (Albrecht et al., 2010) and a physically motivated dynamic calving law based on horizontal spreading rates. The model is validated within the Marine Ice Sheet Model Intercomparison Project (MISMIP) and is used for a dynamic equilibrium simulation of Antarctica under present-day conditions in the second part of this paper (Martin et al., 2010).

  7. Managing IceBridge Airborne Mission Data at the National Snow and Ice Data Center

    NASA Astrophysics Data System (ADS)

    Brodzik, M.; Kaminski, M. L.; Deems, J. S.; Scambos, T. A.

    2010-12-01

    Operation IceBridge (OIB) is a NASA airborne geophysical survey mission conducting laser altimetry, ice-penetrating radar profiling, gravimetry and other geophysical measurements to monitor and characterize the Earth's cryosphere. The IceBridge mission will operate from 2009 until after the launch of ICESat-II (currently planned for 2015), and provides continuity of measurements between that mission and its predecessor. Data collection sites include the Greenland and Antarctic Ice Sheets and the sea ice pack regions of both poles. These regions include some of the most rapidly changing areas of the cryosphere. IceBridge is also collecting data in East Antarctica via the University of Texas ICECAP program and in Alaska via the University of Alaska, Fairbanks glacier mapping program. The NSIDC Distributed Active Archive Center at the University of Colorado at Boulder provides data archive and distribution support for the IceBridge mission. Our IceBridge work is based on two guiding principles: ensuring preservation of the data, and maximizing usage of the data. This broadens our work beyond the typical scope of a data archive. In addition to the necessary data management, discovery, distribution, and outreach functions, we are also developing tools that will enable broader use of the data, and integrating diverse data types to enable new science research. Researchers require expeditious access to data collected from the IceBridge missions; our archive approach balances that need with our long-term preservation goal. We have adopted a "fast-track" approach to publish data quickly after collection and make it available via FTP download. Subsequently, data sets are archived in the NASA EOSDIS ECS system, which enables data discovery and distribution with the appropriate backup, documentation, and metadata to assure its availability for future research purposes. NSIDC is designing an IceBridge data portal to allow interactive data search, exploration, and subsetting via

  8. A stream temperature model for the Peace-Athabasca River basin

    NASA Astrophysics Data System (ADS)

    Morales-Marin, L. A.; Rokaya, P.; Wheater, H. S.; Lindenschmidt, K. E.

    2017-12-01

    Water temperature plays a fundamental role in water ecosystem functioning. Because it regulates flow energy and metabolic rates in organism productivity over a broad spectrum of space and time scales, water temperature constitutes an important indicator of aquatic ecosystems health. In cold region basins, stream water temperature modelling is also fundamental to predict ice freeze-up and break-up events in order to improve flood management. Multiple model approaches such as linear and multivariable regression methods, neural network and thermal energy budged models have been developed and implemented to simulate stream water temperature. Most of these models have been applied to specific stream reaches and trained using observed data, but very little has been done to simulate water temperature in large catchment river networks. We present the coupling of RBM model, a semi-Lagrangian water temperature model for advection-dominated river system, and MESH, a semi-distributed hydrological model, to simulate stream water temperature in river catchments. The coupled models are implemented in the Peace-Athabasca River basin in order to analyze the variation in stream temperature regimes under changing hydrological and meteorological conditions. Uncertainty of stream temperature simulations is also assessed in order to determine the degree of reliability of the estimates.

  9. Slip stream apparatus and method for treating water in a circulating water system

    DOEpatents

    Cleveland, J.R.

    1997-03-18

    An apparatus is described for treating water in a circulating water system that has a cooling water basin which includes a slip stream conduit in flow communication with the circulating water system, a source of acid solution in flow communication with the slip stream conduit, and a decarbonator in flow communication with the slip stream conduit and the cooling water basin. In use, a slip stream of circulating water is drawn from the circulating water system into the slip stream conduit of the apparatus. The slip stream pH is lowered by contact with an acid solution provided from the source thereof. The slip stream is then passed through a decarbonator to form a treated slip stream, and the treated slip stream is returned to the cooling water basin. 4 figs.

  10. A method of predicting flow rates required to achieve anti-icing performance with a porous leading edge ice protection system

    NASA Technical Reports Server (NTRS)

    Kohlman, D. L.; Albright, A. E.

    1983-01-01

    An analytical method was developed for predicting minimum flow rates required to provide anti-ice protection with a porous leading edge fluid ice protection system. The predicted flow rates compare with an average error of less than 10 percent to six experimentally determined flow rates from tests in the NASA Icing Research Tunnel on a general aviation wing section.

  11. A synthesis of the basal thermal state of the Greenland Ice Sheet

    PubMed Central

    MacGregor, Joseph A.; Fahnestock, Mark A.; Catania, Ginny A.; Aschwanden, Andy; Clow, Gary D.; Colgan, William T.; Gogineni, S. Prasad; Morlighem, Mathieu; Nowicki, Sophie M. J.; Paden, John D.; Price, Stephen F.; Seroussi, Hélène

    2017-01-01

    The basal thermal state of an ice sheet (frozen or thawed) is an important control upon its evolution, dynamics and response to external forcings. However, this state can only be observed directly within sparse boreholes or inferred conclusively from the presence of subglacial lakes. Here we synthesize spatially extensive inferences of the basal thermal state of the Greenland Ice Sheet to better constrain this state. Existing inferences include outputs from the eight thermomechanical ice-flow models included in the SeaRISE effort. New remote-sensing inferences of the basal thermal state are derived from Holocene radiostratigraphy, modern surface velocity and MODIS imagery. Both thermomechanical modeling and remote inferences generally agree that the Northeast Greenland Ice Stream and large portions of the southwestern ice-drainage systems are thawed at the bed, whereas the bed beneath the central ice divides, particularly their west-facing slopes, is frozen. Elsewhere, there is poor agreement regarding the basal thermal state. Both models and remote inferences rarely represent the borehole-observed basal thermal state accurately near NorthGRIP and DYE-3. This synthesis identifies a large portion of the Greenland Ice Sheet (about one third by area) where additional observations would most improve knowledge of its overall basal thermal state. PMID:28163988

  12. A synthesis of the basal thermal state of the Greenland Ice Sheet.

    PubMed

    MacGregor, Joseph A; Fahnestock, Mark A; Catania, Ginny A; Aschwanden, Andy; Clow, Gary D; Colgan, William T; Gogineni, S Prasad; Morlighem, Mathieu; Nowicki, Sophie M J; Paden, John D; Price, Stephen F; Seroussi, Hélène

    2016-08-10

    The basal thermal state of an ice sheet (frozen or thawed) is an important control upon its evolution, dynamics and response to external forcings. However, this state can only be observed directly within sparse boreholes or inferred conclusively from the presence of subglacial lakes. Here we synthesize spatially extensive inferences of the basal thermal state of the Greenland Ice Sheet to better constrain this state. Existing inferences include outputs from the eight thermomechanical ice-flow models included in the SeaRISE effort. New remote-sensing inferences of the basal thermal state are derived from Holocene radiostratigraphy, modern surface velocity and MODIS imagery. Both thermomechanical modeling and remote inferences generally agree that the Northeast Greenland Ice Stream and large portions of the southwestern ice-drainage systems are thawed at the bed, whereas the bed beneath the central ice divides, particularly their west-facing slopes, is frozen. Elsewhere, there is poor agreement regarding the basal thermal state. Both models and remote inferences rarely represent the borehole-observed basal thermal state accurately near NorthGRIP and DYE-3. This synthesis identifies a large portion of the Greenland Ice Sheet (about one third by area) where additional observations would most improve knowledge of its overall basal thermal state.

  13. A synthesis of the basal thermal state of the Greenland Ice Sheet

    USGS Publications Warehouse

    MacGregor, Joseph A; Fahnestock, Mark A; Catania, Ginny A; Aschwanden, Andy; Clow, Gary D.; Colgan, William T.; Gogineni, Prasad S.; Morlighem, Mathieu; Nowicki, Sophie M .J.; Paden, John D; Price, Stephen F.; Seroussi, Helene

    2016-01-01

    The basal thermal state of an ice sheet (frozen or thawed) is an important control upon its evolution, dynamics and response to external forcings. However, this state can only be observed directly within sparse boreholes or inferred conclusively from the presence of subglacial lakes. Here we synthesize spatially extensive inferences of the basal thermal state of the Greenland Ice Sheet to better constrain this state. Existing inferences include outputs from the eight thermomechanical ice-flow models included in the SeaRISE effort. New remote-sensing inferences of the basal thermal state are derived from Holocene radiostratigraphy, modern surface velocity and MODIS imagery. Both thermomechanical modeling and remote inferences generally agree that the Northeast Greenland Ice Stream and large portions of the southwestern ice-drainage systems are thawed at the bed, whereas the bed beneath the central ice divides, particularly their west-facing slopes, is frozen. Elsewhere, there is poor agreement regarding the basal thermal state. Both models and remote inferences rarely represent the borehole-observed basal thermal state accurately near NorthGRIP and DYE-3. This synthesis identifies a large portion of the Greenland Ice Sheet (about one third by area) where additional observations would most improve knowledge of its overall basal thermal state.

  14. Possible contribution of ice-sheet/lithosphere interactions to past glaciological changes in Greenland

    NASA Astrophysics Data System (ADS)

    Alley, R. B.; Parizek, B. R.; Anandakrishnan, S.; Pollard, D.; Stevens, N. T.; Pourpoint, M.

    2017-12-01

    Ice-lithosphere interactions may have influenced the history of ice-sheet sensitivity to climate change. The Greenland ice sheet (GIS) is sensitive to warming, and is likely to be largely removed if subjected to relatively small additional temperature increases. The recent report (Schaefer et al., 2016, Nature) of near-complete GIS removal under modest Pleistocene forcing suggests that GIS sensitivity may be even greater than generally modeled, but lack of major Holocene retreat is more consistent with existing models. As shown by Stevens et al. (2016, JGR), peak lithospheric flexural stresses associated with ice-age GIS cycling are of the same order as dike-driving stresses in plutonic systems, and migrate over ice-age cycles. The full analysis by Stevens et al. suggests the possibility that the onset of cyclic ice-sheet loading allowed deep melt associated with the passage of the Icelandic hot spot beneath Greenland to work up though the crust to or near the base of the ice sheet, helping explain the anomalous geothermal heat fluxes observed at the head of the Northeast Greenland Ice Stream and elsewhere in the northern part of GIS. If ice-age cycling aided extraction of an existing reservoir of melted rock, then geothermal heat flux would have risen with the onset of extraction and migration, but with a subsequent fall associated with reservoir depletion. Simple parameterized flow-model simulations confirm intuition that a higher geothermal flux makes deglaciation easier, with the northern part of the ice sheet especially important. Large uncertainties remain in quantification, but we suggest the hypothesis that, following the onset of ice-age cycling, deglaciation of the GIS first became easier and then more difficult in response to feedbacks involving the ice sheet and the geological system beneath. In turn, this suggests that evidence of past deglaciation under moderate forcing is consistent with existing ice-sheet models.

  15. Improved methodologies for continuous-flow analysis of stable water isotopes in ice cores

    NASA Astrophysics Data System (ADS)

    Jones, Tyler R.; White, James W. C.; Steig, Eric J.; Vaughn, Bruce H.; Morris, Valerie; Gkinis, Vasileios; Markle, Bradley R.; Schoenemann, Spruce W.

    2017-02-01

    Water isotopes in ice cores are used as a climate proxy for local temperature and regional atmospheric circulation as well as evaporative conditions in moisture source regions. Traditional measurements of water isotopes have been achieved using magnetic sector isotope ratio mass spectrometry (IRMS). However, a number of recent studies have shown that laser absorption spectrometry (LAS) performs as well or better than IRMS. The new LAS technology has been combined with continuous-flow analysis (CFA) to improve data density and sample throughput in numerous prior ice coring projects. Here, we present a comparable semi-automated LAS-CFA system for measuring high-resolution water isotopes of ice cores. We outline new methods for partitioning both system precision and mixing length into liquid and vapor components - useful measures for defining and improving the overall performance of the system. Critically, these methods take into account the uncertainty of depth registration that is not present in IRMS nor fully accounted for in other CFA studies. These analyses are achieved using samples from a South Pole firn core, a Greenland ice core, and the West Antarctic Ice Sheet (WAIS) Divide ice core. The measurement system utilizes a 16-position carousel contained in a freezer to consecutively deliver ˜ 1 m × 1.3 cm2 ice sticks to a temperature-controlled melt head, where the ice is converted to a continuous liquid stream and eventually vaporized using a concentric nebulizer for isotopic analysis. An integrated delivery system for water isotope standards is used for calibration to the Vienna Standard Mean Ocean Water (VSMOW) scale, and depth registration is achieved using a precise overhead laser distance device with an uncertainty of ±0.2 mm. As an added check on the system, we perform inter-lab LAS comparisons using WAIS Divide ice samples, a corroboratory step not taken in prior CFA studies. The overall results are important for substantiating data obtained from LAS

  16. Glacier seismology: eavesdropping on the ice-bed interface

    NASA Astrophysics Data System (ADS)

    Walter, F.; Röösli, C.

    2015-12-01

    Glacier sliding plays a central role in ice dynamics. A number of remote sensing and deep drilling initiatives have therefore focused on the ice-bed interface. Although these techniques have provided valuable insights into bed properties, they do not supply theorists with data of sufficient temporal and spatial resolution to rigorously test mathematical sliding laws. As an alternative, passive seismic techniques have gained popularity in glacier monitoring. Analysis of glacier-related seismic sources ('icequakes') has become a useful technique to study inaccessible regions of the cryosphere, including the ice-bed interface. Seismic monitoring networks on the polar ice sheets have shown that ice sliding is not only a smooth process involving viscous deformation and regelation of basal ice layers. Instead, ice streams exhibit sudden slip episodes over their beds and intermittent phases of partial or complete stagnation. Here we discuss new and recently published discoveries of basal seismic sources beneath various glacial bodies. We revisit basal seismicity of hard-bedded Alpine glaciers, which is not the result of pure stick-slip motion. Sudden changes in seismicity suggest that the local configuration of the subglacial drainage system undergoes changes on sub daily time scales. Accordingly, such observations place constraints on basal resistance and sliding of hard-bedded glaciers. In contrast, certain clusters of stick-slip dislocations associated with micro seismicity beneath the Greenland ice sheet undergo diurnal variations in magnitudes and inter event times. This is best explained with a soft till bed, which hosts the shear dislocations and whose strength varies in response to changes in subglacial water pressure. These results suggest that analysis of basal icequakes is well suited for characterizing glacier and ice sheet beds. Future studies should address the relative importance between "smooth" and seismogenic sliding in different glacial environments.

  17. The effects of de-icing in Helsinki urban streams, southern Finland.

    PubMed

    Ruth, O

    2003-01-01

    The environmental effects of road salt have been studied in Finland mainly in order to monitor and reduce groundwater contamination. In urban areas the road salt used for road maintenance in winter ends up in the storm water drains and receiving water bodies. We report here on water samples taken in 1998-1999 from three urban streams with catchments varying in area 1.7 to 24.4 km2 in different parts of the City of Helsinki. Despite efforts to reduce the amount of road salt, high concentrations were found in the urban stream water. Sudden variations in water quality were very marked during the spring flood period, with sodium and chloride concentrations varying over nine-fold within one day. Some 35-50% of the salt used on the roads in Helsinki passes into natural streams and from there into the sea. The significant positive correlation between NaCl and dissolved zinc in stream water was observed. The results show that it is important to monitor water quality, especially at the beginning of the spring flood period, when road salt and other contaminant levels are markedly high in urban streams.

  18. UV Signatures of Ices: Moons in the Solar System

    NASA Astrophysics Data System (ADS)

    Hendrix, A. R.; Hansen, C. J.; Retherford, K. D.; Vilas, F.

    2017-12-01

    Using Earth-orbiting telescopes such as the International Ultraviolet Explorer and the Hubble Space Telescope, significant advances have been made in the area of ultraviolet observations of solar system objects. More in-depth studies have been made using interplanetary probes such as Galileo, Cassini and Lunar Reconnaissance Orbiter (LRO). While the UV spectral range has traditionally been used to study atmospheric and auroral processes, there is much to be learned by examining solid surfaces in the UV, including surface composition, weathering processes and effects, and the generation of thin atmospheres. Here we focus on moons in the solar system, including Earth's moon and the Saturnian satellites. The diagnostic UV signature of H2O is used to study ice in the lunar polar regions as well as hydration at lower latitudes, in observations from LRO LAMP. The water ice signature is nearly ubiquitous in the Saturn system; Cassini UVIS datasets are used to study grain sizes, exogenic processes/effects and non-ice species.

  19. Imaging Basal Crevasses at the Grounding Line of Whillans Ice Stream, West Antarctica

    NASA Astrophysics Data System (ADS)

    Jacobel, R. W.; Dawson, E. C.; Christianson, K.

    2015-12-01

    We acquired gridded ground-based radar data at the WIS grounding zone where the transition from limited- or no-slip conditions at the base of grounded ice to free-slip conditions beneath floating ice occurs across a region only a few kilometers wide. This transition is either an elastic-flexural transition from bedrock to hydrostatically-supported elevations (often tidally influenced), a transition from thicker to thinner ice over a flat bed, or some combination of these. In either case, the stress field of the ice changes as it flows across the grounding zone, often resulting in brittle deformation, which is manifested as basal crevassing at the ice-sheet base and sometimes as strand cracks at the surface. The position and morphology of these features reveal important information about the stress state across this transition where ice and ocean interact. Our surveys indicate a complex pattern of basal crevassing with many imaged in two or more profile segments as a linear feature at the bed, usually trending oblique to flow and often extending for several kilometers. Due to the wide beam pattern of our antennas, we image many of the crevasses from off-nadir reflections. Thus their arrival times are later than the primary basal reflection and segments of the crevasse appear "below" the bed, when in fact they are merely trending oblique to the profile. Often these returns have a reversed phase relative to the bed echo because the high dielectric contrast of seawater and a favorable geometry enable reflections with little loss (but a second phase reversal) from the ice-water interface near the crevasse base. In a few cases, these crevasse echoes from targets trending oblique to the profile appear to mimic the geometry of a sub-ice sediment "wedge", while in reality the radar never penetrates below the basal interface. Only about 25% of the crevasses appear to extend any significant distance upward into the basal ice, typically at low angles. A subset of these are

  20. 40 CFR Table 7 to Subpart Ffff of... - Requirements for Wastewater Streams and Liquid Streams in Open Systems Within an MCPU

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Liquid Streams in Open Systems Within an MCPU 7 Table 7 to Subpart FFFF of Part 63 Protection of... FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission Standards for Hazardous Air... of Part 63—Requirements for Wastewater Streams and Liquid Streams in Open Systems Within an MCPU As...

  1. The paradox of a long grounding during West Antarctic Ice Sheet retreat in Ross Sea.

    PubMed

    Bart, Philip J; Krogmeier, Benjamin J; Bart, Manon P; Tulaczyk, Slawek

    2017-04-28

    Marine geological data show that the West Antarctic Ice Sheet (WAIS) advanced to the eastern Ross Sea shelf edge during the Last Glacial Maximum (LGM) and eventually retreated ~1000 km to the current grounding-line position on the inner shelf. During the early deglacial, the WAIS deposited a voluminous stack of overlapping grounding zone wedges (GZWs) on the outer shelf of the Whales Deep Basin. The large sediment volume of the GZW cluster suggests that the grounding-line position of the paleo-Bindschadler Ice Stream was relatively stationary for a significant time interval. We used an upper bound estimate of paleo-sediment flux to investigate the lower bound duration over which the ice stream would have deposited sediment to account for the GZW volume. Our calculations show that the cluster represents more than three millennia of ice-stream sedimentation. This long duration grounding was probably facilitated by rapid GZW growth. The subsequent punctuated large-distance (~200 km) grounding-line retreat may have been a highly non-linear ice sheet response to relatively continuous external forcing such as gradual climate warming or sea-level rise. These findings indicate that reliable predictions of future WAIS retreat may require incorporation of realistic calculations of sediment erosion, transport and deposition.

  2. Decadal-Scale Response of the Antarctic Ice sheet to a Warming Ocean using the POPSICLES Coupled Ice Sheet-Ocean model

    NASA Astrophysics Data System (ADS)

    Martin, D. F.; Asay-Davis, X.; Cornford, S. L.; Price, S. F.; Ng, E. G.; Collins, W.

    2015-12-01

    We present POPSICLES simulation results covering the full Antarctic Ice Sheet and the Southern Ocean spanning the period from 1990 to 2010. We use the CORE v. 2 interannual forcing data to force the ocean model. Simulations are performed at 0.1o(~5 km) ocean resolution with adaptive ice sheet resolution as fine as 500 m to adequately resolve the grounding line dynamics. We discuss the effect of improved ocean mixing and subshelf bathymetry (vs. the standard Bedmap2 bathymetry) on the behavior of the coupled system, comparing time-averaged melt rates below a number of major ice shelves with those reported in the literature. We also present seasonal variability and decadal melting trends from several Antarctic regions, along with the response of the ice shelves and the consequent dynamic response of the grounded ice sheet.POPSICLES couples the POP2x ocean model, a modified version of the Parallel Ocean Program, and the BISICLES ice-sheet model. POP2x includes sub-ice-shelf circulation using partial top cells and the commonly used three-equation boundary layer physics. Standalone POP2x output compares well with standard ice-ocean test cases (e.g., ISOMIP) and other continental-scale simulations and melt-rate observations. BISICLES makes use of adaptive mesh refinement and a 1st-order accurate momentum balance similar to the L1L2 model of Schoof and Hindmarsh to accurately model regions of dynamic complexity, such as ice streams, outlet glaciers, and grounding lines. Results of BISICLES simulations have compared favorably to comparable simulations with a Stokes momentum balance in both idealized tests (MISMIP-3d) and realistic configurations.The figure shows the BISICLES-computed vertically-integrated grounded ice velocity field 5 years into a 20-year coupled full-continent Antarctic-Southern-Ocean simulation. Submarine melt rates are painted onto the surface of the floating ice shelves. Grounding lines are shown in green.

  3. Slip stream apparatus and method for treating water in a circulating water system

    DOEpatents

    Cleveland, Joe R.

    1997-01-01

    An apparatus (10) for treating water in a circulating water system (12) t has a cooling water basin (14) includes a slip stream conduit (16) in flow communication with the circulating water system (12), a source (36) of acid solution in flow communication with the slip stream conduit (16), and a decarbonator (58) in flow communication with the slip stream conduit (16) and the cooling water basin (14). In use, a slip stream of circulating water is drawn from the circulating water system (12) into the slip stream conduit (16) of the apparatus (10). The slip stream pH is lowered by contact with an acid solution provided from the source (36) thereof. The slip stream is then passed through a decarbonator (58) to form a treated slip stream, and the treated slip stream is returned to the cooling water basin (14).

  4. Shallow-source aeromagnetic anomalies observed over the West Antarctic Ice Sheet compared with coincident bed topography from radar ice sounding - New evidence for glacial "removal" of subglacially erupted late Cenozoic rift-related volcanic edifices

    USGS Publications Warehouse

    Behrendt, John C.; Blankenship, D.D.; Morse, D.L.; Bell, R.E.

    2004-01-01

    Aeromagnetic and radar ice sounding results from the 1991-1997 Central West Antarctica (CWA) aerogeophysical survey over part of the West Antarctic Ice Sheet (WAIS) and subglacial area of the volcanically active West Antarctic rift system have enabled detailed examination of specific anomaly sources. These anomalies, previously interpreted as caused by late Cenozoic subglacial volcanic centers, are compared to newly available glacial bed-elevation data from the radar ice sounding compilation of the entire area of the aeromagnetic survey to test this hypothesis in detail. We examined about 1000 shallow-source magnetic anomalies for bedrock topographic expression. Using very conservative criteria, we found over 400 specific anomalies which correlate with bed topography directly beneath each anomaly. We interpret these anomalies as indicative of the relative abundance of volcanic anomalies having shallow magnetic sources. Of course, deeper source magnetic anomalies are present, but these have longer wavelengths, lower gradients and mostly lower amplitudes from those caused by the highly magnetic late Cenozoic volcanic centers. The great bulk of these >400 (40-1200-nT) anomaly sources at the base of the ice have low bed relief (60-600 m, with about 80%10 million years ago. Eighteen of the anomalies examined, about half concentrated in the area of the WAIS divide, have high-topographic expression (as great as 400 m above sea level) and high bed relief (up to 1500 m). All of these high-topography anomaly sources at the base of the ice would isostatically rebound to elevations above sea level were the ice removed. We interpret these 18 anomaly sources as evidence of subaerial eruption of volcanoes whose topography was protected from erosion by competent volcanic flows similar to prominent volcanic peaks that are exposed above the surface of the WAIS. Further, we infer these volcanoes as possibly erupted at a time when the WAIS was absent. In contrast, at the other extreme

  5. Global characteristics of stream flow seasonality and variability

    USGS Publications Warehouse

    Dettinger, M.D.; Diaz, Henry F.

    2000-01-01

    Monthly stream flow series from 1345 sites around the world are used to characterize geographic differences in the seasonality and year-to-year variability of stream flow. Stream flow seasonality varies regionally, depending on the timing of maximum precipitation, evapotranspiration, and contributions from snow and ice. Lags between peaks of precipitation and stream flow vary smoothly from long delays in high-latitude and mountainous regions to short delays in the warmest sectors. Stream flow is most variable from year to year in dry regions of the southwest United States and Mexico, the Sahel, and southern continents, and it varies more (relatively) than precipitation in the same regions. Tropical rivers have the steadiest flows. El Nin??o variations are correlated with stream flow in many parts of the Americas, Europe, and Australia. Many stream flow series from North America, Europe, and the Tropics reflect North Pacific climate, whereas series from the eastern United States, Europe, and tropical South America and Africa reflect North Atlantic climate variations.

  6. Beaded streams of Arctic permafrost landscapes

    NASA Astrophysics Data System (ADS)

    Arp, C. D.; Whitman, M. S.; Jones, B. M.; Grosse, G.; Gaglioti, B. V.; Heim, K. C.

    2014-07-01

    Beaded streams are widespread in permafrost regions and are considered a common thermokarst landform. However, little is known about their distribution, how and under what conditions they form, and how their intriguing morphology translates to ecosystem functions and habitat. Here we report on a Circum-Arctic inventory of beaded streams and a watershed-scale analysis in northern Alaska using remote sensing and field studies. We mapped over 400 channel networks with beaded morphology throughout the continuous permafrost zone of northern Alaska, Canada, and Russia and found the highest abundance associated with medium- to high-ice content permafrost in moderately sloping terrain. In the Fish Creek watershed, beaded streams accounted for half of the drainage density, occurring primarily as low-order channels initiating from lakes and drained lake basins. Beaded streams predictably transition to alluvial channels with increasing drainage area and decreasing channel slope, although this transition is modified by local controls on water and sediment delivery. Comparison of one beaded channel using repeat photography between 1948 and 2013 indicate relatively stable form and 14C dating of basal sediments suggest channel formation may be as early as the Pleistocene-Holocene transition. Contemporary processes, such as deep snow accumulation in stream gulches effectively insulates river ice and allows for perennial liquid water below most beaded stream pools. Because of this, mean annual temperatures in pool beds are greater than 2 °C, leading to the development of perennial thaw bulbs or taliks underlying these thermokarst features. In the summer, some pools stratify thermally, which reduces permafrost thaw and maintains coldwater habitats. Snowmelt generated peak-flows decrease rapidly by two or more orders of magnitude to summer low flows with slow reach-scale velocity distributions ranging from 0.1 to 0.01 m s-1, yet channel runs still move water rapidly between pools

  7. Sea Ice Topography Profiling using Laser Altimetry from Small Unmanned Aircraft Systems

    NASA Astrophysics Data System (ADS)

    Crocker, Roger Ian

    Arctic sea ice is undergoing a dramatic transition from a perennial ice pack with a high prevalence of old multiyear ice, to a predominantly seasonal ice pack comprised primarily of young first-year and second-year ice. This transition has brought about changes in the sea ice thickness and topography characteristics, which will further affect the evolution and survivability of the ice pack. The varying ice conditions have substantial implications for commercial operations, international affairs, regional and global climate, our ability to model climate dynamics, and the livelihood of Arctic inhabitants. A number of satellite and airborne missions are dedicated to monitoring sea ice, but they are limited by their spatial and temporal resolution and coverage. Given the fast rate of sea ice change and its pervasive implications, enhanced observational capabilities are needed to augment the current strategies. The CU Laser Profilometer and Imaging System (CULPIS) is designed specifically for collecting fine-resolution elevation data and imagery from small unmanned aircraft systems (UAS), and has a great potential to compliment ongoing missions. This altimeter system has been integrated into four different UAS, and has been deployed during Arctic and Antarctic science campaigns. The CULPIS elevation measurement accuracy is shown to be 95±25 cm, and is limited primarily by GPS positioning error (<25 cm), aircraft attitude determination error (<20 cm), and sensor misalignment error (<20 cm). The relative error is considerably smaller over short flight distances, and the measurement precision is shown to be <10 cm over a distance of 200 m. Given its fine precision, the CULPIS is well suited for measuring sea ice topography, and observed ridge height and ridge separation distributions are found to agree with theoretical distributions to within 5%. Simulations demonstrate the inability of course-resolution measurements to accurately represent the theoretical distributions

  8. Altitude Scaling of Thermal Ice Protection Systems in Running Wet Operation

    NASA Technical Reports Server (NTRS)

    Orchard, D. M.; Addy, H. E.; Wright, W. B.; Tsao, J.

    2017-01-01

    A study into the effects of altitude on an aircraft thermal Ice Protection System (IPS) performance has been conducted by the National Research Council Canada (NRC) in collaboration with the NASA Glenn Icing Branch. The study included tests of an airfoil model, with a heated-air IPS, installed in the NRCs Altitude Icing Wind Tunnel (AIWT) at altitude and ground level conditions.

  9. An Approach to Computing Discrete Adjoints for MPI-Parallelized Models Applied to the Ice Sheet System Model}

    NASA Astrophysics Data System (ADS)

    Perez, G. L.; Larour, E. Y.; Morlighem, M.

    2016-12-01

    Within the framework of sea-level rise projections, there is a strong need for hindcast validation of the evolution of polar ice sheets in a way that tightly matches observational records (from radar and altimetry observations mainly). However, the computational requirements for making hindcast reconstructions possible are severe and rely mainly on the evaluation of the adjoint state of transient ice-flow models. Here, we look at the computation of adjoints in the context of the NASA/JPL/UCI Ice Sheet System Model, written in C++ and designed for parallel execution with MPI. We present the adaptations required in the way the software is designed and written but also generic adaptations in the tools facilitating the adjoint computations. We concentrate on the use of operator overloading coupled with the AdjoinableMPI library to achieve the adjoint computation of ISSM. We present a comprehensive approach to 1) carry out type changing through ISSM, hence facilitating operator overloading, 2) bind to external solvers such as MUMPS and GSL-LU and 3) handle MPI-based parallelism to scale the capability. We demonstrate the success of the approach by computing sensitivities of hindcast metrics such as the misfit to observed records of surface altimetry on the North-East Greenland Ice Stream, or the misfit to observed records of surface velocities on Upernavik Glacier, Central West Greenland. We also provide metrics for the scalability of the approach, and the expected performance. This approach has the potential of enabling a new generation of hindcast-validated projections that make full use of the wealth of datasets currently being collected, or alreay collected in Greenland and Antarctica, such as surface altimetry, surface velocities, and/or gravity measurements.

  10. Transient Conditions at the Ice/bed Interface Under a Palaeo-ice Stream Derived from Numerical Simulation of Groundwater Flow and Sedimentological Observations in a Drumlin Field, NW Poland

    NASA Astrophysics Data System (ADS)

    Hermanowski, P.; Piotrowski, J. A.

    2017-12-01

    Evacuation of glacial meltwater through the substratum is an important agent modulating the ice/bed interface processes. The amount of meltwater production, subglacial water pressure, flow patterns and fluxes all affect the strength of basal coupling and thus impact the ice-sheet dynamics. Despite much research into the subglacial processes of past ice sheets which controlled sediment transport and the formation of specific landforms, our understanding of the ice/bed interface remains fragmentary. In this study we numerically simulated, using finite difference and finite element codes, groundwater flow pattern and fluxes during an ice advance in the Stargard Drumlin Field, NW Poland to examine the potential influence of groundwater drainage on the landforming processes. The results are combined with sedimentological observations of the internal composition of the drumlins to validate the outcome of the numerical model. Our numerical experiments of groundwater flow suggest a highly time-dependent response of the subglacial hydrogeological system to the advancing ice margin. This is manifested as diversified areas of downward- and upward-oriented groundwater flows whereby the drumlin field area experienced primarily groundwater discharge towards the ice sole. The investigated drumlins are composed of (i) mainly massive till with thin stringers of meltwater sand, and (ii) sorted sediments carrying ductile deformations. The model results and sedimentological observations suggest a high subglacial pore-water pressure in the drumlin field area, which contributed to sediment deformation intervening with areas of basal decoupling and enhanced basal sliding.

  11. Marginal Ice Zone Processes Observed from Unmanned Aerial Systems

    NASA Astrophysics Data System (ADS)

    Zappa, C. J.

    2015-12-01

    Recent years have seen extreme changes in the Arctic. Marginal ice zones (MIZ), or areas where the "ice-albedo feedback" driven by solar warming is highest and ice melt is extensive, may provide insights into the extent of these changes. Furthermore, MIZ play a central role in setting the air-sea CO2 balance making them a critical component of the global carbon cycle. Incomplete understanding of how the sea-ice modulates gas fluxes renders it difficult to estimate the carbon budget in MIZ. Here, we investigate the turbulent mechanisms driving mixing and gas exchange in leads, polynyas and in the presence of ice floes using both field and laboratory measurements. Measurements from unmanned aerial systems (UAS) in the marginal ice zone were made during 2 experiments: 1) North of Oliktok Point AK in the Beaufort Sea were made during the Marginal Ice Zone Ocean and Ice Observations and Processes EXperiment (MIZOPEX) in July-August 2013 and 2) Fram Strait and Greenland Sea northwest of Ny-Ålesund, Svalbard, Norway during the Air-Sea-Ice Physics and Biogeochemistry Experiment (ASIPBEX) April - May 2015. We developed a number of new payloads that include: i) hyperspectral imaging spectrometers to measure VNIR (400-1000 nm) and NIR (900-1700 nm) spectral radiance; ii) net longwave and net shortwave radiation for ice-ocean albedo studies; iii) air-sea-ice turbulent fluxes as well as wave height, ice freeboard, and surface roughness with a LIDAR; and iv) drone-deployed micro-drifters (DDµD) deployed from the UAS that telemeter temperature, pressure, and RH as it descends through the atmosphere and temperature and salinity of the upper meter of the ocean once it lands on the ocean's surface. Visible and IR imagery of melting ice floes clearly defines the scale of the ice floes. The IR imagery show distinct cooling of the skin sea surface temperature (SST) as well as an intricate circulation and mixing pattern that depends on the surface current, wind speed, and near

  12. The Navy's First Seasonal Ice Forecasts using the Navy's Arctic Cap Nowcast/Forecast System

    NASA Astrophysics Data System (ADS)

    Preller, Ruth

    2013-04-01

    As conditions in the Arctic continue to change, the Naval Research Laboratory (NRL) has developed an interest in longer-term seasonal ice extent forecasts. The Arctic Cap Nowcast/Forecast System (ACNFS), developed by the Oceanography Division of NRL, was run in forward model mode, without assimilation, to estimate the minimum sea ice extent for September 2012. The model was initialized with varying assimilative ACNFS analysis fields (June 1, July 1, August 1 and September 1, 2012) and run forward for nine simulations using the archived Navy Operational Global Atmospheric Prediction System (NOGAPS) atmospheric forcing fields from 2003-2011. The mean ice extent in September, averaged across all ensemble members was the projected summer ice extent. These results were submitted to the Study of Environmental Arctic Change (SEARCH) Sea Ice Outlook project (http://www.arcus.org/search/seaiceoutlook). The ACNFS is a ~3.5 km coupled ice-ocean model that produces 5 day forecasts of the Arctic sea ice state in all ice covered areas in the northern hemisphere (poleward of 40° N). The ocean component is the HYbrid Coordinate Ocean Model (HYCOM) and is coupled to the Los Alamos National Laboratory Community Ice CodE (CICE) via the Earth System Modeling Framework (ESMF). The ocean and ice models are run in an assimilative cycle with the Navy's Coupled Ocean Data Assimilation (NCODA) system. Currently the ACNFS is being transitioned to operations at the Naval Oceanographic Office.

  13. Design, fabrication, and testing of an ultrasonic de-icing system for helicopter rotor blades

    NASA Astrophysics Data System (ADS)

    Palacios, Jose Luis

    A low-power, non-thermal ultrasonic de-icing system is introduced as a possible substitute for current electro-thermal systems. The system generates delaminating ultrasonic transverse shear stresses at the interface of accreted ice. A PZT-4 disk driven at 28.5 KHz (radial resonance of the disk) instantaneously de-bonds 2 mm thick freezer ice layers. The ice layers are accreted to a 0.7 mm thick, 30.4 cm x 30.4 cm steel plate at an environment temperature of -20°C. A power input of 50 Watts is applied to the actuator (50 V, 19.6 KV/m), which translates to a de-icing power of 0.07 W/cm2. A finite element model of the actuator bonded to the isotropic plate is used to guide the design of the system, and predicts the transverse shear stresses at the ice interface. Wind tunnel icing tests were conducted to demonstrate the potential use of the proposed system under impact icing conditions. Both glaze ice and rime ice were generated on steel and composite plates by changing the cloud conditions of the wind tunnel. Continuous ultrasonic vibration prevented impact ice formation around the actuator location at an input power not exceeding 0.18 W/cm 2 (1.2 W/in2). As ice thickness reached a critical thickness of approximately 1.2 mm, shedding occurred on those locations where ultrasonic transverse shear stresses exceeded the shear adhesion strength of the ice. Finite element transverse shear stress predictions correlate with observed experimental impact ice de-bonding behavior. To increase the traveling distance of propagating ultrasonic waves, ultrasonic shear horizontal wave modes are studied. Wave modes providing large modal interface transverse shear stress concentration coefficients (ISCC) between the host structure (0.7 mm thick steel plate) and accreted ice (2.5 mm thick ice layer) are identified and investigated for a potential increase in the wave propagation distance. Ultrasonic actuators able to trigger these optimum wave modes are designed and fabricated. Despite

  14. An Initial Study of the Fundamentals of Ice Crystal Icing Physics in the NASA Propulsion Systems Laboratory

    NASA Technical Reports Server (NTRS)

    Struk, Peter; Bartkus, Tadas; Tsao, Jen-Ching; Bencic, Timothy; King, Michael; Ratvasky, Thomas; Van Zante, Judith

    2017-01-01

    This presentation shows results from an initial study of the fundamental physics of ice-crystal ice accretion using the NASA Propulsion Systems Lab (PSL). Ice accretion due to the ingestion of ice-crystals is being attributed to numerous jet-engine power-loss events. The NASA PSL is an altitude jet-engine test facility which has recently added a capability to inject ice particles into the flow. NASA is evaluating whether this facility, in addition to full-engine and motor-driven-rig tests, can be used for more fundamental ice-accretion studies that simulate the different mixed-phase icing conditions along the core flow passage of a turbo-fan engine compressor. The data from such fundamental accretion tests will be used to help develop and validate models of the accretion process. The present study utilized a NACA0012 airfoil. The mixed-phase conditions were generated by partially freezing the liquid-water droplets ejected from the spray bars. This presentation shows data regarding (1) the freeze out characteristics of the cloud, (2) changes in aerothermal conditions due to the presence of the cloud, and (3) the ice accretion characteristics observed on the airfoil model. The primary variable in this test was the PSL plenum humidity which was systematically varied for two duct-exit-plane velocities (85 and 135 ms) as well as two particle size clouds (15 and 50 m MVDi). The observed clouds ranged from fully glaciated to fully liquid, where the liquid clouds were at least partially supercooled. The air total temperature decreased at the test section when the cloud was activated due to evaporation. The ice accretions observed ranged from sharp arrow-like accretions, characteristic of ice-crystal erosion, to cases with double-horn shapes, characteristic of supercooled water accretions.

  15. An Initial Study of the Fundamentals of Ice Crystal Icing Physics in the NASA Propulsion Systems Laboratory

    NASA Technical Reports Server (NTRS)

    Struk, Peter M.; Ratvasky, Thomas P.; Bencic, Timothy J.; Van Zante, Judith F.; King, Michael C.; Tsao, Jen-Ching; Bartkus, Tadas P.

    2017-01-01

    This paper presents results from an initial study of the fundamental physics of ice-crystal ice accretion using the NASA Propulsion Systems Lab (PSL). Ice accretion due to the ingestion of ice-crystals is being attributed to numerous jet-engine power-loss events. The NASA PSL is an altitude jet-engine test facility which has recently added a capability to inject ice particles into the flow. NASA is evaluating whether this facility, in addition to full-engine and motor-driven-rig tests, can be used for more fundamental ice-accretion studies that simulate the different mixed-phase icing conditions along the core flow passage of a turbo-fan engine compressor. The data from such fundamental accretion tests will be used to help develop and validate models of the accretion process. The present study utilized a NACA0012 airfoil. The mixed-phase conditions were generated by partially freezing the liquid-water droplets ejected from the spray bars. This paper presents data regarding (1) the freeze out characteristics of the cloud, (2) changes in aerothermal conditions due to the presence of the cloud, and (3) the ice accretion characteristics observed on the airfoil model. The primary variable in this test was the PSL plenum humidity which was systematically varied for two duct-exit-plane velocities (85 and 135 ms) as well as two particle size clouds (15 and 50 m MVDi). The observed clouds ranged from fully glaciated to fully liquid, where the liquid clouds were at least partially supercooled. The air total temperature decreased at the test section when the cloud was activated due to evaporation. The ice accretions observed ranged from sharp arrow-like accretions, characteristic of ice-crystal erosion, to cases with double-horn shapes, characteristic of supercooled water accretions.

  16. Design, construction, testing and evaluation of a residential ice storage air conditioning system

    NASA Astrophysics Data System (ADS)

    Santos, J. J.; Ritz, T. A.

    1982-12-01

    The experimental system was used to supply cooling to a single wide trailer and performance data were compared to a conventional air conditioning system of the some capacity. Utility rate information was collected from over one hundred major utility companies and used to evaluate economic comparison of the two systems. The ice storage system utilized reduced rate time periods to accommodate ice while providing continuous cooling to the trailer. The economic evaluation resulted in finding that the ice storage system required over 50% more energy than the conventional system. Although a few of the utility companies offered rate structures which would result in savings of up to $200 per year, this would not be enough to offset higher initial costs over the life of the storage system. Recommendations include items that would have to be met in order for an ice storage system to be an economically viable alternative to the conventional system.

  17. Insights into Spatial Sensitivities of Ice Mass Response to Environmental Change from the SeaRISE Ice Sheet Modeling Project I: Antarctica

    NASA Technical Reports Server (NTRS)

    Nowicki, Sophie; Bindschadler, Robert A.; Abe-Ouchi, Ayako; Aschwanden, Andy; Bueler, Ed; Choi, Hyengu; Fastook, Jim; Granzow, Glen; Greve, Ralf; Gutowski, Gail; hide

    2013-01-01

    Atmospheric, oceanic, and subglacial forcing scenarios from the Sea-level Response to Ice Sheet Evolution (SeaRISE) project are applied to six three-dimensional thermomechanical ice-sheet models to assess Antarctic ice sheet sensitivity over a 500 year timescale and to inform future modeling and field studies. Results indicate (i) growth with warming, except within low-latitude basins (where inland thickening is outpaced by marginal thinning); (ii) mass loss with enhanced sliding (with basins dominated by high driving stresses affected more than basins with low-surface-slope streaming ice); and (iii) mass loss with enhanced ice shelf melting (with changes in West Antarctica dominating the signal due to its marine setting and extensive ice shelves; cf. minimal impact in the Terre Adelie, George V, Oates, and Victoria Land region of East Antarctica). Ice loss due to dynamic changes associated with enhanced sliding and/or sub-shelf melting exceeds the gain due to increased precipitation. Furthermore, differences in results between and within basins as well as the controlling impact of sub-shelf melting on ice dynamics highlight the need for improved understanding of basal conditions, grounding-zone processes, ocean-ice interactions, and the numerical representation of all three.

  18. Icing flight research: Aerodynamic effects of ice and ice shape documentation with stereo photography

    NASA Technical Reports Server (NTRS)

    Mikkelsen, K. L.; Mcknight, R. C.; Ranaudo, R. J.; Perkins, P. J., Jr.

    1985-01-01

    Aircraft icing flight research was performed in natural icing conditions. A data base consisting of icing cloud measurements, ice shapes, and aerodynamic measurements is being developed. During research icing encounters the icing cloud was continuously measured. After the encounter, the ice accretion shapes on the wing were documented with a stereo camera system. The increase in wing section drag was measured with a wake survey probe. The overall aircraft performance loss in terms of lift and drag coefficient changes was obtained by steady level speed/power measurements. Selective deicing of the airframe components was performed to determine their contributions to the total drag increase. Engine out capability in terms of power available was analyzed for the iced aircraft. It was shown that the stereo photography system can be used to document ice shapes in flight and that the wake survey probe can measure increases in wing section drag caused by ice. On one flight, the wing section drag coefficient (c sub d) increased approximately 120 percent over the uniced baseline at an aircraft angle of attack of 6 deg. On another flight, the aircraft darg coefficient (c sub d) increased by 75 percent over the uniced baseline at an aircraft lift coefficient (C sub d) of 0.5.

  19. Icing flight research - Aerodynamic effects of ice and ice shape documentation with stereo photography

    NASA Technical Reports Server (NTRS)

    Mikkelsen, K. L.; Mcknight, R. C.; Ranaudo, R. J.; Perkins, P. J., Jr.

    1985-01-01

    Aircraft icing flight research was performed in natural icing conditions. A data base consisting of icing cloud measurements, ice shapes, and aerodynamic measurements is being developed. During research icing encounters the icing cloud was continuously measured. After the encounter, the ice accretion shapes on the wing were documented with a stereo camera system. The increase in wing section drag was measured with a wake survey probe. The overall aircraft performance loss in terms of lift and drag coefficient changes were obtained by steady level speed/power measurements. Selective deicing of the airframe components was performed to determine their contributions to the total drag increase. Engine out capability in terms of power available was analyzed for the iced aircraft. It was shown that the stereo photography system can be used to document ice shapes in flight and that the wake survey probe can measure increases in wing section drag caused by ice. On one flight, the wing section drag coefficient (c sub d) increased approximately 120 percent over the uniced baseline at an aircraft angle of attack of 6 deg. On another flight, the aircraft drag coefficient (c sub d) increased by 75 percent over the uniced baseline at an aircraft lift coefficient (c sub d) of 0.5.

  20. 14 CFR 33.68 - Induction system icing.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.68 Induction system icing...) and has a liquid water content not less than 0.3 grams per cubic meter in the form of drops having a...

  1. 14 CFR 33.68 - Induction system icing.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.68 Induction system icing...) and has a liquid water content not less than 0.3 grams per cubic meter in the form of drops having a...

  2. 14 CFR 33.68 - Induction system icing.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.68 Induction system icing...) and has a liquid water content not less than 0.3 grams per cubic meter in the form of drops having a...

  3. Middle Range Sea Ice Prediction System of Voyage Environmental Information System in Arctic Sea Route

    NASA Astrophysics Data System (ADS)

    Lim, H. S.

    2017-12-01

    Due to global warming, the sea ice in the Arctic Ocean is melting dramatically in summer, which is providing a new opportunity to exploit the Northern Sea Route (NSR) connecting Asia and Europe ship route. Recent increases in logistics transportation through NSR and resource development reveal the possible threats of marine pollution and marine transportation accidents without real-time navigation system. To develop a safe Voyage Environmental Information System (VEIS) for vessels operating, the Korea Institute of Ocean Science and Technology (KIOST) which is supported by the Ministry of Oceans and Fisheries, Korea has initiated the development of short-term and middle range prediction system for the sea ice concentration (SIC) and sea ice thickness (SIT) in NSR since 2014. The sea ice prediction system of VEIS consists of AMSR2 satellite composite images (a day), short-term (a week) prediction system, and middle range (a month) prediction system using a statistical method with re-analysis data (TOPAZ) and short-term predicted model data. In this study, the middle range prediction system for the SIC and SIT in NSR is calibrated with another middle range predicted atmospheric and oceanic data (NOAA CFSv2). The system predicts one month SIC and SIT on a daily basis, as validated with dynamic composite SIC data extracted from AMSR2 L2 satellite images.

  4. Plans and Preliminary Results of Fundamental Studies of Ice Crystal Icing Physics in the NASA Propulsion Systems Laboratory

    NASA Technical Reports Server (NTRS)

    Struk, Peter; Tsao, Jen-Ching; Bartkus, Tadas

    2017-01-01

    This paper describes plans and preliminary results for using the NASA Propulsion Systems Lab (PSL) to experimentally study the fundamental physics of ice-crystal ice accretion. NASA is evaluating whether this facility, in addition to full-engine and motor-driven-rig tests, can be used for more fundamental ice-accretion studies that simulate the different mixed-phase icing conditions along the core flow passage of a turbo-fan engine compressor. The data from such fundamental accretion tests will be used to help develop and validate models of the accretion process. This paper presents data from some preliminary testing performed in May 2015 which examined how a mixed-phase cloud could be generated at PSL using evaporative cooling in a warmer-than-freezing environment.

  5. Plans and Preliminary Results of Fundamental Studies of Ice Crystal Icing Physics in the NASA Propulsion Systems Laboratory

    NASA Technical Reports Server (NTRS)

    Struk, Peter; Tsao, Jen-Ching; Bartkus, Tadas

    2016-01-01

    This presentation accompanies the paper titled Plans and Preliminary Results of Fundamental Studies of Ice Crystal Icing Physics in the NASA Propulsion Systems Laboratory. NASA is evaluating whether PSL, in addition to full-engine and motor-driven-rig tests, can be used for more fundamental ice-accretion studies that simulate the different mixed-phase icing conditions along the core flow passage of a turbo-fan engine compressor. The data from such fundamental accretion tests will be used to help develop and validate models of the accretion process. This presentation (and accompanying paper) presents data from some preliminary testing performed in May 2015 which examined how a mixed-phase cloud could be generated at PSL using evaporative cooling in a warmer-than-freezing environment.

  6. Investigating the Greenland ice sheet evolution under changing climate using a three-dimensional full-Stokes model

    NASA Astrophysics Data System (ADS)

    Seddik, H.; Greve, R.; Zwinger, T.; Gillet-Chaulet, F.; Gagliardini, O.

    2010-12-01

    A three-dimensional, thermo-mechanically coupled model is applied to the Greenland ice sheet. The model implements the full-Stokes equations for the ice dynamics, and the system is solved with the finite-element method (FEM) using the open source multi-physics package Elmer (http://www.csc.fi/elmer/). The finite-element mesh for the computational domain has been created using the Greenland surface and bedrock DEM data with a spatial resolution of 5 km (SeaRise community effort, based on Bamber and others, 2001). The study is particularly aimed at better understanding the ice dynamics near the major Greenland ice streams. The meshing procedure starts with the bedrock footprint where a mesh with triangle elements and a resolution of 5 km is constructed. Since the resulting mesh is unnecessarily dense in areas with slow ice dynamics, an anisotropic mesh adaptation procedure has been introduced. Using the measured surface velocities to evaluate the Hessian matrix of the velocities, a metric tensor is computed at the mesh vertices in order to define the adaptation scheme. The resulting meshed footprint obtained with the automatic tool YAMS shows a high density of elements in the vicinities of the North-East Greenland Ice Stream (NEGIS), the Jakobshavn ice stream (JIS) and the Kangerdlugssuaq (KL) and Helheim (HH) glaciers. On the other hand, elements with a coarser resolution are generated away from the ice streams and domain margins. The final three-dimensional mesh is obtained by extruding the 2D footprint with 21 vertical layers, so that the resulting mesh contains 400860 wedge elements and 233583 nodes. The numerical solution of the Stokes and the heat transfer equations involves direct and iterative solvers depending on the simulation case, and both methods are coupled with stabilization procedures. The boundary conditions are such that the temperature at the surface uses the present-day mean annual air temperature given by a parameterization or directly from the

  7. Analyses and tests for design of an electro-impulse de-icing system

    NASA Technical Reports Server (NTRS)

    Zumwalt, G. W.; Schrag, R. L.; Bernhart, W. D.; Friedberg, R. A.

    1985-01-01

    De-icing of aircraft by using the electro-magnetic impulse phenomenon was proposed and demonstrated in several European countries. However, it is not available as a developed system due to lack of research on the basic physical mechanisms and necessary design parameters. The de-icing is accomplished by rapidly discharging high voltage capacitors into a wire coil rigidly supported just inside the aircraft skin. Induced eddy currents in the skin create a repulsive force resulting in a hammer-like force which cracks, de-bonds, and expels ice on the skin surface. The promised advantages are very low energy, high reliability of de-icing, and low maintenance. Three years of Electo-Impulse De-icing (EIDI) research is summarized and the analytical studies and results of testing done in the laboratory, in the NASA Icing Research Tunnel, and in flight are presented. If properly designed, EIDI was demonstrated to be an effective and practical ice protection system for small aircraft, turbojet engine inlets, elements of transport aircraft, and shows promise for use on helicopter rotor blades. Included are practical techniques of fabrication of impulse coils and their mountings. The use of EIDI with nonmetallic surface materials is also described.

  8. Ice sheet-ocean interactions and sea level change

    NASA Astrophysics Data System (ADS)

    Heimbach, Patrick

    2014-03-01

    Mass loss from the Greenland and Antarctic ice sheets has increased rapidly since the mid-1990s. Their combined loss now accounts for about one-third of global sea level rise. In Greenland, a growing body of evidence points to the marine margins of these glaciers as the region from which this dynamic response originated. Similarly, ice streams in West Antarctica that feed vast floating ice shelves have exhibited large decadal changes. We review observational evidence and present physical mechanisms that might explain the observed changes, in particular in the context of ice sheet-ocean interactions. Processes involve cover 7 orders of magnitudes of scales, ranging from mm boundary-layer processes to basin-scale coupled atmosphere-ocean variability. We discuss observational needs to fill the gap in our mechanistic understanding.

  9. Extensive Holocene ice sheet grounding line retreat and uplift-driven readvance in West Antarctica

    NASA Astrophysics Data System (ADS)

    Kingslake, J.; Scherer, R. P.; Albrecht, T.; Coenen, J. J.; Powell, R. D.; Reese, R.; Stansell, N.; Tulaczyk, S. M.; Whitehouse, P. L.

    2017-12-01

    The West Antarctic Ice Sheet (WAIS) reached its Last Glacial Maximum (LGM) extent 29-14 kyr before present. Numerical models used to project future ice-sheet contributions to sea-level rise exploit reconstructions of post-LGM ice mass loss to tune model parameterizations. Ice-sheet reconstructions are poorly constrained in areas where floating ice shelves or a lack of exposed geology obstruct conventional glacial-geological techniques. In the Weddell and Ross Sea sectors, ice-sheet reconstructions have traditionally assumed progressive grounding line (GL) retreat throughout the Holocene. Contrasting this view, using three distinct lines of evidence, we show that the GL retreated hundreds of kilometers inland of its present position, before glacial isostatic rebound during the Mid to Late Holocene caused the GL to readvance to its current position. Evidence for retreat and readvance during the last glacial termination includes (1) widespread radiocarbon in sediment cores recovered from beneath ice streams along the Siple and Gould Coasts, indicating marine exposure at least 200 km inland of the current GL, (2) ice-penetrating radar observations of relic crevasses and other englacial structures preserved in slow-moving grounded ice, indicating ice-shelf grounding and (3) an ensemble of new ice-sheet simulations showing widespread post-LGM retreat of the GL inland of its current location and later readvance. The model indicates that GL readvance across low slope ice-stream troughs requires uplift-driven grounding of the ice shelf on topographic highs (ice rises). Our findings highlight ice-shelf pinning points and lithospheric response to unloading as drivers of major ice-sheet fluctuations. Full WAIS collapse likely requires GL retreat well beyond its current position in the Ronne and Ross Sectors and linkage via Amundsen Sea sector glaciers.

  10. Integrated assessment of sources, chemical stressors and stream quality along a groundwater fed stream system

    NASA Astrophysics Data System (ADS)

    Løgstrup Bjerg, Poul; Sonne, Anne T.; Rønde, Vinni; McKnight, Ursula S.

    2016-04-01

    Streams are impacted by significant contamination at the catchment scale, as they are often locations of multiple chemical stressor inputs. The European Water Framework Directive requires EU member states to ensure good chemical and ecological status of surface water bodies by 2027. This requires monitoring of stream water quality, comparison with environmental quality standards (EQS) and assessment of ecological status. However, the achievement of good status of stream water also requires a strong focus on contaminant sources, pathways and links to stream water impacts, so source management and remedial measures can be implemented. Fate and impacts of different contaminant groups are governed by different processes and are dependent on the origin (geogenic, anthropogenic), source type (point or diffuse) and pathway of the contaminant. To address this issue, we identified contaminant sources and chemical stressors on a groundwater-fed stream to quantify the contaminant discharges, link the chemical impact and stream water quality and assess the main chemical risk drivers in the stream system potentially driving ecological impact. The study was conducted in the 8 m wide Grindsted stream (Denmark) along a 16 km stream stretch that is potentially impacted by two contaminated sites (Grindsted Factory site, Grindsted Landfill), fish farms, waste water discharges, and diffuse sources from agriculture and urban areas. Water samples from the stream and the hyporheic zone as well as bed sediment samples were collected during three campaigns in 2012 and 2014. Data for xenobiotic organic groundwater contaminants, pesticides, heavy metals, general water chemistry, physical conditions and stream flow were collected. The measured chemical concentrations were converted to toxic units (TU) based on the 48h acute toxicity tests with D. magna. The results show a substantial impact of the Grindsted Factory site at a specific stretch of the stream. The groundwater plume caused

  11. IceBreaker: Mars Drill and Sample Delivery System

    NASA Astrophysics Data System (ADS)

    Mellerowicz, B. L.; Paulsen, G. L.; Zacny, K.; McKay, C.; Glass, B. J.; Dave, A.; Davila, A. F.; Marinova, M.

    2012-12-01

    We report on the development and testing of a one meter class prototype Mars drill and cuttings sample delivery system. The IceBreaker drill consists of a rotary-percussive drill head, a sampling auger with a bit at the end having an integrated temperature sensor, a Z-stage for advancing the auger into the ground, and a sam-pling station for moving the augered ice shavings or soil cuttings into a sample cup. The drill is deployed from a 3 Degree of Freedom (DOF) robotic arm. The drill demonstrated drilling in ice-cemented ground, ice, and rocks at the 1-1-100-100 level; that is the drill reached 1 meter in 1 hour with 100 Watts of power and 100 Newton Weight on Bit. This cor-responds to an average energy of 100 Whr. The drill has been extensively tested in the Mars chamber to a depth of 1 meter, as well as in the Antarctic and the Arctic Mars analog sites. We also tested three sample delivery systems: 1) 4 DOF arm with a custom soil scoop at the end; 2) Pneumatic based, and 3) Drill based enabled by the 3 (DOF) drill deployment boom. In all approaches there is an air-gap between the sterilized drill (which penetrates subsurface) and the sample transfer hardware (which is not going to be sterilized). The air gap satisfies the planetary protection requirements. The scoop acquires cuttings sample once they are augered to the surface, and drops them into an in-strument inlet port. The system has been tested in the Mars chamber and in the Arctic. The pneumatic sample delivery system uses compressed gas to move the sample captured inside a small chamber inte-grated with the auger, directly into the instrument. The system was tested in the Mars chamber. In the third approach the drill auger captures the sample on its flutes, the 3 DOF boom positions the tip of the auger above the instrument, and then the auger discharges the sample into an instrument. This approach was tested in the labolatory (at STP). The above drilling and sample delivery tests have shown that drilling

  12. Improving Altimetry Height-change Retrieval on the Fringes of the Antarctic Ice Sheet

    NASA Astrophysics Data System (ADS)

    Paolo, F. S.; Nilsson, J.; Gardner, A. S.

    2017-12-01

    Projections of sea-level change over the next century are highly uncertain, in part, due to insufficient understanding of ice-sheet sensitivity to changes in oceanic and atmospheric circulation. This limitation is, to a large degree, related to the lack of long and continuous observational records covering critical regions along the ice-sheet margins where the ice interacts with the ocean. Of particular importance are accurate records of changes in ice thickness that provide information on how mass fluctuates on the floating extensions of ice streams and glaciers through which the ice-sheet drains. These changes can modify the stability of the grounded ice sheet through changing back-stress, for example, through loss of ice-shelf buttressing. Here, we synthetize 25+ years of satellite altimetry observations to extend the time span and improve the resolution and accuracy of the existing record of Antarctic floating ice thickness. We incorporate data from ESA's ERS-1, ERS-2, Envisat and Cryosat-2 radar altimeters (1992-present) and NASA's ICESat laser altimeter (2003-2009) and Operation IceBridge surveys (2009-present); with plans to include ICESat-2 data soon after its launch in September 2018. Towards this effort, we revisit some of the main corrections applied to altimeter data, such as minimization of the difference between measurements from radar and laser systems; and we improve the approach for the synthesis of heterogeneous measurements of ice-surface topography and uncertainty estimation. We report on our progress in constructing this long-term and homogeneous record, with a particular focus on the floating ice shelves.

  13. Swalley canal ice detection system : final report.

    DOT National Transportation Integrated Search

    1990-01-01

    This report evaluates the reliability of information provided by a "SCAN 16" surface condition analyzer. SCAN systems are designed to inform highway maintenance personnel when frost, ice and snow are present on a roadway surface or bridge deck. The s...

  14. Canadian snow and sea ice: assessment of snow, sea ice, and related climate processes in Canada's Earth system model and climate-prediction system

    NASA Astrophysics Data System (ADS)

    Kushner, Paul J.; Mudryk, Lawrence R.; Merryfield, William; Ambadan, Jaison T.; Berg, Aaron; Bichet, Adéline; Brown, Ross; Derksen, Chris; Déry, Stephen J.; Dirkson, Arlan; Flato, Greg; Fletcher, Christopher G.; Fyfe, John C.; Gillett, Nathan; Haas, Christian; Howell, Stephen; Laliberté, Frédéric; McCusker, Kelly; Sigmond, Michael; Sospedra-Alfonso, Reinel; Tandon, Neil F.; Thackeray, Chad; Tremblay, Bruno; Zwiers, Francis W.

    2018-04-01

    The Canadian Sea Ice and Snow Evolution (CanSISE) Network is a climate research network focused on developing and applying state-of-the-art observational data to advance dynamical prediction, projections, and understanding of seasonal snow cover and sea ice in Canada and the circumpolar Arctic. This study presents an assessment from the CanSISE Network of the ability of the second-generation Canadian Earth System Model (CanESM2) and the Canadian Seasonal to Interannual Prediction System (CanSIPS) to simulate and predict snow and sea ice from seasonal to multi-decadal timescales, with a focus on the Canadian sector. To account for observational uncertainty, model structural uncertainty, and internal climate variability, the analysis uses multi-source observations, multiple Earth system models (ESMs) in Phase 5 of the Coupled Model Intercomparison Project (CMIP5), and large initial-condition ensembles of CanESM2 and other models. It is found that the ability of the CanESM2 simulation to capture snow-related climate parameters, such as cold-region surface temperature and precipitation, lies within the range of currently available international models. Accounting for the considerable disagreement among satellite-era observational datasets on the distribution of snow water equivalent, CanESM2 has too much springtime snow mass over Canada, reflecting a broader northern hemispheric positive bias. Biases in seasonal snow cover extent are generally less pronounced. CanESM2 also exhibits retreat of springtime snow generally greater than observational estimates, after accounting for observational uncertainty and internal variability. Sea ice is biased low in the Canadian Arctic, which makes it difficult to assess the realism of long-term sea ice trends there. The strengths and weaknesses of the modelling system need to be understood as a practical tradeoff: the Canadian models are relatively inexpensive computationally because of their moderate resolution, thus enabling their

  15. Navy Sea Ice Prediction Systems

    DTIC Science & Technology

    2002-01-01

    for the IABP drifting buoys (red), the model (green), and the model with assimilation (black). 55 Oceanography • Vol. 15 • No. 1/2002 trate the need...SPECIAL ISSUE – NAVY OPERATIONAL MODELS : TEN YEARS LATER Oceanography • Vol. 15 • No. 1/2002 44 ice extent and/or ice thickness. A general trend...most often based on a combination of models and data. Modeling sea ice can be a difficult problem, as it exists in many different forms (Figure 1). It

  16. Fine scale monitoring of ice ablation following convective heat transfer: case study based on ice-wedge thermo-erosion on Bylot Island (Canadian High Arctic) and laboratory observations

    NASA Astrophysics Data System (ADS)

    Godin, E.; Fortier, D.

    2011-12-01

    Thermo-erosion gullies often develop in ice-wedge polygons terrace and contribute to the dynamic evolution of the periglacial landscape. When snowmelt surface run-off concentrated into streams and water tracks infiltrate frost cracks, advective heat flow and convective thermal transfer from water to the ice-wedge ice enable the rapid development of tunnels and gullies in the permafrost (Fortier et al. 2007). Fine scale monitoring of the physical interaction between flowing water and ice rich permafrost had already been studied in a context of thermal erosion of a large river banks in Russia (Costard et al. 2003). Ice wedge polygons thermo-erosion process leading to gullying remains to be physically modelled and quantified. The present paper focus on the fine scale monitoring of thermo-erosion physical parameters both in the field and in laboratory. The physical model in laboratory was elaborated using a fixed block of ice monitored by a linear voltage differential transducer (LVDT) and temperature sensors connected to a logger. A water container with controlled discharge and temperature provided the fluid which flowed over the ice through a hose. Water discharge (Q), water temperature (Tw), ice melting temperature (Ti) and ice ablation rate (Ar) were measured. In laboratory, water at 281 Kelvin (K) flowing on the ice (Ti 273 K) made the ice melt at a rate Ar of 0.002 m min-1, under a continuous discharge of ≈ 8 x 10-7 m3 s-1. In the field, a small channel was dug between a stream and an exposed ice-wedge in a pre-existing active gully, where in 2010 large quantities of near zero snowmelt run-off water contributed to several meters of ice wedge ablation and gully development. Screws were fastened into the ice and a ruler was used to measure the ablation rate every minute. The surface temperature of the ice wedge was monitored with thermocouples connected to a logger to obtain the condition of the ice boundary layer. Discharge and water temperature were measured in

  17. Modeling Commercial Turbofan Engine Icing Risk With Ice Crystal Ingestion

    NASA Technical Reports Server (NTRS)

    Jorgenson, Philip C. E.; Veres, Joseph P.

    2013-01-01

    The occurrence of ice accretion within commercial high bypass aircraft turbine engines has been reported under certain atmospheric conditions. Engine anomalies have taken place at high altitudes that have been attributed to ice crystal ingestion, partially melting, and ice accretion on the compression system components. The result was degraded engine performance, and one or more of the following: loss of thrust control (roll back), compressor surge or stall, and flameout of the combustor. As ice crystals are ingested into the fan and low pressure compression system, the increase in air temperature causes a portion of the ice crystals to melt. It is hypothesized that this allows the ice-water mixture to cover the metal surfaces of the compressor stationary components which leads to ice accretion through evaporative cooling. Ice accretion causes a blockage which subsequently results in the deterioration in performance of the compressor and engine. The focus of this research is to apply an engine icing computational tool to simulate the flow through a turbofan engine and assess the risk of ice accretion. The tool is comprised of an engine system thermodynamic cycle code, a compressor flow analysis code, and an ice particle melt code that has the capability of determining the rate of sublimation, melting, and evaporation through the compressor flow path, without modeling the actual ice accretion. A commercial turbofan engine which has previously experienced icing events during operation in a high altitude ice crystal environment has been tested in the Propulsion Systems Laboratory (PSL) altitude test facility at NASA Glenn Research Center. The PSL has the capability to produce a continuous ice cloud which are ingested by the engine during operation over a range of altitude conditions. The PSL test results confirmed that there was ice accretion in the engine due to ice crystal ingestion, at the same simulated altitude operating conditions as experienced previously in

  18. Update on the NASA Glenn Propulsion Systems Lab Ice Crystal Cloud Characterization (2015)

    NASA Technical Reports Server (NTRS)

    Van Zante, Judith F.; Bencic, Timothy J.; Ratvasky, Thomas P.

    2016-01-01

    NASA Glenn's Propulsion Systems Lab (PSL), an altitude engine test facility, was outfitted with a spray system to generate ice crystals. The first ice crystal characterization test occurred in 2012. At PSL, turbine engines and driven rigs can experience ice crystal icing at flight altitudes, temperatures and Mach numbers. To support these tests, four ice crystal characterizations have been conducted in two different facility configurations. In addition, super-cooled liquid and mixed phase clouds have also been generated. This paper will discuss the recent learning from the previous two calibrations. It will describe some of the 12-parameter calibration space, and how those parameters interact with each other, the instrumentation used to characterize the cloud and present a sample of the cloud characterization results.

  19. Validation of the Antarctic Snow Accumulation and Ice Discharge Basal Stress Boundary in the South Eastern Region of the Ross Ice Shelf, Antarctica

    NASA Astrophysics Data System (ADS)

    Nelson, C. B.; King, K.

    2015-12-01

    The largest ice shelf in Antarctic, Ross Ice Shelf, was investigated over the years of (1970-2015). Near the basal stress boundary between the ice shelf and the West Antarctic ice sheet, ice velocity ranges from a few meters per year to several hundred meters per year in ice streams. Most of the drainage from West Antarctica into the Ross Ice Shelf flows down two major ice streams, each of which discharges more than 20 km3 of ice each year. Along with velocity changes, the warmest water below parts of the Ross Ice Shelf resides in the lowest portion of the water column because of its high salinity. Vertical mixing caused by tidal stirring can thus induce ablation by lifting the warm water into contact with the ice shelf. This process can cause melting over a period of time and eventually cause breakup of ice shelf. With changes occurring over many years a validation is needed for the Antarctic Snow Accumulation and Ice Discharge (ASAID) basal stress boundary created in 2003. After the 2002 Larsen B Ice Shelf disintegration, nearby glaciers in the Antarctic Peninsula accelerated up to eight times their original speed over the next 18 months. Similar losses of ice tongues in Greenland have caused speed-ups of two to three times the flow rates in just one year. Rapid changes occurring in regions surrounding Antarctica are causing concern in the polar science community to research changes occurring in coastal zones over time. During the research, the team completed study on the Ross Ice Shelf located on the south western coast of the Antarctic. The study included a validation of the ABSB vs. the natural basal stress boundary (NBSB) along the Ross Ice Shelf. The ASAID BSB was created in 2003 by a team of researchers headed by National Aeronautics and Space Administration Goddard Space Flight Center (NASA GSFC), with an aim of studying coastal deviations as it pertains to the mass balance of the entire continent. The point data file was aimed at creating a replica of the

  20. Possible Mechanisms for Turbofan Engine Ice Crystal Icing at High Altitude

    NASA Technical Reports Server (NTRS)

    Tsao, Jen-Ching; Struk, Peter M.; Oliver, Michael

    2014-01-01

    A thermodynamic model is presented to describe possible mechanisms of ice formation on unheated surfaces inside a turbofan engine compression system from fully glaciated ice crystal clouds often formed at high altitude near deep convective weather systems. It is shown from the analysis that generally there could be two distinct types of ice formation: (1) when the "surface freezing fraction" is in the range of 0 to 1, dominated by the freezing of water melt from fully or partially melted ice crystals, the ice structure is formed from accretion with strong adhesion to the surface, and (2) when the "surface melting fraction" is the range of 0 to 1, dominated by the further melting of ice crystals, the ice structure is formed from accumulation of un-melted ice crystals with relatively weak bonding to the surface. The model captures important qualitative trends of the fundamental ice-crystal icing phenomenon reported earlier1,2 from the research collaboration work by NASA and the National Research Council (NRC) of Canada. Further, preliminary analysis of test data from the 2013 full scale turbofan engine ice crystal icing test3 conducted in the NASA Glenn Propulsion Systems Laboratory (PSL) has also suggested that (1) both types of ice formation occurred during the test, and (2) the model has captured some important qualitative trend of turning on (or off) the ice crystal ice formation process in the tested engine low pressure compressor (LPC) targeted area under different icing conditions that ultimately would lead to (or suppress) an engine core roll back (RB) event.

  1. Possible Mechanisms for Turbofan Engine Ice Crystal Icing at High Altitude

    NASA Technical Reports Server (NTRS)

    Tsao, Jen-Ching; Struk, Peter M.; Oliver, Michael J.

    2016-01-01

    A thermodynamic model is presented to describe possible mechanisms of ice formation on unheated surfaces inside a turbofan engine compression system from fully glaciated ice crystal clouds often formed at high altitude near deep convective weather systems. It is shown from the analysis that generally there could be two distinct types of ice formation: (1) when the "surface freezing fraction" is in the range of 0 to 1, dominated by the freezing of water melt from fully or partially melted ice crystals, the ice structure is formed from accretion with strong adhesion to the surface, and (2) when the "surface melting fraction" is the range of 0 to 1, dominated by the further melting of ice crystals, the ice structure is formed from accumulation of un-melted ice crystals with relatively weak bonding to the surface. The model captures important qualitative trends of the fundamental ice-crystal icing phenomenon reported earlier (Refs. 1 and 2) from the research collaboration work by NASA and the National Research Council (NRC) of Canada. Further, preliminary analysis of test data from the 2013 full scale turbofan engine ice crystal icing test (Ref. 3) conducted in the NASA Glenn Propulsion Systems Laboratory (PSL) has also suggested that (1) both types of ice formation occurred during the test, and (2) the model has captured some important qualitative trend of turning on (or off) the ice crystal ice formation process in the tested engine low pressure compressor (LPC) targeted area under different icing conditions that ultimately would lead to (or suppress) an engine core roll back (RB) event.

  2. Basal Settings Control Fast Ice Flow in the Recovery/Slessor/Bailey Region, East Antarctica

    NASA Astrophysics Data System (ADS)

    Diez, Anja; Matsuoka, Kenichi; Ferraccioli, Fausto; Jordan, Tom A.; Corr, Hugh F.; Kohler, Jack; Olesen, Arne V.; Forsberg, René

    2018-03-01

    The region of Recovery Glacier, Slessor Glacier, and Bailey Ice Stream, East Antarctica, has remained poorly explored, despite representing the largest potential contributor to future global sea level rise on a centennial to millennial time scale. Here we use new airborne radar data to improve knowledge about the bed topography and investigate controls of fast ice flow. Recovery Glacier is underlain by an 800 km long trough. Its fast flow is controlled by subglacial water in its upstream and topography in its downstream region. Fast flow of Slessor Glacier is controlled by the presence of subglacial water on a rough crystalline bed. Past ice flow of adjacent Recovery and Slessor Glaciers was likely connected via the newly discovered Recovery-Slessor Gate. Changes in direction and speed of past fast flow likely occurred for upstream parts of Recovery Glacier and between Slessor Glacier and Bailey Ice Stream. Similar changes could also reoccur here in the future.

  3. An archival analysis of stall warning system effectiveness during airborne icing encounters

    NASA Astrophysics Data System (ADS)

    Maris, John Michael

    An archival study was conducted to determine the influence of stall warning system performance on aircrew decision-making outcomes during airborne icing encounters. A Conservative Icing Response Bias (CIRB) model was developed to explain the historical variability in aircrew performance in the face of airframe icing. The model combined Bayes' Theorem with Signal Detection Theory (SDT) concepts to yield testable predictions that were evaluated using a Binary Logistic Regression (BLR) multivariate technique applied to two archives: the NASA Aviation Safety Reporting System (ASRS) incident database, and the National Transportation Safety Board (NTSB) accident databases, both covering the period January 1, 1988 to October 2, 2015. The CIRB model predicted that aircrew would experience more incorrect response outcomes in the face of missed stall warnings than with stall warning False Alarms. These predicted outcomes were observed at high significance levels in the final sample of 132 NASA/NTSB cases. The CIRB model had high sensitivity and specificity, and explained 71.5% (Nagelkerke R2) of the variance of aircrew decision-making outcomes during the icing encounters. The reliability and validity metrics derived from this study suggest indicate that the findings are generalizable to the population of U.S. registered turbine-powered aircraft. These findings suggest that icing-related stall events could be reduced if the incidence of stall warning Misses could be minimized. Observed stall warning Misses stemmed from three principal causes: aerodynamic icing effects, which reduced the stall angle-of-attack (AoA) to below the stall warning calibration threshold; tail stalls, which are not monitored by contemporary protection systems; and icing-induced system issues (such as frozen pitot tubes), which compromised stall warning system effectiveness and airframe envelope protections. Each of these sources of missed stall warnings could be addressed by Aerodynamic Performance

  4. System for processing an encrypted instruction stream in hardware

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Griswold, Richard L.; Nickless, William K.; Conrad, Ryan C.

    A system and method of processing an encrypted instruction stream in hardware is disclosed. Main memory stores the encrypted instruction stream and unencrypted data. A central processing unit (CPU) is operatively coupled to the main memory. A decryptor is operatively coupled to the main memory and located within the CPU. The decryptor decrypts the encrypted instruction stream upon receipt of an instruction fetch signal from a CPU core. Unencrypted data is passed through to the CPU core without decryption upon receipt of a data fetch signal.

  5. An approach to computing discrete adjoints for MPI-parallelized models applied to Ice Sheet System Model 4.11

    NASA Astrophysics Data System (ADS)

    Larour, Eric; Utke, Jean; Bovin, Anton; Morlighem, Mathieu; Perez, Gilberto

    2016-11-01

    Within the framework of sea-level rise projections, there is a strong need for hindcast validation of the evolution of polar ice sheets in a way that tightly matches observational records (from radar, gravity, and altimetry observations mainly). However, the computational requirements for making hindcast reconstructions possible are severe and rely mainly on the evaluation of the adjoint state of transient ice-flow models. Here, we look at the computation of adjoints in the context of the NASA/JPL/UCI Ice Sheet System Model (ISSM), written in C++ and designed for parallel execution with MPI. We present the adaptations required in the way the software is designed and written, but also generic adaptations in the tools facilitating the adjoint computations. We concentrate on the use of operator overloading coupled with the AdjoinableMPI library to achieve the adjoint computation of the ISSM. We present a comprehensive approach to (1) carry out type changing through the ISSM, hence facilitating operator overloading, (2) bind to external solvers such as MUMPS and GSL-LU, and (3) handle MPI-based parallelism to scale the capability. We demonstrate the success of the approach by computing sensitivities of hindcast metrics such as the misfit to observed records of surface altimetry on the northeastern Greenland Ice Stream, or the misfit to observed records of surface velocities on Upernavik Glacier, central West Greenland. We also provide metrics for the scalability of the approach, and the expected performance. This approach has the potential to enable a new generation of hindcast-validated projections that make full use of the wealth of datasets currently being collected, or already collected, in Greenland and Antarctica.

  6. Increased Use of No-till Cropping Systems Improves Stream Ecosystem Quality

    NASA Astrophysics Data System (ADS)

    Yates, A. G.; Bailey, R. C.; Schwindt, J. A.

    2005-05-01

    Release of sediments to streams from tilled lands has been a significant stressor to streams in agro-ecosystems for decades and has been shown to impact aquatic biota in a variety of ways. To limit soil erosion from cultivated lands, conservation tillage techniques, including the use of no-till systems, have been developed and widely adopted throughout the region. However, there haves been no tests of the effects of no-till systems on stream quality at a watershed scale. We measured habitat and water quality and sampled the benthic macroinvertebrate (BMI) and fish communities in 32 small (100-1400 ha) subwatersheds along a gradient of the proportion of land under no-till cropping systems to determine relationships between the use of no-till and stream quality. Our results demonstrate that with increasing proportions of no-till, habitat scores improve, the quantities of sediment and sediment associated stressors in the water decline, the BMI community exhibits reduced dominance by Oligocheata and Sphaeriidae, as well as improved Family Biotic Index (FBI) scores, and fish species richness increases. We concluded that increased use of no-till cropping systems by farmers does contribute to improved quality of streams in agro-ecosystems.

  7. The internal structure of the Brunt Ice Shelf, Antarctica from ice-penetrating radar

    NASA Astrophysics Data System (ADS)

    King, Edward; De Rydt, Jan; Gudmundsson, Hilmar

    2016-04-01

    The Brunt Ice Shelf is a small feature on the Coats Land Coast of the Weddell Sea, Antarctica. It is unusual among Antarctic ice shelves because the ice crossing the grounding line from the ice sheet retains no structural integrity, so the ice shelf comprises icebergs of continental ice cemented together by sea ice, with the whole blanketed by in-situ snowfall. The size and distribution of the icebergs is governed by the thickness profile along the grounding line. Where bedrock troughs discharge thick ice to the ice shelf, the icebergs are large and remain close together with little intervening sea ice. Where bedrock ridges mean the ice crossing the grounding line is thin, the icebergs are small and widely-scattered with large areas of sea ice between them. To better understand the internal structure of the Brunt Ice Shelf and how this might affect the flow dynamics we conducted ice-penetrating radar surveys during December 2015 and January 2016. Three different ground-based radar systems were used, operating at centre frequencies of 400, 50 and 10 MHz respectively. The 400 MHz system gave detailed firn structure and accumulation profiles as well as time-lapse profiles of the active propagation of a crevasse. The 50 MHz system provided intermediate-level detail of iceberg distribution and thickness as well as information on the degree of salt water infiltration into the accumulating snow pack. The 10 MHz system used a high-power transmitter in an attempt to measure ice thickness beneath salt-impregnated ice. In this poster we will present example data from each of the three radar systems which will demonstrate the variability of the internal structure of the ice shelf. We will also present preliminary correlations between the internal structure and the surface topography from satellite data.

  8. Altitude Effects on Thermal Ice Protection System Performance; A Study of an Alternative Simulation Approach

    NASA Technical Reports Server (NTRS)

    Addy, Gene; Wright, Bill; Orchard, David; Oleskiw, Myron

    2015-01-01

    The quest for more energy-efficient green aircraft, dictates that all systems, including the ice protection system (IPS), be closely examined for ways to reduce energy consumption and to increase efficiency. A thermal ice protection systems must protect the aircraft from the hazardous effects of icing, and yet it needs to do so as efficiently as possible. The system can no longer be afforded the degree of over-design in power usage they once were. To achieve these more exacting designs, a better understanding of the heat and mass transport phenomena involved during an icing encounter is needed.

  9. The use of multi-channel ground penetrating radar and stream monitoring to investigate the seasonal evolution of englacial and subglacial drainage systems at the terminus of Exit Glacier, Alaska

    NASA Astrophysics Data System (ADS)

    Kilgore, Susan Marlena

    Concerns regarding the issue of climate change and, in particular, the rapid retreat of glaciers around the world, have placed great importance on glacial monitoring. Some of the methods most commonly used to observe glacial change---direct mass balance measurements and remote sensing---provide valuable information about glacier change. However, these methods do not address the englacial and subglacial environments. Surface meltwater that enters englacial and subglacial hydrological networks can contribute to acceleration of ice flow, increased calving on marine-terminating glaciers, surges or outburst floods, and greater overall ablation rates. Because subsurface drainage systems often freeze during the winter and re-form each summer, examining the seasonal evolution of these networks is crucial for assessing the impact that internal drainage may have on the behavior of a glacier each year. The goal of this study is to determine the role englacial and subglacial drainage system evolution plays in influencing summer ablation and discharge at the terminus of Exit Glacier, a small valley glacier located in South-central Alaska. During the summers of 2010 and 2011, we used ground-penetrating radar (GPR) to locate internal drainage features on the lower 100 meters of the glacier. GPR surveys were conducted in June and August of each year in an effort to observe the evolution of the drainage systems over the course of an ablation season. Three antenna frequencies---250, 500, and 800 MHz---were used on a dual frequency GPR so that various resolutions and depths in the ice could be viewed simultaneously. Stream monitoring was conducted to document discharge in the proglacial stream throughout the 2011 season. These data were compared with weather records to differentiate noticeable meltwater releases from precipitation events. Additionally, morphological changes in the glacier were observed through photographic documentation. Throughout the observation period, significant

  10. Reconstruction of the extent and variability of late Quaternary ice sheets and Arctic sea ice: Insights from new mineralogical and geochemical proxy records

    NASA Astrophysics Data System (ADS)

    Stein, R. H.; Niessen, F.; Fahl, K.; Forwick, M.; Kudriavtseva, A.; Ponomarenko, E.; Prim, A. K.; Quatmann-Hense, A.; Spielhagen, R. F.; Zou, H.

    2016-12-01

    The Arctic Ocean and surrounding continents are key areas within the Earth system and very sensitive to present and past climate change. In this context, the timing and extent of circum-Arctic ice sheets and its interaction with oceanic and sea-ice dynamics are major interest and focus of international research. New sediment cores recovered during the Polarstern Expeditions PS87 (Lomonosov Ridge/2014) and PS93.1 (Fram Strait/2015) together with several sediment cores available from previous Polarstern expeditions allow to carry out a detailed sedimentological and geochemical study that may help to unravel the changes in Arctic sea ice and circum-Arctic ice sheets during late Quaternary times. Our new data include biomarkers indicative for past sea-ice extent, phytoplankton productivity and terrigenous input as well as grain size, physical property, XRD and XRF data indicative for sources and pathways of terrigenous sediments (ice-rafted debris/IRD) related to glaciations in Eurasia, East Siberia, Canada and Greenland. Here, we present examples from selected sediment cores that give new insights into the timing and extent of sea ice and glaciations during MIS 6 to MIS 2. To highlight one example: SE-NW oriented, streamlined landforms have been mapped on top of the southern Lomonosov Ridge (LR) at water depths between 800 and 1000 m over long distances during Polarstern Expedition PS87, interpreted to be glacial lineations that formed beneath grounded ice sheets and ice streams. The orientations of the lineations identified are similar to those on the East Siberian continental margin, suggesting an East Siberian Chukchi Ice Sheet extended far to the north on LR during times of extreme Quaternary glaciations. Based on our new biomarker records from Core PS2757 (located on LR near 81°N) indicating a MIS 6 ice-edge situation with some open-water phytoplankton productivity, the glacial erosional event should have been older than MIS 6 (e.g., MIS 12?).

  11. Ice Shelf-Ocean Interactions Near Ice Rises and Ice Rumples

    NASA Astrophysics Data System (ADS)

    Lange, M. A.; Rückamp, M.; Kleiner, T.

    2013-12-01

    The stability of ice shelves depends on the existence of embayments and is largely influenced by ice rises and ice rumples, which act as 'pinning-points' for ice shelf movement. Of additional critical importance are interactions between ice shelves and the water masses underlying them in ice shelf cavities, particularly melting and refreezing processes. The present study aims to elucidate the role of ice rises and ice rumples in the context of climate change impacts on Antarctic ice shelves. However, due to their smaller spatial extent, ice rumples react more sensitively to climate change than ice rises. Different forcings are at work and need to be considered separately as well as synergistically. In order to address these issues, we have decided to deal with the following three issues explicitly: oceanographic-, cryospheric and general topics. In so doing, we paid particular attention to possible interrelationships and feedbacks in a coupled ice-shelf-ocean system. With regard to oceanographic issues, we have applied the ocean circulation model ROMBAX to ocean water masses adjacent to and underneath a number of idealized ice shelf configurations: wide and narrow as well as laterally restrained and unrestrained ice shelves. Simulations were performed with and without small ice rises located close to the calving front. For larger configurations, the impact of the ice rises on melt rates at the ice shelf base is negligible, while for smaller configurations net melting rates at the ice-shelf base differ by a factor of up to eight depending on whether ice rises are considered or not. We employed the thermo-coupled ice flow model TIM-FD3 to simulate the effects of several ice rises and one ice rumple on the dynamics of ice shelf flow. We considered the complete un-grounding of the ice shelf in order to investigate the effect of pinning points of different characteristics (interior or near calving front, small and medium sized) on the resulting flow and stress fields

  12. Assimilation of MODIS Ice Surface Temperature and Albedo into the Snow and Ice Model CROCUS Over the Greenland Ice Sheet Along the K-transect Stations

    NASA Astrophysics Data System (ADS)

    Navari, M.; Margulis, S. A.; Bateni, S. M.; Alexander, P. M.; Tedesco, M.

    2016-12-01

    Estimating the Greenland Ice Sheet (GrIS) surface mass balance (SMB) is an important component of current and future projections of sea level rise. In situ measurement provides direct estimates of the SMB, but are inherently limited by their spatial extent and representativeness. Given this limitation, physically based regional climate models (RCMs) are critical for understanding GrIS physical processes and estimating of the GrIS SMB. However, the uncertainty in estimates of SMB from RCMs is still high. Surface remote sensing (RS) has been used as a complimentary tool to characterize various aspects related to the SMB. The difficulty of using these data streams is that the links between them and the SMB terms are most often indirect and implicit. Given the lack of in situ information, imperfect models, and under-utilized RS data it is critical to merge the available data in a systematic way to better characterize the spatial and temporal variation of the GrIS SMB. This work proposes a data assimilation (DA) framework that yields temporally-continuous and physically consistent SMB estimates that benefit from state-of-the-art models and relevant remote sensing data streams. Ice surface temperature (IST) is the most important factor that regulates partitioning of the net radiation into the subsurface snow/ice, sensible and latent heat fluxes and plays a key role in runoff generation. Therefore it can be expected that a better estimate of surface temperature from a data assimilation system would contribute to a better estimate of surface mass fluxes. Albedo plays an important role in the surface energy balance of the GrIS. However, even advanced albedo modules are not adequate to simulate albedo over the GrIS. Therefore, merging remotely sensed albedo product into a physically based model has a potential to improve the estimates of the GrIS SMB. In this work a MODIS-derived IST and a 16-day albedo product are independently assimilated into the snow and ice model CROCUS

  13. Local growth of dust- and ice-mixed aggregates as cometary building blocks in the solar nebula

    NASA Astrophysics Data System (ADS)

    Lorek, S.; Lacerda, P.; Blum, J.

    2018-03-01

    Context. Comet formation by gravitational instability requires aggregates that trigger the streaming instability and cluster in pebble-clouds. These aggregates form as mixtures of dust and ice from (sub-)micrometre-sized dust and ice grains via coagulation in the solar nebula. Aim. We investigate the growth of aggregates from (sub-)micrometre-sized dust and ice monomer grains. We are interested in the properties of these aggregates: whether they might trigger the streaming instability, how they compare to pebbles found on comets, and what the implications are for comet formation in collapsing pebble-clouds. Methods: We used Monte Carlo simulations to study the growth of aggregates through coagulation locally in the comet-forming region at 30 au. We used a collision model that can accommodate sticking, bouncing, fragmentation, and porosity of dust- and ice-mixed aggregates. We compared our results to measurements of pebbles on comet 67P/Churyumov-Gerasimenko. Results: We find that aggregate growth becomes limited by radial drift towards the Sun for 1 μm sized monomers and by bouncing collisions for 0.1 μm sized monomers before the aggregates reach a Stokes number that would trigger the streaming instability (Stmin). We argue that in a bouncing-dominated system, aggregates can reach Stmin through compression in bouncing collisions if compression is faster than radial drift. In the comet-forming region ( 30 au), aggregates with Stmin have volume-filling factors of 10-2 and radii of a few millimetres. These sizes are comparable to the sizes of pebbles found on comet 67P/Churyumov-Gerasimenko. The porosity of the aggregates formed in the solar nebula would imply that comets formed in pebble-clouds with masses equivalent to planetesimals of the order of 100 km in diameter.

  14. Research and implementation on improving I/O performance of streaming media storage system

    NASA Astrophysics Data System (ADS)

    Lu, Zheng-wu; Wang, Yu-de; Jiang, Guo-song

    2008-12-01

    In this paper, we study the special requirements of a special storage system: streaming media server, and propose a solution to improve I/O performance of RAID storage system. The solution is suitable for streaming media applications. A streaming media storage subsystem includes the I/O interfaces, RAID arrays, I/O scheduling and device drivers. The solution is implemented on the top of the storage subsystem I/O Interface. Storage subsystem is the performance bottlenecks of a streaming media system, and I/O interface directly affect the performance of the storage subsystem. According to theoretical analysis, 64 KB block-size is most appropriate for streaming media applications. We carry out experiment in detail, and verified that the proper block-size really is 64KB. It is in accordance with our analysis. The experiment results also show that by using DMA controller, efficient memory management technology and mailbox interface design mechanism, streaming media storage system achieves a high-speed data throughput.

  15. An Ice Core Melter System for Continuous Major and Trace Chemical Analyses of a New Mt. Logan Summit Ice Core

    NASA Astrophysics Data System (ADS)

    Osterberg, E. C.; Handley, M. J.; Sneed, S. D.; Mayewski, P. A.; Kreutz, K. J.; Fisher, D. A.

    2004-12-01

    The ice core melter system at the University of Maine Climate Change Institute has been recently modified and updated to allow high-resolution (<1-2 cm ice/sample), continuous and coregistered sampling of ice cores, most notably the 2001 Mt. Logan summit ice core (187 m to bedrock), for analyses of 34 trace elements (Sr, Cd, Sb, Cs, Ba, Pb, Bi, U, As, Al, S, Ca, Ti, V, Cr, Mn, Fe, Co, Cu, Zn, REE suite) by inductively coupled plasma mass spectrometry (ICP-MS), 8 major ions (Na+, Ca2+, Mg2+, K+, Cl-, SO42-, NO3-, MSA) by ion chromatography (IC), stable water isotopes (δ 18O, δ D, d) and volcanic tephra. The UMaine continuous melter (UMCoM) system is housed in a dedicated clean room with HEPA filtered air. Standard clean room procedures are employed during melting. A Wagenbach-style continuous melter system has been modified to include a pure Nickel melthead that can be easily dismantled for thorough cleaning. The system allows melting of both ice and firn without wicking of the meltwater into unmelted core. Contrary to ice core melter systems in which the meltwater is directly channeled to online instruments for continuous flow analyses, the UMCoM system collects discrete samples for each chemical analysis under ultraclean conditions. Meltwater from the pristine innermost section of the ice core is split between one fraction collector that accumulates ICP-MS samples in acid pre-cleaned polypropylene vials under a class-100 HEPA clean bench, and a second fraction collector that accumulates IC samples. A third fraction collector accumulates isotope and tephra samples from the potentially contaminated outer portion of the core. This method is advantageous because an archive of each sample remains for subsequent analyses (including trace element isotope ratios), and ICP-MS analytes are scanned for longer intervals and in replicate. Method detection limits, calculated from de-ionized water blanks passed through the entire UMCoM system, are below 10% of average Mt

  16. Equilibrium sensitivities of the Greenland ice sheet inferred from the adjoint of the three- dimensional thermo-mechanical model SICOPOLIS

    NASA Astrophysics Data System (ADS)

    Heimbach, P.; Bugnion, V.

    2008-12-01

    We present a new and original approach to understanding the sensitivity of the Greenland ice sheet to key model parameters and environmental conditions. At the heart of this approach is the use of an adjoint ice sheet model. MacAyeal (1992) introduced adjoints in the context of applying control theory to estimate basal sliding parameters (basal shear stress, basal friction) of an ice stream model which minimize a least-squares model vs. observation misfit. Since then, this method has become widespread to fit ice stream models to the increasing number and diversity of satellite observations, and to estimate uncertain model parameters. However, no attempt has been made to extend this method to comprehensive ice sheet models. Here, we present a first step toward moving beyond limiting the use of control theory to ice stream models. We have generated an adjoint of the three-dimensional thermo-mechanical ice sheet model SICOPOLIS of Greve (1997). The adjoint was generated using the automatic differentiation (AD) tool TAF. TAF generates exact source code representing the tangent linear and adjoint model of the parent model provided. Model sensitivities are given by the partial derivatives of a scalar-valued model diagnostic or "cost function" with respect to the controls, and can be efficiently calculated via the adjoint. An effort to generate an efficient adjoint with the newly developed open-source AD tool OpenAD is also under way. To gain insight into the adjoint solutions, we explore various cost functions, such as local and domain-integrated ice temperature, total ice volume or the velocity of ice at the margins of the ice sheet. Elements of our control space include initial cold ice temperatures, surface mass balance, as well as parameters such as appear in Glen's flow law, or in the surface degree-day or basal sliding parameterizations. Sensitivity maps provide a comprehensive view, and allow a quantification of where and to which variables the ice sheet model is

  17. Ground-Based Icing Condition Remote Sensing System Definition

    NASA Technical Reports Server (NTRS)

    Reehorst, Andrew L.; Koenig, George G.

    2001-01-01

    This report documents the NASA Glenn Research Center activities to assess and down select remote sensing technologies for the purpose of developing a system capable of measuring icing condition hazards aloft. The information generated by such a remote sensing system is intended for use by the entire aviation community, including flight crews. air traffic controllers. airline dispatchers, and aviation weather forecasters. The remote sensing system must be capable of remotely measuring temperature and liquid water content (LWC), and indicating the presence of super-cooled large droplets (SLD). Technologies examined include Profiling Microwave Radiometer, Dual-Band Radar, Multi-Band Radar, Ka-Band Radar. Polarized Ka-Band Radar, and Multiple Field of View (MFOV) Lidar. The assessment of these systems took place primarily during the Mt. Washington Icing Sensors Project (MWISP) in April 1999 and the Alliance Icing Research Study (AIRS) from November 1999 to February 2000. A discussion of the various sensing technologies is included. The result of the assessment is that no one sensing technology can satisfy all of the stated project goals. Therefore a proposed system includes radiometry and Ka-band radar. A multilevel approach is proposed to allow the future selection of the fielded system based upon required capability and available funding. The most basic level system would be the least capable and least expensive. The next level would increase capability and cost, and the highest level would be the most capable and most expensive to field. The Level 1 system would consist of a Profiling Microwave Radiometer. The Level 2 system would add a Ka-Band Radar. The Level 3 system would add polarization to the Ka-Band Radar. All levels of the system would utilize hardware that is already under development by the U.S. Government. However, to meet the needs of the aviation community, all levels of the system will require further development. In addition to the proposed system

  18. Seasonal variation of selenium in outdoor experimental stream-wetland systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, K.N.

    Two outdoor experimental stream-wetland systems were exposed continuously to 10 {mu}g/L Se(IV) over a 2-yr period. A seasonal variation in the water column Se concentrations was found in wetlands; a comparable variation was not observed in the stream segment. Water column Se was never reduced by more than 20% in the streams, but was reduced by greater than 90% in midsummer in the wetlands. Accumulation of Se in plants was much higher in the wetlands than in the streams, particularly in duckweed (Lemma minor). The deposition of Se in sediments was extremely variable within the wetlands.

  19. Accuracy improvement of the ice flow rate measurements on Antarctic ice sheet by DInSAR method

    NASA Astrophysics Data System (ADS)

    Shiramizu, Kaoru; Doi, Koichiro; Aoyama, Yuichi

    2015-04-01

    DInSAR (Differential Interferometric Synthetic Aperture Radar) is an effective tool to measure the flow rate of slow flowing ice streams on Antarctic ice sheet with high resolution. In the flow rate measurement by DInSAR method, we use Digital Elevation Model (DEM) at two times in the estimating process. At first, we use it to remove topographic fringes from InSAR images. And then, it is used to project obtained displacements along Line-Of-Sight (LOS) direction to the actual flow direction. ASTER-GDEM widely-used for InSAR prosessing of the data of polar region has a lot of errors especially in the inland ice sheet area. Thus the errors yield irregular flow rates and directions. Therefore, quality of DEM has a substantial influence on the ice flow rate measurement. In this study, we created a new DEM (resolution 10m; hereinafter referred to as PRISM-DEM) based on ALOS/PRISM images, and compared PRISM-DEM and ASTER-GDEM. The study area is around Skallen, 90km south from Syowa Station, in the southern part of Sôya Coast, East Antarctica. For making DInSAR images, we used ALOS/PALSAR data of 13 pairs (Path633, Row 571-572), observed during the period from November 23, 2007 through January 16, 2011. PRISM-DEM covering the PALSAR scene was created from nadir and backward view images of ALOS/PRISM (Observation date: 2009/1/18) by applying stereo processing with a digital mapping equipment, and then the automatically created a primary DEM was corrected manually to make a final DEM. The number of irregular values of actual ice flow rate was reduced by applying PRISM-DEM compared with that by applying ASTER-GDEM. Additionally, an averaged displacement of approximately 0.5cm was obtained by applying PRISM-DEM over outcrop area, where no crustal displacement considered to occur during the recurrence period of ALOS/PALSAR (46days), while an averaged displacement of approximately 1.65 cm was observed by applying ASTER-GDEM. Since displacements over outcrop area are considered

  20. Long-term observing system for the oceanic regime of Filchner-Ronne Ice Shelf, Antarctica

    NASA Astrophysics Data System (ADS)

    Østerhus, Svein; Schröder, Michael; Hellmer, Hartmunt; Darelius, Elin; Nicholls, Keith; Makinson, Keith

    2014-05-01

    Long term observations of the flow of dense waters from their area of formation to the abyss of the World Ocean, and the return flow of warm waters, are central to climate research. For the Weddell Sea an important component of such a system entails monitoring the formation of High Salinity Shelf Water (HSSW) on the continental shelf north of Ronne Ice Front, the transformation to Ice Shelf Water (ISW) beneath the floating Filchner-Ronne ice shelf, and the flux of ISW overflowing the shelf break to the deep Weddell Sea. Equally important is the return flow of warm water toward the Filchner-Ronne Ice Shelf system. AWI, BAS and UNI/UIB operate a number of monitoring stations in the southern Weddell Sea. The systems build upon techniques and methods developed over several decades and have a proven record of high data return. Here we present plans for extending, integrating and operating the existing long term observatories to increase our knowledge of the natural variability of the ocean-ice shelf system, and to allow early identification of possible changes of regional or global importance. The S2 observatory at the Filchner sill was established in 1977 and continues to deliver the longest existing marine time series from Antarctica. As a key site for monitoring the ISW overflow S2 is a part of the global net of monitoring sites under CLIVAR Southern Ocean Observing System (SOOS) and OceanSITES. The existing S2 observatory consists of a sub-surface mooring carrying sensors for current velocity, temperature, salinity and dissolved oxygen measurements. Observations at the Filchner sill also show a seasonal inflow of relatively warm water that is able to reach Filchner Ice Front. New model results indicate that this flow of water might increase in the future and we have deployed a number of instrumented moorings in the Filchner Depression to estimate the heat flux towards the ice shelf. In 1999 we established Site 5 on Ronne Ice Shelf using a hot-water drill to access

  1. An Ice Protection and Detection Systems Manufacturer's Perspective

    NASA Technical Reports Server (NTRS)

    Sweet, Dave

    2009-01-01

    Accomplishments include: World Class Aircraft Icing Research Center and Facility. Primary Sponsor/Partner - Aircraft Icing Consortia/Meetings. Icing Research Tunnel. Icing Test Aircraft. Icing Codes - LEWICE/Scaling, et al. Development of New Technologies (SBIR, STTR, et al). Example: Look Ahead Ice Detection. Pilot Training Materials. Full Cooperation with Academia, Government and Industry.

  2. Contact ice nucleation by submicron atmospheric aerosols

    NASA Technical Reports Server (NTRS)

    Deshler, T.

    1982-01-01

    An apparatus designed to measure the concentrations of submicron contact ice nuclei is described. Here, natural forces transfer nuclei to supercooled sample drops suspended in an aerosol stream. Experimental measurements of the scavenging rate of the sample drops for several humidities and aerosol sizes are found to be in agreement with theory to within a factor of two. This fact, together with the statistical tests showing a difference between the data and control samples, is seen as indicating that a reliable measurement of the concentrations of submicron contact ice nuclei has been effected. A figure is included showing the ice nucleus concentrations as a function of temperature and assumed aerosol radius. For a 0.01 micron radius, the average is 1/liter at -15 C and 3/liter at -18 C. It is noted that the measurements are in fair agreement with ice crystal concentrations in stable winter clouds measured over Elk Mountain, WY (Vali et al., 1982).

  3. Isolating and identifying atmospheric ice-nucleating aerosols: a new technique

    NASA Astrophysics Data System (ADS)

    Kreidenweis, S. M.; Chen, Y.; Rogers, D. C.; DeMott, P. J.

    Laboratory studies examined two key aspects of the performance of a continuous-flow diffusion chamber (CFD) instrument that detects ice nuclei (IN) concentrations in air samples: separating IN from non-IN, and collecting IN aerosols to determine chemical composition. In the first study, submicron AgI IN particles were mixed in a sample stream with submicron non-IN salt particles, and the sample stream was processed in the CFD at -19°C and 23% supersaturation with respect to ice. Examination of the residual particles from crystals nucleated in the CFD confirmed that only AgI particles served as IN in the mixed stream. The second study applied this technique to separate and analyze IN and non-IN particles in a natural air sample. Energy-dispersive X-ray analyses (EDS) of the elemental composition of selected particles from the IN and non-IN fractions in ambient air showed chemical differences: Si and Ca were present in both, but S, Fe and K were also detected in the non-IN fraction.

  4. Quantification of Ice Accretions for Icing Scaling Evaluations

    NASA Technical Reports Server (NTRS)

    Ruff, Gary A.; Anderson, David N.

    2003-01-01

    The comparison of ice accretion characteristics is an integral part of aircraft icing research. It is often necessary to compare an ice accretion obtained from a flight test or numerical simulation to one produced in an icing wind tunnel or for validation of an icing scaling method. Traditionally, this has been accomplished by overlaying two-dimensional tracings of ice accretion shapes. This paper addresses the basic question of how to compare ice accretions using more quantitative methods. For simplicity, geometric characteristics of the ice accretions are used for the comparison. One method evaluated is a direct comparison of the percent differences of the geometric measurements. The second method inputs these measurements into a fuzzy inference system to obtain a single measure of the goodness of the comparison. The procedures are demonstrated by comparing ice shapes obtained in the Icing Research Tunnel at NASA Glenn Research Center during recent icing scaling tests. The results demonstrate that this type of analysis is useful in quantifying the similarity of ice accretion shapes and that the procedures should be further developed by expanding the analysis to additional icing data sets.

  5. Helicopter Icing Spray System (HISS) Evaluation and Improvement

    DTIC Science & Technology

    1986-04-01

    the Small , inteligient Icing D)ata System (SIIDiS) puckage obtained HISS spray cloud measurements on fltights intended for clr-ud calibration and in con...HISS flew at aI constanlt airsl.Led~ between 80 and 120 knots true. air- speed (KTAS) throughout thle immersion, and attempted to maintain constant air...0 C -- 1 0) ’IL 1-4 WC .4w4 0 44 9i Photo 18. Natural Ice. F~orma~tion on• Riv.ct. Aoug Side of F useta),c (1111-60). ,P ho to 11) . A r ti l ic i aI

  6. Sensitivities of Greenland ice sheet volume inferred from an ice sheet adjoint model

    NASA Astrophysics Data System (ADS)

    Heimbach, P.; Bugnion, V.

    2009-04-01

    We present a new and original approach to understanding the sensitivity of the Greenland ice sheet to key model parameters and environmental conditions. At the heart of this approach is the use of an adjoint ice sheet model. Since its introduction by MacAyeal (1992), the adjoint method has become widespread to fit ice stream models to the increasing number and diversity of satellite observations, and to estimate uncertain model parameters such as basal conditions. However, no attempt has been made to extend this method to comprehensive ice sheet models. As a first step toward the use of adjoints of comprehensive three-dimensional ice sheet models we have generated an adjoint of the ice sheet model SICOPOLIS of Greve (1997). The adjoint was generated by means of the automatic differentiation (AD) tool TAF. The AD tool generates exact source code representing the tangent linear and adjoint model of the nonlinear parent model provided. Model sensitivities are given by the partial derivatives of a scalar-valued model diagnostic with respect to the controls, and can be efficiently calculated via the adjoint. By way of example, we determine the sensitivity of the total Greenland ice volume to various control variables, such as spatial fields of basal flow parameters, surface and basal forcings, and initial conditions. Reliability of the adjoint was tested through finite-difference perturbation calculations for various control variables and perturbation regions. Besides confirming qualitative aspects of ice sheet sensitivities, such as expected regional variations, we detect regions where model sensitivities are seemingly unexpected or counter-intuitive, albeit ``real'' in the sense of actual model behavior. An example is inferred regions where sensitivities of ice sheet volume to basal sliding coefficient are positive, i.e. where a local increase in basal sliding parameter increases the ice sheet volume. Similarly, positive ice temperature sensitivities in certain parts

  7. Spin Ice

    NASA Astrophysics Data System (ADS)

    Bramwell, Steven T.; Gingras, Michel J. P.; Holdsworth, Peter C. W.

    2013-03-01

    Pauling's model of hydrogen disorder in water ice represents the prototype of a frustrated system. Over the years it has spawned several analogous models, including Anderson's model antiferromagnet and the statistical "vertex" models. Spin Ice is a sixteen vertex model of "ferromagnetic frustration" that is approximated by real materials, most notably the rare earth pyrochlores Ho2Ti2O7, Dy2Ti2O7 and Ho2Sn2O7. These "spin ice materials" have the Pauling zero point entropy and in all respects represent almost ideal realisations of Pauling's model. They provide experimentalists with unprecedented access to a wide variety of novel magnetic states and phase transitions that are located in different regions of the field-temperature phase diagram. They afford theoreticians the opportunity to explore many new features of the magnetic interactions and statistical mechanics of frustrated systems. This chapter is a comprehensive review of the physics -- both experimental and theoretical -- of spin ice. It starts with a discussion of the historic problem of water ice and its relation to spin ice and other frustrated magnets. The properties of spin ice are then discussed in three sections that deal with the zero field spin ice state, the numerous field-induced states (including the recently identified "kagomé ice") and the magnetic dynamics. Some materials related to spin ice are briefly described and the chapter is concluded with a short summary of spin ice physics.

  8. Assessing, understanding, and conveying the state of the Arctic sea ice cover

    NASA Astrophysics Data System (ADS)

    Perovich, D. K.; Richter-Menge, J. A.; Rigor, I.; Parkinson, C. L.; Weatherly, J. W.; Nghiem, S. V.; Proshutinsky, A.; Overland, J. E.

    2003-12-01

    Recent studies indicate that the Arctic sea ice cover is undergoing significant climate-induced changes, affecting both its extent and thickness. Satellite-derived estimates of Arctic sea ice extent suggest a reduction of about 3% per decade since 1978. Ice thickness data from submarines suggest a net thinning of the sea ice cover since 1958. Changes (including oscillatory changes) in atmospheric circulation and the thermohaline properties of the upper ocean have also been observed. These changes impact not only the Arctic, but the global climate system and are likely accelerated by such processes as the ice-albedo feedback. It is important to continue and expand long-term observations of these changes to (a) improve the fundamental understanding of the role of the sea ice cover in the global climate system and (b) use the changes in the sea ice cover as an early indicator of climate change. This is a formidable task that spans a range of temporal and spatial scales. Fortunately, there are numerous tools that can be brought to bear on this task, including satellite remote sensing, autonomous buoys, ocean moorings, field campaigns and numerical models. We suggest the integrated and coordinated use of these tools during the International Polar Year to monitor the state of the Arctic sea ice cover and investigate its governing processes. For example, satellite remote sensing provides the large-scale snapshots of such basic parameters as ice distribution, melt zone, and cloud fraction at intervals of half a day to a week. Buoys and moorings can contribute high temporal resolution and can measure parameters currently unavailable from space including ice thickness, internal ice temperature, and ocean temperature and salinity. Field campaigns can be used to explore, in detail, the processes that govern the ice cover. Numerical models can be used to assess the character of the changes in the ice cover and predict their impacts on the rest of the climate system. This work

  9. Impact of Ice on Evolution of Protoplanetary Disks and Formation of Planetary Systems

    NASA Astrophysics Data System (ADS)

    Saunders, William; Gorti, Uma

    2018-01-01

    We use a 1+1D model of disk evolution, where gas and dust evolve under the influence of viscous evolution and photoevaporation. Planetesimal formation is simulated using a simple criterion for triggering the streaming instability. We modeled the disk around a young M3 star of mass 0.25M⊙, a characteristic Milky Way main sequence star. We carried out simulations of the disk with and without water ice to determine the impact of ice on the formation of planetesimals and retention of solids in the disk, but found little impact of ice, leading to the conclusion that the presence of ice alone does not significantly facilitate planetesimal growth in these models. The majority of initial dust in the disk drifts into the star. We investigated the range of possible viscous parameter (α) values and photoevaporation mass loss rates (M'pe) that could mitigate the drift problem. Both these values were treated as free parameters constant in time. We varied α between 10-4 and 10-2 M'pe between 10-10 and 10-7 M⊙/yr. Based on estimated disk lifetimes between 2 and 6 Myr, and estimated solid retention rates of 30-70% from the literature, we determined the range of α and M'pe for which this is possible. Results indicate a region of overlap exists, in which the disk evolves into planetesimals totaling tens of Earth masses. This region is defined by α in the range [7x10-4, 3x10-3] and M'pe in the range [2x10-8, 8x10-8] M⊙/yr.

  10. Balance Mass Flux and Velocity Across the Equilibrium Line in Ice Drainage Systems of Greenland

    NASA Technical Reports Server (NTRS)

    Zwally, H. Jay; Giovinetto, Mario B.; Koblinsky, Chester J. (Technical Monitor)

    2001-01-01

    Estimates of balance mass flux and the depth-averaged ice velocity through the cross-section aligned with the equilibrium line are produced for each of six drainage systems in Greenland. (The equilibrium line, which lies at approximately 1200 m elevation on the ice sheet, is the boundary between the area of net snow accumulation at higher elevations and the areas of net melting at lower elevations around the ice sheet.) Ice drainage divides and six major drainage systems are delineated using surface topography from ERS (European Remote Sensing) radar altimeter data. The net accumulation rate in the accumulation zone bounded by the equilibrium line is 399 Gt/yr and net ablation rate in the remaining area is 231 Gt/yr. (1 GigaTon of ice is 1090 kM(exp 3). The mean balance mass flux and depth-averaged ice velocity at the cross-section aligned with the modeled equilibrium line are 0.1011 Gt kM(exp -2)/yr and 0.111 km/yr, respectively, with little variation in these values from system to system. The ratio of the ice mass above the equilibrium line to the rate of mass output implies an effective exchange time of approximately 6000 years for total mass exchange. The range of exchange times, from a low of 3 ka in the SE drainage system to 14 ka in the NE, suggests a rank as to which regions of the ice sheet may respond more rapidly to climate fluctuations.

  11. Can we Relate Basal Ice Mechanics to Seismic Observations of the Bed?

    NASA Astrophysics Data System (ADS)

    Kyrke-Smith, T.; Gudmundsson, G. H.; Farrell, P. E.

    2017-12-01

    We compare results from two different methods of quanitfying basal ice conditions, by investigating correlations between seismically-derived estimates of basal acoustic impedance and basal slipperiness values obtained from a surface-to-bed inversion of a Stokes ice flow model. Using high-resolution measurements taken along several seismic profiles on Pine Island Glacier (PIG), we find no correlation between acoustic impedance and retrieved basal slipperiness wihtin each individual profile. However, there is a correlation when comparing averaged values across each distinct profile. Nevertheless, there is no clear way of incorporating seismic measurements of bed properties on ice streams into ice flow models. We conclude that more theoretical work needs done before constraints on mechanical conditions at the ice-bed interface from acoustic impedance measurements can be of direct use to ice sheet models.

  12. The refreezing of melt ponds on Arctic sea ice

    NASA Astrophysics Data System (ADS)

    Flocco, Daniela; Feltham, Daniel L.; Bailey, Eleanor; Schroeder, David

    2015-02-01

    The presence of melt ponds on the surface of Arctic sea ice significantly reduces its albedo, inducing a positive feedback leading to sea ice thinning. While the role of melt ponds in enhancing the summer melt of sea ice is well known, their impact on suppressing winter freezing of sea ice has, hitherto, received less attention. Melt ponds freeze by forming an ice lid at the upper surface, which insulates them from the atmosphere and traps pond water between the underlying sea ice and the ice lid. The pond water is a store of latent heat, which is released during refreezing. Until a pond freezes completely, there can be minimal ice growth at the base of the underlying sea ice. In this work, we present a model of the refreezing of a melt pond that includes the heat and salt balances in the ice lid, trapped pond, and underlying sea ice. The model uses a two-stream radiation model to account for radiative scattering at phase boundaries. Simulations and related sensitivity studies suggest that trapped pond water may survive for over a month. We focus on the role that pond salinity has on delaying the refreezing process and retarding basal sea ice growth. We estimate that for a typical sea ice pond coverage in autumn, excluding the impact of trapped ponds in models overestimates ice growth by up to 265 million km3, an overestimate of 26%.

  13. A special planning technique for stream-aquifer systems

    USGS Publications Warehouse

    Jenkins, C.T.; Taylor, O. James

    1974-01-01

    The potential effects of water-management plans on stream-aquifer systems in several countries have been simulated using electric-analog or digital-computer models. Many of the electric-analog models require large amounts of hardware preparation for each problem to be solved and some become so bulky that they present serious space and access problems. Digital-computer models require no special hardware preparation but often they require so many repetitive solutions of equations that they result in calculations that are unduly unwieldy and expensive, even on the latest generation of computers. Further, the more detailed digital models require a vast amount of core storage, leaving insufficient storage for evaluation of the many possible schemes of water-management. A concept introduced in 1968 by the senior author of this report offers a solution to these problems. The concept is that the effects on streamflow of ground-water withdrawal or recharge (stress) at any point in such a system can be approximated using two classical equations and a value of time that reflects the integrated effect of the following: irregular impermeable boundaries; stream meanders; aquifer properties and their areal variations; distance of the point from the stream; and imperfect hydraulic connection between the stream and the aquifer. The value of time is called the stream depletion factor (sdf). Results of a relatively few tests on detailed models can be summarized on maps showing lines through points of equal sdf. Sensitivity analyses of models of two large stream-aquifer systems in the State of Colorado show that the sdf technique described in this report provides results within tolerable ranges of error. The sdf technique is extremely versatile, allowing water managers to choose the degree of detail that best suits their needs and available computational hardware. Simple arithmetic, using, for example, only a slide rule and charts or tables of dimensionless values, will be sufficient

  14. Deicing and Anti-Icing Unite

    NASA Technical Reports Server (NTRS)

    2002-01-01

    With funding from Glenn's Small Business Innovation Research (SBIR) program, Cox & Company, Inc., built an ice protection system that combines thermal anti-icing and mechanical deicing to keep airfoils (wings and other lifting surfaces) clear of ice. Cox's concept was to combine an anti-icing system with NASA's Electro-Mechanical Expulsion Deicing System, a mechanical deicer. The anti-icing element of this hybrid would reduce the aerodynamic losses associated with deicing systems. The Cox Low Power Ice Protection System is the first new aircraft ice protection system that has been approved by the Federal Aviation Administration for use on a business jet in 40 years. While the system is currently sized for Premier class aircraft, there are no apparent constraints prohibiting its use on aircraft of any size. The company is investigating further applications, such as adapting the system for unmanned aerial vehicles and other military aircraft.

  15. A quantitative analysis of hydraulic interaction processes in stream-aquifer systems

    PubMed Central

    Wang, Wenke; Dai, Zhenxue; Zhao, Yaqian; Li, Junting; Duan, Lei; Wang, Zhoufeng; Zhu, Lin

    2016-01-01

    The hydraulic relationship between the stream and aquifer can be altered from hydraulic connection to disconnection when the pumping rate exceeds the maximum seepage flux of the streambed. This study proposes to quantitatively analyze the physical processes of stream-aquifer systems from connection to disconnection. A free water table equation is adopted to clarify under what conditions a stream starts to separate hydraulically from an aquifer. Both the theoretical analysis and laboratory tests have demonstrated that the hydraulic connectedness of the stream-aquifer system can reach a critical disconnection state when the horizontal hydraulic gradient at the free water surface is equal to zero and the vertical is equal to 1. A boundary-value problem for movement of the critical point of disconnection is established for an analytical solution of the inverted water table movement beneath the stream. The result indicates that the maximum distance or thickness of the inverted water table is equal to the water depth in the stream, and at a steady state of disconnection, the maximum hydraulic gradient at the streambed center is 2. This study helps us to understand the hydraulic phenomena of water flow near streams and accurately assess surface water and groundwater resources. PMID:26818442

  16. A quantitative analysis of hydraulic interaction processes in stream-aquifer systems

    DOE PAGES

    Wang, Wenke; Dai, Zhenxue; Zhao, Yaqian; ...

    2016-01-28

    The hydraulic relationship between the stream and aquifer can be altered from hydraulic connection to disconnection when the pumping rate exceeds the maximum seepage flux of the streambed. This study proposes to quantitatively analyze the physical processes of stream-aquifer systems from connection to disconnection. A free water table equation is adopted to clarify under what conditions a stream starts to separate hydraulically from an aquifer. Both the theoretical analysis and laboratory tests have demonstrated that the hydraulic connectedness of the stream-aquifer system can reach a critical disconnection state when the horizontal hydraulic gradient at the free water surface is equalmore » to zero and the vertical is equal to 1. A boundary-value problem for movement of the critical point of disconnection is established for an analytical solution of the inverted water table movement beneath the stream. The result indicates that the maximum distance or thickness of the inverted water table is equal to the water depth in the stream, and at a steady state of disconnection, the maximum hydraulic gradient at the streambed center is 2. In conclusion, this study helps us to understand the hydraulic phenomena of water flow near streams and accurately assess surface water and groundwater resources.« less

  17. Ross Sea Till Properties: Implications for Ice Sheet Bed Interaction

    NASA Astrophysics Data System (ADS)

    Halberstadt, A. R.; Anderson, J. B.; Simkins, L.; Prothro, L. O.; Bart, P. J.

    2015-12-01

    Since the discovery of a pervasive shearing till layer underlying Ice Stream B, the scientific community has categorized subglacial diamictons as either deformation till or lodgement till primarily based on shear strength. Deformation till is associated with streaming ice, formed through subglacial deformation of unconsolidated sediments. Lodgement till is believed to be deposited by the plastering of sediment entrained at the base of slow-flowing ice onto a rigid bed. Unfortunately, there has been a paucity of quantitative data on the spatial distribution of shear strength across the continental shelf. Cores collected from the Ross Sea on cruises NBP1502 and NBP9902 provide a rich dataset that can be used to interpret till shear strength variability. Till strengths are analyzed within the context of: (1) geologic substrate; (2) water content and other geotechnical properties; (3) ice sheet retreat history; and (4) geomorphic framework. Tills display a continuum of shear strengths rather than a bimodal distribution, suggesting that shear strength cannot be used to distinguish between lodgement and deformation till. Where the substrate below the LGM unconformity is comprised of older lithified deposits, till shear strengths are both highly variable within the till unit, as well as highly variable between cores. Conversely, where ice streams flowed across unconsolidated Plio-Pleistocene deposits, shear strengths are low and less variable within the unit and between cores. This suggests greater homogenization of cannibalized tills, and possibly a deeper pervasive shear layer. Coarser-grained tills are observed on banks and bank slopes, with finer tills in troughs. Highly variable and more poorly sorted tills are found in close proximity to sediment-based subglacial meltwater channels, attesting to a change in ice-bed interaction as subglacial water increases. Pellets (rounded sedimentary clasts of till matrix) are observed in Ross Sea cores, suggesting a history of

  18. All-weather ice information system for Alaskan arctic coastal shipping

    NASA Technical Reports Server (NTRS)

    Gedney, R. T.; Jirberg, R. J.; Schertler, R. J.; Mueller, R. A.; Chase, T. L.; Kramarchuk, I.; Nagy, L. A.; Hanlon, R. A.; Mark, H.

    1977-01-01

    A near real-time ice information system designed to aid arctic coast shipping along the Alaskan North Slope is described. The system utilizes a X-band Side Looking Airborne Radar (SLAR) mounted aboard a U.S. Coast Guard HC-130B aircraft. Radar mapping procedures showing the type, areal distribution and concentration of ice cover were developed. In order to guide vessel operational movements, near real-time SLAR image data were transmitted directly from the SLAR aircraft to Barrow, Alaska and the U.S. Coast Guard icebreaker Glacier. In addition, SLAR image data were transmitted in real time to Cleveland, Ohio via the NOAA-GOES Satellite. Radar images developed in Cleveland were subsequently facsimile transmitted to the U.S. Navy's Fleet Weather Facility in Suitland, Maryland for use in ice forecasting and also as a demonstration back to Barrow via the Communications Technology Satellite.

  19. Effect of subglacial volcanism on changes in the West Antarctic Ice Sheet

    NASA Technical Reports Server (NTRS)

    Behrendt, John C.

    1993-01-01

    Rapid changes in the West Antarctic Ice Sheet (WAIS) may affect future global sea-level changes. Alley and Whillans note that 'the water responsible for separating the glacier from its bed is produced by frictional dissipation and geothermal heat,' but assume that changes in geothermal flux would ordinarily be expected to have slower effects than glaciological parameters. I suggest that episodic subglacial volcanism and geothermal heating may have significantly greater effects on the WAIS than is generally appreciated. The WAIS flows through the active, largely asiesmic West Antarctic rift system (WS), which defines the sub-sea-level bed of the glacier. Various lines of evidence summarized in Behrendt et al. (1991) indicate high heat flow and shallow asthenosphere beneath the extended, weak lithosphere underlying the WS and the WAIS. Behrendt and Cooper suggest a possible synergistic relation between Cenozoic tectonism, episodic mountain uplift and volcanism in the West Antarctic rift system, and the waxing and waning of the Antarctic ice sheet beginning about earliest Oligocene time. A few active volcanoes and late-Cenozoic volcanic rocks are exposed throughout the WS along both flanks, and geophysical data suggest their presence beneath the WAIS. No part of the rift system can be considered inactive. I propose that subglacial volcanic eruptions and ice flow across areas of locally (episodically?) high heat flow--including volcanically active areas--should be considered possibly to have a forcing effect on the thermal regime resulting in increased melting at the base of the ice streams.

  20. SONARC: A Sea Ice Monitoring and Forecasting System to Support Safe Operations and Navigation in Arctic Seas

    NASA Astrophysics Data System (ADS)

    Stephenson, S. R.; Babiker, M.; Sandven, S.; Muckenhuber, S.; Korosov, A.; Bobylev, L.; Vesman, A.; Mushta, A.; Demchev, D.; Volkov, V.; Smirnov, K.; Hamre, T.

    2015-12-01

    Sea ice monitoring and forecasting systems are important tools for minimizing accident risk and environmental impacts of Arctic maritime operations. Satellite data such as synthetic aperture radar (SAR), combined with atmosphere-ice-ocean forecasting models, navigation models and automatic identification system (AIS) transponder data from ships are essential components of such systems. Here we present first results from the SONARC project (project term: 2015-2017), an international multidisciplinary effort to develop novel and complementary ice monitoring and forecasting systems for vessels and offshore platforms in the Arctic. Automated classification methods (Zakhvatkina et al., 2012) are applied to Sentinel-1 dual-polarization SAR images from the Barents and Kara Sea region to identify ice types (e.g. multi-year ice, level first-year ice, deformed first-year ice, new/young ice, open water) and ridges. Short-term (1-3 days) ice drift forecasts are computed from SAR images using feature tracking and pattern tracking methods (Berg & Eriksson, 2014). Ice classification and drift forecast products are combined with ship positions based on AIS data from a selected period of 3-4 weeks to determine optimal vessel speed and routing in ice. Results illustrate the potential of high-resolution SAR data for near-real-time monitoring and forecasting of Arctic ice conditions. Over the next 3 years, SONARC findings will contribute new knowledge about sea ice in the Arctic while promoting safe and cost-effective shipping, domain awareness, resource management, and environmental protection.

  1. Blue Beaufort Sea Ice from Operation IceBridge

    NASA Image and Video Library

    2017-12-08

    Mosaic image of sea ice in the Beaufort Sea created by the Digital Mapping System (DMS) instrument aboard the IceBridge P-3B. The dark area in the middle of the image is open water seen through a lead, or opening, in the ice. Light blue areas are thick sea ice and dark blue areas are thinner ice formed as water in the lead refreezes. Leads are formed when cracks develop in sea ice as it moves in response to wind and ocean currents. DMS uses a modified digital SLR camera that points down through a window in the underside of the plane, capturing roughly one frame per second. These images are then combined into an image mosaic using specialized computer software. Credit: NASA/DMS NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  2. Adaptive mesh refinement versus subgrid friction interpolation in simulations of Antarctic ice dynamics

    DOE PAGES

    Cornford, S. L.; Martin, D. F.; Lee, V.; ...

    2016-05-13

    At least in conventional hydrostatic ice-sheet models, the numerical error associated with grounding line dynamics can be reduced by modifications to the discretization scheme. These involve altering the integration formulae for the basal traction and/or driving stress close to the grounding line and exhibit lower – if still first-order – error in the MISMIP3d experiments. MISMIP3d may not represent the variety of real ice streams, in that it lacks strong lateral stresses, and imposes a large basal traction at the grounding line. We study resolution sensitivity in the context of extreme forcing simulations of the entire Antarctic ice sheet, using the BISICLES adaptive mesh ice-sheet model with two schemes: the original treatment, and a scheme, which modifies the discretization of the basal traction. The second scheme does indeed improve accuracy – by around a factor of two – for a given mesh spacing, butmore » $$\\lesssim 1$$ km resolution is still necessary. For example, in coarser resolution simulations Thwaites Glacier retreats so slowly that other ice streams divert its trunk. In contrast, with $$\\lesssim 1$$ km meshes, the same glacier retreats far more quickly and triggers the final phase of West Antarctic collapse a century before any such diversion can take place.« less

  3. Results of a low power ice protection system test and a new method of imaging data analysis

    NASA Technical Reports Server (NTRS)

    Shin, Jaiwon; Bond, Thomas H.; Mesander, Geert A.

    1992-01-01

    Tests were conducted on a BF Goodrich De-Icing System's Pneumatic Impulse Ice Protection (PIIP) system in the NASA Lewis Icing Research Tunnel (IRT). Characterization studies were done on shed ice particle size by changing the input pressure and cycling time of the PIIP de-icer. The shed ice particle size was quantified using a newly developed image software package. The tests were conducted on a 1.83 m (6 ft) span, 0.53 m (221 in) chord NACA 0012 airfoil operated at a 4 degree angle of attack. The IRT test conditions were a -6.7 C (20 F) glaze ice, and a -20 C (-4 F) rime ice. The ice shedding events were recorded with a high speed video system. A detailed description of the image processing package and the results generated from this analytical tool are presented.

  4. Classification of freshwater ice conditions on the Alaskan Arctic Coastal Plain using ground penetrating radar and TerraSAR-X satellite data

    USGS Publications Warehouse

    Jones, Benjamin M.; Gusmeroli, Alessio; Arp, Christopher D.; Strozzi, Tazio; Grosse, Guido; Gaglioti, Benjamin V.; Whitman, Matthew S.

    2013-01-01

    Arctic freshwater ecosystems have responded rapidly to climatic changes over the last half century. Lakes and rivers are experiencing a thinning of the seasonal ice cover, which may increase potential over-wintering freshwater habitat, winter water supply for industrial withdrawal, and permafrost degradation. Here, we combined the use of ground penetrating radar (GPR) and high-resolution (HR) spotlight TerraSAR-X (TSX) satellite data (1.25 m resolution) to identify and characterize floating ice and grounded ice conditions in lakes, ponds, beaded stream pools, and an alluvial river channel. Classified ice conditions from the GPR and the TSX data showed excellent agreement: 90.6% for a predominantly floating ice lake, 99.7% for a grounded ice lake, 79.0% for a beaded stream course, and 92.1% for the alluvial river channel. A GIS-based analysis of 890 surface water features larger than 0.01 ha showed that 42% of the total surface water area potentially provided over-wintering habitat during the 2012/2013 winter. Lakes accounted for 89% of this area, whereas the alluvial river channel accounted for 10% and ponds and beaded stream pools each accounted for <1%. Identification of smaller landscape features such as beaded stream pools may be important because of their distribution and role in connecting other water bodies on the landscape. These findings advance techniques for detecting and knowledge associated with potential winter habitat distribution for fish and invertebrates at the local scale in a region of the Arctic with increasing stressors related to climate and land use change.

  5. StreamExplorer: A Multi-Stage System for Visually Exploring Events in Social Streams.

    PubMed

    Wu, Yingcai; Chen, Zhutian; Sun, Guodao; Xie, Xiao; Cao, Nan; Liu, Shixia; Cui, Weiwei

    2017-10-18

    Analyzing social streams is important for many applications, such as crisis management. However, the considerable diversity, increasing volume, and high dynamics of social streams of large events continue to be significant challenges that must be overcome to ensure effective exploration. We propose a novel framework by which to handle complex social streams on a budget PC. This framework features two components: 1) an online method to detect important time periods (i.e., subevents), and 2) a tailored GPU-assisted Self-Organizing Map (SOM) method, which clusters the tweets of subevents stably and efficiently. Based on the framework, we present StreamExplorer to facilitate the visual analysis, tracking, and comparison of a social stream at three levels. At a macroscopic level, StreamExplorer uses a new glyph-based timeline visualization, which presents a quick multi-faceted overview of the ebb and flow of a social stream. At a mesoscopic level, a map visualization is employed to visually summarize the social stream from either a topical or geographical aspect. At a microscopic level, users can employ interactive lenses to visually examine and explore the social stream from different perspectives. Two case studies and a task-based evaluation are used to demonstrate the effectiveness and usefulness of StreamExplorer.Analyzing social streams is important for many applications, such as crisis management. However, the considerable diversity, increasing volume, and high dynamics of social streams of large events continue to be significant challenges that must be overcome to ensure effective exploration. We propose a novel framework by which to handle complex social streams on a budget PC. This framework features two components: 1) an online method to detect important time periods (i.e., subevents), and 2) a tailored GPU-assisted Self-Organizing Map (SOM) method, which clusters the tweets of subevents stably and efficiently. Based on the framework, we present Stream

  6. Assessing the chemical contamination dynamics in a mixed land use stream system.

    PubMed

    Sonne, Anne Th; McKnight, Ursula S; Rønde, Vinni; Bjerg, Poul L

    2017-11-15

    Traditionally, the monitoring of streams for chemical and ecological status has been limited to surface water concentrations, where the dominant focus has been on general water quality and the risk for eutrophication. Mixed land use stream systems, comprising urban areas and agricultural production, are challenging to assess with multiple chemical stressors impacting stream corridors. New approaches are urgently needed for identifying relevant sources, pathways and potential impacts for implementation of suitable source management and remedial measures. We developed a method for risk assessing chemical stressors in these systems and applied the approach to a 16-km groundwater-fed stream corridor (Grindsted, Denmark). Three methods were combined: (i) in-stream contaminant mass discharge for source quantification, (ii) Toxic Units and (iii) environmental standards. An evaluation of the chemical quality of all three stream compartments - stream water, hyporheic zone, streambed sediment - made it possible to link chemical stressors to their respective sources and obtain new knowledge about source composition and origin. Moreover, toxic unit estimation and comparison to environmental standards revealed the stream water quality was substantially impaired by both geogenic and diffuse anthropogenic sources of metals along the entire corridor, while the streambed was less impacted. Quantification of the contaminant mass discharge originating from a former pharmaceutical factory revealed that several 100 kgs of chlorinated ethenes and pharmaceutical compounds discharge into the stream every year. The strongly reduced redox conditions in the plume result in high concentrations of dissolved iron and additionally release arsenic, generating the complex contaminant mixture found in the narrow discharge zone. The fingerprint of the plume was observed in the stream several km downgradient, while nutrients, inorganics and pesticides played a minor role for the stream health. The

  7. Stability relationship for water droplet crystallization with the NASA Lewis icing spray

    NASA Technical Reports Server (NTRS)

    Marek, C. John; Bartlett, C. Scott

    1987-01-01

    In order to produce small droplets for icing cloud simulation, high pressure air atomizing nozzles are used. For certain icing testing applications, median drop sizes as small as 5 mm are needed, which require air atomizing pressures greater than 3000 kPa. Isentropic expansion of the ambient temperature atomizing air to atmospheric pressure can result in air stream temperatures of -160 C which results in ice crystals forming in the cloud. To avoid such low temperatures, it is necessary to heat the air and water to high initial temperatures. An icing spray research program was conducted to map the temperatures below which ice crystals form. A soot slide technique was used to determine the presence of crystals in the spray.

  8. A new bed elevation model for the Weddell Sea sector of the West Antarctic Ice Sheet

    NASA Astrophysics Data System (ADS)

    Jeofry, Hafeez; Ross, Neil; Corr, Hugh F. J.; Li, Jilu; Morlighem, Mathieu; Gogineni, Prasad; Siegert, Martin J.

    2018-04-01

    We present a new digital elevation model (DEM) of the bed, with a 1 km gridding, of the Weddell Sea (WS) sector of the West Antarctic Ice Sheet (WAIS). The DEM has a total area of ˜ 125 000 km2 covering the Institute, Möller and Foundation ice streams, as well as the Bungenstock ice rise. In comparison with the Bedmap2 product, our DEM includes new aerogeophysical datasets acquired by the Center for Remote Sensing of Ice Sheets (CReSIS) through the NASA Operation IceBridge (OIB) program in 2012, 2014 and 2016. We also improve bed elevation information from the single largest existing dataset in the region, collected by the British Antarctic Survey (BAS) Polarimetric radar Airborne Science Instrument (PASIN) in 2010-2011, from the relatively crude measurements determined in the field for quality control purposes used in Bedmap2. While the gross form of the new DEM is similar to Bedmap2, there are some notable differences. For example, the position and size of a deep subglacial trough (˜ 2 km below sea level) between the ice-sheet interior and the grounding line of the Foundation Ice Stream have been redefined. From the revised DEM, we are able to better derive the expected routing of basal water and, by comparison with that calculated using Bedmap2, we are able to assess regions where hydraulic flow is sensitive to change. Given the potential vulnerability of this sector to ocean-induced melting at the grounding line, especially in light of the improved definition of the Foundation Ice Stream trough, our revised DEM will be of value to ice-sheet modelling in efforts to quantify future glaciological changes in the region and, from this, the potential impact on global sea level. The new 1 km bed elevation product of the WS sector can be found at https://doi.org/10.5281/zenodo.1035488.

  9. Development and Implementation of a Model-Driven Envelope Protection System for In-Flight Ice Contamination

    NASA Technical Reports Server (NTRS)

    Gingras, David R.; Barnhart, Billy P.; Martos, Borja; Ratvasky, Thomas P.; Morelli, Eugene

    2011-01-01

    Fatal loss-of-control (LOC) accidents have been directly related to in-flight airframe icing. The prototype system presented in this paper directly addresses the need for real-time onboard envelope protection in icing conditions. The combinations of a-priori information and realtime aerodynamic estimations are shown to provide sufficient input for determining safe limits of the flight envelope during in-flight icing encounters. The Icing Contamination Envelope Protection (ICEPro) system has been designed and implemented to identify degradations in airplane performance and flying qualities resulting from ice contamination and provide safe flight-envelope cues to the pilot. Components of ICEPro are described and results from preliminary tests are presented.

  10. Use of the X-Band Radar to Support the Detection of In-Flight Icing Hazards by the NASA Icing Remote Sensing System

    NASA Technical Reports Server (NTRS)

    Serke, David J.; Politovich, Marcia K.; Reehorst, Andrew L.; Gaydos, Andrew

    2009-01-01

    The Alliance Icing Research Study-II (AIRS-II) field program was conducted near Montreal, Canada during the winter of 2003. The NASA Icing Remote Detection System (NIRSS) was deployed to detect in-flight icing hazards and consisted of a vertically pointing multichannel radiometer, a ceilometer and an x-band cloud radar. The radiometer was used to derive atmospheric temperature soundings and integrated liquid water, while the ceilometer and radar were used only to define cloud boundaries. The purpose of this study is to show that the radar reflectivity profiles from AIRS-II case studies could be used to provide a qualitative icing hazard.

  11. Dynamics of coupled ice-ocean system in the marginal ice zone: Study of the mesoscale processes and of constitutive equations for sea ice

    NASA Technical Reports Server (NTRS)

    Hakkinen, S.

    1984-01-01

    This study is aimed at the modelling of mesoscale processed such as up/downwelling and ice edge eddies in the marginal ice zones. A 2-dimensional coupled ice-ocean model is used for the study. The ice model is coupled to the reduced gravity ocean model (f-plane) through interfacial stresses. The constitutive equations of the sea ice are formulated on the basis of the Reiner-Rivlin theory. The internal ice stresses are important only at high ice concentrations (90-100%), otherwise the ice motion is essentially free drift, where the air-ice stress is balanced by the ice-water stress. The model was tested by studying the upwelling dynamics. Winds parallel to the ice edge with the ice on the right produce upwilling because the air-ice momentum flux is much greater that air-ocean momentum flux, and thus the Ekman transport is bigger under the ice than in the open water. The upwelling simulation was extended to include temporally varying forcing, which was chosen to vary sinusoidally with a 4 day period. This forcing resembles successive cyclone passings. In the model with a thin oceanic upper layer, ice bands were formed.

  12. Isolating the atmospheric circulation response to Arctic sea-ice loss in the coupled climate system

    NASA Astrophysics Data System (ADS)

    Kushner, Paul; Blackport, Russell

    2017-04-01

    In the coupled climate system, projected global warming drives extensive sea-ice loss, but sea-ice loss drives warming that amplifies and can be confounded with the global warming process. This makes it challenging to cleanly attribute the atmospheric circulation response to sea-ice loss within coupled earth-system model (ESM) simulations of greenhouse warming. In this study, many centuries of output from coupled ocean/atmosphere/land/sea-ice ESM simulations driven separately by sea-ice albedo reduction and by projected greenhouse-dominated radiative forcing are combined to cleanly isolate the hemispheric scale response of the circulation to sea-ice loss. To isolate the sea-ice loss signal, a pattern scaling approach is proposed in which the local multidecadal mean atmospheric response is assumed to be separately proportional to the total sea-ice loss and to the total low latitude ocean surface warming. The proposed approach estimates the response to Arctic sea-ice loss with low latitude ocean temperatures fixed and vice versa. The sea-ice response includes a high northern latitude easterly zonal wind response, an equatorward shift of the eddy driven jet, a weakening of the stratospheric polar vortex, an anticyclonic sea level pressure anomaly over coastal Eurasia, a cyclonic sea level pressure anomaly over the North Pacific, and increased wintertime precipitation over the west coast of North America. Many of these responses are opposed by the response to low-latitude surface warming with sea ice fixed. However, both sea-ice loss and low latitude surface warming act in concert to reduce storm track strength throughout the mid and high latitudes. The responses are similar in two related versions of the National Center for Atmospheric Research earth system models, apart from the stratospheric polar vortex response. Evidence is presented that internal variability can easily contaminate the estimates if not enough independent climate states are used to construct them

  13. Modeling Wave-Ice Interactions in the Marginal Ice Zone

    NASA Astrophysics Data System (ADS)

    Orzech, Mark; Shi, Fengyan; Bateman, Sam; Veeramony, Jay; Calantoni, Joe

    2015-04-01

    The small-scale (O(m)) interactions between waves and ice floes in the marginal ice zone (MIZ) are investigated with a coupled model system. Waves are simulated with the non-hydrostatic finite-volume model NHWAVE (Ma et al., 2012) and ice floes are represented as bonded collections of smaller particles with the discrete element system LIGGGHTS (Kloss et al., 2012). The physics of fluid and ice are recreated as authentically as possible, to allow the coupled system to supplement and/or substitute for more costly and demanding field experiments. The presentation will first describe the development and validation of the coupled system, then discuss the results of a series of virtual experiments in which ice floe and wave characteristics are varied to examine their effects on energy dissipation, MIZ floe size distribution, and ice pack retreat rates. Although Wadhams et al. (1986) suggest that only a small portion (roughly 10%) of wave energy entering the MIZ is reflected, dissipation mechanisms for the remaining energy have yet to be delineated or measured. The virtual experiments are designed to focus on specific properties and processes - such as floe size and shape, collision and fracturing events, and variations in wave climate - and measure their relative roles the transfer of energy and momentum from waves to ice. Questions to be examined include: How is energy dissipated by ice floe collisions, fracturing, and drag, and how significant is the wave attenuation associated with each process? Do specific wave/floe length scale ratios cause greater wave attenuation? How does ice material strength affect the rate of wave energy loss? The coupled system will ultimately be used to test and improve upon wave-ice parameterizations for large-scale climate models. References: >Kloss, C., C. Goniva, A. Hager, S. Amberger, and S. Pirker (2012). Models, algorithms and validation for opensource DEM and CFD-DEM. Progress in Computational Fluid Dynamics 12(2/3), 140-152. >Ma, G

  14. Bacteria beneath the West Antarctic ice sheet.

    PubMed

    Lanoil, Brian; Skidmore, Mark; Priscu, John C; Han, Sukkyun; Foo, Wilson; Vogel, Stefan W; Tulaczyk, Slawek; Engelhardt, Hermann

    2009-03-01

    Subglacial environments, particularly those that lie beneath polar ice sheets, are beginning to be recognized as an important part of Earth's biosphere. However, except for indirect indications of microbial assemblages in subglacial Lake Vostok, Antarctica, no sub-ice sheet environments have been shown to support microbial ecosystems. Here we report 16S rRNA gene and isolate diversity in sediments collected from beneath the Kamb Ice Stream, West Antarctic Ice Sheet and stored for 15 months at 4 degrees C. This is the first report of microbes in samples from the sediment environment beneath the Antarctic Ice Sheet. The cells were abundant ( approximately 10(7) cells g(-1)) but displayed low diversity (only five phylotypes), likely as a result of enrichment during storage. Isolates were cold tolerant and the 16S rRNA gene diversity was a simplified version of that found in subglacial alpine and Arctic sediments and water. Although in situ cell abundance and the extent of wet sediments beneath the Antarctic ice sheet can only be roughly extrapolated on the basis of this sample, it is clear that the subglacial ecosystem contains a significant and previously unrecognized pool of microbial cells and associated organic carbon that could potentially have significant implications for global geochemical processes.

  15. Aircraft Icing Handbook. Volume 2

    DTIC Science & Technology

    1991-03-01

    an airfoil surface. icenhobig - A surface property exhibiting a reduced adhesion to ice; literally, "ice-hating." light icing - The rate of...power, and are a light weight system of reasonable cost. K. ill I-I1 1.I.2 Pneumatic Impulse Ice Protection A Pneumatic Impulse Ice Protection System...should be about 5 to 6 seconds. During moderate icing a 60 second cycle is suggested, while for light icing, longer accretion times of 3 to 4 minutes

  16. Creating future fit between ice and society: The institutionalization of a refuge in the Arctic to preserve sea ice system services in a changing North

    NASA Astrophysics Data System (ADS)

    Lovecraft, A. L.; Meek, C. L.

    2010-12-01

    The Arctic sea ice system can be holistically characterized as a social-ecological system that provides not only vital geophysical and biological services to climate and oceans but also provisioning services to people and industry. These services are under threat from the three major interconnected global forces of increasing traffic for shipping, security, and tourism; contaminant accumulation primarily from distant, but also related to some local marine activities, industrial production; and climatic changes, especially the warming at the poles which is diminishing the earth’s cryosphere. As the Arctic becomes more open due to sea ice loss the current strategies to preserve individual species or sea ice system functions may become obsolete in the next several decades. Concurrent to this will be the rise of traffic in areas currently not passable and an increase in exploitation of natural resources (biological and mineral) further north. This expansion of human activity does not have a suite of institutions in place that comprehensively address a future open Arctic Ocean and the coasts of the circumpolar north. Consequently, as the amount of space that can preserve a diversity of sea ice system services shrinks and the use of that space becomes crowded with interests, governments across scales need to be able to plan to balance the increase in use with preservation of services valuable both in terms of regulating and supporting planetary processes and the cultural and provisioning services more immediately tied to human flourishing. In short, it is a race between stressors and human capacity to manage them through rules minimizing their direct impact on the ice or preventing them from entering an eventual “ice shed” boundaries of a minimum summer sea ice cover. This poster explores the potential for the creation of a system of governance that would provide a refuge based on the projected summer sea ice to remain in the Arctic even as the climate shifts in

  17. Investigating and Modeling Ecosystem Response to an Experimental and a Natural Ice Storm

    NASA Astrophysics Data System (ADS)

    Fakhraei, H.; Driscoll, C. T.; Rustad, L.; Campbell, J. L.; Groffman, P.; Fahey, T.; Likens, G.; Swaminathan, R.

    2017-12-01

    Our understanding of ecosystem response to the extreme events is generally limited to rare observations from the natural historical events. However, investigating extreme events under controlled conditions can improve our understanding of these natural phenomena. A novel field experiment was conducted in a northern hardwood forest at the Hubbard Brook Experimental Forest in New Hampshire in the northeastern United States to quantify the influence of ice storms on the ecological processes. During subfreezing conditions in the winters of 2016 and 2017, water from a nearby stream was pumped and sprayed on the canopy of eight experimental plots to accrete ice to a targeted thickness on the canopy. The experiment was conducted at three levels of icing thickness (0.25, 0.5, 0.75 in.) in 2016 comparable to the naturally occurring 1998 ice storm and a second 0.5 in. treatment 2017 which were compared with reference plots. The most notable response of the icing treatments was a marked increase in fine and course litter fall which increased exponentially with increases in the icing thickness. Post-treatment openings in the canopy caused short-term increases in soil temperature in the ice-treatment plots compared to the reference plots. No response from the ice storm treatments were detected for soil moisture, net N mineralization, net nitrification, or denitrification after both natural and experimental ice storm. In contrast to the marked increase in the stream water nitrate after the natural occurring 1998 ice storm, we have not observed any significant change in soil solution N concentrations in the experimental ice storm treatments. Inconsistency in the response between the natural and experimental ice storm is likely due to differences in geophysical characteristics of the study sites including slope and lateral uptake of nutrient by the trees outside the experimental plots. In order to evaluate the long-term impacts of ice storms on northern hardwood forests, we used

  18. High Ice Water Concentrations in the 19 August 2015 Coastal Mesoconvective System

    NASA Technical Reports Server (NTRS)

    Proctor, Fred H.; Harrah, Steven; Switzer, George F.; Strickland, Justin K.; Hunt, Patricia J.

    2017-01-01

    During August 2015, NASA's DC-8 research aircraft was flown into High Ice Water Content (HIWC) events as part of a three-week campaign to collect airborne radar data and to obtain measurements from microphysical probes. Goals for this flight campaign included improved characterization of HIWC events, especially from an airborne radar perspective. This paper focuses on one of the flight days, in which a coastal mesoscale convective system (MCS) was investigated for HIWC conditions. The system appears to have been maintained by bands of convection flowing in from the Gulf of Mexico. These convective bands were capped by a large cloud canopy, which masks the underlying structure if viewed from an infrared sensing satellite. The DC-8 was equipped with an IsoKinetic Probe that measured ice concentrations of up to 2.3 g m(exp -3) within the cloud canopy of this system. Sustained measurements of ice crystals with concentrations exceeding 1 g m(exp -3) were encountered for up to ten minutes of flight time. Airborne Radar reflectivity factors were found to be weak within these regions of high ice water concentrations, suggesting that Radar detection of HIWC would be a challenging endeavor. This case is then investigated using a three-dimensional numerical cloud model. Profiles of ice water concentrations and radar reflectivity factor demonstrate similar magnitudes and scales between the flight measurements and model simulation. Also discussed are recent modifications to the numerical model's ice-microphysics that are based on measurements during the flight campaign. The numerical model and its updated ice-microphysics are further validated with a simulation of a well-known case of a supercell hailstorm measured during the Cooperative Convective Precipitation Experiment. Differences in HIWC between the continental supercell and the coastal MCS are discussed.

  19. Comparisons of Mixed-Phase Icing Cloud Simulations with Experiments Conducted at the NASA Propulsion Systems Laboratory

    NASA Technical Reports Server (NTRS)

    Bartkus, Tadas; Tsao, Jen-Ching; Struk, Peter

    2017-01-01

    This paper builds on previous work that compares numerical simulations of mixed-phase icing clouds with experimental data. The model couples the thermal interaction between ice particles and water droplets of the icing cloud with the flowing air of an icing wind tunnel for simulation of NASA Glenn Research Centers (GRC) Propulsion Systems Laboratory (PSL). Measurements were taken during the Fundamentals of Ice Crystal Icing Physics Tests at the PSL tunnel in March 2016. The tests simulated ice-crystal and mixed-phase icing that relate to ice accretions within turbofan engines.

  20. The effect of periodic forcing on the stability transition of ice friction

    NASA Astrophysics Data System (ADS)

    McCarthy, C.; Savage, H. M.; Skarbek, R. M.; Nettles, M.

    2017-12-01

    A growing body of literature documents the sensitivity of glacier flow to tidal modulation, raising the possibility of using glacier and ice stream response to relatively well-known periodic forcing to infer key glacier properties. However, much is unknown about the physics of tidal response, which can be quite large despite the small size of the tidal signal. Glaciers in Antarctica and Greenland display tidally triggered responses that vary from continuously modulated steady sliding to stick-slip motion with accompanying seismicity. In an attempt to explain differing behaviors of basal slip and aid in the prediction of future stability, we ran a series of laboratory friction experiments to explore the onset of stick-slip behavior in a simple ice-on-rock system exposed to shear velocity oscillations. Using a custom, cryo-friction apparatus, we conducted experiments in a double direct shear configuration in vertical displacement control, with constant horizontal/normal stress and at controlled temperature. A sinusoid in velocity was applied on top of the median load point velocity at various frequencies and amplitudes. We examined the effects of temperature (-2°C to -10°C), normal stress (0.1 to 1MPa), median velocity (1 and 10 microns/s), frequency (1 to 0.01 Hz), and amplitude (100% to 20% of the median) on frictional response. By varying the conditions within a single experiment, we observed transitions from smooth modulation, to repeatable stick-slips, to slow slip events. The rate and magnitude of loading appear to most strongly affect the system response. Velocity steps were analyzed to identify key rate-state parameters for the system. We will present a stability map that details the transition from stable to unstable sliding as functions of the above parameters. Ultimately these results can be scaled up to a glacier system, extended to include till and entrained debris, and used in modeling efforts to predict longterm stability of tidewater glaciers and

  1. Semi-automated Digital Imaging and Processing System for Measuring Lake Ice Thickness

    NASA Astrophysics Data System (ADS)

    Singh, Preetpal

    Canada is home to thousands of freshwater lakes and rivers. Apart from being sources of infinite natural beauty, rivers and lakes are an important source of water, food and transportation. The northern hemisphere of Canada experiences extreme cold temperatures in the winter resulting in a freeze up of regional lakes and rivers. Frozen lakes and rivers tend to offer unique opportunities in terms of wildlife harvesting and winter transportation. Ice roads built on frozen rivers and lakes are vital supply lines for industrial operations in the remote north. Monitoring the ice freeze-up and break-up dates annually can help predict regional climatic changes. Lake ice impacts a variety of physical, ecological and economic processes. The construction and maintenance of a winter road can cost millions of dollars annually. A good understanding of ice mechanics is required to build and deem an ice road safe. A crucial factor in calculating load bearing capacity of ice sheets is the thickness of ice. Construction costs are mainly attributed to producing and maintaining a specific thickness and density of ice that can support different loads. Climate change is leading to warmer temperatures causing the ice to thin faster. At a certain point, a winter road may not be thick enough to support travel and transportation. There is considerable interest in monitoring winter road conditions given the high construction and maintenance costs involved. Remote sensing technologies such as Synthetic Aperture Radar have been successfully utilized to study the extent of ice covers and record freeze-up and break-up dates of ice on lakes and rivers across the north. Ice road builders often used Ultrasound equipment to measure ice thickness. However, an automated monitoring system, based on machine vision and image processing technology, which can measure ice thickness on lakes has not been thought of. Machine vision and image processing techniques have successfully been used in manufacturing

  2. Design, construction, testing and evaluation of a residential ice storage air conditioning system. Doctoral thesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santos, J.J.; Ritz, T.A.

    1982-11-01

    The experimental system was used to supply cooling to a single wide trailer and performance data were compared to a conventional air conditioning system of the some capacity. Utility rate information was collected from over one hundred major utility companies and used to evaluate economic comparison of the two systems. The ice storage system utilized reduced rate time periods to accommodate ice while providing continuous cooling to the trailer. The economic evaluation resulted in finding that the ice storage system required over 50% more energy than the conventional system. Although a few of the utility companies offered rate structures whichmore » would result in savings of up to $200 per year, this would not be enough to offset higher initial costs over the life of the storage system. Recommendations include items that would have to be met in order for an ice storage system to be an economically viable alternative to the conventional system.« less

  3. Ice Stars

    NASA Image and Video Library

    2017-12-08

    Ice Stars - August 4th, 2002 Description: Like distant galaxies amid clouds of interstellar dust, chunks of sea ice drift through graceful swirls of grease ice in the frigid waters of Foxe Basin near Baffin Island in the Canadian Arctic. Sea ice often begins as grease ice, a soupy slick of tiny ice crystals on the ocean's surface. As the temperature drops, grease ice thickens and coalesces into slabs of more solid ice. Credit: USGS/NASA/Landsat 7 To learn more about the Landsat satellite go to: landsat.gsfc.nasa.gov/ NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook

  4. Update on the NASA Glenn Propulsion Systems Lab Ice Crystal Cloud Characterization (2015, 2016)

    NASA Technical Reports Server (NTRS)

    Van Zante, Judith; Bencic, Timothy; Ratvasky, Thomas

    2016-01-01

    NASA Glenn's Propulsion Systems Lab, an altitude engine test facility, was outfitted with a spray system to generate ice crystals in 2011. Turbine engines and driven rigs can experience ice crystal icing at flight altitudes, temperatures and Mach numbers. To support these tests, four ice crystal characterizations have been conducted in two different facility configurations. In addition, super-cooled liquid and mixed phase clouds have also been generated. This paper represents a work in progress. It will describe some of the 11-parameter calibration space, and how those parameters interact with each other, the instrumentation used to characterize the cloud and present a sample of the cloud characterization results.

  5. A simple video-based timing system for on-ice team testing in ice hockey: a technical report.

    PubMed

    Larson, David P; Noonan, Benjamin C

    2014-09-01

    The purpose of this study was to describe and evaluate a newly developed on-ice timing system for team evaluation in the sport of ice hockey. We hypothesized that this new, simple, inexpensive, timing system would prove to be highly accurate and reliable. Six adult subjects (age 30.4 ± 6.2 years) performed on ice tests of acceleration and conditioning. The performance times of the subjects were recorded using a handheld stopwatch, photocell, and high-speed (240 frames per second) video. These results were then compared to allow for accuracy calculations of the stopwatch and video as compared with filtered photocell timing that was used as the "gold standard." Accuracy was evaluated using maximal differences, typical error/coefficient of variation (CV), and intraclass correlation coefficients (ICCs) between the timing methods. The reliability of the video method was evaluated using the same variables in a test-retest analysis both within and between evaluators. The video timing method proved to be both highly accurate (ICC: 0.96-0.99 and CV: 0.1-0.6% as compared with the photocell method) and reliable (ICC and CV within and between evaluators: 0.99 and 0.08%, respectively). This video-based timing method provides a very rapid means of collecting a high volume of very accurate and reliable on-ice measures of skating speed and conditioning, and can easily be adapted to other testing surfaces and parameters.

  6. The Met Office Coupled Atmosphere/Land/Ocean/Sea-Ice Data Assimilation System

    NASA Astrophysics Data System (ADS)

    Lea, Daniel; Mirouze, Isabelle; Martin, Matthew; Hines, Adrian; Guiavarch, Catherine; Shelly, Ann

    2014-05-01

    The Met Office has developed a weakly-coupled data assimilation (DA) system using the global coupled model HADGEM3 (Hadley Centre Global Environment Model, version 3). This model combines the atmospheric model UM (Unified Model) at 60 km horizontal resolution on 85 vertical levels, the ocean model NEMO (Nucleus for European Modeling of the Ocean) at 25 km (at the equator) horizontal resolution on 75 vertical levels, and the sea-ice model CICE at the same resolution as NEMO. The atmosphere and the ocean/sea-ice fields are coupled every 1-hour using the OASIS coupler. The coupled model is corrected using two separate 6-hour window data assimilation systems: a 4D-Var for the atmosphere with associated soil moisture content nudging and snow analysis schemes on the one hand, and a 3D-Var FGAT for the ocean and sea-ice on the other hand. The background information in the DA systems comes from a previous 6-hour forecast of the coupled model. To show the impact of coupled DA, one-month experiments have been carried out, including 1) a full atmosphere/land/ocean/sea-ice coupled DA run, 2) an atmosphere-only run forced by OSTIA SSTs and sea-ice with atmosphere and land DA, and 3) an ocean-only run forced by atmospheric fields from run 2 with ocean and sea-ice DA. In addition, 5-day forecast runs, started twice a day, have been produced from initial conditions generated by either run 1 or a combination of runs 2 and 3. The different results have been compared to each other and, whenever possible, to other references such as the Met Office atmosphere and ocean operational analyses or the OSTIA data. These all show the coupled DA system functioning well. Evidence of imbalances and initialisation shocks has also been looked for.

  7. Antarctic climate cooling and response of diatoms in glacial meltwater streams

    USGS Publications Warehouse

    Esposito, R.M.M.; Horn, S.L.; McKnight, Diane M.; Cox, M.J.; Grant, M.C.; Spaulding, S.A.; Doran, P.T.; Cozzetto, K.D.

    2006-01-01

    To understand biotic responses to an Antarctic cooling trend diatom samples from glacial meltwater streams in the McMurdo Dry Valleys, the largest ice-free area in Antarctica. Diatoms are abundant in these streams, and 24 of 40 species have only been found in the Antarctic. The percentage of these Antarctic diatom species increased with decreasing annual stream flow and increasing harshness of the stream habitat. The species diversity of assemblages reached a maximum when the Antarctic species accounted for 40-60% of relative diatom abundance. Decreased solar radiation and air-temperatures reduce annual stream flow, raising the dominance of these Antarctic species to levels above 60%. Thus, cooling favors the Antarctic species, and lowers diatom species diversity in this region. Copyright 2006 by the American Geophysical Union.

  8. Isolating the atmospheric circulation response to Arctic sea-ice loss in the coupled climate system

    NASA Astrophysics Data System (ADS)

    Kushner, P. J.; Blackport, R.

    2016-12-01

    In the coupled climate system, projected global warming drives extensive sea-ice loss, but sea-ice loss drives warming that amplifies and can be confounded with the global warming process. This makes it challenging to cleanly attribute the atmospheric circulation response to sea-ice loss within coupled earth-system model (ESM) simulations of greenhouse warming. In this study, many centuries of output from coupled ocean/atmosphere/land/sea-ice ESM simulations driven separately by sea-ice albedo reduction and by projected greenhouse-dominated radiative forcing are combined to cleanly isolate the hemispheric scale response of the circulation to sea-ice loss. To isolate the sea-ice loss signal, a pattern scaling approach is proposed in which the local multidecadal mean atmospheric response is assumed to be separately proportional to the total sea-ice loss and to the total low latitude ocean surface warming. The proposed approach estimates the response to Arctic sea-ice loss with low latitude ocean temperatures fixed and vice versa. The sea-ice response includes a high northern latitude easterly zonal wind response, an equatorward shift of the eddy driven jet, a weakening of the stratospheric polar vortex, an anticyclonic sea level pressure anomaly over coastal Eurasia, a cyclonic sea level pressure anomaly over the North Pacific, and increased wintertime precipitation over the west coast of North America. Many of these responses are opposed by the response to low-latitude surface warming with sea ice fixed. However, both sea-ice loss and low latitude surface warming act in concert to reduce storm track strength throughout the mid and high latitudes. The responses are similar in two related versions of the National Center for Atmospheric Research earth system models, apart from the stratospheric polar vortex response. Evidence is presented that internal variability can easily contaminate the estimates if not enough independent climate states are used to construct them.

  9. Physical Chemical Controls of Methane and other Hydrocarbon gases in Outer Solar System Water-Ice Systems

    NASA Astrophysics Data System (ADS)

    Osegovic, J. P.; Max, M. D.

    2012-12-01

    Saturn's moon Enceladus appear to have liquid water under its thin icy surface that has venting water and complex hydrocarbons. Jupiter's moon Europa is locked under a very thick layer of surface ice. Because Saturn's moon Titan contains abundant hydrocarbon gasses and liquids and both Saturn and Jupiter contain abundant hydrocarbon gases, it is likely that Europa also may have significant quantities of hydrocarbon gases in their water-ice systems. Both of these moons have the potential for life. We have begun to explore the impact that gas hydrate, which is a crystalline material composed of water and gas molecules, has on the availability of liquid water on a planet's surface: what conditions need to be present to initiate hydrate formation from a primordial selection of gases, salts, and water, how isolated hydrate systems evolve under the condition of mass transfer from ex-hydrate stability conditions to pro-hydrate stability conditions, the timespan of conditions that hydrate formation can host liquid solutions in an otherwise cooling regime; and the impact that additional chemistry, such as primitive chemosynthesis, may have on the sequestered hydrocarbon gases in hydrate. The analog for gas hydrate on these moons is the Permafrost hydrate system of Earth. Gas hydrate and water ice are stable in a compound cryosphere with ice extending downward from cold surface conditions to about the 273 K isotherm. Hydrate, depending on the mixture of gases in it, is stable from some depth below the surface to some isotherm that could be considerably in excess of 273 K. Salinity may strongly affect stability conditions. In order to estimate the thickness of the gas hydrate stability zone and its effect on 'planetary' heat flow, we model heat production as a function of mass flow. Variables are gravity, ice thickness, temperature of the surrounding medium (space, ice, and water), the thickness of the "ocean", the and the thermophysical properties of the gas being

  10. The ice VII-ice X phase transition with implications for planetary interiors

    NASA Astrophysics Data System (ADS)

    Aarestad, B.; Frank, M. R.; Scott, H.; Bricker, M.; Prakapenka, V.

    2008-12-01

    A significant amount of research on the high pressure polymorphs of H2O have detailed the lattice structure and density of these phases, namely ice VI, ice VII, and ice X. These high pressure ices are noteworthy as they may comprise a considerable part of the interior of large icy planets and satellites. However, there is a dearth of data on how the incorporation of an impurity, charged or non-charged, affects the ice VII-ice X transition. This study examined the ice VII-ice X transition that occurs at approximately 62 GPa with a pure system and two select impure systems. Solutions of pure H2O, 1.6 mole percent NaCl in H2O, and 1.60 mole percent CH3OH in H2O were compressed in a diamond anvil cell (DAC). The experiments were performed at the GSECARS 13-BM-D beam line at the Advanced Photon Source at Argonne National Laboratory. Powder diffraction data of the ice samples were collected using monochromatic X-ray radiation, 0.2755 Å, and a MAR 345 online imaging system at intervals of approximately 2 GPa up to ~71.5, ~74.5, and ~68 GPa, respectively. Analyses of the data provided volume-pressure relations (at 298 K) which were used to detail the ice VII-ice X phase transition. The pressure of the phase transition, based upon an interpretation of the X-ray diffraction data, was found to vary as a function of the impurity type. Thus, the depth of the ice VII-ice X phase transition within an ice-rich planetary body can be influenced by trace-level impurities.

  11. Evaluation of an automated bridge anti-icing system.

    DOT National Transportation Integrated Search

    2014-01-01

    Some bridges and roadways are prone to moisture and icing conditions at times when there is no precipitation or when the rest of the highway system does not require treatment. These occurrences are difficult to predict. They delay the treatment of th...

  12. Broken ice

    NASA Image and Video Library

    2017-12-08

    An area of broken glacier ice seen from the IceBridge DC-8 on Oct. 22, 2012. Credit: NASA / George Hale NASA's Operation IceBridge is an airborne science mission to study Earth's polar ice. For more information about IceBridge, visit: www.nasa.gov/icebridge NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  13. Insights into the Geographic Sequence of Deglaciation in the Weddell Sea Embayment by Provenance of Ice-Rafted Debris

    NASA Astrophysics Data System (ADS)

    Williams, T.; Hemming, S. R.; Licht, K.; Agrios, L.; Brachfeld, S. A.; van de Flierdt, T.; Hillenbrand, C. D.; Ehrmann, W. U.; Zhai, X.; Cai, Y.; Corley, A. D.; Kuhn, G.

    2017-12-01

    The geochemical and geochronological fingerprint of rock debris eroded and carried by ice streams may be used to identify the provenance of iceberg-rafted debris (IRD) in the marine sediment record. During ice retreat following glacial maxima, it has been shown that there is an increase in IRD accumulation in marine sediments underlying the western limb of the Weddell Gyre. Here we present IRD provenance records from sediment core PS1571-1 in the NW Weddell Sea, and interpret these records in terms of the geographic sequence of ice sheet retreat in the Weddell Sea embayment during the most recent deglaciation. We first characterize the source areas of eroded debris around the Weddell Sea Embayment, using published mapping of the embayment and new material from: 1. Till in modern moraines at the edges of ice streams, including the Foundation Ice Stream, the Academy Glacier, and the Recovery Glacier; and 2. Subglacial till and proximal glaciomarine sediment from existing cores located along the front of the Filchner and Ronne Ice Shelves, collected on past expeditions of the RV Polarstern. The analyses on these samples include 40Ar/39Ar hornblende and biotite thermochronology and U-Pb zircon geochronology on individual mineral grains, and K-Ar thermochronology, Nd isotopes, and clay mineralogy on the clay grain size fraction. Results so far indicate that samples along the front of the Filchner and Ronne Ice Shelves record the geochemical and geochronological fingerprint that would be expected from tracing ice flow lines back to the bedrock terranes. The Ronne (west), Hughes (central), and Filchner (east) sectors have distinguishable provenance source signatures, and further subdivision is possible. In core PS1571-1, downcore IRD provenance changes reflect iceberg output and ice sheet retreat from the different sectors of the embayment through the last deglaciation. The detrital provenance method of interpreting the geographic sequence of ice retreat can equally be

  14. Ice Roughness in Short Duration SLD Icing Events

    NASA Technical Reports Server (NTRS)

    McClain, Stephen T.; Reed, Dana; Vargas, Mario; Kreeger, Richard E.; Tsao, Jen-Ching

    2014-01-01

    Ice accretion codes depend on models of roughness parameters to account for the enhanced heat transfer during the ice accretion process. While mitigating supercooled large droplet (SLD or Appendix O) icing is a significant concern for manufacturers seeking future vehicle certification due to the pending regulation, historical ice roughness studies have been performed using Appendix C icing clouds which exhibit mean volumetric diameters (MVD) much smaller than SLD clouds. Further, the historical studies of roughness focused on extracting parametric representations of ice roughness using multiple images of roughness elements. In this study, the ice roughness developed on a 21-in. NACA 0012 at 0deg angle of attack exposed to short duration SLD icing events was measured in the Icing Research Tunnel at the NASA Glenn Research Center. The MVD's used in the study ranged from 100 micrometer to 200 micrometers, in a 67 m/s flow, with liquid water contents of either 0.6 gm/cubic meters or 0.75 gm/cubic meters. The ice surfaces were measured using a Romer Absolute Arm laser scanning system. The roughness associated with each surface point cloud was measured using the two-dimensional self-organizing map approach developed by McClain and Kreeger (2013) resulting in statistical descriptions of the ice roughness.

  15. The CONCEPTS Global Ice-Ocean Prediction System: Establishing an Environmental Prediction Capability in Canada

    NASA Astrophysics Data System (ADS)

    Pellerin, Pierre; Smith, Gregory; Testut, Charles-Emmanuel; Surcel Colan, Dorina; Roy, Francois; Reszka, Mateusz; Dupont, Frederic; Lemieux, Jean-Francois; Beaudoin, Christiane; He, Zhongjie; Belanger, Jean-Marc; Deacu, Daniel; Lu, Yimin; Buehner, Mark; Davidson, Fraser; Ritchie, Harold; Lu, Youyu; Drevillon, Marie; Tranchant, Benoit; Garric, Gilles

    2015-04-01

    Here we describe a new system implemented recently at the Canadian Meteorological Centre (CMC) entitled the Global Ice Ocean Prediction System (GIOPS). GIOPS provides ice and ocean analyses and 10 day forecasts daily at 00GMT on a global 1/4° resolution grid. GIOPS includes a full multivariate ocean data assimilation system that combines satellite observations of sea level anomaly and sea surface temperature (SST) together with in situ observations of temperature and salinity. In situ observations are obtained from a variety of sources including: the Argo network of autonomous profiling floats, moorings, ships of opportunity, marine mammals and research cruises. Ocean analyses are blended with sea ice analyses produced by the Global Ice Analysis System.. GIOPS has been developed as part of the Canadian Operational Network of Coupled Environmental PredicTion Systems (CONCEPTS) tri-departmental initiative between Environment Canada, Fisheries and Oceans Canada and National Defense. The development of GIOPS was made through a partnership with Mercator-Océan, a French operational oceanography group. Mercator-Océan provided the ocean data assimilation code and assistance with the system implementation. GIOPS has undergone a rigorous evaluation of the analysis, trial and forecast fields demonstrating its capacity to provide high-quality products in a robust and reliable framework. In particular, SST and ice concentration forecasts demonstrate a clear benefit with respect to persistence. These results support the use of GIOPS products within other CMC operational systems, and more generally, as part of a Government of Canada marine core service. Impact of a two-way coupling between the GEM atmospheric model and NEMO-CICE ocean-ice model will also be presented.

  16. Bathymetric and oceanic controls on Abbot Ice Shelf thickness and stability

    NASA Astrophysics Data System (ADS)

    Cochran, J. R.; Jacobs, S. S.; Tinto, K. J.; Bell, R. E.

    2014-05-01

    Ice shelves play key roles in stabilizing Antarctica's ice sheets, maintaining its high albedo and returning freshwater to the Southern Ocean. Improved data sets of ice shelf draft and underlying bathymetry are important for assessing ocean-ice interactions and modeling ice response to climate change. The long, narrow Abbot Ice Shelf south of Thurston Island produces a large volume of meltwater, but is close to being in overall mass balance. Here we invert NASA Operation IceBridge (OIB) airborne gravity data over the Abbot region to obtain sub-ice bathymetry, and combine OIB elevation and ice thickness measurements to estimate ice draft. A series of asymmetric fault-bounded basins formed during rifting of Zealandia from Antarctica underlie the Abbot Ice Shelf west of 94° W and the Cosgrove Ice Shelf to the south. Sub-ice water column depths along OIB flight lines are sufficiently deep to allow warm deep and thermocline waters observed near the western Abbot ice front to circulate through much of the ice shelf cavity. An average ice shelf draft of ~200 m, 15% less than the Bedmap2 compilation, coincides with the summer transition between the ocean surface mixed layer and upper thermocline. Thick ice streams feeding the Abbot cross relatively stable grounding lines and are rapidly thinned by the warmest inflow. While the ice shelf is presently in equilibrium, the overall correspondence between draft distribution and thermocline depth indicates sensitivity to changes in characteristics of the ocean surface and deep waters.

  17. An Approach to Detect and Mitigate Ice Particle Accretion in Aircraft Engine Compression Systems

    NASA Technical Reports Server (NTRS)

    May, Ryan D.; Guo, Ten-Huei; Simon, Donald L.

    2013-01-01

    The accretion of ice in the compression system of commercial gas turbine engines operating in high ice water content conditions is a safety issue being studied by the aviation sector. While most of the research focuses on the underlying physics of ice accretion and the meteorological conditions in which accretion can occur, a systems-level perspective on the topic lends itself to potential near-term operational improvements. This work focuses on developing an accurate and reliable algorithm for detecting the accretion of ice in the low pressure compressor of a generic 40,000 lbf thrust class engine. The algorithm uses only the two shaft speed sensors and works regardless of engine age, operating condition, and power level. In a 10,000-case Monte Carlo simulation, the detection approach was found to have excellent capability at determining ice accretion from sensor noise with detection occurring when ice blocks an average of 6.8 percent of the low pressure compressor area. Finally, an initial study highlights a potential mitigation strategy that uses the existing engine actuators to raise the temperature in the low pressure compressor in an effort to reduce the rate at which ice accretes.

  18. An Approach to Detect and Mitigate Ice Particle Accretion in Aircraft Engine Compression Systems

    NASA Technical Reports Server (NTRS)

    May, Ryan D.; Guo, Ten-Huei; Simon, Donald L.

    2013-01-01

    The accretion of ice in the compression system of commercial gas turbine engines operating in high ice water content conditions is a safety issue being studied by the aviation sector. While most of the research focuses on the underlying physics of ice accretion and the meteorological conditions in which accretion can occur, a systems-level perspective on the topic lends itself to potential near-term operational improvements. This work focuses on developing an accurate and reliable algorithm for detecting the accretion of ice in the low pressure compressor of a generic 40,000 lbf thrust class engine. The algorithm uses only the two shaft speed sensors and works regardless of engine age, operating condition, and power level. In a 10,000-case Monte Carlo simulation, the detection approach was found to have excellent capability at determining ice accretion from sensor noise with detection occurring when ice blocks an average of 6.8% of the low pressure compressor area. Finally, an initial study highlights a potential mitigation strategy that uses the existing engine actuators to raise the temperature in the low pressure compressor in an effort to reduce the rate at which ice accretes.

  19. Conjunctive-management models for sustained yield of stream-aquifer systems

    USGS Publications Warehouse

    Barlow, P.M.; Ahlfeld, D.P.; Dickerman, D.C.

    2003-01-01

    Conjunctive-management models that couple numerical simulation with linear optimization were developed to evaluate trade-offs between groundwater withdrawals and streamflow depletions for alluvial-valley stream-aquifer systems representative of those of the northeastern United States. A conjunctive-management model developed for a hypothetical stream-aquifer system was used to assess the effect of interannual hydrologic variability on minimum monthly streamflow requirements. The conjunctive-management model was applied to the Hunt-Annaquatucket-Pettaquamscutt stream-aquifer system of central Rhode Island. Results show that it is possible to increase the amount of current withdrawal from the aquifer by as much as 50% by modifying current withdrawal schedules, modifying the number and configuration of wells in the supply-well network, or allowing increased streamflow depletion in the Annaquatucket and Pettaquamscutt rivers. Alternatively, it is possible to reduce current rates of streamflow depletion in the Hunt River by as much as 35% during the summer, but such reductions would result increases in groundwater withdrawals.

  20. Systems and Techniques for Identifying and Avoiding Ice

    NASA Technical Reports Server (NTRS)

    Hansman, R. John

    1995-01-01

    In-flight icing is one of the most difficult aviation weather hazards facing general aviation. Because most aircraft in the general aviation category are not certified for flight into known icing conditions, techniques for identifying and avoiding in-flight ice are important to maintain safety while increasing the utility and dispatch capability which is part of the AGATE vision. This report summarizes a brief study effort which: (1) Reviewed current ice identification, forecasting, and avoidance techniques; (2) Assessed feasibility of improved forecasting and ice avoidance procedures; and (3) Identified key issues for the development of improved capability with regard to in-flight icing.

  1. Clouds in the atmospheres of extrasolar planets. IV. On the scattering greenhouse effect of CO2 ice particles: Numerical radiative transfer studies

    NASA Astrophysics Data System (ADS)

    Kitzmann, D.; Patzer, A. B. C.; Rauer, H.

    2013-09-01

    Context. Owing to their wavelength-dependent absorption and scattering properties, clouds have a strong impact on the climate of planetary atmospheres. The potential greenhouse effect of CO2 ice clouds in the atmospheres of terrestrial extrasolar planets is of particular interest because it might influence the position and thus the extension of the outer boundary of the classic habitable zone around main sequence stars. Such a greenhouse effect, however, is a complicated function of the CO2 ice particles' optical properties. Aims: We study the radiative effects of CO2 ice particles obtained by different numerical treatments to solve the radiative transfer equation. To determine the effectiveness of the scattering greenhouse effect caused by CO2 ice clouds, the radiative transfer calculations are performed over the relevant wide range of particle sizes and optical depths, employing different numerical methods. Methods: We used Mie theory to calculate the optical properties of particle polydispersion. The radiative transfer calculations were done with a high-order discrete ordinate method (DISORT). Two-stream radiative transfer methods were used for comparison with previous studies. Results: The comparison between the results of a high-order discrete ordinate method and simpler two-stream approaches reveals large deviations in terms of a potential scattering efficiency of the greenhouse effect. The two-stream methods overestimate the transmitted and reflected radiation, thereby yielding a higher scattering greenhouse effect. For the particular case of a cool M-type dwarf, the CO2 ice particles show no strong effective scattering greenhouse effect by using the high-order discrete ordinate method, whereas a positive net greenhouse effect was found for the two-stream radiative transfer schemes. As a result, previous studies of the effects of CO2 ice clouds using two-stream approximations overrated the atmospheric warming caused by the scattering greenhouse effect

  2. ASSESSING HEADWATER STREAMS: LINKING LANDSCAPES TO STREAM NETWORKS

    EPA Science Inventory

    Headwater streams represent a significant land-water boundary and drain 70-80% of the landscape. Headwater streams are vital components to drainage systems and are directly linked to our downstream rivers and lakes. However, alteration and loss of headwater streams have occurre...

  3. High-contrast observations of (136108) Haumea. A crystalline water-ice multiple system

    NASA Astrophysics Data System (ADS)

    Dumas, C.; Carry, B.; Hestroffer, D.; Merlin, F.

    2011-04-01

    Context. The trans-Neptunian region of the Solar System is populated by a wide variety of icy bodies showing great diversity in orbital behavior, size, surface color, and composition. One can also see there are dynamical families and binary systems. One surprising feature detected in the spectra of some of the largest trans-Neptunians is the presence of crystalline water-ice. This is the case for the large TNO (136 108) Haumea (2003 EL61). Aims: We seek to constrain the state of the water ice of Haumea and its satellites and to investigate possible energy sources that maintain the water ice in its crystalline form. Methods: Spectro-imaging observations in the near infrared were performed with the integral field spectrograph SINFONI mounted on UT4 at the ESO Very Large Telescope. The spectra of both Haumea and its larger satellite Hi'iaka were analyzed. Relative astrometry of the components was also measured, providing a check of the orbital solutions and equinox seasons. Results: We describe the physical characteristics of the crystalline water-ice present on the surface of Haumea and its largest satellite Hi'iaka and analyze possible sources of heating to maintain water in a crystalline state: tidal dissipation in the system components vs. radiogenic source. The surface of Hi'iaka appears to be covered by large grains of water ice, almost entirely in its crystalline form. Under some restricted conditions, both radiogenic heating and tidal forces between Haumea and Hi'iaka could provide the energy needed to maintain the ice in its crystalline state. Based on observations collected at the European Southern Observatory, Paranal, Chile - 60.A-9235.

  4. Thermodynamics of the formaldehyde-water and formaldehyde-ice systems for atmospheric applications.

    PubMed

    Barret, Manuel; Houdier, Stephan; Domine, Florent

    2011-01-27

    Formaldehyde (HCHO) is a species involved in numerous key atmospheric chemistry processes that can significantly impact the oxidative capacity of the atmosphere. Since gaseous HCHO is soluble in water, the water droplets of clouds and the ice crystals of snow exchange HCHO with the gas phase and the partitioning of HCHO between the air, water, and ice phases must be known to understand its chemistry. This study proposes thermodynamic formulations for the partitioning of HCHO between the gas phase and the ice and liquid water phases. A reanalysis of existing data on the vapor-liquid equilibrium has shown the inadequacy of the Henry's law formulation, and we instead propose the following equation to predict the mole fraction of HCHO in liquid water at equilibrium, X(HCHO,liq), as a function of the partial pressure P(HCHO) (Pa) and temperature T (K): X(HCHO,liq) = 1.700 × 10(-15) e((8014/T))(P(HCHO))(1.105). Given the paucity of data on the gas-ice equilibrium, the solubility of HCHO and the diffusion coefficient (D(HCHO)) in ice were measured by exposing large single ice crystals to low P(HCHO). Our recommended value for D(HCHO) over the temperature range 243-266 K is D(HCHO) = 6 × 10(-12) cm(2) s(-1). The solubility of HCHO in ice follows the relationship X(HCHO,ice) = 9.898 × 10(-13) e((4072/T))(P(HCHO))(0.803). Extrapolation of these data yields the P(HCHO) versus 1/T phase diagram for the H(2)O-HCHO system. The comparison of our results to existing data on the partitioning of HCHO between the snow and the atmosphere in the high arctic highlights the interplay between thermodynamic equilibrium and kinetics processes in natural systems.

  5. CJ2 Icing Effects Simulator. Delivery Order 0019: Development of an Icing Effects Simulation for a Typical Business Jet Configuration

    DTIC Science & Technology

    2007-08-01

    considered were: - Icing protection system failure ice - Inter-cycle (roughness) ice - Run-back ice. The study entailed wind tunnel tests of different...jet that incorporates the effects of various forms of ice. The ice conditions considered were:  Icing protection system failure ice  Inter-cycle...accretions. These were pre-activation roughness, runback shapes that form downstream of the thermal wing ice protection system , and a wing ice

  6. Sustained High Basal Motion of the Greenland Ice Sheet Revealed by Borehole Deformation

    NASA Technical Reports Server (NTRS)

    Ryser, Claudia; Luthi, Martin P.; Andrews, Lauren C.; Hoffman, Matthew, J.; Catania, Ginny A.; Hawley, Robert L.; Neumann, Thomas A.; Kristensen, Steen S.

    2014-01-01

    Ice deformation and basal motion characterize the dynamical behavior of the Greenland ice sheet (GrIS). We evaluate the contribution of basal motion from ice deformation measurements in boreholes drilled to the bed at two sites in the western marginal zone of the GrIS. We find a sustained high amount of basal motion contribution to surface velocity of 44-73 percent in winter, and up to 90 percent in summer. Measured ice deformation rates show an unexpected variation with depth that can be explained with the help of an ice-flow model as a consequence of stress transfer from slippery to sticky areas. This effect necessitates the use of high-order ice-flow models, not only in regions of fast-flowing ice streams but in all temperate-based areas of the GrIS. The agreement between modeled and measured deformation rates confirms that the recommended values of the temperature-dependent flow rate factor A are a good choice for ice-sheet models.

  7. Geomicrobiology of a Supraglacial Stream on the Cotton Glacier, Victoria Land, Antarctica.

    NASA Astrophysics Data System (ADS)

    Foreman, C. M.; Morris, C. E.; Cory, R. M.

    2006-12-01

    The Cotton Glacier lies in the Transantarctic Mountains north of Cape Roberts and has a limited catchment area in the Clare and St. Johns ranges, but receives a large amount of sedimentary deposits from surrounding areas. The bedrock geology of the area is dominated by basement granite and Ferrar dolerite sills, with minor amounts of amphibolite and schist sandwiched between granite bodies. A unique fluvial system forms on the Cotton Glacier as a result of its location in the Transantarctic Mountains. The prevailing winds converge and deposit debris on the Cotton Glacier, warming up the surface and increasing meltwater production. During the austral summer of 2004-2005 we sampled a braided stream that flowed from mid glacier into a series of crevasses downstream. While low in dissolved organic carbon (44-47 μM C) and nutrients the supraglacial stream on the Cotton Glacier is capable of sustaining life, with bacterial cell abundances from 2.7 - 8.2 x 104 cells ml-1, and bacterial production ranging from 58.84 - 293.18 ng C d-1. Isolates recovered from the Cotton Glacier produced a rainbow of pigment colors and were similar to those recovered from other icy systems (Cytophaga- Flavobateria-Bacteroides and β-Proteobacteria lineages), suggesting that the occurrence of these related phylotoyes from diverse environs is due to similar survival strategies allowing them to remain active at sub- zero temperatures and survive multiple freeze-thaw events. Two isolates from the Cotton Glacier have been shown to possess ice nucleating activity. These bacteria can catalyze ice formation at -3.5°C and colder temperatures and likely possess Type I ice nuclei proteins. The fluorescence and absorbance spectra of the filtered Cotton Glacier water were analyzed to characterize the dissolved organic matter (DOM). The absorbance spectra of the Cotton Glacier sample exhibited a peak around 270 nm, which disappeared over time in the dark at 4°C. Analysis of excitation-emission matrices

  8. A coupled dynamic-thermodynamic model of an ice-ocean system in the marginal ice zone

    NASA Technical Reports Server (NTRS)

    Hakkinen, Sirpa

    1987-01-01

    Thermodynamics are incorporated into a coupled ice-ocean model in order to investigate wind-driven ice-ocean processes in the marginal zone. Upswelling at the ice edge which is generated by the difference in the ice-air and air-water surface stresses is found to give rise to a strong entrainment by drawing the pycnocline closer to the surface. Entrainment is shown to be negligible outside the areas affected by the ice edge upswelling. If cooling at the top is included in the model, the heat and salt exchanges are further enhanced in the upswelling areas. It is noted that new ice formation occurs in the region not affected by ice edge upswelling, and it is suggested that the high-salinity mixed layer regions (with a scale of a few Rossby radii of deformation) will overturn due to cooling, possibly contributing to the formation of deep water.

  9. Overview of Ice-Sheet Mass Balance and Dynamics from ICESat Measurements

    NASA Technical Reports Server (NTRS)

    Zwally, H. Jay

    2010-01-01

    The primary purpose of the ICESat mission was to determine the present-day mass balance of the Greenland and Antarctic ice sheets, identify changes that may be occurring in the surface-mass flux and ice dynamics, and estimate their contributions to global sea-level rise. Although ICESat's three lasers were planned to make continuous measurements for 3 to 5 years, the mission was re-planned to operate in 33-day campaigns 2 to 3 times each year following failure of the first laser after 36 days. Seventeen campaigns were conducted with the last one in the Fall of 2009. Mass balance maps derived from measured ice-sheet elevation changes show that the mass loss from Greenland has increased significantly to about 170 Gt/yr for 2003 to 2007 from a state of near balance in the 1990's. Increased losses (189 Gt/yr) from melting and dynamic thinning are over seven times larger'than increased gains (25 gt/yr) from precipitation. Parts of the West Antarctic ice sheet and the Antarctic Peninsula are losing mass at an increasing rate, but other parts of West Antarctica and the East Antarctic ice sheet are gaining mass at an increasing rate. Increased losses of 35 Gt/yr in Pine Island, Thwaites-Smith, and Marie-Bryd.Coast are more than balanced by gains in base of Peninsula and ice stream C, D, & E systems. From the 1992-2002 to 2003-2007 period, the overall mass balance for Antarctica changed from a loss of about 60 Gt/yr to near balance or slightly positive.

  10. Impact of lateral flow on the transition from connected to disconnected stream-aquifer systems

    NASA Astrophysics Data System (ADS)

    Xian, Yang; Jin, Menggui; Liu, Yanfeng; Si, Aonan

    2017-05-01

    Understanding the mechanisms by which stream water infiltrates through streambeds to recharge groundwater systems is essential to sustainable management of scarce water resources in arid and semi-arid areas. An inverted water table (IWT) can develop under a stream in response to the desaturation between the stream and underlying aquifer as the system changes from a connected to disconnected status. However, previous studies have suggested that the IWT can only occur at the bottom of a low permeability streambed in which only the vertical flow between the stream and groundwater during disconnection was assumed. In the present study, numerical simulations revealed that the lateral flow induced by capillarity or heterogeneity also plays an essential role on interactions between streams and aquifers. Three pathways were identified for the transition from connection to disconnection in homogenous systems; notably, the lowest point of an IWT can develop not only at the bottom of the streambed but also within the streambed or the aquifer in response to the initial desaturation at, above, or below the interface between the streambed and aquifer (IBSA), respectively. A sensitivity analysis indicated that in wide streams, the lowest point of an IWT only occurs at the bottom of the streambed; however, for a stream half width of 1 m above a 6 m thick sandy loam streambed, the lowest point occurs in the streambed as stream depth is less than 0.5 m. This critical stream depth increases with streambed thickness and decreases with stream width. Thus, in narrow streams the lowest point can also develop in a thick streambed under a shallow stream. In narrow streams, the lowest point also forms in the aquifer if the ratio of the hydraulic conductivity of the streambed to that of the aquifer is greater than the ratio of the streambed thickness to the sum of the stream depth and the streambed thickness; correspondingly, the streambed is thin but relatively permeable and the stream is

  11. Field testing and adaptation of a methodology to measure "in-stream" values in the Tongue River, northern Great Plains (NGP) region

    USGS Publications Warehouse

    Bovee, Ken D.; Gore, James A.; Silverman, Arnold J.

    1978-01-01

    to transpiration. Transpiration losses to riparian vegetation ranged from 0.78 m3/sec. in April, to 1.54 m3/sec. in July, under drought conditions. Requirement for irrigation were estimated to range from 5.56 m3/sec. in May to 7.97 m3/sec. in July, under drought conditions. It was concluded that flow requirements to satisfy monthly water losses to transpiration must be added to the base fishery flows to provide adequate protection to the resources in the lower reaches of the river. Integration of the in-stream requirements for various use components shows that a base flow of at least 23.6 m3/sec. must be reserved during the month of June to initiate scour of sediment from pools, provide spawning habitat to shovelnose sturgeon, and to accommodate water losses from the system. In comparison, a base flow of 3.85 m3/sec. would be required during early February to provide fish rearing habitat and insect productivity, and to prevent excessive loss of food production areas to surface ice formation. During mid to late February, a flow of 12 m3/sec. would be needed to facilitate ice break-up and prevent ice jams from forming. Following break-up, the base flow would again be 3.85 m3/sec. until the start of spawning season.

  12. Mixed Phase Modeling in GlennICE with Application to Engine Icing

    NASA Technical Reports Server (NTRS)

    Wright, William B.; Jorgenson, Philip C. E.; Veres, Joseph P.

    2011-01-01

    A capability for modeling ice crystals and mixed phase icing has been added to GlennICE. Modifications have been made to the particle trajectory algorithm and energy balance to model this behavior. This capability has been added as part of a larger effort to model ice crystal ingestion in aircraft engines. Comparisons have been made to four mixed phase ice accretions performed in the Cox icing tunnel in order to calibrate an ice erosion model. A sample ice ingestion case was performed using the Energy Efficient Engine (E3) model in order to illustrate current capabilities. Engine performance characteristics were supplied using the Numerical Propulsion System Simulation (NPSS) model for this test case.

  13. FU Orionis outbursts, preferential recondensation of water ice, and the formation of giant planets

    NASA Astrophysics Data System (ADS)

    Hubbard, Alexander

    2017-02-01

    Ices, including water ice, prefer to recondense on to preexisting nuclei rather than spontaneously forming grains from a cloud of vapour. Interestingly, different potential recondensation nuclei have very different propensities to actually nucleate water ice at the temperatures associated with freeze-out in protoplanetary discs. Therefore, if a region in a disc is warmed and then recooled, water vapour should not be expected to refreeze evenly on to all available grains. Instead, it will preferentially recondense on to the most favorable grains. When the recooling is slow enough, only the most favorable grains will nucleate ice, allowing them to recondense thick ice mantles. We quantify the conditions for preferential recondensation to rapidly create pebble-sized grains in protoplanetary discs and show that FU Orionis type outbursts have the appropriate cooling rates to drive pebble creation in a band about 5 au wide outside of the quiescent frost line from approximately Jupiter's orbit to Saturn's (about -10 au). Those pebbles could be of the appropriate size to proceed to planetesimal formation via the Streaming Instability, or to contribute to the growth of planetesimals through pebble accretion. We suggest that this phenomenon contributed to the formation of the gas giants in our own Solar system.

  14. Probe systems for static pressure and cross-stream turbulence intensity

    NASA Technical Reports Server (NTRS)

    Rossow, Vernon, J.

    1991-01-01

    A recent study of total-pressure probes for use in highly turbulent streams is extended herein by developing probe systems that measure time-averaged static or ambient pressure and turbulence intensity. Arrangements of tubular probes of circular and elliptical cross section are described that measure the pressure at orifices on the sides of the probes to obtain different responses to the cross-stream velocity fluctuations. When the measured data are combined to remove the effect of the presence of the probes on the local pressure, the time-averaged static pressure and the cross-stream components of turbulence intensity can be determined. If a system of total pressure tubes, as described in an accompanying paper, is added to the static pressure group to form a single cluster, redundant measurements are obtained that permit accuracy and consistency checks.

  15. International Workshop on Comparing Ice Nucleation Measuring Systems 2014

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cziczo, Daniel

    The relationship of ambient aerosol particles to the formation of ice-containing clouds is one of the largest uncertainties in understanding the Earth’s climate. The uncertainty is due to several poorly understood processes and measurements including, but not limited to: (1) the microphysics of how particles nucleate ice, (2) the number of ice forming particles as a function of atmospheric properties such as temperature and relative humidity, (3) the atmospheric distribution of ice forming particles and (4) the role of anthropogenic activities in producing or changing the behavior of ice forming particles. The ways in which ice forming particles can impactmore » climate is also multi-faceted. More ice forming particles can lead to clouds with more ice crystals and different optical properties than clouds with less ice forming particles. More effective ice forming particles can lead to ice at higher temperature and/or lower saturation, resulting in clouds at lower altitude or latitude which also changes the Earth’s radiative balance. Ice nucleation also initiates most of the Earth’s precipitation, even in the mid- and low-latitudes, since cloud-top temperatures are often below freezing. The limited measurements and lack of understanding directly translates to restrictions in our ability to model atmospheric ice formation and project changes into the future. The importance of ice nucleation research is further exemplified by Figure 1 which shows the publications per decade and citations per year on the topic of ice nucleation [DeMott et al., 2011]. After a lull at the end of the last century, there has been a dramatic increase in both publications and citations related to ice nucleation; this directly corresponds to the importance of ice nucleation on the Earth’s climate and the uncertainty in this area noted by the Solomon [2007].« less

  16. Ice-Sheet Glaciation of the Puget lowland, Washington, during the Vashon Stade (late pleistocene)

    USGS Publications Warehouse

    Thorson, R.M.

    1980-01-01

    During the Vashon Stade of the Fraser Glaciation, about 15,000-13,000 yr B.P., a lobe of the Cordilleran Ice Sheet occupied the Puget lowland of western Washington. At its maximum extent about 14,000 yr ago, the ice sheet extended across the Puget lowland between the Cascade Range and Olympic Mountains and terminated about 80 km south of Seattle. Meltwater streams drained southwest to the Pacific Ocean and built broad outwash trains south of the ice margin. Reconstructed longitudinal profiles for the Puget lobe at its maximum extent are similar to the modern profile of Malaspina Glacier, Alaska, suggesting that the ice sheet may have been in a near-equilibrium state at the glacial maximum. Progressive northward retreat from the terminal zone was accompanied by the development of ice-marginal streams and proglacial lakes that drained southward during initial retreat, but northward during late Vashon time. Relatively rapid retreat of the Juan de Fuca lobe may have contributed to partial stagnation of the northwestern part of the Puget lobe. Final destruction of the Puget lobe occurred when the ice retreated north of Admiralty Inlet. The sea entered the Puget lowland at this time, allowing the deposition of glacial-marine sediments which now occur as high as 50 m altitude. These deposits, together with ice-marginal meltwater channels presumed to have formed above sea level during deglaciation, suggest that a significant amount of postglacial isostatic and(or) tectonic deformation has occurred in the Puget lowland since deglaciation. ?? 1980.

  17. UAS-Based Radar Sounding of Ice

    NASA Astrophysics Data System (ADS)

    Hale, R. D.; Keshmiri, S.; Leuschen, C.; Ewing, M.; Yan, J. B.; Rodriguez-Morales, F.; Gogineni, S.

    2014-12-01

    The University of Kansas Center for Remote Sensing of Ice Sheets developed two Unmanned Aerial Systems (UASs) to support polar research. We developed a mid-range UAS, called the Meridian, for operating a radar depth sounder/imager at 195 MHz with an eight-element antenna array. The Meridian weighs 1,100 lbs, has a 26-foot wingspan, and a range of 950 nm at its full payload capacity of 120 lbs. Ice-penetrating radar performance drove the configuration design, though additional payloads and sensors were considered to ensure adaptation to multi-mission science payloads. We also developed a short range UAS called the G1X for operating a low-frequency radar sounder that operates at 14 and 35 MHz. The G1X weighs 85 lbs, has a 17-foot wingspan, and a range of about 60 nm per gallon of fuel. The dual-frequency HF/VHF radar depth sounder transmits at 100 W peak power at a pulse repetition frequency of 10 KHz and weighs approximately 4.5 lbs. We conducted flight tests of the G1X integrated with the radar at the Sub-glacial Lake Whillans ice stream and the WISSARD drill site. The tests included pilot-controlled and fully autonomous flights to collect data over closely-spaced lines to synthesize a 2-D aperture. We obtained clear bed echoes with a signal-to-noise (S/N) ratio of more than 50 dB at this location. These are the first-ever successful soundings of glacial ice with a UAS-based radar. Although ice attenuation losses in this location are low in comparison to more challenging targets, in-field performance improvements to the UAS and HF/VHF radar system enabled significant gains in the signal-to-noise ratio, such that the system can now be demonstrated on more challenging outlet glaciers. We are upgrading the G1X UAS and radar system for further tests and data collection in Greenland. We are reducing the weight and volume of the radar, which, when coupled with further reductions in airframe and avionics weight and a larger fuel bladder, will offer extended range. Finally

  18. Upper Ocean Circulation in the Glacial Northeast Atlantic during Heinrich Stadials Ice-Sheet Retreat

    NASA Astrophysics Data System (ADS)

    Toucanne, S.; Soulet, G.; Bosq, M.; Marjolaine, S.; Zaragosi, S.; Bourillet, J. F.; Bayon, G.

    2016-12-01

    Intermediate ocean water variability is involved in climate changes over geological timescales. As a prominent example, changes in North Atlantic subsurface water properties (including warming) during Heinrich Stadials may have triggered the so-called Heinrich events through ice-shelf loss and attendant ice-stream acceleration. While the origin of Heinrich Stadials and subsequent iceberg calving remains controversial, paleoceanographic research efforts mainly focus on the deep Atlantic overturning, leaving the upper ocean largely unexplored. To further evaluate variability in upper ocean circulation and its possible relationship with ice-sheet instabilities, a depth-transect of eight cores (BOBGEO and GITAN-TANDEM cruises) from the Northeast Atlantic (down to 2 km water depth) have been used to investigate kinematic and chemical changes in the upper ocean during the last glacial period. Our results reveal that near-bottom flow speeds (reconstructed by using sortable silt mean grain-size and X-ray fluorescence core-scanner Zr/Rb ratio) and water-masses chemistry (carbon and neodymium isotopes performed on foraminifera) substantially changed in phase with the millennial-scale climate changes recognized in the ice-core records. Our results are compared with paleoceanographic reconstructions of the 'Western Boundary Undercurrent' in order to discuss regional hydrographic differences at both sides of the North Atlantic, as well as with the fluctuations of both the marine- (through ice-rafted debris) and terrestrial-terminating ice-streams (through meltwater discharges) of the circum-Atlantic ice-sheets. Particular attention will be given to the Heinrich Stadials and concomitant Channel River meltwater discharges into the Northeast Atlantic in response to the melting of the European Ice-Sheet. This comparison helps to disentangle the cryosphere-ocean interactions throughout the last ice age, and the sequence of events occurring in the course of the Heinrich Stadials.

  19. Aircraft icing research at NASA

    NASA Technical Reports Server (NTRS)

    Reinmann, J. J.; Shaw, R. J.; Olsen, W. A., Jr.

    1982-01-01

    Research activity is described for: ice protection systems, icing instrumentation, experimental methods, analytical modeling for the above, and in flight research. The renewed interest in aircraft icing has come about because of the new need for All-Weather Helicopters and General Aviation aircraft. Because of increased fuel costs, tomorrow's Commercial Transport aircraft will also require new types of ice protection systems and better estimates of the aeropenalties caused by ice on unprotected surfaces. The physics of aircraft icing is very similar to the icing that occurs on ground structures and structures at sea; all involve droplets that freeze on the surfaces because of the cold air. Therefore all icing research groups will benefit greatly by sharing their research information.

  20. Low-flow characteristics of streams in the Puget Sound region, Washington

    USGS Publications Warehouse

    Hidaka, F.T.

    1973-01-01

    relatively impermeable igneous, sedimentary, and metamorphic rocks or by relatively impermeable glacial till. Melt water from snow and ice influences the index for streams which originate at glaciers, and result in fairly large indexes--0.25 or greater. The slope index is influenced principally by the character of the geologic materials that underlie the basin. The largest slope indexes were computed for small streams that drain areas underlain by compact glacial till or consolidated sedimentary rocks. In contrast, lowland streams that flow through areas underlain by unconsolidated alluvia and glacial deposits have the smallest indexes. Small slope indexes also are characteristic of glacial streams and show the moderating effect of the snow and ice storage in the high mountain basins. The spacing indexes are similar to the slope indexes in that they are affected by the character of the geologic materials underlying a basin. The largest spacing indexes are characteristic of small streams whose basins are underlain by glacial till or by consolidated sedimentary rocks. The smallest indexes were computed for some lowland streams draining areas underlain by permeable glacial and alluvial sediments. The indexes do not appear to have a definite relation to each other. The low-flow-yield indexes are not related to either the slope or spacing indexes because snow and ice storage has a great influence on the low-flow-yield index, while the character of the geologic materials influences the slope and spacing indexes. A relation exists between the slope and spacing indexes but many anomalies occur that cannot be explained by the geology of the basins.

  1. Architecture of portable electronic medical records system integrated with streaming media.

    PubMed

    Chen, Wei; Shih, Chien-Chou

    2012-02-01

    Due to increasing occurrence of accidents and illness during business trips, travel, or overseas studies, the requirement for portable EMR (Electronic Medical Records) has increased. This study proposes integrating streaming media technology into the EMR system to facilitate referrals, contracted laboratories, and disease notification among hospitals. The current study encoded static and dynamic medical images of patients into a streaming video format and stored them in a Flash Media Server (FMS). Based on the Taiwan Electronic Medical Record Template (TMT) standard, EMR records can be converted into XML documents and used to integrate description fields with embedded streaming videos. This investigation implemented a web-based portable EMR interchanging system using streaming media techniques to expedite exchanging medical image information among hospitals. The proposed architecture of the portable EMR retrieval system not only provides local hospital users the ability to acquire EMR text files from a previous hospital, but also helps access static and dynamic medical images as reference for clinical diagnosis and treatment. The proposed method protects property rights of medical images through information security mechanisms of the Medical Record Interchange Service Center and Health Certificate Authorization to facilitate proper, efficient, and continuous treatment of patients.

  2. Recovery of biogas as a source of renewable energy from ice-cream production residues and wastewater.

    PubMed

    Demirel, Burak; Orok, Murat; Hot, Elif; Erkişi, Selin; Albükrek, Metin; Onay, Turgut T

    2013-01-01

    Proper management of waste streams and residues from agro-industry is very important to prevent environmental pollution. In particular, the anaerobic co-digestion process can be used as an important tool for safe disposal and energy recovery from agro-industry waste streams and residues. The primary objective of this laboratory-scale study was to determine whether it was possible to recover energy (biogas) from ice-cream production residues and wastewater, through a mesophilic anaerobic co-digestion process. A high methane yield of 0.338 L CH4/gCOD(removed) could be achieved from anaerobic digestion of ice-cream wastewater alone, with almost 70% of methane in biogas, while anaerobic digestion of ice-cream production residue alone did not seem feasible. When wastewater and ice-cream production residue were anaerobically co-digested at a ratio of 9:1 by weight, the highest methane yield of 0.131 L CH4/gCOD(removed) was observed. Buffering capacity seemed to be imperative in energy recovery from these substrates in the anaerobic digestion process.

  3. Reflective properties of melt ponds on sea ice

    NASA Astrophysics Data System (ADS)

    Malinka, Aleksey; Zege, Eleonora; Istomina, Larysa; Heygster, Georg; Spreen, Gunnar; Perovich, Donald; Polashenski, Chris

    2018-06-01

    Melt ponds occupy a large part of the Arctic sea ice in summer and strongly affect the radiative budget of the atmosphere-ice-ocean system. In this study, the melt pond reflectance is considered in the framework of radiative transfer theory. The melt pond is modeled as a plane-parallel layer of pure water upon a layer of sea ice (the pond bottom). We consider pond reflection as comprising Fresnel reflection by the water surface and multiple reflections between the pond surface and its bottom, which is assumed to be Lambertian. In order to give a description of how to find the pond bottom albedo, we investigate the inherent optical properties of sea ice. Using the Wentzel-Kramers-Brillouin approximation approach to light scattering by non-spherical particles (brine inclusions) and Mie solution for spherical particles (air bubbles), we conclude that the transport scattering coefficient in sea ice is a spectrally independent value. Then, within the two-stream approximation of the radiative transfer theory, we show that the under-pond ice spectral albedo is determined by two independent scalar values: the transport scattering coefficient and ice layer thickness. Given the pond depth and bottom albedo values, the bidirectional reflectance factor (BRF) and albedo of a pond can be calculated with analytical formulas. Thus, the main reflective properties of the melt pond, including their spectral dependence, are determined by only three independent parameters: pond depth z, ice layer thickness H, and transport scattering coefficient of ice σt.The effects of the incident conditions and the atmosphere state are examined. It is clearly shown that atmospheric correction is necessary even for in situ measurements. The atmospheric correction procedure has been used in the model verification. The optical model developed is verified with data from in situ measurements made during three field campaigns performed on landfast and pack ice in the Arctic. The measured pond albedo

  4. Functional evaluation of candidate ice structuring proteins using cell-free expression systems.

    PubMed

    Brödel, A K; Raymond, J A; Duman, J G; Bier, F F; Kubick, S

    2013-02-10

    Ice structuring proteins (ISPs) protect organisms from damage or death by freezing. They depress the non-equilibrium freezing point of water and prevent recrystallization, probably by binding to the surface of ice crystals. Many ISPs have been described and it is likely that many more exist in nature that have not yet been identified. ISPs come in many forms and thus cannot be reliably identified by their structure or consensus ice-binding motifs. Recombinant protein expression is the gold standard for proving the activity of a candidate ISP. Among existing expression systems, cell-free protein expression is the simplest and gives the fastest access to the protein of interest, but selection of the appropriate cell-free expression system is crucial for functionality. Here we describe cell-free expression methods for three ISPs that differ widely in structure and glycosylation status from three organisms: a fish (Macrozoarces americanus), an insect (Dendroides canadensis) and an alga (Chlamydomonas sp. CCMP681). We use both prokaryotic and eukaryotic expression systems for the production of ISPs. An ice recrystallization inhibition assay is used to test functionality. The techniques described here should improve the success of cell-free expression of ISPs in future applications. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. PSL Icing Facility Upgrade Overview

    NASA Technical Reports Server (NTRS)

    Griffin, Thomas A.; Dicki, Dennis J.; Lizanich, Paul J.

    2014-01-01

    The NASA Glenn Research Center Propulsion Systems Lab (PSL) was recently upgraded to perform engine inlet ice crystal testing in an altitude environment. The system installed 10 spray bars in the inlet plenum for ice crystal generation using 222 spray nozzles. As an altitude test chamber, the PSL is capable of simulating icing events at altitude in a groundtest facility. The system was designed to operate at altitudes from 4,000 to 40,000 ft at Mach numbers up to 0.8M and inlet total temperatures from -60 to +15 degF. This paper and presentation will be part of a series of presentations on PSL Icing and will cover the development of the icing capability through design, developmental testing, installation, initial calibration, and validation engine testing. Information will be presented on the design criteria and process, spray bar developmental testing at Cox and Co., system capabilities, and initial calibration and engine validation test. The PSL icing system was designed to provide NASA and the icing community with a facility that could be used for research studies of engine icing by duplicating in-flight events in a controlled ground-test facility. With the system and the altitude chamber we can produce flight conditions and cloud environments to simulate those encountered in flight. The icing system can be controlled to set various cloud uniformities, droplet median volumetric diameter (MVD), and icing water content (IWC) through a wide variety of conditions. The PSL chamber can set altitudes, Mach numbers, and temperatures of interest to the icing community and also has the instrumentation capability of measuring engine performance during icing testing. PSL last year completed the calibration and initial engine validation of the facility utilizing a Honeywell ALF502-R5 engine and has duplicated in-flight roll back conditions experienced during flight testing. This paper will summarize the modifications and buildup of the facility to accomplish these tests.

  6. Catalysts, systems and methods to reduce NOX in an exhaust gas stream

    DOEpatents

    Castellano, Christopher R.; Moini, Ahmad; Koermer, Gerald S.; Furbeck, Howard

    2010-07-20

    Catalysts, systems and methods are described to reduce NO.sub.x emissions of an internal combustion engine. In one embodiment, an emissions treatment system for an exhaust stream is provided having an SCR catalyst comprising silver tungstate on an alumina support. The emissions treatment system may be used for the treatment of exhaust streams from diesel engines and lean burn gasoline engines. An emissions treatment system may further comprise an injection device operative to dispense a hydrocarbon reducing agent upstream of the catalyst.

  7. Airframe Icing Research Gaps: NASA Perspective

    NASA Technical Reports Server (NTRS)

    Potapczuk, Mark

    2009-01-01

    qCurrent Airframe Icing Technology Gaps: Development of a full 3D ice accretion simulation model. Development of an improved simulation model for SLD conditions. CFD modeling of stall behavior for ice-contaminated wings/tails. Computational methods for simulation of stability and control parameters. Analysis of thermal ice protection system performance. Quantification of 3D ice shape geometric characteristics Development of accurate ground-based simulation of SLD conditions. Development of scaling methods for SLD conditions. Development of advanced diagnostic techniques for assessment of tunnel cloud conditions. Identification of critical ice shapes for aerodynamic performance degradation. Aerodynamic scaling issues associated with testing scale model ice shape geometries. Development of altitude scaling methods for thermal ice protections systems. Development of accurate parameter identification methods. Measurement of stability and control parameters for an ice-contaminated swept wing aircraft. Creation of control law modifications to prevent loss of control during icing encounters. 3D ice shape geometries. Collection efficiency data for ice shape geometries. SLD ice shape data, in-flight and ground-based, for simulation verification. Aerodynamic performance data for 3D geometries and various icing conditions. Stability and control parameter data for iced aircraft configurations. Thermal ice protection system data for simulation validation.

  8. Ice Sheet System Model as Educational Entertainment

    NASA Astrophysics Data System (ADS)

    Perez, G.

    2013-12-01

    Understanding the importance of polar ice sheets and their role in the evolution of Sea Level Rise (SLR), as well as Climate Change, is of paramount importance for policy makers as well as the public and schools at large. For example, polar ice sheets and glaciers currently account for 1/3 of the SLR signal, a ratio that will increase in the near to long-term future, which has tremendous societal ramifications. Consequently, it is important to increase awareness about our changing planet. In our increasingly digital society, mobile and web applications are burgeoning venues for such outreach. The Ice Sheet System Model (ISSM) is a software that was developed at the Jet Propulsion Laboratory/CalTech/NASA, in collaboration with University of California Irvine (UCI), with the goal of better understanding the evolution of polar ice sheets. It is a state-of-the-art framework, which relies on higher-end cluster-computing to address some of the aforementioned challenges. In addition, it is a flexible framework that can be deployed on any hardware; in particular, on mobile platforms such as Android or iOS smart phones. Here, we look at how the ISSM development team managed to port their model to these platforms, what the implications are for improving how scientists disseminate their results, and how a broader audience may familiarize themselves with running complex climate models in simplified scenarios which are highly educational and entertaining in content. We also look at the future plans toward a web portal fully integrated with mobile technologies to deliver the best content to the public, and to provide educational plans/lessons that can be used in grades K-12 as well as collegiate under-graduate and graduate programs.

  9. Sputtering of ices in the outer solar system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, R.E.

    1996-01-01

    Exploration of the outer solar system has led to studies in a new area of physics: electronically induced sputtering of low-temperature, condensed-gas solids (ices). Many of the icy bodies in the outer solar system were found to be bombarded by relatively intense fluxes of ions and electrons, causing both changes in their optical reflectance and ejection (sputtering) of molecules from their surfaces. The small cohesive energies of the condensed-gas solids afford relatively large sputtering rates from the electronic excitations produced in the solid by fast ions and electrons. Such sputtering produces an ambient gas about an icy body, often themore » source of the local plasma. This colloquium outlines the physics of the sputtering of ices and its relevance to several outer-solar-system phenomena: the sputter-produced plasma trapped in Saturn{close_quote}s magnetosphere; the O{sub 2} atmosphere on Europa; and optical absorption features such as SO{sub 2} in the surface of Europa and O{sub 2} and, possibly, O{sub 3} in the surface of Ganymede. {copyright} {ital 1996 The American Physical Society.}« less

  10. IcePod - A versatile Science Platform for the New York Air National Guard's LC-130 Aircraft

    NASA Astrophysics Data System (ADS)

    Frearson, N.; Bell, R. E.; Zappa, C. J.

    2011-12-01

    The ICEPOD program is a five-year effort to develop an ice imaging system mounted on New York Air National Guard (NYANG) LC-130 aircraft to map the surface and sub-surface topography of ice sheets, ice streams and outlet glaciers for the NSF Major Research Instrumentation program. The project is funded by the American Recovery and Reinvestment Act. The fundamental goal of the ICEPOD program is to develop an instrumentation package that can capture the dynamics of the changing polar regions, focusing on ice and ocean systems. The vision is that this instrumentation will be operated both on routine flights of the NYANG in the polar regions, such as on missions between McMurdo and South Pole Station, and on targeted science missions, from mapping sea ice and outlet glaciers such as those surrounding Ross Island or Greenland to quantifying the drainage systems from large subglacial lakes in East Antarctica. It is a key aspect of the design that at the conclusion of this program, the Pod, Deployment Arm and Data Acquisition and Management system will become available for use by the science community at large to install their own instruments onto. The science requirements for the primary instruments in the Icepod program have been defined and can be viewed on-line at www.ldeo.columbia.edu/icepod. As a consequence, the instrumentation will consist of a scanning laser for precise measurements of the ice surface, stereo-photogrammetry from both visible and infrared imaging cameras to document the ice surface and temperature, a VHF coherent, pulsed radar to recover ice thickness and constrain the distribution of water at the ice sheet bed and an L-band radar to measure surface accumulation or sea-ice thickness. All instrument data sets will be time-tagged and geo-referenced by recording precision GPS satellite data integrated with inertial measurement technology integrated into the pod. There will also be two operational modes - a low altitude flight mode that will optimize

  11. Wave effects on ocean-ice interaction in the marginal ice zone

    NASA Technical Reports Server (NTRS)

    Liu, Antony K.; Hakkinen, Sirpa; Peng, Chih Y.

    1993-01-01

    The effects of wave train on ice-ocean interaction in the marginal ice zone are studied through numerical modeling. A coupled two-dimensional ice-ocean model has been developed to include wave effects and wind stress for the predictions of ice edge dynamics. The sea ice model is coupled to the reduced-gravity ocean model through interfacial stresses. The main dynamic balance in the ice momentum is between water-ice stress, wind stress, and wave radiation stresses. By considering the exchange of momentum between waves and ice pack through radiation stress for decaying waves, a parametric study of the effects of wave stress and wind stress on ice edge dynamics has been performed. The numerical results show significant effects from wave action. The ice edge is sharper, and ice edge meanders form in the marginal ice zone owing to forcing by wave action and refraction of swell system after a couple of days. Upwelling at the ice edge and eddy formation can be enhanced by the nonlinear effects of wave action; wave action sharpens the ice edge and can produce ice meandering, which enhances local Ekman pumping and pycnocline anomalies. The resulting ice concentration, pycnocline changes, and flow velocity field are shown to be consistent with previous observations.

  12. GEOMORPHOLOGICAL STUDIES IN THE LITTLE MIAMI RIVER (INITIALLY, OTHER STREAM SYSTEMS TO BE ADDED LATER)

    EPA Science Inventory

    Changes in the amount and types of land use in a watershed can destabilize stream channel structure, increase sediment loading and degrade in-stream habitat. Stream classification systems (e.g., Rosgen) may be useful for determining the susceptibility of stream channel segments t...

  13. Fram Strait: Atmospheric Forcing of The Sea Ice Flux

    NASA Astrophysics Data System (ADS)

    Widell, K.; Østerhus, S.; Gammelsrød, T.

    Measuring the magnitude and variability of the ice and freshwater flux through Fram Strait is an important element in understanding climate variability in the Arctic. Since the major part of the ice and freshwater that leaves the Arctic passes through Fram Strait, this passage can be considered a key area for estimating the net ice production in the Arctic Ocean. In 1990, the Norwegian Polar Institute (NPI) started a monitoring program in the strait, most years by means of two moorings with Upward Looking Sonars (ULS) measuring ice draft. From 1995 and on, these moorings were also equipped with Doppler Current Meters (DCM) to measure the ice velocity. These measurements give an opportunity to investigate the different forces affecting ice motion in the strait. Maximum correlation coefficient between atmospheric sea level pressure (from NCEP/NCAR reanalysed data) and southward ice velocity is found when using the cross strait pressure difference along 80N between 10W and 5E (R = 0.72) consider- ing monthly means. Subtracting current velocity at 50 m depth (also measured by the DCM) from ice velocity improves the correlation to R = 0.84. This gives insight in the relative importance of current and wind on the ice motion, and indicates that pressure data can be used to make fairly good estimates of the ice velocity in the strait. In combination with data on ice thickness and ice stream width, this result is used to calculate the ice volume transport. By making assumptions on the parameters in- volved, the time series is extended back to 1948, the start of the pressure record. This time series will be presented and compared to literature, and annual and seasonal vari- ation of the ice flux will be discussed.

  14. Glacier and Ice Shelves Studies Using Satellite SAR Interferometry

    NASA Technical Reports Server (NTRS)

    Rignot, Eric

    1999-01-01

    Satellite radar interferometry is a powerful technique to measure the surface velocity and topography of glacier ice. On ice shelves, a quadruple difference technique separates tidal motion from the steady creep flow deformation of ice. The results provide a wealth of information about glacier grounding lines , mass fluxes, stability, elastic properties of ice, and tidal regime. The grounding line, which is where the glacier detaches from its bed and becomes afloat, is detected with a precision of a few tens of meters. Combining this information with satellite radar altimetry makes it possible to measure glacier discharge into the ocean and state of mass balance with greater precision than ever before, and in turn provide a significant revision of past estimates of mass balance of the Greenland and Antarctic Ice Sheets. Analysis of creep rates on floating ice permits an estimation of basal melting at the ice shelf underside. The results reveal that the action of ocean water in sub-ice-shelf cavities has been largely underestimated by oceanographic models and is the dominant mode of mass release to the ocean from an ice shelf. Precise mapping of grounding line positions also permits the detection of grounding line migration, which is a fine indicator of glacier change, independent of our knowledge of snow accumulation and ice melting. This technique has been successfully used to detect the rapid retreat of Pine Island Glacier, the largest ice stream in West Antarctica. Finally, tidal motion of ice shelves measured interferometrically provides a modern, synoptic view of the physical processes which govern the formation of tabular icebergs in the Antarctic.

  15. Water isotopic ratios from a continuously melted ice core sample

    NASA Astrophysics Data System (ADS)

    Gkinis, V.; Popp, T. J.; Blunier, T.; Bigler, M.; Schüpbach, S.; Johnsen, S. J.

    2011-06-01

    A new technique for on-line high resolution isotopic analysis of liquid water, tailored for ice core studies is presented. We build an interface between an Infra Red Cavity Ring Down Spectrometer (IR-CRDS) and a Continuous Flow Analysis (CFA) system. The system offers the possibility to perform simultaneuous water isotopic analysis of δ18O and δD on a continuous stream of liquid water as generated from a continuously melted ice rod. Injection of sub μl amounts of liquid water is achieved by pumping sample through a fused silica capillary and instantaneously vaporizing it with 100 % efficiency in a home made oven at a temperature of 170 °C. A calibration procedure allows for proper reporting of the data on the VSMOW scale. We apply the necessary corrections based on the assessed performance of the system regarding instrumental drifts and dependance on humidity levels. The melt rates are monitored in order to assign a depth scale to the measured isotopic profiles. Application of spectral methods yields the combined uncertainty of the system at below 0.1 ‰ and 0.5 ‰ for δ18O and δD, respectively. This performance is comparable to that achieved with mass spectrometry. Dispersion of the sample in the transfer lines limits the resolution of the technique. In this work we investigate and assess these dispersion effects. By using an optimal filtering method we show how the measured profiles can be corrected for the smoothing effects resulting from the sample dispersion. Considering the significant advantages the technique offers, i.e. simultaneuous measurement of δ18O and δD, potentially in combination with chemical components that are traditionally measured on CFA systems, notable reduction on analysis time and power consumption, we consider it as an alternative to traditional isotope ratio mass spectrometry with the possibility to be deployed for field ice core studies. We present data acquired in the framework of the NEEM deep ice core drilling project in

  16. Sea Ice

    NASA Technical Reports Server (NTRS)

    Parkinson, Claire L.; Cavalieri, Donald J.

    2005-01-01

    Sea ice covers vast areas of the polar oceans, with ice extent in the Northern Hemisphere ranging from approximately 7 x 10(exp 6) sq km in September to approximately 15 x 10(exp 6) sq km in March and ice extent in the Southern Hemisphere ranging from approximately 3 x 10(exp 6) sq km in February to approximately 18 x 10(exp 6) sq km in September. These ice covers have major impacts on the atmosphere, oceans, and ecosystems of the polar regions, and so as changes occur in them there are potential widespread consequences. Satellite data reveal considerable interannual variability in both polar sea ice covers, and many studies suggest possible connections between the ice and various oscillations within the climate system, such as the Arctic Oscillation, North Atlantic Oscillation, and Antarctic Oscillation, or Southern Annular Mode. Nonetheless, statistically significant long-term trends are also apparent, including overall trends of decreased ice coverage in the Arctic and increased ice coverage in the Antarctic from late 1978 through the end of 2003, with the Antarctic ice increases following marked decreases in the Antarctic ice during the 1970s. For a detailed picture of the seasonally varying ice cover at the start of the 21st century, this chapter includes ice concentration maps for each month of 2001 for both the Arctic and the Antarctic, as well as an overview of what the satellite record has revealed about the two polar ice covers from the 1970s through 2003.

  17. Modelling the Climate - Greenland Ice Sheet Interaction in the Coupled Ice-sheet/Climate Model EC-EARTH - PISM

    NASA Astrophysics Data System (ADS)

    Yang, S.; Madsen, M. S.; Rodehacke, C. B.; Svendsen, S. H.; Adalgeirsdottir, G.

    2014-12-01

    Recent observations show that the Greenland ice sheet (GrIS) has been losing mass with an increasing speed during the past decades. Predicting the GrIS changes and their climate consequences relies on the understanding of the interaction of the GrIS with the climate system on both global and local scales, and requires climate model systems with an explicit and physically consistent ice sheet module. A fully coupled global climate model with a dynamical ice sheet model for the GrIS has recently been developed. The model system, EC-EARTH - PISM, consists of the EC-EARTH, an atmosphere, ocean and sea ice model system, and the Parallel Ice Sheet Model (PISM). The coupling of PISM includes a modified surface physical parameterization in EC-EARTH adapted to the land ice surface over glaciated regions in Greenland. The PISM ice sheet model is forced with the surface mass balance (SMB) directly computed inside the EC-EARTH atmospheric module and accounting for the precipitation, the surface evaporation, and the melting of snow and ice over land ice. PISM returns the simulated basal melt, ice discharge and ice cover (extent and thickness) as boundary conditions to EC-EARTH. This coupled system is mass and energy conserving without being constrained by any anomaly correction or flux adjustment, and hence is suitable for investigation of ice sheet - climate feedbacks. Three multi-century experiments for warm climate scenarios under (1) the RCP85 climate forcing, (2) an abrupt 4xCO2 and (3) an idealized 1% per year CO2 increase are performed using the coupled model system. The experiments are compared with their counterparts of the standard CMIP5 simulations (without the interactive ice sheet) to evaluate the performance of the coupled system and to quantify the GrIS feedbacks. In particular, the evolution of the Greenland ice sheet under the warm climate and its impacts on the climate system are investigated. Freshwater fluxes from the Greenland ice sheet melt to the Arctic

  18. Improving Climate Literacy Using The Ice Sheet System Model (ISSM): A Prototype Virtual Ice Sheet Laboratory For Use In K-12 Classrooms

    NASA Astrophysics Data System (ADS)

    Halkides, D. J.; Larour, E. Y.; Perez, G.; Petrie, K.; Nguyen, L.

    2013-12-01

    Statistics indicate that most Americans learn what they will know about science within the confines of our public K-12 education system and the media. Next Generation Science Standards (NGSS) aim to remedy science illiteracy and provide guidelines to exceed the Common Core State Standards that most U.S. state governments have adopted, by integrating disciplinary cores with crosscutting ideas and real life practices. In this vein, we present a prototype ';Virtual Ice Sheet Laboratory' (I-Lab), geared to K-12 students, educators and interested members of the general public. I-Lab will allow users to perform experiments using a state-of-the-art dynamical ice sheet model and provide detailed downloadable lesson plans, which incorporate this model and are consistent with NGSS Physical Science criteria for different grade bands (K-2, 3-5, 6-8, and 9-12). The ultimate goal of this website is to improve public climate science literacy, especially in regards to the crucial role of the polar ice sheets in Earth's climate and sea level. The model used will be the Ice Sheet System Model (ISSM), an ice flow model developed at NASA's Jet Propulsion Laboratory and UC Irvine, that simulates the near-term evolution of polar ice sheets (Greenland and Antarctica) and includes high spatial resolution capabilities and data assimilation to produce realistic simulations of ice sheet dynamics at the continental scale. Open sourced since 2011, ISSM is used in cutting edge cryosphere research around the globe. Thru I-Lab, students will be able to access ISSM using a simple, online graphical interface that can be launched from a web browser on a computer, tablet or smart phone. The interface will allow users to select different climate conditions and watch how the polar ice sheets evolve in time under those conditions. Lesson contents will include links to background material and activities that teach observation recording, concept articulation, hypothesis formulation and testing, and

  19. Operational Products Archived at the National Snow and Ice Data Center

    NASA Astrophysics Data System (ADS)

    Fetterer, F. M.; Ballagh, L.; Gergely, K.; Kovarik, J.; Wallace, A.; Windnagel, A.

    2009-12-01

    Sea ice charts for shipping interests from the Navy/NOAA/Coast Guard National Ice Center are often laboriously produced by manually interpreting and synthesizing data from many sources, both satellite and in situ. They are generally more accurate than similar products from single sources. Upward looking sonar data from U.S. Navy submarines operating in the Arctic provides information on ice thickness. Similarly extensive data were available from no other source prior to the recently established reliability of ice thickness estimates from polar orbiting instruments like the Geoscience Laser Altimeter System (GLAS). Snow Data Assimilation System (SNODAS) products from the NOAA NWS National Operational Hydrologic Remote Sensing Center give researchers the best possible estimates of snow cover and associated variables to support hydrologic modeling and analysis for the continental U.S. These and other snow and ice data products are produced by the U.S. Navy, the NOAA National Weather Service, and other agency entities to serve users who have an operational need: to get a ship safely to its destination, for example, or to predict stream flow. NOAA supports work at NSIDC with data from operational sources that can be used for climate research and change detection. We make these products available to a new user base, by archiving operational data, making data available online, providing documentation, and fielding questions from researchers about the data. These data demand special consideration: often they are advantageous because they are available on a schedule in near real time, but their use in climate studies is problematic since many are produced with regard for ‘best now’ and without regard for time series consistency. As arctic climate changes rapidly, operational and semi-operational products have an expanding science support role to play.

  20. Laser vaporization of cirrus-like ice particles with secondary ice multiplication

    PubMed Central

    Matthews, Mary; Pomel, François; Wender, Christiane; Kiselev, Alexei; Duft, Denis; Kasparian, Jérôme; Wolf, Jean-Pierre; Leisner, Thomas

    2016-01-01

    We investigate the interaction of ultrashort laser filaments with individual 90-μm ice particles, representative of cirrus particles. The ice particles fragment under laser illumination. By monitoring the evolution of the corresponding ice/vapor system at up to 140,000 frames per second over 30 ms, we conclude that a shockwave vaporization supersaturates the neighboring region relative to ice, allowing the nucleation and growth of new ice particles, supported by laser-induced plasma photochemistry. This process constitutes the first direct observation of filament-induced secondary ice multiplication, a process that strongly modifies the particle size distribution and, thus, the albedo of typical cirrus clouds. PMID:27386537